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Abstract

This paper proposes a test of a restricted specification of regression, based on com-
paring residual sum of squares from kernel regression. Our main case is where both
the restricted specification and the general model are nonparametric, with our test
equivalently viewed as a test of dimension reduction. We discuss practical features of
implementing the test, and variations applicable to testing parametric models as the
null hypothesis, or semiparametric models that depend on a finite parameter vector as
well as unknown functions. We apply our testing procedure to option prices; we reject
a parametric version of the Black-Scholes formula but fail to reject a semiparametric
version against a general nonparametric regression.

1 Introduction

A primary role of hypothesis testing in empirical work is to justify model simplification.
Whether one is testing a restriction implied by economic theory or an interesting behavioral
property, the test asks whether imposing the restriction involves a significant departure from
the data evidence. A failure to reject implies that the restriction can be imposed without
inducing a significant departure, or that the original model can be simplified.1 Moreover,
a simple model is typically easier to understand and use than a complicated model, and
therefore can be more valuable for scientific purposes, provided that it is not in conflict
with the available evidence. Whether one is testing for the equality of means from two
populations, or whether a linear regression coefficient is zero, the aim is to produce a
simpler model for subsequent applications.

When the methods of analysis are widened to include nonparametric techniques, the need
for model simplification is arguably even more important than with parametric modeling
methods. Nonparametric methods permit arbitrarily flexible depictions of data patterns to
be estimated. There can be a cost of this flexibility, in terms of data summary and inter-
pretation. If the regression of a response on three or more predictor variables is of interest,
then a nonparametric estimator of that regression can be extremely hard to summarize (for
instance, graphically). As such, the need for model simplification is paramount - without
simplification one may have a hard time even communicating the results of the statistical

1This logic applies to nested hypothesis testing - we do not consider non-nested hypothesis tests, or
comparisons of substantially different models.
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analysis. But such simplification should be statistically justified, and for that, hypothesis
tests are needed.

In this paper we propose a test of regression model simplification in the nonparametric
context. As a base case, we consider the most basic situation of dimension reduction;
namely whether certain predictor variables can be omitted from the regression function.
Our results apply to the situation where kernel methods are used to estimate the regression
under the restricted specification and under the alternative - in our base case, we compare
kernel regression estimates that exclude the variables of interest with those that include
those variables. Our test is based on goodness-of-fit, via residual sums of squares under the
null and alternative regression hypotheses.

We derive the expansion of the functional for the sum-of-squared departures between
the restricted regression and the unrestricted regression, along the method of von Mises
(1947). 2 We carry out the second order expansion, because the distribution of our test
statistic has a singularity when the null hypothesis is true.3 In particular, the first order
(influence) terms vanish under the null hypothesis, and our distributional result is based
on the next term in the expansion. To derive the distribution of the second order term, we
utilize results from the theory of U-statistics, that are applicable in situations where the
influence terms vanish.

We focus on the base case of dimension reduction because it captures the substantive
features of the distributional structure for test statistics based on goodness-of-fit. The varia-
tion of the test statistic is primarily related to the unrestricted model - for instance, the rate
of convergence of the test statistic is determined by the rates applicable to nonparametric
estimation of the general model. We present several corollaries that deal with important
practical variations, and reinforce the basic structure of the test statistic. In particular,
we verify that the distribution of the test statistic is unchanged when the restricted model
depends on a (finite dimensional) parameter vector, and the test is performed using an esti-
mate of the parameter. We specialize that case further to the situation where the restricted
model is a parametric model, which does not involve any nonparametric estimation at all.
Finally, we discuss problems of dependent mixing observations. These corollaries cover
many applications involving tests of parametric or semiparametric models against general
nonparametric regression, in a wide range of different data situations.

Our results are related to a fairly recent but growing literature in econometrics on hy-
pothesis testing with nonparametric methods. This literature has focused on testing a spe-
cific parametric model against flexible alternatives, with variations in the type of approach
and particular specifications of null and alternative hypotheses. As we discuss below, tests
involving nested hypotheses require analysis of second order terms in the asymptotic ex-
pansion, because the first order terms vanish under the null hypothesis. Wooldridge (1992)
analyzes such first order terms for testing a linear model against a non-nested nonparametric
alternative, and Lavergne and Vuong (1994) propose a residual based test for specification
of regressors under the similar guidelines; see also Doksum and Samarov (1993). Yatchew
(1992) and Whang and Andrews (1991) propose methods based on "sample splitting," or
using different parts of the original data sample for estimation and testing. Also related is
work based on the cross validation function used for choosing smoothing parameters in non-

2 See also Filipova (1962), Reeds (1976), Fernholz (1983), and Ait-Sahalia (1995) among others.
3 This kind of structure has been noted for other kinds of testing procedures, for instance, see Bickel

and Rosenblatt (1973) for density estimation, Hall (1984), Fan (1994), Fan and Li (1996), Hong and White
(1993), AYt-Sahalia (1996b) and Bierens and Ploberger (1994), among others. We are not aware however of
applications of the Von Mises expansion to the testing problem, that we carry out.
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parametric regression: see Zhang (1991) and Vieu (1993). Tests of orthogonality restrictions
implied by parametric models are proposed by Bierens (1990), Lewbel (1991), and White
and Hong (1993). Lee (1988) proposes tests of nested hypotheses using weighted residuals,
Gozalo (1993) examines testing with a fixed grid of evaluation points, and Rodriguez and
Stoker (1992) propose a conservative test of nested hypotheses based on estimating first-
order terms given the value of the smoothing parameters used in nonparametric estimation.
Recent analysis of second order terms of tests of parametric models against general non-
parametric alternatives are carried out by Bierens and Ploberger(1994) and de Jong and
Bierens (1994) for general orthogonality restrictions, by Zheng (1996) for tests of paramet-
ric models and Ellison and Fisher-Ellison (1992) for tests of linear models. Analysis of
'density-weighted' test statistics using kernel estimators are given in Staniswalis and Sev-
erini (1991), Hidalgo (1992), White and Hong (1996), and Fan and Li (1996). Further work
includes the test of Hardle and Mammen (1993) of a parametric model versus a nonpara-
metric alternative, and the test of Horowitz and Hardle (1994) of parametric index models
versus semiparametric index models. Finally, Heckman, Ichimura, Smith and Todd (1994)
analyze a test of index sufficiency using local linear regression estimators, and relate their
approach to the goodness-of-fit method that we analyze here.

Our work contributes to this literature by considering a general regression testing situ-
ation; including choice of regressors (dimension reduction) as well as parametric and semi-
parametric null hypotheses, as well as an analysis of the second order terms that arise
with kernel regression estimators. As such, our results are generally applicable, and cover
most testing situations considered in the papers cited above. Further, our test focuses on a
goodness-of-fit statistic that is natural and easy to interpret, with no need to choose arbi-
trary moments, etc., as in the existing literature, although some regularization parameters
need to be specified.

2 Basic Framework

Suppose that we are studying a response y as a function of a vector of predictor variables z,
where the data sample consists of N independent and identically distributed observations
(yi, zi), i = 1, ..., N.

Our base case concerns testing whether some of the predictor variables can be omitted
from the regression of y on z. In particular, suppose z = (w,v), where w is a vector
of dimension p and v is a vector of dimension q. The joint density (resp. cumulative
distribution function) of (y, w, v) is denoted f (resp. F). Below we need to make reference
to several marginal densities from f (y, w, v) and estimates of f which we denote via the list
of arguments - for example f(w,v) _ fy f(y, w,v)dy, where y denotes integration with
respect to y, etc. While this notation is compact, we feel that it is sufficiently unambiguous.

Our interest is in comparing the regression of y on (w, v) to the regression of y on w.
The regression of y on (w, v) is defined as

m (w, v) - E (yl w, v) = f y Yf (y w, v)dy (2.1)

and the regression of y on w as

M (w) _ E (yw) = f y yf(y, w)dy
f(w)
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We are interested in whether v can be omitted from the regression m(w, v), namely the null
hypothesis is

Ho: Pr [m (w, v) = M (w)] = 1.

The alternative hypothesis is that is m (w, v) 7 M (w) over a significant range, or

H1 : Pr [m (w, v) = M (w)] < 1.

Our testing approach is to assess the significance of squared differences in nonparametric
kernel estimates of the functions m and M; or in particular, to measure the mean squared
difference E {[m (w, v)- M (w)]2}. We first introduce the kernel estimators, and then the
test statistic of interest.

