Racing to Invest?
The Dynamics of Competition in Ethical Drug Discovery.

Iain Cockburn, U.B.C.
Rebecca Henderson, M.I.T.

WP # 3710-94 June 1994

Forthcoming, Journal of Economics and Management Strategy,
Fall 1994, Vol.3., No. 3.

This research was funded by the Sloan Foundation and by four pharmaceutical
companies. Their support is gratefully acknowledged. We would also like to express our
appreciation to all of those firms that contributed data to the study, and to Allan Afuah and
Andrew Hoffman, who provided exceptional research assistance. We thank the editor and
two particularly helpful referees, together with participants in seminars at the NBER, the
UBC Summer IO Conference, Stanford, MIT, UCLA and Berkeley for helpful comments and
suggestions. The conclusions and opinions expressed in this paper are, however, our own,
and any errors or omissions remain entirely our responsibility.



Abstract

This paper draws on detailed internal data to explore the usefulness of the modern game theoretic
literature as a source of insight into the dynamics of competition in pharmaceutical research. We find that
research investment is only weakly correlated across firms once common responses to exogenous shocks
are accounted for, and that rivals’ research results are positively correlated with own productivity. While
we cannot reject the hypothesis that investment behavior in the industry is driven by strategic
considerations, these results suggest that the more extreme forms of rent dissipation identified in the

literature are probably poor characterizations of the dynamics of competition in the industry.



1. Introduction

What drives a firm’s decision to invest in research and development? Traditional industrial
organization theory focussed on market structure, demand, technological opportunity, and
appropriability as determinants of the intensity and direction of R&D investment, and several
empirical studies have demonstrated the fruitfulness of this approach (Reiss and Levin, 1988). More
recent theoretical work has stressed strategic interaction among rivals as a primary determinant of
investment decisions, and this approach has spawned a wealth of interesting and elegant theoretical
models that have generated some powerful insights into the dynamics of competition in R&D.
Reinganum (1989) provides an excellent summary of this literature. For more recent work, see for
example Dasgupta and Maskin (1987), Dixit (1988), D’ Aspremont and Jacquemin (1988, 1990),
Fraja, (1993), and Suzumura (1992).

Despite the potential power of the game theoretic literature as a source of insight into the
dynamics of competition, surprisingly little empirical research has attempted to build on its insights,
and our understanding of the forces that drive R&D investment decisions in practice remains sketchy:
Khanna (1993), Lerner (1991), Meron and Caves (1991) and Scherer (1992) are notable exceptions.
One possible reason for this paucity of empirical work may be a lack of suitably detailed data.
Whereas the early literature took the industry as its primary unit of analysis, more recent work
focuses attention on the individual research project, or on the single-project firm, as the key
competitive arena. The modern game theoretic literature says little about the determinants of
aggregate investment in R&D at the level of the typical multi-product multi-project firm, and firm
level data cannot be used to test its predictions without the use of some heroic assumptions.

In this paper we use unusually detailed data on research investments and outcomes gathered at
the level of individual research programs conducted within ten pharmaceutical firms over a period of
more than seventeen years to explore the usefulness of the modern literature as a source of insight
into the dynamics of competition in ethical drug discovery. These highly detailed data are well-suited
for examining the decision to invest in research, since they allow us to draw direct and meaningful
comparisons between investment decisions made by different firms. The pharmaceutical industry also
provides a particularly intriguing setting for this research, since competition in the industry has often
been held up as a prime example of the types of strategic racing behavior predicted by the literature.
The industry is a relatively "pure play" in technological competition, and firms invest heavily in
research and development since successful research is a key contributor to commercial success.

Moreover since most firms invest in a wide range of technologies, we are able to compare



competition across multiple "markets."

We begin the paper with a review of some of the modern literature on strategic competition in
R&D. We argue that in general these models are very difficult to test. Investment behavior is
critically dependent on a wide range of factors, including the nature of the payoff function, the
spillover regime, the information structure of the game and the extent and nature of asymmetries
between players, all of which are rather difficult to capture empirically. Moreover few of the models
in the existing literature can be easily nested.

As a first step in the empirical analysis, we therefore focus on simple correlations in research
investment and output across firms at the program level. We examine ethical drug discovery --
research intended to identify promising new drugs -- rather than drug development, the application of
these discoveries in the clinic, since we believe that there may be important differences in the nature
of competition in the two stages. We find investment levels are very weakly correlated across firms.
This correlation is not robust to the inclusion of measures of technological opportunity, and is
consistent with the belief that levels of investment represent equilibrium responses to common shocks
in demand and opportunity. Firm effects are quite significant, and investment levels are very highly
autocorrelated. We interpret this as consistent with the hypothesis that adjustment costs and
unobserved firm heterogeneities play a significant role in determining investment patterns.

To capture out of equilibrium behavior, we measure changes in investment levels using both
first differences and a measure of "news" in investment. In contrast to previous studies that have
explored correlations in first differences of investment across firms, we find no evidence of
correlation in either first differences or "news" in investment across firms at the program level. We
also find no evidence of correlation in the residuals of our best fitting investment equations across
firms. These results suggest that simple reaction function or "tit-for-tat" models are not useful
descriptions of competition in pharmaceutical research.

We then turn to an exploration of possible correlation in outputs across firms. We find, for
example, that the assumption that competition is for a single "prize" is probably not a useful one in
this context. Our quantitative results suggest that research outputs are significantly positively
correlated across firms, and that this correlation is robust to the inclusion of a number of measures of
technical opportunity. Our qualitative work confirms that competing projects may well be
complementary. The industry is characterized by substantial spillovers of knowledge and similar
research can lead to related but significantly different outcomes.

These results have implications for both our understanding of competition and for public



policy. Our finding that the modern game theoretic literature is of only limited usefulness as an
empirical guide points to the need not only to model R&D as a race with multiple prizes, but also to
develop theories that incorporate richer models of adjustment costs and firm heterogeneity and to
collect data that is comprehensive and detailed enough to enable one to test them.

Our results also throw new light on the relationship between investment behavior and social
welfare. Many of the models that focus on strategic interaction raise the concern that free entry into
R&D competition will result in overinvestment relative to both the private or social optima.
Intuitively, these results are driven by the assumption that in deciding to invest research, firms
consider only their own marginal return, and do not take into account the externality that they impose
on other firms in reducing their chances of success. In the extreme, these models suggest that entry
will occur until all expected profits are dissipated (Dasgupta and Stiglitz, 1980b; Loury, 1979 and
Reinganum 1982, 1989). While we cannot say anything definitive about the relationship between the
level of private investment in research and social welfare in the pharmaceutical industry, our results
suggest that the more extreme forms of rent dissipation identified in the literature are rather poor
characterizations of the reality of competition in pharmaceuticals.

The paper begins with a review of the literature. Section 3 outlines our data, and Section 4
describes the history of the discovery of the ACE inhibitors as a source of qualitative insight into the
nature of R&D competition in the industry. Section S presents our quantitative results, and the paper

closes with a discussion of their significance and of possible directions for further work.

2. Literature Review

A large and lively theoretical tradition that traces its roots back to Schumpeter (1934), (1950)
and Arrow (1962) has explored the relationship between market structure, strategic interaction, and
R&D investment, and has identified a number of conditions under which competitive markets may
over-invest in R&D. Baldwin and Scott (1987) and Reinganum (1989) provide excellent surveys of a
- voluminous though disappointingly inconclusive literature.

Recent work has modelled R&D investment largely as games of timing. Two broad classes of
model can be distinguished. The first, and most stark, are deterministic "auction" models (Scherer
(1967), Dasgupta and Stiglitz (1980a,b)). In these models, if firm i spends x; on research, it will
complete the invention at date 7; = T(x,). Assume that II, is the value of "winning” and that every
other firm receives no return on its investment. Then if all firms have the same discount rate, r, a

Nash equilibrium for the game involves two or more firms bidding x°, where x" is the largest value of
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x such that ILe™™® - x = 0. If the "winner" can appropriate all of the social returns to the invention,
or if I, = II, then all potential social returns from the invention will be dissipated through
"overbidding."

Notice that within this framework there is no "racing" per se, since at equilibrium only one
firm will actually invest x*. However this class of models is unlikely to be a useful source of insight
into the dynamics of competition in ethical drug discovery since it relies on a grossly inadequate
characterization of the research technology. Pharmaceutical research is subject to enormous
uncertainties (only 23% of all compounds entering clinical trials are eventually approved, and of the
thousands of candidate compounds identified in the discovery phase, only a very small percentage
enter the clinic (DiMasi et al., 1991), and thus the deterministic R&D function fundamental to these
models is an unsatisfactory characterization of the dynamics of research in the induStry.

