
Composable System Resources as an
Architecture for Networked Systems

by

Sandeep Chatterjee

S.M. (E.E.C.S.) Massachusetts Institute of Technology (June 1997)
B.S. (E.E.C.S.) University of California at Berkeley (June 1995)

Submitted to the
Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 2001

D Massachusetts Institute of Technology 2001. All rights reserved.

Author
Department of Eleytyical Engi eering and Computer Science

January 30, 2001

Certified By
Srinivas Devadas

ProfessorfEfeJtrical Engineegjrn' d Computer Science
-%Thies-Supervisor

Accepted By
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students
BARKER

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 112001

LIBRARIES

Composable System Resources as an
Architecture for Networked Systems

by

Sandeep Chatterjee

Submitted To The Department Of Electrical Engineering And Computer Science
On January 30, 2001, In Partial Fulfillment Of The

Requirements For The Degree Of
Doctor Of Philosophy In Electrical Engineering And Computer Science

Abstract

Network devices promise to provide a variety of user interfaces through which users can interact
with network applications. The design of these devices stand in stark contrast to the design of
personal computers in which new software content is accommodated by increased processor
performance. Network device design, on the other hand, must take into consideration a variety of
metrics including interactive performance, power consumption, battery life, transaction security,
physical size and weight, and cost. Designing a general-purpose platform that caters to all of
these metrics for all applications and devices is impractical. For an application mix, a processor
architecture and platform can be designed that is optimized for a selected set of metrics, such as
power consumption and battery life. Each of these optimized processor architectures and
platforms will no doubt be applicable to a variety of devices.

This suggests a modular system architecture for network devices that segments the
computational resources from the device UT. Computational resources can be selected for a
device UI that are optimized with respect to application mixes as well as to user preferences and
metrics. Segmenting out the device UI reduces the complexity of device Uls, simplifying
development and lowering costs. At the same time, with little electrical circuitry resident on
device Uls, the selected platform can more fully optimize the entire device.

In this thesis, I describe an architecture for network devices that is based on using pluggable
system resource modules that can be composed together to create a close-to-optimal platform for
a particular application mix and device. Frequently used applications execute efficiently, while
infrequently used applications execute less efficiently. Metrics for calculating efficiencies and
selected application domains and mixes are specified by individuals as opposed to one-size-fits-
all metrics specified by manufacturers. I show that such a composable system architecture is
effective in optimizing system performance with respect to user preferences and application
requirements, while the modularity of the architecture introduces little overhead. I also explore
opportunities that arise from segmenting devices into UI and computational resource
components, and show that an automated design environment can be created that greatly
simplifies custom device design, reducing time-to-market and lowering costs.

Acknowledgements

Many people have contributed over the years to this thesis and to my MIT career.

I would like to begin by thanking my doctoral advisor, Srinivas Devadas, for supporting me,
providing the resources I needed to develop the ideas in my thesis, and most importantly, for
being a terrific friend. I also would like to thank David Tennenhouse, John Guttag, and Steve
Ward for their help and support throughout my Ph.D. work.

My colleagues in the Computer-Aided Automation Group have made coming to work every
morning more enjoyable. In particular, Farzan Fallah and Prabhat Jain, with whom I have shared
an office for over two years, have been invaluable sounding boards for technical and sometimes
not so technical ideas. Dan Engels, and his endless supply of jokes, has made our work
environment more pleasant and entertaining. George Hadjiyiannis has spent many hours helping
me to flush out my ideas and to make my work more concrete.

Finally, I wish to thank my family without whom I would not be where I am today. My
brother has helped me and guided me in the right direction at every juncture in my life. My
parents, grandmother, and sister-in-law have been a solid wall of support throughout my Ph.D.
and throughout my life. And, finally, I am indebted to my beautiful four-month-old niece who
has motivated me to quickly complete my studies and move back to California.

Contents

1 Introduction.. 19

1.1 Optimal Device-to-Resource M apping.. 20

1.2 System Architecture ... 23

1.3 Composable System Resources.. 25
1.3.1 Configurable Universal Interface .. 27
1.3.2 Significantly Bussed Interconnect ... 28
1.3.3 Timer-Based Data Buffers.. 29
1.3.4 Symmetric System Composition .. 30

1.4 CSR-Based Device Design Flow... 31
1.4.1 Characteristic-based System Design... 33
1.4.2 Component Selection, Placement, and Quality-of-Service 34
1.4.3 Netlist Generation and Software Configuration ... 34

1.5 CSR-Based M anufacturing and Fulfillment M odel.. 35

1.6 Summary Of Contributions Of This Thesis... 36
1.6.1 Computer System Design ... 36
1.6.2 Application Development... 38
1.6.3 Device Development Cycles and Paradigms... 38
1.6.4 M an-to-M achine Interfaces .. 38

1.7 Organization Of This Thesis ... 39

2 Related W ork.. 41

2.1 Related W ork On Computing Paradigms ... 41
2.1.1 Centralized Computing Paradigm ... 41
2.1.2 Distributed Computing Paradigm ... 43

2.2 Related W ork On M odular Hardware Systems .. 44
2.2.1 PCM CIA PC Cards.. 44
2.2.2 CompactPCI .. 45
2.2.3 NuM esh ... 46

2.3 Related W ork On Design Automation Systems ... 46
2.3.1 Design Automation Environments .. 46
2.3.2 Future Design Automation Environments... 47

3 Composable System Resources ... 49

3.1 The CSR System Architecture.. 51

3.2 PC Card-Based CSR M odules... 55
3.2.1 16-Bit PC Card Interfaces... 56
3.2.2 32-Bit CardBus Interface... 58

3.3 CSR Interconnect Fabric Backplanes .. 60
3.3.1 Central Computational Resource... 61
3.3.2 Significantly Bussed Datapath.. 62

3.4 Two-Socket CSR IFB Specification.. 64
3.4.1 Static Reconfiguration For Efficient Module-to-Module Communications... 67
3.4.2 Dynamic Reconfiguration for Narrowpath Communications
and Target Disambiguation ... 70
3.4.3 CSR Computer M odule Leader Election.. 72
3.4.4 System ROM Interface ... 73
3.4.5 Interrupt and Event M essaging.. 74
3.4.6 Connection and Disconnection of CSR M odules.. 76

3.5 One-Socket CSR IFB Specifications.. 77

3.6 System Extensibility ... 79
3.6.1 Bussed IFB Extensibility ... 79
3.6.2 Switched Fabric IFB.. 80
3.6.3 Interface Extensibility.. 82

3.7 PC Card-Based CSR Computer M odule Specification .. 82
3.7.1 Processing Environment ... 83
3.7.2 Real-time Narrowpath Channels ... 84
3.7.3 M ultibus Interface Configuration and Bus Selection 91
3.7.4 PC Card-based CSR Computer Module Signaling Specification................ 95
3.7.5 Two-W ay Configuration Registers... 97
3.7.6 Conclusion... 98

4 CSR System Evaluation... 99

4.1 Prototype System Development ... 100

4.1.1 Prototype Tw o-socket CSR IFB ... 100
4.1.2 Prototype CSR Com puter M odule.. 101
4.1.3 CSR-based M ultim edia Picture Fram e ... 102

4.2 System Analysis and M etric Evaluation... 103

4.3 Cost Analysis.. 104
4.3.1 CSR D evice D esign Cycle.. 105
4.3.2 D evice D eploym ent Cost M odels... 108
4.3.3 D evice Life Cycles and Total Cost of Ow nership .. 110
4.3.4 Pin Count, Size, and Cost... 112

4.4 Perform ance Analysis... 113
4.4.1 Scheduling and Bandwidth Perform ance ... 113
4.4.2 Isochronous and Asynchronous Communication Limits.............................. 127
4.4.3 Application 1/0 Perform ance.. 128

