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ABSTRACT
Data error is an obstacle to effective application, integration, and sharing of data. Error reduction,

although desirable, is not always necessary or feasible. Error measurement is a natural
alternative. In this paper, we outline an error propagation calculus which models the propagation
of an error representation through queries. A closed set of three error types is defined: attribute
value inaccuracy (and nulls), object mismembership in a class, and class incompleteness. Error

measures are probability distributions over these error types. Given measures of error in query
inputs, the calculus both computes and "explains" error in query outputs, so that users and

administrators better understand data error. Error propagation is non-trivial as error may be
amplified or diminished through query partitions and aggregations. As a theoretical foundation,

this work suggests managing error in practice by instituting measurement of persistent tables and
extending database output to include a quantitative error term, akin to the confidence interval of a

statistical estimate. Two theorems assert the completeness of our error representation.
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1. INTRODUCTION

Bad data leads to bad decisions. Non-trivial error levels have been observed,

however, in a variety of applications including receivables, inventory, financial,

military personnel, and criminal justice [13, 16, 19]. Advances in data warehouses,

data sharing networks, database mining, and on-line data analysis suggest that error

in data should be properly managed - particularly on behalf of new users who may

least understand imperfections in data.

U.S. government agencies such as the Census Bureau and Energy Information

Agency use econometric models of under-count and other biases in survey results [3,

14, 17]. As shown in Table 1 below, statisticians have rich error models, while no

quantitative error model is defined for the database area. Contrasting their data and

operations helps to explain why error is dissimilar for the two disciplines.

Data

aggregate

quantitative

object relationships

instance-level detail

Operators

regression

* estimates

logical, set-based

X deterministic

Error

sample bias, measurement error, confidence interval
X rich models of error and its propagation

vague terms such as 'accuracy' and 'completeness'
X no accepted model of error or its propagation

Table 1: Views of error across the statistics and database disciplines

Two components to error management strategies are error reduction and error

measurement. Error reduction involves correcting existing data or improving a data

collection process. Error measurement, the goal underlying our effort, involves

assessment and reporting of error so users can be aware of error in data they use.

Error reduction is often unnecessary and sometimes unfeasible. First, it presumes

the control or resources necessary to improve the data. While not unlikely for locally

administered data, this is inconsistent with norms for data sharing networks - where

data are independently managed, of varying quality, and often unfamiliar. Second,

not all application contexts require error-free data. An economically optimal state in

data processing will involve some degree of error.

In this paper we begin a foundation for the measure and propagation of error in

databases. An error representation is a description of error as to three error types:

attribute value inaccuracy (and nulls), class incompleteness, and class

mismembership. This set of three is closed under a probabilistic error propagation

calculus which computes error in query output as a function of error in query inputs.

'Closed' here means that a table, derived from a table with these errors, will itself

have only these errors.
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Error measurement methods are not a main concern in this paper. But because
our model depends on probability distributions of error as input - a natural question
is: Where do I get such distributions? Probability distributions of error result from
error measurement, and may correspond to beliefs, statistics, theory, etc. concerning
both direct and indirect evidence of error such as "timeliness", "source", or
"collection method". Statisticians [3] and market researchers [9, 10] have techniques
for estimating error in surveys. These include administrative record matching
(comparing data to reference sources of related information) and post-enumeration
surveys (more rigorous follow-up surveys on a portion of the population). We are
currently designing a knowledge acquisition system for elicitation from DBA's -
information leading to error distributions, including both formal and intuitionistic
evidence.

We recognize error in any of the following, among others:

* updates to old data,
* fixes to known untruths in data,
· heterogeneous definitions,
* discrepancies among two "redundant" data sources,
· differences between opinions, forecasting, or simulation models.

The salient aspect in each of these is that there are two conflicting accounts, i.e.,
logical interpretations [5] of the "same" world (e.g., database schema or context [7]).
Given interpretations r and d of the world, where r is a reference source for a data set
d, a description of error in d constitutes the full set of corrections to d as implied by r.
We are modeling error in this sense as a "difference" between tFwo data sets. This is
analogous to treating scalar error as a difference between two numbers [2].

