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Abstract

The context INterchange (COIN) strategy presents a novel perspective for mediated data

access in which semantic conflicts among heterogeneous systems are not identified a priori,

but are detected and reconciled by a Context Mediator through comparison of contexts ax-

ioms corresponding to the systems engaged in data exchange. In this paper, we illustrate

the new features which are made possible by this integration strategy, such as allowing both

queries on shared views and export schemas to be mediated using the same framework, sup-

porting both knowledge-level as well as data-level queries, and furnishing both intensional

and extensional answers to user queries. We then proceed to describe the COIN framework,

which provides a formal characterization of the representation and reasoning underlying the

Context Interchange strategy. This formalization constitutes a well-founded basis for the

design and implementation of a prototype embodying the features which we have described.

Keywords: Context, heterogeneous databases, logic and databases, mediators, semantic

interoperability.

1 Introduction

The number of online information sources and receivers has grown at an unprecedented rate in

the last few years, contributed in large part by the exponential growth of the Internet as well as

advances in telecommunications technologies. Nonetheless, this increased physical connectivity

(the ability to exchange bits and bytes) does not necessarily lead to logical connectivity (the

*This work is supported in part by ARPA and USAF/Rome Laboratory under contract F30602-93-C-0160, the
International Financial Services Research Center (IFSRC), and the PROductivity From Information Technology
(PROFIT) project at MIT.
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ability to exchange information meaningfully). This problem is sometimes referred to as the

need for semantic interoperability [33] among autonomous and heterogeneous systems.

The Context Interchange (COIN) strategy [34; 31] is a mediator-based approach [37] for

achieving semantic interoperability among heterogeneous sources and receivers, constructed on

the following tenets:

* the detection and reconciliation of semantic conflicts are system services which are pro-

vided by a Context Mediator, and should be transparent to a user; and

* the provision of such a mediation service requires only that the user furnish a logical

(declarative) specification of how data are interpreted in sources and receivers, and how

conflicts, when detected, should be resolved, but not what conflicts exists a priori between

any two systems.

These insights are novel because they depart from classical integration strategies which ei-

ther require users to engage in the detection and reconciliation of conflicts (in the case of

loosely-coupled systems; e.g., MRDSM [24], VIP-MDBMS [20]), or insist that conflicts should

be identified and reconciled, a priori, by some system administrator, in one or more shared

schemas (as in tightly-coupled systems; e.g., Multibase [21], Mermaid [35]).

Our goal in this paper is (1) to illustrate various novel features of the COIN mediation strategy

and (2) to describe how the underlying representation and reasoning can be accomplished within

a formal logical framework. Even though this work originated from a long-standing research

program, the features and formalisms presented in this paper are new (with respect to our

previous works) and represent a significant departure from integration approaches which have

been described in the literature. Unlike most existing research which addresses exclusively

the issue of interoperable data exchanges, the proposed integration strategy supports both

"knowledge-level" as well as "data-level" queries, and is capable of returning both "extensional"

as well as "intensional" answers. In addition, both "multidatabase" queries as well as queries

on "shared views" can be mediated while allowing semantic descriptions of disparate sources to

remained loosely-coupled to one another. This strategy has also been validated in a prototype

system which provides access to both traditional data sources (e.g., Oracle data systems) as

well as semi-structured information sources (e.g., Web-sites).

The rest of this paper is organized as follows. Following this introduction, we present a

motivational example which is used to highlight selected features of the Context Interchange

strategy. Section 3 describes the COIN framework by introducing both the representational

formalism and the logical inferences underlying query mediation. Section 4 compares the Con-

text Interchange strategy with other integration approaches which have been reported in the
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literature. The last section presents a summary of our contribution and describe some ongoing

thrusts.

Due to space constraints, we have aimed at providing the intuition by grounding the discus-

sion in examples where possible; a substantively longer version of the paper presenting more of

the technical details is available as a working paper [12]. A report on the Prototype can also be

found in [4]. An in-depth discussion of the context mediation procedure and its implementation

can be found in a companion paper [5].

2 Context Interchange by Example

Consider the scenario shown in Figure 1, deliberately kept simple for didactical reasons. Data

on "revenue" and "expenses" (respectively) for some collection of companies are available in

two autonomously-administered data sources, each comprised of a single relation', denoted by

ri and r2 respectively. Suppose a user is interested in knowing which companies have been

"profitable" and their respective revenue: this query can be formulated directly on the (export)

schemas of the two sources as follows:

Q1: SELECT rl.cname, rl.revenue FROM rl, r2

WHERE rl.cname = r2.cname AND rl.revenue > r2.expenses;

(We assume, without loss of generality, that relation names are unique across all data sources.

This can always be accomplished via some renaming scheme: say, by prefixing relation name

with the name of the data source (e.g., dbl#rl).) In the absence of any mediation, this query

will return the empty answer if it is executed over the extensional data set shown in Figure 1.

The above query, however, does not take into account the fact that both sources and receivers

may have different contexts: i.e., they may embody different assumptions on how information

present should be interpreted. To simplify the ensuing discussion, we assume that the data

reported in the two sources differ only in the currencies and scale-factors of "money amounts".

