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ABSTRACT

In a packetized voice communication network, if packets are dropped, late, or damaged
because of congestion or interference, there can be severe degradation in speech quality at the
receiver. If the speech was ADPCM coded, missing packets also cause the step-sizes, predictor
coefficients, and prediction signals of the transmitter and receiver to diverge. My thesis
explores several algorithms for reconstructing packetized PCM and ADPCM encoded speech at
the receiver to improve quality. Results are verified by formal subjective testing.

The subjective tests show that for PCM speech, if a mean opinion score of at least three is
desirable, the missing packet ratio should not exceed two percent, when the missing packets are
replaced by silence. However, if the missing packets are reconstructed using one of the new
algorithms, a missing packet ratio of eight percent can be tolerated. For ADPCM speech, it is
tolerable to drop one percent of the packets when they are replaced with silence, whereas one of
the new algorithms allows one to drop four percent.
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1. Introduction

1.1 Background

At present there are two types of communication networks: telephone networks that use

circuit switching, and data networks that use packet switching. In circuit switching, a user is

assigned a circuit for the duration of his call, and no other user can use that circuit during that

time. In packet switching, a transmission is divided into packets, and each packet is sent

through the network independently.

Lately, the push has been towards transmitting various types of information on common

networks. Specifically, work is now being done on networks which allow both voice and data to

be transmitted in packets.

In the case of packetized data, excessive network congestion or transmission errors result in

delay. This is because it can take a packet longer to get through a congested network, or

because a transmission error necessitated retransmission of the data. However, in the case of

packetized speech, the same conditions cause missing packets. This is because speech must be

played out at the receiver at a constant rate, or it will not sound correct. If a packet is late

because of congestion, either something else must be played out during its time slot, or the

speech must be speeded up by skipping the missing packet. Unlike data, a speech packet which

is lost or damaged during transmission cannot be retransmitted, so that these problems also

cause missing packets.

Unlike circuit switching networks, packet networks can take advantage of the burstiness of

speech by implementation of speech activity detection (SAD). What is meant by burstiness is

that a speech waveform is characterized by periods of high energy (speech bursts) separated by

periods of low energy (silence). This occurs because of the nature of human conversation.

When using SAD, silent packets are not transmitted at all, so that channel capacity can be

increased by up to 100%. [1]

The biggest problem with transmitting packetized voice is the random delay that is

introduced by packet queueing and network protocols. These delays complicate reconstruction
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at the receiver. When no packets are dropped in a network, reconstitution of speech is made

possible by the timestamps and sequence numbers in the headers. [2] Both are needed in a

network that implements SAD. Without the sequence numbers, if there were a large gap

between two consecutive timestamp3, it would be impossible to know at the receiver whether

there is a missing packet between them, or simply silence. When SAD is used, silent packets are

not transmitted, thus it is necessary for the receiver to be able to tell whether long gaps in the

speech are due to missing speech, or actual silence. If one is substituting silence for missing

packets, this is not a problem, because silence would do for both cases. However, if one is trying

to reconstruct the missing packets, the sequence numbers are necessary. Conversely, without,

the timestamps, the sequence numbers indicate in what order to play out the packets, but not

how much space to leave between them. Since a network implementing SAD does not transmit

silent packets, the spacing between packets is not constant, and the receiver must see the

timestamps in order to place them correctly.

Two important issues related to packetized speech transmission are what packet size to use,

and what to do if a packet is lost in transmission or late at the receiver. The first of these

requires consideration of packetization delay, perceptual effect of lost packets, network

throughput and load, and packetization overhead. [2] For instance, in order to minimize the

packtization delay, packets should be as short as possible. Going by this criterion, Rous and

See suggested a packet size of 2-4 ms. [3]

The packets should also be of a size that will minimize the perceptual effect of lost packets.

This criterion dictates a packet size smaller than 50 ms. [2] There has been some disagreement

as to what an appropriate size is. Although Weinstein and Forgie feel that the shorter the

packets, the less the perceptual effect when they are lost, Jayant and Christensen suggested

that 32 ms packets are more robust to losses than the 4 ms packets mentioned above. Table 1

summarizes their description of the perceptual effects of lost packets of various sizes when they

are replaced with silence: [4]
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TABLE 1. perceptual effects of lost packets when they are replaced with silence

Packet Length (ms) Nature of Distortion
< 4 crackles
16-32 glitches
> 64 phoneme losses

Based on by own listening experience, I would say that "crackles" are similar to the sound of

crinkling up wax paper, while "glitches" describes a popping sound like blowing your bubble

gum until it bursts. "Glitches" are perceptually better than "crackles" because for equal ratios

of lost packets to total packets, the "glitches" from longer packets occur less frequently than the

"crackles" of shorter packets.

In contrast to these two reasons to limit packet size, it is also important to make packets as

long as possible relative to packetization overhead, in order to maximize channel utilization.

Packetization overhead comes from headers containing timestamps, sequence numbers, source

and destination addresses, and the like. [2] For packets which are the same length in time,

narrowband speech has shorter packets in terms of bits than does wideband speech. Thus

packet overhead is not as bad a problem for wideband speech.

One property of networks that constrains packet size is network throughput in packets/sec.

[2] The shorter the packets, the higher the loads at network nodes, because more packets are

used to send the same amount of speech. That is, there are more headers to sort through. This

load can be increased until the upper limit of network throughput is reached. Better methods

of reconstructing missing packets can make this limit less important, because one could drop

packets at the transmitter and reconstruct them at the receiver, thus reducing load and

effectively increasing throughput.

Obviously, there are many trade-offs between long and short packets. In real-time speech

transmission experiments across ARPANET in 1983, Weinstein and Forgie used 100-200 ms

packets, because of the constraints of network throughput. [2] Tucker and Flood, however, feel

that 8 or 16 ms packets, a value very close to Jayant's and Christensen's preference, yield higher

quality speech. [5]
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The second issue is what to do if a packet is dropped, which could happen if it is lost in

transmission or late at the receiver. When a packet is dropped, sustaining the flow of speech

with a substitute packet or a silent packet is perceptually better than speeding up the speech in

spots by playing out the next packet with no regard for the missing one. In general, the best

choice of such a substitute varies with encoder type, packet size, and the statistics of gaps

introduced by the network. [2]

Some work on this has been done in the past. In the ARPANET experiments, Weirstein and

Forgie experimented with: (1) substituting silence for the missing packet; (2) repeating the

previous packet; and (3) filling the gap with repeated frames of speech data, making the speech

voiceless, and letting the energy values decay exponentially with time. They found that the

third strategy was best when using a framed vocoder. Tucker and Flood preferred repeating the

previous packet to substituting silence for the missing packet. [5] When the gaps are filled

with silence, speech is substantially affected by loss ratios of 1 or 2 percent. [6] However, at the

same loss ratios, using 16 or 32 ms packets, no significant effect can be observed from opinion

scores when the gaps are filled by repeating the previous packet. [3]

Most of the above work was done with PCM signals. Jayant and Christensen have also done

work with adaptive DPCM signals. [4] They used 32 ms packets in their experiments, and the

quantizer step size was adapted once for each packet, and then held fixed for the duration of the

packet. The step size was transmitted in the header, rather than computed at the receiver.

When a packet was lost, they replaced it by silence, and then set the first sample of the

following packet to zero. Table 2 shows their results.