In practice, we envision a software system, based on this theory, which computes
an error measure for each data set derived from a database. (A DBA or software agent
would produce a priori some error measure on the input relations.) The system
would take as input an error term which is a set of error measures on persistent
datal. This approach provides users a sense of output data reliability, and it
amortizes the cost of measurement over various queries run. This approach also
informs the DBA as to which data quality improvements will yield the best return for
users. We believe that this technology has application to all data, whether in a stand-
alone database, a data warehouse, or shared in a multi-database network. This
research will lead to a set of Data Quality functions, shown below in the data

1 "Atomic" data which are stored and maintained over time.
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warehouse setting as an example. The "confidence interval" here is a set of
probability distributions about error. Error propagation calculus (EPC) execution is
"induced" by query operations.

Figure 1: A data quality subsystem in an on line analysis setting

Error and its propagation are considered in survey methods [6], numerical
analysis [2], and applied statistics [10]. As was shown in Table 1, this stream of work is
concerned with error in quantitative data (e.g., numbers and counts) and with the
propagation of error through regressions and basic arithmetic. These operations are
different from those in a database query, however. Another stream of research on
database incompleteness and uncertainty concerns querying over null values and
over disjunctive and probabilistic representations of non-determinism [4, 8, 12, 25].
Our focus is on quantitative modeling of error, and not on extending the database to
represent non-determinism. (Error and uncertainty are orthogonal2 in this sense.)
Motro [20] considers completeness and validity of data, but defined at the "tuple
level" and with no quantitative interpretation of error. In [22], a similar model to
ours is described, but formal properties are not analyzed, incompleteness is not
covered3 , and assumptions are made about uniformity and independence in
probabilities.

In Section 2 we describe a logical error representation. In Section 3 we present the
probabilistic calculus and representation. In Section 4 we conclude, considering
possibilities for application of these ideas in practice.

2. LOGICAL REPRESENTATION FOR DATABASE ERROR
Error-related concepts such as accuracy, completeness, integrity, and consistency

are often vague. They apply differently to a data set than to a datum, and they may be
operationalized differently for categorical and numeric data. A precise, general, and
quantitative formulation of error would be useful.

2 We may have probabilities but no error, e.g., P(coin toss = HEAD) = .5. Or we may have error but no probabilities if
we "know error deterministically" (e.g., Joe earns $40K not $30K). Uncertainty about error is typical, however.

3 e.g., an empty relation by definition contains no errors
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Example 2.1 (the three error types) Table 2 below lists alumni of a college who
have made large donations and live in the U.S. It includes their Name, State,
Degree, Major, Year, and Donations.4 Three error types are described by example
beneath Table 2 and will be formalized in Section 2.2.

2.1 Examples of error and its propagation

Record # Name State Degree Major Year Donations

1 Mae Ray RI BS Law $ 800,000
2 Lisa Jordan RI MS CS 1982 $ 500,000
3 Tom Jones ME MS 1988 $ 420,233
4 Jon Wales CT B S Eng'g 1953 $ 600,000
5 Frank Ames NY PhD Biology 1986 $ 820,000
6 VT MS Business $ 243,000

Table 2: Example table with errors - Alumni relation

O (end example)

These types of errors may be found wherever data collection can not be tightly

controlled, or where error is not a major concern. We usually understand error not

as corrections to particular facts (i.e., logically as in Example 2.1), but only as
probabilities as in Example 2.2 below.

Example 2.2 (error as probabilities) A DBA for the Alumni database we have
worked with believes that approximately three hundred records in his data
incorrectly list an alumnus as Deceased. He suspects that this is due both to mis-
keying of ID's in data entry, and to falsification by alumni (to prevent
solicitations!). In this case, error can only be modeled as probabilities of error for
various subsets of the population. O

Example 2.3 below provides an intuition into error propagation.

