
USING A TEMPLATE-BASED
APPROACH TO SYSTEMS DELIVERY

J. Debra Hofman
John F. Rockart

August 1993

CISR WP No. 259
Sloan WP No. 3598-93

©1993 J.D. Hofman, J.F. Rockart

Center for Information Systems Research
Sloan School of Management

Massachusetts Institute of Technology

USING A TEMPLATE-BASED APPROACH TO SYSTEMS DELIVERY

J. Debra Hofman and John F. Rockart

Abstract

Despite significant investments in information technology and software development,

many IS organizations have difficulties delivering quality software on time and on budget.

An important trend which we see emerging to address this is the use of application

templates. The term "template" is being used here to describe a system -- or a portion of

a system -- built with a CASE tool and reused. A template contains models of the system

(data, process, and/or screen models), and customization of the template is done at the

model level, using the CASE tool. In effect, a template is a flexible, CASE-based package.

This paper describes the use of a template-based approach to systems delivery in

three companies. Two of the companies purchased the template externally, and one

company is pursuing an internal template strategy. These companies have combined the use

of the template with techniques such as prototyping, JAD, iterative development, and

incremental delivery. Benefits cited include lower cost, less time, improved maintainability,

better fit, increased user involvement, and an improved IS-user relationship. Effective use

of a template approach has major implications for the systems development process and the

IS organization, and encompasses behavioral and cultural change.

I. THE SYSTEMS DEVELOPMENT PROBLEM

According to recent surveys, the average IS budget for U.S. corporations represents

2.5% of total firm revenue, with close to half spent on software. This includes only the

recognized, centralized portion of the budget; according to some estimates, adding in

decentralized IS budgets and hidden end-user expenditures brings the total cost of IS to an

average 5% of revenue. By 1996, total IS costs are expected to grow to 8% of revenue

(McPartlin, 1993; Flynn, 1993).

Despite the significant dollar outlays, many IS organizations have difficulties

delivering quality software on time and on budget. According to some estimates, 55% of

systems development projects are not completed on time or on budget, and 5% are not

completed at all (Maglitta and Nykamp, 1991). Not surprisingly, a survey of senior business

executives revealed that more than 50% do not believe they are getting value for the money

they are spending on IS, and that effective and efficient delivery of systems is a clear

concern. 1

In the context of the current business climate, this dissatisfaction is not particularly

surprising. U.S. companies today are typically facing an increasingly competitive global

market, intense cost and performance pressures, downsizing, reorganizations, and massive

cultural change. In this environment, systems which take too long, cost too much, and do

not meet business needs when they are delivered are simply no longer acceptable. Given

the amount of money spent on software, systems delivery is clearly a business process which

requires attention.

Based on a ComputerWorld/Andersen Consulting telephone survey of 203 chief executive, chief
operating, and chief financial officers (Maglitta, 1993).

2

II. MAKE OR BUY? SOME ALTERNATIVES 2

These issues are certainly not news to many CIOs and software developers. In an

IS executive survey, "improving systems development" was ranked third in a list of the

critical issues warranting attention, moving from ninth place the previous year.3 To date,

the basic choice in formulating a delivery strategy has been "make or buy": should the

company buy software packages wherever possible, pursuing in-house development only

where absolutely necessary? Or, should custom development be the preferred route?

For those companies whose primary delivery strategy is "make," or custom

development, improvements to the process of developing systems that have been

emphasized over the last decade include:

CASE Tools: Computer-Aided Software Engineering (CASE) tools, which help to
automate the process of developing systems, first emerged in the mid-1980s. While
there have been some success stories, these tools have not proved to be the long
awaited "silver bullet" in the development area for a variety of reasons, both technical
and organizational.4

Object-Orientation: A second software development innovation which has gained
much attention in the press is the object-oriented approach.5 While this approach
has proven extremely valuable for some types of systems (multi-media, simulation,

2 Portions of this section originally appeared in CISR Working Paper #250, "The Emerging Use of
Application Templates" (Rockart and Hofman, 1992).

3 Based on a survey of 407 IS executives, with corporate revenue ranging from $250 million to over $10
billion (CSC/Index, 1992).

4 Most companies that have adopted CASE tools have realized that the introduction of these tools --
and the methodologies on which they are based -- represent major change for the IS organization, and that
effective use of the tools is associated with a significant learning curve (Kemerer, 1991). Also, the benefits
have generally been realized not in development productivity, but in quality and maintenance productivity.
For discussion of the organizational issues around introduction of CASE tools, see, for example: Orlikowski,
1993; Friesen and Orlikowski, 1989; Chen and Norman, 1992.

5 Where a traditional system is composed of programs that define procedures and use data, an object-
oriented system is composed of self-contained objects, containing both procedures and data, that send
messages to each other.

3

real time), there are very few business systems to date which have been developed
using it.6

Reuse: While code reuse has long been proposed as a major solution, and while
some individual programmers do reuse code on an ad hoc basis, it has generally not
been institutionalized. The reasons for this have been widely debated, and range
from technical to cultural.7

Techniques: Assorted techniques to speed up the existing process are in use in
varying degrees and forms. These include, for example, prototyping, iterative
development, joint application development (JAD), 8 and rapid application
development (RAD). While many organizations report that these techniques have
been helpful, major problems with the systems delivery process remain.

Rather than build software applications, many companies are increasingly

emphasizing the "buy" side of the equation, and are turning to software application packages

as a preferred solution. In purchasing a package, one is, in effect, "reusing" an entire

system. And, reusing previously-developed components -- code, models, or entire systems

-- should save time and money and provide improved quality.

Purchasing a package should allow an organization to deliver a system faster and

cheaper than building it. However, this is often not the reality. In purchasing the software

package, the organization is also purchasing the business processes which are embedded in

it. These business processes may match those existing in the organization, but often do not.

