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ABSTRACT

Changing customer preferences, demand for quality, and new technologies have led to very
short product life cycles. This requires firms to have short product development lead times while
keeping product costs low and quality high in order to stay competitive. In this context, we focus
on improved understanding of time-consuming design iterations. We are creating tools for
modeling product development projects in order to predict the performance of product development
organizations. In this paper, signal flow graphs are presented as a flexible tool for design process
modeling, and illustrated using an industrial example. Analysis of the model allows computation
of the probability distribution of lead time and identification of the key drivers of lead time.

1. INTRODUCTION

One of the sources of sustainable competitive advantage in manufacturing-based industries is
the capability to develop superior products. Today's technology-based companies are attempting
to develop higher quality products faster than ever before. One of the major challenges faced in
product development is to recognize and manage the iterative nature of the design process. In this
paper we model design processes as discrete-time dynamic systems in order to represent and
understand the iterative behavior of project execution.

The paper is organized as follows: Section 1 motivates the iteration modeling problem and
surveys related literature. Section 2 presents the use of signal flow graphs to analyze engineering
design processes. Section 3 applies the method to a design process example from a US automotive
manufacturer. Section 4 develops two methods to gain further insight into the iteration process,
sensitivity analysis and participation factors. Section 5 presents several model extensions which
help to generalize the approach. Sections 6 and 7 offer discussion, conclusions, and scope for
future work. The appendix contains a tutorial description of signal flow graphs.

1.1 Design Iteration

Iteration is fundamental to the design process and its importance has been recognized by
several authors [4, 5, 6, 14, 19, 20, 21]. Iteration can be defined as the repetition of activities to
improve an evolving design. Smith and Eppinger [15, 16] explain that iterations occur for two
reasons:
* The design fails to meet established criteria.
* New information is obtained since a prior iteration.



Osborne [ 12] found that iteration accounted for between one third and two thirds of total
development time for projects at a major semiconductor producer. Osborne also found that
unpredictable iteration is the main cause of variability in the lead times of projects at this firm.
Standard project management techniques like PERT/CPM are not able to consider iteration or
feedback, where tasks may have to be reworked. We are therefore motivated to develop new
analytical techniques to model iteration and help understand iterative development processes.

1.2 Design Process Models

The view of product development as a modelable process and not as a unique craft has
recently gained in popularity [18, 20, 21]. Common design process models can be grouped into
two categories: performance evaluation models and optimization models; the focus of our work is
on the former. The key dimensions of design process performance modeling concern the physics
of the work flow (how design activities are executed and repeated - iteration), the topology of the
network representing the process (how activities are interconnected), and the analytical technique
used (how the network is solved). A review of relevant literature is presented below.

Smith and Eppinger [16] present a sequential iteration model where coupled design tasks are
executed one after the other, and rework is governed by a probabilistic rule. Repetition
probabilities and task durations are assumed constant in time. The process is modeled as a Markov
chain and the analysis can be used to compute lead time for the purely sequential case and to
identify an optimal sequence of the coupled tasks to minimize iteration time. Ahmadi and Wang [2]
extend the sequential iteration model by incorporating dynamic effects (iteration probabilities
change with time) and learning (task durations change with iteration number). In another paper,
Smith and Eppinger [15] present a parallel iteration model, where the coupled design tasks are all
executed in parallel and iteration is governed by a linear rework rule. This model identifies the
iteration drivers and the nature and rate of convergence of the process.

Adler et al. [1] model product development processes in a multi-project setting where there is
competition for scarce resources and task queuing effects are significant. Ha and Porteus [7]
model concurrent design as a dynamic programming problem, where the frequency of design
reviews is optimized to shorten lead times and improve design quality. Krishnan et al. [9] present
the characteristics of information dependencies between tasks and develop strategies to profitably
overlap sequential tasks while avoiding adverse effects on product quality and development effort.