A second class of stochastic racing models which may be more appropriate for thinking about
exploratory research allow the date of success to be stochastically related to the firm’s level of R&D
investment. These models yield qualitatively the same results as the deterministic auction model
(Harris and Vickers, 1987; Lee and Wilde, 1980; Loury, 1979; Reinganum 1982, 1989), but also rely
on strong assumptions about the information available to the players and the stochastic nature of
invention. In these models uncertainty leads to multiple entry, so that many firms invest in research.
In the absence of effective barriers to entry or of collusion between firms in the industry, entry occurs
until the expected returns from innovation are driven to zero, and all available private returns are
dissipated through excessive entry.

These models capture some important aspects of competition in pharmaceuticals. This is an
industry which is driven to a great extent by non-price competition in R&D, and one of the few in
which patents provide a high degree of appropriability. Regulatory approvals or patent grants for new
compounds represent particularly well-defined "prizes” in the R&D game, and the first and second
firms to discover drugs usually capture the lion’s share of the market. Since many major
breakthroughs are triggered by advances in fundamental science and since this knowledge is freely
available, it is not unreasonable to believe that firms start each "race” in a symmetric position.

In the simplest version of one model representative of this tradition, n firms compete to
perfect innovations from a common pool of undiscovered inventions, receiving the "leader’s" payoff
P, if they are first to succeed, and the "follower’s" payoff Py otherwise (Reinganum, 1982). Two
important features which add to the realism of this model are that rivals are free to change their level

of investment over time and in response to changes in the state variables, and that the probability of



success is a function of accumulated knowledge. Given that knowledge accumulates according to the

expression:

dz;
— ~(6,20) 1)

where z,(?) is firm s knowledge stock at t, and u,(t,z) is firm i’s rate of knowledge acquisition at
(t,z), and assuming that z;(0)=0, and that the probability of success given a knowledge stock of z or
less distributed is exponentially so that:

F)=1-¢C* 2)

then it is possible to explicitly compute each firm’s payoff for any given strategy and aggregate rival
hazard rate, and with some restrictions, to derive feedback Nash equilibrium strategies for each firm
as functions of payoffs, elapsed time, and the number of players. For our purposes, the most
significant propositions arising from these models are that:

(1) provided P, > > Py, increases in rivalry have a positive impact on own investment
and

(2) own success probability is negatively related to rivals’ aggregate hazard of success.

However a disappointingly comprehensive set of observed outcomes are consistent with one or
more of these stochastic racing models, particularly when we recognize incentives to drop out of, or
not to enter, races once a rival has established a big enough lead. Rival firms’ optimizing responses to
each other’s moves could be to increase investment, decrease investment, or do nothing, depending on
the structure of the "true" behavioral model, the determination of payoffs, the distribution of success
probabilities, the nature of costs and so on (Harris and Vickers, 1987; Scherer, 1967, 1992).

Discriminating empirically amongst these models is a daunting prospect, since theoretical
models that attempt to account for the interactions between all possible factors simultaneously quickly
become intractable. Equilibrium strategies for R&D investment can be computed, but signing the
comparative statics results for, for example, the effect of an increase in rivalry upon equilibrium
investment levels is difficult without knowing a great deal about payoffs in the product market and the
nature of the asymmetries among players. Conclusions from these types of models are also rather
fragile: small changes in the timing of moves, the information structure of the game or the treatment
of spillovers can easily reverse or weaken any given theoretical result.

Notice, moreover, that these models are essentially models of industry equilibrium: firms
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formulate R&D strategies based on anticipations of rival investment and underlying demand and cost
parameters. With perfect information, and absent any shocks to underlying demand and cost
conditions, firms will not deviate from their equilibrium strategies. Investment will only be correlated
across competitors as a common response to exogenous shocks. The simple tit-for-tat responses
suggested by the anecdotal literature require a much more complicated framework incorporating, for
example, heterogeneity of beliefs or private information.

Prior empirical research in this area has used firm level investment data to test for reactions
between "leaders" and "followers" in an industry. Grabowski and Baxter (1973), for example, found
that in the chemical industry, the two largest firms responded quickly to changes in each other’s R&D
policies, while rivalry amongst the smaller firms in the industry was less clear cut. Meron and Caves
(1991) found that in a sample of 28 U.S. manufacturing industries, leaders and followers reacted
positively to each others’ increases in R&D expenditures, while fringe firms’ investment decreased
with their larger rival’s investment and Scherer (1992) found that firms with greater domestic sales in
more concentrated U.S. markets were likely to react much more aggressively to increasing import
competition than smaller firms or firms in less concentrated markets.

In this paper we look for evidence of racing behavior using disaggregated data that on both
investment and output at the research project or program level. This data set is described in the next
section. We use the data to explore both correlation in investment levels and correlation in changes in
investment levels across firms at the project level. We interpret the results of the first set of
correlations as a test of the hypothesis that equilibrium strategies depend on underlying demand and
cost parameters, rather than on rival’s investment levels, while we interpret the results of the second
as a test of the presence of simple minded reaction function or tit-for-tat strategies.

We also use our data to explore the validity of the assumptions on which many of the racing
models rely. Much of the literature assumes, for example, that firms race for a single prize, so that
payoffs to investment have a "winner take all" quality and outputs will be negatively correlated across
firms. To the degree that investments in research lay the groundwork for several, related
innovations, or that success in one area increases the market for all innovation in that area, payoffs
across firms may be positively correlated.

The strong implication of many of these models that free entry into research is unambiguously
welfare destroying is similarly subject to a number of caveats. Recent research has shown that it rests
on at least five key assumptions: that there is total appropriability of consumer surplus and no

spillover of knowledge between firms, that competing projects are perfect substitutes for each other,



that there are no efficiency gains to multi firm competition, and that entry will occur until marginal
private return has been driven to zero. Models of competition in which these assumptions are relaxed
yield outcomes that are fundamentally indeterminate: competitive industries may invest too much, too
little or just about the right amount in research.

For example if firms pursue identical research projects, and if there is no transfer of
information between firms, the entry of an additional firm into the industry unambiguously destroys
social welfare. But if there are substantial spillovers of knowledge between firms, the entry of
additional firms will increase the marginal productivity of existing players, reducing the negative
externalities that lead to over investment. Spence (1984) shows that the effect on-competition is
difficult to predict, but in general, under plausible assumptions, the presence of spillovers will reduce
R&D investments below their non spillover levels. This conclusion has been confirmed by later work
(D’Aspremont and Jacquemin, 1988, 1990; Fraja, 1993 and Suzumura, 1992), which suggests that if
the firms in an industry cooperate in setting their research investments, then the presence of spillovers
may lead the industry to invest approximately the welfare maximizing amount. Similarly if competing
projects are better characterized as complements to each other - if, for example, any one of several
approaches to a desired end is possible in theory but there is great uncertainty as to which is likely to
prove successful - then the entry of additional firms may enhance welfare as entry increases the odds
that a discovery will be made (Dasgupta and Maskin, 1987).

Here we explore the validity of the assumptions on which the theoretical models rest using a
combination of qualitative and quantitative data, focusing particularly on the degree to which
competing projects are better characterized as substitutes or complements and on whether outputs are

positively or negatively correlated across firms.

3. Sources and Construction of the Data Set

In order to explore these issues we rely on both qualitative and quantitative data drawn from a
larger study of research productivity in the pharmaceutical industry. Data were obtained from public
sources and from ten major pharmaceutical firms. Although for reasons of confidentiality we cannot
‘describe the overall size or nature of the firms, we can say that they cover the range of major
R&D-performing pharmaceutical manufacturers, and that they include both American and European
manufacturers. In aggregate, the firms in our sample account for approximately 25-30% of worldwide

R&D and sales, and we believe that they are not markedly unrepresentative of the industry in terms
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of size, or of technical and commercial performance.

Pharmaceutical technology is enormously complex. Thus we tried both to develop a general
understanding of the history of research and development in the industry and to focus in detail on the
scientific and technical history of the development of cardiovascular drugs.! We made extensive use
of secondary sources such as the national press, reference texts, published articles, academic
textbooks, and reports by both consultants and the Office of Technology Assessment. We combined
this data with a program of extensive field interviews within the ten firms that make up our sample.
Appendix One summarizes our qualitative research strategy.

