IMPLEMENTING OPTION PRICING MODELS
WHEN ASSET RETURNS ARE PREDICTABLE

by

Andrew W. Lo and Jiang Wang

Latest Revision: July 1993

Working Paper No. 3593-93-EFA
Implementing Option Pricing Models When Asset Returns Are Predictable*

Andrew W. Lo and Jiang Wang†

First Draft: 15 April 1993
Latest Revision: 23 July 1993

Abstract

Option pricing formulas obtained from continuous-time no-arbitrage arguments such as the Black-Scholes formula generally do not depend on the drift term of the underlying asset’s diffusion equation. However, the drift is essential for properly implementing such formulas empirically, since the numerical values of the parameters that do appear in the option pricing formula can depend intimately on the drift. In particular, if the underlying asset’s returns are predictable, this will influence the theoretical value and the empirical estimate of the diffusion coefficient σ. We develop an adjustment to the Black-Scholes formula that accounts for predictability and show that this adjustment can be important even for small levels of predictability, especially for longer-maturity options. We propose a class of continuous-time linear diffusion processes for asset prices that can capture a wider variety of predictability, and provide several numerical examples that illustrate their importance for pricing options and other derivative assets.

*We thank Petr Adamek, Lars Hansen, John Heaton, and Chi-fu Huang for helpful discussions, and seminar participants at Boston University, Northwestern University, the Research Triangle Econometrics Workshop, the University of Texas at Austin, the University of Chicago, Washington University, and Yale University for useful comments. Financial support from the Research Program in Computational Finance is gratefully acknowledged.

†Sloan School of Management, MIT, Cambridge, MA 02142–1347.
1 Introduction

There is now a substantial body of evidence in the recent empirical literature which shows that financial asset returns are predictable to some degree.1 Despite the current lack of consensus as to the sources of such predictability – some attribute it to time-varying expected returns, perhaps due to changes in business conditions, while others argue that predictability is a symptom of inefficient markets or irrational investors – there seems to be a growing consensus that predictability is a genuine feature of many financial asset returns.

In this paper, we investigate the impact of asset return predictability on the prices of an asset’s options. A simple comparison between the cases of perfect predictability [certainty] and perfect unpredictability [the random walk] suggests that predictability must have an effect on option prices.

However, in the continuous-time no-arbitrage pricing framework of Black and Scholes (1973) and Merton (1973), and in the martingale pricing approach of Cox and Ross (1976) and Harrison and Kreps (1979), option pricing formulas are shown to be functionally independent of the drift of the price process. Since the drift is usually where predictability manifests itself – it is, after all, the conditional expectation of [instantaneous] returns – this seems to imply that predictability is irrelevant for option prices.2

The source of this apparent paradox lies in our attempt to link the properties of finite holding-period returns, e.g., predictability, to the properties of infinitesimal returns, e.g., the instantaneous volatility which determines option prices, without properly fixing the appropriate quantities. In particular, while it is true that changes in predictability arising from the drift cannot affect option prices under the Black-Scholes assumption that the volatility σ of instantaneous returns is fixed, such a thought-experiment is not plausible because it implies

2Of course, predictability can also manifest itself in the diffusion coefficient, in the form of stochastic volatility with dynamics that depend on predetermined economic factors. However, since predictability is more commonly modeled as part of the conditional mean, we shall focus primarily on the drift.
that the unconditional variance of finite holding-period returns will change as predictability changes. But a sensible comparative static analysis of predictability must hold fixed the unconditional variance of returns, which is the benchmark against which the predictive power of a forecast is to be measured.

The resolution of this apparent paradox lies in the observation that if we fix the unconditional variance of the “true” [finite holding-period] asset return process, i.e., the data, then as more predictability is introduced via the drift, the population value of the diffusion coefficient must change so as to keep the unconditional variance constant. Therefore, although the option pricing formula is unaffected by changes in predictability, option prices do change. In this respect, ignoring predictability in the drift is tantamount to committing a specification error that can lead to incorrect prices, just as any other specification error can [see Merton (1976b), for example].

But why should the unconditional variance be fixed? The answer lies in the very premise of a unique “true” price process or data-generating process (DGP), which is implicit in almost all modern financial asset pricing theories and in their empirical implementations. Specifically, when choosing among several competing specifications of the DGP, we hope to select the specification that matches most closely its properties. In particular, we hope to find a specification that can match every aspect of the data’s behavior, i.e., its finite-dimensional distributions. Since our most basic understanding of and intuition for the DGP comes from its unconditional moments, at the very least we shall require that any plausible specification must match these unconditional moments. But requiring a specification to match the DGP’s unconditional moments is tantamount to fixing the unconditional moments at the “true” values.

Alternatively, from a purely empirical standpoint, the unconditional sample moments of the data are fixed at a given point in time since we have only one historical realization of each asset return series. The specification search that we undertake can almost always be viewed as an attempt to fit a statistical model to these fixed sample moments.

By fixing the unconditional moments of the DGP, we show that changes in predictability

3 Although the finite-dimensional distributions do not completely determine a continuous-time stochastic process, for our purposes they shall suffice. More rigorously, the concepts of separability and measurability must be introduced to complete the definition of continuous-time processes – see, for example, Doob (1953, Chapter II.2).
generally affect the population value of the diffusion coefficient, and this in turn will affect option prices. However, the particular effect on option prices will depend critically on the particular form of predictability inherent in the drift. For example, if the drift depends only on exogenous time-varying economic factors, then an increase in predictability unambiguously decreases option values. But if the drift also depends upon lagged prices, then an increase predictability can either increase or decrease option values, depending on the particular specification of the drift.

We derive explicit pricing formulas for options on assets with predictable returns, and show that even small amounts of predictability can have a large impact on option prices, especially for longer-maturity options. For example, under the standard Black-Scholes assumption of a geometric random walk for stock prices, the price of a nine-month at-the-money call option on a $40 stock with a 2 percent daily return volatility is $5.905. However, if stock returns are autocorrelated, with a daily first-order autocorrelation coefficient of -0.30, this same option must be priced at $7.099 to avoid arbitrage, an increase of about 20 percent [see Tables 1a–c]. Of course, the particular adjustment to option prices is wholly determined by the specification of the drift, and we propose several specifications that can account for a broad variety of predictability in asset returns, and illustrate the importance of these adjustments with several numerical examples.

In Section 2 we provide a brief review of the Black-Scholes option pricing model to clarify the role of the drift, and to emphasize the distinction between the DGP and the "risk-neutralized" process for the underlying asset's price. The implications of this distinction for option prices are developed in Section 3, where we present an adjustment for the Black-Scholes volatility parameter σ that accounts for the most parsimonious form of predictability: autocorrelation in asset returns. To account for more general forms of predictability, we propose two classes of linear diffusion processes in Sections 4 and 5, the bivariate and multivariate trending Ornstein-Uhlenbeck processes, respectively. In Section 6 we show how the parameters of these predictable alternatives can be estimated with discretely-sampled data by recasting them in state-space form and using the Kalman filter to obtain the likelihood function. We consider several extensions and qualifications in Section 7, and conclude in Section 8.
2 Option Prices and the Drift

Much of the success and growth of the market for options and other derivative assets may be linked to the pricing and hedging techniques pioneered by Black and Scholes (1973) and Merton (1973). The fundamental insight of the Black-Scholes and Merton approach is the dynamic investment strategy in the underlying asset and riskless bonds that replicates the option’s payoff exactly. In particular, if the underlying asset’s price process \(P(t) \) satisfies the following stochastic differential equation:

\[
dP(t) = \alpha(t)P(t)dt + \sigma P(t)dW
\]

\[
d\log P(t) = d\log P(t) = \mu(t)dt + \sigma dW
\]

and trading is frictionless and continuous, then the no-arbitrage condition yields the following restriction on the call option price \(C \):

\[
\frac{1}{2} \sigma^2 P^2 \frac{\partial^2 C}{\partial P^2} + rP \frac{\partial C}{\partial P} + \frac{\partial C}{\partial t} = rC
\]

where \(r \) is the instantaneous risk-free rate of return.\(^4\) Given the two boundary conditions for the call option, \(C(P(T), T) = \text{Max}[P(T) - K, 0] \) and \(C(0, t) = 0 \), there exists a unique solution to the partial differential equation (2.3), the celebrated Black-Scholes formula:

\[
C(P(t), t; K, T, r, \sigma) = P(t)\Phi(d_1) - Ke^{-r(T-t)}\Phi(d_2)
\]

where:

\[
d_1 \equiv \frac{\log(P(t)/K) + (r + \frac{1}{2}\sigma^2)(T-t)}{\sigma \sqrt{T-t}}
\]

\[
d_2 \equiv \frac{\log(P(t)/K) + (r - \frac{1}{2}\sigma^2)(T-t)}{\sigma \sqrt{T-t}}
\]

\(^4\)That \(C \) is a function only of \(P \) and \(t \), twice-differentiable in \(P \), and once-differentiable in \(t \) are properties that can be derived from the replicating strategy, and need not be assumed \textit{a priori}. See Merton (1973) for further details.
and $\Phi(\cdot)$ is the standard normal cdf. Although it is well-known that the Black-Scholes formula does not depend on the drift α, it is rarely emphasized that $\alpha(\cdot)$ need not be a constant, as in the case of geometric Brownian motion, but may be an arbitrary function of P and other economic variables. This remarkable fact implies that the Black-Scholes formula is applicable to a wide variety of price processes, processes that exhibit complex patterns of predictability and dependence on other observed and unobserved economic factors [see, for example, the processes described in Sections 4 and 5 below].

The second and more modern approach to pricing options is to construct an equivalent martingale measure, which is always possible if prices are set so that arbitrage opportunities do not exist. Under the equivalent martingale measure all asset prices must follow martingales, thus the price of an option is simply the conditional expectation of its payoff at maturity.

More specifically, the martingale pricing method explicitly exploits the fact that the pricing equation is independent of the drift. Since the drift $\alpha(\cdot)$ of $P(t)$ does not enter into the pricing equation (2.3), for purposes of pricing options it may be set to any arbitrary function without loss of generality (subject to some regularity conditions). In particular, under the equivalent martingale measure in which all asset prices follow martingales, the option’s price is simply the present discounted value of its expected payoff at maturity, where the expectation is computed with respect to the risk-neutralized process $P^*(t)$:

$$dP^*(t) = rP^*(t)dt + \sigma P^*(t)dW$$

$$d\log P^*(t) = dp^*(t) = \left(r - \frac{\sigma^2}{2} \right) dt + \sigma dW.$$ (2.8)

Although the risk-neutralized process is not empirically observable, it is nevertheless an extremely convenient specification for evaluating the price of an option on the stock with a data-generating process given by $P(t)$.

Taken together, the two approaches to pricing derivative assets show that as long as the diffusion coefficient for the log-price process is a fixed constant σ, then the Black-Scholes formula yields the correct option price regardless of the specification and arguments of the

5 This was first observed by Merton (1973). Of course, $\alpha(\cdot)$ must still satisfy some regularity conditions to ensure the existence of a solution to the stochastic differential equation (2.1).
drift. More generally, it may be shown that for any derivative asset which can be priced purely by arbitrage, and where the underlying asset’s log-price dynamics is described by an Itô diffusion with constant diffusion coefficient, the derivative pricing formula is functionally independent of the drift, and is determined purely by the diffusion coefficient and the contract specifications of the derivative asset.

3 Predictability and the Black-Scholes Formula

The fact that the drift plays no role in determining the option’s pricing formula belies its importance in the formula’s implementation. In particular, although the same symbol σ is used in both the risk-neutralized process P^* and the data-generating process P, both the theoretical value and the empirical estimate of σ are determined solely by the DGP, not by the risk-neutralized process, and both will be affected by the functional form of the drift. Although predictability in the drift can be safely ignored when deriving the option pricing formula, it must be addressed explicitly for any given DGP.

In Section 3.1, we consider the most parsimonious form of predictability – autocorrelated asset returns – and show how it affects σ directly in the specific case of a trending Ornstein-Uhlenbeck process for log-prices. We also provide a simple adjustment to the Black-Scholes formula that can account for it. More general and empirically plausible log-price processes, with considerably more flexible forms of predictability, are presented in Sections 4 and 5.

3.1 The Trending O-U Process

Let the log-price process $p(t)$ satisfy the following stochastic differential equation:

$$
\frac{dp(t)}{dt} = \left(-\gamma (p(t) - \mu t) + \mu \right) dt + \sigma dW
$$

where $\gamma \geq 0$, $p(0) = p_0$, $t \in [0, \infty)$.

