PALEY-WIENER THEOREMS AND SURJECTIVITY OF INVARIANT DIFFERENTIAL OPERATORS ON SYMMETRIC SPACES AND LIE GROUPS

BY SIGURDUR HELGASON

Communicated by Robert T. Seeley, June 14, 1972

1. Introduction. The principal result of this paper is that if \(D \) is an invariant differential operator on a symmetric space \(X \) of the noncompact type then, for each function \(f \in C^\infty(X) \), the differential equation \(Du = f \) has a solution \(u \in C^\infty(X) \). This is proved by means of a Paley-Wiener type theorem for the Radon transform on \(X \). As a consequence we also obtain a Paley-Wiener theorem for the Fourier transform on \(X \), that is an intrinsic characterization of the Fourier transforms of the functions in \(C^\infty_c(X) \). In [2], Eguchi and Okamoto characterized the Fourier transforms of the Schwartz space on \(X \). Invoking in addition the division theorem of Hörmander [16] and Lojasiewicz [18] we obtain by the method of [11] the surjectivity of \(D \) on the space of tempered distributions on \(X \).

Finally, as a consequence of a structure theorem of Harish-Chandra [8] for the bi-invariant differential operators on a noncompact semisimple Lie group \(G \), we obtain a local solvability theorem for each such operator.

2. The range of invariant differential operators. Let \(X \) be a symmetric space of the noncompact type, that is a coset space \(G/K \) where \(G \) is a connected, noncompact semisimple Lie group with finite center and \(K \) a maximal compact subgroup. Let \(D(X) \) denote the set of differential operators on \(X \), invariant under \(G \) and let \(C^\infty(X) \) denote the set of all \(C^\infty \) functions on \(X \) and \(C^\infty_c(X) \) the set of \(f \in C^\infty_c(X) \) of compact support.

Theorem 2.1. Let \(D \neq 0 \) in \(D(X) \). Then
\[
DC^\infty_c(X) = C^\infty_c(X).
\]

As in Malgrange's proof of an analogous theorem for constant coefficient operators on \(\mathbb{R}^n \) ([3], [20]) our proof proceeds by proving that if \(V \) is a closed ball in \(X \) then
\[
\text{supp}(Df) \subset V \quad \text{implies} \quad \text{supp}(f) \subset V,
\]
\(\text{supp} \) denoting support. This is proved by means of Theorem 2.2 below.
for the Radon transform \([10]\) \(f \to \hat{f}\) on \(X\). If \(\xi\) is a horocycle in \(X\) then \(\hat{f}(\xi)\) is the integral of \(f\) over \(\xi\). The following Paley-Wiener type theorem for the Radon transform is the analog for \(X\) of Theorem 2.1 in \([12]\). The proof is however quite different and is in part based on Harish-Chandra’s expansion for general Eisenstein integrals on \(G\) \([7]\). I am indebted to Harish-Chandra for communicating to me this expansion which has not been published, but will appear in \([22]\). It is a generalization of the asymptotic expansion for the spherical functions in \([6]\).

Theorem 2.2. Let \(L \in C_c^\infty(X)\) and let \(V\) be a closed ball in \(X\). Assume \(f(\xi) = 0\) whenever the horocycle \(\xi\) in \(X\) is disjoint from \(V\). Then \(f(x) = 0\) for \(x \notin V\).

Remark. Instead of assuming \(f \in C_c^\infty(X)\) it suffices to assume that the function \(g \to f(gK)\) belongs to the Schwartz space on \(G\) in the sense of \([9, \text{p. 19}]\).

The analog of Theorem 2.1 for left invariant differential operators \(D\) on a Lie group \(L\) is in general false. In fact, it was proved to me by Hörmander in 1964 (independently proved in Cerezo-Rouvière \([1]\)) that if for a given \(L\) one assumes local solvability for every \(D\) then either \(L\) is abelian or has an abelian normal subgroup of codimension 1. However for each bi-invariant (i.e., left and right invariant) operator on the semi-simple group \(G\) we have the following local solvability result.