4.5 Pow er and Energy Analysis.. 129

4.6 D iscussion .. 140

5 Characteristic-based C SR Device D esign... 145

5.1 D esired D esign Flow .. 146

5.2 Characteristic-based CSR D evice D esign .. 148

5.3 D evice Characteristic Specification.. 150

5.4 Resource M apping, Placem ent, and Quality-of-Service... 152
5.4.1 Resource M apping.. 153
5.4.2 Cost Function Analysis... 154
5.4.3 Q uality-of-Service Guarantees ... 157

5.5 N etlist Generation and System Configuration.. 160

5.6 System Lim itations and Third-Party Integration .. 160

5.7 D iscussion .. 163

6 Conclusion... 165

6.1 Future W ork.. 167

Figures

Figure 1: The spectrum of commonly available devices and their relationship with one another
with respect to the user interface they implement and their underlying computational
reso u rces.. 2 1

Figure 2: Optimal and close-to-optimal mappings of application mixes to computational resource
p latform s.. 2 2

Figure 3: The three blocks of the Composable System Resources architecture are: 1) CSR
Modules, 2) the device "shell" comprising various controllable components of the device,
e.g., motors, digital-to-analog converters and audio speakers, and 3) a CSR Interconnect
Fabric Backplane (IFB) that provides electrical connectivity between the device shell and
C S R m odu les... 2 5

Figure 4: Multiple interfaces supported by the CSR architecture. Non-contiguous horizontal
segments from each row can be coordinated together to form a CSR module's overall
electrical interface. .. 27

Figure 5: Multiple bus communication protocols over a single bussed environment............. 28

Figure 6: CSR Computer Modules include timer-based data buffers that output or sample data
from external 1/0 components. The timer-based data buffers support the use of simple
commodity 1/0 components without dedicated controllers or glue-logic. 31

Figure 7: CSR-based device design flow and development steps.. 32

Figure 8: Device Builder Characteristic Selection ... 33

Figure 9: Composable System Resources interfacing with the hardware components of a network
d ev ice ... 5 1

Figure 10: System architecture for status quo personal computers.. 52

Figure 11: 16-bit PC Card electrical interface and protocol overview for a read transaction..... 58

Figure 12: 32-bit CardBus transaction. .. 59

Figure 13: (a) Embedded computational resources for managing CSR Modules versus (b) CSR
computer module acting as the central computational resource managing other CSR
M o du les... 6 1

Figure 14: Two types of datapath interconnection architectures. A (a) point-to-point datapath has
a single load on each of its signals, while a (b) significantly bussed datapath has multiple
loads on most of its signals with just a few signals point-to-point.................................. 63

Figure 15: Multiple bus communication protocols over a single bussed environment............ 64

Figure 16: Two-socket PC Card CSR IFB specification.. 66

Figure 17: Target disambiguation mechanism implemented through (a) a dedicated chip select
signal, and (b) a global chip select signal ANDed together with a shared chip select........ 71

Figure 18: One-Socket CSR Interconnect Fabric Backplane... 78

Figure 19: CSR architecture scalability based on coupling a pair of two-socket CSR JFBs
to g eth er.. 8 0

Figure 20: A circuit switched IFB supports communication between a large number of CSR
m o d u les. .. 8 1

Figure 21: High-level block diagram of an implementation of the PC Card-based CSR computer
m o d u le ... 8 2

Figure 22: Spectrum of computational resource module processor architectures.................... 83

Figure 23: (a) Writing data samples using a digital-to-analog converter at constant predetermined
time intervals to reconstruct an original audio waveform. (b) Writing data samples to a
digital-to-analog converter at precise variable time intervals to create a time-division
m ultiplexed signal. .. 85

Figure 24: CSR device architecture using simple resources. .. 86

Figure 25: Mechanisms for fine granularity control over communications............................. 90

Figure 26: CSR Computer Module Internal Structures for static- and dynamic-interface
reconfiguration 92

Figure 27: System configuration flow graph for CSR computer modules.............................. 93

Figure 28: (a) Prototype implementation of an Intel StrongARM-based CSR computer module,
and (b) a tw o-socket bussed CSR IFB ... 101

Figure 29: A photograph of the prototype CSR-based multimedia picture frame (top) and the
schem atic diagram for the system (bottom). ... 102

Figure 30: The segmentation proposed by the CSR architecture for the development of network
content devices. ... 104

Figure 31: Comparison of device design cycle based on CSR architecture and status quo
em bedded architectures. .. 107

Figure 32: Device deploym ent cost analysis. .. 109

Figure 33: PC Card-based CSR Multibus Interface Scheduling. .. 114

Figure 34: Total bandwidth utilization by narrowpath channels and maximum bandwidth
available to CSR modules for two configurations of a simple CSR-based audio device.. 116

Figure 35: C-like psuedo-code that describes how to determine the available time between
narrowpath transactions, which in turn can be utilized for module-to-module
com m unications. ... 118

Figure 36: The optimal CardBus transaction burst size for achieving maximum module-to-
m odule com m unication bandw idth. .. 121

Figure 37: Maximum module-to-module bandwidth achieveable with 16-bit PC Cards for various
cycle sp eed s... 12 3

Figure 38: Maximum bandwidth available for IFB-to-IFB communications for a simple CSR-
based audio device plotted against packet width (in bits) the figures assume that IFB-to-IFB
communications are fully inlined with other narrowpath communications. 125

Figure 39: The three architectures compared for power analysis.. 131

Figure 40: Embedding CSR computer modules into device shells to lower signal capacitance. 136

Figure 41: Buffering selected narrowpath signals to lower capacitive loading for narrowpath
com m unications. ... 137

Figure 42: The trade-offs between power consumption, unit cost, and performance for high- and
low-volume embedded solutions as well as for modular CSR-based systems.................. 142

Figure 43: Desired interactivity between designer and backend server. 148

Figure 44: CSR-based device design flow and development steps... 149

Figure 45: Device builder characteristic selection and underlying representation.................... 151

Figure 46: The time utilized for communication with all of the narrowpath components trade-off
with the time available for module-to-module communications....................................... 157

Figure 47: Extensions to the CSR-based Design Environment for generating manufacturable PCB
sy stem s. ... 16 2

Figure 48: The relationship between the CSR design environment and a manufacturable PCB
design process.. 16 3

Tables

Table 1: Possible different ways the sockets of a two-socket IFB can be populated, and the
interface protocol that is used for communication between CSR modules connected to those
so ck ets. .. 6 7

Table 2: Signal specifications for PC Card-based CSR computer modules............................ 97

Table 3: Average lifecycle for products in various classes. .. 111

Table 4: Size and cost analysis for one- and two-socket CSR IFB Controllers....................... 113

Table 5: Bandwidth requirements for various multimedia subsystems..................................... 126

Table 6: Round-trip times for application software running on a CSR computer module to read
data from another CSR module and narrowpath component. ... 129

Table 7: Power consumption of a PC Card-based CSR radio device in various operational states.
... 13 2

Table 8: Capacitive loading from pin input capacitance and PCB trace lengths for each of the
architectures of Figure 39.. 134

Table 9: Bit switching count for a split-bus dedicated architecture and for a time-multplexed
bussed architecture. A theoretical maximum based on all time-multiplexed bits switching on
each cycle is also shown. The percentage increase is with respect to the split-bus dedicated
architecture sw itching count.. 139

Composable System Resources as an
Architecture for Networked Systems

Sandeep Chatterjee

Chapter 1

Introduction

Network devices promise to provide a variety of user interfaces through which users can interact

with network applications. The design of these devices stand in stark contrast to the design of

personal computers in which new software content is accommodated by increased processor

performance. Network device design, on the other hand, must take into consideration a variety of

metrics including interactive performance, power consumption, battery life, transaction security,

physical size and weight, and cost. Designing a general-purpose platform that caters to all of

these metrics for all applications and devices is impractical. For an application mix, a processor

architecture and platform can be designed that is optimized for a selected set of metrics, such as

power consumption and battery life. Each of these optimized processor architectures and

platforms will no doubt be applicable to a variety of devices.

