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Abstract 

 We investigate the steady and transient shear and extensional rheological properties of a 
series of model hydrophobically modified ethoxylate-urethane (HEUR) polymers with varying 
degrees of hydrophobicity.   A new nonlinear two-species network model for these telechelic 
polymers is described which incorporates appropriate molecular mechanisms for the creation and 
destruction of elastically-active chains. Like other recent models we incorporate the 
contributions of both the bridging chains (those between micelles) and the dangling chains to the 
final stress tensor.  This gives rise to two distinct relaxation time scales; a short Rouse time for 
the relaxing chains and a longer network time–scale that depends on the aggregation number and 
strength of the micellar junctions. The evolution equations for the fraction of elastically-active 
chains and for the conformation tensors of each species are solved to obtain the total stress 
arising from imposed deformations. The model contains a single non-linear parameter and 
incorporates the non-linear chain extension, the shear-induced enhancement of associations and 
the stretch-induced dissociation of hydrophobic chains. In contrast to earlier closed-form models, 
we are able to obtain quantitative agreement between experimental measurements and the model 
predictions for three different series of telechelic polymers over a range of concentrations. The 
scaling of both the zero shear viscosity and the effective network relaxation time show good 
agreement with those measured in experiments. The model also quantitatively captures both the 
shear-thickening and subsequent shear-thinning observed in the rheology at high deformation 
rates and predicts transient extensional stress growth curves in close agreement with those 
measured using a filament stretching rheometer. 
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1. Introduction 

Hydrophobically modified, water-soluble polymers or “associative polymers” are a class 

of complex and partially-ordered systems that have attracted a great deal of interest in recent 

years. These materials are aqueous soluble block copolymers that contain both water-soluble 

(hydrophilic) and water-insoluble components of varying levels of hydrophobicity. As a result of 

the amphiphilic character of the molecules, they may act, even at low concentration, as effective 

rheological modifiers. They can therefore be used for various industrial applications in which 

careful control of the rheology of the solution is required, e.g. paints, foods and pharmaceuticals. 

Examples of these triblock or telechelic polymers include hydrophobically ethoxylated urethanes 

(HEURs) with hydrophobic end groups consisting of aliphatic alcohols, alkylphenols or 

fluorocarbons, and hydrophobically modified alkali-soluble ethoxylates (HASE) with 

hydrophobic macromonomers distributed along the polymer backbone. The driving force for the 

association process is the interaction between the hydrophobic segments that arises in order to 

minimize their exposure to water. The resulting micellar associations give rise to both intra- and 

intermolecular temporary domains or junctions. The network is temporary in the sense that the 

junctions that hold the network together break and reform continuously due to thermal 

fluctuations. Numerous research groups have investigated the association and rheology of these 

associative polymer systems. The review by Winnik & Yekta1 and the text of Larson2 provide a 

detailed survey of this literature.  

 In the present study we focus on the behavior of a set of model telechelic HEUR 

polymers. These linear tri-block systems are ostensibly the simplest of the many associative 

polymer materials available. There have been many experimental studies of the viscoelastic 

properties of these aqueous solutions and also a number of theoretical models based on transient 
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network theory that appear to capture at least qualitatively, the experimental observations. 

However there are few studies that quantitatively compare rheological measurements with 

constitutive predictions. This is the focus of the present work. 

In a pair of recent papers, Pellens et al.3, 4 identify at least five signature features of 

rheological nonlinearity in associated polymer networks that must be captured by any theoretical 

model. They also demonstrated that although these features may be captured qualitatively by 

existing constitutive equations, quantitative discrepancies with experimental measurements that 

may be of one order of magnitude or more typically persist. 

Depending on the relative locations of the two hydrophobic end groups of the telechelic 

polymer chain, different scenarios can be visualized5. Loops are formed if the end groups of the 

polymer are present in the same micelle. On the other hand, it is possible that the hydrophobic 

end groups are located in different micelles, and in this case, a bridge is established between two 

micelles. These bridging chains may be referred to as elastically active since they form part of 

the temporary elastic network. Depending upon the hydrophobicity of the end group and the 

polymer concentration, one or both ends can also temporarily exist without any association. 

These molecules form dangling chains which can relax before reincorporated into micelle.  The 

complex rheological response of telechelic polymers originates from the dynamical interchange 

of these loops, bridges and dangling chains as a function of the deformation imposed on the 

network. The structure and dynamics of these telechelic chains depends on numerous parameters 

such as polymer concentration, molecular weight, hydrophobe size and characteristics, degree of 

hydrophobicity, temperature and the imposed shear deformation. Hence, the relationship 

between structure and the rheological response of associative polymers is quite complex1.  
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Examples of the complex rheological behavior exhibited by these polymers include the 

ability to form highly viscous solutions at low to moderate concentrations; a linear viscoelastic 

response that closely resembles that of a perfect Maxwell fluid with a single relaxation time5-7;  

shear-thickening at moderate shear rates in steady shear flow followed by marked shear-thinning 

at high shear rate8-14, an Arrhenius-like temperature dependence of the zero-shear rate viscosity5, 

15 and a decrease in the critical shear rate at which onset of shear thickening occurs as the 

association strength or concentration increases or temperature decreases16. Recently, Ng et al.15 

disputed the assertion of a single relaxation time suggested by Annable et al.5 and demonstrated 

that HEUR polymers in fact possesses a dual relaxation behavior. These authors supported their 

claim by performing relaxation spectra analysis and by fitting a two-mode Maxwell model to 

their experimental data. The short time relaxation process is ascribed to the lifetime of 

hydrophobic junctions17, whereas the long time process is ascribed to the network relaxation.  

Recently, Berret and coworkers18-20 performed startup of steady flows and stress 

relaxation experiments to study the strain hardening and shear thinning behavior of HEUR 

polymers. Based on their results, the authors suggested breakdown or rupture of the network as 

possible mechanisms of shear thinning behavior. The authors also interpreted strain hardening in 

terms of non linear stretching of the elastically active chains.  

Sadeghy and James21 asserted that the shear thinning is a result of microstructural 

deformation, and not of microstructure breakdown as is more generally thought. These authors 

argued this contention on the first normal stress difference, which increases with shear rates in 

shear thinning regime. They also discovered onset of apparent slip when the shear stress 

exceeded roughly 500 Pa. This finding contradicts the earlier notion13 of network breakdown at 

high rates.  
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Finally, it should be noted that the tensile or extensional properties of the associative 

polymer network remain virtually unexplored even though the extensional rheology plays an 

important role in many commercial applications of associative polymers such as spray formation 

and paint applications.  Recently, Sadeghy & James21, measured the apparent extensional 

viscosity Eη using a converging channel rheometer. Tan et al.22 also measured extensional 

properties of HASE solutions using an opposed jet device. The complex kinematics that arise in 

these devices, due to distribution of strains and strain rates experienced by individual fluid 

elements, make it difficult to interpret the extensional data unambiguously. However the 

apparent extensional viscosity was found to increase approximately exponentially with the 

hydrophobicity and concentration of the polymers.  

Several constitutive models have been developed to describe the rheological behavior of 

the associative polymers. In a series of papers, Tanaka & Edwards23-26 developed a temporary-

network kinetic model for telechelic polymers, by applying ideas originally formulated by Green 

& Tobolsky27 and Yamamoto28. The main mechanism of stress relaxation (and shear thinning) in 

these models is the rate of chain detachment from the elastically active network which is 

activated by the elastic force in the chain. Tanaka and Edwards assumed that the chains obey 

Gaussian statistics and relax rapidly into their equilibrium state through Rouse dynamics upon 

detachment from each network point. This theory accurately captures basic observations such as 

a single relaxation time. However, this theory does not explain the shear-thickening phenomenon 

at intermediate rates, and several modifications have been offered in the literature.  

Wang29 extended Tanaka & Edward’s model to allow for the coexistence of network-

forming chains and unconfined free chains. He argued that shear flow induces coagulation 

between free chains and the pre-existing network, producing more junctions than in equilibrium 
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and hence resulting in shear thickening. But this explanation appears to be inadequate for 

explaining the shear-thickening behavior observed in telechelic solutions where the binding 

energy of a single hydrophobe in a micelle is very much larger than  and no free chains are 

found

TkB

5. Witten & Cohen30 proposed that flow promotes interchain pairing (i.e. formation of 

bridges) by conversion of intrachain (loops) associations. However, when the lifetime of pairing 

is much longer than the relaxation time of free chains, flow cannot break loops until bridges are 

broken. Hence, it is not clear how such a mechanism could give rise to shear thickening.  

Annable et al.5 presented a detailed experimental study of telechelic polymer solutions 

and compared the results with the predictions of Monte Carlo simulations of network topology. 

Retaining end-capping efficiency as a parameter, these authors showed that the concentration 

dependent relaxation time scales as ( )wMcf~λ . Here  denotes polymer concentration and 

 denotes the molecular weight of the chain. This scaling was found to be consistent with the 

experimental data and quantitatively captured many of the linear visco-elastic properties of the 

fluids. Because of the detailed assumptions involved, the study could only succeed to show 

qualitative and, in few cases, semi-quantitative agreement with experiments. The complex nature 

of the model prevents the development of a closed form model suitable for analytic or numerical 

evaluation or for assessing the response in other modes of deformation such as uniaxial 

extension. Marrucci et al.

c

wM

31 took finite extensibility and partial relaxation of the dangling 

segments into account in order to qualitatively explain the observed shear-thickening behavior in 

telechelic polymers. These authors also put forward important scaling arguments for the 

dependence of rheological quantities (such as the viscosity and relaxation time) on the 

concentration and molecular weight of the telechelic polymer chains. Ahn & Osaki32 studied a 

wide range of possible shear thinning and shear-thickening behavior using a network model with 
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strain-dependent bridge formation and loss rates. They elucidated at least 16 different model 

classes depending on the relative balances in the process of creation and destruction of elastically 

active chains. Van den Brule & Hoogerbrugge33 performed Brownian dynamics simulation of a 

complete network of telechelic chains in shear flows and analyzed their results in terms of 

transient network theory. These simulations showed that even in systems with Gaussian chains 

and fixed association and dissociation rates, shear thickening could occur. They attributed shear 

thickening to incomplete relaxation of a dissociating chain and also found that its probability of 

reattachment to the network increased linearly with the length of the chain. Hernandez-Cifre et 

al.34 extended these ideas to incorporate finite extensibility of the chains and non-affine motion 

of the network. Wientjes et al.35 extended the Lodge network model36 for systems with arbitrary 

numbers of hydrophobic moieties and chain connectivity to describe the linear viscoelastic 

behavior of associative polymer networks. The model predicts the existence of multiple 

relaxation times, but becomes computationally intensive as the number of relaxation processes 

grows. Recently, Vaccaro & Marrucci37 derived a simple constitutive model inspired partially by 

the simulation results of Van den Brule & Hoogerbrugge33. They formulated the evolution 

equations for both bridging chains and temporary dangling chains by choosing simple kinetics of 

detachment and reattachment processes. The resulting set of non-linear equations predicts shear 

thickening at moderate shear rate followed by shear thinning at much higher shear rates. This 

model was used by Pellens et al.4 for quantitative comparison with experimental measurements 

of the shear rheology for two different HEUR polymers. Although the model captures all the key 

signature effects of nonlinearity3 it failed to capture the characteristic range of deformation rates 

at which shear thickening and shear thinning were observed experimentally. The authors suggest 
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that a non-affine motion of the elastically active chains with a negative slip coefficient (i.e. 