Example 2.3 (propagation)
query on Alumni Table 2
From Alumni Where Degree

Table 3 below results from the following select-project
and errors of Example 2.1. Select Name, Donations
= 'MS'. Three errors from the input are propagated

4 This is an illustration of a 100,000-record university database we work with in our research. Data are hypothetical.

4

Alumni (U.S. active alumni)

inaccurate attribute value (record #2): Lisa Jordan's donation amount is actually 400,000. Included
in this category is the null attribute value (record #1&3): These are values which exist but are
unknown to the database. Mae Ray's Year of Graduation is 1991. Tom Jones' major was CS.

class incompleteness: A tuple for the alumnus John Junto is incomplete, i.e., missing. (Perhaps the
corrupted record #6 was his). He is an alumnus who satisfies the class definition, but is not listed.

class mismembership (record #4&6): Jon Wales is a mismember - he is no longer active. Record #6 is
a mismember as it represents a spurious object - null or corrupted keys are modeled as mismembers.
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to the output. First is the inaccurate value 500,000. Second is the blank-key
mismember. Third is incomplete John Junto whose degree is in fact 'MS'. O

Name Donations

Lisa Jordan 500,000

Tom Jones 420,233

243,000

Table 3: Result of standard select-project query on Alumni relation

2.2 Logical Error Representation

2.2.1 A conceptual model of error

We define error in a database table relative to a state (e.g., "true" state) of the
world as in Figures 2 and 3 below. The state of the world concerns objects, their
attribute values, and their membership in classes. Let true data (Dt) be that unique,
error-free, and possibly unknown table that correctly represents the state of the world
(in the context of the table's scheme D). The data in the database table (Da) is an
approximation of that world. Data error (De) is a representation of difference between
Dt and Da. We will define a correction operation G such that Dt = Da · De in Section
2.2.3. We write Or and dOt for true r relation and true t tuple respectively.

- true DB (Dt)

w - -- _ -- approximate " error representation
(given) DB (Da) (De)

Figure 2: Data error: Dt = Da & De

We construct our error representation over a semantics having class statements
and attribute statements. A class statement assigns an object to a category. An
attribute statement associates a value with an attribute of an object. Figure 3 below
summarizes our concept of error and its relation to these meanings.

5
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For class statements, key values denoting class members should denote ALL

members (else incompleteness) and ONLY members (else mismembership). For an
attribute statement, error corresponds to inaccurate (e.g., untrue) and blank (null)
attribute value vis-a-vis an object. These error types will be shown to fully
characterize the difference between any relation and any corresponding true (i.e.,
fully correct) relation. Our scheme will be operationalized in this paper for the
relational data model5 .

2.2.2 Error and the relational model

Definition 2.1 (error-free relational table) A relation r on scheme R is a
subset of the cartesian product of R's domains. We interpret every table as
representing a class. Key values represent objects in the class, and attribute
columns contain their attribute values. Key values may span multiple
columns. A tuple t is an element of r where t.j denotes the sub-tuple of t
on column(s) j. R's class is represented by the key of R. Non-key columns
are attributes of objects denoted by the key. Keys in persistent relations are
assumed to be unique. Initial model inputs are assumed to be 3NF. 

Definition 2.2 (error definitions) Let K be the key for table scheme D.
Then Dt.K is the true set of objects in D's class. Let Ci be the set of objects
incomplete from Da, so Ci = Dt.K - Da.K. Let Cm be the set of objects
mismember in Da, so Cm = Da.K - Dt.K. Let t.K be the key value of a tuple t
on D. We say that an attribute value t.j (j ¢ K) is inaccurate if t.j • Ot.j. A
null ' ' or syntax error in an attribute value means "value not known" (in
databases and for us: ' # c for all constants c). A null or syntax error in a
key is modeled as a mismember because "the object" is spurious or not
identified. 

