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Abstract

The Context Interchange strategy [5; 12] presents a novel solution to mediated data access in
which semantic conflicts among heterogeneous systems are automatically detected and reconciled
by a Context Mediator using the contexts associated with the systems involved. We have imple-
mented these mediation services using the ECLiPSe' platform and have deployed them in several
applications giving access to on-line database and web services.

Keywords: Prolog, context, heterogeneous databases, logic and databases, mediators, semantic
interoperability.

1 Introduction

In the last few years the number of datasources (traditional database systems, data feeds, and applica-
tions providing structured or semi-structured data) has increased dramatically. This has been spurred
on by various factors. Examples of these are, ease of access to the Internet (which is emerging as the
de facto global information infrastructure) and the rise of new organizational forms (e.g. adhocracies
and networked organizations) which mandate new ways of sharing and managing information. Also,
advances in networking and telecommunications have increased physical connectivity (the ability to
exchange bits and bytes) amongst disparate datasources and receivers.

*This work is supported in part by ARPA and USAF/Rome Laboratory under contract F30602-93-C-0160, the In-
ternational Financial Services Research Center (IFSRC), and the PROductivity From Information Technology (PROFIT)
project at MIT.
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Unfortunately, these new technologies do not provide sufficient logical connectivity (the ability to
exchange data meaningfully). Logical connectivity is crucial because users of these sources expect
each system to understand requests stated in their own terms, using their own concepts of how the
world is structured. As a result, any data integration effort must be capable of reconciling semantic
conflicts among sources and receivers. This problem is generally referred to as the need for semantic
interoperability among distributed datasources.

2 Overview of the COIN Project

The COntext INterchange (COIN) strategy secks to address the problem of semantic interoperability
by consolidating distributed datasources and providing a unified view to them. COIN technology
presents all datasources as SQL databases by providing generic wrappers for them. The underlying
integration strategy, called the COIN model, defines a novel approach for mediated [15] data access
in which semantic conflicts among heterogeneous systems are automatically detected and reconciled
by the Context Mediator. Thus the COIN approach integrates disparate datasources by .providing
semantic interoperability (the ability to exchange data meaningfully) among them. :

The COIN Framework. The COIN framework is composed of both a data model and a logical
language, COINL, derived from the family of F-Logic [9]. The data model and language are used to
define the domain model of the receiver and datasource and the contexts [10] associated with them.
The data model contains the definitions for the “types” of information units (called semantic-types)
that constitute a common vocabulary for capturing the semantics of data in disparate systems. Con-
texts, associated with both information sources and receivers, are collections of statements defining
how data should be interpreted and how potential conflicts (differences in the interpretation) should
be resolved. Concepts such as semantic-objects, attributes, modifiers, and conversion functions define
the semantics of data inside and across contexts. Together with the deductive and object-oriented fea-
tures inherited from F-Logic, the COIN data model and COINL constitute an appropriate and expressive
framework for representing semantic knowledge and reasoning about semantic heterogeneity.

Context Mediator. The Context Mediator is the heart of the COIN project. It is the unit which pro-
vides mediation for user queries. Mediation is the process of rewriting queries posed in the receiver’s
context into a set of mediated queries where all potential conflicts are explicitly solved. This process
is based on an abduction [8] procedure which determines what information is needed to answer the
query and how conflicts should be resolved by using the axioms in the different contexts involved.
Answers generated by the mediation unit can be both extensional and intensional. Extensional an-
swers correspond to the actual data retrieved from the various sources involved. Intensional answers,
on the other hand, provide only a characterization of the extensional answer without actually retriev-
ing data from the datasources. In addition, the mediation process supports queries on the semantics
of data which are implicit in the different systems. These are referred to as knowledge-level queries
as opposed to data-level queries which are enquires on the factual data present in the datasources. Fi-
nally, integrity knowledge on one source or across sources can be naturally involved in the mediation
process to improve the quality and informative content of the mediated queries and ultimately aid in
the optimization of the data access.