“super affine” deformation) might capture the experimentally observed trends.    

Although the studies described above furnish various possible mechanisms for 

qualitatively explaining the experimentally-observed nonlinear rheological phenomena, a 

quantitative comparison of theoretical predictions with steady shear, oscillatory shear and 

transient extensional rheology data is still lacking. In this paper, we first propose a modified 

nonlinear constitutive model for the telechelic associative polymers, which incorporates the most 

important underlying molecular mechanisms. The model reflects the earlier work by Van den 

Brule and Hoogerbrugge33 and by Hernandez-Cifre et al.34 in which both elastically-active 

bridging chains (those between micelles) and temporary dangling chains contribute to the final 

stress tensor. In contrast to full Brownian dynamics simulations of the stochastic differential 

equations performed by Hernandez-Cifre et al.34, we simplify the evolution equations by 

ensemble averaging. The resulting ordinary differential equations for conformations and stresses 

carried by the two species can be solved numerically or analytically (in the limit of small De). 

We incorporate the finite extensibility of bridging chains and the non-linear rate of incorporation 

of the dangling chains into the elastic network. We then compare the model predictions with a 

systematic experimental study of the linear viscoelastic, steady shear and transient extensional 

properties of a series of well-characterized model hydrophobically modified ethoxylate-urethane 

(HEUR) polymers with varying degrees of hydrophobicity.  

2.  Model Development 

2.1. Molecular Architecture.  

We seek to understand the behavior of associative polymers in aqueous solution by 

studying model polymers of well-defined structures. Consider a hydrophilic flexible chain of 
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molecular weight  consisting of wM N  statistically independent-segments each of length b  (the 

“Kuhn length”). The number of segments and the “Kuhn length” in the equivalent freely jointed 

Kuhn chain are computed as  

∞

=
CM

MN
o

w θ2sin3    and  
θsin
lCb ∞= ,       (1) 

where (=4 for polyethylene oxide chains) is the characteristic ratio,  is the 

carbon-carbon bond length, 

∞C ( )0.154l = nm

( )molgM o 44=  is the molecular mass of the repeat unit and 

( )054.5θ =  is the half-angle between carbon-carbon bonds in a polymer chain. The root mean 

square end-to-end distance of the equivalent Kuhn length is 32212 NbR = . The hydrophilic 

chain is also fully end-capped with small chains of ( )Nnn cc <<  hydrophobic units. This leads to 

so-called telechelic polymers. We then study an aqueous solution of such polymer chains of 

narrow molecular weight distribution with a concentration c  per unit volume. The number 

density of the chains is computed as wA McNn = , where  is Avagadro’s number. The 

synthesis procedure and characterization of the polydispersity of the molecules is described 

elsewhere

AN

7, 22.       

 Research to date has established that such polymers in dilute solutions form micelles 

above a rather low critical micelle concentration ( )%1.0 wtccmc << 7 that depends on the backbone 

molecular weight  and the hydrophobe length . The telechelic polymers undergo 

simultaneous formation of intramolecular micelles with a dense core of hydrophobic groups and 

interchain micellar cross-links. Hence, depending upon the thermodynamics of the association 

process, a solution of telechelic chains contains several types of possible chain structures: 

wM cn
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“bridges”, “loops”, “danglers” and “free chains”. A chain connecting two different micelles is 

called a “bridge” chain. . “Loops” are formed if the end groups of the polymer are present in the 

same micelle. Similarly, “danglers” or “free chains” are formed when one or both ends 

temporarily exist without any association. At low concentrations, the loops dominate, but with an 

increase in the polymer concentration, the number of micelles inter-connected through bridging 

chains increases rapidly. We specifically focus our attention in the non-entangled regime in 

which the number of monomers  in a polymer chain is smaller than the entanglement 

number , i.e. the number of monomers required for the chains to become entangled. Annable 

and coworkers

,N

eN

5 also discuss the possible existence of shear-induced creation of more complex 

multiply-bridged structures, however these are beyond the scope of the present work.  

As described above, the hydrophobic ends associate into micelles in aqueous solutions. 

The spontaneous micelle formation leads to a decrease in the Gibbs free energy  of the 

solution. The depth of the energy well 

G∆

G∆  depends on a number of molecular parameters such 

as the aggregation number38 , the hydrophobe length as measured by , by the number of 

  moieties

aggN cn

−− 2CH 10, the length of the polymer chain  and the solvent qualitywM 39. Owing to 

ambient thermal noise ( , there is a finite probability that a micellar hydrophobe acquires 

sufficient energy to overcome the activation barrier 

)TkB~

G∆  and detach spontaneously. Following 

the model of Bell40 and Tanaka & Edwards26, the exit rate, Eτ1 , is estimated as the product of a 

natural thermal vibration frequency, ( )Hz108 1010~ −Ω , of the hydrophobic association in a 

micelle and the quasi-equilibrium likelihood of reaching a transition state with an energy barrier 

( TkG B∆−exp ) . Hence, we expect  

 10



   

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∆
−Ω=

Tk
G

BE

exp1
τ

,          (2) 

where the association energy  is estimated to be approximately  per  unit for an 

alkane hydrophobe

TkB98.0 −− 2CH

5, 39 so that . Theoretically, the thermal vibration frequency is 

expected to be inversely proportional to the local friction constant for micellar motion in the 

viscous solvent. For

TknG Bc98.0≈∆

1>>∆ TkG B , it is increasing unlikely for hydrophobes to exist outside the 

micellar core and the solution is devoid of any completely unassociated free chains or permanent 

danglers. Hence, for associative polymer solutions, with hydrophobic end groups of 10 or more 

methylene units, bridges and temporarily ejected chains with single dangling ends are likely to 

carry most of stress in the solutions. The number of elastically-active chains ν  (i.e. those in 

aggregates) is then defined26 as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

= ∆

∆

TkG

TkG

B

B

e
en

1
ν ,          (3) 

with n≅ν  for 1>>∆ TkG B .   

 The aggregate number of hydrophobic units  contained in a micelle depends on the 

molecular structure of the hydrophobe. More specifically, it is related to the volume of each 

hydrophobic moiety and the area of the micelle surface required to accommodate each 

hydrophobe within the micelle. Using fluorescence decay studies, Yekta and coworkers

aggN

10, 11 have 

deduced a micelle aggregation number of 2818 −≈aggN  hydrophobes per micelle. Fluorescence 

studies detect no change in micellar size from dilute concentrations up to 7 wt%. This supports 

the notion that increasing the concentration above the critical micelle concentration  

primarily increases the number of micelles at a fixed value of , much as for low molecular 

cmcc

aggN
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weight surfactant systems. As the number of micelles increases, the average distance between 

aggregates, denoted as a , decreases. Since, on average, a single aggregate/micelle occupies a 

volume of 34 3aπ , the average spatial distance a  is related to the number of active chains 

wA McNn = , of which carries two hydrophobic ends by the expression 

3
1

8
3

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

n
N

a agg

π
          (4) 

This lattice-based definition relates physical properties of the individual polymer to the resulting 

micellar solution structure. Maccucci et al.31 adopted the lattice approach to estimate the effect of 

partial relaxation of the detached chains. These authors argued that the mean distance traveled by 

a detached hydrophobe depends on the ratio of the radius of gyration of the chain 32Nblc =  

and the lattice spacing a . Hence, if 22
cla < , a detached chain generally rejoins the network 

before it can completely relax its original deformation and the “effective” relaxation time of the 

chain, due to presence of a partially deformed network, becomes, 

Eeff
a

Nb ττ 3

2 3~ .          (5) 

Substituting  and  wMN ~ ( ) 322 ~ cMa w , we find that the effective relaxation time scales 

non-linearly with both concentration and the molecular weight as ( ) 32
~ weff Mcτ . This result is 

consistent with the experimental findings of Annable5. Since effτ  is the relaxation time of the 

network, the zero shear viscosity can be expressed as27 

effBeffN TnkG ττη ≅≅ 0
0 ,         (6) 
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where  is the plateau modulus of the physical network. From equation (6) we then find the 

zero-shear-rate viscosity is proportional to

0
NG

3235 −
wMc . Consideration of the lattice spacing thus 

predicts an augmented dependence on concentration which is in good agreement with the 

experimental findings of Annable et al.5  

2.2. Constitutive Equation.  

Following Brule & Hoogerbrugge33, we focus on two species of chains (elastically-active 

polymer chains) which carry most of the stress in a telechelic polymer system: the bridges and 

the temporarily dangling chains with single dangling  ends. The looped chains contribute to the 

stress only in as much as they are polymer molecules of radius of gyration 322 NbRg =  

which can be deformed by the flow. Although our model can easily be extended to account 

explicitly for the exchange between loops and dangling chains, at this stage, we assume that the 

loops play no additional role in the total stress tensor. The telechelic polymer solution is assumed 

to be incompressible and the network junctions, i.e. the micelles move affinely. Each telechelic 

polymer molecule is modeled as a Gaussian chain and we take the chains to be freely jointed, 

bead-spring chains41, in which the end-to-end distance is represented generically by a vector Q .  

Because we consider two species, when considering bridging chains we explicitly denote the 

end-to-end vector 
A

Q and for dangling chains we use the notation 
B

Q .   To specify the 

orientation of the bridge, we introduce the distribution functions ( ),A Q tΨ , normalized to the 

number of bridge chains per unit volume Aν , as ( ),A A Q tν ψ  and the distribution function 

( ,B Q tΨ )  for the temporarily detached dangling chains, normalized as ( ) ( ,A B Q tν ν ψ− )  with ν  
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the total number of elastically-active chains per unit volume. Hence, the distribution functions 

BA ψψ ,  satisfy 

1== ∫∫ dVdV BA ψψ  ,         (7) 

where  is a volume element in configuration space. dV

Following standard methods33, 41, we then perform balances in configuration space for the 

evolution of the distribution function for the bridging chains to obtain 

( ) ( ), ,A
A BQ L Q t M Q t

t Q
∂Ψ ∂ ⎡ ⎤= − ⋅ ⋅ Ψ + Ψ − Ψ⎣ ⎦∂ ∂

κ A  ,     (8) 

 where vT= ∇κ denotes the transpose of the velocity gradient tensor, ( ,L Q t )  denotes the 

probability rate of creation of the bridging chains of length 
A

Q  and ( ),M Q t  denotes the 

probability rate of destruction of the bridging chains of length 
A

Q . Equation (8) assumes affinely 

deforming bridging chains although it is straightforward to incorporate non-affine motion4. 

Similarly, we can write the convection equation33 that determines the distribution function of the 

temporally-ejected dangling chains as 

( ) ( ) ( )1ln , ,cB B
B B B

k TQ F L Q t
t Q Qζ ζ

⎡ ⎤∂Ψ ∂ ∂
= − ⋅ ⋅ Ψ − Ψ − − Ψ + Ψ⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
κ AM Q t   (9) 

where ζ  is the friction coefficient and ( )cF  is the spring or connector force. The two additional 

terms on the right-hand side represent contributions due to thermal diffusion of free hydrophobic 

ends through the solvent and the elasticity of the connecting chain. Once the chain is free at one 

end, it can relax its stress through its Rouse modes. Hence, equation (9) describes non-affine 

motion of temporarily dangling chain. Following dumbbell theory41, we write the connector 

force law as 

 14



   

( ) ( )cF HQ f Q=           (10) 

where 23 NbTkH B=  is a  spring constant and ( )2 2
max1 1f Q Q≡ −  is the nonlinear Warner 

spring factor accounting for the finite extensibility of the polymer chain. Finally, for a given 

deformation tensor κ , we need to solve equations (8-10) for ( ),A Q tΨ  & ( ,B Q tΨ )  and then 

calculate the resulting stress field σ  as 

( ) ( ) ( )c
AA A

c
BA B

F Q F Qν ν ν= + −σ         (11) 

where the angle brackets denote ensemble averages over conformation space with respect to the 

corresponding distribution functions. Note that we have neglected terms accounting for the 

looped chains and the solvent contribution to the total stress. 