Definition 2.3 (error representation) If r is a table then rem, rea, and rei are
its error tables (Table 4 below). These tables have the same scheme as r
and contain error tuples to indicate respectively: mismembers,
inaccuracies, and incompleteness vis-a-vis r. The error triple re = <rem,
rea, rei> constitutes our logical error representation, which is
fundamentally a correction to r. We say r exists in an error state, denoted
by re, which maps r to the table Or representing the state of the world. O

Example 2.4 (error triple re) The error triple <rem, rea, rei> for table and errors of
Example 2.1 is in Table 4 below. Tuples in rem and rei denote mismember and
incomplete tuples of r respectively. Tuples in rea represent member tuples of r
having one or more inaccurate attributes. Values in the attribute columns of rea
are accurate and are only present (i.e., not '-') when the corresponding value in r
is inaccurate (tuples 1-3 below). All attribute column values in rei are present and

5 our system is logical, however, so that the data model chosen should be incidental

6

I_



accurate (tuple 6 below). In rem only the key column values are of concern and
not attribute column values. The logical representation is an exact account of
error in r relative to a state of the world. o

rem Alumni mismember

4 Jon Wales

6 @ (NULL)

rea Alumni inaccurate

1 Mae Ray _ _ _ 1991

2 Lisa Jordan _- 400,000

3 TomJones _ CS - -

rei Alumni incomplete

6 John Junto VT MS Psychology 1984 243,000

Table 4: Sample error triple: <rem, rea, rei>

To summarize the logical representation - a tuple in r is either: (1) fully correct

(member with no inaccuracy), (2) mismember , or (3) inaccurate (member with

inaccuracy). An object in the world may be incomplete from r and would then be in

rei. These define a partition on r u rei, the space of relevant tuples. This

"deterministic" concept of error will serve as a mathematical basis for our

probabilistic scheme which, unlike the logical model, admits measurement

uncertainty.

2.2.3 The correction operator

The correction operator G has two forms: a tuple correction 1t(rl, re) for rl E r,

and a relation correction Gr(r, re). A relation is corrected by eliminating mismember

tuples, inserting incomplete tuples, and correcting inaccurate tuples: Gr(r, re) = I{t(rl,

re) I 3rl E r A rl.K X rem.K} u rei. An inaccurate tuple is corrected by replacing

inaccurate and null attribute values with accurate values. These are written in the

calculus as Or and Grl. (For brevity, the formalism for tuple correction is not given.)

We now show a simple yet important completeness property of our error triple

and correction operator. Let D be the set of possible instances of a relation r

(including possible errors). Let W be the set of possible instances of r corresponding

to a state of the world (e.g., no nulls, spurious objects, syntax errors) so that W c D.

The following theorem states that this scheme can characterize the discrepancy

between any <d, w> pair. E is the space of possible error triples under the associated

relation scheme.

7

--- -~-""-"""~"~"""""~~"~~~""""`"~�-�-



Theorem 2.1 (logical representation completeness) The correction operator Or

and error triple define an onto mapping from D to W (i.e., can map any d C D to
any w E W) such that W = Or(D, E).

Proof (sketch) An object determines its true attribute values. The true relation
is therefore determined by the true set of objects in its class. By definition, an
error triple defines which objects are truly in a class and which are present but do
not belong, as well as defining their true attribute values. Assuming sufficient
domains, an error triple can thus map any d E D to any w E W. 

This completes the description of the logical representation. Whereas data
quality is sometimes discussed vaguely as "accuracy and completeness", we have
formalized error using a correction mapping over a finest-grain discrete space. This
will become the sample space6 of the probabilistic error representation. In our model,
error takes two forms: class-level (incompleteness and mismembership) and
attribute-level (inaccuracy and nulls). This is consistent with the literature on
statistical methodology, in which measurement error is considered at the population
level and the individual level (sampling and non-sampling error) [6]. In [15], we

show (and prove correctness for) a logical error propagation calculus which
propagates this representation through select, project, cartesian product, natural join,

and aggregations - in a closed and lossless fashion. This covers the space of
conjunctive queries [1], the basis for SQL. We continue with the probabilistic model
next.