System Perspective. From a systems perspective, the COIN strategy combines the best features of
the loose- and tight-coupling approaches to semantic interoperability [13] among autonomous and
heterogeneous systems. Its modular design and implementation funnels the complexity of the system
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into manageable chunks, enables sources and receivers to remain loosely-coupled to one another, and
sustains an infrastructure for data integration.

This modularity, both in the components and the protocol, also keeps our infrastructure scalable,
extensible, and accessible [6]. By scalability, we mean that the complexity of creating and adminis-
tering the mediation services does not increase exponentially with the number of participating sources
and receivers. Extensibility refers to the ability to incorporate changes into the system in a graceful
manner; in particular, local changes do not have adverse effects on other parts of the system. Finally,
accessibility refers to how the system is perceived by a user in terms of its ease-of-use and flexibility
in supporting a variety of queries.

Application Domains. The COIN technology can be applied to a variety of scenarios where infor-
mation needs to be shared amongst heterogeneous sources and receivers. The need for this novel
technology in the integration of disparate datasources can be readily seen in the following examples.

In the realm of financial decision support there exist a number of different datasources (e.g. for-
eign stock exchanges) which provide information to investors. This information may be presented
in different formats and must be interpreted with different rules. For example, sources and receivers
make assumptions about scale-factors and currency of monetary figures. Mismatches among these
assumptions across sources or inside one source can be critical in the process of financial decision
making.

In the domain of manufacturing inventory control, the ability to access design, engineering, man-
ufacturing, and inventory data pertaining to all parts, components, and assemblies is vital to any large
manufacturing process. Typically, thousands of contractors play roles and each contractor tends to
setup its data in its own individualistic manner. Managers may need to reconcile inputs received
from various contractors in order to optimize inventory levels and ensure overall productivity and
effectiveness.

Finally, the modern health care enterprise lies at the nexus of several different industries and
institutions. Within a single hospital, different departments (eg.internal medicine, medical records,
pharmacy, admitting, billing) maintain separate information systems yet must share data in order to
ensure high levels of care. Medical centers and local clinics not only collaborate with one another
but with State and Federal regulators, insurance companies, and other payer institutions. This sharing
requires reconciling differences such as those of procedure codes, medical supplies, classification
schemes, and patient records.

3 Mediation: A Scenario

Let us consider the simplified scenario shown in Figure 1. Data on “revenue” and “expenses”, for
some collection of companies, are available in two autonomously administered datasources, each
comprised of a single relation. The data reported in the two sources differ in the currencies and scale-
factors of “company financials” (i.e., financial figures pertaining to the companies, which include
revenue and expenses). In Source I, all “company financials” are reported using the currency
shown and a scale-factor of 1; the only exception are those “company financials” that are reported
in Japanese Yen (JPY) in which case the scale-factor is 1000. Source 2, on the other hand, reports
all “company financials” in US Dollars (USD) using a scale-factor of 1. Suppose a user, in context
¢2, 1 interested in knowing the names and revenues of all profitable companies. This query can be
formulated directly on the export schemas of the two sources as follows:

Ql: SELECT rl.cname, rl.revenue FROMrl, r2
WHERE rl.cname = r2.cname ANDrl.revenue > r2.expenses;
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Contextc 4
cname revenue curency
IBM 1 000 000 Usbh
NTT |1 000 000) JPY

Source 1

Context c 2

cname| revenue
IBM |1 500 000
NTT |5 000 000

Source 2

Source 3

fromCur | toCur | exchangeRate
uspD JPY 104.00
JPY UsD 0.0096

Figure 1: Scenario for the motivational example.
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In the absence of any mediation, this query will return the empty answer. This answer returned
by executing Q1 is clearly not the correct answer. The reason is because this query does not take
into account the fact that the data sources have different contexts: i.e., they may embody different
assumptions on how information contained therein should be interpreted. Thus the revenue of NTT in
US Dollarsis 1, 000,000 x 1,000 x 0.0096 =9,600, 000 where 1, 000 is the scale-factor,
0.0096 is the exchange rate from JPY to USD, and 1, 000, 000 is the revenue in thousands of JPY
as reported in r1. This quantity is numerically larger than the expenses (5, 000, 000) reported in
r2.