 In order to compute the stress field σ  as a function of a given deformation field Τκκ + , 

the number density of bridging polymers Aν , and the distribution functions ( ),A Q tψ , ( ),B Q tψ  

need to be obtained from the coupled non-linear partial differential equations (8) and (9). We 

also need to specify the exact forms of ( ),L Q t  (i.e. the probability rate of creation of the 

bridging chains of length 
A

Q  and ( ),M Q t  (i.e. the probability rate of destruction of the bridging 

chains). Although the above set of equations can be converted to the equivalent stochastic 

differential equation and then solved directly using techniques such as Brownian dynamics33, 42, 

we seek to develop a simple closed-form model by making suitable approximations without 

losing too much of the essential physics. Hence, we replace Q  by the preaveraged quantity 

2QQ =  in (i) the expression for finite extensibility factor43, 44 f ; (ii) the expression for 

probability rate of creation of the bridging chains ( ),L Q t  and (iii) the probability rate of 
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destruction of the bridging chains ( ),M Q t . Therefore, at any instant, the above terms are taken 

to be independent of the distribution Q  but dependent on the ensemble average of . Recent 

studies

2Q

45, 46 have shown that preaveraging can be inaccurate in strong flows; however for steady-

state flows, preaveraging seems to be an acceptable approximation43, 47. 

Before integrating the evolution equations over configuration space, we introduce the 

dimensionless conformation tensors  for the bridging chains and  for the temporary dangling 

chains, which are computed by averaging the approximate dyadic product 

A B

QQ  over the 

respective conformation distribution spaces to give 

dVQQ
l AAA

c

ψ∫= 2
1A     and  dVQQ

l BBB
c

ψ∫= 2
1B .    (12) 

where 32Nblc =  is the characteristic length for scaling such that 3eq eqtr tr= =A B . 

To obtain evolution equations for the orientation tensors describing the bridges and 

dangling chains  and B , we multiply equations (8) & (9) byA QQ  and integrate over the 

configuration space. This leads to  

( )( ) ( ) ( ) ( )1
1 , ,L Q t M Q tφ φ φ= − −A B A        (13) 

and 

( )( )( ) ( ) ( ) ( ) ( ) ( )
1

1 1 1 ,
2 2

E E

R R

,f Q L Q t M Q tτ τφ φ φ φ
τ τ

− = − − − − +B B Bδ  A    (14) 

where  denotes the upper convected derivative, which is defined as  ( )( )1

( )( ) ( ) ( ) ( ) vv1 ∇⋅−⋅∇−= T

Dt
D ,        (15) 

 16



   

The dimensionless fraction of bridged chains is denoted ννφ A= ; HR 4ζτ =  denotes the 

relaxation time of free chain and L  & M  are dimensionless creation and destruction rates. Note 

that the hydrophobe exit time Eτ  given by equation (2) has been used to non-dimensionalize 

both time and the rate of creation and destruction. To compute the stress tensor, given by 

equation (11), we also need an evolution equation for the number of bridging chains per unit 

volume. Hence we integrate equation (8) over all configurations to obtain      

( ) ( ) (1 ,D ),L Q t M Q t
Dt

φ φ φ= − − .        (16)  

Finally, we write the stress calculator by the FENE force law described by equation (11) as 

         (17) ( ) ( ) ( )1Af Q f Qφ φ= + −Aσ B B 

Twhere the stress is made dimensionless using the plateau modulus . 0
N BG kν=

The constitutive model is represented by the set of equations (13)-(17) in which we 

compute the stress field σ , the fraction of bridging chains φ  and the orientation tensors  and 

, for a given deformation field 

A

B Τκκ + . It still remains to model the probability of creation and 

destruction of bridging chains in a telechelic polymer solution. 

It is non-trivial to correctly formulate the creation and destruction processes and 

numerous authors have proposed suitable models. Table I summarizes some of these attempts. 

Green & Tobolski27 initially took the rate of creation and the rate destruction to be constant and 

their model reduces to the upper convected Maxwell model41. Tanaka & Edwards23-26 introduced 

a chain-length-dependent dissociation rate to predict the rheological properties of the physically 

crosslinked networks. Tanaka & Edwards estimated the force required to pull a hydrophobe from 

a micellar well and showed that the detachment rate increases exponentially with the force acting 

on the polymer chain. In addition to the bridging and the dangling chains, Wang29 also 
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considered the presence of free chains. He rationalized the shear-thickening behavior by 

proposing a quadratic shear rate dependence of the recombination of free chains. This model also 

postulated a weak algebraic dependence of destruction rate on chain end-to-end vector. Ahn & 

Osaki32 introduced phenomenological expressions for the microscopic creation and destruction 

rates in terms of the effective macroscopic strain ( )11 22 122γ τ τ τ= −  and enumerated 16 

different rheological scenarios. Van den Brule & Hoogerbrugge33 found from Brownian 

dynamics simulations that the probability of reattachment increases linearly with the length of 

chain. As a result of this mechanism the fraction of long chain segments present in the network 

can increase with imposed flow and this can explain the shear thickening observed 

experimentally. Hatzikiriakos & Vlassopoulos48 also performed Brownian dynamics simulations 

of shear-induced thickening of dilute polymer solutions. Although this work primarily 

considered shear-thickening of non-micellar polymer solutions, the model is of the same basic 

form and considered the dynamical evolution of two species with non-linear creation and 

destruction rates given by the expressions in Table I. Recently, Vaccaro & Marrucci37 have 

developed a simple closed-form model for the nonlinear rheology of associative polymers based 

on the van den Brule & Hoogerbrugge study. In this model, the kinetic rate of creation is 

proportional to the chain length and the rate of destruction is proportional to thermal fluctuations 

of the hydrophobes.  

All of the above studies have provided important insights towards understanding the 

complex molecular processes of association and dissociation for elastically-active chains; 

however, they all lack quantitative comparison with experimental measurements of the 

rheological properties of associative polymers in steady shear and/or small amplitude oscillatory 

shear flows. Extensive attempts in our laboratory to fit measured viscometric data to any of the 
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existing models have resulted in less than quantitative agreement. Similar findings are reported 

very recently by Pellens el al.4. We have thus returned to the basic formulation of Green & 

Tobolsky and Tanaka & Edwards. By appropriately incorporating each of the features elucidated 

in the Brownian dynamics studies we seek to develop a closed-form constitutive model that can 

quantitatively describe the rheology of HEUR solutions. In the following two sections, we 

attempt to understand the processes of dissociation and creation of active chains by considering 

relevant the thermodynamically-driven mechanisms and their relation to deformation-induced 

structural changes in the elastic network. 

2.3. Probability Rate of Destruction of Active Chain. 

In a quiescent solution, the hydrophobic ends located in micellar aggregates experience 

ambient thermal fluctuations . Such fluctuations occasionally induce sufficient energy in 

a micellar hydrophobe to allow it to overcome the large activation barrier  separating the 

micelle from the solvent. This thermodynamic activity establishes an overall rate of dissociation 

( TkB~ )

G∆

Eτ1 , given by equation (2), of hydrophobes in a solution containing telechelic polymers. The 

equilibrium thermodynamically-driven probability rate of dissociation is independent of the end-

to-end distance of the chain. (In fact, Green & Tobolsky27 first considered this simplest model 

for ( ),M Q t ).  

Under an external deformation field, the bridging polymer chains connecting the micellar 

hydrophobes are stretched and impart a net force on a hydrophobhic end group residing in the 

micelle. If the chains are very long, or the concentration is high, then this force can be described 

by a linear spring; however for large deformations the force is better described by the FENE 

expression of Warner41 given by equation (10). Following Hernandez-Cifre et al.34 we 

incorporate the effect of this non-linear spring force on the exit rate of the hydrophobes from the 
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micellar junctions. As indicated in figure 1, the tensile force in the chain distorts the energy well 

by an amount that is proportional49 to ( )A c

A

Q r c

Q
F d r

−
⋅∫ , where  is the displacement associated 

with the energy barrier. This distortion lowers the activation barrier relative to  at 

cr

TkB cr , 

increases the probability of barrier crossing, and thereby increases the frequency of hydrophobe 

detachment. Hence, the destruction rate ( ),M Q t , i.e. the likelihood of a hydrophobe jumping out 

of the energy well can be approximated by   

( ) ( ) ( ){ } ( ) ( )2

,1 3, , exp expA c A c

A A

Q r Q rc w
w Q Q

B E

g c M
M Q t g c M G F dr f r rdr

k T Nbτ
− −⎛ ⎞ ⎛ ⎞= Ω − ∆ − ⋅ =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
∫ ∫ . 

            (18) 

where the front factor ( ), wg c M  is a monotonic function of polymer concentration and molecular 

weight. We notice that the exit rate of the active chains or bridges is enhanced exponentially due 

to the deformation. The width of the activation barrier  depends on the attraction energy 

between the hydrophobes in the core of the micelle, the aggregation number, the solvent quality 

and the length of hydrophobes. Semenov and coworkers

cr

38 investigated the properties of an 

isolated micelle in the limit of high aggregation numbers by adopting the model of Daoud & 

Cotton50 to triblock copolymer brushes in a good solvent. Following this study we estimate the 

dimensionless width of the activation barrier as 

( )
N

NN
l
r

agg
c

c 3
2

21 υ
υ

β −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=          (19) 

where υ  is the Flory exponent for a good solvent (=0.588) and β  is a numerical constant of 

order unity.  If we substitute for the length of an individual chain in terms of the ensemble 

average, and non-dimensionalize with the characteristic length scale 32Nblc =  we finally 
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obtain the following expression for the destruction rate from integrating the exponential term in 

equation (18); with the Warner spring function: 

( ) ( )
( )

3 2
2

2

1
3, ,

1
3

N

A c

A w
A

Q r
NM Q t g c M

Q
N

⎡ ⎤−⎢ ⎥−
⎢=
⎢ ⎛ ⎞

−⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

⎥
⎥

       (20) 

Here M  is made dimensionless using the exit time scale Eτ .  The precise form of the front factor 

( ), wg c M  is presented in the results section. 

2.4. Probability Rate of Creation of Active Chain.  

Here we propose a mechanism for the creation of active junctions which provides some 

insights with respect to configurational changes of the micellar-network when subjected to shear 

or extensional deformation, and thus to the molecular origins of deformation-induced structural 

changes. Many diverse rheological phenomena are related to shear-induced modification of rates 

of the creation and loss of transient molecular structure and arise from modifications to the 

energetic barriers for creation and destruction. Examples observed in complex fluids include 

assembly of λ -phage DNA51, inhomogeneous structure formation and shear-thickening in 

worm-like micellar solutions52, multilamellar vesicle (“onions”) formation in diblock 

copolymers53. 

