DUALITY AND RADON TRANSFORM FOR
SYMMETRIC SPACES

BY S. HELGASON

Communicated by G. D. Mostow, July 3, 1963

1. The dual space of a symmetric space. Let S be a symmetric space (that is a Riemannian globally symmetric space), and let $I_0(S)$ denote the largest connected group of isometries of S in the compact open topology. It will always be assumed that S is of the noncompact type, that is $I_0(S)$ is semisimple and has no compact normal subgroup $\neq \{e\}$. Let l denote the rank of S; then S contains flat totally geodesic submanifolds of dimension l. These will be called planes in S.

Let \mathfrak{o} be any point in S, K the isotropy subgroup of $G=I_0(S)$ at \mathfrak{o} and \frak{t}_0 and \frak{g}_0 their respective Lie algebras. Let E be any plane in S through \mathfrak{o}, \mathfrak{a}_0 the corresponding maximal abelian subspace of \frak{g}_0 and A the subgroup $\exp(\mathfrak{a}_0)$ of G. Let C be any Weyl chamber in \mathfrak{a}_0. Then the dual space of \mathfrak{g}_0 can be ordered by calling a linear function X on \mathfrak{a}_0 positive if $X(H)>0$ for all $H \subset C$. This ordering gives rise to an Iwasawa decomposition of G, $G=KAN$, where N is a connected nilpotent subgroup of G. It can for example be described by

$$N = \left\{ z \in G \middle| \lim_{t \to -\infty} \exp(-tH)z \exp(tH) = e \right\},$$

H being an arbitrary fixed element in C. The group N depends on the triple (\mathfrak{o}, E, C). However, well-known conjugacy theorems show that if N' is the group defined by a different triple (\mathfrak{o}', E', C') then $N'=gNg^{-1}$ for some $g \in G$.

DEFINITION. A horocycle in S is an orbit of a subgroup of the form gNg^{-1}, g being any element in G.

Let $t \mapsto \gamma(t)$ (t real) be any geodesic in S and put $T_t = s_t^*s_0$ where s_τ denotes the geodesic symmetry of S with respect to the point $\gamma(\tau)$. The elements of the one-parameter subgroup T_t (t real) are called transvections along γ. Two horocycles ξ_1, ξ_2 are called parallel if there exists a geodesic γ intersecting ξ_1 and ξ_2 under a right angle such that $T_t\cdot\xi_1 = \xi_2$ for a suitable transvection T_t along γ. For each fixed $g \in G$, the orbits of the group gNg^{-1} form a parallel family of horocycles.

Let M and M', respectively, denote the centralizer and normalizer of A in K. The group $W=M'/M$, which is finite, is called the Weyl group.

1 This work was supported in part by the National Science Foundation, NSF GP-149.
Proposition 1.1. The group G acts transitively on the set of horocycles in S. The subgroup of G which maps the horocycle $N \circ o$ into itself equals MN.

Let \hat{S} denote the set of horocycles in S. Then we have the natural identifications

$$S = G/K, \quad \hat{S} = G/MN$$

the latter of which turns \hat{S} into a manifold, which we call the dual space of S.

Proposition 1.2.

(i) The mapping

$$\phi: (kM, a) \to kaK$$

is a differentiable mapping of $(K/M) \times A$ onto S and a regular w-to-one mapping of $(K/M) \times A'$ onto S'.

(ii) The mapping

$$\hat{\phi}: (kM, a) \to kaMN$$

is a diffeomorphism of $(K/M) \times A$ onto \hat{S}.

In statement (i) which is well known, w denotes the order of W, A' is the set of regular elements in A and S' is the set of points in S which lie on only one plane through o.

Proposition 1.3. The following relations are natural identifications of the double coset spaces on the left:

(i) $K \backslash G / K = A / W$;

(ii) $MN \backslash G / MN = A \times W$.

Statement (i) is again well known; (ii) is a sharpening of the lemma of Bruhat (see [6]) which identifies $MAN \backslash G / MAN$ with W.

The proofs of these results use the following lemma.

Lemma 1.4.