Based on a kernel function KC and bandwidth h, the standard Nadaraya-Watson kernel
regression estimator of m (w, v) is

N W--Wi , n)
mil (w, ) "M= 'I1 h 7 h ) i (2.2)

ZN IC(W-WiV-i)

while

Z^r ( J C () i) yi (2.3)ELv IC (W-Wi)

is the standard estimator of M (w) with bandwidth H. 4
It is convenient to represent r and M in terms of two density estimates,

1N
(y,w, v) --= N ,h-(P++l)+ 3 --Y i w-wi v-vih ' h h

f(y,w) = N H-(p+1 (Y - Yi w -wi 

Similarly, we define the estimates f(y, w) of f(w, v), calculated with bandwidth h, and f(w)
of f(w), calculated with bandwidth H. For simplicity, we take each C to be a product
kernel with the same component kernel which is of order r.

Note that if we indicate the dependence on f in (2.1) by m(w,v) m(w,v,f), and
similarly for M then rm(w, v) = m(w, v, f), AM(w) = M(w, f).

For technical reasons, we choose to focus on comparing M (w) to (w, v) in areas
where there is sufficient density. Rather than assuming that the support of the density f is
compact, and f is bounded away from zero on its support, we only compare M to ri on a
compact set where the density is known to be bounded away from zero. The conclusions we
derive are undoubtedly valid under weaker hypotheses. Let a (w, v) be a bounded weighting
function with compact support S C RP+q; for example, the indicator function of a compact
set. Define ai a (wi, vi). Our test statistic is

JU' +Z{h (wivi) -(wi)} ai (2.4)

4To keep the notation simple, we do not explicitly indicate the dependence of the bandwidth parameters
h and H on the sample size N. We also adopt the same notational convention for KC as for f, namely to
indicate which kernel by the list of arguments.
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that is, we compare M (w) to Fr (w, v) everywhere the comparison of the conditional expec-
tations is practically meaningful.5 In fact, a slight modification of (2.4) where fi(w, v) is re-
placed by rh(w, v) - f 7:h(w, v)f(w, v)dwdv and M(w) is replaced by M(w) - f M(w)f(w)dw
is more appropriate but this makes no difference in practice.

We will show that the properties of our test statistic can be derived from the properties
of the squared error goodness-of-fit functional

f Yfl (y,w,v)dy Yfi (y,w)dy i
F(Fl,F1 2 , F2 ) - fi l(W, f12(w) a(w,v)dF2 (w,v) (2.5)

defined formally on To x %OO x . Here F2 (E FE, the set of all probabilities on Rp +l
and F11,F 12 E 7oo, a suitable convex set of functions of bounded variation on RP+q+l
which are absolutely continuous with (Radon Nikodym) derivatives. If fj, j = 1,2 are
the derivatives of Fj then the quantities appearing in the definition (2.5), m(w,v, fil),
M(w, f12) are assumed bounded as Flj range over ZO. Under the null hypothesis Ho, we
have r [F, F, F2] = 0 for all F2, and under the alternative H 1, we have F [F, F, F2] > 0 for
some F2.

Since the restricted regression is nested in the general regression as

M (w) = EF [m (w, v) Iw]

we have several alternative formulations of the goodness-of-fit functional. First,

r(F,F,F) = EF {m (w, v) [y - M (w)] a(w,v)

so that F (F, F, F) = 0 coincides with the orthogonality restriction that m (w, v) is uncorre-
lated with the restricted residual y - M (w). By construction, this is equivalent to the fact
that y - M (w) is uncorrelated with any function of w and v. Second, we have that

F (F, F, F) = EF {([ - M ()] 2 -[Y -m (, v)]2)a (w,v)) 

so that F (F, F, F) = 0 is associated with no improvement in residual variance (least squares
goodness-of-fit) from including v in the regression analysis of y.

Further, r = r(F, , F) where F is the empirical c.d.f. of the data. Since F, F and F
are all consistent a test of H0o using F can be expected to be consistent.6

3 The Distribution of the Test Statistic

3.1 Assumptions and the Main Result

Our assumptions are:

Assumption 1 The data {(yi,wi,vi) ;i = 1,...,N} are i.i.d. with distribution F.

5As mentioned in the Introduction, 'density weighted' sums-of-squares tests have been analyzed for certain
problems. Here, a 'density weighted' version of (2.4) would be constructed by replacing ai by f (wi, vi) ai.

6It is clear that our testing approach is a nonparametric analogue to traditional X2 and F-tests of coef-
ficient restrictions in linear regression analysis, and the same intuitive interpretation carries over from the
parametric context . Specifically, an F-test is performed by using an estimate of F [F, F, F] divided by an
estimate of residual variance, scaled for degrees of freedom.
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Assumption 2 We have that

1. The density f (y,w,v) is r + 1 times continuously differentiable, r > 2. f and its
derivatives are bounded and in L 2 (Rl+p+q). Let D denote the space of densities with
these properties.

2. f (w, v) is bounded away from zero on the compact support S of a. Hence infs f (w, v)
b > 0.

3.

E(y - m(w, v)) 4 < oo

and

02 (W,v) E [(y - m (,)) 2 w, v] (3.1)

satisfies a4 (w, v) E L 2 (RP+q). The restricted conditional variance

a2 () _ E [( - M (W))2 Iw] (3.2)

satisfies r2 () C L2 (RP) .

Assumption 3 For kernel estimation

1. The kernel IC is a bounded function on R, symmetric about 0, with f XlC(z)ldz < oo,
f IC(z)dz = 1, f zlC(z)dz = 0 1 < j < r. Further,

r > 3(p + q)/4. (3.3)

2. As N -- o, the unrestricted bandwidth sequence h = 0 (N-1/6) is such that

2 (p + q) < < 2r + (p + q)/2 (3.4)

while the restricted bandwidth H = O (N - 1/A) satisfies

p < A < 2r +p (3.5)

as well as

6p/ (p + q) < A < 6. (3.6)

Note from (3.3) that there is no need to use a high-order kernel (r > 2) unless the
dimensionality of the unrestricted model, p + q, is greater or equal to 3. Under the as-
sumptions made on the bandwidth sequence, we have in particular that Nh(p+q)/ 2 +2r 0,
Nh p + q --4 oo, NH - oo, NHp+2 r -- R for some 0 < R < oo, H/h - 0 and h ( p + q ) /Hp O0.

So asymptotically we have that hp >> Hp > hP+ q.

Our main result is that the test statistic is asymptotically normally distributed with an
asymptotic bias. For stating the result and giving the derivation, define the further notation

a (y, w, v) [y - m (w, v)] /f (w, v), A (y, w) [y - M (w)] f (w) (3.7)

12 C12 fw [fy (, w,)2 f (y, wv)dy] f(w, v) a (w, v) dwdv (3.8)

= C12 fs, f -2 (w, v) a (w, v) dwdv
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'Y22 -- 2C22 fV fw [fy a (y, w, v) A (y, w) f (y, w, v) dy] f (w, v) a (w, v) dwdv (39)
= -2C22 fv fw , 2 (w, v) {f (w, v) /f (w)} a (w, v) dwdv

Y32 C2 f [f A(y,w)2f (y,w)dy f (w) a (w)dw = C32 2 (w) a (w)dw (3.10)

21 - 2Cl fv w [fy (y, W, V)2 f (y,w,v) dyl2 f (w,v)2a(w,v)2dwdv (311)

= 2C1l v f, a4 (w, v) a (w, v)2 dwdv

where a (w) E [a (w, v) w] = fv a (w, v) f (w, v) dv/f (w) and the Cij's are constants de-
termined by the kernel as

C12 - ffA K (w, v) 2 dwdv, C22 K (0), C32 - f Kw (w) 2 dw, (3.12)

C1ll fS f [fv f K (w, v) C: (w + , v + v) duwduv]2 dd. (3.13)
Note that under Assumption 2-3, Yj2, j = 1, 2, 3 and rl21are finite, as well as r (F, F, F).

Our result is now stated as:

Theorem 1 Under Assumptions 1, 2 and 3, we have that under Ho

-1 [Nh (p+ q)/2 - h-(P+q)/2/12 - h(-q-p)/222- h(p H 32] / (0, 1)

To implement the test, we require estimates 8721 of r21 and j2 of j2, j = 1, 2, 3. We
then compare

FT = 0'1 (Nh( p + q)/2 h - h(q-P)/222 - h(P+q)/2H-P~3 2) (3.14)

to the critical value z,, the quantile at level a of the JA(0, 1) distribution.
Our statistic and the hypotheses also make sense if p = 0, i.e., there is no w. In that case

f is not defined but we simply take M(w) M_ M(w) = 0 and our results continue to hold
with Y22 = Y32 = 0 and the elimination of any conditions involving the restricted bandwidth
sequence H. Of course, 22 and 32 are also 0.