3. PROBABILISTIC ERROR REPRESENTATION & PROPAGATION CALCULUS

Our logical model represents error as deterministic corrections to individual
facts. Inaccuracy in a number would be denoted by a number (e.g., the true value,
numeric difference, or percentage deviation). In practice, error may only be estimated
by subjective judgment, actuarial method, etc. Therefore, our probability model
represents error as distributions. Inaccuracy in a number may then be represented as
a distribution of possible numbers. Examples 3.1 and 3.2 below illustrate our
probabilistic representation and the conditional probability distributions of error that
will be used.

Example 3.1 (probabilistic inaccuracy representation) The Income_table below
represents taxpayers with an identifier (SSN), declared income (I), and
employment category (EC).

6 mutually exclusive, collectively exhaustive, and finest-grain enumeration of events of interest [11]
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Let E be the inaccuracy in an income figure (i.e., the reported value minus true
value). We consider three cases (below). In (i), E is unconditional: income
under-reporting is independent of other attributes. In (ii) E is conditioned on I:
under-reporting varies with income. In (iii) E is conditioned on I and EC: the
self-employed under-report more so than retirees or corporate employees.

(i) E independent of I & EC: P(E=e) = f(e)
(ii) E depends on I: P (E=e I VI=i) = f(e, i)
(iii) E depends on I and EC: P (E=e I EI=i A EC=ec) =f(e, i, ec) o

Practically speaking, we believe that an error representation should be able to
provide the following kinds of information: (a) the probability that a given (e.g.,

random) tuple is mismember, (b) the probability that a given tuple is inaccurate and

that its true value is x (a tuple variable), (c) the probability that a given class member

is incomplete, and (d) the probability that a member has value x given that it is

incomplete. Information such as this - when properly structured - will allow us to

understand a variety of biases that may be "hidden" in the data. Our representation

will cover these and these lead naturally to a calculus for aggregate queries such as

count and sum [15].

In Example 3.1 we showed conditional distributions representing inaccuracy. The

use of conditionals for mismembership is illustrated by Example 3.2 below.

Example 3.2 (conditional mismembership representation) Consider a snapshot
of a Student table. Assume the snapshot not been refreshed (updated) in one
year. The probability of a tuple being a mismember (e.g., the student in reality
having graduated) will be conditional upon the Year the student entered and on
the Degree (PhD, MS, BS) being pursued. o

The probability formalism is as follows. We model the measurement of error in

a table r as an experiment. The error state space of the logical representation D x W is
the sample space over which probabilistic representation and calculus are defined.
Because w is a function of <r, re> (Theorem 2.1), then a probability distribution pi on

the set of possible error states (e.g., error triples re) of r - defines a probability
distribution on the true state of the world. Given r and pl, we therefore have "perfect
probabilistic information" about the world. This is an important feature for any

9

Income_table

SSN | Income (I) Employment Category (EC)

142-06-4480 46,514 self-employed

113-22-4231 21,245 retired

775-95-4573 29,223 corporate

I... I... I...
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model of error. We will state this as Theorem 3.1. Probabilistic statements about

mismembership, inaccuracy, and incompleteness are one way of encoding knowledge

leading to probability distributions of error.

Query aggregations and partitions amplify some errors while diminishing others.

Even for analysts who understand error in persistent data, it may be unclear how the

error impacts data output. And outputs, not inputs, are the concern of users. We

now begin with the probabilistic representation and calculus. We describe a full

select calculus, and consider projection by example. For brevity, some of the calculus

sub-expressions are presented but not explained. This is hopefully sufficient to

illustrate the approach.

3.1 Probabilistic Select Calculus

Each calculus equation computes an output event probability from input event

probabilities. Each therefore describes an error propagation mechanism, or

"dependency structure" by which error migrates from input to output. Let tables r
and s be input to and output from a selection. The scheme of both is R, with re and

Se as error triples. Let K c R be the key of R. As an example of the probabilistic

events we will consider, let sl be a random tuple drawn from the result s. Let sl.K E

Sem.K be the event that sl.K is a mismember of s. Then P(sl.K E sem.K) is the

probability of this event. Sometimes, we wish to assign a higher likelihood or degree

of error to some subsets of the data(world) than to others, as in examples 3.1 and 3.2
above. A conditional distribution such as P (sl.K E Sem.K I sl = x) allows us to do this

(where x is a tuple variable on R). (Of course P (sl.K E sem.K I sl = x) = P (sl.K E Sem.K

) if independence is assumed.)

