FUNDAMENTAL SOLUTIONS OF INVARIANT DIFFERENTIAL OPERATORS ON SYMMETRIC SPACES

BY S. HELGASON

Communicated by I. M. Singer, June 27, 1963

1. Introduction and notation. Let S be a Riemannian globally symmetric space, G the largest connected group of isometries of S in the compact open topology. We assume that S is of the noncompact type, that is, G is semisimple and has no compact normal subgroup $\not\{e\}$. Let o be any point in S, K the isotropy subgroup of G at o, f and g their respective Lie algebras, and p the orthogonal complement of f in g with respect to the Killing form B of g. Let a be any maximal abelian subspace of p and let $A = \exp(a)$. For each X in the dual space of a (which we identify with a, via B) let $g_X = \{X \in g \mid [H, X] = \lambda(H)X \text{ for all } H \in a\}$. Let $d_\lambda = \dim(g_X)$. Choose some order on a and let

$$
\pi = \prod_{\lambda > 0} \lambda^{d_\lambda},
$$

and let π denote the product of the distinct prime factors in π'. Then we have the Iwasawa decompositions $g = f + a + n$, $G = KAN$ where N is the nilpotent group $\exp(n)$. Given $g \in G$, let $H(g)$ denote the unique element in a for which $g \in K \exp H(g)N$. Let W denote the Weyl group M'/M where M and M', respectively, denote the centralizer and normalizer of a in K.

For each $\lambda \in a$ consider the spherical function

$$
\phi_\lambda(x) = \int_K e^{(i\lambda - \rho)(H(xk))}dk \quad (x \in G)
$$

dK being the normalized Haar measure on K. Let $c(\lambda)$ denote Harish-Chandra's function on a which occurs in the leading term of the asymptotic expansion of ϕ_λ [2, p. 283], i.e.,

$$
\phi_\lambda(\exp H) \sim \sum_{s \in W} c(s\lambda)e^{(i\lambda - \rho)(H)}
$$

where λ and H are suitably restricted in a.

Each $x \in G$ can be written uniquely in the form $x = k \exp X(k \in K, X \in p)$. We put $|X| = (B(X, X))^{1/2}$ and $\omega(X) = \det \sinh ad X/ad X_p^{1/2}$ where the subscript p indicates restriction to p of the linear transformation of $\sinh

Let $D(G)$ and $D(S)$ denote the differential operators over a, S, respectively, decreasing together. Note the set of τ isomorphic to a closed subspace [2, Theorem 1, p. 586], $I_0(G) \subset I_0(A)$. Let $\phi_\alpha(f)$ denote

$$
\phi_\alpha(f) = \int_a f(\alpha a)\phi_\alpha(a) \alpha^{-1} d\alpha
$$

where $\alpha \in S(a)$ an α^{-1} and $I_0(G)$ denote the set of regular elements on A. We define $I_0(A)$ by convolution over $I_0(G)$. The $I_0(A)$ are isomorphic.

LEMMA 1. $I_0(G) \subset I_0(A)$

Under the rest isomorphic conditions on A. We can say over $I_0(A)$ by convolution 2. Transmutation of functions on A. [2, p. 265] there is a set of regular elements f. The ω with the radial $(D_r = d/dr)$.
SOLUTIONS OF INVARIANT DIFFERENTIAL OPERATORS

1963

Riemannian globally of isometries of is the noncompact normal subgroup of \(G \). Let \(a \) be any \(\lambda \) in the

\[\prod_{\lambda \neq 0} \lambda^d \lambda \]

prime factors in \(\pi' \).

\[X^a + n, G = KAN \]
\(\simeq G \), let \(H(g) \) denote \(J \). Let \(W \) denote the

\(\mathbb{C}(\Lambda) \) denote Harish-Chandra term of the

\[x = k \exp X(k \in K, \Lambda) = \{ \text{det} (\sinh ad X) \text{ of the linear} \]

\(\text{ad} X \text{ to } \mathbb{P} \text{ of the linear}

\text{transformation of } g \text{ given by}

\[\sinh \text{ad } X/\text{ad } X = \sum_{n \geq 0} (\text{ad } X)^{2n}/(2n + 1)! \]