TABLE 2. results of Jayant and Christensen's work in reconstructing missing packets of
adaptive DPCM speech

% Speech Loss Perceptual Degradation
0.2 barely noticeable
1.0 noticeable to critical listener
2.0 noticeable
5.0 somewhat objectionable

10.0 definitely objectionable
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1.2 Thesis Overview

There is obviously a need for better ways to reconstruct missing packets of PCM and

ADPCM encoded speech. In this thesis I present a new waveform substitution technique based

on pattern matching, and I compare it to some previously tried techniques and a recently

developed pitch detection technique in formal subjective tests.

In Section 2 I describe the reconstruction algorithms. Section 2.1 explores the algorithms for

PCM speech, while Section 2.2 explores the algorithms for ADPCM speech. In section 3 I

describe the formal subjective tests. Sections 3.1 and 3.2 respectively contain descriptions of

the source speech and testing facilities. In sections 3.3 and 3.4 respectively, I explain how I

designed the tests for the PCM algorithms and the ADPCM algorithms. Appendix A contains a

copy of the instructions which were read to the subjects before they took the test. In Sections

4.1 and 4.2 I interpret the results of the two subjective tests. The detailed data analysis is in

Appendix B. Finally, in the conclusion in Section 5, I restate the main results and suggest

future research efforts.
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2. Description of Algorithms

My approach to the reconstruction of lost packets is based on the fact that the speech signal

does not change its characteristics too abruptly. It is short-term stationary, and voiced speech

is also quasi-periodic. I observe that just before and just after each missing waveform segment,

there are likely to be segments that are very similar to the missing one. Based on this

observation I propose several closely related procedures for constructing new speech packets to

replace the missing one.

2.1 Algorithms for PCM Speech

I present two methods for reconstructing PCM speech. The two-sided scheme uses speech

that occurred both before and after the lost packet, while the one-sided scheme uses only speech

from the past. The waveform segments to be used in the reconstruction are selected by pattern

matching. I have investigated various pattern matching algorithms and found that the quality

of the results is approximately constant across many of them. This provides flexibility n

choosing a hardware implementation. I have simulated these reconstruction algorithms in the

Fortran 77 programming language, under the UNIXTM operating system, on a VAX 11/780.

2.1.1 Overview of the Two-sided Scheme

For each missing packet, the algorithm scans two 'search windows' in order to identify

speech segments resembling the missing packet. One search window precedes the missing

packet and the other follows it. There are also two 'templates'. The templates frame two small

blocks of speech, one immediately preceding the lost packet, and the other immediately

following it. The algorithm compares the small block of speech in each template with the

speech in the corresponding search window to find the best match. The template preceding the

missing packet slides along the search window preceding the missing packet, and the algorithm

identifies a segment of speech within the search window that best matches the template. The

past reconstruction segment is the packet-length block of speech immediately following the

match, plus two short segments of speech immediately preceding and following the block.



- 14 -

These short segments will merge with the received speech surrounding the missing packet.

There is a similar search through future information, and the packet-length block of speech

immediately preceding the best match, along with corresponding short merge segments, is

chosen as the future reconstruction segment. The last steps are to combine the two

reconstruction segments, normalize the energy of the combined packet estimate, and merge the

ends of the estimate into the received speech surrounding the missing packet.

Figure 1. Speech waveform and packet boundaries. Each packet contains L consecutive
speech samples.

The parameters of this algorithm are the size of the packets (L samples), the size of the

templates (M samples), the size of the search windows (N samples), and the size of the merge

windows (P samples). These parameters and the algorithm itself are illustrated in Figures 1-5.

Figure 1 shows a speech waveform divided into packets, each containing L samples. Figure 2

shows the location of a missing packet and two templates. The past template frames the M

samples immediately preceding the lost packet, and the future template frames the M samples

immediately following the lost packet. In addition, niotice in Figure 2 past and future search

windows, each with N samples. In order to leave room for a merge segment, there is a gap of

L+P samples between each search window and the missing packet. Figure 3 indicates that the

speech in each template slides along the corresponding search window to determine the best



- 15-

match. In Figure 4, observe the L-sample segments to be used to construct a new packet, along

with their P-sample merge segments. One of them follows the best match in the past search

window, and the other precedes the best match in the future search window. Finally, Figure 5

shows the reconstructed packet obtained by combining the two segments in Figure 4.

Figure 2. One packet is missing and for the moment replaced by silence. There are two
templates each containing M samples, and two search windows with N samples each.
There is a gap of L+ P samples between each search window and the missing packet.

TEMPLATE TEMPLATE
.4 4

2.1.2 Pattern Matching

There are several methods of pattern matching which yield almost equivalent results. One

method is cross-correlation based on the sum of products of samples in the template and

samples of the search window. This sum of products is divided by the energy of the M samples

in the search window segment. If the samples of the template are x(i), and the samples of the

search window are (i), then the cross-correlation formula is:

M
E z(m)y(n+ m)

c(n) = - (1)
[yl(n+m)]2

m-I

where M is the number of samples in the template and n identifies the position of the template

samples as they slide along the search window. Each time C(n) is computed, the template

moves along the search window by one more sample (n is incremented by 1), and C(n) is
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Figure 3. Each template slides along the corresponding search window and the algorithm
identifies a segment in the search window that best matches the samples in the
template.
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Figure 5. The reconstructed packet is a combination of the future reconstruction segment and
the past reconstruction segment.

RECONSTRUCTED
PACKET

S(n)= E agn [(m)] n [y(n + m)] (2)

where agn (z) is + 1 when z >0 and -1 when z <0.

Another approach to pattern matching is based on waveform differences. Following this

approach I subtract the normalized samples in the template from normalized samples in the

search window and sum up the absolute values of the differences. (Normalization algorithms

will be discussed next.) As the template slides along the search window, the algorithm seeks the

minimum sum of absolute differences.

In order that the result be sensitive to waveform shapes rather than level changes, the

speech segments are normalized first. I have considered three methods of normalization. One is

to divide the samples of each segment by the square root of the energy of that segment. This

leads to the difference measure,

D()(m) = E(n+m (3)
E [(j)]2 [=(-+ )]2

Note that the first denominator is independent of n for a given missing packet, because the

template never changes. However, the second denominator changes each time the template

advances one sample. Another way to normalize is by the sum of the absolute magnitudes of
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the samples,

D T= -| (m)_ y(n+ m) (4)
m-l I x)I E ly(n+Y)l

ji-1 i-I

A third way is to divide by the peak-to-peak amplitude of the segment. In the case of the

search window, the peak-to-peak amplitude is not across the whole window, but only across the

segment being compared to the template. The formula for the resulting difference measure is:

D3(n) = xm) y(n+m) (5)
ml Xmax -Zmin Ymax- Ymin

where

Xmax = maz[x(1),x(2),...,x(M)],

Ymx = maz [y(n+ l),y(n+ 2),...,y(n+ M)]

and similarly for zmin and Ymin-

I conducted simulation experiments by listening to speech reconstructed using the various

pattern-matching procedures. These experiments revealed that for the two-sided scheme, the

difference methods produce speech that sounds slightly better than that produced with the

correlation measures. The quality of the one-sided scheme (Section 2.1.5) seems to be

insensitive to the pattern-matching measure. Within the difference methods, the method of

normalization affects the choice of reconstruction packet, thereby modestly affecting the quality

of the reconstructed speech. There is no perceptual difference between the square-root of the

energy and the sum of absolute value normalizations, Equations (3) and (4) respectively, but the

peak-to-peak normalization, Equation (5), produces noticeably worse results.

