PALEY-WIENER THEOREMS AND SURJECTIVITY OF INVARIANT DIFFERENTIAL OPERATORS ON SYMMETRIC SPACES AND LIE GROUPS

BY SIGURDUR HELGASON¹ Communicated by Robert T. Seeley, June 14, 1972

1. Introduction. The principal result of this paper is that if *D* is an invariant differential operator on a symmetric space X of the noncompact type then, for each function $f \in C^{\infty}(X)$, the differential equation $Du = f$ has a solution $u \in C^{\infty}(X)$. This is proved by means of a Paley-Wiener type theorem for the Radon transform on X . As a consequence we also obtain a Paley-Wiener theorem for the Fourier transform on X , that is an intrinsic characterization of the Fourier transforms of the functions in $C_c^{\infty}(X)$. In [2], Eguchi and Okamoto characterized the Fourier transforms of the Schwartz space on X . Invoking in addition the division theorem of Hörmander **[16]** and Lojasiewicz **[18]** we obtain by the method of [11] the surjectivity of *D* on the space of tempered distributions on X.

Finally, as a consequence of a structure theorem of Harish-Chandra [8] for the bi-invariant differential operators on a noncompact semisimple Lie group G, we obtain a local solvability theorem for each such operator.

2. The range of invariant differential operators. Let *X* be a symmetric space of the noncompact type, that is a coset space G/K where G is a connected, noncompact semisimple Lie group with finite center and *K* a maximal compact subgroup. Let $D(X)$ denote the set of differential operators on X, invariant under G and let $C^{\infty}(X)$ denote the set of all C^{∞} functions on X and $C_c^{\infty}(X)$ the set of $f \in C_c^{\infty}(X)$ of compact support.

THEOREM 2.1. Let $D \neq 0$ in $D(X)$. Then

i

 $DC^{\infty}(X) = C^{\infty}(X)$.

As in Malgrange's proof of an analogous theorem for constant coefficient operators on \mathbb{R}^n ([3], [20]) our proof proceeds by proving that if V is a closed ball in X then

 $f \in C_c^{\infty}(X)$, supp $(Df) \subset V$ *implies* supp $(f) \subset V$,

supp denoting support. This is proved by means of Theorem 2.2 below

活力 医新闻学

[.]IFORNIA 94305 *AMS (MOS) subject classification* (1970). Primary 22E30, 43A85, 58G99, 35A05.

Key words and phrases. Symmetric spaces, Lie groups, invariant differential operators, Radon transform, Fourier transform.

¹ Supported in part by the National Science Foundation NSF GP-22928.

Copyright C **American Mathematical Society 1973**

for the Radon transform $[10]$ $f \rightarrow \hat{f}$ on X. If ξ is a horocycle in X then $\hat{f}(\xi)$ is the integral of f over ξ . The following Paley-Wiener type theorem for the Radon transform is the analog for X of Theorem 2.1 in [12]. The proof is however quite different and is in part based on Harish-Chandra's expansion for general Eisenstein integrals on G [7]. I am indebted to Harish-Chandra for communicating to me this expansion which has not been published, but will appear in [22]. It is a generalization of the asymptotic expansion for the spherical functions in [6].

THEOREM 2.2. Let $L \in C_c^{\infty}(X)$ and let V be a closed ball in X. Assume $\hat{f}(\xi) = 0$ whenever the horocycle ξ in X is disjoint from V. Then $f(x) = 0$ *for* $x \notin V$.

REMARK. Instead of assuming $f \in C_c^{\infty}(X)$ it suffices to assume that the function $g \to f(gK)$ belongs to the Schwartz space on *G* in the sense of [9, p. 19].

The analog of Theorem 2.1 for left invariant differential operators *D* on a Lie group *L* is in general false. In fact, it was proved to me by Hörmander in 1964 (independently proved in Cerezo-Rouviere [1]) that if for a given *L* one assumes local solvability for every *D* then either *L* is abelian or has an abelian normal subgroup of codimension 1. However for each bi-invariant (i.e., left and right invariant) operator on the semisimple group G we have the following local solvability result.