(i) Let s_0 denote the geodesic symmetry of S with respect to o and let θ denote the involution $g \to s_0 g s_0$ of G. Then

$$(N\theta(N)) \cap K = \{e\}.$$

(ii) Let C and C' be two Weyl chambers in a_0 and $G = KAN$, $G = KAN'$ the corresponding Iwasawa decompositions. Then

$$(NN') \cap (MA) = \{e\}.$$

2. Invariant differential operators on the space of horocycles. For any manifold V, $C^\infty(V)$ and $C^\infty_c(V)$ shall denote the spaces of C^∞
functions on \(V \) (respectively, \(C^\infty \) functions on \(V \) with compact support). Let \(D(S) \) and \(D(\hat{S}) \), respectively, denote the algebras of all \(G \)-invariant differential operators on \(S \) and \(\hat{S} \). Let \(S(a_0) \) denote the symmetric algebra over \(a_0 \) and \(J(a_0) \) the set of \(W \)-invariants in \(S(a_0) \). There exists an isomorphism \(\Gamma \) of \(D(S) \) onto \(J(a_0) \) (cf. \cite[Theorem 1, p. 260]{7}, also \cite[p. 432]{9}). To describe \(D(\hat{S}) \), consider \(\hat{S} \) as a fibre bundle with base \(K/M \), the projection \(p: \hat{S} \to K/M \) being the mapping which to each horocycle associates the parallel horocycle through 0. Since each fibre \(F \) can be identified with \(A \), each \(\psi \in S(a_0) \) determines a differential operator \(U_F \) on \(F \). Denoting by \(f|_F \) the restriction of a function \(f \) on \(\hat{S} \) to \(F \) we define an endomorphism \(D_U \) on \(C^\infty(S) \) by
\[
(D_U f)|_F = U_F(f|_F) \quad f \in C^\infty(\hat{S}),
\]
\(F \) being any fibre. It is easy to prove that the mapping \(U \to D_U \) is a homomorphism of \(S(a_0) \) into \(D(\hat{S}) \).

Theorem 2.1. The mapping \(U \to D_U \) is an isomorphism of \(S(a_0) \) onto \(D(\hat{S}) \). In particular, \(D(\hat{S}) \) is commutative.

Although \(G/MN \) is not in general reductive, \(D(\hat{S}) \) can be determined from the polynomial invariants for the action of \(MN \) on the tangent space to \(G/MN \) at \(MN \) (cf. \cite[Theorem 10]{8}). It is then found that the algebra of these invariants is in a natural way isomorphic to \(S(a_0) \), whereupon Theorem 2.1 follows. Let \(\hat{\Gamma} \) denote the inverse of the mapping \(U \to D_U \).

3. The Radon transform. Let \(\xi \) be any horocycle in \(S \), \(ds_\xi \) the volume element on \(\xi \). For \(f \in C^\infty(S) \) put
\[
\hat{f}(\xi) = \int_\xi f(s)ds_\xi, \quad \xi \in \hat{S}.
\]
The function \(\hat{f} \) will be called the Radon transform of \(f \).

Theorem 3.1. The mapping \(f \to \hat{f} \) is a one-to-one linear mapping of \(C^\infty(S) \) into \(C^\infty(\hat{S}) \).

Now extend \(a_0 \) to a Cartan subalgebra \(h_0 \) of \(g_0 \); of the corresponding roots let \(P_+ \) denote the set of those whose restriction to \(a_0 \) is positive (in the ordering defined by \(C \)). Put \(\rho = \frac{1}{2} \sum_{\alpha \in P_+} \alpha \) and let \(\rho \to \hat{\rho} \) denote the unique automorphism of \(S(a_0) \) given by \(\hat{\rho} = H - \rho(H) \) (\(H \in \mathfrak{a}_0 \)) (cf. \cite[p. 260]{7}).

Theorem 3.2. Let \(\mathcal{D}(\hat{S}) \) be given by
\[
\mathcal{D}(\hat{S}) = \{ E \in D(\hat{S}) \mid \hat{\rho}(E) \in J(a_0) \},
\]
and let \(D \to \mathcal{D} \) denote

Then

In view of the natural dual to the each function \(\psi \in \hat{\psi} \)

where the integral set of horocycles and wish to relat(1)

Theorem 3.3. Then

\[
(1)
\]

where \(c \) is a consta\(p)dent of \(f \).