We start with select mismembership. A selection condition is a logical formula f

[24]. If a tuple t satisfiesf we writef(t) else -f(t).

mismembership in the select result:

P(sl.K E sem.K I sl= x) = P(sl.K E rem.K I sl= x ) (la)

+ P(sl.K c rea.K A f(sl) A -f(Qsl) I Sl = x) (lb)

Logically, error propagation calculus (sub-)expressions la and lb above state that

two exclusive events among input tuples can result in an s mismember. la covers

the event that sl.K was a mismember in r, in which case (by definition of a selection)
it is also a mismember in s. Example of la: Select * from Alumni where State = "CT"

yields Jon Wales as a mismember of s as he was a mismember of r. lb describes the

other way a tuple may be a mismember in s - when an inaccuracy in r causes a tuple
to be wrongly selected into s. Example of lb: Select * from Alumni where Donations

10
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> 450,000 yields Lisa Jordan as a mismember in s. Her actual donation was 400,000

while it was listed as 500,000 in the database. Although her database tuple satisfies f,
her "true tuple" does not.

The probability of an output mismembership is a function of the probabilities of
the these two types of input error events. The probability that a random output tuple
sI E s is a mismember (given sI = x) is the probability that, for the tuple sl E r, and
given f(sl), then what is the conditional probability - in r - that sl is either a

mismember of r or sl is inaccurate resulting in false selection by f. And, because of
the conditionals, a probabilistic "filtering" of error is going on. The selectivity of f
over conditioning variables may lead to different proportions of tuples in each error
category for r and s. The propagation of probability distributions is based on the
underlying logical structure defined in [15]. Using a commutativity-based proof
method, we show that this logical representation of error can be propagated very
naturally under relational selection, projection, cartesian product, natural join, and
aggregation.

The select calculus expression for inaccuracy is covered next. Whereas
mismembership concerns objects and classes, inaccuracy concerns an attribute value
vis-a-vis an object. As in mismembership, we adopt a conditional interpretation of
inaccuracy. y below is another tuple variable on R.

inaccuracy in the select result:

(sl.K E sea.K A $sl=y I sl=x) = P(sl.K E rea.K A sl = y,f(1 sl) sl = x) (2a)

This equation describes the single event in the input event space that results in
an inaccuracy in the output. This is the case where an inaccurate tuple si of r satisfies
f. f(esl) ensures that sl.K o sem.K. Select inaccuracy example of 2a: Select * from

Alumni where donation > 300,000 results in Lisa Jordan as an inaccurate tuple in s.

She is not a mismember of s as her donations are in fact greater than 300,000.
To conclude the select calculus we consider incompleteness. Let o be a random

tuple from Os. Let t be the corresponding inaccurate tuple7 in r such that t.K = o.K.
The reasoning behind calculus expression 3a-b below is analogous to that of the
mismembership expression la-b. Ps and Pr represent probabilities on s and r
respectively.

7 if its existed, i.e., if object o was not incomplete

11



incompleteness 8 in the select result:

P(o.K E Sei.K I o = x) = P(o.K e rei.K A f(o) I o = x) (3a)

+ P(o.K E rea.K A f(o) A -,f(t) I o = x) (3b)

Ps(o = x) = Pr(o = x I f(o)) (3c)

3.2 Probabilistic Project Calculus

Example 3.3 (project propagation) The projection Select Major From Alumni
(Table 1) results in the table below. This is the set of majors among active US
alumni - the class of alumni represented by the input relation. Notice that there
are no attributes (only keys) in Major. Business, which occurred as an attribute
value of a mismember in Alumni, is a mismember in Major since it was not the
correct Major for any active US alumnus. Psychology, the major of incomplete
alumnus John Junto is incomplete. (It would not have been if it were the listed
value for any other tuple in Alumni). O

Major

Law

CS
Eng'g
Biology

Business

('Psychology' is incomplete)

('Business' is mismember)

In the example above, Major was an attribute column in context of Alumni, but

"became" an object in the Major table due to the projection. A propagation calculus

must account for such semantic transformations and convert across error measures

from one interpretation of data to another (e.g., as in lb & 3b).