THEOREM 2.3. *There exists an open neighborhood V of e in G with the following property: For each bi-invariant differential operator* $D \neq 0$ *on G,*

 $DC^{\infty}(V) \supset C_c^{\infty}(V)$.

The proof is easily deduced from a structure theorem for *D* (Harish-Chandra [8 p. 477]) combined with Proposition 1.4 in Rais [21] which deals with nilpotent groups.

3. **The Fourier transform on** *X*. Let $G = KAN$ be an Iwasawa decomposition of G, *A* and *N* being abelian and nilpotent, respectively. Let a denote the Lie algebra of A, α^* its dual and α_c^* the complexification of a^* . If $\lambda \in a_c^*$ let Im λ denote its imaginary part. Let $|\lambda|$ denote the norm on a^* given by the Killing form of the Lie algebra of G. If $H \in \alpha$ the map $X \rightarrow [H, X]$ is an endomorphism of the Lie algebra n of *N* whose trace we denote $2\rho(H)$. Let M be the centralizer of A in K, put $B = K/M$ and let *db* be the K-invariant measure on *B* with total measure 1. For $x \in X$, $b = kM \in B$, let $A(x, b) \in a$ be determined by $n \in N$, $x = kn \exp A(x, b)K$. Fixing a G-invariant measure dx on X the Fourier transform \tilde{f} of a function f on X is defined by

$$
\tilde{f}(\lambda, b) = \int_X e^{(-i\lambda + \rho)(A(x, b))} f(x) dx
$$

for all $\lambda \in \mathfrak{a}_{c}^{*}$, $b \in B$, for which this integral converges absolutely [13]. It satisfies

(1)
$$
\int_{B} e^{(is\lambda + \rho)(A(x,b))} \tilde{f}(s\lambda, b) db = \int_{B} e^{(i\lambda + \rho)(A(x,b))} \tilde{f}(\lambda, b) db
$$

for $f \in C_c^{\infty}(X)$, and every element *s* in the Weyl group *W* of *X*, and the mapping $f \to \tilde{f}$ extends to an isometry of $L^2(X, dx)$ onto

$$
L^2(\mathfrak{a}_+^* \times B, |c(\lambda)|^{-2} d\lambda db)
$$

[15, pp. 120, 124]. Here α^* is the positive Weyl chamber in α^* , $c(\lambda)$ is Harish-Chandra's c-function and $d\lambda$ is a suitably normalized Euclidean measure on α^* . Combining this characterization of $L^2(X)$ with Theorem 2.2, we obtain a characterization of the Fourier transforms of $C_c^{\infty}(X)$.

DEFINITION. A C^{∞} function $\psi(\lambda, b)$ on $\alpha_c^* \times B$, holomorphic in λ , will be called a *holomorphic function of uniform exponential type* if there exists a constant $A \ge 0$ such that, for each polynomial $P(\lambda)$ on $\mathfrak{a}_{\mathfrak{c}}^*$,

$$
\sup_{\lambda \in \mathfrak{a}_c^*, b \in B} e^{-A |\text{Im}\lambda|} |P(\lambda) \psi(\lambda, b)| < \infty.
$$

THEOREM 3.1. *The mapping* $f \to \tilde{f}$ *is a bijection of* $C_c^{\infty}(X)$ *onto the space of holomorphic functions of uniform exponential type satisfying (1).*

For the case when *f* is assumed *K*-invariant this reduces to a known result ([4, p. 434], for $SL(2, R)$, [14], [5], [15, p. 37]). Finally, let $\mathcal{S}'(X)$ denote the dual space of the Schwartz space $\mathcal{S}(X)$. Its elements are distributions on X , the tempered distributions. In the manner indicated in the introduction we obtain an extension of Theorem 4.2 in [11].