2.1.8 Combining Reconstruction Segments to Create a Reconstruction Packet

In the two-sided scheme, the replacement packet is a combination of the two segments

obtained from the pattern matching procedure. One way to combine the two normalized

reconstruction segments is to average them. However, it is likely that the past reconstruction

segment contains a better replica of the beginning. of the lost packet than does the future

reconstruction segment, and that the future segment contains a better estimate of the end of
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the lost packet than does the past segment. Therefore, the L+ 2P weights for the past segment

are

L+2P-kWp(k)= L+2P-1 , k= 1,2,...,2P+L (5)
and the weights for the future segment are

W (k) = 1- Wp(k) . (7)

The two segments are multiplied by these weights, and added together.

Since the energy of a speech signal changes continuously, it is advisable to normalize the

amplitude of the reconstructed packet to ensure that it is not much louder or quieter than the

speech surrounding it. This normalization was attempted in a few different ways. In each case

I multiplied the samples in the reconstruction packet by a constant in order to make the

amplitude of this packet equal to that of the packet preceding the missing one.

I experimented with three amplitude measures. Denoting the samples in a received packet or

a packet-length reconstruction segment by z(1),z(2),...,z(L), the amplitude measures are the

square root of the energy,

Al = j/[z(k)]2, (8)

the sum of absolute magnitudes,

L

A 2 = [ z(k) , (9)

and the peak-to-peak amplitude,

As = max[z(k)]- min[z(k)] . (10)

Doing the same type of experiments as before, I found the quality of the output speech to be

more sensitive to the method of normalization than to the pattern-matching measure. For the

two-sided scheme, the energy measure, Equation (8), gives the best results. For the one-sided

scheme, the sum of absolute magnitudes, Equation (9), is as effective as the energy measure.

Neither scheme works well with peak-to-peak amplitudes.
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£.1.4 Merging the Reconstruction Packet with the Received Speech

Next, the packet is inserted into the stream of received speech by merging the merge window

portions at its ends with the speech surrounding the missing packet. This merging is done with

raised cosine weighting. The P weights for the last P samples of the packet received before the

missing one are

W1(k) = 2 1+Cos ( ], k= 1,2,..,P (11)W( 2 1 -1-l
and the P weights for the first P samples of the reconstruction packet are

W2(k) = - W1(k). (12)

Naturally, it follows that the P weights for the last P samples of the reconstruction packet are

Wl(k), and that the P weights for the first P samples of the packet received after the missing

one are W2(k).

The merge segments are multiplied by their respective weights and added together, and the

L remaining samples of the reconstruction packet fit neatly between them. Figure 6 illustrates

how the merging works.

Figure 6. Merging a reconstructed packet using raised cosine weighting.

4 WEIGHT PROFILE FOR
o ADJACENT PACKETS

WEIGHT PROFILE FOR
RECONSTRUCTED
PACKET

SUM

PACKET DURATION = Tp

MERGE DURATION =Tm
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2.1.5 The One-Sided Scheme

The one-sided scheme simply replaces the missing packet with the past reconstruction

segment, still normalizing the segment and merging its ends. It introduces less delay and

requires less memory than the two-sided scheme. Subjective tests reveal that this decrease of

computation and memory does not compromise speech quality. (Section 4.1)

2.1.6 Multiple Lost Packets

When two packets in a row are missing, the two-sided scheme will treat them as if they are

one double-sized missing packet, and reconstruct them as such. The templates, search windows,

and merge windows remain the same length, but twice as much speech following (or preceding)

the match is used in the reconstruction. Of course, the search window in this case begins two

packets plus a merge window (2L+P) from the missing one, instead of only one. When more

than two packets in a row are missing, I adopt the same approach. Note that the one-sided

scheme does not change at all when two or more packets in a row are missing.

When a packet within the search window is missing, the two-sided scheme sees it as a silent

packet and chooses a match accordingly. Such a situation can occur only in the future search

window, as any missing packets in the past search window would already have been

reconstructed. Therefore this situation also has no effect on the one-sided scheme.

2.1.7 Ezperimental Results

I have investigated the effects of the packet replacement schemes on 11.15 seconds of speech

spoken by two women and two men, sampled at 8 kHz, and processed by a quantizer with

y = 255 companding. The missing packets were independently selected by a uniform random

number generator. I have conducted the investigations by listening to the speech processed by

the one-sided and two-sided algorithms, using various combinations of packet size, template

size, search window size, and missing packet ratio. In this investigation, I did not include the

merge window in order to merge the reconstruction packets with the received speech. The

merging technique was proposed in a subsequent study conducted by Lockhart and Goodman,
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and reported in a paper by Goodman, Jaffe, Lockhart, and Wong. [7] My purpose in these

investigations has been to evaluate the effects of system parameters and the missing packet

ratio on the quality of the reconstructed speech.

In Section 2.1.2, I defined several matching criteria and methods of normalization, and

discussed their influence on the quality of the reconstruction scheme. I now present the effects

of packet length (L), template length (M), and search window length (N) on signal-to-noise

ratio and on my perceptions of speech quality. To compute the signal-to-noise ratio (SNR), I let

x[n] be the samples of the companded speech without any dropped packets, and I let y[n] be

the samples of the companded speech after packets have been dropped and reconstructed. Thus

the SNR does not include quantization noise. The formula for computing the total SNR is

([n])2
SAR = 10og ( ] (13)

E(y []-.T In 2

A reference to the average SNR per missing packet indicates that an SNR is computed as in

Equation (13) for each missing packet, and then all of these SNIR 's are averaged.

In addition, I will quote the results of the study which examined merge window length (P).

In performing these evaluations, I have used the magnitude difference measure, Equation (4), for

pattern matching, and the square-root energy normalization, Equation (8), of reconstruction

segments.

2.1.7.1 Packet Size For a given fraction of packets missing, the packet size has a strong effect

on the perceived nature of the reconstructed speech. (Section 1, Table 1) With very small

packets (1 or 2 ms, L = 8 or 16), with 10 percent of the packets missing, there is a constant.

annoying crackle. For very large packets (32 ms or more), the speech sounds as though the

person is trying to gargle while speaking. For sizes in between, the crackles become pops, and

occur infrequently, rather than constantly like the crackle. To my ears, the packet size most

tolerant to packet loss is 8 ms (64 samples), although 16 ms is also good. Signal-to-noise ratio of

reconstructed speech is not a good indication of how the quality changes with packet size; it
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improves as the packets get smaller and smaller.

2.1.7.2 Search Window There is an optimum search window duration. If the search window is

too short it omits the best reconstruction waveform. If it is too long it contains speech that is

unrelated to the missing packet. Nevertheless, there is a chance that a small segment of this

speech is well matched to the M samples in the template, a situation which can result in the

selection of a suboptimum reconstruction segment. In my experiments I found that regardless

of packet size, the one-sided scheme worked best with a 16 ms search window, and that 8 ms

was best with the two-sided scheme. Speech quality does not deteriorate appreciably when the

search window is longer than optimum.

I observed that signal-to-noise ratio is a reasonably good indicator of the relationship of

perceived quality to search window duration. Figure 7 shows the total SNR as defined in

Equation (13) (measured across 11 seconds of speech) as a function of the number of samples in

the search window. Figure 8 displays the average SATR (in dB) per missing packet, a measure

found in a previous study to be indicative of the relative quality of reconstruction methods. [4]

Figures 7 and 8 have 64 samples per packet and the missing packet ratio is 9.2 percent. In the

one-sided measurements the template contains M- = 32 samples. In the two-sided scheme

M = 16.