Specifically, in Source 1, all "money amounts" are reported using a scale-factor of 1 and the

currency of the country in which the company is "incorporated"; the only exception is when

they are reported in Japanese Yen (JPY); in which case the scale-factor is 1000. Source 2, on

the other hand, reports all "money amounts" in USD using a scale-factor of 1. In the light of

'Throughout this paper, we make the assumption that the relational data model is adopted to be the canonical
data model [33]: i.e., we assume that the database schemas exported by the sources are relational and that queries
are formulated using SQL (or some extension thereof). This simplifies the discussion by allowing us to focus on
semantic conflicts in disparate systems without being detracted by conflicts over data model constructs. The
choice of the relational data model is one of convenience rather than necessity, and is not to be construed as a
constraint of the integration strategy being proposed.
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CONTEXT cl

all "money amounts" ("revenue" inclusive)

are reported in the currency of the country of incorporation.

all "money amounts" are reported using a

scale-factor of 1, except for items reported in JPY,

where the scale-factor used is 1000.

rl

all "money amounts" are reported in USD,

using a scale-factor of 1.

select rl.cname, rl.revenue
from rl, r2
where rl.cname = r2.cname
and rl.revenue > r2.expenses;

r2

r3

fromCur toCur exchangeRate

USD JPY 104.0
JPY USD .0096

1 1 1 1~~~~~~~~~~~~~~~~~~~~

Figure 1: Example scenario.

these remarks, the (empty) answer returned by executing Q1 is clearly not a "correct" answer

since the revenue of NTT (9,600,000 USD = 1,000,000 x 1,000 x 0.0096) is numerically

larger than the expenses (5,000,000) reported in r2. Notice that the derivation of this answer

requires access to other sources (r3 and r4) not explicitly named in the user query.

In a Context Interchange system, the semantics of data (of those present in a source, or of

those expected by a receiver) can be explicitly represented in the form of a context theory and

a set of elevation axioms with reference to a domain model (more about these later). As shown

in Figure 2, queries submitted to the system are intercepted by a Context Mediator, which

rewrites the user query to a mediated query. The Optimizer transforms this to an optimized

query plan, which takes into account a variety of cost information. The optimized query plan
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Figure 2: Architecture of a Context Interchange System

is executed by an Executioner which dispatches subqueries to individual systems, collates the

results, undertakes conversions which may be necessary when data are exchanged between two

systems, and returns the answers to the receiver. In the remainder of this section, we describe

the queries and answers that can be supported by such an architecture.

2.1 Mediation of "Multidatabase" Queries

The query Q1 shown above is in fact similar to "multidatabase" MDSL queries described in [24]

whereby the export schemas of individual data sources are explicitly referenced. Nonetheless,

unlike the approach advocated in [24], we maintain the opinion that users should be insulated

from underlying semantic heterogeneity: i.e., users should not be required to engage in detecting

or reconciling potential conflicts between any two systems. In the Context Interchange system,

this function is undertaken by the Context Mediator: for instance, the query Q1 is transformed

to the mediated query MQ1:

SELECT rl.cname, rl.revenue FROM rl, r2, r4

WHERE rl. country = r4.country AND r4.currency = 'USD'
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AND rl.cname = r2.cname AND rl.revenue > r2.expenses;

UNION

SELECT rl.cname, rl.revenue * 1000 * r3.rate FROM rl, r2, r3, r4

WHERE rl.country = r4.country AND r4.currency = 'JPY'

AND rl.cname = r2.cname AND r3.fromCur = 'JPY'

AND r3.toCur = 'USD' AND rl.revenue * 1000 * r3.rate > r2.expenses

UNION

SELECT rl.cname, rl.revenue * r3.rate FROM rl, r2, r3, r4

WHERE rl. country = r4.country AND r4. currency <> 'USD'

AND r4.currency <> 'JPY' AND r3.fromCur = r4.currency

AND r3.toCur = 'USD' AND rl.cname = r2.cname

AND rl.revenue * r3.rate > r2.expenses;

This mediated query considers all potential conflicts between relations rl and r2 when com-

paring values of "revenue" and "expenses" as reported in the two different contexts. Moreover,

the answers returned may be further transformed so that they conform to the context of the

receiver. Thus in our example, the revenue of NTT will be reported as 9 600 000 as opposed to

1 000 000. More specifically, the three-part query shown above can be understood as follows.

The first subquery takes care of tuples for which revenue is reported in USD using scale-factor

1; in this case, there is no conflict. The second subquery handles tuples for which revenue is

reported in JPY, implying a scale-factor of 1000. Finally, the last subquery considers the case

where the currency is neither JPY nor USD, in which case only currency conversion is needed.

Conversion among different currencies is aided by the ancillary data sources r3 (which provides

currency conversion rates) and r4 (which identifies the currency in use corresponding to a given

country). This second query, when executed, returns the "correct" answer consisting only of

the tuple <'NTT', 9 600 000>.

2.2 Mediation of Queries on "Shared Views"

Although "multidatabase" queries may provide users with much flexibility in formulating a

query, it also requires users to know what data are present where and be sufficiently familiar

with the attributes in different schemas (so as to construct a query). An alternative advocated

in the literature is to allow views to be defined on the source schemas and have users formulate

queries based on the view instead. For example, we might define a view on relations rl and r2,

given by

CREATE VIEW v (cname, profit) AS
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SELECT rl.cname, rl.revenue - r2.expenses

FROM rl, r2

WHERE rl.cname = r2.cname;

In which case, query Q1 can be equivalently formulated on the view v as

VQ1: SELECT cname, profit FROM vi

WHERE profit > 0;

While achieving essentially the same functionalities as tightly-coupled systems, notice that view

definitions in our case are no longer concerned with semantic heterogeneity and make no at-

tempts at identifying or resolving conflicts since query mediation can be undertaken by the

Context Mediator as before. Specifically, queries formulated on the shared view can be easily

rewritten to queries referencing sources directly, which allows it to undergo further transforma-

tion by the Context Mediator as before.