The quantitative study draws upon data about spending and output at the research program
level obtained from the internal records of each of the ten pharmaceutical firms. The choice of the
“research program” as our fundamental unit of observation is important. A "program" is a level of
aggregation of the data somewhere between individual research projects and the level of therapeutic
classes, as in, for example "Hypertension" as opposed to "Cardiovascular therapy" or "Compound
12345". We believe this is the most appropriate way of organizing the raw data provided to us by
participating firms -- although some detail about individual projects is lost for some of our firms, it
allows us to be consistent across firms, and it corresponds tq the level of analysis at which firms
organize their internal data and make strategic budgeting decisions.

For each observation we have data on both inputs and outputs to the research process. Our
primary measure of input is research spending on discovery, and our measures of output include
patents, INDs, NDAs, new drug introductions, sales and market share. After carefully cleaning and
matching these data, we were left with an unbalanced panel of
5320 observations, indexed by firm, research program, and year.? The internal firm data are
complemented by a variety of measures of scientific opportunity and pharmaceutical demand derived
from public sources. Since our measure of scientific opportunity is only available after 1975, after
matching to the research data the number of usable observations is reduced to 2707. Table (1)
presents descriptive statistics for this working sample drawn from our database. Full details of

variable construction are given in Appendix (2).

4. A Qualitative Analysis: Racing in Pharmaceutical Research?
As a first step in the analysis, we exploit the qualitative data to explore the nature of
competition in ethical drug discovery. At first glance, competition in the pharmaceutical industry

seems to be a text book example of "racing" behavior. Consider, for example, the case of captopril



and the discovery of the ACE inhibitors.

In 1977 Cushman and Ondetti, two scientists working at the privately funded Squibb institute,
announced that they had synthesized an orally active inhibitor of the angiotensin-converting enzyme
(Ondetti, Rubin, and Cushman, 1977). The compound, subsequently named captopril, proved to be
extraordinarily potent in the treatment of hypertension and triggered an explosion of interest in the
medical and scientific communities (Laragh 1984, Gilman et al., 1985).° By 1992, at least twelve
other ACE inhibitors had been patented, all of them chemically related to the original molecule, and
ACE inhibitors accounted for nearly 30% of antihypertensive drugs sales.* Figure (1) outlines this
history.

Insert Figure (1) about here

At first glance this would seem to be a clear case of "racing” -- head to head competition
between firms racing to be first using mere "molecular manipulation,” -- although the assumption that
there is only one "prize" to the race is clearly violated. The identifiable winners in the race, Squibb
and Merck, currently market compounds which together comprise over 80% of the market for ACE
inhibitors, and the other ten patented compounds could be seen as evidence of socially wasteful over-
investment by the losers. However a deeper exploration of the steps that led up to captopril’s
discovery calls into question some of the fundamental assumptions of many stochastic racing models.

Cushman and Ondetti’s synthesis of captopril drew on many years of prior research in both
the public and the private sectors. ACE inhibitors lower blood pressure by blocking a critical path in
the renin angiotensive system (see Figure (2), derived from Julian, 1988). They are, literally,
Angiotensin II converting enzyme inhibitors.

The idea that blocking the renin system might reduce high blood pressure originated with the
work of Goldblatt and his colleagues (Goldblatt, Lynch and Hanzal, 1934). However serious interest
in anti-renin system therapy as a potential treatment for hypertension only began with the publicly
funded work of Laragh (1972), Gross (1968) and Erdos (1970), who first clarified the structure of the

renin angiotensive system and its role in the control of blood pressure.

Insert Figure (2) about here

Although this research laid the groundwork for the subsequent discovery of the ACE
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Figure (1) Case study: ACE Inhibitors and hypertension

1934-70:

1965:

1971:

1977:

public sector researchers identify role of renin angiotensive system in controlling
blood pressure

pit-viper venom found to contain large numbers of compounds affecting heart
muscle, vascular dilation, blood clotting etc

Squibb publishes description of compound inhibiting production of Angiotensin
Converting Enzyme, reduces blood pressure in rats, but research community
skeptical

Squibb patents captopril: orally active ACE inhibitor

Flurry of work on related compounds, results in

Generic Firm Date of first Date of first U.S.
Name Patent Patent
Captopril Squibb 1977 1977
Enalapril Merck 1980 1980
Lisinopril Merck 1980 1980
Alacepril Dainippon 1980 1980
Perindopril French, 1982 1982
public sector
Quinapril Warner Lambert 1982 1982
Fosinopril Squibb 1982 1982
Moveltipril Chugai 1982 1982
Delapril Takeda 1982 1983
Ramipril Hoechst 1983 1986
Cilazapril Hoffman La 1983 1985
Roche
Benazepril Ciba Geigy ? ?
1990 Captopril and Enalapril hold 82% of the U.S. market.




I Beta Blockers block renin secretion '
Figure (2)
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inhibitors, a great deal of further work was required to translate the fundamental scientific insight into
therapeutically useful compounds. There was, initially, considerable skepticism that interference with
the renin angiotensive system would reduce blood pressure, since the physiological and biochemical
mechanisms that underlie hypertension are extraordinarily complex and interdependent. Many in the
medical and scientific community believed that any reduction in blood pressure achieved by blocking
the action of the renin angiotensin system would be automatically compensated by increased activity
in other blood pressure regulating mechanisms. Even amongst those focusing on the system, there was
disagreement about the most appropriate place in which to disrupt the chain. Some researchers
explored the activity of propranolol and the other beta blockers, which inhibit renin secretion (Buhler,
et al., 1972), while others investigated the properties of Saralasin, a compound that interferes with the
uptake of angiotensin II (Burner et. al., 1974). This work was undertaken by researchers working in
both the public sector and in commercial firms (Pals et al., 1971).

Interest in inhibitors of the angiotensin II converting enzyme was aroused by the 1967
publication of results showing that a peptide isolated from the venom of a Brazilian snake blocked
conversion of angiotensin I to angiotensin IT ((Hodge et al., 1967). Although this peptide was
synthesized by Ondetti and his colleagues (Ordetti et al., 1971), there continued to be widespread
doubt as to its therapeutic potential, and despite a sequence of papers exploring its role in the
treatment of hypertension (Gavras et al., 1974; Case et al., 1976, 1977), there was little general
interest in exploiting the discovery commercially. It was not until Cushman and Ondetti published
their achievement in synthesizing an orally active enzyme inhibitor that research in the field took on
something of the characteristics of the race, with several pharmaceutical companies attempting to
synthesize compounds with similar properties (Cushman et. al., 1977). Even at this late stage,
research in the field continued to be characterized by high publication rates and the relatively free
flow of information.

Thus the discovery of the ACE inhibitors rested on over twenty years of wide ranging and
often apparently unproductive effort characterized by the extensive exchange of knowledge across
firms and between the private and public sectors. It was only in the last stage of the work that the
competitive dynamics took on the characteristics of a "race," and even then the description is
misleading. On the one hand, it does not recognize that the proliferation of ACE inhibitors may have
significant therapeutic benefits (Laragh, 1984). Enalapril, for example, appears to have a lower
incidence of side effects such as rash and disturbance of taste in some patient groups (Goodman et al.,

1985). Unlike captopril, enalapril is a "prodrug” which is not itself highly active, but must be
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converted in the body to the active principle, enalaprilate. The resulting differences in the rate at
which enalapril is metabolized and excreted compared to captopril imply different dosing regimes,
and significant benefits to some patients.

On the other hand, a characterization of this research as a "race” neglects the fact that many
of the companies that invested in ACE inhibitor research continued to engage in the same kind of
fundamental research and open exchange of information that characterized Squibb’s program (Patchett
et. al., 1980). For example, Merck, the firm that introduced enalapril, continued to explore
alternative hypertensive therapies, and in 1991 formed a joint venture with Du Pont to exploit the
latter’s discovery of losartan, an angiotensin II receptor antagonist. Similarly all of the firms in our
sample continue to publish actively in the field at rates exceeding those which accompanied the initial
burst of scientific interest.

This pattern, which we believe to be relatively typical of the industry,’ is confirmed by the
accounts of those responsible for setting research strategy. In general, the managers whom we
interviewed claimed that in planning their investment programs they focused on three criteria: the size
of the unmet medical need, the scientific potential of a field, and the idiosyncratic capabilities of their
researchers. Some also mentioned the views of their marketing departments and the need to service an
existing franchise as critical factors in their decisions. But when pressed on the role of competitive
investment in their criteria, the managers that we interviewed claimed that they tried to avoid head to
head competition, or "racing” as inherently unproductive.