Note in each curve in Figures 7 and 8 that the shortest search window is equal in duration to

the template (16 or 32 samples). In this case the algorithm replaces the missing packet with the

previous packet (one-sided) or a weighted average of the packet that precedes the missing

packet and the packet that follows it (two-sided).

2.1.7.8 Template As in the case of the search window, there is a minimum acceptable template

duration. If M is too small, there is simply insufficient speech information. The quality also

goes down if the template is too long. Again, the best size appears to be independent of the

packet size. I found that 2 ms (16 samples) was the best template for the two-sided scheme, and

4 ms was best for the one-sided scheme.
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Figure 7. Total signal-to-noise ratio as a function of search window size. There are 64 samples
per packet and 9.2 percent of the packets are missing. In the one-sided version,
M = 16 samples per template; M = 32 with two-sided reconstruction.
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SNR correlates well with the effect of template duration on perceived quality, in that the

relative SNR measures generally conform to my impressions of relative quality. Figure 9 shows

the average SNR per missing packet as a function of template size.
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Figure 9. Average signal-to-noise ratio per missing packet as a function of template size.
There are 64 samples per packet and 9.2 percent of the packets are missing. With
one-sided pattern matching there are N = 128 samples in the search window; N = 64
in the two-sided case.
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2.1.7.4 fMerge Window A study done by Lockhart and Goodman [7] indicates

window duration of 1 ms yields good results.

that a merge-

2.1.7.5 Missing Packet Ratio As expected, the SNR and the perceived quality decline as the

fraction of packets missing increases. Figure 10 shows the dependence of total SNR on missing

packet ratio for both versions of my packet recovery method and for missing packets replaced

by silent gaps. My listening experience suggests that communication breaks down when more

than 30 percent of the speech is lost. When only half of the packets arrive, the two-sided

scheme yields badly garbled speech, and the one-sided scheme yields speech interspersed with

beeps and chirps very like the voice of the robot R2D2 in the movie 'Star Wars.' This is

because when many packets in a row are lost, the one-sided scheme repeats the same segment,

creating a highly periodic signal.

2.1.8 A Pitch Detection Method

In this section I describe another algorithm which Lockhart and Goodman used on PCNM

speech. [7] It is also a waveform substitution technique, and therefore I compared my

!
v
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Figure 10. Total SNR as a function of missing packet ratio for both versions of the
reconstruction scheme and for missing packets replaced by gaps of silence.
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algorithms to it in a subjective test.

The pitch detection method is simply to detect the pitch period (T samples) of the speech

immediately preceding the missing packet, and then to replicate the last T samples of the

received speech for the length of the missing packet. Of course, the edges of the new packet are

merged with the surrounding speech.

The pitch detector consists of two peak detectors, one positive and one negative. They each

remember the positions of the last three significant peaks they detected, so that at any given

moment, four estimates of pitch period are available. Since voiced speech usually has higher

energy than unvoiced speech, center clipping the signal helps to determine the voicing. The

actual pitch period used depends on the reliability of the various estimates. For instance if the

last significant peak was too long ago, one can assume the speech preceding the missing packet

was unvoiced. Conversely, if the resultant pitch estimate is too high, perhaps one of the pitch

detectors detected more that one significant peak per period. When the pitch estimate is

unreliable, one simply repeats the previous packet.
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2.2 Algorithms for ADPCM Speech

In my studies of dropped packets of ADPCM encoded speech, I have used the CCITT

(International Consultative Committee on Telephony and Telegraphy) standardized 32kbit/s

ADPCM without tandeming [8], rather than the packet-wise adaptive version used by Jayant

and Christensen (Section 1). This means that the step size and the predictor change sample by

sample, and that these parameters are not transmitted over the channel. The encoder takes in

a PCM signal and outputs an ADPCM signal, while the decoder takes in an ADPCM signal and

outputs a PCM signal.

Figure 11. block diagram of the ADPCM coder

INPUT
PCM

STGI
EST

32 kbit/sec
OUTPUT
ADPCM

Figure 11 displays a block diagram of the ADPCM coder, and Figure 12 displays a block

diagram of the ADPCM decoder. The most serious obstacle to good reconstruction of missing

packets is that the encoder and decoder lose synchronization. Therefore, if one packet is

dropped, it may cause fifteen or twenty subsequent packets to be corrupted at the receiver.

2.2.1 Overview of Various Algorithm

The presence of a decoder in the receiver opens several options for reconstruction algorithms.

I have developed and simulated them all in the C Programming Language. Each algorithm is a
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Figure 12. block diagram of the ADPCM decoder
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Figure 13. reconstruction in the ADPCM environment
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combination of three factors: reconstruction environment, reconstruction
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technique, and

2.2.1.1 Reconstruction Environment Reconstruction can be done either on the ADPCM signal

before it is decoded, or on the PCM signal after it is decoded. Figure 13 shows reconstruction in

the ADPCM environment, while Figure 14 shows a segment of ADPCM speech. Each ADPCM
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Figure 14. ADPCM speech

sample has one of 16 possible values, but the meaning of that value depends upon the recent

history bof the ADPCM signal. Because of this, the ADPCM signal is by no means continuous

and quasiperiodic like speech. Nevertheless, I have used some of the same techniques on the

ADPCM signal as I have on the PCM signal.

Figure 15. reconstruction in the PCM environment
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Figure 18. PCM speech

Reconstruction in the PCM environment is displayed in Figure 15, while PCM speech is

displayed in Figure 16. This is the PCM version of the same segment of speech as in Figure 14.

Even though the two signals contain some of the same information, the speech periodicity is

better revealed by the PCM waveform and more amenable to analysis by pattern matching.

Therefore, a missing packet can be reconstructed the same way as in Section 2.1. The question

arises, however, as to what will become of the speech following the missing packet, since the

decoder has missed some input.

2.2.1.2 Reconstruction Technique Since things can get very complicated when dealing with an

adaptive quantizer and an adaptive predictor, I have tried some "first order" reconstruction

schemes, along with more computationally intensive schemes, in both reconstruction

environments. The simplest technique is to replace the missing packet with silence. This

involves plugging sample values '0' into a PCM packet, or alternating sample values '-1' and

'+1' in an ADPCM packet.

For another very simple technique I repeat the previous packet in place of the missing one.

In the ADPCM environment, I do not merge the ends of the replacement packet with the

surrounding signal, because there seems to be no smoothness constraint on the ADPCM signal.
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However, I do merge the ends of the packets in the PCM environment.

The third reconstruction scheme is the one-sided scheme which I have used for PCM speech.

(Section 2.1.5) I have tried it in both reconstruction environments, merging as before.

2.2.1.3 Decoder Parameters Whether in the PCM or ADPCM environment, no matter what the

reconstruction scheme, the question arises as to what to do with the quantizer step size and

predictor coefficients when a packet is missing. I have tried three things: (1) reset them to the

decoder start-up state, (2) freeze them so that they do not change at all when a packet is

missing, (3) update them in some way.

It is impossible to freeze the parameters in the ADPCM environment, because the

replacement ADPCM packet must be sent through the decoder, forcing the decoder parameters

to change. Updating in this environment consists of simply sending the replacement, packet

through the decoder without resetting its parameters.

In the PCM environment, freezing the parameters means that when a missing packet is

encountered, it is not sent through the decoder. Instead, some replacement PCM packet

(perhaps past speech as in the one-sided scheme) is played out, and then the packet following

the missing one is sent through the decoder. Thus the parameters have not been changed by

the missing packet. When updating the parameters in the PCM environment, I employ an

encoder at the packet receiver. When good packets arrive, the encoder parameters are the same

as decoder parameters. When there is a missing packet, it is not sent through the decoder, but

instead is reconstructed as a PCM packet. Then these PCM samples are sent to the encoder,

thus updating the encoder parameters. After the missing packet interval, the decoder

parameters are set to equal the encoder parameters. Again, the packet following the missing

one is decoded as usual.