2.3 Knowledge-Level versus Data-Level Queries

Instead of inquiring about stored data, it is sometimes useful to be able to query the semantics

of data which are implicit in different systems. Consider, for instance, the query based on a

superset of SQL2 :

Q2: SELECT rl.cname, rl.revenue.scaleFactor IN cl,

rl.revenue.scaleFactor IN c2 FROM rl

WHERE rl.revenue.scaleFactor IN cl <> rl.revenue.scaleFactor IN c2;

Intuitively, this query asks for companies for which scale-factors for reporting "revenue" in rl

(in context cl) differ from that which the user assumes (in context c2). We refer to queries

such as Q2 as knowledge-level queries, as opposed to data-level queries which are enquires on

factual data present in data sources. Knowledge-level queries have received little attention in

the database literature and to our knowledge, have not been addressed by the data integration

community. This is a significant gap in the literature given that heterogeneity in disparate

data sources arises primarily from incompatible assumptions about how data are interpreted.

Our ability to integrate access to both data and semantics can be exploited by users to gain

insights into differences among particular systems ("Do sources A and B report a piece of data

2Sciore et al. [301 have described a similar (but not identical) extension of SQL in which context is treated
as a "first-class object". We are not concern with the exact syntax of such a language here; the issue at hand is
how we might support the underlying inferences needed to answer such queries.
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differently? If so, how?"), or by a query optimizer which may want to identify sites with minimal

conflicting interpretations (to minimize costs associated with data transformations).

Interestingly, knowledge-level queries can be answered using the exact same inference mech-

anism for mediating data-level queries. Hence, submitting query Q2 to the Context Mediator

will yield the result:

MQ2: SELECT rl.cname, 1000, 1 FROM r, r4

WHERE rl.country = r4.country AND r4.currency = 'JPY';

which indicates that the answer consists of companies for which the reporting currency attribute

is 'JPY', in which case the scale-factors in context cl and c2 are 1000 and 1 respectively. If

desired, the mediated query MQ2 can be evaluated on the extensional data set to return an

answer grounded in the extensional data set. Hence, if MQ2 is evaluated on the data set shown

in Figure 1, we would obtain the singleton answer <'NTT', 1000, 1>.

2.4 Extensional versus Intensional Answers

Yet another feature of Context Interchange is that answers to queries can be both intensional

and extensional. Extensional answers correspond to fact-sets which one normally expects of

a database retrieval. Intensional answers, on the other hand, provide only a characterization

of the extensional answers without actually retrieving data from the data sources. In the

preceding example, MQ2 can in fact be understood as an intensional answer for Q2, while the

tuple obtained by the evaluation of MQ2 constitutes the extensional answer for Q2.

In the COIN framework, intensional answers are grounded in extensional predicates (i.e.,

names of relations), evaluable predicates (e.g., arithmetic operators or "relational" operators),

and external functions which can be directly evaluated through system calls. The intensional

answer is thus no different from a query which can normally be evaluated on a conventional

query subsystem of a DBMS. Query answering in a Context Interchange system is thus a two-

step process: an intensional answer is first returned in response to a user query; this can then

be executed on a conventional query subsystem to obtain the extensional answer.

The intermediary intensional answer serves a number of purposes [15]. Conceptually, it

constitutes the mediated query corresponding to a user query and can be used to confirm the

user's understanding of what the query actually entails. More often than not, the intensional

answer can be more informative and easier to comprehend compared to the extensional answer

it derives. (For example, the intensional answer MQ2 actually conveys more information than

merely the extensional answer comprising of single tuple.) From an operational standpoint, the

computation of extensional answers are likely to be many orders of magnitude more expensive
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compared to the evaluation of the corresponding intensional answer. It therefore makes good

sense not to continue with query evaluation if the intensional answer satisfies the user. From a

practical standpoint, this two-stage process allows us to separate query mediation from query

optimization and execution. As we will illustrate later in this paper, query mediation is driven

by logical inferences which do not bond well with (predominantly cost-based) optimization

techniques that have been developed [27; 32]. The advantage of keeping the two tasks apart is

thus not merely a conceptual convenience, but allows us to take advantage of mature techniques

for query optimization in determining how best a query can be evaluated.

3 The Context Interchange Framework

In [26], McCarthy pointed out that statements about the world are never always true or false:

the truth or falsity of a statement can only be understood with reference to a given context.

This is formalized using assertions of the form:

c: ist(c, a)

which suggests that the statement eo is true in ("ist") the context c, this statement itself being

asserted in an outer context E.

McCarthy's notion of "contexts" provides a useful framework for modeling statements in

heterogeneous databases which are seemingly in conflict with one another: specifically, factual

statements present in a data source are not "universal" facts about the world, but are true

relative to the context associated with the source but not necessarily so in a different context.

Thus, if we assign the labels cl and c2 to contexts associated with sources 1 and 2 in Figure 1,

we may now write:

c: ist(cl, rl("NTT", 1 000 000, "JPY")).

c: ist(c2, r2("NTT", 5 000 000)).

where refers to the ubiquitous context associated with the integration exercise. For simplicity,

we will omit in the subsequent discussion since the context for performing this integration

remains invariant.