While the qualitative evidence is suggestive, ultimately the degree to which competition in
ethical drug discovery is well characterized as a rent-dissipating race is an empirical question, and we

thus turn to the quantitative analysis.

Specification of the Econometric Model

Ideally, we would like to proceed by constructing a full structural model of research
investment. However although our data set is significantly more comprehensive and disaggregated
than has been available to previous researchers, it is still neither sufficiently detailed nor complete
enough to allow us to do this with any confidence. We would need to assume a structure for the
payoff function, and to model accurately the relative position of firms over time, the magnitude of
spillovers and the nature of firm asymmetries, as well as the evolution of the information structure of
the game and the beliefs of each player. Quite apart from the usual concerns about functional form,

whether or not we have the "true” model and so on, this places very serious demands on the data.
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Some of these variables are intrinsically difficult to measure, and in other cases we are limited by the
availability of data. One of the most serious problems facing us is modelling payoffs: in the
pharmaceutical industry, potential sales of a newly discovered compound are very difficult to assess
ex ante, and are only realized after long delays (five years or more) and the resolution of great
uncertainty about regulatory approvals and the efficacy of the drug in clinical use. Interesting research
is under way modelling demand and competition in the final product market (Suslow, 1992; Berndt,
1993), but we still know relatively little about the fundamental factors which determine the sales of
new drugs or the dynamics of how new products displace existing drugs. The problem is particularly
acute in the case of markets such as drug therapies for Alzheimer’s disease where there is clearly
great unmet medical need, but there are very few existing products and thus very limited information
about potential demand, price elasticities etc. We attempted to capture some aspects of demand at the
level of therapeutic classes by using data on firm and industry sales revenues, numbers of physicians
practicing in relevant specialties etc, but these variables are not very satisfactory. A further difficulty
is that a test of a complete structural model would require a data set that included information about
every player in each "race", and since we were only able to obtain data from a subsample of the
industry, our analysis would be subject to serious problems of selection bias. As a first step,

therefore, we rely on reduced form analysis to explore some of the issues discussed above.

5.1 Investment Equation

We begin by looking for correlations in the level of research investments across competitors
among the firms in our sample, using the research program as our primary unit of analysis and
controlling for other exogenous factors which we think are driving investment decisions.

Our "base case" model is a reduced form regression of each firm’s own investment in
discovery in each period in each program on internal, firm-specific variables such as lagged own
investment and prior success in the program, as well as a number of measures of demand and
technical opportunity intended to capture the dynamics that our qualitative research suggests are
important to the determination of investment. In order to test for positively correlated investment
across competitors we then introduce suitably lagged measures of competitive investment in the area.

Thus we use the specification:
R,=a+B R,  +B,T,+p,D,+B,C, ¢, &)

where T is a vector of variables capturing shocks to technological opportunity, D is a vector of
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variables capturing demand and perceived medical need, and C is a vector of measures of
competitors’ investment. A test of the hypothesis that investments are correlated across firms is then
simply whether 8, > 0. Since we only have data for a sample of firms, and not for the industry, our
competitor variables are not entirely satisfactory. But we believe that our sample is not markedly
unrepresentative of the industry as a whole so that they are probably a reasonable proportionate
approximation to industry investment. Timing issues are clearly important here, and we addressed this
empirically by trying a variety of models in which we include contemporaneous competitors’
investment, the first and second lags, and a stock variable which can be thought of a geometric
distributed lag on subsequent lags. In the event our results are not significantly affected. Inclusion of
both contemporaneous investment and the first or second lags reduces the significance of all three, but
introduced alone neither is significantly more significant than the other.

Our proxies for demand do not work very well, and are essentially collinear with therapeutic
class dummies, so in the results reported here we attempt to capture demand as well as other
unmeasured effects by including firm and therapeutic class dummies and a time trend. We measure
scientific opportunity using counts of "important” scientific papers in the field, where importance is
defined by the fact that they were included in IST’s list of the 100 most highly cited scientific papers
in a given year. In most of the regressions we also include the stock of own discovery spending
(calculated using the perpetual inventory formula with an assumed depreciation rate of 20%) to proxy
for accumulated knowledge capital, and own sales in the program to try to éapture some aspects of
demand.®

There are a number of important econometric issues. Firstly, since our dependent variable is
truncated at zero -- many firms choose to invest nothing in many areas, and might indeed prefer to be
disinvesting faster than the depreciation rate of knowledge capital -- there is a potential for bias in the
OLS estimates, and we therefore also estimate the equations where appropriate using Tobit analysis
with appropriate corrections for heteroskedasticity in the error terms.” Secondly, this is a panel data
set, and to the extent that there are significant unobserved program effects in the data, using a lagged
dependent variable will induce bias in the parameter estimates (Anderson and Hsiao, 1982). This is
not a serious problem here, since the bias is inversely proportional to the number of observations per
program, which is fairly large here -- on average we observe each program for just over 17 years --
and indeed the tell-tale changes in parameter estimates moving from fixed effects to random effects
models were not found in exploratory calculations.

Note also that it is unclear that investment levels will necessarily show a strong correlation
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across firms even if racing behavior is an important factor. Recall that at equilibrium, investment
levels should only be correlated across firms in the event of common responses to unobserved shocks
in demand or in scientific opportunity. To the extent that realized investment levels reflect these
equilibrium responses and rational beliefs about competitors, including competitive investment in the
regression does not introduce any additional information. Furthermore, our qualitative work suggests
that adjustment costs are very significant, and that in the short term firms are largely constrained to
adjust spending at the margin. Building research capability requires sustained investments over time in
both people and equipment, and organizational issues also limit the speed with which research
resources can be reallocated within the firm. We therefore turn to an examination of the extent to
which own investment reacts to changes in competitors’ investment.

Firstly, following previous research, we explore correlations in first differences across firms.
Secondly we use two different methods to decompose changes in investment into "anticipated” and
"unanticipated" components. In the first place we construct "news" variables, defined as the
difference between this period’s flow of investment, and the amount necessary to maintain the

beginning of year stock given our assumed depreciation rate, or:
News,=R,-0.2 x K, @

where K, is stock of investment in research.
In the second place, we calculate a residual measure of unanticipated investment by taking
residuals from a simple investment equation, summing them over competitors for each therapeutic

class-year observation, and then including this measure in subsequent regressions.

5.2 Output Equation

Our qualitative analysis has already put the usefulness of one of the assumptions fundamental
to much of the theoretical work in this area into doubt. The ACE inhibitor "race” led to the
introduction of several compounds, some of them with significantly different therapeutic profiles from
the first entrant, suggesting that, in this case at least, it may be inappropriate to characterize research
competition as a single "winner take all" race.

We extend and generalize this analysis through a quantitative exploration of the correlation in
research outputs across rivals. Recall that our discussion of the literature suggested that the entry of
an additional firm into the research "race" is unambiguously welfare destroying only under a number

of quite strong assumptions, including the belief that competing projects are substitutes rather than
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complements and that there are no substantial spillovers of knowledge across firms. Our goal in this
analysis is to explore the usefulness of these assumptions in the context of pharmaceutical research.
In previous work (Henderson and Cockburn, 1993) we estimated a number of research output
equations in which competitors’ research outcomes (as captured by "important” patents) were
modelled as a measure of the spillover of knowledge across firms, entering the research production
function with a strong positive coefficient. We interpreted this as evidence that competing research
programs are complements rather than substitutes, and that on the whole competitors’ success in a
particular field does not represent a net "mining out" of opportunities. We reproduce some of these
results here, with the addition of our measures of scientific opportunity to control for the possibility
that the positive correlation of outputs obtained in previous work reflects common trends in research
productivity induced by common shocks to opportunity. Since the dependent variable is a discrete

count of important patents, we use Poisson regression.®

6. Results

6.1 Are inputs correlated?

Tables (2) to (5) present our results. As a basis for comparison, and to illustrate the pitfalls
inherent in using aggregate data, we begin by exploring the correlation between own and competitive
~ investment using data aggregated to the firm level. These results are shown in Table (2). We regress
own investment on investment in the previous period, stock of investment, firm sales, and "news" in
patents obtained in the area. These regressions are dominated by the lagged dependent variable, which
is highly significant, with a coefficient very close to unity. Firm dummies are jointly significant, but
add little to the explanatory power of the regression.