Each of the models presented in the literature only captures some of the effects evident in
design processes in industry. The sequential iteration model [16] considers iteration explicitly
using probabilities of rework and assuming constant task times. It attempts to reorder tasks to
reduce lead time, which may not always be possible. The parallel iteration model [15] analyzes the
eigenstructure of the design system and identifies iteration drivers, but assumes complete
parallelism in task execution. The two-activity models [7, 9] consider only the interface between
upstream design and downstream engineering with uni-directional information transfer. This
provides focus on the issues of using incomplete information and of detecting technical problems,
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thereby reducing development time by starting downstream tasks earlier. However, these two-
activity models do not easily scale up to multi-task and bi-directional information transfer
scenarios. Queuing models [1] may neglect many of the characteristics of the iteration process.
Hence we feel the need for a flexible modeling tool that can incorporate more of the effects found
in complex projects and yield more valuable managerial insights. Signal flow graphs are presented
here as such a tool.

1.3 Motivation for New Modeling Tools

Figure 1 shows a block diagram of the body panel die design process at a US automotive
firm. While only a portion of the entire vehicle development process, stamping die development
itself is a multi-stage activity involving hundreds of people and taking many thousands of engineer-
hours to complete. The process is highly iterative because the panels need to be analyzed and
redesigned for manufacturability before prototype stamping dies are made. Furthermore, iterations
involving prototype dies are very slow and must be avoided if possible. As a result, the activity
flow of the project is somewhat uncertain, as are the activity durations. The problem is not one of
sequencing, as it would be difficult to re-order the tasks to achieve superior performance. Rather,
it is crucial to manage the timing of the tasks and the interactions between tasks in order to shorten
lead times without adversely affecting quality.
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Figure 1. Automotive Stamping Die Design Process
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2. SIGNAL FLOW GRAPHS

The signal flow graph is a well known tool for circuit and systems analysis in electrical
engineering and for modeling discrete event systems. It begins as a diagram of relationships
among a number of variables. When these relationships are linear, the graph represents a system
of simultaneous linear algebraic equations. The signal flow graph, as shown in Figure 2, is
composed of a network of directed branches which connect at the nodes. A branch jk, beginning
at node j and terminating at node k, indicates its direction from j to k by an arrowhead on the
branch. Each branch jk has associated with it a quantity known as the branch transmission Pjk.

Pi

Figure 2. A Linear Signal Flow Graph

For our modeling purposes, the branches represent the tasks being worked (an activity-on-
arc representation). The branch transmissions include the probability and time to execute the task
represented by the branch:

Pjk = PjkZ

where Pjk is the probability associated with the branch, and tjkis the time taken to traverse the
branch. z is the transform variable used to connect the physical system (time domain) to the
quantities used in the analysis (transform domain). The z transform simplifies the algebra, as it
enables us to incorporate the quantities to be multiplied (probabilities) in the coefficient of the
expression, and to include the quantities to be added (task times) in the exponent. The resulting
system is then analogous to a discrete sampled data system, and the body of literature on this
subject can be applied for the analysis thereof.

2.1 Significance of the Graph Transmission

The appendix presents a brief tutorial on signal flow graphs and explains the absorption of
nodes in a graph, an algebraic technique for graph simplification. The path transmission is defined
as the product of all branch transmissions along a single path. The graph transmission is the sum
of the path transmissions of all the possible paths between two given nodes. (When there are
cycles in the system due to iteration, the number of paths is infinite.) The graph transmission is
also the resulting expression on an arc connecting the two given nodes when all of the other nodes
have been absorbed. In particular, we are interested in computing the graph transmission from the
start to finish nodes. Henceforth, graph transmission shall refer to the graph transmission between
the start and the finish nodes, and is denoted by Tsf.
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The coefficient of each term in the graph transmission is the probability associated with the
path(s) it represents, and the exponent of z is the duration associated with the path(s). The graph
transmission can be derived using the standard operations for signal flow graphs [8, 17], which
are summarized in the appendix. The impulse response of the graph transmission is then a
function representing the probability distribution of the lead time of the process.

Since the graph transmission is the moment-generating function of the lead time, it can be
differentiated to obtain the expected value of the lead time:

E[L] = dsf
dz z=1

This result is possible because each term of Tf is of the form piz 'ti, where ti is the time associated

with the path(s) represented by the term, and Pi is the probability. When differentiated, this term

becomes Pitizt i - 1. Evaluated at z=1 yields iti and summed over all terms (paths), this becomes

the expected value of the lead time of the process. Similar arguments lead to the variance of lead
time:

Var[L] = - dTSf
=1 dz z

=1

2.2 Determinant of the Flow Graph

If we assume unit task times, the signal flow graph becomes equivalent to the set of linear
equations x = Px, where x is the node state vector, and P is the signal flow graph matrix
comprised of the branch probabilities Pjk. The determinant of the flow graph is the expression
which appears in the denominator of the graph transmission expression. Mason [11 ] explains
some interesting properties of the graph determinant. The roots of the graph determinant are the
poles of the system which govern its natural response to external inputs. The characteristic
equation is

det[I - Pz] = 0
The graph determinant will be useful in analyzing the eigenstructure of the system, from which we
will compute the participation factors.