3.2 Estimation of Critical Values

The quantities j2 and r21 depend on (3.1), the conditional variance of y given w and v
in the compact support S of a and for that, we can use any nonparametric estimator, for
instance

' 2
(W, V) = 

E IN ( h h i _A (- )2N~l ]I (whwi v-v f

for the unrestricted regression, and

&2 () E 1 ( H w /) M (w)2

for the restricted regression. With this estimator, we can define estimates of a 21 and Yj2,
j = 1,2,3 as

21 2C.N ENi ) 4( 1 2 -= N E 2 (2 ivi)ai
1li N 2i=1 f(wi,vi) N ' f(wivi)

7



222 - (w0,) - -- /i C N (wi)2ai2 1 N (Wi) I( w32 = N zl f(wi)

The following lemma shows that (21 and the respective 7j2, j = 1, 2, 3, can be substi-
tuted for l21 and 7j2 in Theorem 1 with no effect on the asymptotic distribution:

Lemma 1 Under Assumptions 1, 2 and 3, 8ll-l2- =op (1), 12-712 = p h(P+q)/2), 722-

'722 = o (h(P+q)/2H-P) and 732 -32 = op (h(P+)/2H-P) .

Finally, the constants Cij are determined by the kernel chosen as in ( 3.12) and (3.13)
and are easily computed. For example, for the Gaussian product kernel of order r = 2
(density of 1V(0, 1)), we have that

C12 = 1 /(2 V/7)p + q , C22 = 1/(V"W)P, C32 = 1/(2/')P, Cll = 1/(2V4)p + q . (3.15)

This complete the description of the test statistic ? in ( 3.14).
We now give a proof of Theorem 1. Sections 3.4 and 3.5 give some intuition for the

result, while section 3.6 studies the consistency and asymptotic power of the test.

3.3 Proof of the Theorem

We begin by studying the asymptotic properties of the functional F evaluated at (F, F, F),

using the functional delta method. The only difference between r (, F, F) and f of (2.4)

is that the latter is an average over the empirical c.d.f. F instead of F . We then show in
Lemma 7 that this difference is inconsequential for the asymptotic distribution of the test
statistic. To bound the remainder term in the functional expansion of r, define the norms

IIyg (y, w, v) 11 - sup,v a(w, v) (f yg(y, w, v)dwdv) 2

IIY9 (Y, w)1 2 - [1 [yg(yw)dy]2 dw

IYs (y, ) 11 -- [fv f gs (, v) dwdv] 1/2
19(WV)a112 - [fg2 (W)dw]1/2

11g911 - sup (g (w, v) l(w, v ) E)

and
11911 max (g11911, lYg (y,w, v)112, Iyg (Y,w)112, ,Jg (w,v)12, v 11 (w)11 2)

The main ingredient in the proof of the theorem is the functional expansion of r (.,., ),
summarized as:

Lemma 2 Let .Fo = { F + g : 9 E V} where V is the set of all absolutely continuous func-
tions of bounded variation such that if G = f gdA where A is Lebesgue measure then
1191100 < b/2. Then, under Assumption 2 and Ho, r(., .,F 2) has an expansion on fo x Yc0
about (F, F) given by,

r(F +G 1,F + G2 ,F2 ) = (F,F, F2 )

+ fv [y(ay, v)(y,wv) (y,wv)-
A(y, w)g2 (y, w))dy]2dF2 (w, v) + R(g1, g 2, F2)

where
sup{JR(G1,G 2,F 2 )1 /(g191113 +- l9g2113): G 1 ,G 2 E Vo} = O(1).
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Consequently, to apply the functional expansion to our test statistic, we need to be able
to bound the remainder term -i.e.e, we need to characterize the nonparametric approximat-
ing properties for the kernel estimators f and f.

Lemma 3 Under Assumptions 1, 2 and 3, we have

f/f- f[] = Op (hr + N-1/2 h- (P+q)/2 In (N)) .

The same result can be applied to f with H replacing h and p/2 replacing (p + q)/2.

We choose the bandwidth sequence h in such a way that

Nh(P+q)/2 f _ f f| = Op (Nh 2 [h3r + N h-3 (P+q)/2 ln3 (N)]) = op (1). (3.16)

We also have Nh(p+ q)/ 2 f - f 3 = Op(1). This is ensured by the bandwidth choices given
in Assumption 3- 2, as it clearly implies 6 < 3r + (p + q) /2 and 6 > 2 (p + q).

From Lemma 2 and 3 we obtain:

Lemma 4 Under Assumptions 1, 2 and 3, we have for any df G,

r (P, P, G) = (F, F, G) + fv f [ (a (y, w, v) (y, w, v) dy - fy A (y, w) (y, w) dy]2

.a(w,v) dF(w,v) + Op(}[f - + lf3)

(3.17)

Apply Lemmas 3 and 4 to F(F, F, F) and F(F, F, F) = r to obtain

r = r(F, F, F) + AN + op(N - 1h-(p +q)/2 ) (3.18)

where
AN =fvf f {fy C(Y,w,v)f(Y,w, v)dy

- A(y, w)f(y, w)dy} 2 a(w, v)
d(F(w, v) - F(w, v))

and
r(F, F, F) = IN + op(N-lh- (P + q)/ 2) (3.19)

where
IN - f. { fy (y, w, v) f (y, w, v)dy

- f A(y, w)f(y, w)dy} 2 a(w, v)f(w, v)dwdv.

Define, for (w,v) x

aN(y1,x1,x2) - a(x2) ft{c(t,x2)K(1 )(t - yl)K(P+q)( 2 - xl )

- A(t,w 2)K(l)(t - yl)K(P)(w 2 - wl)dt,

a (Yi,x 1,x) - aN(Y1,x1,x) -EaN(Yl,xl,x)

9



and write
IN = N- 2 Ej k f aN(Yj, Xj; x)aN(yk, xk; x)dF(x)

= N 2 { X jk aN(Yj, Xj; X)aN(Yk,x k, x)dF(n)
+ Ej [aN]2(yj,Xj;x)dF(x)

+ 2(N- 1) j f aN(yj, j;x)Ea(y,xl,x)dF(x) (3.20)
+ N(N- 1) fE 2 aN(yl,xl,x)dF(x)}

IN1 + IN2 + IN3 + IN4.

We shall show under our assumptions that all these terms are asymptotically Gaussian but
that IN3, IN4 are asymptotically negligible while IN2 gives a bias term. Summarizing, we
have:

Lemma 5 Under Assumptions 1, 2 and 3

Nh(P+q)/2[IN - N-lh-(P+)y1 2 - N- 1H-P(y 2 2 + Y32)] - N(0, 21) (3.21)

where all and the yij are given above.

The proof of this lemma will utilize:

Lemma 6 (Hall (1984)) Let {zili = 1,..., N} be an i.i.d. sequence. Suppose that the U-
statistic UN -- <i<j<N PN (Zi, zj) with symmetric variable function PN is centered (i.e.,

E [PN ( 1,Z2)] = 0) and degenerate (i.e., E [N (Zl,Z 2) Izl] = 0 almost surely for all zl).
Let

o-N2 -E [PN (, Z2)2 fiN (Zl, Z2) Ez [N(Zi, l) PN (Zi, Z2)]

Then if
limN-oo E[N (zl,z 2 )2 ]+N-1E[PN(zl,z2)

4 ] = 0 (3.22)

we have that as N --+ oo

N/n UN -V (/, o00) 

By Lemma 3 and (3.16), the result (3.21) is also valid if we replace IN by r(F,F,F)
there. The theorem follows in view of (3.18) and:

Lemma 7 Given Assumptions 1, 2 and 3, we have that

AN = Op(N-3(h-3(p+q) + H- 3 p) + N-1(H2 r + h2 r))

= op(N-2 h-(P+q)).

3.4 Intuition for Theorem and Bandwidth Choice

There is really one key feature that drives the structure of the results above, as well as
the results of the next section. In particular, the limiting distributional structure of the
test statistic is determined by the nonparametric estimation of the unrestricted model. For
instance, the rate of convergence is determined by the dimensionality and bandwidth for
7h (w, v), the general regression. The place this arises in the proof is in the decomposition
(3.20) of IN. There IN1 represents the variation of the unrestricted regression (both w and
v present), and IN3 represents the variation for the restricted regression (only w). Since
the presence of both w and v makes for a slower rate of convergence for mr1 (w, v), the rate

10



of convergence of IN1 is slower (see (A.14)) than that of IN3 (see (A.12)). Therefore the
asymptotic distribution of IN is driven by (A.14) and (A.12) does not contribute any term.
Likewise, IN2 (see (A.15)) has no impact. In other words, the specification of the unre-
stricted model is the only factor determining the asymptotic behavior of the test statistic.
This feature is a strength of our approach, because similar distributional features will arise
for a wide range of null hypotheses. We explore several variations in the next section.