The choice is then to either modify the package to fit the organization's business processes,

or modify the business processes to fit the package. Either choice is almost always more

6 For discussion of the adoption of object-oriented methods, see: Fichman and Kemerer, 1993; and
Fichman and Kemerer, 1992.

7 For discussion of the issues around reuse, see, for example: Caldiera and Basili, 1991; Karimi, 1990;
and Cusumano, 1987.

8 In a joint application design session, "users and IS developers work together in a structured workshop
led by a trained facilitator to complete information systems delivery tasks and activities" (e.g., requirements
definition for a new system) (Davidson, 1993).

4

difficult, more expensive, and more time consuming than anticipated; in fact, a total

installation cost of ten to twenty times the original purchase cost is not unheard of.

Moreover, the fact that the package is difficult to change does not disappear once

it is installed. Similar to many internally-built systems, it remains difficult to change on an

ongoing basis as well. In today's business environment, however, the flexibility to change

the organization, its business processes, and the information systems which support those

business processes has become critical to an organization's success.

Clearly, the issues around the systems delivery process are complex and do not lend

themselves to simple solutions. It may well be that there is no one "silver bullet," but rather

that it is some combination of the above (and possibly new) approaches which will provide

the answer. In our research in this area, we see an important trend emerging: the use of

application templates. The template-based approach is essentially a hybrid of many of the

alternatives mentioned above, combining many of the best features of both custom

development and packages in a single approach.

III. TEMPLATES: THREE EXAMPLES

The term "template" is being used here to describe a system -- or a portion of a

system -- built with a CASE tool and reused. A template contains models of the system

(data, process, and/or screen models), and customization of the template is done at the

model level, using the CASE tool. 9

9 There are different kinds of templates. Depending on the particular CASE tool, some templates may
be more comprehensive than others. Some contain all three models and generate code automatically from
the models, while others contain only portions of this functionality. Most of the CASE vendors we know of,
however, are moving towards this full functionality.

5

In some ways, a template is similar to a package: a package is a fully-working system

that an organization "reuses." But, there are two important differences: most packages do

not come with models and most packages are not built using a CASE tool. This means that

in order to modify the package -- and most organizations do modify the packages they buy,

often quite extensively -- an organization's IS personnel must understand the code (or hire

a consultant who does) and must make the changes directly to that code. In contrast,

because a template contains the models of the system (from which the code is written or

generated), changes can be made directly to those models; and, the CASE technology with

which the template is built facilitates the changes. If the particular CASE tool automatically

generates code, there is an added benefit: once the changes are made to the models, the

code can simply be automatically regenerated from the models. The critical point with a

template is that it is the models that are customized, rather than the code.

The template market is only just beginning to emerge, but is growing quickly. In

some cases, companies are selling templates directly to other companies. Some CASE tool

vendors operate in a "broker" capacity, offering templates built by their customers. In still

other cases, a company builds a template internally, and transplants it across its multiple

divisions. Most significantly, some software companies are beginning to sell their packages

as templates. °

The three company exam-les outlined below offer a more comprehensive picture of

the use of templates. While the three companies' stories are each unique in some -'ays,

they are all using some form of a template and combining that use with techniques such as

prototyping and iterative development. They all cite significant cost and time savings,

process improvements, and behavioral and cultural changes. In effect, use of a template has

provided each company with two major benefits: (1) a business and technical model; and

(2) a robust prototype. In the context of the "make vs. buy" decision, buying a template is

better than building from scratch, for all the reasons that buying a package is such an

10 See, for example: Ricciuti, 1993.

6

attractive option -- you start with a working system. A template is also better than a

traditional package because it can more easily be changed. In essence, a template is a

flexible package.

In the course of studying this trend, we have spoken with and visited both companies

who are using templates and vendors who are selling them. The three companies discussed

below, we believe, provide a representative sample of template users. At each site,

interviews were conducted with two to six members of the implementation team,

representing senior IS executives, IS developers, and, in one of the three cases, business

users.

A. Canadian Airlinesl'

Headquartered in Calgary, Canadian Airlines (Canadian) was formed in the mid-

1980s through a merger of independent airlines. Slightly smaller than Air Canada, its major

competitor, it is the world's 19th largest airline, with approximately 16,000 employees and

almost $3 billion in revenues. To support its newly-formed business strategy, Canadian

developed an IT strategy which included, among other things, the decision to use the

Information Engineering methodology and Texas Instruments' CASE tool, IEF. One of the

first systems targeted for re-construction was the frequent flyer system, a highly visible and

mission-critical system. Transaction volumes had long exceeded the capabilities of the

existing system, which was inflexible and required constant and extensive maintenance.

More importantly, the system could not keep up with the speed with which the business

changed, since each new frequent flyer promotion required extensive changes to the code.

" This case also appears in CISR Working Paper #250, "The Emerging Use of Application Templates"
(Rockart and Hofman, 1992).

7

The first step was a three-month definition of the requirements of the new system,

using joint application design (JAD) sessions. Once Canadian knew what they needed, they

solicited bids for development of the system. The twelve proposals they received in return

ran the full gamut in terms of both cost and time to complete.

Canadian decided to purchase TWA's frequent flyer system, built using the IEF

CASE tool. While it was not the lowest cost option, they felt it could offer the best value

in terms of demonstrated quality and time to deliver. The purchase price included ten days

of on-site support from TWA and ten days of customer support from TI for the tool. What

exactly did they receive? They received a handful of floppy diskettes that contained a

conceptual model of the business process, and the resulting system design. Specifically, they

received the data models, process models, screens, and code. They received no binders or

documents; the documentation was on the diskettes. While the code was included with the

system (it was a fully working system), they used it as a device solely to ensure that they had

in fact received the entire system; after the initial run, they never used it again.