Unlike the geometric Brownian motion dynamics of the original Black-Scholes model, which implies that log-prices follow an arithmetic random walk with independently and identically distributed Gaussian increments, this log-price process is the sum of a zero-mean stationary autoregressive Gaussian process – an Ornstein-Uhlenbeck process – and a deterministic linear
trend, so we call this the "trending O-U" process. Re-writing (3.1) as:

\[d(p(t) - \mu t) = -\gamma(p(t) - \mu t)dt + \sigma dW \]

shows that when \(p(t) \) deviates from its trend \(\mu t \), it is pulled back at a rate proportional to its deviation, where \(\gamma \) is the "speed of adjustment". For notational convenience, we shall work with the detrended log-price process \(q(t) \) for the remainder of the paper, where \(q(t) \equiv p(t) - \mu t \). From (3.2), we have:

\[dq(t) = -\gamma q(t)dt + \sigma dW \]

and \(q(0) = q_0 = p_0 \).

To develop further intuition for the properties of (3.3), consider its explicit solution:

\[q(t) = e^{-\gamma t}q_0 + \sigma \int_0^t e^{-\gamma(t-s)}dW(s) \]

from which we can obtain the unconditional moments and co-moments of continuously-compounded \(\tau \)-period returns \(r_\tau(t) \equiv p(t) - p(t-\tau) = \mu \tau + q(t) - q(t-\tau) \).\(^6\)

\[E[r_\tau(t)] = \mu \tau \]

\[\text{Var}[r_\tau(t)] = \frac{\sigma^2}{\gamma} \left[1 - e^{-\gamma \tau} \right], \quad \tau \geq 0 \]

\[\text{Cov}[r_\tau(t_1), r_\tau(t_2)] = -\frac{\sigma^2}{2\gamma} e^{-\gamma(t_2-t_1-\tau)} \left[1 - e^{-\gamma \tau} \right]^2, \quad t_1 + \tau \leq t_2 \]

\[\text{Corr}[r_\tau(t), r_\tau(t + \tau)] = \rho(1) = -\frac{1}{2} \left[1 - e^{-\gamma \tau} \right]. \]

\(^6\)Since we have conditioned on \(q(0) = q_0 \) in defining the detrended log-price process, we must be more precise about what we mean by an "unconditional" moment. If \(q_0 \) is assumed to be stochastic and drawn from its stationary distribution, then an unconditional moment of a function of \(q(t) \) may be defined as the expectation of the corresponding conditional moment [conditional upon \(q_0 \)], where the expectation is taken with respect to the stationary distribution of \(q_0 \). Alternatively, if \(q(t) \) is stationary, as it is in (3.3), the unconditional moment may be defined as the limit of the corresponding conditional moment as \(t \) increases without bound. We shall adopt this definition of an unconditional moment throughout the remainder of the paper.
Since (3.1) is a Gaussian process, the moments (3.5) - (3.7) completely characterize the finite-dimensional distributions of \(r_\tau(t) \). Unlike the arithmetic Brownian motion or random walk which is nonstationary and often said to be "difference-stationary" or a "stochastic trend", the trending O-U process is said to be "trend-stationary" since its deviations from trend follow a stationary process.

An implication of trend-stationarity is that the variance of \(\tau \)-period returns has a finite limit as \(\tau \) increases without bound, in this case \(\frac{s^2}{\tau} \), whereas this variance increases linearly with \(\tau \) under a random walk. While trend-stationary processes are often simpler to estimate, they have been criticized as unrealistic models of financial asset prices since they do not accord well with the common intuition that longer-horizon asset returns exhibit more risk, or that price forecasts exhibit more uncertainty as the forecast horizon grows. However, if the source of such intuition is empirical observation, it may well be consistent with trend-stationarity since it is now well known that for any finite set of data, trend-stationarity and difference-stationarity are virtually indistinguishable [see, for example, Campbell and Perron (1991) and the many other "unit root" papers cited in their references]. Nevertheless, in Section 5 we shall provide a generalization of the trending O-U process that contains stochastic trends, in which case the variance of returns will increase with the holding period \(\tau \).

Note that the first-order autocorrelation (3.8) of the trending O-U increments is always less than or equal to zero, bounded below by \(-\frac{1}{2} \), and approaches \(-\frac{1}{2} \) as \(\tau \) increases without bound. These shall prove to be serious restrictions for many empirical applications, and will motivate the alternative processes introduced in Sections 4 and 5, which have considerably more flexible autocorrelation functions. However, as an illustration of the impact of serial correlation on option prices the trending O-U process is ideal.

3.2 Relating Unconditional Moments to Parameters

Despite the differences between the trending O-U process and an arithmetic Brownian motion, both data-generating processes yield the same risk-neutralized price process (2.7), hence the Black-Scholes formula still applies to options on stocks with log-price dynamics given by (3.1). This may seem paradoxical, especially since the Black-Scholes formula is independent of the parameter \(\gamma \) which determines the degree of autocorrelation in returns.

The paradox is readily resolved by observing that the two data-generating processes (2.2)
and (3.1) must fit the same price data – they are, after all, two competing specifications of a single price process, the “true” DGP. Therefore, in the presence of autocorrelation, (3.1), the numerical value for the Black-Scholes input σ will be different than in the case of no autocorrelation, (2.2).

To be concrete, denote by \bar{r}_τ, $s^2(r_\tau)$, and $\rho_\tau(1)$ the unconditional mean, variance, and first-order autocorrelation of $r_\tau(t)$, respectively, which may be defined without reference to any particular data-generating process. Moreover, the numerical values of these quantities may also be fixed without reference to any particular data-generating process. All competing specifications for the true data-generating process must match these moments at the very least to be plausible descriptions of that data [of course, the best specification is one that matches all the moments, in which case the true data-generating process will have been discovered]. For the arithmetic Brownian motion, this implies that the parameters (μ, σ^2) must satisfy the following relations:

\[
\begin{align*}
\bar{r}_\tau &= \mu \tau \\
\sigma^2(r_\tau) &= \sigma^2 \tau \\
\rho_\tau(1) &= 0.
\end{align*}
\]

From (3.10), we obtain the well-known result that the Black-Scholes input σ^2 may be estimated by the sample variance of continuously-compounded returns r_τ. However, in the case of the trending O-U process, the parameters (μ, γ, σ^2) must satisfy:

\[
\begin{align*}
\bar{r}_\tau &= \mu \tau \\
\sigma^2(r_\tau) &= \frac{\sigma^2}{\gamma} \left[1 - e^{-\gamma \tau} \right], \quad \tau \geq 0 \\
\rho_\tau(1) &= -\frac{1}{2} \left[1 - e^{-\gamma \tau} \right].
\end{align*}
\]

Observe that these relations must hold for the theoretical or population values of the parameters if the trending O-U process is to be a plausible description of the DGP. Moreover,

\footnote{Of course, it must be assumed that the moments exist. However, even if they do not, a similar but more involved argument may be based on location, scale, and association parameters.}
while (3.12) – (3.14) involve population values of the parameters, they also have implications for estimation. In particular, under the trending O-U specification, the sample variance of continuously-compounded returns is clearly not an appropriate estimator for σ^2.

Holding the unconditional variance of returns fixed, the particular value of σ^2 now depends on γ. Solving (3.13) and (3.14) for γ and σ^2 yields:

\[
\begin{align*}
\gamma &= -\frac{1}{\tau} \log\left(1 + 2\rho_\tau(1)\right) \quad \text{(3.15)} \\
\sigma^2 &= s^2(r_\tau) \gamma \left(1 - e^{-\gamma\tau}\right)^{-1} = \frac{s^2(r_\tau)}{\tau} \left[\gamma \tau \left(1 - e^{-\gamma\tau}\right)^{-1}\right] \quad \text{(3.16)}
\end{align*}
\]

which shows the dependence of σ^2 on γ explicitly.

In the second equation of (3.16), σ^2 has been re-expressed as the product of two terms: the first is the standard Black-Scholes input under the assumption that arithmetic Brownian motion is the data-generating process, and the second term is an adjustment factor required by the trending O-U specification. Since this adjustment factor is an increasing function of γ, as returns become more highly (negatively) autocorrelated, options on the stock will become more valuable ceteris paribus. More specifically, (3.16) may be rewritten as the following explicit function of $\rho_\tau(1)$:

\[
\sigma^2 = \frac{s^2(r_\tau)}{\tau} \cdot \frac{\log(1+2\rho_\tau(1))}{2\rho_\tau(1)} , \quad \rho_\tau(1) \in (-\frac{1}{2}, 0] . \quad \text{(3.17)}
\]

Holding fixed the unconditional variance of returns $s^2(r_\tau)$, as the absolute value of the autocorrelation increases from 0 to $\frac{1}{2}$, the value of σ^2 increases without bound. This implies that a specification error in the dynamics of $p(t)$ can have dramatic consequences for pricing options. We shall quantify the magnitudes of such consequences in Sections 3.3 and 4.2 below.

8We focus on the absolute value of the autocorrelation to avoid confusion in making comparisons between results for negatively autocorrelated and positively autocorrelated asset returns. For example, whereas in this case an increase in the absolute value of autocorrelation increases the option's value, in Section 4.2 we provide an example of a positively autocorrelated asset return process for which an increase in autocorrelation decreases the option's value. These two cases are indeed polar opposites, and for important reasons. But without focusing on the absolute value of the autocorrelation, they seem to be in agreement: in both cases, the option price is an decreasing function of the algebraic value of the autocorrelation.
3.3 Implications for Option Prices

Expression (3.17) provides the necessary input to the Black-Scholes formula for pricing options on an asset with the trending O-U dynamics. In particular, if the unconditional variance of daily returns is \(s^2(r_1) \), and if the first-order autocorrelation of \(\tau \)-period returns is \(\rho_r(1) \), then the price of a call option is given by:

\[
C_{ou}(P(t), t; K, T, r, \sigma) = P(t) \Phi(d_1) - Ke^{-r(T-t)} \Phi(d_2)
\]

(3.18)

where:

\[
d_1 \equiv \frac{\log(P(t)/K) + (r + \frac{1}{2}\sigma^2)(T-t)}{\sigma \sqrt{T-t}}
\]

(3.19)

\[
d_2 \equiv \frac{\log(P(t)/K) + (r - \frac{1}{2}\sigma^2)(T-t)}{\sigma \sqrt{T-t}}
\]

(3.20)

\[
\sigma^2 = \frac{s^2(r_1)}{\tau} \cdot \frac{\log(1 + 2\rho_r(1))}{([1 + 2\rho_r(1)]^{1/\tau} - 1)} \quad , \quad \rho_r(1) \in (-\frac{1}{2}, 0]
\]

(3.21)

which is simply the Black-Scholes formula with an adjusted volatility input. In particular, the adjustment factor multiplying \(s^2(r_1)/\tau \) in (3.21) is easily tabulated [see Table 3 and the discussion in Section 7.2], hence in practice it is a simple matter to adjust the Black-Scholes formula for negative autocorrelation of the form (3.14): multiply the usual variance estimator \(s^2(r_1)/\tau \) by the appropriate factor from Table 3 and use this as \(\sigma^2 \) in the Black-Scholes formula.

Note that for all values of \(\rho_r(1) \) in \((-1/2, 0]\), the factor multiplying \(s^2(r_1)/\tau \) in (3.21) is greater than or equal to one, and increasing in the absolute value of the first-order autocorrelation coefficient. This implies that option values under the trending O-U specification are always greater than or equal to options under the standard Black-Scholes specification, and that option values are an increasing function of the absolute value of the first-order autocorrelation coefficient. These are purely features of the trending O-U process and do not generalize to other specifications of the drift, as we shall see below.

To gauge the empirical relevance of this adjustment for autocorrelation, Tables 1a–c report a comparison of Black-Scholes prices under arithmetic Brownian motion and under
the trending Ornstein Uhlenbeck process for various holding periods, strike prices, and autocorrelations for a hypothetical $40 stock. Table 1a reports option prices for values of daily autocorrelations from -10 to -45 percent, and Tables 1b and 1c report prices for weekly and monthly autocorrelations of the same numerical values. For all three tables, the unconditional standard deviation of daily returns is held fixed at 2 percent per day. The Black-Scholes price is calculated according to (2.4), setting σ equal to the unconditional standard deviation. The trending O-U prices are calculated by solving (3.13) and (3.14) for σ given τ and the return autocorrelations $\rho_r(1)$ of -0.05, -0.10, -0.20, -0.30, -0.40, and -0.45, and using these values of σ in the Black-Scholes formula (2.4). In Table 1a, $\tau = 1$, and in Tables 1b and 1c, $\tau = 7$ and $364/12$, respectively.