The Context Interchange framework constitutes a formal, logical specification of the com-

ponents of a Context Interchange system. This comprises of three components:

* The domain model is a collection or "rich" types, called semantic-types, which defines the

application domain (e.g., medical diagnosis, financial analysis) corresponding to the data

sources which are to be integrated.
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* The elevation axioms corresponding to each source identify the correspondences between

attributes in the source and semantic-types in the domain model. In addition, it codifies

also the integrity constraints pertaining to the source; although the integrity constraints

are not needed for identifying sound transformations on user queries, they are useful

for simplifying the underlying representation and for producing queries which are more

optimal.

* The context axioms, corresponding to named contexts associated with different sources or

receivers, define alternative interpretations of the semantic-objects in different contexts.

Every source or receiver is associated with exactly one context (though not necessarily

unique, since different sources or receivers may share the same context). We refer to the

collection of context axioms corresponding to a given context c as the context theory for c.

The assignment of sources to contexts is modeled explicitly as part of the COIN framework via

a source-to-context mapping s/. Thus, (s) = c indicates that the context of source s is given

by c. The functional form is chosen over the usual predicate-form (i.e., ~(s, c)) to highlight

the fact that every source can only be assigned exactly one context. By abusing the notation

slightly, we sometimes write (r) = c if r is a relation in source s. As we shall see later on, the

context of receivers are modeled explicitly as part of a query.

In the remaining subsections, we describe each of the above components in turn. This is

followed by a description of the logical inferences - called abduction - for realizing query me-

diation. The COIN framework is constructed on a deductive and object-oriented data model (and

language) of the family of F(rame)-logic [19], which combines both features of object-oriented

and deductive data models. The syntax and semantics of this language will be introduced

informally throughout the discussion, and we sometimes alternate between an F-logic and a

predicate calculus syntax to make the presentation more intuitive. This is no cause for alarm

since it has been repeatedly shown that one syntactic form is equivalent to the other (see, for

instance, [1]). Notwithstanding this, the adoption of an "object-oriented" syntax provides us

with greater flexibility in representing and reusing data semantics captured in different contexts.

This is instrumental in defining an integration infrastructure that is scalable, extensible, and

accessible [13]. This observation will be revisited in Section 4 where we compare our approach

to the integration strategy adopted in Carnot [8].

3.1 The Domain Model

We distinguish between two kinds of data objects in the COIN data model: primitive-objects,

which are instances of primitive-types, and semantic-objects which are instances of semantic-
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Figure 3: A graphical illustration of the different components of a Context Interchange frame-
work.

types. Primitive-types correspond to data types (e.g., strings, integers, and reals) which are

native to sources and receivers. Semantic-types, on the other hand, are complex types intro-

duced to support the underlying integration strategy. Specifically, semantic-objects may have

properties, called modifiers, which serve as annotations that make explicit the semantics of data

in different contexts. Every object is identifiable using a unique object-id (oid), and has a value

(not necessarily distinct). In the case of primitive-objects, we do not distinguish between the

oid and its value. Semantic-objects, on the other hand, may have distinct values in different

context. Examples of these will be presented shortly.

A domain model is a collection of primitive- and semantic-types which provides a common

type system for information exchange between disparate systems. A (simplified) domain model

corresponding to our motivational example in Section 2 can be seen in Figure 3. We use

a different symbol for types and object-instances, and different arrow types to illustrate the

disparate relationships between these. For example, double-shaft arrows indicate "signatures"

and identify what modifiers are defined for each type, as well as the type of the object which

can be assigned to the (modifier) slot. The notation used should be self-explanatory from the

accompanying legend.

As in other "object-oriented" formalisms, types may be related in an abstraction hierarchy
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where properties of a type are inherited. This inheritance can be structural or behavioral: the

first refers to the inheritance of the type structure, and the second, that of values assigned to

instances of those types. For example, semanticNumber, moneyAmt, and semanticString are

all semantic-types. Moreover, moneyAmt is a subtype of semanticNumber, and have modifiers

currency and scaleFactor. If we were to introduce a subtype of moneyAmt, say stockPrice,

into this domain model, then stockPrice will inherit the modifiers currency and scaleFactor

from moneyAmt by structural inheritance. If we had indicated that all (object-)instances of

moneyAmt will be reported using a scaleFactor of 1, this would be true of all instances of

stockPrice as well by virtue of behavioral inheritance (unless this value assignment is over-

ridden).

The object labeled f_rl_revenue("IBM") is an example of a semantic-object, which is an

instance of the semantic-type moneyAmt (indicated by the dashed arrow linking the two). The

token f_rl_revenue("IBM") is the unique oid and is invariant under all circumstances. This

object however may have different values in different "contexts". Suppose we introduce two

contexts labeled as cl and c2 which we associate with sources and receiver as indicated in

Figure 3. We may write

f_rlrevenue("IBM") value(cl) -- 1000000].

f_rl_revenue("IBM") [value(c2) -+ 9600000].

The above statements are illustrative of statements written in the coin language (COINL), which

mirrors closely that of F-logic [19]. The token value (cl) is a parameterized method and is said

to return the value 1000000 when invoked on the object frlrevenue("IBM"). The same

statements could have been written using a predicate calculus notation:

ist(cl, value(frl_revenue("IBM"), 1000000)).

ist(c2, value(frl_revenue("IBM"),9600000)).