Canadian then went to work enhancing and customizing the system to its

requirements, 2 with seven IS people and three users. The users were trained in key

aspects of the CASE tool and methodology. Changes were made to the models, and the

code was regenerated by the tool. The on-site support offered by TWA was originally

contracted to cover any issues that Canadian might have in understanding the functionality

and/or business rules embedded in the system. Of the ten days of TWA support, Canadian

used only one; they were able to easily understand the business functionality of the system

through the template.

The development team completed the system within the ten months they had

promised to management, despite what could have been a major snag in the seventh month.

12 The changes they made were fairly extensive including, among other things, adding bilingual
capabilities.

8

At that point, senior management made a business decision that required major changes in

the very structure of the system. The frequent flyer program -- and system -- had, in the

past, been separate from the lounge program and system. 3 The customer qualified for

each program separately, carried separate cards, and changed privilege levels in each

independently of the other. Canadian realized that while this may have made sense from

an operational standpoint, it was inconvenient and complicated from the customers'

perspective. In month seven of development, the decision was made to go to one card, and

therefore to one system. The implications were enormous: all the business rules for

qualifying, measuring, and changing privilege levels changed dramatically, and therefore the

processes and data in the systems changed as well. According to Canadian, a conservative

estimate for how long this change would have taken in a traditional system was six to nine

months. They were able to do it in one month, and to deliver the new, enhanced system

in the ten-month time frame they had promised for the frequent flyer system alone.

Canadian: Benefits

As mentioned earlier, Canadian essentially bought a business and technical model

and a prototype. The business model provided the business rules, and the technical model

provided the technical design approach. As Canadian explained, in the past when you

bought a package "you were always buying [a business model], but I don't think you were

aware of it. You thought you were buying the code. [When you buy a CASE-based] model

from another company, you're very aware that what you're buying is their business area

analysis." More importantly, in buying another company's business rules, Canadian found

better ways of doing business, ways they had not previously considered. In addition to this

business information, Canadian acquired technical expertise as well. Through the template,

they bought a system design that was easier to understand than if it were in a traditional

package, and was infinitely better than any other they had seen. For example, in the TWA

template system, the rules for frequent flyer promotions were separated from the body of

13 The lounge program allows members to use Canadian's airport lounges.

9

III

the system. This streamlined design enabled users to implement new frequent flyer

promotions themselves, rather than requiring IS to make the changes for them. (According

to Canadian, new promotions sometimes take place weekly.)

At the same time, Canadian bought a working prototype. Instead of starting off with

the results of a requirements definition in three-ring binders, they started off with a working

system which the users could "see...touch...and feel." Seeing a system that actually worked

and needed only to be adjusted to Canadian's requirements, it was "not as great a leap of

faith," as it had been in the past, for user personnel to believe that the system could be

delivered in the time frame promised. Furthermore, because the system was built in a

CASE tool and involved only the customization of the business rules and data to be used

(with little or no coding involved), the users could then immediately sit down and work with

the business model and make the necessary changes jointly with the IS team. That is, as

Canadian systems people note, this was not a case of "building a prototype first and then

building the system...[this was a case of] developing the system using a prototyping iterative

approach." Because the burden of writing code was eliminated, the developers were not

averse to continual iteration. And, because the users could see that changing the system

was easier and faster than it had been in their past experience, they were more inclined to

work with the developers.

It is important to note also that those factors that facilitate customization of the

system upon initial implementation also facilitate ongoing customization over time -- or

"maintenance." According to Canadian, they have two categories of maintenance: support

and enhancements.' 4 With the new system, support has been dramatically reduced and

enhancements are significantly easier to implement, both because of a streamlined, more

modular design and because the system resides in a CASE tool.' 5 There is direct business

14 Support and enhancements include: (1) "fixing it when it breaks;" (2) changing the system in order
to implement new frequent flyer promotions; and (3) changing the system to reflect regulatory changes.

15 Canadian has allocated 1.5 maintenance personnel to this application; this compares to 7 individuals
on a system comparable in size, but residing in a different technology.

10

leverage to be gained from the ability to enrich the system. According to Canadian, the

business units are now leading the way in enhancing the system because their perception is

that it can be done in a reasonable time frame, at a reasonable cost and is therefore worth

the investment.

B. PubCo

PubCo (not its real name) is a mid-sized publishing company headquartered in the

Northeast, with subsidiaries worldwide in the U.K., Canada, Australia, and Singapore. As

a publisher of technical and scientific books, PubCo's product structure is relatively uniform;

while there are local market variations, there is significant interplay among the markets,

with products from one sold in others.

Recognizing the need for a global delivery mechanism, and the leverage which could

be gained from it, senior management decided in 1988 to adopt a common hardware and

software platform. They chose the AS400 for the hardware, and are currently in transition

from a "collage" of mainframe and mid-range computers to the AS400. To help them with

systems development, they chose the Synon CASE tool.

PubCo targeted a set of core business processes with which to begin the move

towards common application software worldwide.l6 Included in the initial template,

referred to as the core system, were order processing, distribution, warehousing, publishing

support, and fulfillment activities. Their first step was the development of a worldwide data

'6 There are three major categories of business activity in publishing. The first is book project
management, which includes all the activity through the point at which a book is in the warehouse, starting
with signing an author to write the book. The second major category is the core process which covers all
activity from the warehouse out to the customer, and the third is sales and marketing.

11

model, 7 designed to reflect the needs of multiple country constituencies. As they

explained it, while there is some variation among countries, "a book is a book is a book."