The first panel of Table 1a shows that even extreme autocorrelation in daily returns do not affect short-maturity in-the-money call options prices very much. For example, a daily autocorrelation of -45 percent has no impact on the $30 7-day call; the price under the trending O-U process is identical to the standard Black-Scholes price of $10.028. But even for such a short maturity, differences become more pronounced as the strike price increases; the at-the-money call is worth $0.863 in the absence of autocorrelation, but increases to $1.368 with an autocorrelation of -45 percent.

However, as the time to maturity increases, the remaining panels of Table 1a show that the impact of autocorrelation also increases. With a -10 percent daily autocorrelation, an at-the-money 1-year call is $7.234, and rises to $10.343 with a daily autocorrelation of -45 percent, compared to the standard Black-Scholes price of $6.908. This pattern is not surprising, given the autocorrelation (3.14) of the trending O-U process, which declines with the length of the holding period so that longer-horizon returns are more highly negatively autocorrelated and therefore depart more severely from the standard Black-Scholes paradigm than shorter-horizon returns.

More formally, since the Black-Scholes formula applies to both arithmetic Brownian motion and the trending O-U process, the impact of a specification error in the drift can be related to the sensitivity of the Black-Scholes formula to changes in volatility σ. This sensitivity is measured by the derivative of the call price with respect to σ, and is often called
the option's "vega":

$$\frac{\partial C}{\partial \sigma} = P(t)\sqrt{T-t} \Phi'(d_1)$$ \hspace{1cm} (3.22)$$

where d_1 is defined in (2.5). From (3.22), we see that for shorter-maturity options, changes in σ have very little impact on the call price, but longer-maturity options will be more sensitive.

This is also apparent in the patterns of Tables 1b and 1c, which are similar to those in Table 1a but much less striking since the same numerical values of $\rho_1(1)$ are now assumed to hold for weekly and monthly returns, respectively. As Table 1 shows, the impact of a -45 percent autocorrelation in monthly returns is considerably less than the same autocorrelation in daily returns. From (3.14), a -45 percent autocorrelation in monthly returns implies an autocorrelation of -0.97 percent in daily returns.

In contrast to Table 1a where an at-the-money 1-year call increases from 6.908 to 10.343 as the autocorrelation decreases from 0 to -45 percent, in Table 1c the same option increases from 6.908 to only 7.018. We shall see in Table 3 of Section 7.2 that this is a symptom of all diffusion processes, since the increments of any diffusion process becomes less autocorrelated as the differencing interval declines. In particular, Table 3 will show that the impact of a -45 percent autocorrelation in monthly returns is considerably less than the same autocorrelation in daily returns. Indeed, from (3.14), a -45 percent autocorrelation in monthly returns implies an autocorrelation of -0.97 percent in daily returns. Therefore, the importance of autocorrelation for option prices hinges critically on the degree of autocorrelation for a given return horizon τ and, of course, on the data-generating process which determines how rapidly this autocorrelation decays with τ. For this reason, in the next section we introduce several new stochastic processes that are capable of matching more complex patterns of autocorrelation and predictability than the trending O-U process.

4 The Bivariate Trending O-U Process

An obvious deficiency of the trending Ornstein-Uhlenbeck process as a general model of asset prices is the fact that its returns are negatively autocorrelated at all lags, which is inconsistent with the empirical autocorrelations of many traded assets. For example, Lo and MacKinlay
(1988, 1990) show that equity portfolios tend to be positively autocorrelated at shorter horizons, while Fama and French (1988) and Poterba and Summers (1988) find negative autocorrelation at longer horizons. Moreover, since the trending O-U's drift depends only on \(q(t) \), it leaves no role for other economic variables to play in determining the predictability of asset returns.

To address these shortcomings, we propose the “bivariate trending O-U” process in the following sections. Although it is a special case of a bivariate linear diffusion process, and is therefore extremely tractable, it exhibits a surprisingly wide variety of autocorrelation patterns [see, for example, Figure 1]. Moreover, as its name suggests, the bivariate trending O-U process allows the log-price process to depend upon a second process, which may be interpreted as a time-varying expected return factor that may or may not be observable.

4.1 Properties and Unconditional Moments

Let the detrended log-price process \(q(t) \equiv p(t) - \mu t \) satisfy the following pair of stochastic differential equations:

\[
\begin{align*}
 dq(t) &= -\left(\gamma q(t) - \lambda X(t)\right)dt + \sigma dW_q \\
 dX(t) &= -\delta X(t)dt + \sigma_x dW_x
\end{align*}
\]

where \(\gamma \geq 0, \delta \geq 0, q(0) = q_0, X(0) = X_0, t \in [0, \infty) \). \(W_q \) and \(W_x \) are two standard Wiener processes such that \(dW_q dW_x = \kappa dt \), and \(X(t) \) is another stochastic process which may or may not be observable. For reasons that will become apparent below, we shall call this system the “bivariate trending O-U” process.

The bivariate system (4.1) – (4.2) contains several interesting special cases. For example, when \(\lambda = 0 \) it reduces to the univariate trending O-U process of Section 3.1, in which asset returns are always negatively autocorrelated. When \(\gamma = 0 \), the drift of the detrended log-price process is \(\lambda X(t) \), which is stochastic and mean-reverting to its unconditional mean of zero. In the more general case when \(\gamma \neq 0 \), the detrended log-price process may be rewritten
\[
 dq(t) = -\gamma \left(q(t) - \frac{\lambda}{\gamma} X(t) \right) dt + \sigma dW_q
\]

which shows that \(q(t) \) is mean-reverting to a stochastic mean \(\frac{\lambda}{\gamma} X(t) \), with “speed of adjustment” \(\gamma \).

Since (4.1) - (4.2) is a system of linear stochastic differential equations, \((q, X) \) is Gaussian given its initial value \((q_0, X_0) \) at \(t = 0 \), and has the following explicit solution:

\[
q(t) = e^{-\gamma t} q_0 + \frac{\lambda}{\gamma - \delta} \left[e^{-\delta t} - e^{-\gamma t} \right] X_0 + \int_0^t e^{-\gamma (t-s)} \sigma dW_q(s) + \frac{\lambda}{\gamma - \delta} \int_0^t \left[e^{-\delta (t-s)} - e^{-\gamma (t-s)} \right] \sigma_e dW_e(s)
\]

\[
X(t) = e^{-\delta t} X_0 + \int_0^t e^{-\delta (t-s)} \sigma_e dW_e(s)
\]

where \(t > 0 \) and \(q_0 = p_0 \). Conditional upon \(\{q_0, X_0\} \), \(q(t) \) and \(X(t) \) are jointly normally distributed.\(^9\)

From (4.4) - (4.5) we can readily derive the properties of the asset return series that \((q, X) \) generates. To do this, observe that when \(\gamma > 0 \) and \(\delta > 0 \), both \(q(t) \) and \(X(t) \) are stationary and their first two unconditional moments are:

\[
\begin{align*}
E[q(t)] &= E[X(t)] = 0 \\
\text{Var}[q(t)] &= \frac{\sigma^2}{2\gamma} + \frac{\lambda^2 \sigma_x^2}{2\gamma \delta (\gamma + \delta)} + \frac{\lambda \sigma_x \sigma_e}{\gamma (\gamma + \delta)} \\
\text{Var}[X(t)] &= \frac{\sigma_x^2}{2\delta} \\
\text{Cov}[q(t), X(t)] &= \frac{1}{\gamma + \delta} \left(\kappa \sigma_x \sigma_e + \frac{\lambda \sigma_x^2}{2\delta} \right).
\end{align*}
\]

The unconditional moments of continuously-compounded \(\tau \)-period returns then follow from

\(^9\)Even if \(\{q_0, X_0\} \) are stochastic, as long as they are drawn from their stationary joint distribution, \(\{q(t), X(t)\} \) is still jointly normally distributed.
\[(4.4) - (4.5):^{10}\]

\[\begin{align*}
\mathbb{E}[r_\tau(t)] &= \mu \tau \\
\text{Var}[r_\tau(t)] &= 2\text{Var}[q(t)] \left[(1-e^{-\gamma \tau}) - \frac{\lambda}{\gamma - \delta} \beta_{qx}(e^{-\delta \tau} - e^{-\gamma \tau}) \right] \\
\text{Cov}[r_\tau(t + \tau), r_\tau(t)] &= -\text{Var}[q(t)] \frac{\lambda}{\gamma - \delta} \beta_{qx} \left[(1-e^{-\delta \tau})^2 - (1-e^{-\gamma \tau})^2 \right] + (1-e^{-\gamma \tau})^2 \\
\rho_\tau(1) &= -\frac{(1-e^{-\gamma \tau})^2 + \frac{\lambda}{\gamma - \delta} \beta_{qx} \left[(1-e^{-\delta \tau})^2 - (1-e^{-\gamma \tau})^2 \right]}{2 \left[(1-e^{-\gamma \tau}) - \frac{\lambda}{\gamma - \delta} \beta_{qx}(e^{-\delta \tau} - e^{-\gamma \tau}) \right]}
\end{align*}\]

where \(\beta_{qx} = \frac{\text{Cov}[q(t), X(t)]}{\text{Var}[q(t)]}\) and \(\rho_\tau(1)\) is the first-order autocorrelation function of \(\tau\)-period returns.

As in the case of the univariate trending O-U process, the bivariate process is trend-stationary, the variance of its increments approaches a finite limit of \(2\text{Var}[q(t)]\) and the first-order autocorrelation \(\rho_\tau(1)\) of \(\tau\)-period returns approaches \(-\frac{1}{2}\) as \(\tau\) increases without bound. Both of these restrictions are relaxed in the multivariate version of Section 5.

To see that the bivariate trending O-U process can capture more complex patterns of autocorrelation than its univariate counterpart, consider the behavior of its first-order autocorrelation function as a function of the holding period \(\tau\) for the special case where \(\lambda = \gamma\). As \(\tau\) increases without bound, \(\rho_\tau(1)\) approaches \(-\frac{1}{2}\) as it must for the continuously-compounded \(\tau\)-period return of any stationary process. As \(\tau\) decreases to 0, \(\rho_\tau(1)\) also approaches zero as it must for any diffusion process, since diffusions have locally independent increments by construction. For small \(\tau\), we have:

\[\rho_\tau(1) \approx \frac{\tau}{2} \left(\gamma - \frac{\delta \beta_{qx}}{1 - \beta_{qx}} \right)\]

which can be either positive or negative, depending on whether \(\beta_{qx}\) is greater than or less than \(\frac{\gamma}{\gamma + \delta}\). Therefore, when \(\beta_{qx} > \frac{\gamma}{\gamma + \delta}\), the bivariate trending O-U process will display an

\[10\text{If } \gamma = 0 \text{ or } \delta = 0, \text{ the unconditional moments of } q(t) \text{ and } X(t) \text{ may not exist. However, the unconditional moments of returns are always well-defined, and may be obtained by taking the appropriate limits in the following results.}\]
autocorrelation pattern that matches the empirical findings of both Lo and MacKinlay (1988) and Fama and French (1988) simultaneously: positive autocorrelation for short horizons, and negative autocorrelation for long horizons. Some other examples of first-order autocorrelation functions of the bivariate trending O-U process are given in Figure 1.

A closely-related quantity that may help to develop further intuition for the bivariate trending O-U process is the general autocorrelation function $\rho_r(k)$, defined as the correlation between two τ-period continuously-compounded returns that are $(k-1)\tau$ periods apart, i.e.,

$$\rho_r(k) \equiv \frac{\text{Cov}[r_\tau(t+k\tau), r_\tau(t)]}{\text{Var}[r_\tau(t)]} .$$

Observe that the first-order autocorrelation function $\rho_r(1)$, defined in (3.8), is indeed a special case of this more general definition. In the case of the bivariate trending O-U process, the autocorrelation function is given by:

$$\rho_r(k) = e^{-(k-1)\gamma\tau} \rho_r(1) - \frac{\lambda}{\gamma - \delta} \left[e^{-(k-1)\delta\tau} - e^{-(k-1)\gamma\tau} \right] \theta(\tau) \quad (4.11)$$

where

$$\theta(\tau) \equiv \frac{\beta_{qz}(1-e^{-\delta\tau})^2}{2 \left[(1-e^{-\gamma\tau}) - \frac{\lambda}{\gamma - \delta} \beta_{qz}(e^{-\delta\tau} - e^{-\gamma\tau}) \right]} .$$

4.2 Predictability vs. Autocorrelation

We have argued in Section 3 that the numerical value of the Black-Scholes input σ does depend on our assumption about the data generating process when we have discretely-sampled data. In the particular case of the univariate trending O-U process of Section 3.1, the numerical value of σ increases with the absolute value of the return autocorrelation, given a fixed numerical value for the unconditional variance of returns. However, in the case of the bivariate trending O-U process, there is no longer such a simple relation between autocorrelation and σ.