This suggests a modular system architecture for network devices that segments the

computational resources from the device UI. Computational resources can be selected for a

device UI that is optimized with respect to application mixes as well as to user preferences and

metrics. Segmenting out the device UI reduces the complexity of device Uls, simplifying

development and lowering costs. At the same time, with little electrical circuitry resident on

device Uls, the selected platform can more fully optimize the entire device.

19

In this thesis, I describe an architecture for network devices that is based on using pluggable

system resource modules that can be composed together to create a close-to-optimal platform for

a particular application mix and device. Frequently used applications are executed efficiently,

while infrequently used applications execute less efficiently. Metrics for calculating efficiencies

and selected application domains and mixes are specified by individuals as opposed to one-size-

fits-all metrics specified by manufacturers. I show that such a composable system architecture is

effective in optimizing system performance with respect to user preferences and application

requirements, while the modularity of the architecture introduces little overhead. I also explore

opportunities that arise from segmenting devices into UI and computational resource

components, and show that an automated design environment can be created that greatly

simplifies custom device design, reducing time-to-market and lowering costs.

1.1 Optimal Device-to-Resource Mapping

The architecture of personal computers (PCs) is designed such that all applications are executed

adequately well. Hardware accelerators are used for those applications that require additional

performance, and it is common to find graphics or audio accelerators in today's PCs. The

generality of the PC architecture has been supported by increases in processor clock frequency,

memory transaction time, and peripheral bus speeds, but at the expense of increased power

consumption, physical size, weight, and cost.

As computing becomes pervasive and starts to impact our daily lives - at home, at work, at

school, and everywhere in between - a new computing device is necessary. Ideally, this will be a

single device with a user interface that supports intuitive user interaction in all environments and

with a computational platform that executes all applications efficiently. This device would

function as a cell phone for voice communications, a gaming system for playing video games, a

baby monitor for observing the status of an infant, and an instrument for trading securities. Not

only would this ideal device have such a robust UI, but its computational resources would also

execute applications in these disparate domains efficiently with respect to a set of metrics,

including power consumption, battery life, security, interactive performance, and cost.

20

User
Interface * PCs

3Com Audrey 0

0 PocketPC
PalmV 0 0 PalmVx

*MP3 players
Cell phones

Computational
Resources

Figure 1: The spectrum of commonly available devices and their relationship with one
another with respect to the user interface they implement and their underlying

computational resources.

Clearly, such a widely applicable UT cannot be constructed. Nor can a single computational

resource platform (e.g., processor architecture, memory type and configuration, and peripherals)

be developed that executes all current and future un-envisioned applications sufficiently well so

as to cater to individual preferences. Accordingly, the one-size-fits-all UI of the PC is starting to

be augmented by a variety of devices, each of which provides an U that is specific to a particular

function or domain. Figure 1 depicts a spectrum of devices that are available today, and their

relationship with one another with respect to the UT they implement and the underlying

computational resources they use. The user interface axis represents a set of discrete

combinations of modalities and user interfaces, while the computational resources axis represents

a set of discrete combinations of computational resources, such as processor architectures,

application- and domain-specific processors, memory, storage, networks, and peripherals.

PCs comprise for the most part a display, keyboard, and mouse UT while providing an

immense amount of computational power. The 3Com Audrey [32] is an appliance for the kitchen

or family room, and provides a reasonable-sized display, custom knobs for easily interacting with

family-oriented applications, and less powerful computational platform. The Palm V implements

21

0@ 0 ** S

0@ @0e 0 *

Metric

Application-specific Proc

Domain-specific Proc

General-purpose Processor a

Coverage

Figure 2: Optimal and close-to-optimal mappings of application mixes to computational
resource platforms.

a small stylus-based touchscreen for mobile data entry and time management, and provides

limited computational resources. The Palm Vx implements the same UI as that of the Palm V, but

provides more memory [39].

For a given device, one need only use a computational resource platform that efficiently

executes applications that are applicable to that particular device UT. Device Uls such as that of

the Palm V are sufficiently broad that they can support applications from many distinct domains,

including data entry, time management, games, sales force automation, and security. Some of

these application domains can be executed efficiently on a single computational resource

platform, such as one based on a general-purpose microprocessor. Others, such as graphics-rich

games and security applications, can be executed much more efficiently on platforms optimized

for such applications (see Figure 2). For example, software-based encryption for universal secure

network communications can place an undue burden on a general-purpose processor and increase

energy consumption that can be resolved by the use of a hardware accelerator or co-processor

[67].

The emergence of new applications and new domains for a particular device UI will

sometimes also require users to upgrade or change the device's computational resources. As part

of adopting new applications, user preferences may also change. For example, consider an

application that enables mobile devices to access enterprise data securely. The need to encrypt

22

and decrypt large numbers of data packets is oftentimes at odds with long battery life [67]. On

the other hand, a new computational resource platform that is optimized for security and energy

consumption will enable the user to securely access enterprise data while maintaining reasonable

battery life. New software strategies for energy management may be based on hardware

mechanisms not yet implemented, and require a computational resource upgrade [52]. All

together new hardware platforms that efficiently execute applications for a device UI while

catering to individual preferences can also be used [26-28, 50, 51, 68, 74].

Computational resource modules also simplify device software development. Resource

modules control and communicate with the device UT, and existing applications and operating

system environments associated with the modules can be immediately used, without

configuration or porting. Eliminating or at least reducing the software development effort

fundamentally affects device cost and time-to-market [75].

Essentially, a single general-purpose computational resource platform cannot be developed

such that it is optimal with respect to a set of metrics for all device Uls and applications. Given

an application mix for a device UI, computational resources optimize to each individual's liking

different parameters such as interactive performance, power consumption, battery life, security,

physical size and weight, amount of memory and storage, and cost.

1.2 System Architecture

The mapping of application mixes and user preferences to distinct computational resources have

important implications for device design and their underlying architecture. If there are N possible

device Uls and R possible computational resource platforms, there are N x R total devices that

must be offered to fully cater to all potential users. The development of so many distinct devices,

many of which will have low volumes, result in design and manufacturing inefficiencies and

increased costs. Since these devices will be the enabler for the delivery of network-based content

and services, reducing unit cost is paramount. Secondly, if a new device (device UI or

23

computational resources) is necessary before new content or services can be deployed, time-to-

market is also important.

An alternative approach to an embedded device design is based on a modular architecture.

Recognizing that the same computational resource platform can optimize the performance of

application mixes of a number of device Uls, N + R pluggable modules can be created that are

composed together to realize custom devices that cater to individual needs and preferences. With

such a modular solution, changes in user preferences can be accommodated by simply upgrading

or replacing either the UI or the computational resources. Important preferences, such as long

battery life, can be maintained and even optimized over time as new technologies are introduced.

Finally, different computational resources or Uls that more appropriately accommodate new

"killer app" content and services (or usage patterns) can be immediately deployed.

This is in contrast to status quo embedded systems that assume a static environment in which

the hardware resource specifications of a device remain fixed. Constantly changing network

content and associated changes in user preferences negate this assumption, and motivates a

modular system architecture. Ideally, the division between the device UI and the computational

resources is very close to the UI. This allows the UI, which is a low volume, custom design, to be

easily developed and inexpensively manufactured.