With the data model as the base, they developed the system first in Singapore, their

smallest office.' 8 The project, including learning the Synon CASE tool,19 was completed

in six months with seven developers. They then took the core system developed in

Singapore and transplanted it as a template first to Australia, and then to the U.K. They

are currently implementing it in the U.S., with Canada as the next step. The system has

been tailored to each site. In customizing the system, no changes are made to the code

itself; all changes are applied at the model level in the CASE tool, and the code is

regenerated through the tool.20 When they are finished in Canada, they plan to turn

around and go back the other way, applying some of the changes that have been made

further down the line to those countries in which the system has already been installed.

PubCo is also beginning work on two other systems. One subsystem of their book

project management process was developed in the U.K., and is being implemented as a

template in the U.S. Another book project management subsystem, as well as the sales and

marketing database, are currently being developed in the U.S. and will be implemented as

templates in the other countries.

17 The data model was developed over a three to four month period, along with the initial prototype.

18 While the Singapore system was easier in the sense that it was smaller, it was also more complex
functionally than some of the other sites (multi-currency, etc.). Also, because there were no MIS people on-
site in Singapore to provide support once the development team was gone, they knew that the system had to
be completely foolproof.

'9 To speed up the learning process, they hired a developer who had significant expertise in this
particular tool.

20 This applies to the on-line portion of the system only; it does not apply to the batch portion of the
system. However, the batch portion of the system is relatively minor, representing 20% of the system code.

12

PubCo: Internal Template Development

PubCo has developed its own systems development methodology, combining some

aspects of traditional systems development with rapid application development, prototyping,

and templates.

In each implementation of the core system, the basic business requirements specific

to that site are added to the core functional requirements.2 ' Using the core functional

requirements as a base, "scripts" are completed for each of the functions or business

events2 2 in the system. These describe what the business event is, the flow of the screens

which support it, and its data elements and reports. Using these scripts as well as the actual

working system, IS and users work together to confirm the scope of the new system and

identify any additional data which might be needed. Development of the new system is then

accomplished by changing and adding to the existing system. Small segments of the system

are presented to the users for verification as they are completed, with IS and users sitting

together and making changes. If the change requires modification in the underlying

program, the users will see the result the next day; if it is simply a screen change (e.g.,

changing a field on the screen or the flow of screens), they see the change immediately. In

effect, PubCo uses the working system as a prototype, adding and changing functionality.

The existing system also serves as a model for the new system. Rather than

traditional requirements gathering, in which a multitude of users are interviewed and

detailed requirements are documented on paper, PubCo's first step utilizing the template

(after the initial evaluation) is requirements verification. With the boundaries clearly

21 While the data are very similar across sites, business processes do vary. For example, payment cycles
vary by country. A normal accounts receivable cycle in the U.S. might be 30 or 90 days; in the Far East, it
might be 210 days before an initial payment is expected.

22 A "business event" might be, for example, "customer places order," which would include the following
steps: answer phone, identify customer, identify product, place order, quote price, hang up.

13

III

defined by the existing system, IS and users work together to verify the functionality of the

new system and to confirm its scope.

The U.S. implementation of the core template is currently underway and provides

some interesting insights. There was initial resistance to the concept on the part of both

the business and technical (IS) communities in the U.S. As PubCo explained, the reaction

from the business side was "...[we] don't want anything to do with it...they're much smaller

than us. It'll never handle our volume." A trip was organized to the U.K. for eight users

to see the system, including representatives of the various user departments from the

manager level down. After a week-long review of the system in which they could use the

screens and see the ease with which modifications (which previously required programmer

involvement) could be made, they decided to go with the core template. The system was

demonstrated to them by their business peers, not by IS. As PubCo described it, "the main

thing with this system is that we're trying to get MIS out of it. It is a user system. Even

though they're seeing the flow of screens, they're tailoring them for their requirements. It's

their system." One business manager who initially resisted the template system has become

so convinced of its superiority, he is now marketing it to his business peers in another site.

The initial reaction from IS in the U.S. was similarly skeptical. First, they did not

believe that the new hardware would be able to handle the volumes that they needed and

had been able to handle on the mainframe. The second area of resistance, and the one

which is more difficult to overcome, had to do with the shift from traditional systems

development to template-based systems development. The current reaction is mixed; some

IS people are moving quickly and embracing the new technology and methodology, while

others are unable, or unwilling, to make the transition.

PubCo: Benefits

PubCo personnel believe that this approach to systems delivery provides them with

significant leverage, allowing them to share -- or "reuse" -- best practices (both business and

14

IS), applications, knowledge, and expertise. This has some major benefits. First, this

approach has allowed them to accomplish two goals simultaneously which had previously

been in conflict: they can aggregate data at the firm level while tailoring the business

process and system to local needs. Second, smaller sites get greater delivered functionality

than they would be able to afford on their own.

Third, they believe they have been able to reduce both time (of development and

maintenance) as well as cost. Comparing the use of the template to custom development,

PubCo estimates savings of approximately 30%, assuming moderate modification. 2 3 They

also estimate that purchase and customization of an external package would cost

significantly more than customization of their internal template solution. Moreover, they

note that they are able to avoid the difficulties of integrating an external package with their

internal systems.

PubCo also believes that their internal template approach has significantly improved

the quantity and quality of IS-user interaction. The ability to interact and work with the

proposed system allows a deeper level of understanding for users than would be the case

with a documented (textual) description, and also means that they have more faith that the

system will actually be delivered. Delivering a constant stream of system segments

reinforces this improved confidence. The fact that IS and the users sit together in front of

the screen to make changes and the fact that those changes happen with an immediacy

previously unseen provides two important benefits: (1) it contributes to the improved level

of trust and interaction; and, (2) it enables the users to develop a sense of ownership which

is crucial to the success of an implementation. And, while users are learning more about

what it takes to deliver a system, IS is becoming more business literate as well. For IS, this

ability to better understand the business is a major benefit of the template approach. As

23 They must still spend some time understanding, reconfirming, retesting, and re-documenting the
function. It should be noted, however, that the effort involved in understanding the function is significantly
reduced by working at the model level, since it is easier to understand a model than it is to understand
someone else's code.