For example, consider the special case of the bivariate trending O-U process in which $\gamma = 0$, hence $\lambda X(t)$ is the drift of the detrended log-price process, and the system reduces
to:

\begin{align*}
 dq(t) &= \lambda X(t)dt + \sigma dW_q \\
 dX(t) &= -\delta X(t)dt + \sigma_x dW_x
\end{align*}

(4.12) (4.13)

For simplicity, also let \(\kappa = 0 \) so that \(dW_q \) and \(dW_x \) are independent. In this special case, asset returns are positively autocorrelated at all leads and lags. We may calculate the unconditional variance and autocorrelation of returns by taking the limit of \(\gamma \to 0 \) in (4.7) and (4.9). Then, for any holding period \(\tau \) we have:

\[
 s^2(r_\tau) = \sigma^2 \frac{1}{1-\sigma^*_{qx}} \left[\tau - \frac{\sigma^*_{qx}}{\delta} (1 - e^{-\delta \tau}) \right]
\]

(4.14)

\[
 \rho_\tau(1) = \frac{\sigma^*_{qx}}{2\tau \left[1 - \frac{\sigma^*_{qx}}{\delta} (1 - e^{-\delta \tau}) \right]^2}, \quad \text{where } \sigma^*_{qx} \equiv \frac{1}{1 + \left(\frac{\delta}{\lambda} \right)^2 \frac{\sigma^2}{\sigma^*_{qx}^2}}.
\]

Observe that \(0 < \sigma^*_{qx} \leq 1 \), and that \(\sigma^*_{qx} \) is an increasing function of \(\lambda \). Since \(\rho_\tau(1) \) is an increasing function of \(\sigma^*_{qx} \), it is also an increasing function of \(\lambda \). By increasing \(\lambda \) while holding fixed the unconditional variance of returns, we can see the effects of increasing autocorrelation on the Black-Scholes input \(\sigma \). Re-arranging (4.14) yields:

\[
 \sigma^2 = \frac{1-\sigma^*_{qx}}{1-\frac{\sigma^*_{qx}}{\delta} (1 - e^{-\delta \tau})} \cdot \frac{s^2(r_\tau)}{\tau}
\]

(4.15)

which shows that an increase in the return autocorrelation (due to increasing \(\lambda \)) is accompanied by a decrease in \(\sigma \) and a corresponding decrease in the Black-Scholes call option price.\(^{11} \) Increasing return autocorrelation in this case has precisely the opposite effect on option prices than in the case of the univariate trending O-U process, in which an increase in the absolute value of the return autocorrelation [recall that in this case, the autocorrelation is always nonpositive] increases the numerical value of \(\sigma \), increasing option prices.

While increasing autocorrelation can either increase or decrease option prices, depending on the particular specification of the drift, the special case (4.12) – (4.13) does illustrate a

\(^{11}\text{It is easy to show that the expression } (1-\sigma^*_{qx})/\left[1 - \frac{\sigma^*_{qx}}{\delta} (1 - e^{-\delta \tau}) \right] \text{ decreases as } \sigma^*_{qx} \text{ increases. It then follows that increasing } \lambda \text{ will increase its value since } \sigma^*_{qx} \text{ will increase.}\)
general relation between option prices and predictability. To see this, we must first define predictability explicitly. Perhaps the most common definition is the R^2 coefficient, or the fraction of the unconditional variance of the dependent variable that is “explained” by the conditional mean or predictor. Higher R^2s are generally taken to mean more predictability, and this interpretation is appropriate in our context with three additional restrictions:

(A1) The unconditional variance of returns $r_\tau(t)$ is fixed.

(A2) The drift is not a function of the log-price process $p(t)$.

(A3) dW_q is statistically independent of dW_x.

The first restriction has already been discussed above – the very nature of prediction takes as given the object to be predicted, and meaningful comparisons of alternate prediction equations cannot be made if the “target” is allowed to change in any way. In particular, if the unconditional variance of $r_\tau(t)$ is not fixed, a reduction in the prediction error variance need not imply better predictability because it may be accompanied by a more-than-proportionate reduction in the unconditional variance to be predicted.

Restrictions (A2) and (A3) eliminate feedback relations between the conditional mean and the prediction error or residual, so that the discrete-time representation of the continuous-time system is a genuine prediction equation, i.e., the conditional expectation of the residual, conditioned on the drift, is zero.

Under these restrictions, it may be shown that an increase in predictability – as measured by R^2 – always decreases σ and therefore decreases option prices. The intuition for this relation is clear: holding fixed the unconditional variance of returns, an increase in the variability of the conditional mean must imply a decrease in the variability of the residual. More formally, the unconditional variance of returns may always be written as the following sum:

$$ \text{Var}[r_\tau(t)] = \text{Var} \left[E[r_\tau(t)|\Omega] \right] + E \left[\text{Var}[r_\tau(t)|\Omega] \right] \quad (4.16) $$

where Ω is the conditioning information set. Holding the left-hand side of (4.16) fixed, an increase in the first term of the right-hand side, i.e., an increase in predictability, must be
accompanied by an equal decrease in the second term of the right-hand side. Furthermore, under restrictions (A1) – (A3), the variability of the residual can be shown to be monotonically related to the continuous-time parameter σ, hence increasing predictability implies decreasing option prices.

In particular, under the bivariate trending O-U process, increasing λ has the effect of increasing the variability of the conditional mean. Holding the unconditional variance of the returns $s^2(r_t)$ fixed, an increase in λ will therefore increase the predictability of returns, implying that the value of σ^2 must decrease since conditions (A1) – (A3) are satisfied by (4.12) – (4.13). As λ increases without bound so that progressively more variation in returns is attributable to the time-varying drift, returns become progressively more predictable, σ approaches 0, and the option’s value approaches its lower bound of $\text{Max}[P(T)e^{-r(T-t)} - K, 0]$. Only if predictability is defined in this narrow sense, and only under conditions (A1) – (A3), is there an unambiguous relation between predictability and option prices.

Under more general conditions, however, a simple relation between predictability and option prices is not available, and the very notion of predictability need not be well-defined. For example, condition (A2) is violated by the univariate trending O-U process of Section 3.1, and in that case, while increasing predictability does decrease the variance of the prediction error of $r_t(t)$, it also increases σ.

4.3 A Numerical Example

To illustrate the importance of predictability in determining the Black-Scholes input σ, we use historical daily returns on the CRSP value-weighted market index from 1962 to 1990 to calibrate the bivariate trending O-U process and evaluate σ explicitly. Since all second-order moments of continuously-compounded returns depend on the six underlying parameters of the bivariate process, $\gamma, \delta, \lambda, \sigma, \sigma_x$ and κ, we may choose any six moments and solve for the six underlying parameters. Moreover, if $\gamma \neq 0$, we can set $\lambda = \gamma$ without loss of generality, which reduces the total number of free parameters to five. To further simplify the calibration exercise, we set $\kappa = 0$. Thus, we require only four second-order moments to determine γ, δ.

\[\text{Note that this particular limit is economically unrealizable because even though the stock price is still stochastic when } \sigma \text{ vanishes (due to the drift), it is once-differentiable and therefore admits arbitrage [see Harrison, Pitbladdo, and Schaefer (1984)].}\]
σ and σ_x.

For the four second-order moments, we use the sample variance of the returns Var[r_t(t)], the first order autocorrelation coefficient ρ_r(1) and two higher-order autocorrelation coefficients. If the bivariate trending O-U process is the true DGP and we possessed the actual population values of the moments, then of course choice of which two higher-order autocorrelation coefficients to fit is arbitrary, since they will arrive at the same parameter values. However, since we are using actual data to perform the calibration, and are not estimating the parameters of the system, some care is required in selecting the moments to match. In particular, since the autocorrelation function of the bivariate trending O-U process can change sign only once [from positive to negative], we must choose our moments to be consistent with this restriction. With this in mind, we select the following four moments for our calibration:

\[
\begin{align*}
 s(r_r) &= 0.0085 \\
 \rho_r(1) &= 0.1838 \\
 \rho_r(5) &= 0.0323 \\
 \rho_r(25) &= -0.0092
\end{align*}
\]

which yields the following values for the four parameters:

\[
\begin{align*}
 \gamma &= 0.3748 \\
 \delta &= 0.0106 \\
 \sigma_x &= 0.0128 \\
 \sigma &= 0.0074
\end{align*}
\]

Observe that the value of the Black-Scholes input σ under the bivariate trending O-U specification, 0.0074, is approximately 13 percent smaller than the standard deviation of continuously-compounded returns 0.0085, which is the value of σ under an arithmetic Brownian motion specification.

The theoretical call option prices for a hypothetical $40 stock in Table 2 show that such a difference can have potentially large effects, particularly for longer-maturity options just as in Tables 1a–c. However, in this case the naive Black-Scholes prices are over-estimates of

13Note that the solution for γ, δ and σ_x is not unique, however, the solution for σ is.
the correct call price, since the σ that accounts for predictability is lower than the σ obtained under an iid assumption.

5 The Multivariate Trending O-U Process

Despite the flexibility of the bivariate trending O-U process, as a model of asset prices it has at least three unattractive features that are related to the behavior of its increments as the differencing interval increases without bound: the variance of its increments approaches a finite limit, its first-order autocorrelation function approaches a limit of $-\frac{1}{2}$, and this function can change sign only once. In this section we present a multivariate extension of the bivariate trending O-U process that addresses all three of these concerns. By allowing the drift to depend linearly on additional state variables, resulting in the “multivariate trending O-U process”, richer patterns of autocorrelation can be captured without sacrificing tractability. If the state variables are stationary, then log-prices are trend-stationary as in the bivariate case. If the state variables are random walks, then log-prices will contain stochastic trends, in which case the variance of its increments can increase without bound and the first-order autocorrelation can approach 0 as the differencing interval increases.

In a straightforward generalization of the bivariate case, we let the detrended log-price process $q(t)$ fluctuate around a stochastic mean, now governed by a multivariate linear process. Specifically, let:

$$dq(t) = [-\gamma q(t) + \Lambda X(t)]dt + \sigma dW_q$$

$$dX(t) = -\Delta X(t)dt + B_x dW_x$$

with $q(0) = q_0$, $X(0) = X_0$, $t \in [0, \infty)$.

where $X(t)$ is an m-dimensional random process, $W_x(t)$ a k-dimensional standard Wiener process, γ and σ are scalar parameters, and Λ, Δ, B_x are $(1 \times m)$, $(m \times m)$, $(m \times k)$ matrix parameters, respectively. Without loss of generality we assume that Δ is diagonal, i.e., $\Delta = \text{diag}\{\delta_i\}$. The linear system $[q(t) \quad X(t) \quad]$ defined by (5.1) – (5.2) has the following
explicit solution:

\[
q(t) = e^{-\gamma t} q_0 + \Lambda(\gamma I - \Delta)^{-1} \left[e^{-\Delta t} - e^{-\gamma t} I \right] X_0 + \int_0^t e^{-\gamma(t-s)} \sigma dW_q(s) - \\
\Lambda(\gamma I - \Delta)^{-1} \int_0^t \left[e^{-\gamma I(t-s)} - e^{-\Delta(t-s)} \right] B_x dW_x(s) \quad (5.3)
\]

\[
X(t) = e^{-\Delta t} X_0 + \int_0^t e^{-\Delta(t-s)} B_x dW_x(s) \quad (5.4)
\]

where \(I \) is the \((m \times m)\) identity matrix.\(^{14}\) Since \(\Delta \) is diagonal, \(e^{-\Delta(t-s)} = \text{diag}\{e^{-\delta_i(t-s)}\} \).