The choice of an object-logic however allows certain features (e.g., inheritance and over-ridding)

to be represented more conveniently.

3.2 Elevation Axioms

Elevation axioms provide the means for mapping "values" present in sources to "objects"

which are meaningful with respect to a domain model. This is accomplished by identifying the

semantic-type corresponding to each attribute in the export schema, and in allowing semantic-

objects to be instantiated from values present in a source. In the graphical interface which is

planned for the existing prototype, this is simply accomplished by scrolling through the domain
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model and "clicking" on the semantic-type that corresponds to a given attribute that is to be

exported by the current source.

Internally, this mapping of attributes to semantic-types is formally represented in two dif-

ferent sets of assertions. The first introduces a semantic-object object corresponding to each

attribute of a tuple in the source. For example, the statement

VxVyVz3u s.t. u : moneyAmt - rl(x,y,z).

asserts that there exists some semantic-object u of type moneyAmt corresponding to each tuple

in relation rl. This statement can be rewritten into the Horn clause [25]

f_ri_revenue(x, y, z) : moneyAmt +- r(x, y, z).

by replacing the existentially quantified variable u with the Skolem object [25]

f_rl_revenue (x, y, z). Notice that the Skolem function (f_rl_revenue) is chosen such that

it uniquely identifies the relation and attribute in question. In this example, it turns out that

the functional dependency cname - (revenue, country} holds on rl: this allows us to replace

f_rl_revenue(x, y, z) by f_rlrevenue(x) without any loss of generality. This follows triv-

ially from the fact that whenever we have f_rl_revenue(x, y, z) and f rl revenue(x, y', z'),

it must be that y = y' and z = z' (by virtue of the functional dependency).

The second assertion is needed to provide the assignment of values to the (Skolem) semantic-

objects created before. This is easily captured in the sentence

f_rl_revenue(x) [value(c) - y] +- ri(x,y, z, p(rl, c).

Consider, for instance, the semantic-object f_rl_revenue("IBM") shown in Figure 3. This

object is instantiated via the application of the first assertion. The second assertion allows us

to assign the value 1000000 to this object in context cl, which is the context associated with

relation rl. The value of this semantic-object may however be different in another context,

as in the case of c2. The transformation on the values of semantic-objects between different

contexts is addressed in the next subsection.

3.3 Context Axioms

Context axioms associated with a source or receiver provide for the articulation of the data

semantics which are often implicit in the given context. These axioms come in two parts. The

first group of axioms define the semantics of data at the source or receiver in terms of values

assigned to modifiers corresponding to semantic-objects. The second group of axioms comple-

ment this declarative specification by introducing the "methods" (aka conversion functions)

that define how values of a given semantic-object are transformed between different contexts.
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Axioms of the first type takes the form of a first-order statement which make assignments

to modifiers. Returning to our earlier example, the fact that all moneyAmt in context c2 are

reported in US Dollars while using a scale-factor of 1 is made explicit in the following axioms:

x : moneyAmt, y : semanticNumber - y[value(c2) -+ 1 - x[scaleFactor(c2) -+ y].

x : moneyAmt, y : currencyType - y[value(c2) -+ "USD"] +- x[currency(c2) -+ y].

In the above statements, the part preceding the symbol '-' constitutes the predeclaration identi-

fying the object-type(s) (class) for which the axiom is applicable. This is similar to the approach

taken in Gulog [9]. By making explicit the types to which axioms are attached, we are able to

simulate non-monotonic inheritance through the use of negation as in [1].

The semantics of data embedded in a given context may be arbitrarily complex. In the case

of context c, the currency of moneyAmt is determined by the country-of-incorporation of the

company which is being reported on. This in turn determines the scale-factor of the amount

reported; specifically, money amounts reported using "JPY" uses a scale-factor of 1000, whereas

all others are reported in l's. The corresponding axioms for these are shown below:

x :moneyAmt, y :currencyType F- yvalue(cl) -+ v] +-

xz currency(cl) -+ y], x =f_rl_revenue(u),

rl(u,_,w), r4(w,v).

x :moneyAmt, y :semanticNumber - y[value(cl) -+ 1000] +-

x[scaleFactor(cl) -+ y; currency(cl) -+z],

z[value(c1) -+ v], v = "JPY".

x :moneyAmt, y :semanticNumber - y[value(cl) -+ 1] +-

x[scaleFactor(cl) -+ y; currency(cl) -+z],

z[value(cl) -+ v], v "JPY".

Following Prolog's convention, the token '_' is used in denoting an "anonymous" variable. In the

first axiom above, r4 is assumed to be in the same context as rl and constitute an ancillary data

source for defining part of the context (in this case, the currency used in reporting moneyAmt).

The preceding declarations are not yet sufficient for resolving conflicting interpretations of

data present in disparate contexts since we have yet to define how values of a (semantic-)object

in one context are to be reported in different context with different assumptions (aka modifier

values). This is accomplished in the Context Interchange framework via the introduction of con-

version functions (methods) which form part of the context axioms. The conversion functions

define, for each modifier, how representations of an object of a given type may be transformed

to comply with the assumption in the local context. For example, scale-factor conversions in
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context cl can be defined by multiplying a given value with the appropriate ratio as shown

below:

x :moneyAmt -

x [cvt (scaleFactor, c) c, u -+ v] - x [scaleFactor(cl) - _ [value(cl) -+ f]] ,

x[scaleFactor(c) -+ _[value(c1) - g]],

v = * g/f.