It is worth noting that we obtain this result under the bandwidth choices given by
Assumption 3-2, notably (3.4). Other limiting conditions on the bandwidths will result in
different terms for bias in the procedure. For instance, if we consider conditions applicable
to pointwise optimal estimation; if

6 = (p + q) + 2r (3.24)

then h = O (N-1/6) would minimize the mean integrated square error (MISE) of the
regression estimate fi(w, v)

h= arg min J E [( (w,v) m(w,v))2] dwdv

- for instance, rates exhibited by bandwidths chosen by cross-validation.7 In that case, the
terms INi- (1/Nh + q) y712 = Op (N-l1h- (p+q)/2) and IN4 = Op (N-1/2hr) would be of

the same order, and F or equivalently IN would be driven by an additional term which would
lead to an additional component of variance whose estimation would require estimation of
r-th order derivatives of the regression and density to construct a test statistic.

It would also appear - see our computations in the appendix - that bias estimation
might be avoided by replacing ri(wi, vi) and 1Mn(wi) in P by, m(_i)(wi, vi), M(_i) (W ) where
(-i) indicates that the function is computed using all observations other than (yi, xi). Of
course, the statistic is more complicated since a separate computation needs to be done for
each summand. We conjecture that suitable versions of the bootstrap or other resampling
methods will enable us to avoid the bias estimation problem, while retaining the computa-
tional simplicity of the test statistic r, i.e., without requiring that a bias-correction term
be included in the definition of the test statistic. The main message from (3.24) is that we
should undersmooth the unrestricted model (h) compared to the indications we get from
cross-validation.

3.5 Intuition for the Asymptotic Normality of the Test Statistic

Another noteworthy feature of the result concerns the normality of the limiting distribution.
Typically, second order terms of the von Mises expansion will be distributed as an infinite
weighted sum of chi squared variables. This structure is associated with condition (3.22) -
under this condition, the degenerate U statistic UN has a limiting normal distribution, but
otherwise, it would typically have a weighted sum of chi-squares distribution. The normal
distribution occurs here because the eigenvalues AjN, j = 1, 2, ... , oo, of the linear operator
TN on L 2 defined by

Iz E L2 i- (XN4) () E [N (i, Z) ()]

7Our results apply to the case of a non-stochastic bandwidth sequence h; however, we conjecture that
the test is valid for data-driven bandwidths h, as long as plim h/h = 1 but do not formally address the issue
here.
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have the asymptotic negligibility property that

(E- I' AN = 0)

Rather than attempt to check this condition directly (the eigenvalues are not known explic-
itly), we relied on the sufficient characterization (3.22).

3.6 Consistency and Local Power Properties

In this section, we first note that the test we proposed is consistent, i.e., it tends to reject
a false null hypothesis with probability 1 as N -- oo. We then examine its power, i.e., the
probability of rejecting a false hypothesis, against sequences of alternatives that get closer
to the null as N -- oo.

Proposition 1 Under Assumptions 1, 2 and 3, the test based on the statistic (3.14) is
consistent for F such that r(F,F,F) > O. Note that this is equivalent to (m(w,v) -
M(w))a(w,v) $ 0 (a.e.).

We now examine the power of our test against the sequence of local alternatives defined
by a density fN (y, w, v) such that, if we use subscripts N to indicate dependence on fN:

H1N : suP{fmN (w, v) - MN () - ENA (W, v) : (w, ) S} = O(EN), (3.25)

IfN - f 1 = o(N-1h-(p+q)/ 2 ) (3.26)

where II I1 is defined in section 3.1. Further, suppose

62n A2(w,v)f(w, v)a(w, v)dwdv < oo

and
I A(w,v)f(w, v)dv = (3.27)

The following proposition shows that our test can distinguish alternatives H1N that get
closer to H0 at rate 1/ (N1/2h(p+ q)/4) while maintaining a constant power level:

Proposition 2 Under Assumptions 1, 2 and 3, suppose that the local alternative (3.25)
converges to the null in the sense that

EN = 1/ (N1/2h(P+q)/4).

Then, asymptotically, the power of the test is given by

Pr ( > ZIH1N) - 1 - (, - 62/l)

where 1 (.) designates the A (0, 1) distribution function.

4 Some Useful Corollaries

Theorem 1 covers the distribution of the test statistic when the null hypothesis involves
omitting the variables v from the regression of y on (w, v), where the observed data is a
random sample. While this case will suffice for many empirical issues, our testing procedure
is potentially applicable to a much wider range of situations. We now discuss several
corollaries that generalize the basic result above.

12
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4.1 Index Models

Our test above applies directly as a test of dimension reduction - it checks whether a smaller
number of variables suffices for the regression. Our first set of corollaries indicate how our
test is applicable to other methods of dimension reduction. In particular, one might wish to
create a smaller set of variables by combining predictor variables in a certain, interpretable
way, and then test that the regression depends only on the combination. If the method of
combining variables is known exactly (e.g., take their sum), then the above results apply
immediately. However, if the method of combining variables involves parameters that are
estimated, then we must check how the earlier results would change. We argue heuristically
that they apply with only minor additional smoothness and bandwidth assumptions.

A principal example of this kind of structure arises when a weighted average of the
predictors is used in the regression, where the weights must be estimated. Here w = x' 0,
and rewrite the predictor vector x as its (invertible) transformation (w, v) = (x'0, v). A

single index model of the regression is then m (x) = M* (x' 0) . If the unknown function M*
were assumed to be invertible, this is the standard form of a generalized linear model. We
note in passing that we could summarize the impacts of a subset of variables via an index,
leaving some others to have unrestricted effects - a partial index model would take w =
(x'0, Wl), where again the predictor x is an invertible transformation of (x'0, 1, v) . In
these examples, if 0 is known, then our previous results apply for testing the null hypothesis
that an index model is valid. When 0 is not known, it must be estimated, and an estimator
O can often be found that is JV consistent for its limit. For index models with continuous
regressors, such estimators are given by average derivative estimators, among many others.
For generalized linear models, maximum rank correlation or penalized maximum likelihood
methods give VN consistent estimators of the 0.8

We consider a more general framework, whereby the vector w is allowed to depend gen-
erally on a finite vector 0 of parameters as w w (x, 0) and the restricted (null) regression
model is

Ho: Pr [m (w,v) = M(w(x, 0))]=1 (4.1)

where again, M is unknown but w is known up to the parameter vector 0. That is, there
exists a differentiable and invertible map W : x >- (w (x, ) , v (x, 0)), for each 0, where
w takes values in R P, v in R q, q > 0, which satisfies

Assumption 4 The map W and its Jacobian J (x, 0) are continuous as functions of x and
0. Further J $f 0 for all x E S, 0 CE .

Of interest is the application of our test statistic where an estimate 0 of 0 is used, or
that _ w (x, 0) is used to in place of the true w in the test statistic. Our discussion
above pointed out how the relevant variation for our test statistic is determined by the
dimensionality of the alternative hypothesis. Consequently, it is natural to conjecture that
the use of a \VN consistent estimator 0 will not change the limiting distribution at all, so
that we can ignore the fact that 0 is estimated for the purposes of specification testing.
Consider,

Assumption 5 The estimate is VN-consistent, that is for all 0 in a compact parameter
space 0, - 0 = Op (N-1/2).

8 Stoker (1992) discusses these and other methods.
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We give in the Appendix heuristics for:

Corollary 1 Under Assumptions 4 and 5 and 6 > 6(p + q) the conclusion of Theorem 1
can be applied to

1 N }2
- N m(W(xi,-),v(i,)) (((Xi, ai. (4.2)

i=l

4.2 Parametric and Semiparametric Models

In the above section, we have proposed an interesting variation to the basic testing result,
namely permitting the use of estimated parameters in the restricted set of regressors. Much
previous work has focused on testing a specific parametric model against flexible nonpara-
metric alternatives. Our results are directly relevant to this setting, by noting an obvious
but quite important feature of our test. The rate of convergence and asymptotic variance
of our test statistic depends only on the dimensionality of the alternative hypothesis, and
there is no reason why we cannot restrict attention to null hypotheses that are parametric
models. This adds the test statistic to the toolbox of diagnostic methods for parametric
modeling. While failure to reject is rather weak evidence for a parametric hypothesis, the
test can detect significant departures in unexpected directions. More specifically, consider
the case of a parametric model as null hypothesis, with

Ho: Pr [m (w, v) = Mo (w)] = 1 (4.3)

where the function MO is known, but the parameter vector 0 is unknown. An estimator 0 of
0 satisfying Assumption 5 can be obtained under smoothness assumptions from nonlinear
least squares estimation of (4.3) or like methods. We have that

Assumption 6 Mo (w) is differentiable in 0, with derivative uniformly bounded for w E S,
and 0 in a neighborhood of the true parameter value in 0.