In the quiescent medium, thermal fluctuations bring about the transfer of ejected looped 

and bridged hydrophobes between the micelles. Hence, the probability rate of creation of active 

chains is proportional to the ejection rate Eτ1 of the hydrophobic ends. However, under shear or 

extensional deformation the association processes are expected to become considerably more 

pronounced owing to the strongly attracting end groups in telechelic polymers29, 32, 33, 37, 48. The 

association of telechelic molecules originates from the enhanced probability that the hydrophobic 
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end will collide with another micellar aggregate in presence of an imposed deformation. Figure 2 

shows a schematic of two hydrophobic ends “m” and “n” in a lattice of micelles undergoing 

shear. The “m” end is likely to experience more interactions per unit time with neighboring 

micelles compared to the “n” end due to the differential velocity. Note that the “m” and “n” 

chains have same length but different orientation. Hence, the collision rate increases as the root 

mean square projection of the chain dimension in the deformation direction31, 

( )2 :T
c sl τ κ κ+ + QQ  increases. Specifically, the dangling chains of dimension 

( )2 :T
c s B Bl τ κ κ+ + Q Q  and the bridging chains of dimension ( )2 :T

c s A Al Qτ κ κ+ + Q  are 

created. Here, sτ  is the characteristic interaction time of hydrophobic ends with the surrounding 

fluid medium comprising a lattice of attractive micelles. The probability rate of creation of active 

chains can then be determined as 

( ) ( ) ( ) ( )2 2
11 1, :eq eqT T

c s B B c s A A
E c E c

p p
L Q t l Q Q l Q Q

l l
τ κ κ τ κ κ

τ τ

−
≈ + + + + + :  (21) 

where ( ) ( )2 2 2

0
4 exp 0.5 4 exp 0.5eq a

p r r dr r r drπ π
∞ ∞

= − −∫ ∫ 2  denotes the equilibrium 

probability of chains lying at ar >  (the average distance between micelles). The first term 

accounts for the ejected loops and the second term accounts for the temporally ejected bridging 

chains. Equation (21) is non-dimensionalized to yield 

( ) ( ) ( ) ( ) ( ){ }2 2, , 1 1 : 1 :T T
w eq m B eq mL Q t h c M p G Q p G Q= − + + + + +κ κ κ κ 2

A   (22) 

where EsmG ττ= is a dimensionless constant and ( )wMch ,  is a monotonic function of polymer 

concentration and molecular weight. The form of ( )wMch ,  is presented in the next section. The 

parameter  represents the ration of the interaction time of the hydrophobic end to the mG
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characteristic thermal time scale for ejection of hydrophobes. This single parameter 

characterizing the nonlinear deformation rate dependence of the creation process will depend on 

the specific characteristics of the fluid (e.g. molecular composition and concentration). This 

completes the set of equations specifying the constitutive response of a model telechelic 

polymer. For completeness we summarize the model in Table II. 

 We now explore some consequences of the set of equations derived in this section by 

computing the stress response in steady shear and small amplitude oscillatory shear flows.   

3.  Model Results 

3.1. Equilibrium Composition and Conformation Tensor.  

In the absence of flow, the number of bridging and looped chains is in dynamical 

equilibrium. By setting , we solve equations (13-16) for the equilibrium fraction of 

bridging chains 

0κ =

eqφ  and for the equilibrium conformation tensors  &  for the bridges and 

danglers to obtain  

eqA eqB

( )
( ) ( )

2

2

eqA
eq

eq eq

L Q

L Q M Q
ν φ
ν

= =
+ 2

,         (23) 

and  

δ=eqA  and .          (24) δ=eqB

This results in an isotropic stress tensor δσ =eq . Equation (23) shows that the equilibrium 

fraction of bridging chains is the ratio of the probability rate of its formation to the sum of the 

creation probability rates of bridging and dangling chains. This is consistent with the partition 

function approach of statistical thermodynamics and the Monte Carlo simulations of Annable 
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and coworkers5. Note that the conformation tensors are independent of the fraction of bridging 

chains due to the normalization procedure (equation (7)).  

3.2. Zero Shear Viscosity and First Normal Stress Coefficient.  

We now consider weak flows under steady state conditions. We explore this by 

linearizing ,  and A B φ  to a first order perturbation in the shear rate γ  and then solving the 

governing equations (13-17). We then substitute the leading order terms in the equation for the 

stress tensor (equation (11)) to obtain the following expression for the dimensionless zero-shear-

rate viscosity:  

( ) ( )
0

2

1 1
2 1

eq R

B E E eqeqk T M Q
φη τ

ν τ τ φ
= +

−
.        (25) 

The first term is the stress contribution arising from the bridging chains and the second term 

comes from the dangling chains. This clearly shows that if the Rouse relaxation time of the 

temporary dangling chain is very short compared to the time scale associated with ejection of 

hydrophobic ends then the dangling chains will have negligible contribution to the shear stress. 

This limit was considered by Tanaka & Edwards23-26. We shall discuss the dependence of the 

zero-shear-rate viscosity on the polymer concentration and molecular weight later in this section. 

 By collecting the terms at second order in the perturbation expansion we can evaluate the 

first normal stress coefficient as 

( ) ( ) ( ) ( )
2

10
22 222

2 1 1 12
21 1

eq eqR R

B E E Eeq eqeqeq
k T M QM Q

φ φτ τ
ν τ τ τφ φ

⎛ ⎞ ⎛ ⎞Ψ
= + +⎜ ⎟ ⎜ ⎟

− −⎝ ⎠ ⎝ ⎠
   (26) 

where eqφ  is given by equation (23). Note that the second normal stress coefficient 020 =Ψ  as 

expected from this preaveraged closed system of equations. 
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3.3. Small Amplitude Oscillatory Shear Response.  

Next, we probe the linear viscoelastic response to a small amplitude oscillatory shear 

deformation which may be represented in complex form . Here  is the (real, 

positive) amplitude of the oscillatory shear strain and 

tie ωγγ 0= 0γ

ω  is the circular frequency . For small 

deformations, the conformation tensors  & B  and the dimensionless shear stress  are 

assumed to oscillate with the same frequency, but not necessarily in phase with the shear 

strain: ,  and  where 

A 12T

ti
eq e ωAAA ′+= ti

eq e ωBBB ′+= tieTT ω
1212 ′= A′ , B′  and  are the leading 

order responses and can be complex. Substituting these perturbations into equation (13-17), we 

obtain the following expression for the dimensionless complex viscosity 

12T ′

( )* iη η η′ ′′= −  

( ) ( ){ }

( ){ } ( ) ( ) ( ){ }

2 2
*

22 2 2

2

2

R
eq eq eq E

E

B E R
E eq E eq eq E

E

L Q M Q i

k T
i M Q i L Q M Q

τφ ωτ
τη

ν τ τωτ ωτ ωτ
τ

⎛ ⎞
+ + +⎜ ⎟

⎝ ⎠=
⎛ ⎞ ⎡ ⎤+ + + −⎜ ⎟ ⎣ ⎦⎝ ⎠

.  (27) 

By gathering real and imaginary parts, equation (27) results in the following closed-form 

expressions for dynamic moduli G  and ′ G ′′ :  

( )
2 2

B

G RQ SP
k T P Q

ω
ν

′ −
=

+
 and  ( )

22 QP
QSRP

Tk
G

B +
+

=
′′

ν
ω        (28) 

where ( )2 22R E eqP M Qω τ τ= − + , ( ) ( )2 22 eq eq R EQ M QQ Lω ω τ τ⎡ ⎤= + +⎣ ⎦ , 

( ) ( ){ }2 22 eq eq eq R ER L Q M Qφ ω τ ω τ= + +  and ERS τωτ 2= . Non-uniform dependence of the 

probability rate of dissociation and association on the chain end-to-end distance crucially affects 

the dynamic moduli, leading to deviation from the conventional form for parallel superposition 

of linear Maxwell elements. Nevertheless equation (28) shows that more than one time scale can 

be important in the linear viscoelastic deformation of telechelic polymers.  
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3.4. Analytical Solutions in the Limit 0→ER ττ .  

We now explore some consequences of the set of equations derived above by assuming 

fast relaxation of the dangling chains. If the relaxation is faster than the hydrophobe dissociation 

rate ER ττ <<  then the average orientation of dangling chains at any time will always be near the 

equilibrium value. This results in uncoupling of the non-linear equations for the bridging and 

dangling chains. Hence, the material functions can be written in simpler form as: 

( )
0

2
eq

B E eqk T M Q
φη

ν τ
=           (29) 

( )
10

22 2

2 eq

B E eq
k T M Q

φ
ν τ

Ψ
=           (30) 

( )
( )

2

2 2 2eq
B eq

G
k T M Q

ω ωφ
ν ω

′
=

+
 and  ( ) ( )

( )

2

2 2 2

eq
eq

B eq

M QG
k T M Q

ωω
φ

ν ω

′′
=

+
    (31) 

Hence, in small amplitude oscillatory shear, our model reduces to a linear Maxwell model with 

an effective relaxation time 

( )2
E

eff
eqM Q

ττ = ,           (32) 

that depends on the dimensionless destruction rate, which itself depends on polymer 

concentration and molecular weight. We can see easily verify that the zero-frequency viscosity 

( ) 00
Lim G
ω

ω η
→

′′ =  is same as the zero-shear rate viscosity, as expected. Furthermore, the storage 

modulus, in the limit { }2
100

2Lim G
ω

ω
→

′ = Ψ  gives the result expected from simple fluid theory. 

We also obtain the Plateau modulus  in the limit of high frequency modulus as 0
NG

( )
1eff

eqLim G
τ ω

ω φ
>>

′ =  which also scales with polymer concentration and molecular weight.  
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In the limit 0→ER ττ , we can also solve explicitly for the steady shear viscosity and the 

steady extensional viscosity as a function of shear rate. The solution is obtained analytically as a 

function of the trace of the conformation tensor for bridging chains . The expressions 

for the steady shear viscosity and steady extensional viscosity are given by 

AtrQ A =2

( )
( )

(
B E

Wi )f tr
k T M tr

η φ
ν τ

= A
A

         (33) 

and 

( ) ( )
( )( ) ( )( ) (3

2
E

B E

De M tr )f tr
k T M tr De M tr De

η φ
ν τ

=
− +

A
A

A A
      (34) 

where ( ) ( )1 1 3f tr tr N= −A A , ( ) ( ) ( )( )L tr L tr M trφ = +A A A , the Weissenberg number in 

steady shear is computed as ( ) ( )-3 2EWi M tr trγτ= = A A  and the Deborah number is 

evaluated as  ( ) ( )( ) ( )( )-3 9 -3 -3 4EDe M tr tr tr tr trετ= = −A A A A A  .  