2.2.2 Eperimental Results

I tested all of these algorithms on two sources of speech, each ten seconds long, one spoken

by a man, the other spoken by a woman. The speech was 8 kHz, 16 bit linear PCM. As before,
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the missing packets were selected by a uniform random number generator. All of the algorithms

used 16 ms packets. The pattern matching technique used Equation (4) for pattern matching,

Equation (8) for normalization, a 16 ms search window, a 4 ms template, and a 1 ms merge

window, for reasons explained in Section 2.1 of this paper. My intent was to discover which

algorithms were good enough to merit formal subjective testing.

2.2.2.1 Reconstruction Environment As it turns out, one should not do this kind of

reconstruction on the ADPCM side of the decoder, as it results in loud pops w.hich are painful if

not dangerous to the listener. These pops are the result of the step-size and predictor

coefficients of the decoder diverging from those of the encoder.

Reconstruction on the PCM side does not yield such hazards, probably because one never

decodes anything except original ADPCM signal. Even when decoder parameters are updated, a

reconstruction PCM packet is encoded merely for a reading of the parameters, as opposed to

trying to decode reconstructed ADPCM signal.

2.2.2.2 Reconstruction Technique To my ears, substituting with silence was the worst of the

three techniques. Surprisingly, I could not tell the difference between repeating the previous

packet and pattern matching.

2.2.2.8 Decoder Parametcrs After listening, I judge that it is better to freeze or update the

parameters, rather than reset them to the start up state. This is not surprising, since the start

up state is meant to be the best state for the beginning of a speech burst, but the missing

packets often occur in the middle of a burst. Therefore, it is likely that frozen or updated

parameters more closely approximate the true parameters than would reset parameters.

2.2.2.4 Propagation of Errors Figure 17 shows the SNR per packet vs. packet number,

beginning just before a typical missing packet. The SNR does not include quantizing noise.

The algorithm used was repeating the previous packet and freezing the decoder parameters.

Notice that the quality degrades slightly one packet before the missing one, because the merging

process distorts the last millisecond of the packet.
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Figure 17. SNR per packet vs. packet #, starting just before a typical missing packet. The
algorithm used was repeating the previous packet and freezing the decoder
parameters.
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3. Description of Subjective Tests

The purpose of the subjective tests is to examine the relative merits of the various

reconstruction techniques for PCM and ADPCM speech. The first subjective test also examines

the extent to which merging the reconstructed packet ends into the received speech contributes

to the quality of the output speech.

3.1 Source Speech

In the subjective tests, I used source speech that had been prepared for other subjective

tests. It consists of two different sets of three Harvard sentences. Each set was spoken by two

male and two female speakers, for a total of eight different sets of sentences. The speech was

recorded in a sound-proof chamber with a Sony ECM-220T electret condenser microphone, and

digitized through a DSC-200 Digital Audio Data Conversion System (Digital Sound

Corporation). Then it was put through a 3.2 kHz low-pass filter and sampled at 8 kHz. The

quantizer was a sixteen-bit linear quantizer. After digitization, the speech was equalized for

active speech power using a British Telecom SV6 Speech Voltmeter so that there was only a

0.3dBm range among the various stimuli.
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3.2 Testing Facilities

The subjects sat in partitioned cubicles in a room with acoustic material on the walls. The

background noise level was 35dBA. They listened to the speech stimuli over calibrated

handsets. The amplitude of the speech at the handsets was -27.9 dBm for the PCM test, and

-28.5 dBm for the ADPCM test. Three seconds of silence preceded each stimulus, and the

subjects had five seconds to respond to each stimulus. They responded by pushing one of five

buttons labelled "Excellent", "Good", "Fair", "Poor", and "Unsatisfactory." Three colored

lights on the same panel indicated when the subjects should "WAIT", "LISTEN", or "VOTE."

A bell at the experimenter's terminal indicated if a subject did not respond within five seconds.

When all of the subjects responded, or if the five seconds was up, the ratings were recorded on

a diskette, and the next trial was presented.

The following describes the testing procedure. First, instructions were read to the subjects.

A copy of these instructions is in Appendix A at the end of this paper. Then twelve practice

trials were presented to the subjects. (Ten practice trials in the case of the ADPCM test.)

These practice trials covered the full range of the quality of the various stimuli. Next, the

subjects responded to half of the experimental trials, and then they took a break during which a

snack was served. After the break, the subjects responded to the other half of the experimental

trials.

3.3 Testing the Algorithms for PCM Speech

In the first subjective test, I compared the relative quality of the two pattern matching

schemes (two-sided and one-sided), the pitch detection scheme, the method of simply repeating

the previous packet, and the simplest approach of all -- substituting silence for the missing

packet. I also wanted to determine whether merging improved the quality significantly.

Therefore, the first subjective test included the two pattern matching schemes, the pitch

detection scheme, and repetition of the previous packet, both with and without merging, and in

addition, the silence substitution method without merging. I used a packet size of 16 ms in
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every process. In the processes with merging, I used a merge window size of 1 ms. The pattern

matching schemes used a template of 4 ms and a 16 ms search window. They also used

Equation (4) for pattern matching, and Equation (8) for normalization.

In order to enable the reader to compare my results to results of published tests, I included

reference noise conditicds. The reference noise was produced by adding to each sample a value

proportional to its amplitude and randomly positive or negative. The constant of

proportionality depends upon the signal to noise ratio desired. Specifically, if c is the constant

of proportionality, and 8 is the desired signal to noise ratio in dB, their relation is:

a = 201og (14)
C

C = 10 20 (15)

This modulated noise reference process is commonly used in subjective tests of digital speech

communication techniques.

In order to find out how quickly the various processes degrade with increasing missing

packet ratio, and whether one process might be better for low ratios and another better for high

ratios, I tested all of the processes with missing packet ratios of two, four, eight, and sixteen

percent. To cover the full range of quality, I used signal-to-noise ratios of six, fourteen, twenty-

two, and thirty decibels in the reference noise conditions. So, I tested a total of 320 different,

conditions. The following ten processes were used to process speech from eight speakers, at four

missing packet ratios (or signal-to-noise ratio in the case of the reference noise):

(1) modulated noise reference

(21 one-sided pattern matching with merging

(3) one-sided pattern matching without merging

(4) pitch detection method with merging

(5) pitch detection method without merging



- 36 -

(6) repeating previous packet with merging

(7) repeating previous packet without merging

(8) substituting silence without merging

(9) two-sided pattern matching with merging

(10) two-sided pattern matching without merging

This was approximately 53.5 minutes of speech.

In a given speech file, the packets to drop and reconstruct are chosen by a random number

generator. The quality of the reconstructed speech depends upon which packets were dropped,

because some are harder to reconstruct than others. In order for this effect to average out over

the course of the test, each of the 320 stimuli was produced with a different random seed.

The subjects' opinions of the stimuli is also dependent upon the order in which they are

presented. That is, a subject might vote higher for a condition occurring after a very low

quality stimulus than for the same condition occurring after a high quality stimulus. In order to

average out this effect, two versions of the test were given, with two different permutations of

the stimuli, and two different sets of subjects. The random seeds which chose the missing

packets were different in all 640 conditions.