2.3 Numerical Example

A simple example is shown in Figure 3. The hypothetical design process is represented by
the graph shown in Figure 3a. The two tasks A and B (product design and tooling design) take 3
and 2 units of time, respectively. Once B is attempted, A is reworked with probability 0.6, and
once A is attempted, B is reworked with probability 0.3. Iterative repetitions of A are represented
by the dummy A'.
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Figure 3a. Simplified Design Process and Signal Flow Graph
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Figure 3b. Derived Probability Distribution of Lead Times

The graph transmission may be found using the node elimination techniques explained in the
appendix or by writing the set of node equations and eliminating the intermediate variables. This
graph transmission is given by

z5 (0.4+0.42z 3 )
Tf 1-0.18z 5

The expected value of the project lead time E[L] is 7.6 units of time, which is computed using the
formula given above.

The first few terms of the probability distribution function of lead times are represented
graphically in Figure 3b. The distribution can be found for this simple example by performing
synthetic division on Tf to obtain the first few terms of the infinite series. The nominal (once
through) time for A and B in series is 5 units of time, which occurs with probability 0.4. It is
more likely (probability 0.42) that the lead time L of the process will be 8 units of time.

3. APPLICATION OF SIGNAL FLOW GRAPHS TO DESIGN PROCESS
MODELING

An industrial example is now presented and analyzed to illustrate use of the model, and to
motivate the need for further extensions. Referring to the block diagram in Figure 1 depicting the
body panel die design process, we focus our attention on the highly iterative portion of this design
process which precedes the construction of prototype and production stamping dies. Acceleration
of this development process is of tremendous importance because die design and manufacturing lie
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on the critical path of the automotive development process. Significant delays in this process occur
when manufacturability problems are not discovered until the die production phase. Therefore, the
panel design needs to be evaluated for manufacturability as soon as possible in order to provide
early feedback to the product and die designers.

The actual die development process is extremely complex, however a simplified description
will suffice here. The die development group receives input information from the panel designers.
The primary iterative loop involves three activities: die design, manufacturability evaluation, and
surface modeling. The objective of this three-part process is to identify manufacturability problems
well before the die development is completed so that necessary changes can be made to the panel
design and/or to the process design. Each stage may be repeated a number of times, and when the
die design is completed, prototype and production dies are then built.

With much assistance from engineers and managers at the study company, we were able to
characterize the iterative die development process in terms of activity durations and transition
probabilities. We found it helpful to draw iteration process maps [12], with which the necessary
design process information could be collected in terms of first-pass times, repeat times, and
probabilities of various situations. (Note that the timing data presented here have been scaled in
order to conceal the actual development process timing at our study company.)

The signal flow graph of this process is shown in Figure 4a, where the times shown (the
exponents of the branch transmissions) are in scaled work days required for a certain range of
panel complexity. The signal flow graph shows the tasks of manufacturability evaluation and die
design replicated since the rework probabilities and task times change after the first iteration. For
example, die design is represented three times: as tasks 2, 4, and 6, with 3, 2, and 1 day durations.
Similarly, manufacturability evaluation occurs in three places: as tasks 3 and 5, taking 3 and 2 days
for the preliminary manufacturability evaluation; and as task 9, taking 7 days for the final
evaluation. The probabilities are also interpreted easily from the graph: for example, there is a 0.75
likelihood that after the second round of preliminary manufacturability evaluation (task 5) the
process continues with surface modeling (task 7), and a 0.25 chance that a third round of die
design is done (task 6).
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Figure 4a. Signal Flow Graph Representation of the Die Design Process