Our Context Mediator will generate a new query which when executed over the data set shown in
Figure 1 will return the correct answer. The Context Mediator utilizes meta-data in the form of the do-
main model, the context axioms for the datasources and receivers, and the elevation axioms (mapping
the source export schema to the domain model), to automatically detect and reconcile the conflicts
among the assumptions in the different datasources. This meta-data is a COINL representation of the
underlying assumptions in each of the datasources and is formly known as a context.

The mediated query MQ1 corresponding to Q1 is:

MQ1: SELECT rl.cname, rl.revenue FROM rl, r2
WHERE rl.currency= ‘USD’ AND rl.cname = r2.cname
AND rl.revenue > r2.expenses
UNION

SELECT rl.cname, rl.revenue * 1000 * r3.rate FROM rl, r2, r3
WHERE rl.currency= 'JPY’ AND rl.cname = r2.cname

AND r3.fromCur =rl.currency AND r3.toCur = "USD’

AND rl.revenue * 1000 * r3.rate> r2.expenses

UNION

SELECT rl.cname, rl.revenue * r3.rate FROM rl, r2, r3

WHERE rl.currency <> 'USD’ AND rl.currency<> 'JPY’

AND r3.fromCur =rl.currency AND r3.toCur = "USD’

AND rl.cname =r2.cname AND rl.revenue * r3.rate > r2.expenses;

This mediated query considers all potential conflicts between relations r1 and r2 when comparing
values of “revenue” and “expenses” as reported in the two different contexts. Moreover, the answers
returned may be further transformed so that they conform to the context of the receiver. Thus in our
example, the revenue of NT'T will be reported as 9 600 000 as opposed to 1 000 000.

The three-part query shown above can be interpreted as follows. The first subquery takes into
account the tuples for which the revenue is in USD using a scale-factor 1; in this case, there is no
conflict. The second subquery handles tuples for which the revenue is in JPY, using a scale-factor
of 1000. Finally, the third subquery considers the cases where the currency is neither JPY nor USD
and the scale-factor used is 1, in which case only currency conversion is needed. Conversion among
different currencies is aided by the ancillary datasource r3 which provides currency conversion rates.
This new mediated query, when executed, returns the correct answer consisting of only the tuple
</NTT’, 9600000>.

4 General Architecture of the COIN System

The feasibility and features of this proposed strategy have been concretely demonstrated in a working
system which provides mediated access to both on-line structured databases and semi-structured data
sources such as web sites. The infrastructure leverages on the World Wide Web in a number of ways.
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First, we rely on the HyperText Transfer Protocol for the physical connectivity among sources and
receivers and the different mediation components and services. Second, we employ the HyperText
Markup Language and Java for the development of portable user interfaces.

Figure 2 shows the architecture of the COIN system. It consists of three distinct groups of pro-
cesses.

e Client Processes provide the interaction with receivers and route all database requests to the
Context Mediator. An example of a client process is the multi-database browser [T], which
provides a point-and-click interface for formulating queries to multiple sources and for display-
ing the answers obtained. Specifically, any application program which issues queries to one or
more sources can be considered a client process.

o Server Processes refer to database gateways and wrappers. Database gateways provide physi-
cal connectivity to databases on a network. The goal is to insulate the Mediator Processes from
the idiosyncrasies of different database management systems by providing a uniform protocol
for database access as well as a canonical query language (and data model) for formulating the
queries. Wrappers, on the other hand, provide richer functionalities by allowing semi-structured
documents on the World Wide Web to be queried as if they were relational databases. This is
accomplished by defining an export schema for each of these web sites and describing how
attribute-values can be extracted from a web site using a finite automaton with pattern match-
ing [11].

e Mediator Processes refer to the system components which collectively provide the mediation
services. These include the Context Mediator (which rewrites a user-query to a mediated query),
the Planner/Optimizer (which produces a query evaluation plan based on the mediated query),
and the Executioner (which executes the plan by dispatching subqueries to the Server Processes,
collating and operating on the intermediary results, and returning the final answer to the Client
Process).