3.5. Concentration and Molecular Weight Scaling of ( ), wg c M  and ( ), wh c M .  

We construct the molecular weight and concentration scaling for the observed rheological 

material properties following the arguments of Annable et al.5 and Marrucci et al.31. The 

experimental results of Annable and coworkers show that the concentration-dependent relaxation 

time scales as a function of wMc  and the theoretical predictions of Marrucci and coworkers 

suggest that the effective relaxation time scale ( ) 32
~ weff Mcτ .  Since the effective relaxation 

time is inversely proportional to the probability rate of dissociation, we obtain from equations 

(20) & (32) that 
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( ) ( )

23
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3
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3
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⎥
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⎦

⎤

⎢
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⎣

⎡

−
−

⎟
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⎞

⎜
⎝
⎛ −

= χ         (35) 

where a , given by equation (3), is the average spatial distance between the micelles and χ  is a 

numerical constant of order unity. The theoretical predictions of Marrucci et al.31  also show the 

augmented dependence of zero shear viscosity on concentration ( 35
0 ~ cη ). Following his scaling 

arguments and using equations (29) and (35), we approximated the form of ( )wMch ,  as 

 ( ) ( )
3 2, w

w

F M
h c M

a

ξ
=          (36) 

where ξ  is a numerical constant of order unity and ( )wMF  is a function of molecular weight of 

the polymer and it describes the degree of compression micellar system as discussed by Semenov 

et al.38.  We approximate a simple form for this function to be 

 ( ) 1
*

−=
w

w
w M

MMF           (37) 

where is the critical molecular weight of the polymer when the micellar system turns into a  

completely compressed gel. At this point no further creation of bridging chains is possible. 

*
wM

3.6. Non-linear Steady Shear Rheology (model) Predictions.  

We now examine the predictions of our model (equations (13-17)) for steady state shear 

flows. Although it is possible to obtain simplified analytical solutions for the material functions 

for the limit 0→ER ττ , this is not true in the more general case because of the terms in 

equations (13-17) that are nonlinear in the conformation tensor.  We solve these equations 

numerically as a set of coupled (scalar) ordinary differential equations. That is, we specify the 
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components of deformation tensor Τκκ +  and solve equations (13-17) with a Runge-Kutta 

routine. Steady-state material functions are obtained as the long time asymptotes of the 

corresponding material functions following the instantaneous inception of the flow. We neglect 

the solvent contribution of stress (such a contribution is not be significant in a semi-dilute 

aqueous solution).  

 The description of the evolution of material properties depends on various molecular 

features such as molecular weight , aggregation number , number of hydrophobic 

carbon moieties , the concentration of telechelic chains c  and the solvent quality. In addition, 

material properties are functions of the rate of deformation and the temperature of the system. 

Although the quantitative dependence of the material properties on each of these molecular 

features can be studied, we specifically focus our attention on the variation with concentration 

and the number of hydrophobic carbon links. Hence we examine the predictions of our model for 

a particular set of molecular properties ,  ranging 

from 10 – 40 kg/m

wM aggN

cn

CTmolgMN wagg
025,/65300,20 === c

3 (1-4 wt%) and  ranging from 14 - 16. In addition, we also fix the values of 

various model numerical constants as 

cn

2.1,3.0,07.0 === ξχβ  and * 3109 10 /wM g mole= × . 

An interesting feature of the model is the importance of the deformation-induced creation 

rate as compared to thermal diffusion rate, given by the parameter . Figure 3(a) shows the 

steady state fraction of bridging chains 

mG

φ  as a function of the dimensionless shear rate Eγ τ  for 

several values of the dimensionless number . Here, the polymer concentration and the 

number of hydrophobic units are 

mG

2c = wt% and 16=cn , respectively. At low shear rates, 

thermally-induced fluctuations predominantly initiate both the destruction and creation of the 

bridging chains. Since rates for these two processes are initially equal ( E )τ1 , the fraction of 
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bridging chains stays constant. With increasing shear rate, both the rate of creation and the rate 

of stretch-induced destruction of bridging chains increase nonlinearly. The balance between 

these rates characterizes the shear thickening and shear-thinning behavior of the telechelic 

polymers. When the exit rate of hydrophobic end groups exceeds the collision rate of the 

dangling end-groups with the surrounding micelles, the fraction of bridging chains decreases 

with increasing shear rate. Hence, for 1<mG , the increase in shear rate leads to an increase in 

the stretching force in the bridging chains, which de-couples them from the micellar junction. 

However, for some telechelic polymeric systems, the rate of deformation-induced association of 

the dangling end groups increases for a range of shear rates. Hence, for , the number of 

elastically active bridges first increases and subsequently decreases with the applied shear rate.  

1>mG

Figure 3(b) shows the steady-state fraction of bridges as a function of applied shear rate 

for concentrations ranging from 1 – 4wt%. In general, the number of bridging chains stays 

constant at low values of shear rate, increases at moderate shear rates and eventually decreases at 

large values of the shear rate. At low concentrations, only a few bridging and dangling chains is 

present in the network system. Hence, the molecular associations hardly increase the number of 

bridging chains in a shearing telechelic polymer system. As the concentration increases, the 

probability of association of a dangling chain increases and the maximum value attained by 

number of bridging chains also increases.  

In the three parts of figure 4 we present the dimensionless steady shear viscosity, steady 

shear stress and the first normal stress difference as a function of the dimensionless shear rate for 

different values of polymer concentration . The steady shear viscosity profile captures typical 

characteristics of telechelic polymers such as a shear-rate-independent viscosity at low shear 

rates, shear thickening at intermediate shear rates, and severe shear thinning at elevated shear 

c
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rates. Although the zero shear viscosity is parameter independent, the amount of shear thickening 

can be adjusted by tuning the parameter . As the concentration increases, the onset of shear 

thickening and shear thinning shift to the lower shear rate. This is consistent with the recent 

experimental finding of Ma and Cooper

mG

16. The model correspondingly predicts expected features 

of steady shear stress profile such as a constant rate of increase of shear stress at low values of 

shear rates and a slow rise at high shear rates. The stress is expected to approach maximum at 

very high values of shear rates. It is important to notice that the shear rate values at the point of a 

stress maximum are much higher than the values of shear rates at the onset of shear thinning. 

Hence most of the shear thinning that is observed is a result of progressive network deformation 

rather than network collapse. This is also supported by considering the first normal stress 

difference profiles. The normal stress slowly increases in the shear thinning region and its value 

is larger than the corresponding shear stress ( )11 22 12τ τ τ− ≥ . Hence, the network becomes 

increasingly elastic at high values of the Weisenberg number. These observations are consistent 

with recent experimental findings of Sadeghy and James21.  

3.7. Non-linear Extensional Rheology (model) Predictions.  

We now examine the predictions of our model (equations (13-17)) for uniaxial 

extensional flows. We solve these equations numerically as a set of coupled (scalar) ordinary 

differential equations. Figure 5(a) shows the transient extensional viscosity of 4% HEUR 

solution for various Deborah numbers. After a rapid increase at short times, the extensional 

viscosity rapidly attains a steady state value for all values of Deborah number. As the Deborah 

number increases, the critical time to reach steady state decreases. For comparison, the linear 

viscoelastic (LVE) extensional viscosity ( )( )03 1 expE t Eη η+ = − − τ  is also plotted in figure 5(a). 

The model clearly predicts a strain hardening behavior for associative polymers. Figure 5(b) 

 31



   

shows the steady extensional viscosity as a function of Deborah number for three different sets 

of N  and  values that parameterize the PEO chain length and hydrophobe length. The steady 

extensional profile captures important characteristics of telechelic polymers such as strain-rate-

independent viscosity at low extensional rates, strain hardening at intermediate strain rates, and 

an extensional viscosity decrease at elevated

cn

De . The increase in viscosity is due to a strain-

induced increase in bridging interactions. The experimental work of Sadeghy and James21 also 

show strain hardening behavior for 8.02.0 << De . For consistency with our initial theoretical 

model considerations, we have defined Deborah number as ετ EDe = , however we recognize that 

a more realistic definition of Deborah number should be ετ effDe = . This can be easily evaluated 

using equation (32). As expected, on increasing the hydrophobic strength (stronger micelles) the 

extensional viscosity rapidly rises. Similarly, a decrease in the length of the bridging chains leads 

to an increase in the elongational viscosity due to nonlinear elastic stretching of the chains. 

Figure 5(b) also shows the analytical solutions (for the limit 0→ER ττ ) to be in excellent 

agreement for small De . Furthermore, at large Deborah numbers, the model predicts an inverse 

dependence on De , showing that the extensional stress difference saturates. Dashed lines with 

 asymptotic slope are also indicated in the figure.  1−

To summarize, the proposed nonlinear network model is able to predict the majority of 

commonly-observed characteristics of telechelic polymers. In the next section, we proceed to 

describe our experimental work and then compare the experimental data with model predictions.  

4. Experiments 

 The model polymers used in this study were  and  (i.e. ) end-

capped urethane-coupled poly(oxyethylene) of three different molecular weights. The model 

16 33C H 20 41C H 20,16=cn

 32



   

HEUR polymers were synthesized and characterized by Dr. R. D. Jenkins at Union Carbide. The 

chemical structure is shown in figure 6 and the composition details are also summarized. In the 

first column some simple codes used to represent the polymer are assigned. We also present the 

estimated molecular properties for these model polymers. We ignore any variation in the 

aggregation number either with the polymer concentration10 or under an applied deformation 

field54. The procedure describing the synthesis of the HEUR polymers is described in detail by 

Jenkins et al.55  The number-averaged molecular weight, , and the polydispersity index of the 

polymer, 

nM

nw MM , were measured in THF using a standard GPC technique (Shimadzu GPC 

system). The polymer was stored in the refrigerator at 4°C to minimize air oxidation and 

degradation. The samples were made by mixing a known amount of Millipore MilliQ distilled 

water and were kept for 2 days prior to testing to allow the solutions to equilibrate. The relevant 

concentration-molecular weight regimes are discussed in detail in §4.1. 

The shear flow experiments were performed using a controlled-stress rheometer (AR-

1000N, TA Instruments). Different geometries (including cone-and-plate, Couette fixtures) were 

used to probe the rheological response of the test fluids. Both steady shear and small amplitude 

oscillatory tests were performed.  For oscillatory testing, the applied strain was kept to 

amplitudes less than   in order to ensure that the tests were within the linear viscoelastic 

region. Experiments were carried out at temperature of 25 and controlled using a Peltier plate. 

2.00 ≤γ

C0

The extensional flow measurements were performed using a filament stretching 

rheometer and the procedure has been described elsewhere56-58. A nearly cylindrical sample of 

HEUR polymer solution initially fills the gap between two rigid, circular end plates with 

diameter and initial separation mmD 30 = .5.10 mmL =  To estimate the effect of gravitational 

sagging of samples, the ratio of gravitational to surface tension forces, characterized by the 
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dimensionless Bond number Γ= 42
0 ogDB ρ  was evaluated. Here, the surface tension Γ of the 

HEUR polymer solutions was measured to be 40Γ = dynes/cm. Hence, the Bond number for the 

fluid samples was kept small ( ) to minimize the errors due to gravitational sagging. 

The endplates were then moved apart to a final separation with an exponentially-increasing 

separation profile, 

55.00 =B

( ) (0 exp )L t L Et= , where E  is the strain rate. While the fluid filament was 

being stretched, the evolution in the tensile force and mid-filament diameter were measured 

simultaneously. Although the imposed filament length is exponential, the measured mid-filament 

diameter was observed to be far from ideal (i.e. it was not described by the homogeneous 

deformation of a cylindrical element ( ) ( )0 exp 0.5midD t D tε= − ) due to additional shearing 

motion induced at either endplate. Hence, filament stretching experiments are performed twice 

for each sample, first using an imposed separation profile, ( ) ( )0 expL t L Et=  to construct a 

‘master curve’57 and second, using corrected separation 

profile, ( ) ( )(( ) )0 0exp 2ln midL t L D D t t= . These so-called “Type III” tests57 resulted in ideal 

uniaxial extension of the HEUR samples with a constant deformation rate at the midplane. 