THEOREM 3.2. Let $D \neq 0$ in $D(X)$. Then

$$
D\mathscr{S}'(X)=\mathscr{S}'(X).
$$

REFERENCES

1. A. Cerèzo and F. Rouvière, *Résolubilité locale d'un opérateur différentiel invariant du premier ordre,* Ann. Sci. Ecole Norm. Sup. 4 (1971), 21-30.

2. M. Eguchi and K. Okamoto, *The Fourier transform of the Schwartz space of a symmetric space,* 1972 (preprint).

3. L. Ehrenpreis, *Solution of some problems of division. I. Division by a polynomial of derivation,* Amer. J. Math. 76 (1954), 883-903. MR 16, 834.

4. L. Ehrenpreis and F. I. Mautner, *Some properties of the Fourier transform on semisimple Lie groups. I,* Ann. of Math. (2) 61 *(1955),* 406-439. MR 16, 1017.

5. R. Gangolli, *On the Plancherel formula and the Paley-Wiener theorem for spherical functions on semisimple Lie groups,* Ann. of Math. (2) 93 (1971), 150-165.

6. Harish-Chandra, *Spherical functions on a semisimple Lie group.* I, II, Amer. J. Math.

80 (1958), 241-310, 553-613. MR 20 #925; MR 21 #92.

7. , Differential equations and semisimple Lie groups, 1960 (unpublished). *8. , Invariant eigendistributions on a semisimple Lie group,* Trans. Amer. Math. Soc. **119** (1965), 457-508. MR **31 #4862d.**

9. ~, Discrete series for semisimple Lie groups. II. *Explicit determination of the characters,* Acta Math. **116** (1966), 1-111. MR 36 # 2745.

10. S. Helgason, *Duality and Radon transform for symmetric spaces,* Amer. J. Math. **85** (1963), 667–692. MR $28 \neq 1632$.
11. — Fundamental solui

11. ~, *Fundamental solutions of invariant differential operators on symmetric spaces,* Amer. J. Math. 86 (1964), 565-601. MR 29 **#** 2323.

12. *~, The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds,* Acta Math. **113** (1965), 153-180. MR 30 #2530.

13. **..........**, Radon-Fourier transforms on symmetric spaces and related group representa*tions,* Bull. Amer. Math. Soc. **71** (1965), 757-763. MR 31 # 3543.

14. , *An analog of the Paley-Wiener theorem for the Fourier transform on certain symmetric spaces,* Math. Ann. **165** (1966), 297-308. MR 36 *#46545.*

15. \longrightarrow , *A* duality for symmetric spaces with applications to group representations, Advances in Math. **5** (1970), 1-154. MR 41 # 8587.

16. L. Hörmander, *On the division of distributions by polynomials*, Ark. Mat. 3 (1958), 555-568. MR 23 # A2044.

17. P. D. Lax and R. S. Phillips, *The Palev-Wiener theorem for the Radon transform,* Comm. Pure Appl. Math. 23 (1970), 409-424; Correction, ibid. 24 (1971), 279-288. MR 42 #8189; #8190.

18. S. Lojasiewicz, *Sur le probleme de la division,* Studia Math. **18** (1959), 87-136. MR 21 # 5893.

19. D. Ludwig, *The Radon transform on euclidean space,* Comm. Pure Appl. Math. 19 (1966) , 49-81. MR 32 $\# 8064$.

20. B. Malgrange, *Existence et approximation des solutions des équations aux dérivées partielles et des equations de convolution,* Ann. Inst. Fourier (Grenoble) 6 (1955/56), 271-355. MR 19, 280.

I

21. M. Rais, *Solutions glimentaires des operateurs diffrentiels bi-invariants sur un groupe de Lie nilpotent,* C. R. Acad. Sci. Paris **273** (1971), 495-498.

22. G. Warner, *Harmonic analysis on semisimple Lie groups,* Springer-Verlag, Berlin and New York (to appear).

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139