In this thesis, I present a unique, strategic, and complete framework for the design,

development, and distribution of network devices. This framework is comprised of the novel

Composable Systems Resource (CSR) architecture, which proposes a segmentation between the

user interface of a device and its underlying computational resources. The CSR architecture

pushes this segmentation close to the device-specific UI components, whereby simplifying

device UI development and lowering unit costs. Moreover, by exposing low-level UI hardware to

the pluggable computational resources, changes in platform technology and network content can

most flexibly utilize the UI. I also present an implementation of the CSR architecture that is

based on off-the-shelf components, including popular PCMCIA PC Cards and commodity 1/0

circuits, and show the framework to be a cost-effective one in building highly customized

devices and applications that are optimized with respect to user needs and preferences for

24

CSR Module

CSR Module

Figure 3: The three blocks of the Composable System Resources architecture are: 1)
CSR Modules, 2) the device "shell" comprising various controllable components of the

device, e.g., motors, digital-to-analog converters and audio speakers, and 3) a CSR
Interconnect Fabric Backplane (IFB) that provides electrical connectivity between the

device shell and CSR modules.

parameters such as interactive performance, power consumption and battery life,

and weight, ability to cache network content, security, and overall cost.

The following sub-sections further motivate and describe the CSR architecture,

design flow, and fulfillment model.

physical size

its associated

1.3 Composable System Resources

Today, standard battery cells, e.g., AA, C, or D, provide electrical current that powers many of

our everyday devices-everything from two-hundred dollar boom boxes and portable televisions

to twenty dollar calculators and even free flashlights. These standard battery cells relieve product

manufacturers from having to design power systems from the ground up and enable consumers to

maintain their devices by simply swapping in fresh batteries. These benefits come with lower

unit costs from the standard cells' enormous volumes and manufacturing economies-of-scale.

25

Device Components

Device Components

CSR IFB Device Components

Device Components

Device "Shell"

The Composable System Resource (CSR) architecture is modeled after standard battery cells.

Instead of providing electrical power in a standard packaging, CSRs provide computational,

network, and peripheral resources as simple building blocks that can be composed together by

manufacturers and consumers alike to realize a desired systems architecture. The CSR

architecture consists of three fundamental components: 1) application-independent CSR

computational or peripheral resource modules, 2) a device "shell" comprising the specific 1/0

components and plastics of a custom device, and 3) a CSR Interconnect Fabric Backplane (IFB)

that provides electrical connectivity between CSR modules and the device "shell", and handles

miscellaneous resource management issues. This entire system architecture is shown in Figure 3

[12-17].

The modularity of the CSR architecture addresses the fundamental issues surrounding

network devices. First, a device UI or "shell" can be designed and manufactured without having

to specify the computational resources apriori. Immediately before distribution, the appropriate

CSR modules can be selected based on "killer app" content available at that time. This just-in-

time kitting [40] between the device "shell" and the computational resources of the device

insulate device manufacturers from fluctuations in content development and market adoption

rates. Secondly, if changes in "killer app" content happen after a device has been introduced to

consumers, manufacturers can immediately introduce next-generation devices based on existing

"shells" and more resource-rich CSR modules. Similarly, consumers can also easily change or

augment the capabilities of their "shells" by simply swapping in additional CSR modules or by

replacing existing modules.

In this thesis, I present one implementation of the CSR architecture based on popular

PCMCIA PC Cards [3, 49, 55, 60]. In this implementation, CSR peripheral modules are infact

off-the-shelf PC Cards, while CSR computer modules are packaged as PC Cards and provide the

electrical interfaces necessary to communicate with the PC Card peripherals as well as with

components of the device "shell". This implementation takes advantage of the market penetration

of PC Card peripherals, and, at the same time, leverages the low costs and availability of PC

Card packaging and connectors.

26

32-bit CardBus

16-bit PC Card
SPI I SPI 2 SPI 3 SPI 4 SPI 5

EPP
1 1 2 3 1 4 5 1 6 1 7 1 8 | 9 1 10 | 11 1 12 13 14 1 15 1 16 17 1 18 1 19 1 20

Figure 4: Multiple interfaces supported by the CSR architecture. Non-contiguous
horizontal segments from each row can be coordinated together to form a CSR module's

overall electrical interface.

The following sub-sections further describe the PC Card-based CSR implementation.

1.3.1 Configurable Universal Interface

The CSR architecture is centered on a configurable universal interface. As a CSR module is

connected to an FB socket of a device "shell", the LFB programs the module with information

that allows the module to configure its 1/0 interface so that it can control and communicate with

the components of the device "shell". The universality of the interface allows CSR modules to be

general-purpose modules that can be used across application domains and market segments.

Figure 4 shows a set of standards-based interfaces that are supported by the current

implementation of the CSR architecture. The current implementation supports both the 32-bit

CardBus [63] and the original 16-bit PCMCIA PC Card [3] interface. It additionally supports a

variety of common narrow datapath (hereinafter, narrowpath) interfaces, including simple bit-

toggling (shown in Figure 4 as simply numbers), Serial Peripheral Interface (SPI), Microwire,

RS-232, 8-bit parallel, and Enhanced Parallel Port (EPP). Narrowpath interfaces are typically

found on commodity off-the-shelf components as they limit the pin count of a component, and

thereby its overall size and cost. Multiple non-overlapping narrowpath interfaces (as shown in

Figure 4) may be activated in parallel, and provide a simple architecture for designing a device

"shell".

27

S~EI EHEEIIEI limE - -

CSR Computer
or Peripheral

Module

High Bandwidth Communications
Path Supporting PC Card Interfaces

CSR =Computer
or Peripheral

Module

IFB
Controller

qDevice "Shell"
Components

Multiple Communications Paths
Supporting Electrical Interfaces of the

Device "Shell"

Significantly Bussed
Interconnection Fabric

Backplane (IFB)

Figure 5: Multiple bus communication protocols over a single bussed environment.

1.3.2 Significantly Bussed Interconnect

In the PC Card-based CSR implementation, CSR computer modules communicate with other

CSR computer modules, PC Card peripherals, and with the components of the device "shell".

Typically, device "shells" are made from commodity components based on standards-based

narrowpath interfaces. In order to reduce IFB size, cost, and power consumption, the current

implementation uses a bussed architecture that interconnects CSR modules and narrowpath-

based device "shell" components.

- Figure 5 depicts a significantly-bussed IFB architecture capable of supporting two CSR

modules. Each CSR module can communicate with each other as well as with device "shell"

components over a significantly bussed interconnect. The IFB Controller handles resource

management and prevents bus contention. By limiting the number of signals that must traverse

through the IFB Controller, we reduce IFB Controller pin-count, package size, and die size,

28

thereby reducing overall system size and costs and making CSRs appropriate for a wider array of

devices.

The direct connection between CSR modules and device "shell" components and the variety

of electrical interfaces and protocols used thereby require time-multiplexing different interfaces

over the shared bus. In particular, CSR computer modules time-multiplex the appropriate set of

electrical interfaces over its connector so as to communicate with the fixed interfaces of either

another CSR module or device "shell", with the IFB Controller preventing bus contention and

providing target disambiguation.

The PC Card-based CSR architecture with a significantly bussed IFB is a simple and cost-

effective system, which obviates the need for expensive and area consuming buffer memory on

the IFB. As clock speeds and overall performance of PC Cards as well as of commodity analog

and digital 1/0 chips (e.g., analog-to-digital converters, digital-to-analog converters) increase, the

bandwidth limitations of time-multiplexing communications will diminish. Nonetheless, this

thesis demonstrates that for many common applications, the herein described PC Card-based

CSR architecture is sufficient and adequate.