In the "antecedent" of the statement above, the first literal returns the scale-factor of x in

context cl. In contrasts, the second literal returns the scale-factor of x in some parameterized

context c. c and cl are respectively, the source and target context for the tranformation at

hand. The objects returned by modifiers (in this case, scaleFactor(cl) and scaleFactor(c))

are semantic-objects and needs to be de-referenced to the current context before they can be

operated upon: this is achieved by invoking the method value(ci) on them. Notice that the

same conversion function can be introduced in context c2; the only change required is the

systematic replacement of all references to cl by c2.

The conversion functions defined for semantic-objects are invoked when the semantic-objects

are exchanged between different contexts. For example, the value of the semantic-object

f_rl_revenue ("IBM") in context c2 is given by

f_rl_revenue("IBM")[value(c2) -+ v] +- f_rl_revenue("IBM")[cvt(c2) -+ v] .

The method cvt (c2) can in turn be rewritten as a series of invocation on the conversion function

defined on each modifier pertaining to the semantic-type. Thus, in the case of moneyAmt, we

would have

f_rl_revenue("IBM")[cvt(c2) -+w] i-

f_rl_revenue("IBM") [value(cl) -+ u],

f_rl_revenue("IBM") [cvt(currency,c2)ci, u -+ v],

f_ri_revenue("IBM") Ccvt(scaleFactor, c2) Oci, v -+ w].

Hence, if the conversion function for currency returns the value 9600, this will be rewritten to

9600000 by the scale-factor conversion function and returned as the value of the semantic-object

f_rl_revenue("IBM") in context c2.

In the same way whereby r4 is used in the assignment of values to modifiers, ancillary

data sources may be used for defining appropriate conversion functions. For instance, currency

conversion in context c2 is supported by the relation r3, which provides the exchange rate

between two different currencies. In general, the use of ancillary data sources in context axioms

will lead to the introduction of additional table-lookups in the mediated query, as we have

shown earlier in Section 2.
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3.4 Query Mediation as Abductive Inferences

The goal of the COIN framework is to provide a formal, logical basis that allows for the auto-

matic mediation of queries embodying those features described earlier in Section 2. The logical

inferences which we have adopted for this purpose is sometimes referred to as abduction [17]:

in the simplest case, this takes the form

From observing A and the axiom B -+ A

Infer B as a possible "explanation" of A.

Abductive logic programming (ALP) [17] is an extension of logic programming [25] to support

abductive reasoning. Specifically, an abductive framework [10] is a triple <, A, > where

T is a theory, Z is a set of integrity constraints, and A is a set of predicate symbols, called

abducible predicates. Given an abductive framework <T, A, > and a sentence 3Xq(X) (the

observation), the abductive task can be characterized as the problem of finding a substitution 0

and a set of abducibles A, called the abductive explanation for the given observation, such that

(1) TU A = V (q(X)O),

(2) T U A satisfies 2; and

(3) A has some properties that makes it "interesting".

Requirement (1) states that A, together with T, must be capable of providing an explanation for

the observation V ( q(X)t ). The prefix 'V' suggests that all free variables after the substitution

are assumed to be universally quantified. The consistency requirement in (2) distinguishes

abductive explanations from inductive generalizations. Finally, in the characterization of A in

(3), "interesting" means primarily that literals in A are atoms formed from abducible predicates:

where there is no ambiguity, we refer to these atoms also as abducibles. In most instances, we

would like A to also be minimal or non-redundant.

The COIN framework is mapped to an abductive framework <T, I, A> in a straight-forward

manner. Specifically, the domain model axioms, the elevation axioms, and the context axioms

are rewritten to definite Horn clauses where non-monotonic inheritance is simulated through the

use of negation. The procedure and semantics for this transformation has been described in [1].

The resulting set of clauses, together with a handful of generic axioms, define the theory T for

the abductive framework. The integrity constraints in I consists of all the integrity constraints

defined on the sources complemented with Clark's Free Equality Axioms [7]. Finally, the set

of abducibles A consists of all extensional predicates (relation names exported by sources) and

references to externally stored procedures (referenced by some conversion functions).
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As we have noted in Section 2, queries in a Context Interchange system are formulated under

the assumption that there are no conflicts between sources and/or the receiver. Given an SQL

query, context mediation is bootstrapped by tranforming this user query into an equivalent

query in the internal COINL representation. For example, the query Q1 on page 3 will be

rewritten to

+- ans(x, y).

ans(x, y) + rl(x, y,_), r2( x,z), y > z. ............ (*)

The predicate ans is introduced so that only those attributes which are needed are projected

as part of the answer. This translation is obviously a trivial exercise since both COINL and

relational query languages are variants of predicate calculus.

The preceding query however continues to make reference to primitive-objects and (exten-

sional) relations defined on them. To allow us to reason with the different representations

built into semantic-objects, we introduce two further artifacts which facilitates the systematic

rewriting of a query to a form which the context mediator can work with.

· For every extensional relation r, we introduce a corresponding semantic-relation which

is isomorphic to the original relation, with each primitive-object in the extensional relation

being replaced by its semantic-object counterpart. For example, the semantic-relation for

ri is defined via the axiom:

rii(f _rcname(x), f_rl_revenue(x), f _r_country(x)) - rl(x,_,_).

A sample tuple of this semantic-relation can be seen in Figure 3.