Models (4) and (5) and (6) include competitors’ investment in the equation. Competitors’
investment in the current period is negatively and significantly correlated with own investment, while
competitors’ investment in the previous period is insignificant. Model (6) regresses the first difference
in own investment on first differences in the explanatory variables, and again competitors’ investment
is negative and significant. Thus at first blush our data appear to suggest that there are strong strategic
effects operating between firms. However given that the theory only tells us about competition at the
level of research projects, and that we cannot control for technological opportunity in the aggregate
analysis it is not clear that this interpretation is warranted.

Tables (3a), (3b), (4), and (5) report results using our disaggregated program level data.

Table (3a) presents OLS estimates of simple investment equations, but these are badly misspecified
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because of the censoring of the dependent variable at zero. Table (3b) presents more satisfactory
results from Tobit analysis. As in the firm level data, investment at the level of the research program
is overwhelmingly driven by investment in the previous period. Firm and therapeutic class dummies
are jointly and individually significant. In Model (4) we control for technological opportunity,
measured as shocks to the underlying science base, as captured by "news" in the publication rate of
papers in any given area appearing on ISI’s annual list of the 100 most significant papers published in
the life sciences. This variable is only marginally significant -- to a large extent the impact of
variation in technological opportunity conditions is also being captured by therapeutic class dummies.
In Table (4) we again include competitors’ investment in the equation. Regressing own investment
onto competitors’ investment alone, as in Model (1), suggests strong correlation between the two
across firms, but once we control for own investment in the last period, this variable becomes
insignificant. Neither controlling for technological opportunity (Model 3), nor using contemporaneous
versus lagged values of competitors’ investment (Model 4), has any significant effect on the estimated
coefficients. The difference between these program level results and those obtained using data
aggregated to the firm level dramatically illustrates the danger of using aggregate, firm level data to
explore the validity of models derived from project level interactions.

Tables (3) and (4) test for the presence of reactions across firms using data in levels. As
argued above, however, expectations about competitive behavior should already be incorporated into
investment strategy where they are reflected in the highly significant and positive coefficient on own
investment in the previous period. In Table (5) we therefore explore the hypothesis that firms react
strategically to (unanticipated) changes in competitive investment. As discussed above, we measure
the unanticipated component of competitors’ investment in three different ways -- models (1) and (2)
estimate the investment equation in first differences, models (3) and (4) use "news" versions of the
key variables (the extent to which the current flow exceeds the amount necessary to maintain the
previous period’s stock unchanged) while model (5) uses residuals from a “first stage" regression of
own investment on to lagged investment, sales, technological opportunity and the usual firm and class
dummies. In the first differences and "news" models we find a weak correlation between changes in
own and competitors’ investment, but this result is not robust to the inclusion of firm and therapeutic
class dummies. The residuals model also shows no evidence of correlated strategies once exogenous
and predetermined variables have been partialled out. We interpret these results as rejecting simple
reaction-function or tit-for-tat models -- they provide little evidence of strategic co-movements in

inputs to the research process across firms above and beyond that induced by common exogenous
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shocks.

6.2 Are outputs correlated?

If firms are "racing” each other in the sense implicit in much of the theoretical literature, then
outputs will be negatively correlated across firms -- since if firms are racing for a single, well defined
goal, the odds that any firm will obtain it necessarily falls as others reach it successfully. Our
qualitative discussion threw doubt on the assumption that pharmaceutical firms compete for a single
goal. Here we explore this issue quantitatively.

In previous work (Henderson and Cockburn, 1993), we showed that at the program level
research outputs, as captured by "important” patents, were positively correlated across firms.
However in this analysis we failed to control for changes in technological opportunity, raising the
possibility that the observed correlations across firms merely reflected exogenous shifts in opportunity
that made it easier to obtain patents in any given class.

Table (6) presents Poisson regression results that include controls for shifts in technological
opportunity. The dependent variable is a count of important patents applied for (and subsequently
granted) in the program area, where we define "important" by the observation that the patent was
granted in two or more major jurisdictions. Model (1) replicates results from our previous work,
using a somewhat larger sample, and illustrates the strongly significant and positive correlation
between own output and the success of rival firm’s efforts.” Models (2) and (3) are estimated from
the smaller 1975-88 sample used in the investment equation. Controlling for shocks to scientific
opportunity (Model (3)) does not attenuate the positive correlation between own and rivals’ research
success’®. Models (4) and (5) repeat the analysis for a much more limited subset of the data that
covers cardiovascular drugs where we were able to use our knowledge of the scientific history of the
field and consultation with experts to identify "Key Events" -- those papers that had a seminal
influence on the field and that represented order of magnitude changes in scientific opportunity.
Again, the inclusion of these measures does not effect the estimated coefficient on competitors’
research output. Far from being a "mining out" of opportunities, competitors’ research appears to be
a complementary activity to own R&D.

These results have several possible interpretations depending on the degree to which firms are
engaged in closely related research projects. At one end of the spectrum, suppose firms investing in
the same area are pursuing very different approaches. In this world positive correlation across outputs

would reflect solely the spillover of knowledge across firms, and it might still be possible to model a
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particular race as having only a single reward. At the other end of the spectrum, suppose that firms
are engaged in almost identical research. Then the finding that outputs are positively correlated would
suggest both that there are significant spillovers of knowledge across programs and that any single
"race" has several "rewards."

Our qualitative work suggests that the reality lies somewhere in between these two extremes:
some firms pursue different goals within the same general therapeutic area while others compete more
directly. In either case publication and the norms of professional disclosure appear to ensure the rapid
exchange of knowledge across the industry. Thus there are some grounds for believing that the entry
of additional firms into the pharmaceutical research "race” is not unambiguously welfare destroying.
Competing projects are probably better described as complements rather than substitutes, and there

may well be significant spillovers of knowledge across firms.

7. Conclusions

Recent advances in the theoretical literature have greatly expanded our understanding of the
forces that shape the competitive dynamics of research and development, but a paucity of sufficiently
detailed empirical data has left these insights relatively untested. In this paper we draw on unusually
detailed qualitative and quantitative internal data provided at the research program level by ten major
pharmaceutical firms to explore the usefulness of the modern literature as a source of insight into the
dynamics of competition in ethical drug discovery.

Our analysis focusses on one particularly compelling aspect of the literature: the suggestion
that in winner take all situations, competition in R&D becomes a Prisoner’s Dilemma, leading to
over-investment in research. Without adequate measures of the social return to innovation, we can say
nothing about whether there is "too much" or "too little" research undertaken by the industry, but our
results do not support the suggestion that investment in drug discovery is driven by the "tit-for-tat" or
simple reaction function models hinted at by the institutional literature.

Two key results were obtained from estimating simple reduced form models of research
investment and output from program level data. Firstly, research investment is only weakly correlated
across firms once common responses to exogenous shocks are accounted for. Secondly, rivals’ results
are positively correlated with own research productivity, which we interpret as evidence for extensive
spillovers rather than the depletion externality implied by winner take all models.

These results are not, of themselves, sufficient to reject the hypothesis that investment

behavior in the industry is driven by strategic considerations. There is, after all, theoretical support
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for a very wide variety of observable behavior as equilibrium outcomes of strategic interaction.
Nonetheless, knowledgeable critics of the industry have charged that "racing" is a useful
characterization of industry dynamics, and our results provide little support for the most obvious form
which we expect to this to take. If "me t00" or responsive investment occurs -- and there is certainly
qualitative evidence that it occurs occasionally -- it appears not to be characteristic of the bulk of
research investment. A better characterization, and one that is consistent with our qualitative research,
is that investment decisions are driven by the heterogeneous capabilities of the firm, by adjustment
costs, and by the evolution of technological opportunity. ‘

Clearly, much additional work needs to be done to determine the nature of R&D competition
in pharmaceuticals. Our results illustrate the potentially fruitful ways in which the modern game
theoretic literature can frame the examination of complex strategic issues. However they also point to
the need to model R&D as a race with multiple prizes, and to develop theories that by incorporating
richer models of adjustment costs and of firm heterogeneity can give insight into the complexity of

competition in particular industries.
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Endnotes

1. Cardiovascular drugs were chosen as the focus of the study for several reasons. Cardiovasculars are
one of the largest and most rapidly growing classes of drugs. Moreover the class includes both
extraordinarily powerful agents whose mechanism of action - the precise biochemical means whereby the
drug has a physiological effect - is well understood (such as the ACE inhibitors) and less effective agents
that have been used for many years and whose precise mechanism of action has not been fully elucidated.
(Drugs such as digitalis and some of the antiarrhythmic agents fall into this category.)