Inspection of the signal flow graph reveals that the shortest possible completion time is 18
days, in which case the preliminary manufacturability evaluation is only performed once. The
most likely completion time is 22 days, where the preliminary evaluation is done twice. Using the
analytical method introduced above, the expected value of the lead time of the design process is
found to be 36.2 days, with standard deviation of 22.0 days. The computed distribution is given
in Figure 4b.
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Figure 4b. Computed Distribution of Lead Times
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To compare the model results with actual projects, lead time data for various panel types were
collected from the die development group at our study company. Panels vary tremendously in
complexity, so we focused our attention on the panel types representative of the process modeled.
Data were collected for these panel types across a number of car platforms. The aggregate lead
time for the process modeled was found to be 61.8 days, and the standard deviation of this lead
time was found to be 19.8 days. (Note that these timing data have been scaled for comparison by
the same factor used in the model, again so as not to reveal the actual aggregate panel lead time
experienced at the study company.)

The model predicts the process lead time with disappointing accuracy (41% low). Possible
sources of error include incorrect modeling assumptions and imprecise data collection methods.
Indeed there are several effects in real projects that are not represented in this model, such as
parallel activity flow and delay time (work queueing). The task timing and probabilities of iteration
were inferred from interviews with engineers working on the project, and it is possible that their
time estimates were optimistic and/or they underestimated the occurrence of iteration. These are all
potentially significant sources of error.

4. ANALYSIS OF SENSITIVITIES AND PARTICIPATION FACTORS

Two methods are now presented to gain further insight into the portions of the process that
determine the lead time and its variations. First we present sensitivity analysis and then the
computation of participation factors.

4.1 Sensitivity Analysis

The expected value and variance of the lead time of the design process are directly dependent
on the probabilities of iteration and the task times. The sensitivity of the expected value and
variance of lead time to each parameter can be calculated as the change in value of the quantity in
response to a small change in the value of the parameter. If L represents the lead time of the
process and k a parameter on which it depends, the sensitivity of L to changes in k, denoted Sk is
given by

L AE[L] / E[L]
Sk /k

Calculation of the sensitivity of the expected value of lead time to changes in task times yields
the lead time sensitivity matrix in Figure 5. The j, k term of the matrix is the sensitivity of the lead
time E[L] to changes in tjk. Similarly, calculation of the sensitivity of the expected value of lead
time to changes in branch probabilities yields the lead time sensitivity matrix in Figure 6. The j, k
term of this matrix is the sensitivity of the lead time E[L] to changes in the probability Pjk. (In
computing these latter sensitivities, the sum of probabilities on branches emanating from a node
were constrained to 1.0, which assures pure sequential iteration.)

9
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Figure 5. Lead Time Sensitivities to Variations in Task Times

Task 3 4 5 6 7 8 9
3
4
5
6
7
8
9

0.10 -0.03

0.05 -0.15

0.03 -0.28

0.79

Figure 6. Lead Time Sensitivities to Variations in Branch Probabilities

The expected value of lead time is found to have positive sensitivity to small changes in each
of the task times, while there are both positive and negative sensitivities to small changes in the
branch probabilities. The negative sensitivities identify the probabilities on branches 3-7, 5-7, and
7-8 which if increased would avoid additional iterations and reduce expected lead time.
Sensitivities to all of the other probabilities, and of course all of the durations, have the opposite
sign and we would desire to decrease these parameters to reduce iteration time.

The highest sensitivity is to the probability on branch 9-5, leading to iterations back to
preliminary manufacturability evaluation after surface modeling and final manufacturability
evaluation have already been done. This high sensitivity can be explained by the large duration (13
days) of the rework loop initiated by this arc. This suggests that the model error of 41% could
possibly be due to errors in a few probabilities. For example, with a sensitivity of 0.79,
underestimation by approximately 50% in the probability of iteration (from task 9 to task 5) would
cause a model error of 41%.

The sensitivity analysis confirms a general insight that the results of tasks that divert the
project flow from one path to another will have the greatest impact on the overall project time. This
effect is detrimental when the diversion is from a short path of completion to a long path of
iteration. In our example, these are tasks 3, 5, 7, and 9, which involve preliminary and final
manufacturability evaluation and initial surface modeling. This insight makes intuitive sense as
these are tasks where verification is performed and problems of various types are discovered. In
particular, the results of final manufacturability evaluation (task 9) has the greatest effect on lead
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time. Note also that there are three interacting loops, consisting of tasks 5-7-6, tasks 5-7-8-9, and
tasks 5-6.