Let r and s be input and output respectively for a projection: s = ts (r).

Probabilistic project propagation depends on the relationship between the projection

list S and the key K of the input scheme R. If S includes the entire key of R, then the

key of S and R are the same, and the incompleteness and mismembership of s and r

are the same. If the key is removed, then a new key arises (as in Major above) and

error must be computed accordingly. Another factor in the projection is the

relationship between S and the set of columns that are conditioning in the error

representation. If conditioning columns are removed, then a new marginal

distribution of error must be computed for on remaining columns in order to

maintain error information. Example 3.4 below describes the calculus for projection

incompleteness when the conditioning columns are kept and the key is removed.

8 An alternative formulation of incompleteness is not shown for brevity.
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Example 3.4 (project incompletes - conditioning columns kept, key removed)
The query and resulting table of Example 3.3 illustrate this case. Let Rk be the key
of R. Because S is disjoint from Rk, there is a key change so that Sk = S. 9 Define o
as in 3a-c above. We will compute incompleteness as

P(o.K E S ei I o.K = x). P(o.K E Sei I o.K = x) = P(x E Sei) = P(x E r.S A x o r.S).

P (x E r.S A x r.S) = (a) O for x r.S, and (b) for x r.S: P(x E rei.S v x E

{(t I t rea.K}) = 1 - P(x rei.s x {t I t E rea.K}). O

This error propagation calculus expression indicates that object o.Sk will be

incomplete from s if either incompleteness or inaccuracy in r masked the fact that a

member of r in fact had S value o.Sk.

This completes our presentation the error representation and propagation

calculus formalism. As seen from this model, error propagation is non-trivial but

computable (discussed more formally in [151).

3.3 Probabilistic representation and a property

"Knowing error fully" in a probabilistic sense implies having a probability

distribution on the error sample space, so that each error state is individually

quantified for likelihood (i.e., so that there is no ambiguity in error probabilities). A

probabilistic error representation - consisting of expressions such as those in the left

hand sides of calculus expressions 1, 2, and 3 - is one way of defining these probability

distributions. (The right hand sides tell us how these errors propagate and interact

from input to output.)

We present below a probabilistic analog to the logical Theorem 2.1. It states that -

given a table d - and given a probability distribution over E (the set of possible error

triples under d's scheme), then a unique probability distribution on W is specified.

Therefore, a table and its error distribution provide a unique and unambiguous

probability distribution on the true state of the world. This is an indicator of the

model's fidelity to an underlying objective concept of truth, which is a probability

distribution on possible states of the world, given all available information.

Theorem 3.1 (probabilistic representation completeness) A table d, and the
probability distribution on E together define a probability distribution on W.

Proof: Let w be any point in W. We know from Theorem 2.1 that there exists
one or more points in <D, E> which map to w, i.e., are in a state such that Dr(d, e)
= w. These are the pre-image of w in <D, E>. Here, D is fixed at d, so the
probability of w is simply the union of the probabilities of all points in E which

9 We assume no transitive dependencies in R as projection input is 3NF under standard optimization heuristics [24].
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are in the pre-image of w, which is given by the distribution on E. Therefore each
element of w is individually quantified for error. 

Many uncertainty models embody assumptions about the "shape" of uncertainty
(e.g., uniformity, independence, and normality [4, 8, 25]). These may or may not be

valid in a given setting. The current model makes no assumptions about
distributions, but only specifies what probabilities are relevant.