2. With a complete, rectangular, panel we would have 11,400 observations, made up of ten firms, 38
detailed research areas, and up to 30 years of data. In practice not all of these observations are available:
the average time period for which we have complete data is on average just under 20 years per firm, and
not all firms are active in all research areas. Our working sample is drawn from a data base which
currently has 5320 observations, which after lagging variables leaves us with 4930 observations covering
the period 1961-1990.

3. Hypertension is a condition in which the patient’s blood pressure is consistently greater than the normal
level. Although in its early stages it has few symptoms, persistent high blood pressure severely damages
the cardiovascular system, and hypertension, “the silent killer," is probably directly or indirectly
responsible for 10-20% of all deaths (Julian, 1988).

4. Data from IMS America

5. Research in conditions that are less well understood, such as Alzheimer’s or oncology (cancer), is
probably even closer to a collaborative, diverse model, while research in the better understood areas such
as the development of new anti-infective drugs is probably closer to a pure stochastic race.

6. Own sales is also intended to proxy for the firm’s investment in complementary assets such as
specialized marketing capabilities. In interviews, some managers identified "the need to maintain a
franchise" as an important factor in their investment decisions.

7. Assuming that heteroskedasticity is a result of variation in program size, the variance of the residual
was modelled as a function of lagged investment: 6, = ¢ exp(aR;). Including other variables in this
ancillary model had little effect on the results.

8. See Henderson and Cockburn (1993) for a more detailed discussion of the specification and estimation
of this equation, where similar results were obtained using Negative Binomial and Quasi-likelihood
estimation.

9. Using competitors’ discovery spending in place of their patents gives very similar results: competitors’
investment has a positive and significant impact on own research productivity.

10. An alternative measure of opportunity "cites to key papers" performed very similarly.
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Appendix One: Qualitative Research Strategy

. Detailed study of secondary sources

. Field interviews, 10 large pharmaceutical firms. Interviews were semi structured in that each respondent had been
provided with a list of key questions before the interview, and each interview lasted from one to three hours. These
data were supplemented with interviews with a number of industry experts, including senior academics in the field. In
all over one hundred individuals were interviewed.

Company 1 2 3 4 5 6 7 8 9 10
General overview

X X X X X X X X X X
Senior cardiovascular
managers X X X X X X X X X
Comprehensive X X X X X
interviews
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Appendix Two: Sources and Construction of Quantitative Data

The data set used in this study is based on detailed data on R&D inputs and outputs at the research program (narrow
therapeutic class) level for ten ethical pharmaceutical manufacturers.

Inputs

Our data on inputs to the drug discovery process is taken from the internal records of participating companies, and
consists primarily of annual expenditures on exploratory research and development by research program. Several issues arise in
dealing with these data.

(a) Discovery vs. Development

The distinction between discovery and development is important. We define resources devoted to discovery as all pre-
clinical expenditures within a therapeutic class, and development as all expenses incurred after a compound has been identified
as a development candidate. Where exploratory research was attributable to a particular research program, this is included in
the discovery category. Non-program exploratory research was included in the overhead allocation for each research program.
Clinical grants are included in the figures for development, and grants to external researchers for exploratory research are
included in the total for discovery.

In some cases, the companies supplied us with data already broken down by discovery vs development by research
program. In others, we had to classify budget line items for projects/programs into the appropriate category. This was done
based on the description of each item in the original sources, and the location of items within the structure of the company’s
reporting procedure.

(b) Overhead

In order to maintain as much consistency in the data collection process as possible, we tried to ensure that these
figures include appropriate overhead charges directly related to discovery activities, such as computing, R&D administration
and finance etc., but exclude charges relating to allocation of central office overhead etc. The overhead also includes some
expenditures on discipline-based exploratory research such as "molecular biology"” which appeared not to be oriented towards
specific therapies. Overhead was allocated across therapeutic classes according to their fraction of total spending.

(c) Licensing

We treat up-front, lump-sum payments in respect of in-licensing of compounds, or participation in joint programs
with other pharmaceutical companies, universities or research institutes, as expenditure on discovery. Royalty fees and
contingent payments are excluded from the data.

Outputs

In this paper we focus on important patent grants as our measure of research output. We count patents by year of
application. Our interest here is on determinants of technical success, defined in terms of producing new potentially important
compounds, rather than on the ultimate commercial success or failure of new drugs. Since Patent Examiners award grants based
on slowly changing objective criteria of novelty, non-obviousness, and potential industrial application, we believe that patent
grants are an appropriate basis for measuring research output in this industry. Pharmaceutical companies patent prolifically, and
patents are, of course, a rather noisy measure of research success, in part because the significance of individual patents varies
widely. We partially control for this by counting only "important” patents, where we define "importance” by the fact that the
patent was granted in two of the three major markets: the USA, Japan, and the European Community.

These data were provided by Derwent Publications Inc, who we asked to use their proprietary classification and
search software to produce counts of "important” patents to us broken down by therapeutic class for 29 US, European, and
Japanese pharmaceutical manufacturers for the 26 years preceding 1990. These firms were chosen to include the ten firms that
have given us data together with 19 other firms chosen on the basis of their absolute R&D expenditures, R&D intensity, and
national "home base" to try to get a representative, rather than exhaustive, assessment of world-wide patenting activity. These
19 firms have been consistently in the top 30 world wide pharmaceutical firms in terms of R&D dollars and sales.
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Note that many of these patents will be "defensive” patents in that firms may patent compounds they do not intend to
develop in the short term but that may have competitive value in the longer term. Alternative measures of "importance” include
citation weighting and more detailed international filing data - "very” important patents are usually filed in nearly every major
potential market. We hope to explore these alternative measures in later work.

Classification

Classification of inputs and outputs by therapeutic class is important because this drives our measure of spillovers.
There are essentially two choices: to define programs by physiological mechanisms, e.g. "prostaglandin metabolism”, or by
"indications" or disease states, e.g. "arthritis”. We have chosen to classify on the basis of indication, largely because this
corresponds well to the internal divisions used by the companies in our sample (which is conceptually correct), but also because
classification by mechanism is much more difficult (a practical concern). We classified both inputs and outputs according to a
scheme which closely follows the IMS Worldwide classes. This scheme contains two tiers of aggregation: a detailed "research
program” or "research area” level, and a more aggregated level which groups related programs into therapeutic classes. For
example, the therapeutic class "CARDIOVASCULAR" includes the research programs "ANTI- HYPERTENSIVES",
"CARDIOTONICS", "ANTITHROMBOLYTICS", "DIURETICS" etc.

There are some problems with this procedure. Firstly, some projects and compounds are simply very difficult to
classify. A particular drug may be indicated for several quite distinct therapies: consider serotonin, which has quite different
physiological actions on either side of the blood-brain barrier. As a neurotransmitter it is believed to play important roles in
mediating motor functions. As a systemic hormone it has a variety of effects on smooth muscle, for example it functions as a
vasoconstrictor. Some companies report expenditures in areas which are very difficult to assign to particular therapeutic classes:
a company doing research using rDNA technology might charge expenditure to an accounting category listed as "Gene
Therapy/Molecular Biology" which is actually specific research performed on e.g. cystic fibrosis, but we have no idea about
which diseases the research is directed towards treating, and are forced to include these expenditures in "overhead”. Secondly,
our two-tier classification scheme may not catch all important relationships between different therapeutic areas. We believe that
we are undercounting, rather than overcounting in this respect, so that the importance of spillovers will be underestimated
rather than overestimated. Thirdly, where firms supplied us with "pre-digested" data, they may have used substantively
different conventions in classifying projects. One firm may subsume antiviral research under a wider class of anti-infectives,
while another may report antivirals separately. Not surprisingly there are major changes within companies in internal divisional
structures, reporting formats, and so forth, which may also introduce classification errors. After working very carefully with
these data, we recognize the potential for serious miss-assignment of outputs to inputs, but we believe that such errors that
remain are not serious. The use of patents as the output measure should reduce vulnerability to this problem, since we observe
relatively large numbers, and a few miss- classifications are unlikely to seriously affect our results. When we move to INDs
and NDAs as our output measures, the much more sparsely distributed data are likely increase our vulnerability.