With regard to single index models, we could, for instance, test the null hypothesis that
the egression is a linear model in the predictor variables, or that E[ylw, v] = w'0. This is
almost a specialization of the results of the previous section if we consider the case p = 0
for which Mo(w) O0 and then note that replacing 0 by AlM(w) has a lower order effect.

We shall establish a result already appearing in Hardle and Mammen (1993):

Corollary 2 Under the additional Assumptions 5-6, Theorem 1 can be applied, with Y22 and
"Y32 replaced by 0, to

= N i-1 {mri (wi, vi) - M (i)}2 a-

under the null (4.3).

Notice that the validity of Theorem 1 implies that the variance of 0 does not affect the
limiting distribution of . Further, the logic applies when the restricted model involves
lower dimensional estimated functions as well as estimated parameters. For example, our
null model could be semiparametric

Ho: Pr [E [ylw, v] = M (w) + Mo (v)] = 1 (4.4)
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where the function Mo (.) is known, but M (-) and the finite-dimensional parameter vector 0
are unknown (see Robinson (1988) for an estimation strategy for this model with M0 (v) 
v'O). Specifically, the model can be written as E(y - Mo (v) I w,v) = E(y - Mo(v) w).
Thus the appropriate test statistic given an estimate 0 satisfying Assumption 5 is

r*N Em* (Wi, vi, - M* (wi,

where m*, M* are i, M applied to the observations (yi - Mb(vi), wi, vi). As in Corollary 1,
we give in the Appendix heuristics for:

Corollary 3 Under the additional Assumptions 5-6, Theorem can be applied without
modification to r* under the null (4.4).

Again, the estimation of a should not affect the limiting distribution of r, while, under
our bandwidth choices, the nonparametric estimation of M (.) gives rise to the bias ad-
justment terms 722 and 732. As before, when the restricted model depends on estimated
functions that converge at rates faster than the general model, the distribution of the test
statistic should be determined solely by the general model given by the alternative hypoth-
esis.

4.3 Extensions to More General Data Types

4.3.1 Limited Dependent Variables

We have made reference to the joint density f (y, w, v) to facilitate the functional expansion
in a natural way. However, there is no explicit use of the continuity of the dependent
variable y in the derivations. In particular, the joint density f (y,w, v) can be replaced
everywhere by f (w, v) dF (ylw, v)without changing any of the derivations. This is more
than a superficial change, as it allows the application of our test statistic to any situation
involving limited dependent variables. For instance, y may be a discrete response, with the
regression a model of the probability that y takes on a given value. Alternatively, y could
be a more complicated censored or truncated version of a continuous (latent) variable.

4.3.2 Dependent Data

We have regarded the observed data above as a random sample, which is appropriate for
analysis of survey data or other kinds of data based on unrelated observation units. However,
for many settings, the ordering or other kind of connections between observations must be
taken into account. Examples include the analysis of macroeconomic or financial time
series data. For testing for regression structure in this context, what complications would
dependent data raise for our results?

It is heuristically clear that the moment calculations we have used in our derivation
continue to hold for (wi, vi, yi) stationary ergodic and at least formally that in a suitable
mixing context remainders should still be of smaller order. Results such as Ilf - f =
O(hr + N-1/2 h-(P+q)/2 log N), (Gyorfi et al. (1989)), and for U statistics the appropriate
extension of Lemma 6 (Khashimov (1992)), are also available. The technical issues are
resolvable under suitable mixing conditions (which are of course not verifiable!). That is we
conjecture:

15
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Table 1: Monte Carlo Results: One Dimension

Proposition 3 If Assumption 1 is replaced by suitable smoothness and mixing conditions,
Theorem 1, Propositions 1 and 2 and Corollaries 1, 2 and 3 continue to hold.

We accordingly apply the test statistic to an example in which at best we can think
of yi given (xi) as consisting of independent components, and we have a semi-parametric
structure as in (4.4).

5 Finite Sample Properties: A Monte Carlo Study

To give a brief description of the finite sample performance of the test statistic, we present
simulation results for one-dimensional and two-dimensional testing situations. We begin
with a one-dimensional study of functional form, where the true model is E [ylw] = wO with
0 = 1, for w distributed as V(0, 1). In particular, we constructed samples with

y = wO + a (w) E (5.1)

where e is distributed as Ar(0, 1) and o2 (w) = .5625 exp (-w 2 ). With reference to Corollary
2, we have that p = 1, q = 0. We the general regression we use a univariate normal kernel
function, and compute the bandwidth as hoN -1 / 5 with = 4.25, and ho is set to .45, .50
and .55, and a is the indicator function of the interval S = {w C R/ - 2 < w < 2}. To
estimate the conditional variance, we computed the bandwidth as .25N-1/6. The restricted
model is estimated by ordinary least squares (OLS). We simulated 1000 samples for each
case. Table 1 reports the observed rejection rates for 5% and 10% critical values (z. 0 5 = 1.64
and z.10 = 1.28), and the standard deviation of the standardized test statistic (which is 1
asymptotically) .

Table 1 shows a fairly close correspondence between the finite sample performance of
the test statistic and the asymptotic results for the one-dimensional design. There is some

16

ho=0.45 ho=0.50 ho=0.55

N=500 5% 5.5 7.0 7.8
10% 8.4 10.6 8.4

Stan. Dev. () 0.98 1.01 1.02
N=1000 5% 5.7 5.7 6.1

10% 8.9 8.5 9.6
Stan. Dev. () 0.98 0.99 0.97

N=5000 5% 6.3 6.6 6.7
10% 10.0 10.3 10.7

Stan. Dev. () 1.00 0.98 1.00
N=10,000 5% 4.8 6.3 6.4

10% 6.6 9.8 9.9
Stan. Dev. () 0.99 0.98 0.98

N=15,000 5% 6.0 5.5 5.9
10% 9.7 10.7 9.5

Stan. Dev. () 0.98 1.01 1.01
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NPGEN - NPREST NPGEN- PARAM

n=500 5% 8.6 8.3
10% 15.4 13.3

Stan. Dev. () 0.93 0.97
n=1000 5% 7.9 6.9

10% 13.7 11.2
Stan. Dev. () 0.94 0.99

n=5000 5% 7.4 6.3
10% 12.9 11.0

Stan. Dev. () 0.95 0.98

Table 2: Monte Carlo Results: Two Dimensions

tendency of the test statistic to over-reject, and that tendency arises with larger bandwidth
values. But in any case, the results are close to the expected values.

To study the performance of the test statistic in two dimensions, we generate sample
using the same model (5.1) as above, and test for the presence of an additional regressor v,
which is distributed as A/(0, 1), independently of w and e. We study the performance of the
test statistic in two settings: first a comparison of nonparametric estimates of the general
nonparametric regression E (ylw,v) and the restricted nonparametric regression E (ylw)
("NPGEN - NPREST" in Table 2) and then a comparison of nonparametric estimates of
E (ylw, v) to the OLS fitted values of regressing parametrically y on w ("NPGEN - PARAM"
in Table 2). With reference to Theorem 1, we have p = 1 and q = 1. We use standard
normal (one and two dimensional) kernel functions, and set bandwidths as h = hoN - l/ 5,
H = Ho N - 1 /A , where 6 = 4.75, A = 4.25, h = 0.65, Ho = 0.50. The weighting function

a is the indicator function of the disk S = (w, v) c R 2 / w2 v2 < 2} in R 2. To estimate

conditional variances, we use the bandwidth .25N- 1/A for the one-dimensional regression
and .55N-1 /6 for the two dimensional regression. We simulated 500 samples for each case.
Table 2 reports the observed rejection rates for 5% and 10% critical values, and the standard
deviation of the standardized test statistic .

In Table 2 we see that the tendency of the test statistic to over-reject is more pronounced.
When comparing general and restricted kernel estimates, the observed standard deviation
of the test statistic is less than one, which is associated with the tendency to over-reject,
but that the same spread compression is not very evident in the test statistics comparing
the general nonparametric regression to OLS estimates of the parametric regression. In
any case, we conclude that there is a general correspondence between the finite sample
performance of the test statistic and the theoretical results, with some tendency toward the
test statistic over-rejecting, or producing confidence regions that are too small.