4.2 Calculation of Participation Factors Assuming Unit Task Times

An alternative analysis yields similar insights about the driving factors of the iteration
process. In particular, we can identify the dominant design modes. A design mode is defined as a
group of design tasks that are very closely related, and working on any one of them creates
significant work, directly or indirectly, for each of the other tasks within the mode [15]. The
smallest poles of the system are associated with the slowest design modes and dominate
convergence of the iteration process. Identification of these modes can help focus engineering and
management attention on the most important interactions in a design project. This can be
accomplished by calculating the participation factors of the system.

The concept of participation factors is well developed in linear system theory [10, 13].
Assuming unit task times in order to create the signal flow matrix P, substituting in the
characteristic equation for the transform variable, s=l/z, the eigenvalues of the system then are the
roots of

det[sI - P] = 0
in which the largest eigenvalues correspond to the smallest poles. For each eigenvalue, we can
then calculate the participation factors by computing the termwise product of the corresponding left
and right eigenvectors, as shown by P6rez-Arriaga et al. [13]. The largest participation factors
correspond to the components of the system contributing to the slowest modes. The analysis is
similar to that demonstrated by Smith and Eppinger [15] for a parallel iteration model.

The signal flow matrix P for the example die design process of Figure 4a (assuming unit task
times and without the start and finish nodes) is shown in Figure 7. The eigenvalues of the matrix
P are given in Figure 8. The corresponding participation factors obtained by the termwise
multiplication of the right and the left eigenvectors are also shown in Figure 8. Looking at the
column of the participation factors matrix corresponding to the three largest eigenvalues (the 5th,
6th, and 7th), we see that these slowest modes of the system are affected by the tasks 5, 7, 8 and
9. This would indicate that the loop involving the preliminary manufacturability evaluation,
surface modeling, and the final evaluation dominates the convergence of the design process, and
needs to be managed effectively to reduce the lead time of the process. Refer to Smith and
Eppinger [15] for a detailed explanation of eigenstructure interpretation for design processes.
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Task 2 3
2 0 1
3 0 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0 
9 0 0

Figure 7. Signal Flow Graph

1st 2nd 3rd

4 5 6 7 8 9
0 0 0 0 0 0
.75 0 0 0.25 0 0
0 1 0 0 0 0
0 0 0.25 0.75 0 0
0 1 0 0 0 0
0 0 0.1 0 1 0
0 0 0 0 0 0.9
0 0.5 0 0 0 0

Matrix P of the Design Process

4th 5th 6th and 7th 8th

Eigenvalues[ 1.00 11.oo11.00oo l 0.121 1 1.816 1 1.032 0.685i

Eigenvectors
Task 2 1 0 0 0 0 0 0
Task 3 0 1 0 0 0 0 0
Task 4 0 0 1 0 0 0 0
Task 5 0 0 0 0.31 0.30 -0.19 T 0.01i 0
Task6 O 0 0 0.13 0.07 -0.10 + 0.05i 0
Task 7 0 0 0 0.21 0.18 0.30 + 0.03i 0
Task 8 0 0 0 0.17 0.23 -0.30 T 0.02i 0
Task 9 0 0 0 0.17 0.23 0.30 + 0.04i 1

Figure 8. Participation Factor Matrix

4.3 Extension for Participation Factors with General Integer Task Times

The assumption of unit task times distorts the behavior of the system in the participation
factor analysis. This is because assuming unit delays, the lead time of a particular path is equal to
the number of branches traversed, and does not reflect the task times. However, for a more
accurate result, we can introduce n- dummy states on each arc of the signal flow graph, where n
is the integer task time associated with the branch. In the case of non-integer task times, they are
all approximated as integers, which can be done either by scaling or by rounding, depending on the
situation. The transmission of the first in each set of dummy arcs is assigned a coefficient equal to
the probability of traversing that branch, and unit delay. Each of the other dummy arcs is given
unit delay and unit probability. In the expanded graph, each task then is represented by multiple
nodes. Once this transformation has been made, the above analysis may be directly applied. The
eigenstructure analysis of the expanded system would yield the states and tasks most strongly
affecting lead time.
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5. MODEL EXTENSIONS

The model allows flexibility along a number of additional dimensions. We first discuss non-
deterministic durations and rework probabilities, and then present an extension to handle parallel
task structures.