1.3.3 Timer-Based Data Buffers

Timer-based data engines within CSR computer modules allow directly interfacing commodity

analog and digital I/O components onto IFBs. Most commodity 1/0 components simply provide

the 1/0 functionality, and assume that a dedicated controller exists to handle jitter and to stream

data into and out from them. PC Card-based CSR computer modules subsume the role of

dedicated controllers by providing configurable timer-based data buffers together with

configurable protocol engines.

Figure 6 illustrates the timer-based data buffer unit used within PC Card-based CSR computer

modules. Software can program each unit to output to or sample data from an external

component at a preset time interval, and delay packets can be written to the data buffer itself to

override the preset time interval. Timer-based data buffers together with configurable standard

29

electrical interfaces simplify device "shell" development. Off-the-shelf commodity components

may be placed onto an IFB, without having to design any glue-logic, controller or timer circuit.

1.3.4 Symmetric System Composition

Most systems can be segmented into computational resources and peripheral (including

networking and 1/0) resources. System symmetry refers to the interchangeability of

computational and peripheral resources within the overall system without any adverse

performance degradation. Today, most systems are not symmetric. Personal computer

motherboards or CompactPCI [36, 61] industrial backplanes with peripheral plug-in slots cannot

support a computational resource plug-in card as well as it can in the primary Slot 1 processor

slot. Differences in electrical interfaces, form factors, and overall use between peripheral

resources and computational resources do not support system symmetry. Non-symmetric systems

result in design flexibility limitations, confusion on the part of consumers trying to upgrade their

systems, and inefficient inventory management and assembly by fulfillment centers.

30

Data Buffers

Timing
Circuitry

Buffer Controller
and Protocol

Engine

t
Communication With

External 1/0 Component

Figure 6: CSR Computer Modules include timer-based data buffers that output or
sample data from external I/O components. The timer-based data buffers support the
use of simple commodity I/O components without dedicated controllers or glue-logic.

The CSR architecture is fully symmetrical - CSR computer modules or CSR peripheral

modules may be connected to any IFB sockets equally well and infact, two CSR computer

modules can be connected together to form a multi-computer. In order to support fully

symmetrical composition of CSR modules, the IFB controller acts as the central resource

manager.

Having described the salient features of the CSR architecture, the next section describes a

simple design flow inspired by the architecture.

1.4 CSR-Based Device Design Flow

A simple device design flow enables Web portals and any company whose core competence is

not in developing devices to build branded, custom, and content-specific devices themselves.

Such a design flow removes the dependence and uncertainties associated with contracting a third-

31

Specify Device
Characteristics for CSR

Design Env I

CSR Design Env Converts To PCB

Characteristics Into Fabrication and

Hardware Resources Assembly

I j t
CSR Design Env Converts CSR Design Env
Hardware Resources Into Generates EDIF
Component Part Numbers Compliant Netlist

CSR Design Env Places
Components Onto CSR

IFB

Figure 7: CSR-based device design flow and development steps.

party device manufacturer, as well as lowers unit costs and affords the company to choose from a

variety of business models that make sense for the device.

If the device design flow is sufficiently simple then designers themselves can fully develop a

device, without having to involve a set of engineers. Removing the need to communicate creative

ideas and concepts from designers to engineers reduces overall time-to-market and system errors

borne out of miscommunication. In the Post-PC Internet, as the characteristics of content-specific

devices are used to enhance and differentiate content and increasingly more of our analog devices

become digital, a simple design flow empowering creative designers themselves to fully develop

devices will be necessary.

The CSR architecture is uniquely positioned to fill this need. The CSR architecture is infact a

greatest-common-denominator architecture in which the system resources common to most

devices are CSR modules. Only the custom look-and-feel and I/O interactivity of the device must

be designed and developed; the appropriate CSR modules, which form the basis for the device

platform, are simply purchased.

32

Feature and Part Selection LivePort Schentadr Generation

Microphone

Controller (1

Figure 8: Device Builder Characteristic Selection

1.4.1 Characteristic-based System Design

The CSR architecture structures and greatly simplifies device design and development, while

providing sufficient flexibility to support a wide assortment of devices. This structured design

flow can be automated to a large degree and further simplified.

The first step in CSR-based systems design is to specify the general characteristics of the

device. As shown in Figure 8, this may simply involve checking off a set of desired

characteristics from an enumerated list. The automation environment basically comprises a set of

heuristics for realizing various device characteristics. For example, if a device is to have the

ability to output audio, it must have a digital-to-analog converter to convert digital audio

representations into analog signal levels that can be output through an audio speaker.

Once a desired set of device characteristics have been transformed into a set of simple I/O

resources, the next step is to choose the actual off-the-shelf component part numbers and to

appropriately place them on the CSR IFB.

33

1.4.2 Component Selection, Placement, and Quality-of-Service

Selection and placement of off-the-shelf components on CSR IFBs is primarily based on the

following properties:

" Interface support: CSR computer modules must support the electrical interface and protocol

of each component. Many off-the-shelf 1/0 components use SPI, Microwire, and 8-bit

parallel interfaces, all of which are supported by CSR computer modules. Components must

be placed onto appropriate datapaths of CSR FBs so as to match the pin-out and protocol

engine positioning of CSR computer modules.

* Quality-of-service: The system must guarantee that peak bandwidth requirements between

CSR modules as well as between CSR computer modules and device "shell" components

can be met over the time-multiplexed bussed CSR IFB environment. Specified heuristics for

low-quality audio, CD-quality audio, CSR module aggregate average bandwidth (e.g., 16-bit

PCMCIA IMbit/sec Ethernet network PC Card), combined with component datasheet

information (e.g., packet size, payload, clock frequency) allow design-time quality-of-service

guarantees.

* Miscellaneous properties, including load capacitance, unit cost, availability and lead-time,

size, power consumption of the component.

1.4.3 Netlist Generation and Software Configuration

Once components matching the desired characteristics have been selected, bandwidth and

quality-of-service have been guaranteed, a system netlist can be generated. A netlist provides a

textual representation and specification of pin-to-pin connections between all components. A

netlist in the popular EDIF [22] format combined with layout information (commonly available

for commodity components) can be automatically routed for printed circuit board fabrication and

component population.

Information about the components of the device "shell" is also stored on the IFB. This allows

fully generic CSR modules to be connected to a custom device "shell" and have the ability to

34

communicate with and control each of the "shell's" components. This information may be stored

in ROM as a software readable data or it may simply be a short identifier that can be

dereferenced (possibly over a network) to access the actual information.

Essentially, CSR modules together with the CSR-based design tool support the rapid

development of complete working devices by simply selecting desired device characteristics.

1.5 CSR-Based Manufacturing and Fulfillment Model

Just as content-based devices provide new challenges in system architecture design, they too

provide challenges in device manufacturing and order fulfillment. Abrupt changes in "killer app"

content or market adoption cycles can leave devices unusable or unsaleable. The CSR

architecture inspires a unique manufacturing and fulfillment model that is both strategic and

economical, especially for smaller portals without large capital resources.

The universal interface between CSR modules and actual device "shells" support just-in-time

kitting of the general CSR module to the specific "shell". This just-in-time kitting affords two

fundamental benefits in manufacturing and fulfillment:

" Reduced inventory risks. As companies are reluctant or unable to allocate large amounts of

capital for device inventory, the separation of device "shells" from CSR modules offer an

unique distribution model that minimizes inventory space and dedicated capital. As device

"shells" are specific to a particular company, they must be custom manufactured and

expensed by the company. CSR modules, which are general and customer unspecific can be

mass manufactured, and assembled into device "shells" only upon order fulfillment. In this

fulfillment model, only upon fulfillment, must the company allocate capital for and absorb

the costs of the entire device - "shell" and CSR modules.