6 An Empirical Application: Modeling the Deviations from
the Black-Scholes Formula

To illustrate our testing procedure, we present an empirical analysis of options prices. In
particular, we study the goodness-of-fit of the classical Black-Scholes (1973) option pricing
formula. While we reject the standard parametric version of this formula against a gen-
eral nonparametric alternative, we fail to reject a version of the formula that employs a
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semiparametric specification of the implied volatility surface.
Our data sample consists of N = 9,005 observations on daily S&P 500 index options

obtained from the Chicago Board Options Exchange for the year 1993. The S&P 500 index
option market is extremely liquid (as one of the most active among options markets in the
United States), the options are European, and we have chosen options with open interest
above the annual mean open interest level (i.e. we focus on actively traded options) with
maturities ranging from 0 to 12 months. For further information on the basic data set, see
Ait-Sahalia and Lo (1997).

We denote the call option price as C, its strike price as X, its time-to-expiration as T,
the S&P500 futures price for delivery at expiration as F, the risk-free interest rate between
the current date and T as r.9 The Black-Scholes option pricing formula is

C = e-,TF [D (dl)- X (d2)] (6.1)

where 4) (.) is the normal c.d.f., and

In (F/X) + (s 2 /2) d- sT

for a value of the volatility parameter s constant across different moneyness values (defined
as X/F) and time-to-expiration T. The put option price is given by

P = C + (X - F) erT.

The industry's standard convention is to quote option prices in terms of their implied
volatilities, so an option "trades at s=16%" rather than "for C=$3.125." In other words,
for each option price in the database, with characteristics (X/F, T), (6.1) can be inverted
to produce the option's implied volatility. This is the unique value of s, as a function
of (X/F,T), that would make C(X/F,T,s) on the right-hand-side of (6.1) equal to the
observed market price of the option. Using (6.1) to compute s just represents an invertible
transformation of the price data; a nonlinear change in scale.

Of course, market prices may not satisfy the Black-Scholes formula, in which case the
implied volatility s of options with different moneyness X/F and time-to-expiration T will
not be identical across different options, but would depend on X/F and T. Moreover, there
are a number of possible sources of noise in the market data: option data might not match
perfectly with the market price F (S&P 500 futures are traded at the Chicago Mercantile
Exchange), the fact that both F and C are subject to a bid-ask spread, and the fact that
settlement prices are computed as representative of the last trading prices of the day. We
summarize these potential sources of noise as an additive residual in implied volatilities:
namely we pose the model

s = m (X/F, T) + e, with E (jX/F, T) = 0. (6.2)

If the Black-Scholes formula were a correct depiction of how an ideal market operates,
then m(X/F, T) would be a constant independent of X/F and T. It is now recognized
in the literature that this is not the case, especially since the October 1987 market crash.
Regression patterns, known as "volatility smiles," have been identified in the data, whereby

9In our sample, the risk-free rate of interest is constant at r = 3.05% (short term interest rates were quite
stable during 1993).
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it is typical for out-of-the-money puts, i.e., put options with moneyness X/F < 1, to trade
at higher implied volatilities than out-of-the-money calls (X/F > 1).10 The pattern is
strongly nonlinear since as a function of X/F, the implied volatility s tends to decrease
between X/F = 0.85 and X/F = 1 (at-the-money), and then flattens out between 1 and
1.1. The level of s also generally decreases as a function of time-to-expiration T, although
this effect is not as salient in the data.

Our objective is to determine a parsimonious model for E [sIX/F, T] = m(X/F, T). In
particular, we are interested in learning whether the full generality of the two-dimensional
nonparametric regression function m(X/F, T) is needed to adequately model implied volatil-
ities. For this, we consider five versions of the model

BS: m (X/F, T) = o

PARAM: m (X/F, T) = 01 + 02X/F + 03 (X/F)2

NPREST: m (X/F, T) = g (X/F)

SEMIPAR: m (X/F, T) = g (X/F) + 04 T + 05 T 2

NPGEN: m (X/F, T) unrestricted

BS refers to the standard Black-Scholes specification of constant volatility, PARAM refers
to a quadratic model in X/F as is common in the modeling of a "volatility smile", NPREST
refers to the restricted (one-dimensional) nonparametric specification of volatility as a func-
tion of X/F, SEMIPAR refers to the partially linear specification with a nonparametric
additive structure for X/F and a quadratic structure for time T, and NPGEN refers to the
general unrestricted two-dimensional regression.

Estimation for the various specifications is as follows: the parametric models (BS and
PARAM) are estimated by OLS regression, the nonparametric models (NPREST and
NPGEN) are estimated by setting smoothing parameters as in the Monte Carlo analy-
sis,1l and SEMIPAR is estimated by using Robinson's (1988) difference method (with the
same smoothing parameters as for NPREST). 12

l°Various arguments have been proposed to explain this phenomenon: for example, puts are more expen-
sive, on a volatility basis, because of the excess demand for protective puts -an option strategy which would
cap the losses of a stock portfolio in the event of a market downturn. See Ait-Sahalia and Lo (1997) for a
discussion.

l1In particular, normal kernels are used, and smoothing is done after the data is standardized (centered
by removing the mean and divided by standard deviation). In this application, w = X/F (so p = 1) and
v = t (so q = 1). For NPGEN, we set h = hoN- 1 / 6 for h = .65, 6 = 4.75, and for NPREST, we set
H = HoN- 1 / for Ho = .50, A = 4.25, with N = 9,005 in both cases, giving h = .14 and H = .081.
The weighting function a is the indicator function of the set S = [-1.6,1.6] x [-1.0, 0.6] in R2. Finally, the
bandwidth for estimating conditional variance terms are given above with ho = .55 and Ho = .25.

12We estimate the univariate regressions m, - E [sIX/F], mT = E [TIXIF] and mT2 = E [T 2 I X/F] by
kernel regression, estimate 04 and 05 by regressing si -r7i, (Xi/Fi) on Ti -nT (Xi/Fi) and Ti2 -mrT2 (Xi/Fi)
and then form = ,- 

0
4mT - 5rnT2.
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p-value

NPGEN-BS 2511.6 0.00

NPGEN-PARAM 146.2 0.00

NPGEN-NPREST 139.6 0.00

NPGEN-SEMIPAR .60 0.27

Table 3: Testing Results: Implied Volatility

We can summarize the parametric results for fitting these models as:

BS: r (X/F, T) = 9.69
(464)

PARAM: m (X/F,T) = 9.15 -1.54 X/F +.54.(X/F)2

(483) (-111) (40.6)

SEMIPAR: m (X/F, T) = . (X/F) -. 37 T +.202- T 2

(-20.3) (23.4)

where t-statistics are in parentheses. The R 2 value for SEMIPAR is .98, indicating a
reasonable goodness-of-fit to the implied volatility data.

We carry out the testing by computing I for each comparison, and then carry out the
bias correction and scaling to compute - for each comparison. The results are given in Table
3. The critical values appropriate for i are 1.64 (5%) and 1.28 (10%). The overall bottom
line is that all specializations of the model are rejected except for SEMIPAR. The extremely
low p-values for the restricted versions of the model (aside from SEMIPAR) could reflect
the tendency of the test statistic to over-reject as noted in Section 5.

In any case, we conclude that a model permitting a flexible "volatility smile" as well
as an additive time effect is a statistically adequate depiction of the volatility data. To
illustrate the estimates of the model SEMIPAR, we also include a graph of the estimated
function g (X/F) in Figure 1 (where X/F values are in standardized form). The downward
slope on the left is evident, and there is a substantially less pronounced upturn on the right
than would occur with the quadratic model.

7 Conclusions

In this paper we have developed a general specification test for parametric, semiparametric
and nonparametric regression models against alternative models of higher dimension. The
key contribution in our work involves the analysis of the variation of sum-of-squared resid-
uals, in noting how the asymptotic distribution depends primarily on the generality of the
alternative models permitted. As such, the test we propose is applicable to virtually any
situation where the model under the null hypothesis is of lower dimension than the possible
alternatives. However, the heuristics we propose need to be checked more carefully.
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Our results are restricted to the use of standard kernel estimators, which include proce-
dures that use standard positive kernels as well as higher order kernels for bias reduction.
The asymptotic distribution we have derived does depend on aspects intrinsic to the ker-
nel estimators (for instance, the constants Cij), and there is no obvious reason why the a
similar asymptotic distribution would be applicable when other nonparametric estimators
are used, such as truncated series expansions. In particular, as in Bickel and Rosenblatt
(1973), differences may arise between tests based on different nonparametric estimators.
The characterization of such differences, as well as questions involving choice of the best
nonparametric techniques for model testing, provide a rich field of issues for future research.