5.1 Non-Deterministic Durations and Probabilities

The case where the magnitude of work is not deterministic, but distributed according to some
discrete probabilistic rule, can be easily handled as illustrated in Figure 9. Here the nodes B, B'
and B" are not representing different tasks, but rather instances of different amounts of work or
rework. This phenomenon is typical, for example, of validation situations where the magnitude of
redesign work depends on the type of problem detected.

Figure 9. Probability Distribution over Rework

Another possible extension is to handle cases where the rework probabilities and task
durations change dynamically. This is a more difficult problem which Ahmadi and Wang [2] have
addressed by expanding the state space and restricting the number of iterations. The models
presented here can handle the case where the first few iterations exhibit changing conditions, after
which the parameters remain constant. This is also done using state-space expansion, however the
number of iterations is not restricted. We believe this to be a reasonable approximation in many
design situations because it is typical that the duration of a task will not reduce infinitely with
increase in iteration number, but settle at some minimum rework time after a few iterations.

5.2 Parallel Task Execution

Extension of the model to incorporate parallel task structures requires the following
modification of the definition of a state in the probabilistic model: After a given state is reached (a
task has been completed), all the tasks dependent on this task for information are now attempted
based on an individual probabilistic rule. The probability of traversing a branch is governed only
by the coupling between the two tasks involved and the stage of the process, rather than by a
probability distribution over all tasks as in the sequential iteration model. Figure 10 depicts such a
situation, where the individual probabilities are now restricted to be less than or equal to 1, but the
sum of the probabilities is not constrained.

13
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B': complement of B
BUO. both B and C work

Figure 10. Redefinition of State for Parallel Task Execution

In Figure 10, the two systems represented are identical in an analytical sense. If the sum of
probabilities p and q is restricted to 1, then the graph on the left represents a sequential iteration
process. In this case, the graph on the right would also yield the same results, though the physical
interpretation is different as we allow multiple tasks to work at the same time. When the sum of
probabilities p and q is not restricted, the graph on the left no longer represents a sequential
process, but the analogous representation on the right can be used to model parallelism in a
probabilistic sense.

A

B
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ZZI fei2 p=0.4pa r~s

UJ

_I __* Path 2

p=0.4

- -l Pth 1

7) 7:7 P=0.1

U uI Iime

Figure 11. Timing of Parallel Design Activities

With the new definition of a state, any number of tasks across different paths can now be
working at the same instant in time, with a probability associated with each one. Figure 11

illustrates how this situation arises in the parallel case. Three of the infinity of paths possible from
start to finish are shown on a timeline. Task A is first attempted and takes 3 units of time. Task B
is then attempted and takes 2 units of time. At this point, task C is attempted with probability 1,
and task A is reworked with probability 0.1. Hence there is a probability of 0.1 that both A and C
are working at the same time, i.e., that from time 5 to time 6, both tasks A and C are active.

Similarly, in a complex system, there is a probability associated with the event that any subset of
all the tasks that could be working at that point in time are active.

14

1�i �------�-----·---·-^�·-·--�-

q(1 p) 1-p)1 q) C

lp -q)/p

Leciendd

I I 



The individual paths concerned each have a path transmission expression, as such the sum of
the path transmissions of all the possible paths gives the graph transmission. Hence the same
method of analysis outlined above still applies to the parallel activity situation, as all the paths
possible from start to finish are still captured in the transmission, and each path is associated with a
lead time and a probability. Since multiple paths can be active, it is a probabilistic representation of
parallelism, with the calculations taking an expected value form. The key difference is that when
the signal flow graph is now solved for the graph transmission expression between start and
finish, and the operation to calculate lead times performed, the resulting quantity is the total effort
expended during the design process, which, due to parallelism, is greater than the lead time.

For our die design process example, we learned that after initial surface modeling (task 7),
final surface modeling (task 8) is always begun in parallel with the possible repetition of die design
(task 6). This changes the probability P78 from 0.9 to 1.0 in Figure 4a. The resulting effort of the
process becomes 48.4 days with a standard deviation of 17.4 days. Note that the parallel structure
increases work as multiple activities are now executed simultaneously. This is due to the nature of
the model change which increases the work to be done in the process. This expected duration is
not directly comparable to the observed lead time since in the parallel model the quantity computed
is the total effort (engineering days) rather than the lead time.