Of these three distinct groups of processes, the most relevant to our discussion are the Mediator
processes.

5 Implementation of the Mediator Processes

The Mediator processes comprise the Context Mediator, the query planner/optimizer, and the multi-
database executioner. In addition, we describe the query and COINL compilers which generate the
internal representation of queries and the axioms of the COIN framework, respectively.

COINL-to-Datalog Compiler

The COINL to Datalog compiler takes a COINL program as the source language and produces a Datalog
program. COINL is used to describe the domain model, the contexts of receivers and datasources, and
integrity constraints over one or more sources. It is a deductive object-oriented language inspired
largely by Gulog and somewhat less by F-Logic [9]. The language supports many of the features
of the object-oriented paradigm such as objects, parameterized methods, non-monotonic inheritance,
classes, object instances, and static and runtime overriding of methods.

Since the Context Mediator evaluates Datalog rules, it is necessary to transform a COINL program
into an equivalent set of Datalog rules on which the mediation process can operate. Currently the
compiler is stand alone, like gcc or cc. Given an input file the compiler will generate a file with the
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Datalog transformations. The generated files are then statically stored in the COIN repository serving
the mediation engine at run-time.

A major portion of the transformation rules for the compiler have evolved from two particular
works, namely [3] and [1]. At present, there is no existing implementation for either of these pro-
posals. Thus not only is this compiler used in a fielded environment, but it also demonstrates the
feasibility of the ideas and theories suggested in [3; 1].

The COINL compiler is implemented in ECLiPSe Prolog and uses definite clause grammars (DCG’s).

SQL Query Compiler

The query compiler takes a conjunctive SQL query and a reference to the receiver’s context as inputs
and produces a Datalog query as output. The Datalog query is a direct translation of the SQL query
augmented with a mapping of the value of each attribute in the receiver’s context to its corresponding
object in the semantic domain.

In our example, we had the following SQL query in context cy:

QL: SELECT rl.cname, rl.revenue FROMrl, r2
WHERE rl.cname = r2.cnameANDrl.revenue > r2.expenses;

Sending this SQL query through the query compiler, the following equivalent Datalog query is
generated:

answer (CNAME, REVENUE) <-
r1 (R1_CNAME, R1_REVENUE, .),
r2 (R2_.CNAME, RZ2_EXPENSES),
value (R1.CNAME, c2, CNAME),
value (R2.CNAME, c2, CNAME),
value (R1.REVENUE, c2, REVENUE),
value (R2_EXPENSES, c¢2, V2),
REVENUE > V2.

Here, rl and r2 are the relations referenced by the SQL query. The compiler also generates a
value predicate for each attribute in rl and r2. This predicate maps the value of each attribute in
the receiver’s context to its corresponding object in the semantic domain. For example, the predicate
value (R1_CNAME, c2, CNAME) states that the value of attribute R1_CNAME in context ¢y is
CNAME. This resulting Datalog query is then input to the mediation engine.

Mediation Engine

The mediation mechanism is based on an abduction engine [8]. Given a Datalog query @ and a pro-
gram P composed of the domain model axioms, the contexts for the different sources and receivers,
and the axioms mapping the sources export schemas, it computes a set of abducted queries @ 4 such
that Vg where ¢ € Q4, P A g = Q. In addition, the set of abducted queries @ 4 is such that Vg where
q € Q4, P A g verifies the set of integrity constraints I.

We use constraint handling rules (CHR) [4] to represent the integrity constraints in the system.
These are rules whose left hand side is composed of literals corresponding to relations in the export
schemas of the sources and whose right hand side is composed of constraint literals such as inequali-
ties, equalities, or comparisons.