Let \(D(G) \) and \(D(S) \) denote the set of left invariant (resp. \(G \)-invariant) differential operators on \(G \) (resp. \(S \)). Let \(\mathcal{S}(a) \) denote the symmetric algebra over \(a \), \(\mathcal{S}(a) \) the space of \(C^\infty \) functions on \(a \) which are rapidly decreasing together with all their derivatives. Let \(I(a) \) and \(\mathcal{S}(a) \) denote the set of \(W \)-invariants in \(\mathcal{S}(a) \) and \(\mathcal{S}(a) \), respectively; \(\mathcal{S}(a) \) is taken with its usual locally convex topology [7, p. 90] and then \(\mathcal{S}(a) \) is a closed subspace. According to a theorem of Harish-Chandra (cf. [2, Theorem 1, p. 260], also [3, p. 432]) there exists an isomorphism \(\Gamma \) of the algebra \(D(S) \) onto \(I(a) \). Let \(I(G) \) denote the set of \(C^\infty \) functions \(f \) on \(G \) which are bi-invariant under \(K \) and for each integer \(q \geq 0 \) and each \(D \in D(G) \) satisfy

\[\tau_{D,a}(f) = \sup_{H \in a} (1 + |H|)^{q} \omega(H) \frac{Df}{2n} (\exp H) | < \infty. \]

Let \(I_0(G) \) denote the space of functions of the form

\[\phi_a(x) = \int_{a} \pi(\lambda) a(\lambda) \phi_{a}(x) d\lambda \quad (x \in G) \]

where \(a \in \mathcal{S}(a) \) and \(d\lambda \) is the Euclidean measure on \(a \). Then, by [2, p. 586], \(I_0(G) \subset I(G) \) (it can be shown using [1] that \(\pi = \pi_0 \)). The seminorms \(\tau_{D,a} \) turn \(I_0(G) \) and \(I(G) \) into locally convex spaces.

Lemma 1. \(I_0(G) \) is an algebra under convolution on \(G \).

Under the restriction from \(G \) to \(A \), \(I_0(G) \) and \(I(G) \) are mapped isomorphically onto spaces \(I_0(A) \) and \(I(A) \) of \(W \)-invariant \(C^\infty \) functions on \(A \). We carry the algebraic and topological structure of \(I_0(G) \) over on \(I_0(A) \) by means of this mapping. The space \(\mathcal{S}(a) \) is an algebra under convolution on \(a \).

2. Transmutation operators. A function \(f \) on the space \(S = G/K \) is called a radial function if \(f(k \cdot p) = f(p) \) for all \(k \in K, p \in S \). The set of continuous (resp. \(C^\infty \)) radial functions on \(G/K \) is in one-to-one correspondence \(f \rightarrow \tilde{f} \) with the set of all continuous (resp. \(C^\infty \)) \(W \)-invariant functions on \(A \). Here \(f(aK) = \tilde{f}(a) \) for \(a \in A \). Let \(D \in D(S) \); then by [2, p. 265] there exists a unique differential operator \(\delta'(D) \) on \(A' \) (the set of regular elements in \(A \)) such that \((Df)^{-} = \delta'(D) \tilde{f} \) for all \(C^\infty \) radial functions \(f \). The operator \(\delta'(D) \) is called the radial part of \(D \) in analogy with the radial part \(D_r^2 + (n - 1)/r D_r \) of the Laplacian on \(R^n \). (\(D_r = d/dr \)). It is known [5] that there exists an isomorphism \(X \)
("transmutation operator") of the vector space of even C^∞ functions on \mathbb{R}, onto itself, under which the singular operator $D_r^2 + (n - 1)/r \, D_r$ corresponds to D_r^2. The operators $\delta'(D)$ ($D \in D(S)$) are singular when considered as differential operators on A but Theorem 1 shows that they have a simultaneous transmutation operator X under which they correspond to differential operators on the Euclidean space a with constant coefficients.

Given a W-invariant function ϕ on A, let ϕ denote the corresponding radial function on S. For $\phi \in I(A)$, put

$$(X\phi)(H) = e^{\phi(H)} \int_N \phi((\exp H) \cdot o) \, dn \quad (H \in a)$$

where dn is a suitably normalized invariant measure on N. As proved by Harish-Chandra [11, p. 595], X is a continuous mapping of $I(A)$ into $\mathfrak{s}(a)$.