The two versions of this subjective test were administered on November 14, 1985 at 9:00 am

and at 1:00 pm to a total of 21 women, eleven in the morning and ten in the afternoon. All of

the women were housewives, most of whom had participated in multiple listening tests in the

past. Their ages ranged from 20 to 60 years, and their median age was 48 years.

3.4 Testing the Algorithms for ADPCM Speech

In the second subjective test, I compared the relative quality of the various combinations of

reconstruction scheme and decoder parameter control, with missing speech reconstructed on the

PCM side of the decoder. The reconstruction techniques are substituting silence, repeating the

previous packet with merging, and one-sided pattern matching with merging. The parameter
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control methods are freezing, resetting, and updating the decoder parameters. Since silence

substitution is included only as a no-cost baseline, I did not experiment with parameter control.

Instead, I simply chose to freeze the decoder parameters when substituting silence, because

freezing the parameters emulates what would actually happen if a packet were dropped in a

network implementing speech activity detection and the CCITT standard ADPCM. [8] In this

situation, the parameters would not be reset un!ess approximately ten consecutive packets were

missing or silent. The pattern matching technique was identical to the one-sided scheme used

in the PCM subjective test. I merged the reconstruction packet with the surrounding speech in

every case except silence substitution.

The effect of missing packets is more severe with ADPCM coding than PCM coding. To

cover approximately the same quality range as in the PCM test, I used a lower set of missing

packet ratios in the ADPCM test: one, two, four, and eight percent. The same reference

conditions as before covered this range of quality.

There were 256 conditions to be tested, for a total of 42.7 minutes of speech. The following

eight processes were used to process speech from eight speakers, at four missing packet ratios

(or signal-to-noise ratios):

(1) modulated noise reference

(2) pattern matching with merging, freezing decoder parameters

(3) pattern matching with merging, resetting decoder parameters

(4) pattern matching with merging, updating decoder parameters

(5) repeating previous packet with merging, freezing decoder parameters

(6) repeating previous packet with merging, resetting decoder parameters

(7) repeating previous packet with merging, updating decoder parameters

(8) substituting silence without merging, freezing decoder parameters

Again, I ran two versions of the test, each with a different presentation order and different
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patterns of missing packets in each of the 512 conditions. The two versions of this subjective

test were administered on December 4, 1985 at 9:00 am and 1:00 pm to a total of 22 women,

eleven at each session. All of the women were housewives, most of whom had participated in

multiple listening tests in the past. Their ages ranged from 20 to 60 years, and their median age

was 43 years.
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4. Results of Subjective Tests

I analyzed the data from the tests on a VAX 11/750 computer under a UNIXTM operating

system, using the S language for data analysis. [9] The detailed statistical analysis of the

results is in Appendix B at the end of this paper. In this section I present and interpret the

results of the analysis.

4.1 Results for the PCM Algorithms

I made three hypotheses before analyzing the data. In the first place, I expected that it

would be possible to combine both versions of the test as samples taken from the same

population. This is explored further in Appendix B. In the second place, I expected that any

process with merging would be significantly better than the same process without merging.

Finally, I expected pattern matching to be significantly better than the other methods, silence

substitution significantly worse, with pitch detection and repeating the previous packet

comparable to each other. The second and third hypotheses were based on the listening

experiences of myself and a couple of colleagues.

Table 4 shows, for each missing packet ratio, which processes had mean opinion scores

(MOS's) which were significantly higher than those for other processes. Table 3 assigns a two-

letter name to each process for the purpose of making Table 4 concise.

TABLE 3
Name Process
OM one-sided pattern matching with merging
ON one-sided pattern matching without merging
PM pitch detection method with merging
PN pitch detection method without merging
RM repeating previous packet with merging
RN repeating previous packet without merging
SN substituting silence without merging
TM two-sided pattern matching with merging
TN two-sided pattern matching without merging
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TABLE 4
On each line, processes on left are

significantly better than processes on right.
PM RM,RN,SN

2% OM,PN,TM,TN,ON RN,SN
RM,RN SN
PM,PN TN,OM,RN,RM,SN

TM OM,RN,RM,SN

4% ON RN,RM,SN
TN RM,SN

OM,RN,RM SN
PM,PN TM,OM,TN,ON,RM,RN,SN

8% TM,OM,TN,ON RM,RN,SN
RM,RN SN
PM,PN OM,ON,TN,TM,RM,RN,SN

165% OM,ON RN,SN
TN,TM,RM,RN SN

The results indicate that merging the packet ends does not contribute significantly to quality at

any missing packet ratio. This is surprising, since merging sounded better to myself and my

colleagues. Apparently, the subjects did not notice this difference to a significant degree.

It seems that substituting silence for the missing packet produces the worst quality of

speech, while the pitch detection method produces the best. It was expected that substituting

silence would produce the worst quality, as it guarantees a discontuity of the signal at both ends

of the packet. Pitch detection is the best method to use, because as shown in Table 4, it is

usually significantly better than the other methods. Furthermore, some implementations of the

simple pitch detection algorithm used by Lockhart and Goodman [7] require no more

computation than pattern matching for this improved quality.

In some cases, pattern matching is better than repetition of the previous packet, but in

other cases they seem to be of somewhat comparable quality. I consider one-sided pattern

matching to be superior to two-sided pattern matching, because it produces the same quality of

speech without the delay of waiting for the next two packets after the missing one before

reconstruction can begin.

Figures 18-24 show plots of the MOS scores of various processes at various missing packet
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ratios. Figure 18 shows the MOS's for the reference noise process at each

each show the MOS's of a process with merging and without merging at

ratio. Notice in all of them that the MOS's for a given process at a given

do not change significantly in the absence of merging.

SNR. Figures 19-22

each missing packet

missing packet ratio

Figure 18. MOS vs. SNR for reference noise process
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Figure 19. MOS vs. missing packet ratio for one-sided pattern matching with (OM) and
without (ON) merging: O = OM and X = ON
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Figure 20. MOS vs. missing packet ratio for pitch detection method with (PI
(PN) merging: O = PM and X = PN
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Since the merging did not improve the processes significantly, I pooled the results for each

process with and without merging, and put the results in Table 6 according to the key in
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Figure 22. MOS vs. missing packet ratio for two-sided pattern matching with (TM) and
without (TN) merging: O = TM and X = TN
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TABLE 5
Name Process

0 one-sided pattern matching
P pitch detection method
R repeating previous packet
S substituting silence
T two-sided pattern matching

TABLE 6

MissPacket Rate On each line, processes on left areMissing Packet Rate significantly better than processes on right.

P,O,T R,S
R S

P T,O,R,S
4% T,O R,S

R S

P T,O,R,S
8% T,O R,S

R S

P O,T,R,S
16% 0 R,S

T,R S

Figure 23 shows MOS vs. missing packet ratio for these results, and Figure 24 shows a scatter

plot of Figure 23, but with ellipses drawn on it. Each process' MOS is significantly different

____

III I
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Figure 23. MOS
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Figure 24. MOS vs. missing packet ratio for each process: see Table 5 for key to symbols.
Processes sharing an ellipse are not significantly different.
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from that of another process with which it does not share an ellipse. Overall, pitch detection

shows up best, then pattern matching, followed by repeating the previous packet, and the worst

is substituting silence. As an engineer, I'd say that if the implementation allows for the

increased computation, pattern matching is better to use than repeating the previous packet,

because of the significant improvement in quality that results. Whether to use pitch detection
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or pattern matching also depends upon the implementation. If the implementation is such that

computation and delay are about the same for the two methods, pitch detection would certainly

be better, as it produces significantly better quality.