4.1. Concentration -Molecular Weight Regime.  

The inter-entanglement and recombination of hydrophobic chains under quiescent 

conditions depends on the molecular weight and volume fraction of the polymer. In dilute 

solutions the number of bridges is exponentially small; thus the attraction energy for the 

recombination of hydrophobic chains is weak. However the excluded volume repulsion is also 

small in this region and the interaction energy is dominated by attraction39, 59. As the 

concentration of polymer increases, the attraction between the micelles increases, however, the 

excluded volume repulsion also increases. The coronas of neighboring micelles become 
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compressed. When the concentration is further increased, the attraction energy between two 

flowers is large for large aggregation number so that the micelles have a tendency to entangle. 

Hence, the net interaction energy38 between the hydrophobic units and the micelles is expected to 

vary from dilute to semi-dilute and from semi-dilute to entangled polymer solutions. Graessley60 

represented the viscoelastic behavior of polymer solutions in a succinct manner by constructing a 

concentration-molecular weight diagram. Following this idea, we compute the overlap 

concentration for the PEO chains, which separates the dilute region from the semi-dilute 

region by using 

*c

[ ]* 0.77c η= , where [ ]η  is the intrinsic viscosity of the solution. Similarly, the 

boundary between unentangled and entangled regimes is described by ( ) ( )soln melte eM M= c  with 

( )melt
4500eM g mol=  for PEO2.   The intrinsic viscosity of the polyethylene oxide in a good 

solvent such as water can be approximated using [ ] 0.780.0125 /wM ml gmη = 61. Figure 6 shows 

the concentration-molecular weight diagram distinguishing various regimes for PEO-based 

HEUR solutions. Also, shown are the concentration and molecular weights of model associative 

polymers used in various other recent studies. Most of the published literature results lie near the 

dilute/semi-dilute regime. The viscoelastic properties of semi-dilute solutions are very sensitive 

to solvent quality and the precise concentration of dissolved polymer. This is one possible reason 

for the large variation in properties of HEUR polymers reported in some previous studies.  

4.2. Comparison with Shear Rheology Experiments.  

It is known that the viscosity of hydrophobically end-capped polyethylene oxide solution 

is much higher than that of an unmodified PEO solution at the same concentration, and also 

depends more strongly on the polymer concentration. This viscosity enhancement is convincing 

evidence of the association of the hydrophobic end groups in aqueous solution. To evaluate the 
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zero-shear-rate viscosity of the fluid in steady shear flow, we use equation (25), where the 

equilibrium fraction of bridging chains is given by equation (23). The equilibrium values of the 

formation rate and destruction rate reduce from equation (22) and (20) respectively to eqL eqM
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Finally the constants χ   and ξ  are set to the values specified in §3.6. Figure 7 shows the effect 

of HEUR concentration on the steady zero-shear rate viscosity for a series of model polymers at 

25oC. Both the experimentally measured data and the model predictions show dramatic increases 

in the viscosity with increase in concentration. The predicted scaling of the model 

provides a good description of the experiments. It is important to note that the zero-shear 

viscosity is independent of the model nonlinear parameter .  

75.2
0 ~ cη

mG

The viscoelastic response of 2wt% HEUR22-2 sample to a small amplitude oscillatory 

shear deformation is shown in Figure 8(a). The experimental data is fitted using the model 

functions given by equation (31). Note that once again the linear viscoelastic response is 

independent of the model parameter . As can be seen, the model describes the frequency 

dependence of both the elastic storage modulus and viscous loss modulus data very well. The 

viscous and elastic moduli cross at a critical frequency  which is commonly taken to be the 

effective relaxation time of the active network. Equating the expression of G and 

mG

*ω

′ G ′′ from 

equation (31) leads to  

 36



   

E

A

wagg

E

eq

eff

cN
MN

M
τ

π
χ

ττ
ω

32

* 8
3

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

===         (40) 

where we have used equation (39) in the final equality. This effective time constant scales 

as 32~ ceffτ . It should be noticed that the Rouse relaxation time  for HEUR22-2 is 

many orders of magnitude smaller than the network time 

sR
5105 −×=τ

seff 076.0=τ . Under these 

circumstances the dangling chains are essentially always in their equilibrium conformation. Thus 

only bridging chains (with 2.0=eqφ ) contribute significantly to the total polymeric stress in the 

system, and the relaxation process of the temporary dangling chains has a negligible contribution 

to the viscoelastic response.  

Figure 8(b) shows the shear rate dependence of the steady-shear viscosity of the same 

2wt% HEUR22-2 sample. After showing Newtonian behavior at low shear rates, the data 

exhibits a moderate shear thickening region, a maximum in viscosity at  followed by 

pronounced shear thinning at high shear rates. The model predictions agree remarkably well with 

the experimental data and capture all of the characteristics of the shear rate dependence. Here, 

the amount of shear thickening is tuned by adjusting the rate of creation of active junction 

through the value of  (the single nonlinear model parameter). Hence, an increase in the 

number of active chains with shear rate leads to the shear thickening of these HEUR solutions. 

At higher rates the increased rate of creation is overcome by the nonlinear stretching of the 

elastically-active chains which leads to a rapid increase in the junction pull-out rate. Also, shown 

in the figure is the frequency dependent dynamic or complex viscosity 

110~ −sγ

mG

( )ωη* obtained from 

small amplitude oscillatory shear experiments. The steady shear viscosity and dynamic viscosity 

are equal at low frequencies whereas at higher frequencies the complex viscosity shows a much 
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stronger dependence on frequency than the steady shear data exhibits with shear rate. This 

deviation from the Cox-Merz rule has been observed experimentally3, 4 and has been noted as 

one of the primary rheological features of telechelic polymer rheology. In small amplitude 

deformations, the contribution of shear-enhanced aggregation of micellar junctions given by 

equation (22) is expected to be negligible. 

As the concentration of HEUR chains is increased we expect the effective time constant 

to increase ( 32~ ceffτ ), the total zero-shear rate viscosity of solution to increase ( ) and 

the plateau modulus to increase ( ). The number of active bridging chains and the 

effective time constant increase to 

75.2
0 ~ cη

eqNG φ~0

35.0=eqφ and seff 12.0=τ , respectively for 4wt% HEUR22-2 

solutions. The model captures each of these features as we show in figures 8(c) and (d) for 4wt% 

HEUR22-2 solution. In addition to the expected trends noted above we find that the shear-

thickening observed at intermediate concentrations is greatly reduced. This effect is captured by 

the parameter  as shown in figure 3(a). The anisotropic creation rate thus appears to be 

concentration-dependent. We thus fit the data by decreasing the value of the nonlinear model 

parameter  The model predictions again shows a good agreement with the experiments. 

The disappearance of a shear-thickening regime is captured in the model by reducing the value 

of the non linear parameter . Hence, at high concentrations when the distance between 

neighboring micelles is small, there exist a large number of active bridging chains and the flow-

induced anisotropy in the number of active bridging chains is minimal.  

mG

.8.1=mG

mG

  Having verified the concentration dependence of the viscometric properties both 

experimentally and numerically, subsequent experiments were performed for HEUR solutions 

with longer PEO chains ( molgM w 93000= ) and identical aliphatic end groups ( )16=cn . 
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Hence the solutions are of lower relative hydrophobicity and contain weaker micelles leading to 

lower overall viscosity values. Figure 9(a) shows the linear viscoelastic response of 3.8wt% 

HEUR22-4 sample along with the model prediction. The observed frequency dependence of the 

loss and elastic moduli is once again well described by the model. Only 14.5% of chains 

( 145.0=eqφ ) carry stress and the effective time constant for the network is seff 13.0=τ . Figure 

9(b) shows the measured steady shear viscosity for various applied shear rates. The data is in fair 

agreement with the predictions of model over entire range of shear rate. It is import to emphasize 

that the evaluation of the zero shear-rate viscosity requires no free parameter. The scaling is 

predicted by equation (29) and given fixed values of and . The magnitude of the shear 

thickening is once again adjusted using the single model parameter .  Good agreements is also 

attained for the HEUR22-6 sample for 6.8wt% with 

wM c

mG

0 24.7Pa.sη = , 0.19seffτ =  and 3.1mG = . 

However space precludes from presenting the results here. 

Further experiments were also performed using 2wt% HEUR23 polymers 

( molgM w 86000= )  with endcaps of higher hydrophobicity ( 20=cn , i.e. longer end groups). 

For such materials, the activation energy for disengagement increases and the solution is likely to 

exhibit strong network-forming properties. Although it can be naively argued that more 

hydrophobic end groups likely to participate in the formation of micelles but, in fact, the ratio of 

hydrophilic to hydrophobic chain segments has increased to 57.48=cnN  from 5.46=cnN  for 

2wt% HEUR22-2. Hence, we have kept the aggregation number  constant for evaluation of 

rheological responses. Figure 10(a) shows the viscoelastic response of 2wt% HEUR23 sample to 

small amplitude oscillatory shearing deformation. Since the depth of energy well (described in 

figure 1) has increased due to longer hydrophobes, the relaxation time or the effective time 

aggN
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constant has increased dramatically to seff 52.4=τ . Moreover, the Rouse modes of the chains are 

more visible in the viscoelastic response. It is important to note that only 11% of chains 

participate as active bridging chains (i.e. there are more looping chains) which lead to a low 

value of the plateau modulus. The observed dependency of the loss modulus and storage 

modulus on dynamic frequency is captured remarkably well by the model. Figure 10(b) shows 

the steady shear viscosity for 2wt% HEUR23 sample. After showing Newtonian behavior at low 

shear rates, the data exhibits a shear thickening region at intermediate shear rates  

which is much lower than observed in HEUR22-2 samples. However, the corresponding 

Weissenberg number is  and is thus comparable to the value for shear-thickening in figure 

8(b). The model predictions agree well with this experimental data. At high shear rates, the 

experimental data shows much more rapid shear thinning than that predicted by the model. Since 

the sample shear thins at rate faster than  (see dashed line figure 10(b)), this is unlikely to be 

of rheological origin, possible causes for the rapid shear thinning may be (a) either a shear-

induced phase separation or (b) slip between the sample and conical fixture of the rheometer. 

Shear-induced phase separation has been observed in short chains with long hydrophobic end 

groups ( ) at stresses as small as 10-15 Pa

12.0~ −sγ

~ 1Wi

1−γ

18cn = 62.  Our measurements are more consistent with 

the previous observations of Sadgey and James21 in which they demonstrated the occurrence of 

slip when the shear stress exceeded roughly 500Pa.  The critical shear stress for slip in our 

experiments can be estimated to be 200Pa and is lower as expected for sample with stronger 

hydrophobic micelles. 

 40



   

4.3. Comparison with Extensional Rheology Experiments.  

Having demonstrated that the new model provides good agreement with the measured 

shear rheology of HEUR solutions over a range of concentrations, molecular weights and end-

cap lengths, we now focus on the transient extensional rheology of these systems. 

We use filament stretching rheometry63 to measure the tensile stress of extensional 

stresses in the same telechelic polymer solutions modeled above. We also explore the predictive 

power of the new two-species network constitutive model by comparing our measurements with 

numerical simulations of the start-up of uniaxial extension without adjusting any of the 

constitutive parameters obtained from regression to steady shear flow. 