Theorem 1. The mapping X is a topological isomorphism of the algebra $I_0(A)$ onto the algebra $\mathfrak{s}(a)$. Moreover, if $D \in D(S)$ then

$$X\delta'(D)\phi = \Gamma(D)X\phi, \quad \phi \in I_0(A).$$

Here $\Gamma(D)$ is considered as a differential operator on a.

The proof is based on the Plancherel formula for functions in $I_0(G)$, proved by Harish-Chandra [2]. It also uses the recent result of Gindikin and Karpelevič [1] according to which the function $c(\lambda)$ above can be expressed in terms of Gamma functions.

Remarks. At the end of [2], Harish-Chandra states the following two conjectures which would imply that $I_0(A)$ contains all the W-invariant C^∞ functions on A with compact support.

(I) There exists a polynomial $p \in S(a)$ such that $|c(\lambda)\pi(\lambda)p(\lambda)| \geq 1$ for all $\lambda \in a$. (Here we have used the fact that $\pi = \pi_0$.)

(II) The mapping X is one-to-one on $I(A)$.

Now (I) can be verified on the basis of the mentioned result of Gindikin and Karpelevič. Theorem 1 shows that (II) is equivalent to $I_0(G) = I(G)$. On the other hand, (II) is easily implied by the Plancherel formula for the functions in $I(G)$. This formula is not proved in [2] but I understand that Harish-Chandra has proved it in recent, as yet unpublished, work. In the next section we shall therefore assume that $I_0(G) = I(G)$.

3. Fundamental solutions. Let $C_c^\infty(S)$ denote the space of C^∞ functions on S with compact support. Let δ denote the distribution on S given by $\delta(f) = f(0)$ for $f \in C_c^\infty(S)$.

Theorem 2. E_δ on the symmetric space G/K is a fundamental solution of the differential equation

$$Du = f$$

by putting $f = E_\delta$.

Added in proof. Theorem 2 was proved by Harish-Chandra [11, p. 595].

Here Exp is the universal enveloping algebra of the Lie algebra \mathfrak{g} and \mathfrak{p} and

even C^∞ functions $D^2 + (n-1)/r D$, are singular when $r X$ under which Euclidean space S are the correspond-

$H \in a$)

on N. As proved mapping of $I(A)$

omorphism of the $D(S)$ then

1.

for functions in the recent result the function $c(\lambda)$ λ.

tes the following tains all the W-

$\lambda \pi(\lambda) p(\lambda) \geq 1$)

1 result of Gindi-

is equivalent to 1 by the Planch-

is not proved in véd it in recent, all therefore as-

pace of C^∞ func-

$D^2 + (n-1)/r D$, are singular when $r X$ under which Euclidean space a

given by $\delta(f) = f(\omega)$ where $f \in C^\infty_c(S)$. Let $D \in D(S)$. A distribution T on S is called a fundamental solution of D if $DT = \delta$. If $f \in C^\infty_c(S)$, then a fundamental solution T of D gives a solution of the equation $Du = f$ by putting $u = f * T$ where $*$ is the operation on distributions on G/K induced by the convolution product of distributions on G.

Theorem 2. Each invariant differential operator $D \in D(S)$ $(D \neq 0)$ on the symmetric space S has a fundamental solution.

This is a consequence of Theorem 1 and the fact that a nonzero differential operator on R^n with constant coefficients always has a tempered fundamental solution [4; 6].

Added in proof. In the case when G is complex the following formula (which is a simple consequence of Lemma 55 in [2]) gives a simpler proof of Theorem 2.

$$ (DF) \circ \text{Exp} = \frac{1}{\omega} \lambda(D)(\omega(F \circ \text{Exp})) \quad (D \in D(S)). $$

Here Exp is the usual Exponential mapping of p onto S, λ is a certain isomorphism of $D(S)$ onto the algebra of $\text{Ad}(K)$-invariant polynomials on p and F is any radial function on S.

References

Massachusetts Institute of Technology