We shall now i\(plex \) structure of above can be tak\(plex \) Cartan suba

Let \(\Delta' \) denote th\(\alpha \in \Delta' \) select \(H_\alpha^* \) denotes the Killi\(the element \(\prod_{\alpha \in \Delta} \) Then \(\square \) is the u

The proof of The [5] (see also Gelboux equation fc positive definite
with compact sup-
algebras of all G-
S(a₀) denote the
invariants in $S(a₀).$
cf. [7, Theorem 1,
rS as a fibre bun-
ying the mapping
ocycle through 0.
$S(a₀)$ determines
le restriction of a
Du-
on $C(S)$
oping $U→D_U$ is a
hism of $S(a₀)$ onto
(O) can be deter-
don of MN on the
10]). It is then
atural way iso-
Let $Ω$ denote the
in S, ds the vol-
linear mapping of
he corresponding
u to $a₀$ is positive
rd let $p→ρ$ de-
y, $H=H−ρ(H)$

and let $D→Ω$ denote the isomorphism of $D(S)$ onto $'D(S)$ such that

$'(Ω(Ω))=Ω(D), \quad D ∈ D(S).$

Then

$$(Df) ^{\bigcirc} = Ω f \quad \text{for } f ∈ C^∞(S).$$

In view of the duality between points and horocycles there is a
atural dual to the transform $f→Ω$. This dual transform associates to
each function $ψ∈C^∞(S)$ a function $ψ'∈C^∞(S)$ given by

$$ψ'(p) = \int_{x∈p} ψ(x) \, dm(x), \quad p ∈ S,$$

where the integral on the right is the average of $ψ$ over the (compact)
set of horocycles passing through p. We put

$$I_ψ = (ψ) ^{\bigcirc}, \quad f ∈ C^∞(S)$$

and wish to relate f and $I_ψ$.

THEOREM 3.3. Suppose the group $G=I₀(S)$ is a complex Lie group.
Then

$$(1) \quad \square I_ψ = cf, \quad f ∈ C^∞(S),$$

where c is a constant $≠0$ and \square is a certain operator in $D(S)$, both inde-
dependent of f.

We shall now indicate the definition of \square. Let J denote the
complex structure of the Lie algebra $g₀$. Then the Cartan subalgebra $h₀$
above can be taken as $a₀+Ja₀$ and can then be considered as a com-
plex Cartan subalgebra of $g₀$ (considered as a complex Lie algebra).
Let $Δ'$ denote the corresponding set of nonzero roots and for each
$α∈Δ'$ select $H'_α$ in $h₀$ such that $B'(H'_α, H)=α(H) (H ∈ h₀)$ where B'
denotes the Killing form of the complex algebra $g₀$. Then $H'_α ∈ a₀$ and
the element $\prod_{α∈Δ'} H'_α$ in $S(a₀)$ is invariant under the Weyl group W.
Then \box is the unique element in $D(S)$ such that

$$\Gamma(\square) = \prod_{α∈Δ'} H'_α.$$

The proof of Theorem 3.3 is based on Theorem 3 in Harish-Chandra
[5] (see also Gelfand-Nalmark [4, p. 156]), together with the Dar-
boux equation for S ([9, p. 442]). In the case when S is the space of
positive definite Hermitian $n×n$ matrices a formula closely related
to (1) was given in Gelfand [1]. Radon's classical problem of representing a function in \mathbb{R}^n by means of its integrals over hyperplanes was solved by Radon [13] and John [10]. Generalizations to Riemannian manifolds of constant curvature were given by Helgason [8], Semyanistyi [15] and Gelfand-Graev-Vilenkin [3].

4. Applications to invariant differential equations. We shall now indicate how Theorem 3.3 can be used to reduce any G-invariant differential equation on S to a differential equation with constant coefficients on a Euclidean space. The procedure is reminiscent of the method of plane waves for solving homogeneous hyperbolic equations with constant coefficients (see John [11]).