* To take into account the fact that the same semantic-object may have different representa-

tions in different contexts, we enlarge the notion of classical "relational" comparison oper-

ators and insists that such comparisons are only meaningful when they are performed with

respect to a given context. Formally, if o is some element of the set {=, 4, _, , <, >, .. .}

and x, y are primitive- or semantic-objects (not necessarily of the same semantic-type),

then we say that

c
x o y iff (x [value(c) - u] and y[value(c) - v] and uo v)

(In the case where both x and y are primitive-object, semantic comparison degenerates

to normal relational operations since the value of a primitive-object is given by its oid.)

The intuition underlying this fabrication is best grasp through an example: in the case

of f _rlrevenue ("IBM"), we know that
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f_r1_revenue("IBM") value(cl) - 1000000].

Thus, the statement f_rl_revenue("IBM") < 5000000 is true if c =cl but not if c =c2
(since f_rl_revenue("IBM") [value(c2) -+ 9600000]).

Building on the above definitions, the context mediator can now rewrite the query (*) shown
earlier to the following:

c2 c2ans(u, v) +- 1(x, y, _), r2(w, z), x =w, y > z, x[value(c2) - u], y[value(c2) - v].

This is obtained by systematic renaming of each extensional predicate (r) to its semantic coun-
terpart (), by replacing all comparisons (including implicit "joins") with semantic-comparisons,

and making sure that attributes which are to be projected in a query correspond to the values
of semantic-objects in the context associated with the query.

The abductive answer corresponding to the above query can be obtained via backward
chaining, using a procedure not unlike the standard SLD-resolution procedure [10]. We present
the intuition of this procedure below by visiting briefly the sequence of reasoning in the example
query. A formal description of this procedure can be found in [12].

Starting from the query above and resolving each literal with the theory T in a depth-first
manner, we would have obtained:

c2 ~c2- rl(uO,v,_), r2(w,z), f_rl_cname(uo) -= w, f_rl_revenue(uo) > z,

f_rl_cname(u 0) [value(c2) -+ u], f_rl_revenue(uo) [value(c2) -+ v].

The subgoal rl (uO, v, -) cannot be further evaluated and will be abducted at this point, yield-
ing the sequence:

c2c2
+- r2(w,z), f rlcname(uO) = w, f_rl_revenue(u0) > z,

f_rl_cname(uo) [value(c2) -+ u], f_rl_revenue(uo) [value(c2) -+ v].

+- r2(u',v'), f_rlcname (uO) f_r2_cname(u'), f_rlrevenue (o) > f_r2_expenses(u'),
f_rl_cname(u 0 ) [value(c2) -+ u], frlrevenue(uo) [value(c2) -+ v].

Again, r2(u',v') is abducted to yield

C2 c2+- f_ri_cname(uo) c f_r2_cname(u'), f_rl_revenue(uo) > f_r2_expenses(u'),

f_rl_cname(uo) [value(c2) -+ u], f_rl_revenue(uO) [value(c2) -+ v].

Since companyName has no modifiers, there is no conversion function defined on instances of
companyName, so the value of f_rl_cname(uo) does not vary across any context. Hence, the
subgoal f_rl_cname(uo) f_r2_cname(u') can be reduced to just u0 = u' which unifies the
variables u and u', reducing the goal further to:
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c2
+- f_ri_revenue(uo) > f_r2_expenses(uo),

f_rl_cname(uo) [value(c2) -+ u], f_rlrevenue(uo) [value(c2) -+ v].

This process goes on until this goal list has been reduced to the empty clause. Upon backtrack-

ing, alternative abductive answers can be obtained. In this example, we obtain the following

abductive answers in direct correspondance to the mediated query MQ1 shown earlier:

Ai = { rl(u,v, -) , r2(u, v'), r4(u,"USD"), v > v'}

A2 = { rl(u,vo,-), r2(u, v), r4(u,"JPY"), r3("JPY","USD",r),

v = vo * r*1000, v > v }

A3 = { rl(u,vo,2_), r2(u,v'), r4(u,y), y 0"USD", y #"JPY", r3(y,"USD",r),

V- = V * r, V > V' }

Notice that there is nothing inherent in the rewriting or the inferences that treats knowledge-

level queries differently from extensional queries. It is possible however for modifier values to be

returned as part of the substitution along with the intensional answers, as we have seen earlier

on in the sample query MQ2.

4 Comparison With Existing Approaches

In an earlier report [13], we have made detailed comments on the many features that the

Context Interchange approach has over traditional loose- and tight-coupling approaches. In

summary, although tightly-coupled systems provide better support for data access to hetero-

geneous systems (compared to loosely-coupled systems), they do not scale-up effectively given

the complexity involved in constructing a shared schema for a large number of systems and are

generally unresponsive to changes for the same reason. Loosely-coupled systems, on the other

hand, require little central administration but are equally non-viable since they require users

to have intimate knowledge of the data sources being accessed; this assumption is generally

non-tenable when the number of systems involved is large and when changes are frequent3 .

The Context Interchange approach provides a novel middle ground between the two: it allows

knowledge of data semantics to be independently captured in sources and receivers (in the form

of context theories), while allowing a specialized mediator (the Context Mediator) to undertake

the role of detecting and reconciling potential conflicts at the time a query is submitted.