15

III

PubCo IS people describe it, "It's the only way they'll ever get any faith in us really -- if we

can prove to them that we understand what they are talking about."

According to PubCo, using the existing system as a model for a new system provides

some important learning benefits for IS as well. First, PubCo has found that the system

provides a useful way of learning the CASE tool. Second, they believe it is easier to

understand what is in the system using the models than trying to understand the code.

An important point to highlight is the fact that the U.S. business users interacted

with their business peers in the U.K. to make the initial template decision, rather than being

convinced by IS as is more typical. PubCo believes that the template itself and the ease

with which it could be modified helped to enable this interaction.

Finally, starting off with a defined scope was seen as a major benefit. That is, using

the existing system as the starting point essentially provides a clearly defined boundary for

the functionality of the proposed system. At the same time, however, they did not feel that

this pre-defined boundary represented a constraint, since the system is relatively flexible and

easy to change.

C. Western Resources

The product of a merger of several gas and electric utilities in the mid-1980s,

Western Resources in Topeka, Kansas is the fifth largest combination electric and gas utility

in the U.S., serving approximately 1.5 million customers. With a background in power plant

construction management, Ken Wymore came on board as the new CIO in 1986. Within

the first few months in his new role, Wymore realized that the company needed a new,

flexible customer processing system which would take them into the next decade.

16

For a utility, the customer processing system is critical. As Wymore put it, "The

customer system really is the nucleus of the company." It includes billing, credit and

collection, meter history, transformer history, and general customer service information.

Indeed, the monthly billing envelope is considered the primary "communication link"

between the company and its customers. Flexibility of the new system was considered a key

dimension. In addition to a rapidly changing business environment and the promise of

continued merger activity, the utility industry faces constant change in its regulatory

requirements. To support this need for flexibility, Wymore decided on a relational database

(DB2) as the cornerstone technological requirement for the new system.

Western then developed an RFP and examined a range of potential solutions,

including off-the-shelf package vendors, custom software vendors, and other utilities. There

were seven people on the evaluation team: five users and two from IS. The evaluation

emphasized functional fit24 as a first priority, with technical fit second. The package

solutions which existed on the market at the time were eliminated for a number of reasons.

First, they were not based on DB2 and the full cost of implementation -- purchase price plus

modification -- was estimated to be comparable to a custom solution. Second, Western

believed that any package solution that they could acquire would be outdated in three to

five years. On the other hand, a custom solution -- especially one based in what was then

a new, untested technology for which they had no in-house expertise -- was a riskier choice.

And, based on comparable systems at other utilities, they estimated that a custom system

would take four to five yeais.

Western decided on a solution which they felt provided many of the benefits of both

a package and a custom system: Andersen's Customer/1 DesignWare product. At the time,

this was a system which was under development at another utility. In essence, what Western

bought was a system design, the CASE tool with which it was built, and consultants who had

industry expertise. Specifically, they bought twelve books, that included the database design

24 The basic functional requirements of the new system had been documented in an earlier study.

17

and layout, screen and report layouts, and some functional decompositions (screen logic);

prototyped screens; some pre-coded program shells, included as part of the CASE tool; and,

of course, the business rules or processes which are embedded in the system. They also had

input available from the original utility to explain any aspect of the design necessary. There

was no batch system and no code for the on-line system.

They then proceeded to customize the design and complete the system. The first six

months of the three year project were spent understanding exactly what was in the product

they had just bought, what they still needed to develop, and in getting up to speed on the

methodology, the tool, and DB2. In addition to customizing the design (they estimate that

they changed it approximately 10-15%), they added all of the on-line code, all of the batch

system, and four subsystems. The project peaked at 104 team members, with a mix of 60%

Western and 40% Andersen personnel. Many of the changes that Western made have

become part of the Customer/1 DesignWare now sold by Andersen.

Top management played a significant and visible role in the implementation in the

form of an upper management steering committee comprised of the CIO, CFO, and COO.

This steering committee set a clear mandate from the beginning of the project: there would

be no modification of the design guide "without good reason."

There was also major user involvement throughout the development of the system.

The nucleus of five users who were on the original evaluation team grew to a team of

twenty-one full time users on the development of the system. The users learned the CASE

tool and redesigned the screens themselves. In addition to some initial prototypes, the

development team presented each part of the system to the users as key functional segments

were completed. In these presentations, IS and users would work at the terminal with the

screens themselves, making changes where necessary. Users also provided the same type

of input to development of the testing and training efforts. In addition to the obvious

systems development benefits from this input, there was a secondary benefit: with their