Given (5.3) – (5.4), we can readily derive the unconditional moments of \(q(t) \) and \(X(t) \) (if they exist), as well as those of returns over any finite holding period \(\tau \).\(^{15}\)

If the diagonal matrix \(\Delta \) contains strictly positive diagonal entries \(\delta_i \), then the log-price process is trend-stationary as in the case of the bivariate trending O-U process. The unconditional moments of the detrended log-price process and returns follow analogously from (5.3) – (5.4) and some of these are reported in the Appendix.

Alternatively, if a subset of the state variables follow random walks or is “difference-stationary”, then the log-price process will also be difference-stationary and the variance of its increments will increase without bound as the differencing interval approaches infinity. For example, consider the following trivariate special case of (5.2). Let \(X(t) \equiv [X(t) \ Z(t)]' \), \(\Delta = \text{diag}(\delta, 0) \), \(B_x = \text{diag}(\sigma_x, \sigma_z) \), and \(dW_x = [dW_x \ dW_z]' \). In this case, \(X(t) \) follows an O-U process while \(Z(t) \) follows a random walk. Assume that \(\gamma > 0 \). Without loss of generality, we can let \(\Lambda = [\gamma \ \gamma] \). Then the explicit solution for the detrended price process \(q(t) \) is:

\[
q(t) = \tilde{q}(t) + Z(t) \quad (5.5)
\]

\[
\tilde{q}(t) = e^{-\gamma t} \tilde{q}_0 + \frac{\gamma}{\gamma - \delta} \left(e^{-\delta t} - e^{-\gamma t} \right) X_0 + \int_0^t e^{-\gamma(t-s)} \sigma dW_q(s) - \\
\int_0^t e^{-\gamma(t-s)} \sigma_z dW_z(s) + \frac{\gamma}{\gamma - \delta} \int_0^t \left[e^{-\delta(t-s)} - e^{-\gamma(t-s)} \right] \sigma_z dW_z(s) \quad (5.6)
\]

\(^{14}\)We have implicitly assumed that \(\gamma \neq \delta_i, \ i = 1, \ldots, m \) so that the inverse of \(\gamma I - \Delta \) exists. If not, we can derive the corresponding solution by taking the appropriate limit.

\(^{15}\)As in the bivariate case, when \(\Delta \) is not of full rank, i.e., when \(\delta_i = 0 \) for some \(i \), or when \(\gamma = 0 \), the unconditional moments of \(q(t) \) no longer exist. However, the unconditional moments of returns do exist and they can be calculated by taking the appropriate limits; see the discussion in Section 5.
\[
X(t) = e^{-\delta t} X_0 + \int_0^t e^{-\delta(t-s)} \sigma_x dW_x(s) \tag{5.7}
\]
\[
Z(t) = Z_0 + \int_0^t \sigma_z dW_z(s) \tag{5.8}
\]

Observe that \(q(t) \) can be decomposed into two components: a stationary component \(\bar{q}(t) \) and a random walk component \(Z(t) \) where the stationary component \(\bar{q}(t) \) behaves like the detrended log-price in the stationary bivariate O-U case. However, in contrast to the trend-stationary case, the existence of a random walk component in the detrended log-price implies that the risk of holding the asset increases with the holding period.

Of course, when \(q(t) \) is non-stationary, the unconditional moments of \(q(t) \) are no longer well-defined. However, the unconditional moments of the increments of \(q(t) \), which are simply the de-meaned continuously compounded returns, are well-defined and may be obtained from the results for the stationary case by taking the limit that \(\delta \to 0 \).

6 Maximum Likelihood Estimation

The fact that the univariate and the bivariate trending O-U processes imply such different relations between autocorrelation and option values illustrates the complexity and importance of correctly identifying the data-generating process before implementing an option pricing formula. In the previous sections, we have shown that holding fixed the unconditional moments of the true data-generating process, a change in the specification of the drift can change the population value of the Black-Scholes input \(\sigma \). As a result, a change in the specification of the drift can also change the empirical estimate of \(\sigma \).

Perhaps the most direct approach to addressing these issues is to propose a reasonably flexible specification of the drift that can capture a wide variety of autocorrelation patterns, derive the exact discrete-time representation of the log-price process, estimate all the parameters of this discrete-time process simultaneously, and then solve for the parameters of the continuous-time process – which includes \(\sigma \) – as a function of the parameter estimates of the discretely-sampled data. Since all three of our specifications for the drift are linear, their discrete-time representations are readily available and are also linear processes, to which maximum likelihood estimation may applied, as described in Lo (1986, 1988).
To this end, denote by t_k the sampling dates, where $k = 1, 2, \cdots, n$, and let $t_k - t_{k-1} = \tau$ be a constant, hence $t_k = k\tau$.\(^\text{16}\) Let $q_k \equiv q(t_k) = p(t_k) - \mu t_k$ and assume that q_k is observed. Of course, in practice the trend rate μ must be estimated, but as long as a consistent estimator of μ is available, replacing μ with $\hat{\mu}$ will have no effect upon the asymptotic properties of the parameter estimates.

6.1 The Univariate Trending O-U Process

From the explicit solution (3.4) of the univariate trending O-U process, it is easy to obtain a recursive representation of q_k which shows that its deviations from trend follow an AR(1):

$$q_k = e^{-\gamma \tau} q_{k-1} + \epsilon_k , \quad \epsilon_k \equiv \sigma \int_{t_{k-1}}^{t_k} e^{\gamma (t_{k}-s)} dW(s) . \quad (6.1)$$

For this simple process, the maximum likelihood estimator of the discrete-time parameters is asymptotically equivalent to the ordinary least squares estimator applied to detrended prices. The continuous-time parameters μ, σ, and γ may then be obtained from the discrete-time parameter estimates.

6.2 The Bivariate Trending O-U Process

Let $X_k \equiv X(t_k)$. Then from (4.1) and (4.2), we have:

$$q_k = \alpha_q q_{k-1} + \phi X_{k-1} + \epsilon_{q,k} \quad (6.2)$$
$$X_k = \alpha_x X_{k-1} + \epsilon_{x,k} \quad (6.3)$$

where $\alpha_q \equiv e^{-\gamma \tau}$, $\alpha_x \equiv e^{-\delta \tau}$, $\phi \equiv \frac{\lambda}{\gamma - \delta} (\alpha_x - \alpha_q)$, and

$$\epsilon_{q,k} \equiv \int_{t_{k-1}}^{t_k} e^{-\gamma (t_{k}-s)} \sigma dW_q(s) + \frac{\lambda}{\gamma - \delta} \int_{t_{k-1}}^{t_k} \left[e^{-\delta (t_{k}-s)} - e^{-\gamma (t_{k}-s)} \right] \sigma_x dW_x(s)$$

$$\epsilon_{x,k} \equiv \int_{t_{k-1}}^{t_k} e^{-\delta (t_{k}-s)} \sigma_x dW_x(s) .$$

\(^\text{16}\)This last assumption is made purely for notational convenience - irregularly-sampled data may be just as easily accommodated but is notationally more cumbersome.
Observe that \([\epsilon_{q,k} \quad \epsilon_{x,k}]'\) is a bivariate normal vector that is temporally independently and identically distributed, with mean 0 and covariance matrix \(S_r\) given in the Appendix. Re-writing (6.2) – (6.3) in vector form yields:

\[
\begin{pmatrix}
q_k \\
X_k
\end{pmatrix} = \begin{pmatrix}
\alpha_q & \phi \\
0 & \alpha_x
\end{pmatrix} \begin{pmatrix}
q_{k-1} \\
X_{k-1}
\end{pmatrix} + \begin{pmatrix}
\epsilon_{q,k} \\
\epsilon_{x,k}
\end{pmatrix}.
\]

(6.4)

This is simply a bivariate AR(1) process, where the second component \(X_k\) may or may not be observed. The parameters of this discrete-time process may be estimated by maximum likelihood by casting (6.4) in state-space form and applying the Kalman filter [see, for example, Harvey (1989a) or Lütkepohl (1991)]. There are seven parameters to be estimated: \(\mu\), \(\alpha_q\), \(\alpha_x\), \(\phi\), and the elements of the symmetric (2x2) matrix \(S_r\). From the definition of these discrete-time parameters, we can uniquely determine the seven parameters of the underlying continuous-time process, \(\mu, \gamma, \delta, \lambda, \sigma, \sigma_x\) and \(\kappa\) [see (A.5), (A.6), (A.7), and (A.8) in the Appendix], hence the principle of invariance yields maximum likelihood estimators for these as well.

6.3 The Multivariate Trending O-U Process

The discrete-time representation of (5.1) – (5.2) is a straightforward generalization of the bivariate case:

\[
\begin{align*}
q_k &= \alpha_q q_{k-1} + \Phi X_{k-1} + \epsilon_{q,k} \\
X_k &= A_x X_{k-1} + \epsilon_{x,k}
\end{align*}
\]

(6.5) (6.6)

where \(q_k = q(t_k)\), \(X(t_k) = X_k\), \(\alpha_q \equiv e^{-\gamma}\), \(A_x \equiv e^{-\Delta}\), \(\Phi = \Lambda(\gamma I - \Delta)^{-1}(A_x - \alpha_q I)\), and

\[
\begin{align*}
\epsilon_{q,k} &\equiv \int_{t_{k-1}}^{t_k} e^{-\gamma(t_k-s)} \sigma dW_q(s) - \\
&\quad \Lambda(\gamma I - \Delta)^{-1} \int_{t_{k-1}}^{t_k} [e^{-\gamma(t_k-s)} - e^{-\Delta(t_k-s)}] B_x dW_x(s) \\
\epsilon_{x,k} &\equiv \int_{t_{k-1}}^{t_k} e^{-\Delta(t_k-s)} B_x dW_x(s).
\end{align*}
\]
Observe that $\mathbf{e}_k \equiv [\epsilon_{q,k} \; \epsilon_{x,k}]'$ is an $(m+1)$-dimensional normal random variable which is temporally independently and identically distributed. In vector form, we have:

$$
\begin{pmatrix}
q_k \\
X_k
\end{pmatrix} =
\begin{pmatrix}
\alpha_q & \Phi \\
0 & A_X
\end{pmatrix}
\begin{pmatrix}
q_{k-1} \\
X_{k-1}
\end{pmatrix} + \mathbf{e}_k.
$$

which is a VAR(1), and given observations $\{p_k\}$, or $\{p_k\}$ and some components of $\{X_k\}$, we can obtain maximum likelihood estimates of its parameters by applying the Kalman filter to the state-space representation as before.\(^{17}\)

In our trivariate example (5.5) of Section 5 which is difference-stationary, the discrete-time representation of (5.5) – (5.8) is:

$$
\begin{align}
(q_k - Z_k) &= \alpha_p (q_{k-1} - Z_{k-1}) + \phi X_{k-1} + \epsilon_{\bar{q},k} \\
X_k &= \alpha_x X_{k-1} + \epsilon_{x,k} \\
Z_k &= Z_{k-1} + \epsilon_{z,k}
\end{align}
$$

where $Z_k \equiv Z(t_k)$, and $\epsilon_{\bar{q},k}$, $\epsilon_{x,k}$ and $\epsilon_{z,k}$ are iid Gaussian shocks derived from the stochastic integrals in (5.6), (5.7), and (5.8). Since q_k is non-stationary here, prices cannot be used directly to estimate the parameters. Instead, de-meaned continuously compounded returns may be used since they are stationary under this current specification. Define $\bar{r}_k \equiv q_k - q_{k-1}$, $\nu_k \equiv X_k - X_{k-1}$, and $\mathbf{e}_k \equiv [\epsilon_{\bar{q},k} \; \epsilon_{x,k} \; \epsilon_{z,k}]'$. We then have:

$$
\begin{pmatrix}
\bar{r}_k \\
\nu_k
\end{pmatrix} =
\begin{pmatrix}
\alpha_p & \phi \\
0 & \alpha_x
\end{pmatrix}
\begin{pmatrix}
\bar{r}_{k-1} \\
\nu_{k-1}
\end{pmatrix} +
\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
1 \\
0 \end{pmatrix}
\mathbf{e}_k -
\begin{pmatrix}
0 & 1 & 0 \\
0 & 1 & 0
\end{pmatrix}
\mathbf{e}_{k-1}
$$

which is simply a multivariate ARMA(1,1) process. Once again, given observations $\{\bar{r}_k\}$, or $\{\bar{r}_k, \nu_k\}$, maximum likelihood estimation of the discrete-time parameters may be readily performed as in the trend-stationary case via its state-space representation.