6. DISCUSSION

This section provides some discussion of the assumptions and limitations of the model,
challenges of data collection, managerial insights available through application of the model, and
directions for further work.

6.1 Assumptions and Limitations

The design process modeling method presented here relies on several assumptions, the
accuracy of which determine the fidelity of the analysis. The primary assumption of the signal
flow graph model is that process flow is determined by a probabilistic rule, with probabilities
assigned to the likelihood that tasks will be executed or repeated in order to resolve conflicts. It is
further assumed that the durations of the design process tasks are deterministic or distributed
according to a discrete probabilistic rule, and that there are no resource constraints (queueing of
work) and no delays due to causes such as the inefficiency of information transfers. The
assumption of integer task times for the participation factor analysis is not very restrictive, as the
sensitivity analysis confirms.

Extensions to the basic model are helpful for depicting certain design situations. Multiple
tasks can be allowed to work at the same time, as explained in the section on parallelism. The case
of design process parameters such as iteration probabilities and task durations changing
dynamically in time or with iteration number can be handled by expanding the state space. This
approach is tractable in situations where conditions change over the first few iterations and then
remain constant, but is not reasonable when conditions change with every iteration, since the
number of states in the expanded graph representing the system then increases continuously.
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The logical relationship at the exit from any node is an OR relationship. This has several
implications. One is that the decision rule determining the subset of tasks to work after the
completion of a given task is implemented after the first instance of the state being reached. This
means that AND rules, where a number of tasks have to be completed before a task starts, cannot
be modeled. This is certainly a drawback of the model; however, the model is quite reasonable in
situations where preliminary information is transferred upon availability and changes in this
information and additional information are incorporated into the downstream tasks. Belhe and
Kusiak [3] have addressed the problem of considering different logical relationships in design
processes by enumerating the various possibilities and analyzing each one. This approach is
similar in complexity to the state space expansion proposed to handle some of the above problem
structures.

An implication of the parallel model is that it is possible for a task to work and be caused to
rework at the same instant in time. This is a situation where a task is active at the same point in
time in more than one of the active paths. This is another potential drawback of the model;
however, we have observed in some industrial situations that changes are requested of a task
before the task completes working, so rework iterations and first iterations are not easily
distinguishable. In such vague situations, we believe the model is reasonable.

Collection of project data about design activity durations and interactions modeled as
probabilities proved to be difficult in practice, as could be expected. However, it was possible for
the engineers to assign times for the first and subsequent repetitions of each activity, and to
estimate the probability of each type of iteration based upon the known rework types. We would
expect that it would be more difficult to obtain reliable information for a novel or less familiar
development process.

In applying the model, we found that queueing effects were significant. In some cases the
queueing delays were even greater than the task durations, particularly in cases where the engineers
were working on several die development jobs at once. Such delays may account for a large
portion of the discrepancy between the average lead time predicted by the model and the actual
mean lead time for the process modeled by our example. Queueing delays can be modeled in a
number of ways. An average wait time can be added to any branch simply by increasing its
duration; however this does not represent the variance of such queueing delays. Alternatively, a
self loop can be added (see the appendix) to represent in a more stochastic fashion the effect of
work queueing at a given task.

Computation of the expected value and variance of lead times involves differentiation of a
polynomial. The computation is efficient for small problems, and took about 2 minutes (on a DEC
5000 workstation) for each computation of our 10-task case. However, the computation time
would grow quickly as the number of tasks increases. For large models, numerical approximation
techniques can be used to calculate the moments of lead time.
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6.2 Engineering Management Insights

The model can be used by engineering managers to gain insight into the process through lead
time computation and sensitivity analysis, and by modeling a variety of scenarios, in the following
ways:

(a) Evaluation of alternative project structures: The model can be used to evaluate and
analyze changes in project structures. Examples include evaluation of the benefits of a proposed
CAD system, the effects of co-location of teams working on strongly connected sub-problems, the
effects of shortening or eliminating a step in the process, etc.

(b) Evaluation of radical changes in the product development process: The model can also be
used to evaluate more drastic changes in the development process, such as eliminating a
prototyping or analysis step, or building and testing a prototype before the engineering analysis.
These situations would be more difficult to model accurately without substantial experience with
the new process. However, the model may be able to identify the potential benefits of proposed
changes expressed in terms such as, "If the more detailed analysis program can reduce the need for
testing by even 20%, then is it worthwhile?"