3We have drawn a sharp distinction between the two here to provide a contrast of their relative features. In
practice, one is most likely to encounter a hybrid of the two strategies. It should however be noted that the two
strategies are incongruent in their outlook and are not able to easily take advantage of each other's resources.
For instance, data semantics encapsulated in a shared schema cannot be easily extracted by a user to assist in
formulating a query which seeks to reference the source schemas directly.
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At a cursory level, the Context Interchange approach may appear similar to many contem-

porary integration approaches. However, we posit that the similarities are superficial, and that

our approach represents a radical departure from these strategies. Given the proliferation of

system prototypes, it is not practical to compare our approach with each of these. The fol-

lowing is a sampling of contemporary systems which are representative of various alternative

integration approaches.

A number of contemporary systems (e.g., Pegasus [2], the ECRC Multidatabase Project [16],

SIMS [3], and DISCO [36]) have attempted to rejuvenate the loose- or tight-coupling approach

through the adoption of an object-oriented formalism. For loosely-coupled systems, this has

led to more expressive data transformation (e.g., O*SQL [23]); in the case of tightly-coupled

systems, this helps to mitigate the effects of complexity in schema creation and change man-

agement through the use of abstraction and encapsulation mechanisms. Although the Context

Interchange strategy embraces "object-orientation" for the same reasons, it differs by not rely-

ing on human intervention in reconciling conflicts a priori in the shared schema. For instance,

our approach does not require the domain model to be updated each time a new source is

added; this is unlike tightly-coupled systems where the shared schema needs to be updated

by-hand each time such an event occurs, even when conflicts introduced by the new source

are identical to those which are already present in existing sources. Yet another difference is

that although a deductive object-oriented formalism is also used in the Context Interchange

approach, "semantic-objects" in our case exist only conceptually and are never actually mate-

rialized during query evaluation. Thus, unlike some other systems (e.g., the ECRC prototype),

we do not require an intermediary "object-store" where objects are instantiated before they

can be processed. In our implementation, both user queries and their mediated counterpart

are relational. The mediated query can therefore be executed by a classical relational DBMS

without the need to re-invent a query processing subsystem.

In the Carnot system [8], semantic interoperability is accomplished by writing articulation

axioms which translate "statements" which are true in individual sources to statements which

are meaningful in the Cyc knowledge base [22]. A similar approach is adopted in [11], where

it is suggested that domain-specific ontologies [14], which may provide additional leverage by

allowing the ontologies to be shared and reused, can be used in place of Cyc. While we like the

explicit treatment of contexts in these efforts and share their concern for sustaining an infras-

tructure for data integration, our realization of these differ in several important ways. First, our

domain model is a much more impoverished collection of rich types compared to the richness

of the Cyc knowledge base. Simplicity is a feature here because the construction of a rich and

complex shared model is laborious and error-prone, not to mention that it is almost impossible
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to upkeep. Second, the translation of sentences from one context to another is embedded in

axioms present in individual context theories, and are not part of the domain model. This

means that there is greater scope for different users to introduce conversion functions which

are most appropriate for their purposes without requiring these differences to be accounted for

globally. Finally, semantics of data is represented in an "object-centric" manner as opposed

to a "sentential" representation. For example, to relate two statements ( and a') in different

distinct contexts c and c', a lifting axiom of the form:

ist(c, a) * ist(c', a')

will have to be introduced in Cyc. In the Context Interchange approach, we have opted for

a "type-based" representation where conversion functions are attached to types in different

contexts. This mechanism allows for greater sharing and reuse of semantic encoding. For

example, the same type may appear many times in different predicates (e.g., consider the type

moneyAmt in a financial application). Rather than writing a lifting axiom for each predicate that

redundantly describe how different reporting currencies are resolved, we can simply associate

the conversion function with the type moneyAmt.

Finally, we remark that the TSIMMIS [28; 29] approach stems from the premise that in-

formation integration could not, and should not, be fully automated. With this in mind,

TSIMMIS opted in favor of providing both a framework and a collection of tools to assist hu-

mans in their information processing and integration activities. This motivated the invention

of a "light-weight" object model which is intended to be self-describing. For practical purposes,

this translates to the strategy of making sure that attribute labels are as descriptive as possible

and opting for free-text descriptions ("man-pages") which provide elaborations on the seman-

tics of information encapsulated in each object. We concur that this approach may be effective

when the data sources are ill-structured and when consensus on a shared vocabulary cannot be

achieved. However, there are also many other situations (e.g., where data sources are relatively

well-structured and where some consensus can be reached) where human intervention is not

appropriate or necessary: this distinction is primarily responsible for the different approaches

taken in TSIMMIS and our strategy.

5 Conclusion

Although there had been previous attempts at formalizing the Context Interchange strategy

(see for instance, [31]), a tight integration of the representational and reasoning formalisms has

been consistently lacking. This paper has filled this gap by introducing a well-founded logical

framework for capturing context knowledge and in demonstrating that query mediation can
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be formally understood with reference to current work in abductive logic programming. The

advancements made in this theoretical frontier has been instrumental in the development of a
prototype which provides for the integration of data from disparate sources accessible on the

Internet. The architecture and features of this prototype has been reported in [4] and will not

be repeated here due to space constraints.

To the best of our knowledge, the application of abductive reasoning to "database problems"

has been confined to the view-update problem [18]. Our use of abduction for query rewriting

represents a potentially interesting avenue which warrants further investigation. For example,

we observed that consistency checking performed in the abduction procedure may sometimes

cause intensional answers to be pruned to arrive at answers which are better comprehensible

and more efficient. This bears some similarity to techniques developed for semantic query

optimization [6] and appears to be useful for certain types of optimization problems.
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