18

~~~~~~~~~~~~~ - 11_



input appreciated and incorporated, these users returned to the field as advocates for the

new system.

For the information systems organization at Western, the changes which were

implemented were significant, involving new approaches, methodologies, and tools. Western

lost several people with solid programming expertise who were unable to make the

transition.

The ability to quickly modify the system was tested four months after its

implementation, as Western merged with another gas and electric utility. Some of the

changes were major, reflecting different rate structures, payment plans, and billing practices.

They were able to accomplish the merger in 2/2 months, including the system modification

and data conversion.

Western: Benefits

Western estimates that it saved approximately 12-18 months and $20 million by using

DesignWare over a custom solution. They also believe that they have achieved their target

of paying for the system in less than three years through head count and other cost

reductions.

However, while these time and cost savings are important, Western believes it gained

other benefits that are even more significant. The system design provided both a business

and technical model, serving as a learning vehicle for both IS and business personnel. On

the technical side, the Customer/1 DesignWare helped the IS people learn DB2 and the new

CASE tool. As one of the key developers at Western explained, the IS people knew

nothing about DB2. If they had been designing from scratch, they would have based the

new design on the old system and would not have effectively used the DB2 product; in

effect, they would probably have "tried to DB2-ize the old system." The design guide gave

19



them something to start with and learn from, and they could fill in any gaps by talking to

the designers at the original utility.

The DesignWare also contained business process information that provided new

ideas, rather than simply automating the current business process. At the same time,

however, the design helped define the scope of the project, and keep it within predefined

boundaries. As Wymore explained, "...if we started from scratch...we would have

undoubtedly spent far more time on the design...the scope would have gotten out of

control...if you don't start out with a fence surrounding the project, it is everything in the

world to everyone."

Western also believes that it gained some leverage in certain technical aspects of the

system. While the CASE tool did not generate code, it did come with pre-coded "program

shells" for some of the technical functions common to all programs (e.g., validation edit

routines). The shells provided two benefits. First, initial development was faster because

some of the work had already been done and the programmers could focus on the business

rather than technical functions of the programs. Second, the program shells enforced a

level of standardization which, in turn, has made maintenance easier.2 5

Finally, Western emphasized some unexpected, but significant, benefits arising from

an increase in user involvement. As described, users and IS worked together on the

development of the system, with users designing new screens and modifying existing ones

using the CASE tool. They also helped to design and implement the training and system

tests. An important outcome of this greater involvement was that IS and the users learned

more about each others' jobs: users began to understand the process of systems

development, while IS gained an appreciation of what goes on in the field on a daily basis.

25 One difference between this company and the other two examples is in the area of maintenance. In
the Canadian and PubCo examples, changes were made to models rather than code during both development
and maintenance. At Western, changes were made to models during development; however, once the code
was generated (i.e., during maintenance) changes were applied to the code itself.

20

_�1�1 I ��



Moreover, both groups were learning at the same time, focusing together on operational

screens rather than on each other's shortcomings, as is too often the case in a traditional

systems development effort. This shared learning experience provided the foundation for

a greater sense of partnership, in which the development of the system was a mutual effort

and a shared responsibility.

IV. DISCUSSION

While there are certainly differences among the three company examples, there are

some striking similarities in what these companies are doing, how they are doing it, and in

the benefits they note. The benefits are significant. All three companies noted that: (1)

they were able to deliver their respective systems faster and at lower cost than had been

possible in the past;26 (2) that these systems were more maintainable (and therefore could

accommodate future change); and (3) that the systems were closer to what the users wanted.

The question is, why? What do these companies have in common in their approaches which

may be enabling these common benefits?

In all three cases, an existing system (or portion of a system) is being used as a model

or template, for a new system. Canadian and Western took a system developed externally

by another company and applied it within their own companies. At PubCo, a system

developed internally is being applied to multiple locations within the company. At first

glance, this may not appear particularly noteworthy; after all, it has been common practice

for years to use a software package as the starting point for a new system. But what these

companies -- as well as a number of others we have seen -- are doing is very different.

26 It should be noted, however, that the implementation of a new system encompasses many activities
other than development of the software, including, for example, conversion, integration with existing systems,
training/education, and integration with new or existing organizations and processes. As such, even if
development time could be reduced to zero, implementation time would not.

21

luI



All three companies are, in effect, reusing models. They are using the models of the

system (data, process, and/or screen) to understand and learn what is in the existing system;

and, the necessary changes are being made to tese models, rather than to the code itself.

In effect, the work is being done at higher levels of abstraction than is typical in a

traditional systems development effort. These companies are working with design-level

models rather than trying to understand and change the code, in all its overwhelming detail.

But the template-based approach described here goes beyond the purely technical

realm, extending into the systems delivery process itself. There are some key underlying

similarities in the way these companies used the templates, or models. Consider the contrast

between a traditional systems delivery project, and the approach taken by these companies.

Most traditional systems delivery efforts generally do the following: first, a project is

defined -- "we need a new order processing system." The next step is for IS to define and

document the requirements of the new system in as much detail as possible, usually by

interviewing as many users as possible to "extract" information about the business process.

Once the requirements are fully documented, they are presented to the users for "signoff,"

at which point they are "frozen." IS then designs, develops, tests, and implements the

system, typically with minimal user input or involvement. Alternatively, the project team

might stop after the requirements definition phase and look for a package which matches

the detailed requirements as closely as possible. They would then attempt some

combination of changing the pac'.age to fit the requirements, and changing the organization

to fit the package.

In contrast, our three company examples used the models to help define their