 A series of video-frames for a 4wt% sample of HEUR22-2 sample stretched at an 

externally imposed strain rate of  are shown in Figure 11. The images show the 

initial cylindrical liquid bridge configuration and its rapid extensional deformation into a necked 

configuration (as a result of the no-slip boundary condition at either endplate). The primary 

effect of non-Newtonian tensile stresses in the fluid is to establish an axially-uniform cylindrical 

region over the central region of the filament. The diameter of the fluid thread subsequently 

decreases smoothly and monotonically with time over a large portion of the filament length, with 

two quasi-static fluid reservoirs connecting the fluid thread to the endplates. Because the 

filament does not evolve as an ideal cylinder, the kinematics at the midplane are not those 

expected from homogeneous uniaxial elongation and the velocity profile must be corrected

106.3 −= sE

63-65.  

The time-evolution in the diameter is measured very close to the midplane using a laser 

micrometer, and this measurement is used to construct the corrected endplate displacement 

profile57. The subsequent experiment at the same strain-rate can then be performed under 

conditions that generate ideal uniaxial elongation at the midplane (a so-called ‘Type III’ test65). 
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The diameter profiles measured at the midpoint of the elongating filaments at three 

values of strain rate for a series of ‘Type III’ experiments performed using 4wt% solutions 

HEUR22-2 are shown in Figure 12(a). It can be seen that the diameter decreases in a smooth 

exponential manner that is well-described by ( ) ( )tDtDmid 00 5.0exp ε−= , and linear regressions to 

this expression are shown by the solid lines. Figure 12(b) shows the corresponding tensile force 

measurements measured by the force transducer attached to the stationary lower plate (following 

correction for gravitational and surface tension terms66). In addition the numerical predictions of 

the two-species model in start-up of steady uniaxial elongational flow are shown for each 

sample. For each of these stretching experiments, the tensile force first grows rapidly at the onset 

of stretching, passes through a maximum that is dependent on strain rate, and then gradually 

decays as the filament diameter decays exponentially. These measurements can be combined to 

evaluate the time evolution in the transient tensile stress difference ( ) ( ) ( )tDtFt midz
24 πτ =∆   as 

shown in Figure 12(c). In each case the time constants and the single nonlinear model parameter 

are identical to those values given in Figures 8(c) & 8(d), and are not adjusted to fit the measured 

data. The model appears to provide a good description of the extensional stress growth in startup 

of uniaxial extension of the HEUR22-2 filament over a range of deformation rates, although it 

over-predicts the steady state tensile stress at long times for the lowest deformation rate 

experiment. This might be in part due to some gravitational sagging in the column, which 

progressively invalidates the top-bottom symmetry assumed in the instrument operation and 

analysis.  Finally, the extensional viscosity growth function for the 4wt% HEUR22-2 sample is 

shown in Figure 12(d) in the form of a dimensionless transient Trouton ratio (scaled with a zero-

shear rate viscosity of Pa.s6.630 =η ) as a function of dimensionless time. The corresponding 

Deborah numbers for each strain rate are shown in the figure legend. The experimental data is in 
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good agreement with the model (except at small De and long times for the reason noted above). 

The extensional viscosity shows a transient response on time scales of order Eτ followed by an 

approach to steady state with moderate extension rate-thickening leading to Trouton ratios 

3 ≤ Tr ≤ 10.  

 Decreasing the concentration of HEUR polymer in solution results in a progressive 

decrease in the effective relaxation time and in the modulus of the micellar network; however the 

two species network model still provides a good description of the evolution in the extensional 

stress difference as we show in Figure 13 for the 2wt% HEUR22-2 solution. 

As the concentration of HEUR polymer, and the associated network strength, is 

decreased, the Hencky strains that can be attained in homogeneous uniaxial extension are 

reduced due to the onset of a flow instability that is depicted in the sequence of high-speed 

digital video images shown in Figure 14(a). A defect appears in the filament (typically close to 

the midplane) and a tear rapidly propagates radially across the fluid thread. Because the fluid is 

in tension, the scission into two topologically-distinct domains is enhanced by elastic recoil 

towards the two endplates. The two blobs undergo a series of inertio-elastic damped oscillations 

that decay over time scales longer than this image sequence. The tear surface present for short 

times following the rupture event is shown quite clearly in the last 3 frames of Figure 14(a).  

Similar rupture instabilities are observed in polymer melts when the tensile stresses in the 

entangled network result in catastrophic loss of entanglements67. In the present system, the 

imposed elongational flow results in disruption of the network of interconnected flower micelles 

and a progressive collapse in the tensile stress.  Viscoelastic necking and rupture instabilities are 

commonly described phenomenologically by the Considère criterion which states that 

homogeneous uniaxial elongation in an elastic material cannot be maintained beyond the strain at 
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which the tensile force passes through a maximum68. We denote this critical strain as the ‘failure 

strain’ fε . However this stability criterion does not provide any information on the subsequent 

time required for the instability to propagate completely across the elongating sample and lead to 

filament rupture. In an elastic solid this rupture may be very rapid, whereas in viscoelastic fluids 

the defect propagation will depend on the specific details of the fluid rheology and constitutive 

model69, 70.  

In Figure 14(b) we show the results of filament stretching experiments at three different 

strain rates and plot the strains at which the force passes through a maximum (together with the 

model predictions) and also the value of the strain (determined from high speed video images at 

500 frames per second) at which the sample completely bifurcates into two domains. Although 

the constitutive model accurately describes the strain at which the force passes through a 

maximum, it is clear that the time required for instability growth and complete sample failure can 

be quite long at low strain rates. As the imposed strain rate increases and the effective Deborah 

number grows, the two curves approach each other, in agreement with general theoretical 

expectations of approach towards a rapid stretching limit in which viscous effects become 

negligible68, 69.   

Finally, in figure 15 we show the measured steady state elongational viscosity together 

with the predictions of the new network model as a function of the imposed strain rate. The 

HEUR solutions show tension thickening at intermediate De and this is predicted to be followed 

by rate-thinning at high Deborah numbers; however our present filament stretching device is 

unable to achieve deformation rates beyond 10 s-1.   For consistency with our initial theoretical 

model considerations, we scale the elongation rate with the natural intrinsic timescale of the 

model τE . For this reason, appreciable elastic effects appear to develop at Deborah numbers less 
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than 0.5; however the effective network time scale effτ may be significantly longer (see equation 

(5) or (32))31.   For comparison we also show by the dashed lines the sensitivity of the model 

predictions to changes in the single nonlinear model parameter, mG . Although changing this 

parameter by an order of magnitude affects the quantitative model predictions, it does not change 

the qualitative trends observed in the figure for finite values of . When the model parameter is 

set to =0, the model predicts much rapid rate thinning at high Deborah numbers. This 

suggests that, in the absence of any strain-induced incorporation of hydrophobes, the number of 

active chains decreases very promptly under uniaxial extension.  

mG

mG

The dynamics of necking instabilities in viscoelastic fluid threads have been reviewed 

recently by Renardy71 and it is noted that  fluid threads described by constitutive models in 

which the extensional viscosity passes through a maximum may undergo a purely elastic mode 

of necking failure in which surface tension plays no role. Our observations of network rupture 

shown in Figure 15 appear to be consistent with this expectation. 

5. Conclusions  

In this paper we have reported an experimental and theoretical investigation of the non-

linear rheological properties of telechelic associative polymers. Shear and extensional flow 

experiments were performed using a series of model hydrophobically-modified ethoxylate-

urethane (HEUR) polymers with varying degrees of hydrophobicity. Initial attempts were made 

to describe these experimental observations using Vaccaro-Marrucci model37 but only qualitative 

agreement could be attained. Similar conclusions were reached by Pellens et al.3, 4  Based on 

insights from Brownian dynamics simulations by van den Brule & coworkers33, 34, a new closed-

form constitutive model – which incorporates important molecular features of the associative 
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polymer solutions – has been developed to describe the observed non-linear flow properties. The 

model incorporates contributions to the total stress tensor from both the ‘elastically-active’ 

bridging chains between micelles and the dangling chains that continuously exit and re-enter the 

micellar junctions. Non-linear chain extension, the shear-induced enhancement of associations 

and the stretch-induced dissociation of hydrophobic chains are essential features of the model. 

The resulting constitutive equation is summarized in Table II and closed form expressions for the 

linear viscoelastic properties, the zero-shear rate viscosity and first normal stress difference are 

derived in Section 3. Without the use of adjustable functions the model accurately predicts the 

experimentally observed power-law dependence of zero-shear-rate viscosity on polymer 

concentration;  . Telechelic polymer systems commonly exhibit dual relaxation 

behavior arising from the Rouse relaxation time 

η0 ~ c2.75

τ R  of the individual polymer chains 

(~ s) and from the “effective” network relaxation time 5 × 10−5 τ eff (~ 10 s).  The model predicts 

that this “effective” network relaxation time depends on the concentration and molecular weight 

of the chains, the length of the hydrophobic end-groups and the aggregation number of the 

micelles and is of the form 

−1

  
τ eff = χΩ( )−1

3Nagg M w 8πcN A( )−2 3
e0.98nc . This agrees with the 

nonlinear dependence on concentration τ eff ~ c2 3  observed experimentally.  

The model and the experimental measurements both show a marked deviation from the 

Cox-Merz rule. The measured steady shear viscosity ( )η γ  for a number of the HEUR samples 

show considerable shear thickening prior to the onset of shear thinning at higher shear rates. 

These features are captured by the new model using a single dimensionless constitutive 

parameter G , which describes the orientational and deformation-rate dependent creation rate of 

the active chains. The relative magnitude of this parameter with respect to the nonlinear 

m

 46



   

stretching of the elastically-active chains also allows us to describe quantitatively the observed 

shift in the onset of shear thickening and subsequent shear thinning towards lower shear rates 

upon an increase in polymer concentration or molecular weight. Computed profiles of the first 

normal stress difference are monotonic and do not show a local maximum; indicating that, in this 

model at least, the shear thinning at large deformation rates as a result of progressive network 

deformation rather than network collapse.  

We also report the first quantitative comparisons of model predictions for the transient 

extensional rheological properties with experimental measurements obtained using a uniaxial 

filament stretching device.  Using the same values of the constitutive parameter  determined 

from steady flow, the model predicts extensional stress growth profiles that are in close 

agreement with data.  The results show a moderate strain-hardening in the transient extensional 

viscosity of HEUR polymer solutions at intermediate strains and the transient extensional stress 

difference approaches a steady state for Hencky strains greater than two. The elongating samples 

ultimately undergo a viscoelastic rupture event. The filament necking and rupture processes 

observed experimentally appear to be connected to an instability resulting from saturation in the 

tensile stresses and a local maximum in the steady-state extensional viscosity at a critical 

deformation rate.  

Gm

The new two-species model is shown to quantitatively capture almost all of the nonlinear 

features that have been observed in telechelic associative polymers. However, additional 

refinement of the model is needed to investigate several unexplored properties such as 

temperature dependence of the rheological functions, the effect of looped chains (whose 

contributions were assumed to be negligible) and the consequence of closure approximations. 

The dependence of the network relaxation time on temperature contains an Arrhenian 
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contribution from the jump rate 1
Eτ −  but also additional contributions because of the unknown 

nonlinear dependence of the aggregation number  in associative polymer systems on 

temperature

Nagg

10, 39, 59.  At very high concentrations of HEUR polymers, the additional presence of 

looped chains is likely to generate repulsive potentials38 which will change the creation and 

destruction rates of the elastically-active chains.  The quality of the closure approximations 

employed in deriving closed forms for the network creation and destruction terms, as well as the 

orientational dependence of the creation rate, can be best explored using Brownian dynamics or 

other micro-scale simulation methods.  