\(^{17}\)However, in the general multivariate case, identification is not guaranteed and is often difficult to verify. See Lütkepohl (1991, Chapter 13.4.2) for further discussion.
7 Extensions and Other Issues

There are several other aspects of the impact of predictability on option prices that deserve further discussion, such as extensions to option pricing models other than the Black-Scholes model, implications of the distinction between discrete and continuous time, the relation of our findings to those surrounding "estimation risk", and the interpretation of implicit volatilities in the presence of predictability. We shall consider each of these issues in turn in the following sections.

7.1 Extensions to Other Option Pricing Models

Although we have confined our attention so far to the case where the diffusion coefficient σ is constant – the Black-Scholes case – predictability can affect other option and derivative pricing formulas in a similar fashion. Since analytical pricing formulas for options and other derivative assets are almost always obtained from no-arbitrage conditions, the drift plays no role in determining the formula but plays a critical role in determining both the population values and empirical estimates of the parameters that enter the formula as arguments. For example, although the drift does not enter into Merton's (1976a) jump-diffusion option pricing formula, its specification will affect the values of σ [the volatility of the diffusion component], δ [the volatility of the logarithm of the jump magnitude], k [the expectation of the logarithm of the jump magnitude], and λ [the mean rate of occurrence of the Poisson jump]. Since all of our drift specifications in Sections 3, 4, and 5 are linear, they may be readily incorporated into more complex stochastic processes.

7.2 Discrete vs. Continuous Time

Clearly, the importance of the drift in implementing option pricing formulas comes from the fact that the data are sampled at discrete time intervals. It is well known that the diffusion coefficient is a sample-path property, so that any single realization of a continuous sample path over a finite interval is sufficient to reveal the true value of σ. Therefore, the effects of the drift on σ diminishes as the sampling frequency increases. However, whether or not the effects are negligible at a particular sampling frequency is an empirical issue that must be
determined on a case-by-case basis with the data at hand.

More specifically, consider the relation between the continuous-time parameter \(\sigma^2 \) and the finite holding-period return variance \(s^2(r_\tau) \) for the univariate trending O-U case of Section 3.1. For any fixed value of \(\sigma^2 \), (3.16) shows that as the return horizon \(\tau \) decreases to 0 the ratio of \(\sigma^2 \) to \(s^2(r_\tau)/\tau \) approaches 1, hence \(\sigma^2 \) may be recovered exactly in the limit of continuous sampling. This is a general property of diffusions (2.2) with a constant diffusion coefficient, for which the unconditional variance \(s^2(r_\tau) \) approaches \([dq(t)]^2 = \sigma^2 dt\) as the holding period \(\tau \) approaches zero.\(^{18}\) Alternatively, \(\sigma^2 dt \) may be viewed as the conditional variance of \(dq \), conditional on the drift. But since all the infinitesimal variation in \(dq \) is attributable to the diffusion term \(\sigma^2 dW \) [recall that the drift is of order \(dt \) and the diffusion term is of order \(\sqrt{dt} \)], the conditional and unconditional variance of the stochastic differential \(dq \) are effectively the same [see Sims (1984) for further details].

This limiting result may lead some to advocate using the most finely-sampled data available to compute \(s^2(r_\tau)/\tau \), so as to minimize the effects of the drift of the data-generating process. Of course, whether or not the most finely-sampled data is fine enough to render \(s^2(r_\tau)/\tau \) an adequate approximation to \(\sigma^2 \) is an empirical issue that depends critically on what the true data-generating process is, and on the types of market microstructure effects that may come into play.

But some further insights may be garnered from the trending O-U process by considering the following thought-experiment. Suppose that returns of one holding period \(\tau_1 \) are used to obtain the unconditional variance \(s^2(r_{\tau_1}) \), and returns of another holding period \(\tau_2 \) are used to obtain the first-order autocorrelation coefficient \(\rho_{\tau_1}(1) \). Since the data-generating process is defined in continuous time, this poses no problems for deriving the restrictions on the parameters \((\mu, \gamma, \sigma^2) \), and manipulating those restrictions yields the following version of (3.17):

\[
\sigma^2 = \frac{s^2(r_{\tau_1})}{\tau_1} \cdot \frac{\tau_1}{\tau_2} \cdot \frac{1 + 2\rho_{\tau_2}(1)}{[1 + 2\rho_{\tau_2}(1)]^{\tau_1/\tau_2} - 1} \quad (7.1)
\]

\[
= \frac{s^2(r_{\tau_1})}{\tau_1} \cdot \Delta(\tau_1, \tau_2, \rho_{\tau_2}(1)) \quad (7.2)
\]

\(^{18}\)In fact, even if the diffusion coefficient is time-varying, it may be estimated with arbitrary precision by sampling more frequently within a fixed time span. See Huang and Lo (1993) for further details.
\[\Delta(\tau_1, \tau_2, \rho_{\tau_2}(1)) \equiv \frac{\tau_1}{\tau_2} \cdot \frac{\log(1 + 2\rho_{\tau_2}(1))}{\left[1 + 2\rho_{\tau_2}(1)\right]^{\tau_1/\tau_2} - 1} , \quad \rho_{\tau_2}(1) \in \left(-\frac{1}{2}, 0\right]. \quad (7.3) \]

Without loss of generality and as a convenient normalization, let \(\tau_1 = 1 \) and \(\tau_2 = \tau \) so that the first-order autocorrelation coefficient \(\rho_{\tau}(1) \) is defined over the holding period \(\tau \), which in turn is measured in units of the holding period used to measure the unconditional variance of returns \(s^2(\tau_1) \). Then \(\Delta(1, \tau, \rho_{\tau}(1)) \) provides a measure of the impact of serial correlation on the Black-Scholes input \(\sigma^2 \) as a function of the first-order autocorrelation coefficient \(\rho_{\tau}(1) \) for \(\tau \)-period returns.

For example, let \(s^2(\tau_1) \) be defined for daily returns, and suppose that the first-order autocorrelation of daily returns is \(-30\) percent. Table 3 shows that \(\Delta(1, 1, -0.30) = 1.527 \), hence the value of \(s^2(\tau_1) \) must be increased by \(52.7 \) percent to yield the correct value for the Black-Scholes input \(\sigma^2 \). If, however, a \(-30\) percent first-order autocorrelation is observed for 5-day returns, this should yield a smaller autocorrelation for daily returns [recall that in the limit, the autocorrelation vanishes], which is confirmed by Table 3’s entry of \(1.094 \) for \(\Delta(1, 5, -0.30) \), i.e., \(\sigma^2 \) is only \(9.4 \) percent larger than \(s^2(\tau_1) \) in this case. Even in the extreme case of a \(-45\) percent autocorrelation, if this autocorrelation is for 25-day returns, \(\sigma^2 \) is only \(4.7 \) percent larger than \(\sigma^2(\tau_1) \), whereas the same autocorrelation for daily returns implies that \(\sigma^2 \) is \(156 \) percent larger than \(\sigma^2(\tau_1) \). Contrary to conventional wisdom, the autocorrelation coefficient is not unitless, and has an important time element to it. Accordingly, whether or not predictability can be ignored for purposes of pricing options must be addressed on a case-by-case basis.

A somewhat more subtle issue surrounding the distinction between discrete and continuous time is the fact that while we have used the Black-Scholes formula to gauge the effects of asset return predictability on option prices, it may be argued that the Black-Scholes formula holds only if continuous trading is possible and costless. Indeed, to implement the replicating strategy literally requires observing the sample-path of prices continuously, which eliminates the need for estimating \(\sigma \) altogether. In this case, the relation between predictability and option prices still exists but is irrelevant since the true \(\sigma \) can always be recovered exactly.

However, the continuous-trading assumption underlying the pricing formulas does not invalidate our main conclusion: whenever option pricing formulas are implemented with
discretely-sampled data, the drift matters.

Ideally, we should incorporate the effect of discreteness into the pricing formulas to provide a complete and empirically relevant theory of option pricing. One approach is simply to impose discrete trading, e.g., Black and Scholes (1973) and Boyle and Emanuel (1980), and another approach is to take into account directly the economic causes of discrete trading such as transactions costs, e.g., Leland (1985). These approaches will yield either approximate pricing formulas or bounds for option prices, and in both cases, the results will certainly depend on the numerical value of the diffusion coefficient σ, which in turn will depend on the specification of the drift, ceteris paribus. Therefore, despite the fact that in the continuous-time limit σ becomes known, any empirical implementation must still incorporate the effects of predictability on option prices.

7.3 Estimation Risk

It is important to note that the effects of predictability on option prices is closely related to, but not synonymous with the problem of "estimation risk" [see, for example, Barry et al. (1991)]. As we have just discussed in Section 7.2, the fact that σ^2 must be estimated from discretely-sampled data provides the primary motivation for our analysis. But the link between σ^2 and asset return predictability exists even when σ^2 is known without error. Of course, if σ^2 is known, then the degree of predictability in asset returns is irrelevant for purposes of pricing options even if the link is present. However, when σ^2 is unknown, the precise form of asset return predictability will affect both the estimate and the estimation risk of σ^2.

7.4 Implicit Volatilities

A consequence of the Black-Scholes model is that the parameter σ^2 may be recovered from option prices directly by inverting (2.4). Therefore, why go to the trouble of relating asset return predictability to σ^2? There are at least two responses to this simple but perplexing question.

First, the relevance of the implicit variance relies on the proper specification of the option
pricing formula: if the market price is not truly a Black-Scholes price, then an implicit
volatility obtained from the Black-Scholes formula is difficult to interpret and use. But if
prices were truly Black-Scholes prices, then implicit volatilities would be irrelevant since
the Black-Scholes model requires that σ^2 is known. Therefore, the practical usefulness of
implicit volatilities is not based on any theoretical considerations, but comes from heuristics
developed by options traders [see, for example, Figlewski (1989)]. But these same heuristics
imply that understanding how asset return predictability affects σ^2 also has practical value,
since it effectively isolates and quantifies one source of the variation in implicit volatilities
through time.

Second, observe that the principal advantage of implicit volatilities relies heavily on the
assumption that market prices are informationally efficient. This is the essence of the ar-
gument that implicit volatilities are “forward-looking” or prospective, whereas historical
volatilities are retrospective. However, because of trading frictions and frictions in the trans-
mission of information, market prices need not adjust instantaneously to new information.
In particular, suppose that the predictability of an asset’s return changes, perhaps because
of better information. Although this will eventually be reflected in the option’s price, and
therefore in its implicit volatility, an understanding of the link between predictability and
volatility may be used to forecast this new price.

Of course, both these arguments are highly heuristic because of the complexity of the
issues at hand, and they are clearly quite difficult to formalize in a well-articulated model of
economic equilibrium. But it should be apparent that the same logic which leads practitioners
to use any analytical pricing formula must also imply that asset return predictability can
play an important role in pricing and hedging options and other derivative assets in much
the same way.

8 Conclusion

The fact that asset return predictability has nontrivial implications for option prices pro-
vides a link between two seemingly disparate strands of the asset pricing literature: linear
multi-factor models of time-varying expected asset returns, and arbitrage-based models of
derivative asset prices.19 Heuristically, when predictability is well-defined, i.e., when the asset return's conditional mean does not depend upon past prices or returns, and when the conditional expectation of the prediction error is zero, then increases in predictability generally decrease option prices when the unconditional variance of asset returns is fixed. In such cases, an increase in predictability is equivalent to a reduction in the asset's residual uncertainty or prediction error variance, and since option prices are monotonically increasing in the volatility of this residual uncertainty in the Black-Scholes case where the diffusion coefficient σ is constant, option prices decline as predictability increases.

This has an interesting implication for the evolution of option premia through time: as we are better able to model the time-varying expected return of an asset, option premia on that asset should fall, \textit{ceteris paribus}. Alternatively, the fact that option premia are positive may imply an upper bound on the predictability of the underlying asset's returns, which may partly address Roll's (1988) lament that the R^2s in financial applications are disappointingly low. We hope to explore these implications in future research.

For alternatives to the Black-Scholes case, such as those with stochastic volatility or jump components, predictability also affects option prices nontrivially, but in considerably more complex ways. To capture such effects, each of our drift specifications can be paired with a particular specification for the diffusion coefficient. While closed-form adjustments for predictability may not always exist in these more general cases, maximum likelihood estimation is almost always feasible for our linear drift specifications.