requirements. Rather than starting the project with a detailed list of requirements, these

companies began with a set of high-level functional requirements. The template, which

satisfied these high-level requirements, provided the basic structure of the new system. IS

and business personnel then jointly carved out the details of the new system through an

iterative process of working directly with the screens and changing the template. Rather

22

I _~~~~~~~~



than two sequential steps -- first defining all the requirements and then making all the

necessary changes -- they arrived at a new system through an iterative and interwoven

process of requirements definition and system modification, delivering key functional

segments of the system as they were completed.

The companies all noted certain benefits in the template process described above.

In all three of our company examples, the template served as a learning vehicle for both IS

and business personnel. For IS, the template provided a useful introduction to the new

tools and systems approaches they needed: the CASE tool, some technologies (e.g., DB2)

and a model technical design. On the business side, the template provided new ideas and

business processes. However, templates provide more than simple knowledge transfer; after

all, external ideas, knowledge, and expertise can be transferred to an organization from

traditional types of packages as well. More importantly, templates provide the capability

for both IS and users to jointly interact with the new system -- to understand and make

changes easily. It is this joint, hands-on interaction which primarily distinguishes templates

from packages. And, it is this interaction which facilitates learning.

In addition to learning more about their own functions, IS and users learned about

each other's as well -- and, they learned together. Thus, the template served not only as a

learning vehicle, but as a communication vehicle. In effect, it provided a forum in which

IS and users could communicate with each other, understand each other's jobs better, and

begin to build a partnership and a sense of mutual responsibility for the delivery of the

system. Using the screens to visualize and articulate the requirements of the new system,

rather than a blank sheet of paper, helped not only to improve the IS-user relationship, but

also to improve the system itself.

In all three cases, a sense of user ownership, not simply involvement, was articulated.

The users' experiences with the system -- the ability to interact with, communicate through,

and make changes directly to the system -- helped to foster this.

23

_ 11^______ __ l Tm-._ _Ir__ii_ - ------ 1 1 1 --.1- --_-.. ---_-- _~_ · I --1__1-_._ _^1__

"Il



The template process described here, then, is a process characterized by improved

learning, improved IS-user interaction, and user ownership. There are, however, some other

elements of this process which offer important benefits as well.

By starting a project with only the basic requirements rather than with
voluminous detail, these companies were more inclined to reuse a system or
portion of a system which already existed, rather than automatically taking the
"full custom development" route. Several of our interviewees noted that
starting with a detailed list of requirements gathered from everyone involved
will almost always result in a custom developed system or a heavily modified
package, since no existing system could precisely match the several thousand
requirements that are typically gathered with this approach.

Beginning the detailed requirements phase with the template helped to
contain the scope -- and therefore time, cost, and expectations -- of the
project.

The incremental nature of the delivery of the system -- the fact that users see
results more quickly -- also helped improve the credibility of IS and the level
of trust.

The template process described here allows the requirements of the new
system to evolve, better accommodating the reality of business change.

The template-based approach described here is multi-faceted, encompassing both

technical and process changes. The potential benefits are noteworthy: lower cost, less time,

more flexibility, better fit, improved IS-user relationship, increased user involvement, user

ownership and control, external knowledge, greater customization ability, and an improved

learning capability. For a company pursuing an "internal templates" strategy there can be

additional benefits: the ability to leverage best practices across the organization, and to

share applications, knowledge, and expertise.

Some of the benefits noted are possible with the purchase of an off-the-shelf software

package. Others are possible with a custom solution, particularly one which uses techniques

such as prototyping, joint application development (JAD), evolutionary or adaptive design

and development, CASE, and reuse. This solution -- the template-based approach -- offers

24

___1_______·___l I__ s__________I__-



many of the benefits of both. According to these companies, it provides many of the

benefits typically expected of a package purchase: compared to custom development, it

takes less time and costs less, external expertise and ideas are provided, and scope is

defined at the start. At the same time, it provides many of the benefits companies often

seek in pursuing a custom development route: compared to a package purchase, the

template is easier to understand and customize, satisfies more of their requirements, and

can provide the user involvement and sense of ownership that a typical package purchase

does not allow. As one of our interviewees put it, "this allows the user to live the building

of that system" and to develop a sense that it is their system.

V. ISSUES AND IMPLICATIONS

The use of the template-based approach described here has some important

organizational implications. Alluded to throughout the case descriptions and discussion,

some of these implications are obvious; others are, perhaps, more subtle.

The project team for a template-based systems delivery project is different than for

traditional methods in terms of composition, structure, roles, responsibilities, skills, and

mindset. In general, the template teams tended to be smaller, with more users and fewer

IS people than traditional teams. Roles and responsibilities for each member of the team

tended to be more diverse, with a greater need for business-oriented, communication, and

interpersonal skills.

The template-based approach also requires some changes in system design and

development skills and mindset. A company pursuing an "internal templates" delivery

strategy is, in effect, "reusing" a system from one site to another. In order for this to be

possible, the system must be designed for reuse; in the case of PubCo, for example, the

initial worldwide data model had to be designed in a way that would reflect the needs of

25

_ _______I___�_�______·__l�_allj_ �_I__C___ _I�__ �� ___

- _ _ . _ _ I l. l



the multiple countries.2 7 This requires different problem-solving skills than those used in

traditional system design.

Change is also required in the development effort, particularly with regard to

behavioral and cultural issues for both IS and users. This approach requires a shift from

the "not invented here" mindset which seems to be typical of many IS development groups.

Business users also tend to believe that their business process is unique and fundamentally

different than others, and that, therefore, a previously developed system cannot be used

without major modifications. In fact, there is more commonality than is typically

understood or admitted.

The use of the template as a communication vehicle suggests the possibility of an

interesting and fundamental shift in the nature of the systems delivery process. Using the

templates (screens, in particular) to define and delineate a new system, rather than arcane

IS modeling tools, means that the language of the discussion between the business users and