Matching

Data series on inputs and outputs for each firm were matched at the research program level. This procedure appears
to successfully match outputs and inputs unambiguously for the great majority of programs. In a very few cases, however, we
ended up with research programs where patents, INDs or NDAs were filed, but where there were no recorded expenditures. Of
these the majority were obviously coding errors or reflected dilemmas previously encountered in the classification process, and
appropriate corrections were made. In other cases, it was clear that these reflected "spillovers” -- research done ostensibly in,
for example, hypertension, may generate knowledge about the autonomic nervous system which prompts patenting of
compounds may be useful in treating secretory disorders (e.g. ulcers.) In such cases we set "own" inputs for the program equal
to zero, and included these observations in the data base.

Deflation

Since our data sources span many years, it is important to base the analysis on constant dollar expenditures. We used
the R&D price deflator constructed by Edwin Mansfield (1987) for his Oil and Chemicals industry grouping. This index is
based on wage rates for R&D employees, and a price index for equipment and instrumentation purchases, and though its
movement is quite different from the CPI or the GNP deflator, it varies much less across industries, leading us to believe that it
may be a reasonable approximation to the "correct” index for pharmaceuticals. Mansfield’s index exists only for 1969-1983, we
extended it backwards to 1966 and forwards to 1990 using movement in the CPI. The periods 1966-1969 and 1983-1990 saw
relatively little price inflation, so this approximation is unlikely to be serious problem. In a later paper we intend to exploit the
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information that some companies were able to give us on R&D inputs in units of labor hours to construct an index specifically
for research costs in the pharmaceutical industry.

Demand

We attempt to measure cross-sectional and time series variation in the state of demand for drug treatments for the
different therapeutic classes using a variety of publicly available data. Firstly, we compiled statistics on disease incidence and
mortality in the US population from a variety of sources, including the information provided by bodies such as the National
Institutes of Health and the National Cancer Institute. Unfortunately, these data are not entirely comprehensive and consistent.
Some diseases or conditions are under-reported because they are not sufficiently serious, or because of social stigma (e.g.
depression). In many cases data only appear to have been gathered at five-year or longer intervals, and in others there were
serious inconsistencies in series over time which presumably reflect differences in reporting requirements. There are also
problems in comparing for example, diseases which have low incidence but high mortality rates with those with high incidence
and low mortality (thyroid cancer vs common cold), or indeed in comparing diseases which are merely uncomfortable with
those that are life-threatening.

Secondly, we complied data on the number of doctors in the US belonging to various specialties. These data are at
best only available at a rather high level of aggregation (cardiology vs neurology) and their usefulness is also limited by the
classification of many doctors into specialties such as Internal Medicine or Pediatrics which have no information about
therapeutic classes. .

These data are far from satisfactory measures of demand: they are neither as detailed as we would like, nor do they
show much variation over time. Moreover they are not necessarily directly comparable in the cross section, nor do they capture
the potential market size for e.g. drug therapies vs surgery. Our hope is that they pick up gross variation in levels of demand,
or shocks to demand such as the appearance of AIDS. An altemative measure of demand is actual dollar sales of
pharmaceuticals in the class. We compiled these data from the reports of IMS America (a market research firm) for each of the
therapeutic classes in our data.

A final, and perhaps more fundamental, problem with these demand measures is that their usefulness as measures of
incentives to do R&D may be rather limited. Ideally we would like some measure of the total consumer surplus available to be
captured, based on market characteristics such as the price elasticity of demand, potential for drug therapies to enhance
patients’ quality of life or extend their life expectancy, the efficacy of currently available therapies etc. Our measures fall far
short of this ideal, but may be the best that we can do with limited time and resources.

Scientific Opportunity

We use two sources of data to measure "discrete” shocks to technological opportunity: bibliometric data based on the
citation databases of ISI, and identification of key events in the evolution of the science base for particular therapeutic classes.
The ISI publishes an annual list of the most significant papers published in the life sciences. For each year and each therapeutic
class we noted the number of papers in that area which made the "Top 100" list, and also how many times that those papers
were subsequently cited in the next two years. Problems with these measures of shocks to opportunity include: matching papers
to therapeutic classes, which is often difficult if the paper refers to "generic” aspects of molecular biology or physiology rather
than specific discases or organ systems; failure of the scientific community to identify key advances until much time has passed;
advances being of great importance to researchers in a narrowly defined field, but lacking sufficient general interest to attract
enough citations to make the "Top 100" list etc. However these measures have the advantage that they are consistent and
comparable over time, and reasonably well matched to specific therapeutic classes.

For cardiovascular therapies, we attempted to identify "key events”. This process is more subjective, but is hopefully
more comprehensive. We examined standard texts on pharmacology, such as Goodman and Gilman’s "The Pharmacological
Basis for Therapeutics” (1985), and accounts that focused particular on cardiovascular therapies, and attempted to identify
significant steps forward in scientific understanding, such as the discovery of entirely classes of compounds showing desirable
activity in vitro or in animal models, or the identification of important enzyme pathways.




Table (A1): Definition of Variables Used in the Regression Analysis

Observations are identified by (encoded) FIRM, CLASS, and YEAR.
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Measures of scientific opportunity

Papers

Total papers in the class listed in the ISI list of "Top 100
papers” in the biological sciences.

Key private papers (CV only)

Number of papers signalling major breakthroughs in the
field published by authors employed by private firms.

Key public papers (CV only)

Number of papers signalling major breakthroughs in the
field published by authors employed by the public sector.

Measures of demand

Cases Reported U.S. incidence of the disease.
Deaths Reported U.S. mortality.
Doctors Number of doctors identifying themselves as specialists in

the area.

US sales in class

Wholesale U.S. sales of drugs in the class.

Measures of competitive activity

Competitors’ patents in this class

Important patents applied for by 28 major (worldwide)
competitors.

Competitors’ patents in related
classes

Important patents applied for by 28 major (worldwide)
competitors in related classes.

Competitors’ investment in this
class

Investment in discovery research by the other 9 firms in the
core data base.

Competitors’ investment in related
classes

Investment in discovery research by the other 9 firms in the
core data base in related classes.

Firm specific variables

Investment

Expenditures by this firm in this research area, relating
primarily to production of new compounds, by year, in
millions of constant 1986 dollars.

Patents in this class

Important patents granted to this firm in this research area,
by year, from the Derwent database. Note that throughout
the analysis we count patents by year of application.
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Patents in related classes

Important patents granted to this firm in the related
therapeutic class, net of the patents granted in this research
area.

Firm sales in class

Total US sales in the class

Scope

The number of research areas in which this firm has spent
at least $0.5m dollars on discovery this year.

Total investment (size)

Total research expenditure by this firm in this year across
all therapeutic classes.




Table (1): Descriptive statistics: Selected variables at the research program level
Full Sample

Variable N Minimum | Maximum Mean Std Dev
Discovery, 1986$M 2707 0.00 >20 1.29 2.68
Stock of discovery 2707 0.00 52.66 3.50 7.09
Own patents 2707 0.00 34.00 2.11 3.61
Stock of own patents 2707 0.00 96.18 8.08 12.63
Own patents in related programs 2707 0.00 38.00 3.37 5.25
News in own patents 2707 -11.41 23.97 0.49 2.32
Firm sales in program 2707 .—0.06 > 800 25.64 85.58
SCOPE: No. programs with disc >500K 2707 2.00 19.00 10.36 4.58
SIZE: Total discovery spending this year 2707 1.97 >4 3.40 0.68
Papers 2707 0.00 37.00 1.62 5.05
Sum of competitors’ discovery spending 2707 0.00 63.78 8.72 12.33
News in competitors’ discovery spending 2707 -3.30 31.38 3.65 5.71
Competitors’ patents in the same program 2707 0.00 300.00 44.91 47.82
Competitors patents in related programs 2707 4.00 353.00 131.53 82.23
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Table (3a): Determinants of investment in discovery at the PROGRAM level.
OLS Regression.
Dependent variable = Investment in discovery, 2707 observations.

(1) (2 (3) “4)

Intercept -0.020 0.080 0.029 0.053
(0.815) (0.828) (0.835) (0.832)
Flow of Investment in Discovery,, 0.987** 0.980%* 0.976%* 0.976%*
(0.034) (0.039) (0.039) (0.039)

Stock of Investment in Discovery,, -0.002 -0.005 -0.008 -0.009
(0.012) (0.013) (0.013) (0.013)

"News" in patents in this class, 0.008 0.008
(0.011) (0.010)

Own sales in this class, 0.0008 0.0007
(0.0005) (0.0006)

News in key papers in this class 0.002
(0.007)
Class dummies Sig. Sig. Sig.