" Immediate Deployment of Content. New content and services for existing device "shells"

may be immediately deployed by simply changing or augmenting CSR modules such that the

appropriate hardware resources are available. This frees content developers from being

limited by the established base of device platforms (e.g., already deployed devices with CSR

35

modules), and instead empowers them to create compelling applications knowing that

changes in hardware resources can be immediately accommodated.

* Recovery Of CSR Modules On Unsold Device Inventory. As new "killer app" content usurps

the place of old "killer app" content and leaves unsaleable device "shell" inventory, CSR

modules may be recovered from these devices and used in other devices, salvaging the

platform's cost.

CSRs bring all the benefits and convenience of batteries to network devices. Essentially, CSRs

can be thought of as the batteries of the 21st century, offering three degrees-of-freedom, in

choosing (a) the computing environment, (b) the peripheral environment, and (c) the software

environment.

1.6 Summary Of Contributions Of This Thesis

This thesis makes contributions in the areas of computer system design, device development

paradigms and cycles, and man-to-machine interfaces. These are outlined in the following

sections.

1.6.1 Computer System Design

Devices for accessing and interacting with network content will play an increasingly large part of

our everyday lives - at home, at school, at work, and on the road. These devices present a set of

requirements in design and development, manufacturing and distribution, and maintenance that

are fundamentally different from today's consumer electronic devices and personal computers.

Understanding these requirements will lead to recommendations for future systems design, as

well as a set of metrics by which to judge network content device architectures.

The CSR architecture represents a reversal in today's computing paradigm: instead of

connecting a device to a computer, the CSR architecture proposes to connect a computer

(module) to a device. This modular architecture recognizes the issue of volatility of system

36

resources in network devices, and proposes the notion of composability of processor, network,

and peripheral resources at both the consumer and manufacturer level. Similar to standard cell

batteries, composable systems allow manufacturers to easily design and develop devices by

simply following a few composition rules, and allow consumers to maintain and upgrade their

devices as desired.

CSR-based composability provides a simple and cost-effective means to optimize devices

along various dimensions of user preferences. Unlike traditional PCs that aim to provide

maximum runtime performance given only the constraint of cost, network devices encompass a

larger variety of constraints and trade-offs, including power consumption and battery life,

interactive runtime performance, physical size and weight, amount of storage available to cache

network content, security, and cost. The modularity of the CSR architecture allows individuals to

configure their devices and optimize them to most fully meet user preferences instead of settling

for one-size-fits-all devices as determined by manufacturers.

The CSR architecture also introduces the notion of system symmetry, which places peripheral

and computational resources on equal footing. Any CSR module - computational resource or

peripheral resource - can occupy any CSR IFB socket equally well without degradation in system

performance. Symmetrical systems are important in providing manufacturers and consumers

flexibility to address changes in resource requirements for "killer app" content and new

preferences.

In order to better understand the requirements for network content devices as well as to

understand the feasibility of the CSR architecture, this thesis presents an implementation and

complete specification of the CSR architecture. An implementation of the CSR architecture that

is based on popular PCMCIA PC Cards and off-the-shelf commodity 1/0 components is

presented. Support for PCMCIA PC Cards as CSR peripheral modules allow instant availability

of a broad spectrum of affordable peripheral and network modules, while support for off-the-

shelf commodity I/O components allow fast and inexpensive development of device "shells".

Analytical and experimental analyses demonstrate that the PC Card-based CSR architecture to be

a cost-effective one in building optimized devices while incurring small overhead.

37

1.6.2 Application Development

In the CSR architecture, pluggable computational resource modules are used to optimize the

performance of devices along a set of parameters so as to cater to individual preferences. This

means that a single device (or device UI) can be powered by a variety of different computational

resources. The implications for application development are enormous. Applications, which are

currently written for a particular platform, such as WindowsNT or Linux, can no longer assume

the existence of such a standard target environment. Instead, applications will be written for

device Uls, and optimized by selecting CSR modules.

1.6.3 Device Development Cycles and Paradigms

Network devices represent a fundamental shift in the go-to-market model for consumer devices.

Whereas PCs and consumer electronics have traditionally been retail distributed, Internet devices

will typically be distributed through service providers, bundled together with their content or

service offerings. In this scheme, the device is merely an enabler to the delivery of the real

product - the service provider's content or service. Accordingly, device development must be

fast, simple, inexpensive, and must easily cater to changes in "killer app" content. A device

design flow that empowers creative designers, with minimal technical ability, to fully develop

custom devices, rapidly, accurately and cost-effectively is necessary.

In order to more fully understand the requirements of such a design flow, the various aspects

of device design has been analyzed and quantified. Given these requirements, the Device Builder

Environment based on the CSR architecture has been specified.

1.6.4 Man-to-Machine Interfaces

The primary technical determinant of a product's success is oftentimes not by the number of

functions it performs but by the simplicity and grace of its user interface. Much work in user

interface design has focused on software user interfaces such as graphical user interfaces or

organizational schemas, with much less work in the area of physical design and tactile interfaces.

38

However, highly personalized and graceful software user interfaces represented through a non-

intuitive and difficult-to-use physical devices may lead to negative acceptance. The man-to-

machine and user interface aspects of devices are not the main focus of this work, but the end-to-

end device design flow and system architecture presented herein will enable more research in

physical user interfaces. A set of CSR-based network devices that allow simple and intuitive

interaction with network content has been built. The development of these devices not only

shows that different user interfaces are oftentimes more appropriate for interacting with different

classes of content and services, but also demonstrates the simplicity with which CSR-based

devices can be designed and optimized.

1.7 Organization Of This Thesis

This chapter began with an introduction to devices based on network content and services. The

dynamic nature of network content and services motivated the need for a similarly dynamic

systems architecture that need not be fully specified prior to device manufacturing and

distribution. The chapter went on introduce the Composable Systems Resource architecture for

network devices, and described how the fundamental characteristics of the CSR architecture

make it appropriate for use in network devices. The chapter also discussed the design flow made

possible by the structure of the CSR architecture, and how an associated design automation

environment reduces design errors and time-to-market. Finally, the chapter described a just-in-

time fulfillment model based on the CSR architecture that is both strategic and economic in its

importance to small and large companies.

Work related to the issues addressed by and underlying the Composable System Resources

architecture is presented in Chapter 2. This related work is segmented into three areas. The first

examines various systems paradigms for network devices. The second area examines modular

hardware systems in general. The third area examines prior work on design automation tools.

39

Chapter 3 describes the CSR architecture, and, in particular, fully specifies the PC Card-based

implementation. The chapter also provides background information on the PCMCIA Standard

and the two primary PC Card interfaces.

Chapter 4 evaluates the PC Card implementation of the CSR architecture along a variety of

metrics, including communication 1/0 performance, power consumption, and cost.

Chapter 5 describes the CSR-based design flow and specifies the CSR Device Builder

automation environment.

Chapter 6 concludes this thesis and proposes directions for future enhancements and

developments.

40

Chapter 2

Related Work

This chapter presents previous work related to the CSR architecture as well as previous work

related to the CSR-based device design flow. The first section discusses related work on the

computing paradigms and systems architectures of network devices. Much of the work in this

area has focused on PC-based systems versus processor and network architectures for distributed

devices. The next section discusses related work on modular consumer and industrial systems.

For the most part, this work has addressed issues surrounding electrical interface design and bus

architectures. The last section discusses related work on electronic design automation (EDA)

tools that simplify systems development. Much of the work in this area has focused on creating

abstractions for chip design and verification.

2.1 Related Work On Computing Paradigms

2.1.1 Centralized Computing Paradigm

The centralized computing paradigm is based on a single powerful central computer that provides

computational resources to a set of peripheral devices connected to it. Today, most home

41

personal computers (PCs) have a pair of speakers, a printer, a digital camera, a monitor, a

keyboard, and a joystick connected to it, each of which has time-multiplexed access to the PC's

resources. Newer devices such as network phones and MP3 audio players use wireless

communications between the PC and each device to enhance mobility.