For instance a functional dependency in a source relation R corresponding to the logic formula:



VX, Y : R(X, Y1) ANR(X,Y2) = Y1=Y2
will have the following CHR representation:
icl @ R(X,Y1l), R(X,Y2) ==> Y1l = Y2

The CHR for the constraint stating that the New York Stock Exchange only accepts companies
whose earnings before tax is over 2.5 million US Dollars is:

icl @ pre_tax_earning(Company, Earning) ==> Earning > 2500000

where pre_tax_earning (Company, Earning) is a relation between a company and its earn-
ings before taxes.
The abduction engine works by constructing an input resolution tree from the initial query Q and the
program P. Literals in the residue which correspond to constraints (inequalities, equalities or com-
parisons) or exported relations are posted to a constraint store. The constraint handling rules are then
fired automatically and detect contradictions in the store. These contradictions correspond to integrity
constraints which cannot be satisfied. When the abduction process reaches the end of the resolution
tree with an empty clause, the posted constraints are collected. The abducted query is the conjunction
of the literals in the constraints store. These literals are referred to as abducible. ThlS scheme is a
particular application to query mediation of the scheme presented in [14].

The mediated query is the union of all the generated queries. In our example, the medlated query
would be as follows:

answer (CNAME, REVENUE) <-
r2 (CNAME, EXPENSES),
r1l (CNAME, REVENUE, "USD"),
REVENUE > EXPENSES.

answer (CNAME, REVENUE1) <-
r2 (CNAME, EXPENSES),
rl (CNAME, REVENUE, CURRENCY),
r3 (CURRENCY, "USD", EXCHANGERATE),
V1l is REVENUE * EXCHANGERATE,
r2 (CNAME, EXPENSES),
rl1 (CNAME, REVENUE, CURRENCY),
r3 (CURRENCY, "USD", EXCHANGERATE),
V1 is REVENUE * EXCHANGERATE,
V1l > EXPENSES,
REVENUE1l is REVENUE * EXCHANGERATE,
not CURRENCY = "JPY",
not CURRENCY = "USD".

answer (CNAME, REVENUEl) <-
r2 (CNAME, EXPENSES),
rl (CNAME, REVENUE, "JPY"),
r3("JPY", "USD", EXCHANGERATE),
SCALEFACTORL is 1000 / 1,

9



V1l is REVENUE * SCALEFACTORI,
V2 is V1 * EXCHANGERATE,

V2 > EXPENSES,

SCALEFACTORZ is 1000 / 1,

V3 is REVENUE * SCALEFACTORZ,
REVENUE1l is V3 * EXCHANGERATE.

The constraints may prune the search space and reduce the number of abducted queries. For
instance a query asking for companies in the NYSE whose earnings before tax are lower than 20
million in a context where money amounts are expressed in Japanese Yen would be abducted to an
empty set since the constraint above guarantees that no such company exists (20 million Japanese Yen
is lower than 2.5 million US Dollar).

We are currently involved in efforts to extend our use of integrity constraints and CHR in two
directions. First, we are trying to integrate new constraint solvers such as arithmetic solvers to increase
the reasoning capabilities of our mediation-engine. Second, we are investigating the use of constraint
handling rules for the implementation of the different strategies of semantic optimization as described
in [2].

The Planner/Optimizer and Multi-Database Executioner

The Planner/Optimizer takes the set of Datalog queries output by the Mediator and produces a query
plan.

It ensures that an executable plan exists which will produce a result that satisfies the initial query.
~ This is necessary because of the potentially limited capabilities of some sources. Typically, some
sources may require that some input values be provided for some attributes. Sources might also
have restrictions on the operators they can handle. Once the planner ensures that an executable plan
exists, it generates a set of constraints on the order in which the different subqueries can be executed.
Under these constraints, the optimizer applies standard optimization heuristics to generate the query
execution plan.

The executioner executes the query plan. It dispatches the subqueries to the remote sources and
combines the results. The executioner uses the Bang file system of ECLiPSe as a temporary storage.
We take advantage of the multidimensional indexing mechanism of bang to provide an efficient access
to temporary data in the case of ad-hoc queries.

Conclusion

In a coordinated effort we are strengthening our web wrapping technology which allows us to extract
structured information from semi-structured data. We are also extending the interface technology to
offer access to the mediation services from a variety of environments ranging from traditional Web
browsers to ODBC applications.

A demonstration version of this environment is available upon request.
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