Despite the fact that the drift of a diffusion process plays virtually no role in deriving theoretical pricing formulas for derivative assets, its importance cannot be overemphasized in the implementation of those formulas. The practical value of arbitrage-based models of derivative prices rests heavily on the existence of an empirically plausible and stable model of the true data-generating process for the underlying asset's price. Although changing specifications for the drift does not influence the derivative pricing formula, it does influence both the theoretical value and empirical estimate of the parameter(s) on which the formula depends.

19At least three other papers have hinted at such a link: Dybvig and Ingersoll (1982), Grundy (1991), and Lo (1989).
Appendix

A The Bivariate Trending O-U Process

To derive (6.2) – (6.3), observe that from (4.1) – (4.2), we have:

\[q(t_k) = q(t_{k-1})e^{-\gamma T} + \frac{\lambda}{\gamma - \delta} \left(e^{-\delta T} - e^{-\gamma T} \right) X(t_k) + \int_{t_{k-1}}^{t_k} e^{-\gamma (t_k - s)} \sigma_dW_q(s) + \frac{\lambda}{\gamma - \delta} \int_{t_{k-1}}^{t_k} \left[e^{-\delta (t_k - s)} - e^{-\gamma (t_k - s)} \right] \sigma_dW_x(s) \quad (A.1) \]

\[X(t_k) = e^{-\delta T} X(t_{k-1}) + \int_{t_{k-1}}^{t_k} e^{-\delta (t_k - s)} \sigma_dW_x(s). \quad (A.2) \]

Define \(\alpha_q \equiv e^{-\gamma T}, \alpha_x \equiv e^{-\delta T}, \phi = \frac{\lambda}{\gamma - \delta} (\alpha_x - \alpha_q), \) and

\[\epsilon_{q,k} = \int_{t_{k-1}}^{t_k} e^{-\gamma (t_k - s)} \sigma_dW_q(s) + \frac{\lambda}{\gamma - \delta} \int_{t_{k-1}}^{t_k} \left[e^{-\delta (t_k - s)} - e^{-\gamma (t_k - s)} \right] \sigma_dW_x(s) \]

\[\epsilon_{x,k} = \int_{t_{k-1}}^{t_k} e^{-\delta (t_k - s)} \sigma_dW_x(s). \]

We then have:

\[q_k = \alpha_q q_{k-1} + \phi X_{k-1} + \epsilon_{q,k} \quad (A.3) \]

\[X_k = \alpha_x X_{k-1} + \epsilon_{x,k}. \quad (A.4) \]

Clearly, \(\epsilon_{q,k} \) and \(\epsilon_{x,k} \) are independently and identically distributed over time and jointly normally distributed. Furthermore,

\[s_{q,\tau}^2 \equiv \text{Var}[\epsilon_{q,k}] = \frac{\sigma_q^2}{2\gamma} (1 - \alpha_q^2) + \frac{2\lambda \kappa \sigma_x \sigma}{\gamma - \delta} \left[\frac{1 - \alpha_q \alpha_x}{\gamma + \delta} - \frac{1 - \alpha_x^2}{2\gamma} \right] + \frac{\lambda^2 \sigma_q^2}{(\gamma - \delta)^2} \left[\frac{1 - \alpha_q^2}{2\gamma} + \frac{1 - \alpha_x^2}{2\delta} - \frac{2(1 - \alpha_q \alpha_x)}{\gamma + \delta} \right] \quad (A.5) \]

\[s_{x,\tau}^2 \equiv \text{Var}[\epsilon_{x,k}] = \frac{\sigma_x^2}{2\delta} (1 - \alpha_x^2) \quad (A.6) \]

\[s_{qx,\tau} \equiv \text{Cov}[\epsilon_{q,k}, \epsilon_{x,k}] = \frac{\kappa \sigma_x \sigma}{\gamma + \delta} (1 - \alpha_q \alpha_x) + \frac{\lambda \sigma_x^2}{\gamma - \delta} \left[\frac{1 - \alpha_x^2}{2\delta} - \frac{1 - \alpha_q \alpha_x}{\gamma + \delta} \right]. \quad (A.7) \]

There is a one-to-one mapping between the parameters of the discretely-sampled system, \(\alpha_q, \alpha_x, \phi, s_{q,\tau}^2, s_{x,\tau}^2, s_{qx,\tau} \), and the parameters of the underlying continuous-time process, \(\gamma, \delta, \)
\(\lambda, \sigma, \sigma_x, \kappa \). Specifically, normalize the time units so that \(\tau = 1 \) and observe that:

\[
\gamma = -\log \alpha_q, \quad \delta = -\log \alpha_x, \quad \lambda = \frac{\phi(\log \alpha_q - \log \alpha_x)}{\alpha_q - \alpha_x}.
\]

(A.8)

Substituting (A.8) into (A.5) – (A.7) then yields three equations which are linear in \(\sigma^2, \sigma^2_x \) and \(\kappa \sigma \sigma_x \), hence the remaining three continuous-time parameters may be easily recovered from these equations.

Since \((p_k, X_k) \) follows a bivariate AR(1) process, a closed-form expression for the likelihood function of \(p_k \) may be obtained which can be used in the maximum likelihood estimation [see, for example, Jazwinski (1970)].

B The Multivariate Trending O-U Process

The multivariate trending O-U process \((q(t), X'(t)) \) is defined by the following Itô integrals:

\[
q(t) = e^{-\gamma t}q_0 + \Lambda(\gamma I - \Delta)^{-1} \left[e^{-\Delta t} - e^{-\gamma t} I \right] X_0 + \int_0^t e^{-\gamma (t-s)} \sigma dW_q(s) - \\
\Lambda(\gamma I - \Delta)^{-1} \int_0^t \left[e^{-\gamma (t-s)} - e^{-\Delta(t-s)} \right] B_x dW_x(s) \tag{B.1}
\]

\[
X(t) = e^{-\Delta t}X_0 + \int_0^t e^{-\Delta(t-s)} B_x dW_x(s) \tag{B.2}
\]

where \(I \) is the \((m \times m) \) identity matrix. When \(\gamma \) and the real parts of all of the eigenvalues of \(\Delta \) are strictly positive, \((q(t), X'(t)) \) is stationary. The unconditional moments of \(q(t) \) and \(X(t) \) may be readily obtained from (B.1) and (B.2).

Since \(W_x(t) \) is a \(k \)-dimensional standard Wiener process, \(E[dW_x dW'_x] = Idt \) where \(I \) is the identity matrix of order \(k \).\(^{20}\) Let \(\sigma dW_q B_x dW_x = K dt \) where \(K \) is a \((k \times 1) \) vector.

For notational convenience, define \(\Sigma = \{\sigma_{ij}\} \equiv B_x B'_x, \Omega_\tau = \{\omega_{ij}(\tau)\} \) where \(\omega_{ij}(\tau) \equiv \sigma_{ij} \left[1 - e^{-(\delta_i + \delta_j)\tau} \right] / (\delta_i + \delta_j) \) and \(\Xi_\tau = \{\xi_{ij}(\tau)\} \) where \(\xi_{ij}(\tau) \equiv \sigma_{ij} \left[1 - e^{-(\gamma + \delta_j)\tau} \right] / (\gamma + \delta_j) \).

Then we have:

\[
E[q(t)] = E[X(t)] = 0 \tag{B.3}
\]

\[
\text{Var}[q(t)] = \frac{\sigma^2}{2 \gamma} + \Lambda(\gamma I - \Delta)^{-1} \left(\frac{1}{2 \gamma} \Sigma - \Xi_\infty - \Xi'_\infty + \Omega_\infty \right) (\gamma I - \Delta)^{-1} \Lambda' +
\]

\(^{20}\)There is no loss of generality by assuming that \(W_x(t) \) has independent components since components of \(X(t) \) can have arbitrary covariance structure through \(B_x \).

35
\[\Lambda(\gamma I - \Delta)^{-1} \left[2(\gamma I + \Delta)^{-1} - \frac{1}{\gamma} I \right] K \]

\[\text{Var}[X(t)] = \Omega_\infty \]

\[\text{Cov}[q(t), X(t)] = \left(\Xi_\infty - \Omega_\infty \right) (\gamma I - \Delta)^{-1} \Lambda' + (\gamma I + \Delta)^{-1} K \]

\[\text{Cov}[q(t), q(t+\tau)] = e^{-\gamma \tau} \text{Var}[q(t)] + \Lambda(\gamma I - \Delta)^{-1} \left(e^{-\Delta \tau} - e^{-\gamma \tau} \right) \text{Cov}[q(t), X(t)]. \]

From these expressions, the moments of \(r_\tau(t) \) follow directly:

\[\text{E}[r_\tau(t)] = \mu \tau \]

\[\text{Var}[r_\tau(t)] = 2 \text{Var}[q(t)] \left[(1 - e^{-\gamma \tau}) - \Lambda(\gamma I - \Delta)^{-1} \left(e^{-\Delta \tau} - e^{-\gamma \tau} \right) b \right] \]

\[\text{Cov}[r_\tau(t+\tau), r_\tau(t)] = -\text{Var}[q(t)] \left\{ (1 - e^{-\gamma \tau})^2 + \Lambda(\gamma I - \Delta)^{-1} \left[(1 - e^{-\Delta \tau})^2 - (1 - e^{-\gamma \tau})^2 \right] b \right\}. \]

where \(b \equiv \text{Cov}[q(t), X(t)]/\text{Var}[q(t)] \). The return autocorrelation function may then be obtained from these moments.

It is straightforward to derive the discrete-time representation of the system \((q(t), X'(t))\):

\[q_k = \alpha_q q_{k-1} + \Phi X_{k-1} + \epsilon_{q,k} \]

\[X_k = A_x X_{k-1} + \epsilon_{x,k} \]

where \(q_k = q(t_k), X_k = X(t_k), \tau \equiv t_k - t_{k-1}, \alpha_q \equiv e^{-\gamma \tau}, A_x \equiv e^{-\Delta \tau}, \Phi \equiv \Lambda(\gamma I - \Delta)^{-1}(A_x - \alpha_q I) \) and

\[\epsilon_{q,k} \equiv \int_{t_{k-1}}^{t_k} e^{-\gamma(t_k-s)} \sigma dW_q(s) - \Lambda(\gamma I - \Delta)^{-1} \int_{t_{k-1}}^{t_k} \left[e^{-\gamma(t_k-s)} - e^{-\Delta(t_k-s)} \right] B_x dW_x(s) \]

\[\epsilon_{x,k} \equiv \int_{t_{k-1}}^{t_k} e^{-\Delta(t_k-s)} B_x dW_x(s). \]

It is easy to show that

\[s_{q,\tau}^2 \equiv \text{Var}[\epsilon_{q,k}] = \frac{1 - \alpha_q^2}{2\gamma} \sigma^2 + \Lambda(\gamma I - \Delta)^{-1} \left(\frac{1 - \alpha_q^2}{2\gamma} \Sigma - \Xi_r - \Xi'_r + \Omega_r \right) (\gamma I - \Delta)^{-1} \Lambda' + \Lambda(\gamma I - \Delta)^{-1} \left\{ 2(\gamma I + \Delta)^{-1} \left[1 - e^{-\gamma(\gamma I + \Delta)^{-1}} \right] \right\} K \]

\[s_{x,\tau}^2 \equiv \text{Var}[\epsilon_{x,k}] = \Omega_r \]

\[s_{qX,\tau} \equiv \text{Cov}[\epsilon_{q,k}, \epsilon_{x,k}] = (\Omega_r - \Xi_r)(\gamma I - \Delta)^{-1} \Lambda' + (\gamma I + \Delta)^{-1} \left[1 - e^{-\gamma(\gamma I + \Delta)^{-1}} \right] K. \]
Similar to the bivariate case, the mapping between the parameters of the discrete-time representation, $\alpha_q, A_x, \Phi, s^2_q, s^2_x, s_q, s_x, \gamma$, and the parameters of the underlying continuous-time process, $\lambda, \Delta, \Lambda, \sigma^2, \Sigma$ and K is one-to-one. Let $\tau = 1$, we have

$$\gamma = -\log \alpha_q, \quad \delta_i = -\log \alpha_i, \quad \Lambda = \Phi (A_x - \alpha_q I)^{-1} (\gamma I - \Delta).$$ \hspace{1cm} (B.13)

where $\alpha_j = \{A_x\}_{ii}$ (Note that A_x is diagonal). From s^2_x, we can solve for Ω, Σ and Ξ:

$$\Omega = s^2_x, \quad \sigma_{ij} = \frac{(\delta_i + \delta_j)\omega_{ij}(\tau)}{1 - \alpha_i \alpha_j} \quad \xi = \frac{\sigma_{ij}(1 - \alpha_i \alpha_j)}{\gamma + \delta_j}. \hspace{1cm} (B.14)$$

We can then solve for K given $s_{q,\tau}$:

$$K = \left[1 - e^{-(\gamma I + \Delta)}\right]^{-1} (\gamma I + \Delta) \left[s_{q,\tau} - (\Omega - \Xi) (\gamma I - \Delta)^{-1} \Lambda'\right]. \hspace{1cm} (B.15)$$

From the definition of s^2_q, we can further solve for σ^2.

