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1. Introduction. The principal result of this paper is that if D is an
invariant differential operator on a symmetric space X of the noncompact
type then, for each function f c C°(X), the differential equation Du = f
has a solution u C(X). This is proved by means of a Paley-Wiener
type theorem for the Radon transform on X. As a consequence we also
obtain a Paley-Wiener theorem for the Fourier transform on X, that is
an intrinsic characterization of the Fourier transforms of the functions
in C'(X). In [2], Eguchi and Okamoto characterized the Fourier trans-
forms of the Schwartz space on X. Invoking in addition the division theorem
of H6rmander [16] and Lojasiewicz [18] we obtain by the method of
[11] the surjectivity of D on the space of tempered distributions on X.

Finally, as a consequence of a structure theorem of Harish-Chandra
[8] for the bi-invariant differential operators on a noncompact semisimple
Lie group G, we obtain a local solvability theorem for each such operator.

2. The range of invariant differential operators. Let X be a symmetric
space of the noncompact type, that is a coset space GIK where G is a
connected, noncompact semisimple Lie group with finite center and K
a maximal compact subgroup. Let D(X) denote the set of differential
operators on X, invariant under G and let CO(X) denote the set of all
Co functions on X and Cc(X) the set off E C?'(X) of compact support.

THEOREM 2.1. Let D - 0 in D(X). Then

DCo(X) = CO(X).

As in Malgrange's proof of an analogous theorem for constant coefficient
operators on R" ([3], [20]) our proof proceeds by proving that if V is a
closed ball in X then

f E C (X), supp(Df) c V implies supp(f) c V,

supp denoting support. This is proved by means of Theorem 2.2 below
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for the Radon transform [10] f - f on X. If ~ is a horocycle in X then
f(E) is the integral of f over . The following Paley-Wiener type theorem
for the Radon transform is the analog for X of Theorem 2.1 in [12]. The
proof is however quite different and is in part based on Harish-Chandra's
expansion for general Eisenstein integrals on G [7]. I am indebted to
Harish-Chandra for communicating to me this expansion which has not
been published, but will appear in [22]. It is a generalization of'the asymp-
totic expansion for the spherical functions in [6].

THEOREM 2.2. Let L e Cc (X) and let V be a closed ball in X. Assume
f(~) = 0 whenever the horocycle in X is disjoint from V Then f(x) = 0
for x V

for all cEa,
It satisfies

(1)

bE

B'

for f e Cc(X), an
mapping f Jei

REMARK. Instead of assuming f E Cc (X) it suffices to assume that the
function g - f(gK) belongs to the Schwartz space on G in the sense of
[9, p. 19].

The analog of Theorem 2.1 for left invariant differential operators D
on a Lie group L is in general false. In fact, it was proved to me by
H6rmander in 1964 (independently proved in Cerezo-Rouviere [1]) that
if for a given L one assumes local solvability for every D then either L is
abelian or has an abelian normal subgroup of codimension 1. However
for each bi-invariant (i.e., left and right invariant) operator on the semi-
simple group G we have the following local solvability result.

THEOREM 2.3. There exists an open neighborhood V of e in G with the
following property: For each bi-invariant differential operator D 0 on G,

DCO(V) C(V).

The proof is easily deduced from a structure theorem for D (Harish-
Chandra [8 p. 477]) combined with Proposition 1.4 in Rais [21] which
deals with nilpotent groups.

3. The Fourier transform on X. Let G = KAN be an Iwasawa decom-
position of G, A and N being abelian and nilpotent, respectively. Let a
denote the Lie algebra of A, a* its dual and a the complexification of
a*. If A E a let Im A denote its imaginary part. Let 121 denote the norm on
a* given by the Killing form of the Lie algebra of G. If H E a the map
X - [H, X] is an endomorphism of the Lie algebra n of N whose trace
we denote 2p(H). Let M be the centralizer of A in K, put B = KIM and
let db be the K-invariant measure on B with total measure 1. For x e X,
b = kM e B, let A(x, b) e a be determined by n N, x = kn exp A(x, b)K.
Fixing a G-invariant measure dx on X the Fourier transform of a
functionf on X is defined by

[15, pp. 120, 124
Harish-Chandra'
measure on a*. (
2.2, we obtain a ¢
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isform f of a

f(2, b) = e( i+p)(A(xb))f(X) dx

for all eac, b eB, for which this integral converges absolutely [13].
It satisfies

(1) e(isi+P)(A(x"b))f(s2, b) db _- e(i+")(A(xb))(, I b) db
~~~~BB

for f e Cc (X), and every element s in the Weyl group W of X, and the
mapping f -+ f extends to an isometry of L2(X, dx) onto

L2(a* x B, Ic(X)l -2 d db)

[15, pp. 120, 124]. Here a* is the positive Weyl chamber in a*, c(i) is
Harish-Chandra's c-function and dA is a suitably normalized Euclidean
measure on a*. Combining this characterization of L2 (X) with Theorem
2.2, we obtain a characterization of the Fourier transforms of Cc(X).

DEFINITION. A CR function ~(2, b) on a* x B, holomorphic in , will
be called a holomorphic function of uniform exponential type if there exists
a constant A > 0 such that, for each polynomial P(2) on a*,

sup e-A Im I P() i (2, b)l < o.
;ea*,beB

THEOREM 3.1. The mapping f - f is a bijection of C(X) onto the space
of holomorphicfunctions of uniform exponential type satisfying (1).

For the case when f is assumed K-invariant this reduces to a known
result ([4, p. 434], for SL(2, R), [14], [5], [15, p. 37]). Finally, let Y.'(X)
denote the dual space of the Schwartz space (X). Its elements are distri-
butions on X, the tempered distributions. In the manner indicated in the
introduction we obtain an extension of Theorem 4.2 in [11].

THEOREM 3.2. Let D - 0 in D(X). Then

DY'(X) = '(X).
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