The recent success of closed-form two-species network models such as the present one in 

describing the linear and nonlinear rheological properties of telechelic polymers suggest that 

such models may also be useful (through the incorporation of appropriate network creation and 

destruction terms) in modeling other complex fluids featuring temporary physical networks. 

Such systems include hydrophobically modified alkali-soluble ethoxylates (HASE) and 

wormlike surfactant micellar systems. 
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Table I: Comparison of creation and destruction rate for various models 

              Model Probability rate of creation 

                ( ),L Q t  

Probability rate of destruction 

                   ( ),M Q t  

Green & Tobolski27      Eτ1      Eτ1  

Tanaka & Edwards23-26      1 Ec τ  

 

    ( )2exp Ec Q τ  

    ( )2
3 41.5 Ec c Q τ+  

Wang29      ( )2 2
1 2 E Ec c τ γ τ+      ( )2 2

31 eq Ec Q Q τ+  

Ahn & Osaki32      ( )1exp Ec γ τ      ( )2exp Ec γ τ  

van den Brule &  

       Hoogerbrugge33 

     ( )1 eq Ec Q Q τ       Eτ2  

Hatzikiriakos & 

       Vlassopoulos48 

     32 1
3 γnQ     ( )24 exp BD Q W k− T   

Vaccaro &  

        Marrucci37 

     ( )1 2 eq Ec c Q Q τ+        Ef τ  

Hernandez-Cifre et al.34 ( ){ }1 21 exp c c fQ t− − + ∆  ( ){ }2
31 exp 2 exp Et c f τ− − ∆  

Here  are model specific constants; 1 2 3 4, , ,c c c c γ  is total strain; γ  is shear rate;  is given in Equation (10);  

is concentration of single molecules; is the translational diffusivity of a molecule; W is the energy of interaction 

of two molecules; 

f 1n

D

2QQ =  is the ensemble average of distribution Q ; t∆ is the simulation time step.  
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Table II: Transient network constitutive model for telechelic polymers 

Dimensional Form 

( ) ( ) ( ) ( ) ( ){ }

( )
( ) ( )( )

( )

**

3
2 2

1 2
*

, 1 1 1

1 2 3
,

1 3

T T
w eq m eq m
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agg
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D h c M p G tr p G tr
Dt

tr N N N
g c M

tr N

υ ν

ν νν κ κ κ κ
τ

βν
τ

−

−
= − + + + + +

⎡ ⎤− −⎢ ⎥+ ⎢ ⎥−⎢ ⎥⎣ ⎦

B A

A

A

: :

 

( )( )

( ) ( ) ( ) ( ) ( ){ }
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*
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3
2 2

1 2
*
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1 2 3
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1 3

T T
w eq m eq m

E
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E

h c M p G tr p G tr

tr N N N
g c M
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υ ν

ν ν
ν κ κ

τ

βν
τ

−

−
= − + + + + +

⎡ ⎤− −⎢ ⎥+ ⎢ ⎥−⎢ ⎥⎣ ⎦

A B

A
A

A

: :κ κ A B

 

( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ){ }

( )
( ) ( )( )

( )

* *
1

*

3
2 2

1 2
*

1 1
2 2

, 1 1 1

1 2 3
,

1 3

R R

T T
w eq m eq m

E
N
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w
E

f tr

h c M p G tr p G tr

tr N N N
g c M
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υ ν

ν ν ν
τ τ

ν ν
κ κ κ κ
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βν
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−

= − −

−
− − + + + + +

⎡ ⎤− −⎢ ⎥− ⎢ ⎥−⎢ ⎥⎣ ⎦

B B B

B A

A
A

A

δ

: : B  

( ) ( ) ( )* *
Bk Tf tr f trν ν ν= + −A A B Bσ  

where ( ) ( )1 1 3f tr tr N= −A A , ( ) ( )1 1 3f tr tr N= −B B  and ( ), wg c M  & ( ), wh c M  are 

numerical constants that scale with molecular weight; MG  is a dimensionless constant. 
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FIGURE CAPTIONS  

Figure 1: Conceptual view of the energy landscape for the detachment of a hydrophobe in 

extension. When a deformation is applied to the system, the free energy difference  between 

the native and detached state is skewed by work performed by the stretch force on the chain. 

G∆

Figure 2: Schematic of two hydrophobic ends “m” and “n” in a lattice of micelles undergoing 

shear. The “m” end is likely to experience more interactions with neighboring micelles compared 

to the “n” end due to the differential velocity.  

Figure 3(a): The steady state fraction of bridging chains φ  as a function of dimensionless shear 

rates Eτγ  for several values of the dimensionless number , at a concentration c = 2%. mG

Figure 3 (b): The steady state fraction of bridges as a function of applied shear rate for polymer 

concentrations ranging 1 – 4 wt%. 

Figure 4 (a): The steady state shear viscosity as a function of dimensionless shear rates Eτγ  for 

concentrations ranging 1-4%. 

Figure 4 (b): The steady state shear stress as a function of dimensionless shear rates Eτγ  for 

concentrations ranging 1-4%. 

Figure 4 (c): Dimensionless first normal stress as a function of dimensionless shear rates Eτγ  

for concentrations ranging 1-4%. 

Figure 5(a): Transient extensional viscosity for 4wt% HEUR: Model predictions. 

Figure 5(b): Steady extensional viscosity as a function of Deborah Number for 4wt% HEUR: 

Model predictions. 

Figure 6: The chemical structure of model HEUR polymers and a plot of concentration vs. 

molecular weight showing various regimes of associative polymer solutions together with the 

range of solutions studied by other workers.  
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Figure 7: The effect of HEUR concentration on the measured steady zero-shear rate viscosity for 

HEUR22-2 model polymers 

Figure 8(a): Comparison of the linear viscoelastic response of 2wt% HEUR22-2 with the model 

predictions.  and sR
5105 −×=τ sE 089.0=τ . 

Figure 8(b): Steady shear viscosity versus shear rate for 2wt% HEUR22-2: Experiments and 

model. Gm = 7.3. The magnitude of complex viscosity versus frequency is also plotted. 

Figure 8(c): Comparison of the linear viscoelastic response of 4wt% HEUR22-2 with the model 

predictions. sR 0002.0=τ  and sE 089.0=τ  

Figure 8(d): Steady shear viscosity versus shear rate for 4wt% HEUR22-2: Experiments and 

model. Gm = 1.8. 

Figure 9(a): Comparison of the linear viscoelastic response of 3.8wt% HEUR22-4 with the 

model predictions.  and sR
5105.2 −×=τ sE 089.0=τ  

Figure 9(b): Steady shear viscosity versus shear rate for 3.8wt% HEUR22-4: Experiments and 

model. Gm = 3.8. 

Figure 10(a): Comparison of the linear viscoelastic response of 2.0wt% HEUR23 with the 

model predictions.  and sR
5105.2 −×=τ sE 85.4=τ . 

Figure 10(b): Steady shear viscosity versus shear rate for 2.0wt% HEUR23: Experiments and 

model. Gm = 7.8.  

Figure 11: Images showing filament stretching of 4wt% HEUR22-2 sample. The applied strain 

rate . Diameter of the endplate is 3mm and the initial sample length is 1.5mm. 106.3 −= sE

Figure 12(a): Diameter vs. time for 4wt% HEUR22-2 stretched at different strain rates: 

Experiments and model predictions. 
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Figure 12(b): Transient tensile force as a function of time for 4wt% HEUR22-2: Experiments 

and model predictions.  

Figure 12(c): Transient extensional stress as a function of Hencky strain for 4wt% HEUR22-2: 

Experiments and model predictions. 

Figure 12(d): Trouton ratio versus Hencky strain for 4wt% HEUR22-2: Experiments and model 

predictions. 

Figure 13: Transient extensional stress as a function of Hencky strain for 2wt% HEUR22-2: 

Experiments and model predictions. 

Figure 14(a): Images showing rupture of 2.4wt% HEUR22-2. The applied strain rate . 13 −= sE

Figure 14(b): Strain to failure and strain to rupture during the extension of 4wt% HEUR22-2 

filament.  

Figure 15: Steady extensional viscosity as a function of Deborah Number for 4wt% HEUR22-2: 

Experiments and model predictions for different Gm. 

 59



   

 

Figure 1:  

 

 

 

 

 

 

 

 

 ∆
 

 

2 3

Q
tr

N b
= A

G
( )f tr trA A

G∆

2 cr
0

2 cr

a

‘dangling chain’

‘bridging chain’

‘loop’

AQ

BQ

2 3

Q
tr

N b
= A

G∆
( )f tr trA A

G∆

2 cr
0

2 cr

a

‘dangling chain’

‘bridging chain’

‘loop’

AQ

BQ

 60



   

 

Figure 2:  
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Figure 3(a):  
 
 

0.01 0.1 1 10 100
0.10

0.15

0.20

0.25

0.30

2.5

2.0

1.5

Gm = 1.0

Mw = 65300 g/mol
nc = 16
T = 25oC
c = 20 kg/m3

 

 

Fr
ac

tio
n 

of
 B

rid
gi

ng
 C

ha
in

s, 
φ

Shear Rate, γ. τE

 

 

 

 

 

 

 

 

 

 

 62



   

 

Figure 3 (b):  
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Figure 4 (a):  
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Figure 4 (b): 
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Figure 4 (c):  
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Figure 5(a): 
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Figure 5(b):  
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Figure 6:  
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NAME Nomenclature nc x y N Mn (1) Mw (2) Mw/Mn

HEUR22-2 C16PEO34K 16 186 4 744 34,200 65,300 1.91 

HEUR22-4 C16PEO67K 16 186 8 1488 67,600 93,000 1.38 

HEUR22-6 C16PEO100K 16 186 12 2232 100,400 105,400 1.05 

HEUR23 C20PEO51K 20 - - 1122 51,000 86,000 1.68 

Note:  (1) Number average molecular weight calculated from reaction stoichiometry 
               (2) Weight average molecular weight determined from GPC in THF 
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Figure 7:  
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Figure 8(a):  
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Figure 8(b):  

 

 

10-1 100 101 102
6

8

10

12

14

16

Mw = 65300 g/mol
nc = 16
T = 25oC
c = 20 kg/m3

 Model Predictions: Steady shear
 Model Predictions: Complex viscosity
 Experiments: Steady shear
 Experiments: Complex viscosity |η*|

 

 

St
ea

dy
 S

he
ar

 a
nd

 c
om

pl
ex

 V
isc

os
ity

, η
, |

η*
| [

Pa
 s]

Shear Rate, γ. [s-1], Frequency, ω [s-1]

 

 

 

 

 

 

 

 

 

 74



   

 

Figure 8(c):  
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Figure 8(d):  
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Figure 9(a):  
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Figure 9(b):  
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Figure 10(a): 
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Figure 10(b):  
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Figure 11:  
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Figure 12(a):  
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Figure 12(b): 
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Figure 12(c):  
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Figure 12(d):  
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Figure 13:  

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
10

100

1000

Mw = 65300 g/mol
nc = 16
T = 25oC
c = 20 kg/m3

 ε. = 3.15 s-1

 ε. = 7.13 s-1

 Model

 

 

Te
ns

ile
 S

tre
ss

,[P
a]

Hencky Strain, ε

 
 

 

 

 

 

 

 

 

 

 

 86



   

 

Figure 14(a): 
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Figure 14(b):  
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Figure 15:  
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