4.2 Results for the ADPCM Algorithms

Again, I made several hypotheses before analyzing the data. I expected that it would be

possible to combine both versions of the test again. Unfortunately, this did not prove true, and

I had to analyze the morning and afternoon sessions separately, as shown in Appendix B. Also, I

reasoned that the best way to pattern-match the ADPCM speech would be to pattern-match the

decoder parameters, too. That is, after selecting a segment of speech to plug into a gap, one

would want to restore the decoder parameters to what they had been at the end of that

segment. Since that segment of speech is merged into the next packet so that the amplitude

and phase vary smoothly, the decoder would be ready for speech to continue from the amplitude

and phase of the end of the reconstruction segment. At present it would be very difficult to

implement a practical decoder capable of recording 32 ms of the past history of the quantizer

step size and predictor coefficients. However, based on this reasoning, I expected repeating the

previous packet coupled with freezing the parameters, and pattern matching coupled with

updating the parameters, to be significantly better than the other algorithms. Based on

listening experience, I expected substituting silence to be significantly worse than anything that

reset decoder parameters, which in turn would be significantly worse than the remaining

algorithms.

Table 8 shows, for each missing packet ratio in the morning test, which processes had MOS's

which were significantly higher than those for other processes. Table 7 assigns a two-letter

name to each process for the purpose of making Table 8 concise. Table 9 shows the analysis

results for the afternoon session.
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TABLE 7
Name Process
PF pattern matching, freezing decoder parameters
PR pattern matching, resetting decoder parameters
PU pattern matching, updating decoder parameters
RF repeating previous packet, freezing decoder parameters
RR repeating previous packet, resetting decoder parameters
RU repeating previous packet, updating decoder parameters
SF substituting silence, freezing decoder parameters

TABLE 8. morning session

On each line, processes on left areMissing Packet Rate significantly better than processes on right.
1% PR,PF,RF,PU,RU,RR SF

PU,PF RR,PR,SF
2% RU,RF,RR PR,SF

PR SF
PU,RU,PF,RF PR,RR,SF

PR,RR SF
PF RF,RR,PR,SF

8% RU,PR,RF RR,PR,SF
RR,PR SF

TABLE 9. afternoon session

On each line, processes on left are
significantly better than processes on right.

RU PR,RR,SF
1% RF RR,SF

PU,PF SF
2% PF,PU,RF,RU PR,SF,RR

RU,PU,RF,PF RR,PR,SF
RR SF

RU,PU,RF,PF RR,PR,SF
8% SF.. ~ RR SF

The results indicate that the best quality comes from repeating the previous packet or pattern

matching, coupled with freezing or updating the decoder parameters. Obviously, for ADPCM

speech, my pattern matching algorithm is not as good as the simpler method of repeating the

previous packet, because it requires more computation to produce the same quality. Similarly,

freezing the parameters is better than updating them, because it produces the same quality for
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less computation. Therefore, repeating the previous packet and freezing the decoder parameters

is the best thing to do, since it involves the least computation. Figures 25-30 show plots of the

MOS scores of various processes at various missing packet ratios.

Figure 25. MOS vs. SJNR for reference noise process for the morning session
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Figure 2. MOS vs. SNR for reference noise process for the afternoon session
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Figures 25 and 26 show the MOS's for the reference noise process at each SNR, for each version

of the test. Figures 27 and 28 show MOS vs. missing packet ratio for each process and each

I
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Figure 27. MOS vs. missing packet ratio for each process for the morning session: see Table 7
for key to symbols
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Figure 28. MOS vs. missing packet ratio for each process for the afternoon session: see Table 7
for key to symbols
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version of the test, and Figures 29 and 30 show scatter plots of Figures 27 and 28 respectively,

but with ellipses drawn on them. Each process' MOS is significantly different from that of

another process with which it does not share an ellipse. These figures clearly illustrate how the

processes break up into: 1) combinations of pattern matching or repeating the previous packet,

and freezing or updating the decoder parameters; 2) resetting the decoder pa.-meters; and 3)

substituting silence.

4

2

41
'1

R-

SF~~~~~~p

L ~ ~ ~I I I . I I I Is

5

4

3

2

I

___a --

I

I



- 49 -

Figure 29. MOS vs. missing packet ratio for each process for the morning session: see Table 7
for key to symbols. Processes sharing an ellipse are not significantly different.
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Figure 30. MOS vs. missing packet ratio for each process for the afternoon session: see Table 7
for key to symbols. Processes sharing an ellipse are not significantly different.

5

4

c,03

2

I

1 2 3 4 5 6 7 8
MISSING PACKET RATIO

5. Conclusion

In this thesis I developed and tested the quality of various algorithms for reconstructing

missing packets of PCM and ADPCM speech. These algorithms may prove useful in several

ways. They can be used to reconstruct packets in existing networks where packets are dropped

5
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due to excessive delay caused by network congestion, or where packets or headers are garbled

due to noise or fading in the channel. That is, they help to recover from accidental packet loss.

Moreover, they can also be used to increase the effective throughput of a network by dropping

packets on purpose and reconstructing them at the other end. Since the algorithms work best

when only isolated packets are dropped, a protocol could be developed which would spread the

dropped packets uniformly in time and among network users.

For PCM speech, replicating the last pitch period of the packet preceding the missing one

for the length of the missing packet produces the best quality of speech. One-sided pattern

matching as described in Section 2.1 never does worse than repeating the previous packet, and

sometimes it does better. All three of these methods are better than filling missing packets with

silence. Surprisingly, merging the reconstructed packet with the surrounding speech did not

significantly improve the quality of the speech.

For ADPCM speech, reconstruction should definitely be done on the decoder's PCM output,

rather than its ADPCM input. Reconstruction on the input can produce loud pops which can

be painful to the listener. Filling missing packets with silence or resetting the decoder

parameters produces the worst quality speech. The methods which work the best are

combinations of repeating the previous packet or pattern matching, and freezing or updating

the decoder parameters. I recommend repeating the previous packet and freezing the decoder

parameters, since it requires less computation and delay.

I have five suggestions for future research:

(1) Better methods of merging should be explored. Things such as different

weighting envelopes or filters might work. I am sure that a good part of the

distortion comes from the edges of the reconstruction packet, and that better

merging could reduce this distortion.

(2) Pitch detection could be implemented in an ADPCM algorithm, to find out

if it would improve things further.
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(3) Speaker dependences among the various PCM and ADPCM processes should

be explored. In a real network, one would not want to use algorithms that are

noticeably worse for particular types of voices, as this would be disturbing to

the user.

(4) The implementation of a codec providing storage of a long sequence of codec

parameters should be explored in order to find out whether pattern matching in

conjunction with restoring old values of decoder parameters would indeed yield

significant improvement.

(5) Research could be done on which types of packets (voiced or unvoiced, high

or low energy, etc.) can be most easily reconstructed. Then a network protocol

could be developed which would drop the packets which are most easily

recovered, and then reconstruct them at the other end.
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APPENDIX A

Test Instructiona

Crawford Hill Test - HOH (11-85)

The experiment in which you are about to participate is designed to examine the effects of a

variety of telephone transmission impairments on audio quality. We will play recordings of

people speaking sets of three English sentences. Your task is to listen to the test conditions as

if they were telephone connections that you might actually use for normal purposes.