Firm dummies , Sig. Insig. Insig. Insig.
Time -0.012 -0.010 -0.008 -0.010
(0.079) (0.078) (0.078) (0.079)

Time * Time 0.0007 0.0007 0.0007 0.0007
(0.0019) (0.0018) (0.0019) (0.0019)

R-squared 0.870 0.871 0.871 0.871

Standard error of regression 0.971 0.969 0.969 0.968

Notes

Heteroskedastic-consistent standard errors in parentheses.
** Significant at the 1% level.
* Significant at the 5% level.



Heteroskedasticity modelled by 6, = o exp(aR,)

BHHH Standard errors in parentheses.

** Significant at the 1% level.
* Significant at the 5% level.

Table (3b): Determinants of investment in discovery at the PROGRAM level.
Heteroskedastic TOBIT Regression.
Dependent variable = Investment in discovery, 2707 observations.
8)) ¥))] 3) 4)
Intercept -2.162* -2.120 -2.153 -2.034
(1.105) (1.147) (1.148) (1.170)
Flow of Investment in Discovery,, 1.190%* 1.172%* 1.175%* 1.175%x*
(0.024) (0.024) (0.025) (0.025)
Stock of Investment in Discovery,, ;, 0.029%* 0.0227%* 0.014* 0.014*
(0.006) (0.006) (0.007) (0.007)
"News" in patents in this class 0.0004 0.0008
(0.0109) | (0.0109)
Own sales in this class, 0.001** 0.001 %*
(0.0003) (0.0002)
News in key papers in this class, 0.012
(0.007)
Class dummies Sig. Sig. Sig.
Firm dummies Sig. Sig. Sig. Sig.
Time 0.089 0.096 0.098 0.084
(0.100) (0.106) (0.106) (0.108)
Time * Time -0.002 -0.002 -0.002 -0.001
(0.002) (0.002) (0.002) (0.002)
Coefficient on Lagged Discovery in 0.151%* 0.152%* 0.153%* 0.152%x*
variance model (0.005) (0.005) (0.005) (0.005)
Sigma 0.848%* 0.842%* 0.842%* 0.8423%%
(0.011) (0.011) (0.011) (0.012)
Log likelihood function -2707.44 -2667.36 -2663.62 | -2662.64
Notes
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Table (4): Determinants of investment in discovery at the PROGRAM level.
Heteroskedastic TOBIT Regression.
Dependent variable = Investment in discovery, 2707 observations.
(1) (2 3) @
Intercept -1.263 -2.272% -2.162% -2.008
(1.525) (1.168) (1.184) (1.182)
Flow of Investment in Discovery,,, 1.175%* 1.175%* 1.175%*
(0.025) (0.025) (0.025)
Stock of Investment in Discovery,,, 0.012 0.012 0.012
(0.007) (0.007) (0.007)
"News" in patents in this class ), 0.0004 -0.001 -0.001
(0.011) (0.011) (0.011)
Own sales in this class, 0.001** 0.001%x* 0.001%*
(0.0003) (0.0003) (0.0003)
News in key papers in this class 0.012 0.012
(0.007) (0.007)
Flow of Competitors’ Investment in 0.028** 0.0025 0.0028
discovery in this class,, (0.004) (0.0027) (0.0027)
Flow of Competitors’ Investment in 0.0012
discovery in this class, (0.0029)
Class dummies Sig. Sig. Sig. Sig.
Firm dummies Sig. Sig. Sig. Sig.
Time 0.016 0.109 0.095 0.089
(0.140) (0.107) (0.109) (0.109)
Time * Time -0.003 -0.002 -0.002 -0.002
(0.003) (0.003) (0.003) (0.003)
Coefficient on Lagged Discovery in 0.279%* 0.15]1** 0.151%* 0.151%*
variance model (0.008) (0.005) (0.005) (0.005)
Sigma 1.1363%* 0.843%* 0.843%%* 0.843%*
(0.023) (0.011) (0.011) (0.011)
Log likelihood function -3574.47 -2663.20 -2662.10 | -2662.56

Notes

Heteroskedasticity modelled by 6, = ¢ exp(aR)

BHHH Standard errors in parentheses.
** Significant at the 1% level,
* Significant at the 5% level.
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Table (5): Determinants of investment in discovery at the PROGRAM level.

First differences, "News" and residuals.
OLS Regression. 2707 observations.

35

(1) 2 3) @ )
Dependent Variable Alnvest, Alnvest, "News" in "News" in Residual
Invest, Invest, from
Invest,=f{..}
Intercept -0.024 -0.013 -0.143 -0.090 -0.0001
(0.805) (0.840) (0.827) (0.845) (0.018)
A Investment, 0.015 0.004
(0.057) (0.057)
"News" in own investment, 0.832%: 0.815%*
(0.034) (0.034)
"News" in own patents 0.008 0.007 0.008 0.008
(0.011) (0.011) (0.011) (0.011)
"News" in papers,,, 0.010 0.005 0.010 0.004
(0.008) (0.008) (0.008) (0.008)
A Competitors’ Investment, 0.024* - 0.020
(0.012) (0.012)
News in Competitors’ Investment, 0.011* 0.007
(0.005) (0.006)
Competitors’ Residual -0.002
(0.010)
Firm dummies Partial Sig. Partial Sig.
Class Dummies Sig. Sig.
Time -0.008 -0.006 0.001
(0.077) (0.080) (0.080)
Time * Time 0.001 0.001 0.000
(0.001) (0.002) (0.002)
R-squared 0.006 0.007 0.627 0.629 0.00002
Standard error of regression 0.986 0.986 0.975 0.973 0.962

Notes

Heteroskedastic-consistent standard errors in parentheses.

** Significant at the 1% level.
* Significant at the 5% level.




Table (6): Determinants of patent output at the PROGRAM level.

Poisson Regression. Dependent variable = PATENTS.
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Log-likelihood

(1) @ (€)) ©) &)
Full sample | Full sample | Full sample | C.V. Only | C.V. Only
1961-1988 1975-1988 1975-1988 | 1975-1988 | 1975-1988
N 4930 2707 2707 438 438
Intercept -2.257%% -0.380 -0.228 2.812% 2.420
(0.134) (0.621) (0.625) (1.309) (1.329)
Ln(Investment) 0.024%* -0.014 -0.013 -0.038 -0.044
(0.010) (0.012) (0.012) (0.026) (0.026)
Ln(Stock of Investment) 0.031%* 0.036%* 0.036%* 0.108%* 0.107%*
(0.010) (0.010) (0.011) (0.036) (0.036)
SCOPE: No. classes firm is 0.104%* -0.012 -0.013 0.037 -0.046
active (0.016) (0.034) (0.034) (0.072) (0.072)
SCOPE * SCOPE -0.006%* -0.001 -0.001 -0.020 -0.016
(0.001) (0.002) (0.002) (0.003) (0.003)
Ln(SIZE): Total research 0.242%* 0.201%* 0.210%* 0.454%=* 0.469%*
spending by firm. (0.042) (0.066) (0.067) (0.139) (0.140)
Stock own pats in this class 0.032%* 0.033%* 0.033 % 0.0343%* 0.034**
(0.001) (0.001) (0.001) (0.002) (0.002)
News in own patents in related 0.034%* 0.026%* 0.025%* 0.028** 0.029%x*
classes, (0.003) (0.005) (0.005) (0.009) (0.009)
News in competitors’ patents in 0.006%** 0.004%* 0.004%:* 0.017%:* 0.017%=*
this class, (0.001) (0.001) (0.001) (0.002) (0.002)
News in competitors’ patents in 0.002%* 0.003%* 0.003%* -0.002 -0.002
related classes, (0.001) (0.001) (0.001) (0.001) (0.001)
News in Key papers,,.; 0.013%*
(0.005)
Key private sector C.V. 0.464%*
papers, (0.167)
Key private sector C.V. -0.154
papers, (0.419)
Firm dummies Sig. Sig. Sig. Sig. Sig.
Class dummies Sig. Sig. Sig.
Time 0.071%* -0.040 -0.060 -0.4007%* -0.364%*
(0.008) (0.060) (0.061) (0.128) (0.130)
Time * Time -0.003** -0.002 -0.000 0.008 0.007
(0.000) (0.001) (0.001) (0.003) (0.003)
-8194.3 -4444.2 -4440.8 -755.7 -752.2




Notes

Standard errors from analytical second derivatives in parentheses.
** Significant at the 1% level.
* Significant at the 5% level.
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