A central PC that services multiple devices enables prorating the cost of the PC over all of the

devices. Moreover, the standard interfaces commonly found on PCs, including serial and parallel

ports [8, 9, 46], Firewire [2, 47], and Universal Serial Bus (USB) [4, 7], simplify and expedite

device development. The structured software environment of PCs together with the well-defined

electrical interfaces of the PC ports make complete device development unnecessary; device

functionality must only be built around the hardware and software PC port specifications.

However, as transistor sizes continue to shrink and silicon chips become cheaper, the cost

advantage of PC-connected peripherals diminishes. At the same time, the geographical

limitations of tethered or wireless PC-connected devices oftentimes limit their mobility, and

sometimes their overall utility.

Multiple devices, each with their own software applications and device drivers, supported by

the hardware resources of a single PC, make application-level and systems-level software more

difficult to develop, debug, and maintain.

The technology driver limiting the appeal of a centralized computing paradigm is power

consumption. The power consumed per bit transmitted or received over a wireless network is

asymptotically approaching its theoretical minimum, while the power consumed per Millions of

Instructions Per Second (MIPS) of a silicon microprocessor is continuing its rapid decrease with

improvements in technology (as predicted by Moore's Law). Accordingly, power savings can be

achieved by minimizing network usage through data compression and encoding schemes that are

then uncompressed and decoded by a processing environment local to the device.

The CSR approach is an eclectic one combining the abstraction and modularity benefits of

PC-based devices, without incurring many of the disadvantages of centralized computing.

Essentially, the modularity and separation between PC ports and PC-connected devices is similar

42

to that between CSR modules and CSR-based device "shells". As a CSR module is local to each

device, the power consumption and software development concerns are minimized.

2.1.2 Distributed Computing Paradigm

Distributed computing systems are devices with local computational resources that are networked

together. Sun Microsystem's Jini and Microsoft's Millennium are software environments for

supporting distributed computing [38, 43].

Jini builds upon Java's platform independence and delivers a set of lookup and discovery

protocols that enable heterogeneous devices to leverage one another's services. Jini uses the

notion of "leasing" resources from other networked devices so as to leverage their services.

Consider a digital camera that has its own local computational and storage environment for

taking and maintaining digital images. Once in close proximity to a printer, the digital camera

can "discover" the printer's print service and use it to produce hard copies of the images. By

leasing the print service and the hardware resources of the printer, the camera need not use its

own computational resources for that particular service [21].

Jini provides a software environment for discovering network-based services and for

supporting communications between heterogeneous devices. It does not directly address the

issues surrounding local hardware resource deficiencies arising from constantly changing

network content. Within Jini's service model, applications may be divided into various

proportions of remote services and local "stubs" so that local hardware resources are fully

utilized. Oftentimes, application division is tedious, and the optimal proportion of local stub size

to remote service size is difficult to maintain given a dynamically changing processor load (from

changing content, applications, and services).

[37] describes a system architecture and implementation of a distributed environment based

on nearest-neighbor communications. Each node of the environment is a low cost, resource-

limited processor that only communicates with its closest neighbors who may or may not be the

target node. If the desired information or service is not available at that node, the node

43

communicates the message with its neighbors, thereby propagating the message with little

transmission power and with limited airwave (bandwidth) pollution. This architecture is effective

for connecting simple devices such as remote controls and small appliances, but may not provide

a sufficiently robust platform for rich real-time content and services.

[70, 72, 73] showcase the issues underlying and technology developments required for

realizing the ubiquitous computing framework. In [71], Weiser describes the differences between

today's computers and ubiquitous computing as follows:

Suppose you want to lift a heavy object. You can call in your strong assistant to lift it
for you, or you can be yourself made effortlessly, unconsciously, stronger and just lift it.

Personal computers (PCs) and personal digital assistants (PDAs) allow access to virtually all

content and services. Similar to the strong assistant called in to lift the heavy object, PCs and

PDAs oftentimes lead to non-intuitive and disruptive interaction with classes of network-based

content and services. The CSR architecture allows the rapid and cost-effective definition and

construction of a variety of devices in all shapes and sizes, through which we can effortlessly and

unconsciously interact with content and services throughout our everyday lives.

2.2 Related Work On Modular Hardware Systems

2.2.1 PCMCIA PC Cards

[3, 49, 55, 60, 63] detail the specifications for PC Cards, which are credit-card-sized integrated

circuit cards that allow upgrading and augmenting the peripheral capabilities of mobile

computing environments. The Personal Computer Memory Card International Association

(PCMCIA) defines and maintains the standard and promotes interoperability between computer

manufacturers and PC Card manufacturers. Today, many peripherals can be found packaged as

PC Cards, including network interface cards, joysticks, volatile and non-volatile memories,

digital cameras, and wireless communication devices. The convenience and economic benefits of

PC Cards have led to their widespread adoption with not only laptop computers supporting the

standard, but also some television set-top boxes, DVD players, and digital cameras providing PC

44

Card sockets. Essentially, PC Cards address the need to upgrade and augment the peripheral

resources, but not the computational resources, of a computing environment.

[35] describes a "peripheral" processor PC Card. Peripheral processors allow augmenting the

resources of a primary processor, and rely on the primary processor system to configure it and to

maintain proper operation. As new software functionality, content, and services become an

increasingly important part of network devices, the need to upgrade both the computational and

peripheral resources of a device will be necessary. Power consumption concerns and cost issues

will require that primary processors and not additional peripheral processors be upgradeable and

be made modular. The CSR architecture described herein presents such a modular primary

processor architecture.

2.2.2 CompactPCI

CompactPCI is an industry standard bus and edge-card form factor popular with various types of

industrial peripherals and computer modules. The CompactPCI architecture leverages the

Peripheral Component Interconnect (PCI) specification [64] and adapts it for a more robust

mechanical environment [61].

CompactPCI is a bus standard, and not a complete system specification for consumer or

enterprise network devices. For instance, CompactPCI is not a symmetric bus - computer

modules must be connected to a predetermined location on the bus, while peripheral modules

may be connected to any of the remaining locations. This makes system assembly and consumer

upgrades confusing and potentially more expensive. Moreover, the standard does not support

simple and inexpensive device "shell" design as all components on the bus must use the

CompactPCI interface. The CSR architecture's use of a time-multiplexed multi-bus electrical

interface allows seamless communication between computer and peripheral modules as well as

with commodity off-the-shelf components of device "shells".

45

2.2.3 NuMesh

The NuMesh project proposed the use of Lego-like modules that can be connected together to

realize high-performance computational structures. The NuMesh system recognized the

bandwidth and latency limitations inherent to serialized backplane bus architectures, and instead

suggested a three-dimensional nearest-neighbor topology. Communication between nodes is

handled by a simple hardware element that relies on compile-time pre-configuration instead of

dynamic run-time configuration. The system combines plug-and-play hardware modularity with

efficient inter-node communications [69].

Where NuMesh tries to achieve maximal communications bandwidth over a modular

substrate, the CSR architecture stresses simple and low cost device design with bandwidth

sufficient for popular multimedia applications.

2.3 Related Work On Design Automation Systems

Previous work on design automation systems has primarily focused on hardware description

languages, compilers and synthesis tools [6, 10, 53, 54, 56], as well as black box language

abstractions and graphical representation methodologies [20, 48]. As system complexities have

increased, more recent work has focused on design verification, including test vector generation

and coverage metrics [23, 24].