Immediately after each test condition, you are to make a judgement of the quality of the

speech you just heard. Judgements are to be made in one of five categories, as labeled in front

of the buttons at your station: Excellent, Good, Fair, Poor or Unsatisfactory.

The experiment will proceed as follows: Please look at the keyboard in front of you. When

the yellow light comes on, you are to listen for a sample of speech. Immediately after the speech

sample, the yellow light will go out. Very quickly, the green light will come on. At this time

you are to rate the quality of the telephone connection you heard by pressing one of the buttons

labeled Excellent through Unsatisfactory. Please remember, you must wait for the green light

to come on before you press any button. The green light will only be on for a few seconds, so

please rate the quality by pressing one of the buttons promptly so that your vote is not lost.

Please hold down the button until the green light goes out. After you make a rating, the red

light will come on, there will be short pause and then you will hear another sentence set, and so

on.

Please try to be both attentive and consistent in your judgements during the experiment.

Let's try a short practice session of 12 sentence sets to familiarize you with the procedure.

The test conditions you are about to hear will also expose you to the range of telephone quality

you will experience during the real data collection. The practice sentences will include examples

of the best and the worst audio quality you will hear in this experiment.
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Remember, the basic task is to rate the quality of the speech samples as if they were being

received over ordinary telephone connections.

Any questions?
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APPENDIX B

Data Analysis

Since some of the subjects had missed entering their responses to certain conditions, I replaced

all of the null responses with the averages of the other responses given for the same condition in

the same version of the test. This made the data easier to manipulate, without changing the

means at all. It also had negligible effect on the variances for my purpose.

Analyzing Results for the PCM Algorithms

In the subjective test for the PCM algorithms, there were ten null responses in the morning

session, and none in the afternoon session. There were some software problems getting the first

session started, so that those subjects were at the test site twenty minutes longer than the

others. This may be part of the cause of the late responses. Before analyzing the data, I

hypothesized that it would be possible to combine both versions of the test as samples taken

from the same population. This hypothesis was based on the premise that the variability due to

permutation order, missing packet order, and other differences between the two sessions would

show no systematic patterns and could therefore be considered as part of the random variability

inherent in subjective tests. Furthermore, in order to simplify the analysis, I assumed that the

speaker effects would be the same for every process.

Effects due to the pattern of dropped packets and the permutation of the conditions can be

averaged out to some extent by lumping the two versions of the test as samples taken from a

single population with a single probability distribution. Contributors to the variance of the

responses in the two versions include: ten different processes, four different missing packet

ratios (or SNR's), eight different speakers, ten or eleven different listeners, 320 different random

seeds, the permutation of the conditions, and environmental factors such as the time of day,

temperature of the room, length of the snack break, interruptions of the test (there was one
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interruption in the morning session), and the like. Of these factors, the ones which were

common to both versions of the test were the ten processes, four missing packet ratios (SNR's),

and eight speakers. Therefore, I cannot assume the variances were the same in both versions.

Let a,2 and am be the true variances of the probability distributions of all of the responses

in the morning session and the afternoon session respectively, and let s2,n and s,2, be their

respective sample variances. An F test of sample variances tests the hypothesis that a2m = am.

[10] I choose a significance level a=0.01 so that if the probability that a2m = am is less than

0.01, I will reject my hypothesis.

For my data, s2, = 1.37, and s2 - 1.41. There were 3520 responses given in the morning,

and 3200 in the afternoon. Therefore, F = s2/82s, with 3199 degrees of freedom for the

numerator, and 3519 degrees of freedom for the denominator. The resultant probability for F is

PF = Pr[FF,.]+Pr[F< 1/F,] = 0.441. Therefore, I can assume the variances of the two

versions are the same.

Given this assumption, Student's t-test will test the hypothesis Ua.m = pm where pa,, and

pm,, are the true means of the probability distributions of all of the responses in the morning

and afternoon sessions respectively. [10] I test this hypothesis with a significance level a= 0.01.

Let m,, and m., be the sample means, or mean opinion scores (MOS's), in the morning and

afternoon respectively, and let d be the difference between them. From the data, m,, = 3.29,

m, -= 3.23, and d = 0.06. The "pooled variance" is

3519a 2 + 3199 2
8- a PM 1.39 , (B-1)

6718

and the variance for d is

2 2
12 = + = 8.30x 10- . (B-2)

3520 3200

This results in

t= mm- m =- 2.09 (B-3)
with probability 

with probability Pt = Pr[tŽ td] - 0.037.
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Thus, the difference between the means of the two versions of the test is insignificant, and

the variances of the two versions can be assumed equal. Therefore, the results of the two tests

can be pooled.

An F-test of sample variances performed on the variances of every pair of processes for each

missing packet ratio showed that all of the variances could not be assumed equal. This can be

expected, as at some ratios some processes were so obviously good or bad that nearly everyone's

responses agreed, while the responses for other processes varied more. Therefore, this

discrepancy in variances does not necessarily disprove the assumption that the speaker effects

are the same for every process. At each missing packet ratio, the variance and MOS of each

process involved 168 samples (21 listeners X 8 speakers), or 167 degrees of freedom, and the

significance level was 0.01.

For pairs of processes whose variances could be assumed equal, I performed a t-test on the

difference between their MOS's, using equations (B-1-(B-3) to discover if the difference is

significant. For pairs of processes whose variances could not be assumed equal, I used an

approximation to Student's t-test to find out whether the difference between their MOS's is

significant [10]. The approximation to t is

m1- m2 ()
t j/n= l ( 4)

where m, is the sample mean of process x, es is the sample variance of process x, and n, is the

number of samples contributing to the MOS of process z. Instead of using n-l1 as the degrees

of freedom, when the variances of the two processes cannot be assumed equal I use

[(81 2/nl)+ (8 /2) ]2 (df =1 (B-5)

where df stands for degrees of freedom.
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Analyzing Reaults for the ADPCMAlgorithms

In the subjective test for the ADPCM algorithms, there were four null responses in the

morning session, and none in the afternoon session.

I expected that it would be possible to combine both versions of the test again.

Furthermore, in order to simplify the analysis, I again assumed that the speaker effects would

be the same for every process.

Things which contribute to the variance of the responses in the two versions of this test are:

eight different processes, four different missing packet ratios (or SNR's), eight different

speakers, eleven different listeners, 256 different random seeds, the permutation of the

conditions, and environmental factors. Of these factors, the ones which were common to both

versions of the test were again the eight processes, four missing packet ratios (SNR's), and eight

speakers. Therefore, I cannot assume the variances were the same in both versions.

Let a2 and a2m be the true variances of the probability distributions of all of the responses

in the morning session and the afternoon session respectively. An F test of sample variances

tests the hypothesis that a2m = am. [10] For this test it turns out that the two versions

cannot be pooled. The variances can be assumed equal, but according to Student's t-test, the

means cannot be assumed equal. The means were 3.36 for the morning session, and 3.16 for the

afternoon session. Again, I performed an F-test of sample variances on the variances of every

pair of processes for each missing packet ratio. However, this time I treated each version of the

test separately. As before, all of the variances could not be assumed equal. At each ratio, for

each version of the test, the variance and MOS of each process involved 88 samples (11 listeners

X 8 speakers), or 87 degrees of freedom, and the significance level was 0.01.

For pairs of processes whose variances could be assumed equal, I performed a t-test on the

difference between their MOS's, using equations (B1)-(B-3) to discover if the difference is

significant. For pairs of processes whose variances could not be assumed equal, I used an

approximation to Student's t-test, as described above in the PCM analysis, to find out whether

the difference between their MOS's is significant [10].
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