Theorem 2.3. There exists an open neighborhood \(V\) of \(e\) in \(G\) with the following property: For each bi-invariant differential operator \(D \neq 0\) on \(G\),

\[
DC^\infty(V) \supset C_c^\infty(V).
\]

The proof is easily deduced from a structure theorem for \(D\) (Harish-Chandra \([8\, \text{p. 477}]\)) combined with Proposition 1.4 in Rais \([21]\) which deals with nilpotent groups.

3. **The Fourier transform on \(X\).** Let \(G = KAN\) be an Iwasawa decomposition of \(G\), \(A\) and \(N\) being abelian and nilpotent, respectively. Let \(\mathfrak{a}\) denote the Lie algebra of \(A\), \(\mathfrak{a}^*\) its dual and \(\mathfrak{a}_c^*\) the complexification of \(\mathfrak{a}^*\). If \(\lambda \in \mathfrak{a}_c^*\) let \(\text{Im} \lambda\) denote its imaginary part. Let \(|\lambda|\) denote the norm on \(\mathfrak{a}^*\) given by the Killing form of the Lie algebra of \(G\). If \(H \in \mathfrak{a}\) the map \(X \to [H, X]\) is an endomorphism of the Lie algebra \(n\) of \(N\) whose trace we denote \(2p(H)\). Let \(M\) be the centralizer of \(A\) in \(K\), put \(B = K/M\) and let \(db\) be the \(K\)-invariant measure on \(B\) with total measure 1. For \(x \in X\), \(b = kM \in B\), let \(A(x, b) = a\) be determined by \(n \in N\), \(x = kn \exp A(x, b)K\).

Fixing a \(G\)-invariant measure \(dx\) on \(X\) the Fourier transform \(\hat{f}\) of a function \(f\) on \(X\) is defined by

\[
\mathfrak{a}_c^* \ni \lambda \to \int_B e^{i\lambda x} db.
\]

It satisfies

\[
(1) \quad \int_B e^{i\lambda x} db
\]

for \(f \in C_c^\infty(X)\), an mapping \(f \to \hat{f}\).
Theorem 1. The mapping \(f \to \tilde{f} \) is a bijection of \(C_c^\infty(X) \) onto the space of holomorphic functions of uniform exponential type satisfying (1).

For the case when \(f \) is assumed \(K \)-invariant this reduces to a known result ([4, p. 434], for \(\text{SL}(2, \mathbb{R}) \), [14], [5], [15, p. 37]). Finally, let \(\mathcal{S}'(X) \) denote the dual space of the Schwartz space \(\mathcal{S}(X) \). Its elements are distributions on \(X \), the tempered distributions. In the manner indicated in the introduction we obtain an extension of Theorem 4.2 in [11].

Theorem 3.2. Let \(D \neq 0 \) in \(D(X) \). Then

\[
D\mathcal{S}'(X) = \mathcal{S}'(X).
\]

References

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139

132

SIGURDUR HELGASON

STABILITY

Introduction. I bundles, disc bu category. Many category, but the
I would like to helpful and encot

Normal bundle group of topolc

TOP\(n,k\) be the

\(R^n\times R^k\) which

In [9] Kirby an

TOP/O, i.e., if \(n\)

is an isomorphi

where \(O_n\) is the s.

deduce that

THEOREM 1. \(\pi_i(C)\) is the s.s. group of

disc in \(R^n\).

An immediate

COROLLARY 2. complex. Any \(R^n\).

It is uniquely det

In particular, \(j\)

Using the abo

([12], [13]), we sh

THEOREM 3. \(\pi\)

\(j = 0, 1, 2.\)

AMS (MOS) sul

Secondary 55G40, 5.

Key words and phu

1 These results will

2 Research suppor