Moreover, the practical properties of our test as well as related tests need to be under-
stood. In particular, given the richness of possible nonparametric alternatives, one might
conjecture that such tests will have limited power relative to tests based on (fortunately
chosen) parametric alternatives. Alternatively, while we have derived the asymptotic distri-
bution based on the leading second order terms of the asymptotic expansion, the fact that
the first order terms are non-zero under any fixed alternative suggest further study of the
practical performance of test statistics of this kind.
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A Appendix

Proof of Lemma 1: Write

( (W V) f (W v))a(w, v) = ( V) + R(w, v)
Ef(w,v)

By definition, for (w, v) E S,

R(WV) < 2max a2(W'V)'2(W'V)j 122(W, V) -. 2 (W, V) 

IR(w,v)j _ 2max (~w~v ,W,v)j (A.1)
f ( fwv)A v

+ f(w,v) f(WV) - f(w,v)[

It is easy to verify that

2C1 1 N 
4 (wi, vi)a _2

N f(wii v) = 2 1 + Op(N-1/2). (A.2)

Therefore to establish r21 = --21 + op(l) it certainly suffices to show

sup r2(w, V) - 2 (, )I = Op(aN) (A.3)
S

where
aN = N-1/2 log Nh-(p+ q)/2 + hr

and also use Lemma 3. In fact, the same type of argument will also yield

tY12 = Y12 + Op(h - (p + l ) / 2 )

by Assumption 3. The same type of calculation yields the other assertions of Lemma 1.
To prove (A.3) write

hhWV = E t( h )(imwv)(A.4)
/i= ( h h ) + ((w, v) - m(, v))2

Then, (A.3) follows from

1 N h-(P+q)IC (W-w V-v 2 1Z2

Zi~ K h 7 h v ) (Yi-m(wi,vi))2
- 2f(wv)-

sup ^ = Op(aN) (A.5)
S f(w, v)

and | N EflI(m(w, v) - m(wi, vi))h-(P+q)KC (W-Wih vV) (A.6)
sup = Op(a (A.6)

S

S |N Ei1(Yi - m(wi, vi))h-(P+q)j (-Wi v)|A
sup- N m )h ) = Op(aN). (A.7)
s f(w,v)

By Lemma 3 again we can replace f by f in (A.5)-(A.7). Consider the expression equivalent
to (A.5 ),

1 N h-(p+q) (-wi, v-i )sup 1 h-(p ) (W - (yi - m(wi, v)) 2 _ 02(wi , vi)) (A.8)
S Ni=1 f(w, v)

+sup (w, v) (,). (A.9)
s f )(w,v).
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The second term is Op(aN) by Lemma 3. The first is Op(N- 1 /2 logN) by Ossiander's
bracketing theorem (Ossiander (1987)) and our moment conditions (A.2)-(A.3). The other
terms are dealt with in the same way but somewhat more easily.

Proof of Lemma 2: For t E [0, 1] let

m(w, v, t) m- (w, v, f + tgi)
M(w,t) = M(w, f + tg2)

where gl, 92 the derivatives of G 1, G2 are such that tG 1, tG 2 E V for all ItI sufficiently small
and strictly positive. Let,

(t) (M(,t) - m(w, v, t))2dF2(w, v).

Then · is infinitely differentiable and (I(0) = F(F, F, F2). Expand to 3 terms using Taylor's
formula to get

(t) = 1(0) + t1'(0) + 2 (-) t3 (0) (A.10)2 + 6

where 0 < 0(t) < Itl. Evidently

'(0) = 2 J((M()-m( w, v)) ( (')- 2t (w, v, 0)) dF2 (w, v)

V'(0) = 2 (t(W )-a w) 2at at ( 'o0)))

+ (M()- m(w,v))2(M(w,0)- m(w,v,0))}

dF2 (w, v)

@"'(t) = 2 (I{3 ((M(w,t) - m(w,v,t)) -(M(w,t)-m(w,vt))

+ (M(w,t) -m(w,v,t))3(M(w,t)- m(w,v,t))}dF2(w,v)

If Ho is true ~4(O) = '(0) = 0 and

V(0) 2 f(l (w,0) 2 (-M(w, 0)- (w,, ))2
-a - W' dF2 (w,v)

2f ,, [f(a(y,w,v)gl(y,w,v) (A.11)

- A(y,w)g 2 (y,w))dy]2 dF2(w,v)

If tGj E V, j = 1, 2 it is easy to check that the integrand in V"' is uniformly bounded by a
universal constant times 11g1113 + 1192 113. For instance,

t(w, t)t < 1921(W) ((y(f(y,w) +tg2(y,w))dy)
/(f - tg2j)2 (w)) + f Yg2(y,w)dy/(f - Itg2l(w))

< (19211 2 (11 yg2112 + laM IIoo) + 2 1yg2112)

The lemma follows.

Proof of Lemma 3: The bounds on the L 2 and Loo deviations of the kernel density

estimator, If (y, w, v)- f (y, w, v) ll2 and if (y, w, v) - f (y, w, v) , are classical results:
see e.g., Nadaraya (1983, Chapter 2) and Stone (1983, Lemma 2 and Lemma 8). The same
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bounds apply to IIy (f (y,w,v) - f (y, w,v)) 112 Under 2 we have hP >> H P >> hP+q (so both
the asymptotic bias and variance of f (w) are smaller than those of f (w, v)) and thus all the
norms involving f (w) - f (w) are strictly smaller than those involving f (w, v) - f (w, v).
The bounds follow for If - f.

Proof of Lemma 4: Apply Lemma 2 with G = F - F, or F - F. This can be done
since by Lemma 2,

so that

P[ E ] oo.

Lemma 4 follows.

Proof of Lemma 5: We begin with some essential bounds and expansions:

EaN(yl, Xi, X) = ff(Y,xi){fy a(y, xl)K(l)(y -- y)dyK(P+q)(-x)

- fyA(y,Wl)Kh)(y - yl)dyK)(w - Wl)}dyldx.

Changing variables to u = (y - Yi) /h, s = (x - xl) /h in the first term and similarly in the
second we get, if x = (w, v), s = (, r),

EaN(yl, X1, X) = a(x)[f f,,,s f(yl,x- hs)a(yl + hu, x -hs)K(l)(U)K(p+q)(s)dudsdyi

- a(x)[fy, Jfu f(yi,x- Hs)A(yl + Hu,w - H)K 1()()K()(T)dudT]dy
= a(x) f f(y, x) ((yl,x) - A(yl,w))dyl + O(hr) + O(Hr)

uniformly on S (in x) by Assumption 3. On the other hand,

ElaN(y1,l,X) I = 0(1)

by the same argument. Similarly

f Ea2(y1, xl, x)dF(x) = f[(f a(y,x)K()(y -y 1)Kh(P+)( - xx)dy) 2 f(x)f(yI,xI)dx

- 2 f(f a(y, x)K() (y -yl)dy)

x (f A(y 2 ,w)K( )(Y2 - )dy2 )K(P+)(x - x)K)(w - wl)f(x)dx

+ f(fA(y,w)K(1)(y - yl)dy)2[K()]2(w - Wl)f(w)dw]
x f(yl, xl)dxldyl.

(A.14)
Changing variables to u = (y - Y1) /h, t = (x - x) /h in the first term, to u = (y - yl) /h,
U2 = (Y2 - Y1) /H, s = (w - W1) /H and t = (v - vi) /h in the second and u = (y - Yi) /H,
t = (w - wl) /H in the third we obtain

f EaN(Yl, xl; x)dF(x) = yl2h-(p+q)( + O(h 2
r))

+ Y 2 2h-P(1 + O(h2r)) + 32H-P(1 + O(H2r)). (A.15)

Next, compute

E(J aN(Yl, X1 ; x)E(aN(y2 , X2 ; x))dF(x))2 < E((/ aN(yl, XI; x) dF(x))2 0(H 2 r).
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From (A.15) we conclude

E(J aN(yl, xl; x)EaN(y2, x 2 , x)dF(x))2 = O(H 2 r). (A.16)

Finally a similar computation yields

E( a(yi,xl; )a*(y 2 ,X2 ; x)dF(x))2 = l( + o(l))h-(p+q) (A.17)

E( a (y, xl; x)a (, x 2 ; x)dF(x))2 = O(h - 2 (p+)) (A.18)

and

E{E(f av(yi, xl, x) a(y 2, X2, x)dF(x) f a(yl, xl, x) av(y3, x3; x)dF(x) Z1)}2
= E(f a(yl, xl, x)Ea (y 2, x 2 , x)dF(x))4 (A.19)
= o(H 4 r).