4. DISCUSSION
We have formulated an original model of the structure of error and described its

propagation in databases. We began with a conceptual model, described two error
representations, and outlined a calculus for their propagation through queries. The
logical model defines a semantics and the probabilistic model provides a quantitative
interpretation. Error is defined as a difference between two relations, based on a
mathematically defined point space. The error propagation calculus is a set of

operators which compute output error as a function of input error. The set of error
types - incompleteness, mismembership, and inaccuracy - is closed under the
calculus. Two theorems showed completeness properties of the representations. We
tied these concepts to a methodology in which measurement and recording of error
knowledge may be institutionalized for persistent data - the calculus then using
existing error measures to compute the impact of error on each data set retrieved.

Such a methodology could apply in many database settings.

Example 4.1 (Scio-econ Data Co.): We work with one of the world's largest socio-
economic data providers. They process thousands of data types from hundreds of
data sources. Of several thousand customer help line calls per year, many
involve data error. What can be done if an error is suspected? Sometimes a
customer suggests a replacement datum based on a second data source. Where
data are confirmed as incorrect, new data may be substituted. The problem here is
that such a substitution modifies the source data, and it requires a judgment that
a substitute datum is better than the original. Such judgments are often beyond
the purview of a data administrator. In this organization, textual entries in a log
are used to document experience with suspicious or incorrect data. An example
text is: "prices are wrong for several Belgian companies". These text entries,
however, are informal (e.g., not mathematically processable) and are not
quantitative. O

Historically, personal familiarity with data allowed users to account - as best they
could - for known patterns of error. Today, we believe that knowledge about data
error should be a shared resource, e.g., a value-added addendum to data.
Representations of error that are linked to the data dictionary and propagate through
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operations on data would be useful in this organization so that the importance of

error could be better known. This approach could allow an understanding - e.g., a
quantitative mathematical model - of error to be accrued over time, by individual
analysts, without modifying source data, and possibly characterizing error from each
individual user's perspective - based on application context and error sensitivity.

We view this work only as a first step. For example, it may be possible to change
or refine the mathematical construction of error. We believe, however, that a point
space formalism and uncertainty framework, with properties similar to ours, should
be provided for any model of data error. Economical ways of measuring and
computer-encoding such error information, as well as complexity analysis of the
calculus, are also necessary. Though not yet implemented in software, our model
also makes no assumptions or requirements about change to underlying database
systems, so its use in practice seems workable. We are currently implementing the
(logical) error model in software so that some of these ideas may be tested. Error
triples will be populated by inter-database comparisons and by maintenance of error
tuples.

Example 4.2 (University Data Warehouse): We have worked with the architect
of a Data Warehouse for a major university. He indicates that the representation
and storage of organizational knowledge about data error is important to his
project. Data in his warehouse come from "anonymous" sources, so potential
users know little about data reliability. He fears that users will run analyses
without understanding data error. Then, as errors are discovered, the warehouse
project overall may lose credibility. o

The value of data sharing networks will be greatly reduced without rating and

certification of data and without a means for communicating about error from those
who know (e.g., administrators and prior users) to those who do not. Error-based
filtering or retrieval of data may exist as a network mediation function when user
error sensitivities are made explicit. Value-added network services for correcting or
adjusting data (e.g., probabilistically) also seem desirable. Though documentation of
data for semantic interoperability has focused on the meaning of data, a database with
bad data may be worse than no database at all!

At VLDB 1993, one invited talk and two panels raised data quality as an
important research area [18, 21, 23]. Clearly error is fundamental to data quality.
Although database answers are generally wrong, there has been little done from a
research standpoint to answer "by how much". This research is useful as a theory in
that it leads to methods and tools for data quality administration in which (1)
administrators have a framework and quantitative representation in which to record
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information about error, (2) users get a better sense of data reliability and can

evaluate the appropriateness of data for their application, and (3) the benefit to users

of data quality improvement efforts can be known directly via the calculus, so that

resources for data quality enhancement may be effectively applied.
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