Note that B_x is simply the Cholesky decomposition of Σ. \hspace{1cm} (21)
References

Figure 1 - $\rho_r(1)$

$\gamma = 0.2, \lambda = 4.0$

$\gamma = 0.0, \lambda = 1.0$

$\gamma = 0.5, \lambda = 0.0$

$\delta = 0.6, \sigma_p^2 = 0.5, \sigma_\mu^2 = 1.0, \kappa = 0$
Table 1a

Comparison of theoretical call option prices on a hypothetical $40 stock under an arithmetic Brownian motion versus a trending Ornstein-Uhlenbeck process for log-prices, assuming a standard deviation of 2 percent for daily continuously-compounded returns, and a daily continuously-compounded riskfree rate of log(1.05)/364.

<table>
<thead>
<tr>
<th>Strike Price</th>
<th>Black-Scholes Price</th>
<th>Trending O-U Price, with Daily $\rho_r(1) = -0.05$</th>
<th>-0.10</th>
<th>-0.20</th>
<th>-0.30</th>
<th>-0.40</th>
<th>-0.45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time-to-Maturity $T - t = 7$ Days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>5.036</td>
<td>5.037</td>
<td>5.038</td>
<td>5.042</td>
<td>5.051</td>
<td>5.074</td>
<td>5.108</td>
</tr>
<tr>
<td>40</td>
<td>0.863</td>
<td>0.885</td>
<td>0.910</td>
<td>0.973</td>
<td>1.062</td>
<td>1.216</td>
<td>1.368</td>
</tr>
<tr>
<td>45</td>
<td>0.011</td>
<td>0.013</td>
<td>0.016</td>
<td>0.024</td>
<td>0.041</td>
<td>0.082</td>
<td>0.137</td>
</tr>
<tr>
<td>50</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Time-to-Maturity $T - t = 91$ Days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>1.459</td>
<td>1.532</td>
<td>1.615</td>
<td>1.822</td>
<td>2.124</td>
<td>2.657</td>
<td>3.195</td>
</tr>
<tr>
<td>50</td>
<td>0.574</td>
<td>0.623</td>
<td>0.680</td>
<td>0.829</td>
<td>1.058</td>
<td>1.491</td>
<td>1.954</td>
</tr>
<tr>
<td>Time-to-Maturity $T - t = 182$ Days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>7.558</td>
<td>7.646</td>
<td>7.746</td>
<td>7.998</td>
<td>8.365</td>
<td>9.014</td>
<td>9.668</td>
</tr>
<tr>
<td>40</td>
<td>4.740</td>
<td>4.851</td>
<td>4.976</td>
<td>5.286</td>
<td>5.728</td>
<td>6.491</td>
<td>7.244</td>
</tr>
<tr>
<td>45</td>
<td>2.810</td>
<td>2.922</td>
<td>3.048</td>
<td>3.361</td>
<td>3.812</td>
<td>4.595</td>
<td>5.375</td>
</tr>
<tr>
<td>50</td>
<td>1.592</td>
<td>1.687</td>
<td>1.797</td>
<td>2.073</td>
<td>2.482</td>
<td>3.214</td>
<td>3.963</td>
</tr>
<tr>
<td>Time-to-Maturity $T - t = 273$ Days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>5.905</td>
<td>6.039</td>
<td>6.191</td>
<td>6.565</td>
<td>7.099</td>
<td>8.019</td>
<td>8.925</td>
</tr>
<tr>
<td>45</td>
<td>3.943</td>
<td>4.082</td>
<td>4.239</td>
<td>4.627</td>
<td>5.185</td>
<td>6.147</td>
<td>7.098</td>
</tr>
<tr>
<td>50</td>
<td>2.573</td>
<td>2.702</td>
<td>2.849</td>
<td>3.217</td>
<td>3.753</td>
<td>4.695</td>
<td>5.642</td>
</tr>
<tr>
<td>Time-to-Maturity $T - t = 364$ Days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>4.941</td>
<td>5.102</td>
<td>5.283</td>
<td>5.732</td>
<td>6.374</td>
<td>7.478</td>
<td>8.566</td>
</tr>
</tbody>
</table>
Comparison of theoretical call option prices on a hypothetical $40 stock under an arithmetic Brownian motion versus a trending Ornstein-Uhlenbeck process for log-prices, assuming a standard deviation of 2 percent for daily continuously-compounded returns, and a daily continuously-compounded riskfree rate of log(1.05)/364.

<table>
<thead>
<tr>
<th>Strike Price</th>
<th>Black-Scholes Price</th>
<th>Trending O-U Price, with Weekly $\rho_t(1) = $</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$-.05$</td>
</tr>
<tr>
<td>Time-to-Maturity $T - t = 7$ Days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>5.036</td>
<td>5.036</td>
</tr>
<tr>
<td>40</td>
<td>0.863</td>
<td>0.866</td>
</tr>
<tr>
<td>45</td>
<td>0.011</td>
<td>0.011</td>
</tr>
<tr>
<td>50</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Time-to-Maturity $T - t = 91$ Days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>3.270</td>
<td>3.281</td>
</tr>
<tr>
<td>45</td>
<td>1.459</td>
<td>1.470</td>
</tr>
<tr>
<td>50</td>
<td>0.574</td>
<td>0.581</td>
</tr>
<tr>
<td>Time-to-Maturity $T - t = 182$ Days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>7.558</td>
<td>7.570</td>
</tr>
<tr>
<td>45</td>
<td>2.810</td>
<td>2.826</td>
</tr>
<tr>
<td>50</td>
<td>1.592</td>
<td>1.605</td>
</tr>
<tr>
<td>Time-to-Maturity $T - t = 273$ Days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>8.587</td>
<td>8.603</td>
</tr>
<tr>
<td>40</td>
<td>5.905</td>
<td>5.924</td>
</tr>
<tr>
<td>50</td>
<td>2.573</td>
<td>2.591</td>
</tr>
<tr>
<td>Time-to-Maturity $T - t = 364$ Days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>6.908</td>
<td>6.930</td>
</tr>
<tr>
<td>45</td>
<td>4.941</td>
<td>4.964</td>
</tr>
<tr>
<td>50</td>
<td>3.489</td>
<td>3.511</td>
</tr>
</tbody>
</table>
Table 1c

Comparison of theoretical call option prices on a hypothetical $40 stock under an arithmetic Brownian motion versus a trending Ornstein-Uhlenbeck process for log-prices, assuming a standard deviation of 2 percent for daily continuously-compounded returns, and a daily continuously-compounded riskfree rate of log(1.05)/364.

<table>
<thead>
<tr>
<th>Strike Price</th>
<th>Black-Scholes Price</th>
<th>Trending O-U Price, with Monthly $p_r(1) =$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$-.05$</td>
</tr>
<tr>
<td>$T - t = 7$ Days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>5.036</td>
<td>5.036</td>
</tr>
<tr>
<td>40</td>
<td>0.863</td>
<td>0.864</td>
</tr>
<tr>
<td>45</td>
<td>0.011</td>
<td>0.011</td>
</tr>
<tr>
<td>50</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>$T - t = 91$ Days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>3.270</td>
<td>3.273</td>
</tr>
<tr>
<td>45</td>
<td>1.459</td>
<td>1.462</td>
</tr>
<tr>
<td>50</td>
<td>0.574</td>
<td>0.575</td>
</tr>
<tr>
<td>$T - t = 182$ Days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>7.558</td>
<td>7.561</td>
</tr>
<tr>
<td>45</td>
<td>2.810</td>
<td>2.814</td>
</tr>
<tr>
<td>50</td>
<td>1.592</td>
<td>1.595</td>
</tr>
<tr>
<td>$T - t = 273$ Days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>5.905</td>
<td>5.909</td>
</tr>
<tr>
<td>50</td>
<td>2.573</td>
<td>2.577</td>
</tr>
<tr>
<td>$T - t = 364$ Days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>4.941</td>
<td>4.946</td>
</tr>
</tbody>
</table>
Table 2

Comparison of theoretical call option prices on a hypothetical $40 stock under an arithmetic Brownian motion versus a bivariate trending Ornstein-Uhlenbeck process for log-prices, both calibrated to match the daily CRSP value-weighted returns index from 1962 to 1990. The time-to-maturity is given by $T - t$, entries under the 'B-S' heading are call prices calculated under the Black-Scholes assumption of arithmetic Brownian motion [for which $\sigma = 0.0085$], and entries under the 'O-U' heading are call prices calculated under the bivariate trending Ornstein-Uhlenbeck [for which $\sigma = 0.0074$]. A daily continuously-compounded risk-free rate of log(1.05)/364 is assumed.

<table>
<thead>
<tr>
<th>Strike Price</th>
<th>$T - t = 7$</th>
<th>$T - t = 91$</th>
<th>$T - t = 182$</th>
<th>$T - t = 273$</th>
<th>$T - t = 364$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B-S</td>
<td>O-U</td>
<td>B-S</td>
<td>O-U</td>
<td>B-S</td>
</tr>
<tr>
<td>35</td>
<td>5.033</td>
<td>5.033</td>
<td>5.467</td>
<td>5.442</td>
<td>6.005</td>
</tr>
<tr>
<td>40</td>
<td>0.378</td>
<td>0.331</td>
<td>1.542</td>
<td>1.378</td>
<td>2.328</td>
</tr>
<tr>
<td>45</td>
<td>0.000</td>
<td>0.000</td>
<td>0.155</td>
<td>0.088</td>
<td>0.562</td>
</tr>
<tr>
<td>50</td>
<td>0.000</td>
<td>0.000</td>
<td>0.005</td>
<td>0.001</td>
<td>0.085</td>
</tr>
</tbody>
</table>
Table 3

Ratio of σ^2 to $s^2(r_1)$ for various values of the first-order autocorrelation $\rho_r(1)$ and holding period τ, where τ is measured in units of the holding period used to construct $s^2(r_1)$.

<table>
<thead>
<tr>
<th>τ</th>
<th>$\rho_r(1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>1.000</td>
</tr>
<tr>
<td>2</td>
<td>1.000</td>
</tr>
<tr>
<td>3</td>
<td>1.000</td>
</tr>
<tr>
<td>4</td>
<td>1.000</td>
</tr>
<tr>
<td>5</td>
<td>1.000</td>
</tr>
<tr>
<td>6</td>
<td>1.000</td>
</tr>
<tr>
<td>7</td>
<td>1.000</td>
</tr>
<tr>
<td>8</td>
<td>1.000</td>
</tr>
<tr>
<td>9</td>
<td>1.000</td>
</tr>
<tr>
<td>10</td>
<td>1.000</td>
</tr>
<tr>
<td>11</td>
<td>1.000</td>
</tr>
<tr>
<td>12</td>
<td>1.000</td>
</tr>
<tr>
<td>13</td>
<td>1.000</td>
</tr>
<tr>
<td>14</td>
<td>1.000</td>
</tr>
<tr>
<td>15</td>
<td>1.000</td>
</tr>
<tr>
<td>16</td>
<td>1.000</td>
</tr>
<tr>
<td>17</td>
<td>1.000</td>
</tr>
<tr>
<td>18</td>
<td>1.000</td>
</tr>
<tr>
<td>19</td>
<td>1.000</td>
</tr>
<tr>
<td>20</td>
<td>1.000</td>
</tr>
<tr>
<td>21</td>
<td>1.000</td>
</tr>
<tr>
<td>22</td>
<td>1.000</td>
</tr>
<tr>
<td>23</td>
<td>1.000</td>
</tr>
<tr>
<td>24</td>
<td>1.000</td>
</tr>
<tr>
<td>25</td>
<td>1.000</td>
</tr>
</tbody>
</table>