From (A.12) we conclude that

IN4 = O(H2 r) = o(N-lh-(P + q)/ 2). (A.20)

From (A.16)

E(Ik 3 ) < 4E(f aN(y2, x 2; x)Ea*(yi,xl, x)dF(x))2

= O(H 2 r/N) o(N-2h-(p+q)). (A.21)

From (A.15) and

N-1E(f a(yl, xl; x)dF(x))2 N- f Ea4(yl, xl, x)dF(x)
= O(N-lh-2(p+q)) = o(N - l h-(P + q))

by arguing as for (A.15), we obtain

IN2 = N-l{Y1 2 h-(p+g) + y2 2h - P + 7y32 H-P)(1 + o(1)). (A.22)

Finally (A.17)-(A.19) enable us to apply Lemma 6 and Lemma 5 follows.

Proof of Lemma 7: Write

AN = N- 3 {aN(yj, Xj; xj)aN(yk, Xk, xl)

- E(aN(yj,xj;xl)aN(yk, xk; x) Zj,Zk) : 1 {j,k}

+ 2N- 3 Ejok aN(yj, xj; xj)aN(Yk, xk; xj) (A.23)
+ N j a(yj, X; Xj)

- N- 3 j, k f aN(yj, xj; x)aN(yk, xk; x)dF(x)

where we use the identity

E{aN(yj,X ; xl)aN(yk, xk; xL) I j, k} = J aN(Yi, ji; x)aN(yk, xk; x)dF(x)

if I {j, k}. Call these terms ANj, 1 < j < 4. Evidently,

AN4 = N-lr(, , F) = op(N-lh-(+q)/2).
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Further
EAN3 = N- 2 Ea2(yIl,xl;xl)

= o(N-1 h-(p+q)/2)'

Note that NAN2 is a U statistic. From (A.12),

E/N2 = 2N-1(1 + o(1))O(h-(P+q)+r) (A25
= o(N-lh-(p+q)/2) (A.25)

Then, by Hoeffding's inequality (Serfling (1980) p. 153, Lemma A)

Var(AN2 ) N 3Ea2(yl,Xl;Xl)a( 2 , X2; XI)
= O(N-3h-3 (p +q)) (A.26)
= o(N-2 h-(p+q))

by arguing as for (A.15). Finally write

AN1 = N11 + AN12

AN11 = N -3 {Wjk:I 1 {j, k}}
AN12 = N-3 {E(Wjkl I z): 1 {j, k}}

where

Wjkl = aN(zj; )aN(zk; X) - E(aN(zj; l)aN(zk; Xl) Zj, Zk)
w*kl = Wjkl-E(Wjkl Il)

= aN(zj; xl)aN(zk; Xi) - E(aN(zj; xl)aN(zk; xl) | xl) (A.27)
- E(aN(Zj; I)aN(Zk; X) I Zj,Zk)
+ E(aN(Zj; Xl)aN(Zk, Xl))-

Note that, if j k 1,

EWjkl = 0. (A.28)

Now, by (A.15)
EAN12 = O(N-2 Ea'(z1, X2))

- O(N-2 h-(p+ q)) (A.29)
= o(N - l h- ( p + q ) / 2 )

and
Var(AN12) N- 1 E{E2 (W 1 23 I z 3) + N- 1E2 (Wll3 I z3 )}

= O(N - 1 )

by (A.13). Finally,

EAN11 = 0
EA2vl -= N- 6 {E(W* )2 1 ~ {j,k}}

since EWj*klWj*kl, = 0 unless {j, k, 1} = {j', k', l. Now, by arguing as for (A.15),

E(Wj*kl) E(E 2 (aN(l; X2 I 2 ))

- O(h-2 (p+q)), j k
E(Wj*jl) < Ea4(zl, X2 ; X2 )

O(h-3(p+q)).
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In any case
EAN 1 1 = o(N-2h-(p+q))

and the lemma is proved.

Proof of Proposition 1: Our analysis in Lemmas 2 and 7 shows that

f = r(F, F, F) + op(l).

Then, T P oo if r(F, F, F) > 0 .

Proof of Proposition 2: Our assumptions are such that the preceding arguments
remain valid even when the ZiN, < i < N, are a double array. The expansion (3.17) and
subsequent lemmas continue to hold. Thus, we have that under H1N,

(- -Nh(P+q)/ 2r(F, F F)) X - A (0, 1).

Moreover, 511 + all and

r (FN, FN, F) = izl {mN(xi) - MN(wi)}2 a2 (xi)

= E(mN(xl) - MN(wl))2 a2 (xl) + Op(N- 1/ 2 ) (A.30)

= 62N-lh-(p+q)/2 + op(N-lh-(P+q)/2).

The proposition follows.

Heuristics for Corollary 1: Let

1 2

f()- {m (w(xi, 0),v(xi, 0)) - M(w(xi, ))ai (A.31)
1

Then, Theorem 1 applies to r(0o) where 0o is the true value of 0. Consider the statistic we
intend to use, f(0):

r() = (e) + '(00)(e0-Oo)
p"(0o)( - 0o,0 -00) (A.32)

+ r"(0)( - 0o,0 - 0o,0 - 0o)

where /" etc. are differentials with respect to 0, and is between 0o and 0. Now, if without
loss of generality, w(x, 0o) = w, v(x, 0o) = v we can write r(0o) = V (i, f, f', f') where

V(f, f 2 ,f, f) = 2 a(x)(m(x, fl) - M(w, f 2 ))(M(w, x, f, f) - (w,x, f 2, f))dF(x)

fj are the gradients with respect to x and w respectively of fj and

rh(w,X, f2, f) = f Yf(y,x)dy(0o) / f f 2 (,x)dy
- (fyf 2(y,x)dy f2(y,x)dy)-(0o) /(f f 2 (x,y)dy)2

M2 is defined similarly and (00o) is the derivative of W at 00 with vector and matrix
multiplication properly defined. Now, under (4.1), V(f, f, f{, f2) = 0 for all F, fi, f. Thus,
we expect

( f, f, ) -- V (, f, f', f') = Op(N-lh - ( p + q)/ 2 ) (A.33)
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by analogy with Lemma 5 since

(f - f) = Op(N-1/ 2 h-(P+q)/2)

but (f' - f') = Op(N-1 / 2 h- 3(p+q)/2). On the other hand it is to be expected that

v (f,k,f, f) = Op(N-1/ 2 ). (A.34)

Combining (A.33) and (A.34) and - 0o = Op(N- 1/ 2 ) we conclude that the first term in
(A.32) is Op(N- 1 + N-3 / 2 h-3/2 (p+q)). By similar heuristics f"(0o) = Op(l) and

sup{lr"'(0)l: 10 - ol < 6} = Op(h-7(p+q)/2)

Thus we expect that the conclusion of Theorem 1 will continue to hold if 6 > 6(p + q).

Proof of Corollary 2: Note that

r = r(F, F, F)

where F0 has Y X = x have the parametric model distribution F(. I x, 9). The argument
of Theorem 1 with F replaced by F00 where o0 is the true value of 0 yields that r(F, Foo, F)
obeys the conclusion of Theorem 1 (and subsequent propositions) with Y12 = 732 = 0 (and
no restrictions on A which doesn't appear since p = 0). But, by Lemma 1,

F F(P , F) = r(FP, Fo,F)
+ fS(fSyA((y,w)(f(y,w) - fo(y, w)))2 dya2 (w)dF(w) (A.35)
+ OP(Ilfo - foil3 ).

Under our assumption it is easy to see that the first term is Op(N-1) and the second
Op(N-3/2). The corollary follows.

Heuristics for Corollary 3: Note that,

r* = r(F*, F, F)

where Fo is the smoothed empirical distribution (by K (p + ±+ l)) of (yi(O), xi) where yi()
yi - mo(vi) and similarly for Fo. Thus,

1 Z i= (Wi, vi, o) -M* (Wi, 00) 

- Ei (_l{(* (wi, vi, Oo) - M*(wi, Oo)(AN(vi) - BN(Vi))} (A.36)

+ I EN 1 {AN(V)- BN (Vi) }

where

AN(Vi) = Ej=l (m(vi) - mo 0(vi))K(P+q)(xi - xj)/ =l K(P+q)(xi - j)

BN(vi) = EjN=l(m (vi) - mo(vi))K)(wi -w)/jY 1 K(p)(w -wi).

Heuristically, with 0 one dimensional for simplicity

AN(vi) - BN(Vi) = -) (9 (vi) - E() = (vi) I wi) (1 + op(l)).ao ao
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Thus, we expect the third term in (A.36) to be Op(N-l). The second is

op (2 f 1 N

XN 1

{m* (wi v, 0) - /*(wi, 0) }2 }

N
i=l {JA(i)-B(Vi)}}2 )

= Op(N-1/2 h-(p+)/ 4 N-/ 2 ) = op(N-lh-(p+q)/2 )

since the first obeys Theorem 4.4 under (4.4).
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