(c) Managerial control: The model identifies the groups of closely coupled, iterative tasks
that interact to delay project completion. Highly coupled activities may be accelerated by
facilitating information exchanges, perhaps by co-locating individuals involved in performing these
tasks or by providing better analytical tools and information systems.

(d) Evaluation of schedule risk: The expected distribution of lead times can be obtained from
the model. Knowing the variance of the lead time distribution can aid in understanding the
magnitude of schedule risk involved, as well as likelihood and range of project slippage.

6.3 Scope for Future Work

This work leaves several directions open for future work. One important area is to combine
these iteration models with the overlapping model developed by Krishnan et al. [9]. Such a
combination will provide a rich framework on which to extend the frontier of design process
models, serving not only to better characterize these processes, but also to design and optimize
them for the best use of time, effort and money. Further work can be attempted in the use of
probabilistic techniques to calculate the duration of the design process rather than the total effort
when parallelism is modeled. Resource constraints and queueing effects are not considered here
and need to be taken into account.

7. CONCLUSION

Signal flow graphs provide a powerful, flexible modeling tool for the purpose of analyzing
product development processes. The modeling method is highly generalized and allows the
modeling of dynamically changing design conditions in a limited way and the occurrence of
parallelism in a probabilistic sense. The model can be used to compute the distribution of project
durations and can easily predict important project metrics such as the expected mean and variance
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of lead time. The model also provides information regarding the iterative structure of the project,
and about the sensitivity of the lead time to model parameters.
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APPENDIX

This appendix provides an introduction to the manipulation of signal flow graphs (adapted
from Howard [8] and Truxal [17]).

A.1 Rules and Definitions of Signal Flow Graphs

Signal flow graphs follow four rules:
1. Signals travel along branches only in the direction of the arrows.
2. A signal traveling along any branch is multiplied by the transmission of that branch.
3. The value of any node variable is the sum of all signals entering the node.
4. The value of any node variable is transmitted on all branches leaving that node.

A path is a continuous succession of branches, traversed in the indicated branch directions.
The path transmission is defined as the product of branch transmissions along the path. A loop is a
simple closed path, along which no node is encountered more than once per cycle. The loop
transmission is defined as the product of the branch transmissions in the loop.

The transmission T of a flow graph is defined as the signal appearing at some designated
dependent node per unit of signal originating at a specified source node. Specifically, Tjk is
defined as the signal appearing at node k per unit of external signal injected at node j. There are a
number of ways of computing transmissions.

A.2 Basic Operations on Signal Flow Graphs

Solution of signal flow graphs requires knowledge of certain of their topological properties.
The basic operations of addition, multiplication, distribution, and factoring can be used to reduce
the number of branches and nodes in the system. At first glance, it might appear that by successive
application of such transformations a graph could be reduced to a single branch connecting any two
given nodes. However, if the graph contains a closed loop of dependencies, as when modeling
iteration, one or more self loops will eventually appear.
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A.3 The Effect of a Self Loop

The effect of a self loop at some node on the transmission through that node is analyzed in
Figure Al.

1

Y =l1+t+ t2 + t3+.. 1X - T

Figure A Effect of a Self Loop

The node signal at the first node is x and the signal returning around the self loop is xt. Since
the node signal is the algebraic sum of the signals entering that node, the external signal arriving
from the left must equal y(l-t). Hence, the effect of a self loop t is to divide an external signal by
the factor (l-t) as the signal passes through the node. This holds for all t.

A.4 Solution by Node Absorption

Figure A2 Absorption of a Node

Node absorption corresponds to the elimination of a variable by substitution in the associated
algebraic equations. With the aid of the basic transformations and the self loop replacement, any
node in a graph can be absorbed and the equivalent expressions for the transmission between two
other nodes calculated. Although the branch is no longer shown, its effect is included in the new
branch transmission values, as shown in Figure A2.

To compute the overall graph transmission, all the intermediate nodes are absorbed in turn,
yielding the transmission between the start and finish nodes. Reduction of graphs is
computationally intensive and manual solution of graphs of even moderate size can be difficult.
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