IS can shift from a heavy use of IS technical jargon to the language of the business itself.

In addition to the factors discussed in the previous section, this contributes to the increased

sense of user ownership and control.2

There are some potential issues associated with the use of templates. One of the

benefits cited by these companies was that the template provided a defined scope at the

start of the project. The question which arises is, is it possible that starting with a pre-

defined scope might be a constraint, potentially limiting creative new ideas and solutions?

27 Designing a system for reuse involves both conceptual and technical aspects. Conceptually, the
functions to be performed by the system must be analyzed for their underlying similarities. (On the surface,
this may appear to be a relatively straightforward task; in fact, it is one which is highly complex.) Given these
similarities, the functions must then be defined generically so as to apply to as many instances as possible.
There are also some technical aspects to designing a system to be reused. Briefly, it should be modular,
streamlined, and engineered to leverage the commonalities across its composite functions. For a discussion
of this see, for example, Hess, 1990.

28 Of course, it is important to recognize that this shift in power and control may not be perceived by
all members of an organization as positive, and that this perception must be managed carefully.

26



It is possible. The safeguard, however, should come before the template is selected. With

the template-based approach, the step prior to deciding upon the template is one in which

the high-level requirements of the new system are defined. It is during this step that

creativity should be unconstrained.

There may also be some situations, especially at this point in time when the template

market is new and supply is somewhat limited, in which it is more appropriate to buy a

traditional package. Western believes, for example, that while a template was appropriate

for a system of this size, complexity, and criticality, a package solution would be more

economically appropriate for certain other types of systems which require less customization

(e.g., general ledger). Another organization which did install a general ledger template

disagreed with this, however, citing all the advantages of templates previously discussed.

Finally, there are some issues around the use of CASE. A template is a system built

in a CASE tool. In order to take full advantage of this fact, a company that purchases a

template and wants to customize it should be making changes to the models, not to the code

itself. This means that the company must have -- and know how to use -- not only the

template but also the underlying CASE tool. For some companies, this can be a very useful

means by which to introduce the tool. For other companies it may not be as useful,

particularly if a company has already chosen another tool.2 9 In any case, the decision to

purchase a template implies a decision regarding CASE which should be made in the

context of the specific business and development environment. This can have major

implications (Rockart and Hofman, 1992).

Clearly, these changes in skills, roles, and responsibilities -- resulting both from the

use of the template-based approach as well as the use of the CASE tools with which the

templates are built and maintained -- must be managed, and imply a need for training and

29 That is, the goal is not to have multiple CASE tools which are redundant in functionality, or tools
which do not overlap in functionality but which also are not connected to each other. This would only
increase complexity. This will become less of an issue when and if cross-CASE bridges become available.

27

_� 1�112111�-11�-a�-1 -.-11 ----·111--r..I---^-� 1-.-�1 I-1_-.�..--··-·(--.--111^_�1�-�.�_. .--.



education. The cost of this, both in terms of time and money, is likely to be high. And, for

many companies, a successful change will require changes in reward and incentive systems.

Perhaps most importantly, the type of change described here requires leadership and

active involvement on the part of management in order to be successful. For example, at

Western, senior management set forth a clear mandate of "no change without good reason."

At PubCo, the driving factor in the pursuit of templates as a key component of the systems

delivery strategy was the belief on the part of senior management that there was

commonality in business processes across organizational divisions, and that this strategy

would allow them to leverage this commonality to be more competitive.

It is clear, from many of our discussions, that there is major interest in and potential

demand for templates. On the supply side, the template market continues to evolve. In

addition to the CASE tool vendors and sftware suppliers mentioned previously, vendors

of templates are beginning to emerge, and the software market is undergoing

transformation.

28



REFERENCES

Caldiera, G. and Basili, V., "Identifying and Qualifying Reusable Software Components," IEEE Computer,
February 1991, pp. 61-70.

Chen, M. and Norman, R., "Integrated Computer-Aided Software Engineering (CASE): Adoption,
Implementation, and Impacts," IEEE, 0073-1129, 1992, pp. 362-372.

CSC/Index, "Critical Issues of Information Systems Management for 1993," The Sixth Annual Survey of IS
Management Issues, 1992.

Cusumano, M., "The 'Factory' Approach to Large-Scale Software Development: Implications for Strategy,
Technology, and Structure," MIT Sloan School of Management Working Paper #1885-87, September
1987.

Davidson, L., "An Exploratory Study of Joint Application Design (JAD) in Information Systems Delivery,"
MIT Sloan School of Management, Center for Information Systems Research, Working Paper No.
258, Cambridge, MA, June 1993.

Fichman, R. and Kemerer, C., "Adoption of Software Engineering Process Innovations: The Case of Object
Orientation," Sloan Management Review, Vol. 34, No. 2, Winter 1993, pp. 7-22.

Fichman, R. and Kemerer, C., "Object-oriented and Conventional Analysis and Design Methodologies:
Comparison and Critique," IEEE Computer, Vol. 25, No. 10, October 1992, pp. 22-39.

Flynn, S., "Information Technology Budgets," Gartner Group, 1993, Conference Presentation.

Friesen, M. and Orlikowski, W., "Assimilating Case Tools in Organizations: An Empirical Study of the
Process and Context of CASE Tools," MIT Sloan School of Management, Center for Information
Systems Research, Working Paper No. 199, Cambridge, MA, October, 1989.

Hess, M., "Information Systems Design in Industrial Practice," in Concise Encyclopedia of Information
Processing in Systems and Organizations, ed. A.P. Sage, Pergamon Press, May 1990, pp. 1-12.

Karimi, J., "An Asset-based Systems Development Approach to Software Reusability," MIS Quarterly, Vol. 14,
No. 2, June 1990, pp. 179-198.

Kemerer, C., "Learning Curve Models for Integrated CASE Tool Management," MIT Sloan School of
Management, Center for Information Systems Research, Working Paper No. 231, Cambridge, MA,
November, 1991.

Maglitta, J., "Squeeze Play," ComputerWorld, April 19, 1993, pp. 86-91.

Maglitta, J. and Nykamp, S., "Software Speeder-uppers," ComputerWorld, August 26, 1991, pp. 51-53.

McPartlin, J., "Not the Best of Times," Information Week, June 21, 1993, p. 74.

Orlikowski, W., "CASE Tools as Organizational Change: Investigating Incremental and Radical Changes in
Systems Development," MIT Sloan School of Management, Center for Information Systems Research,
Working Paper No. 255, Cambridge, MA, May, 1993, forthcoming in MIS Quarterly.

29

____�_____�_��1 .�.1_----__1__11·____ ___._



Ricciuti, M., "Build Custom Apps at Packaged Prices," Datamation, June 1, 1993, pp. 71-72.

Rockart, J. and Hofman, J., "The Emerging Use of Application Templates," MIT Sloan School of
Management, Center for Information Systems Research, Working Paper No. 250, Cambridge, MA,
December 1992.

30

~ 1~- 1 1__ _