DEFINITION. A function on S is called a plane wave if there exists a parallel family \mathcal{E} of horocycles in S such that (i) $S = \bigcup_{\xi \in \mathcal{E}} \xi$; (ii) For each $\xi \in \mathcal{E}$, f is constant on ξ.

Theorem 3.3 can be interpreted as a decomposition of an arbitrary function $f \in C_c^\infty(S)$ into plane waves.

Now select $g \in G$ such that \mathcal{E} is the family of orbits of the group gN_g^{-1}. The manifold $gAg^{-1} \cdot o$ intersects each horocycle $\xi \in \mathcal{E}$ orthogonally. A plane wave f (corresponding to \mathcal{E}) can be regarded as a function f^* on the Euclidean space A. If $D \in D(S)$, then Df is also a plane wave (corresponding to \mathcal{E}) and $(Df)^* = D_Af^*$, where D_A is a differential operator on A. Using the fact that $aNa^{-1} \subseteq N$ for each $a \in A$ it is easily proved (cf. [7, Lemma 3, p. 247] or [12, Theorem 1]) that D_A is invariant under all translations on A. Thus an invariant differential equation in the space of plane waves (for a fixed \mathcal{E}) amounts to a differential equation with constant coefficients on the Euclidean space A. Using Theorem 3.3, and the fact that \Box commutes elementwise with $D(S)$, an invariant differential equation for arbitrary functions on S can be reduced to a differential equation with constant coefficients (and is thus, in principle, solvable).

EXAMPLE: THE WAVE EQUATION ON S. For an illustration of the procedure above we give now an explicit global solution of the wave equation on S ($\mathcal{U}_0(S)$ assumed complex).

Let Δ denote the Laplacian on S and let $f \in C_c^\infty(S)$. Consider the differential equation

$$\Delta u = \frac{\partial^2 u}{\partial t^2}$$

with initial data

1. $u(p, 0) = 0$;
2. $ \left\{ \frac{\partial}{\partial t} u(p, t) \right\}_{t=0} = f(p) \quad (p \in S).$
Let Δ_A denote the Laplacian on A (in the metric induced by E), $||p||$ the length of the vector p in §3. Given $a \in A$, let $\log a$ denote the unique element $H \in a_0$ for which $\exp H = a$. For simplicity, let e^s denote the function $a \rightarrow e^{s(\log a)}$ on A. Let ξ denote the horocycle $N \cdot a$.

Given $x \in G$, $k \in K$, consider the function

$$F_{k,x}(a) = \int_{\xi} f(xka \cdot s) ds,$$

and the differential equation on $A \times R$,

$$(\Delta_A - ||p||^2) V_{k,x}^t = \frac{\partial^2}{\partial t^2} V_{k,x},$$

with initial data

$$V_{k,x}^0 = 0; \quad \left\{ \frac{\partial}{\partial t} V_{k,x}^t \right\}_{t=0} = e^{s} F_{k,x}.$$

Equation (3) is just the equation for damped waves in the Euclidean space A and is explicitly solvable (see e.g. [14, p. 88]). The solution of (1) is now given by

$$u(p, t) = c \Box_p (V(p, t)),$$

where

$$(4) \quad V(xK, t) = \int_K V_{k,x}(e) dk.$$

Here dk is the normalized Haar measure on K and c is the same constant as in Theorem 3.3. It is not hard to see that the integral in (4) is invariant under each substitution $x \rightarrow xu$ ($u \in K$) so the function $V(p, t)$ is indeed well defined.

References

Massachusetts Institute of Technology

Upper Bounds

1. Introduction. The entries is either 0, or the permanent of A is c where the sum of metric group S_n. For permanents $p(A)$ is the ob been conjectured with exactly k on $n!(k/n)^n$ [1, p. 59] in the class of all each row and column to the permanent entries are 1. In t for the permanent upper bound which the affirmative.

2. Results.

Lemma. If r_1, \ldots, r_n with equality if an

Proof. Let E_k the numbers $1/r_i$

$$0 \leq \prod_{i=1}^n (1 - \frac{1}{r_i})$$

with equality if a \ldots

1 This work was ...