2.3.1 Design Automation Environments

Although they have simplified and automated many tedious aspects of systems design, previous

work has not achieved a sufficiently high design flow. Similar to graphical user interfaces (GUIs)

that improved upon command-line-argument-based interaction with application programs, and

natural language interfaces that promise to one-up GUIs, a high level design flow for network

devices will simplify device development, thereby reducing time-to-market, lowering unit costs,

and enabling the deployment of custom devices for finer market segments.

46

This thesis presents a "natural language" design flow for the development of network devices.

This design flow merely expects a designer to convey to the design environment the high level

characteristics of the envisioned device. For example, a voice-enabled network radio may consist

of the ability to output and receive audio, specified to the design environment as a set of

checkboxes. The design environment then converts these checkboxes representing the general

characteristics of the device into instantiations of commodity, off-the-shelf analog-to-digital

converters (to receive audio), digital-to-analog converters (to output audio), as well as other

requisite components for proper operation. The output of the design environment is an Electronic

Design Interchange Format (EDIF) [22] netlist that can be routed for printed circuit board (PCB)

fabrication and component population.

Literature has not addressed such a high level and holistic approach to systems design.

Although this thesis does not present a general solution to the problem of automated systems

design based on an enumerated list of device characteristics, it presents a solution for devices

utilizing the CSR architecture.

2.3.2 Future Design Automation Environments

Technology developments may one day result in design automation environments capable of

synthesizing high-level device characteristics directly into system-on-chip (SoC) designs [11].

These highly integrated mixed signal SoC designs would reduce the energy consumed by

devices, and lessen the gap between the energy demands of emerging portable devices and the

energy capabilities of batteries [28].

The device design process can be segmented into three distinct pieces: 1) prototype

development, 2) prototype iteration, and 3) final product development. Iterating over multiple

device prototypes allows designers, working in conjunction with focus groups, to understand

whether the device will really serve the needs of the market. Once the proper device has been

prototyped, the final product development step begins.

47

A design automation environment that maps high-level characteristics to SoC designs will

most probably be used during the final product development step and not be included in

prototype development. This is because there are significant financial resources required to

implement mask application-specific integrated circuits (ASICs) based on advanced deep sub-

micron technologies (0.35gm and smaller). As transistor sizes continue to shrink faster than

metal lines, interconnect delay becomes the dominant component of signal delay, dwarfing gate

delay. In order to reduce interconnect delay, additional metal layers are typically used to provide

more robust routing resources. Since mask development for each layer incurs significant cost, the

use of additional layers increases the non-recurring expense (NRE) of each custom design, and it

is common to find NREs in excess of $100,000 [76].

High-volume devices, such as cellular phones, can absorb such large NREs as the NRE is

prorated over millions of units. However, as companies migrate away from one-size-fits-all

devices to more custom ones [25], the high NREs of custom ASICs will become prohibitively

expensive. Even at reasonably high volumes, such as 500,000 units per annum, the unit cost of

custom ASICs is at par with more general-purpose platforms, such as field programmable gate

arrays [45].

Essentially, the use of SoCs and high-level design environments that rapidly map device

characteristics to custom ASIC SoCs will reduce the system's power consumption but will

adversely impact its price point. Accordingly, custom solutions will be used to implement

extremely high volume devices or devices for which reduced power consumption is critical.

Devices not falling into these categories will be based on off-the-shelf general-purpose or

domain-specific components.

48

Chapter 3

Composable System Resources

Composable System Resources (CSR) is a system architecture for simple battery-like usage of

computer and peripheral modules in lieu of traditional embedded solutions. Small-sized

computer and peripheral modules may be composed together by designers and consumers alike to

realize a desired computational system for network devices. Composable building blocks support

the development of highly customized network devices that cater to the specifications and needs

of finely divided market segments. Instead of mass-produced one-size-fits-all devices that try to

amortize the long development time and costs over a large number of devices, custom devices

promise to deliver superior interactivity and user satisfaction.

As depicted in Figure 9, CSR is centered on an universal interface specification. This

specification is flanked on one side by a device "shell"* and on the other side by CSR modules.

This universal interface allows for independent development of the "shell" without specifying

apriori the actual computational resources, e.g., processor MIPS, amount of memory, network

type, and software environment, of the device. As computing resources become ubiquitous and

power all devices, the modularity of CSRs affords:

49

* Development of a variety of innovative network devices without encumbering designers with

the task of specifying and building the underlying computational resources;

* Just-in-time kitting of appropriate computational resources to device shells during

manufacturing based on "killer app" content and services available at the time of

distribution;

" Recovery of soft packaged CSR modules and their costs from device inventory that cannot be

sold;

* Simple means for users to upgrade, augment, and maintain the computational and peripheral

resources of expensive or long lifetime device shells; and,

* Pluggable re-use of expensive computational and peripheral resources across multiple

devices.

A network device "shell" is comprised of all components of a network device without the actual computer
components.

50

*

Composable
System Resource

Module

Network device "shell"

Composable
System Resource

Module

CSR Universal
Interface Specification

Figure 9: Composable System Resources interfacing with the hardware components of a
network device.

3.1 The CSR System Architecture

The CSR System Architecture addresses the need for a set of simple Lego-like building blocks

that streamlines the development and maintenance of network devices. The CSR architecture is

fundamentally different from most bus architectures that try to achieve maximal performance

given a set of constraints, such as datapath width, number of loads, interconnection medium. For

instance, the Peripheral Component Interconnect (PCI) bus architecture was borne out of a need

for higher bandwidth and lower latency communications to support multimedia applications in

personal computers (PCs). The actual device within which the PCI bus will reside as well as the

device's functionality is left as an afterthought.

Figure 10 depicts the system architecture for status quo PCs. A pluggable processor module,

consisting of Intel's Slot 1 Pentium processor Single Edge Contact Card (SECC) or Socket 7

processor chip, provides the primary computational resource of the system. A pluggable

peripheral module, consisting of a PCI or ISA edge card or a PCMCIA PC Card, provides a

51

--- . 4 -4k- -.-- - __ -

Pluggable Pluggable
Processor Peripheral
Module Module

Peripheral Module
Data Addr Interface

Chipset

Embedded
Peripherals

LCD Controller

Figure 10: System architecture for status quo personal computers.

means for peripheral expansion. The motherboard houses the chipset, which interfaces the

processor bus to the peripheral bus, main memory, and other embedded peripherals. This

architecture affords motherboard and system manufacturers the flexibility to differentiate their

products with various combinations of chipsets, amount and type of memory, and supported

peripherals.

Although attractive for PCs, it is a thesis of this work that this type of architecture is

inappropriate for network devices. A more attractive architecture for network devices is based on

fully segmenting the device-specific user interface from the underlying computational resources.

By eliminating as much high-speed circuitry and electronics in general from the device UT, its

unit cost, design complexity and time can be reduced. This, in turn, will spur the development of

a variety of innovative user interfaces for interacting with network content and services. Within

this flurry of development, some Uls will no doubt fail. By reducing the unit cost of device Uls

to a minimum, such a segmented architecture can mitigate development risks and cost.

Moreover, by migrating silicon-based circuitry with low shelf life (as dictated by Moore's Law)

away from the device UI, upgradeability and flexibility is enhanced.

52

This dissertation investigates the optimal level at which to segment device UIs from their

underlying computational resources. Ideally, device Uls will comprise the ergonomic design,

knobs, and buttons that define the physical user interface together with a set of directly

interconnected connectors for receiving pluggable computational resources. In reality, however,

many device Uls will also include some circuitry required to support the custom physical U.

Oftentimes, this circuitry will be analog components that are necessary to interface with users

and their "real world" environment. The architecture will determine the cost and amount of

circuitry that is housed by the device UI, and how much of it can be abstracted away to plug-in

modules.

The CSR architecture aims to achieve sufficient performance for plug-in modules, but more

importantly, aims to provide a structured framework around which the actual functionality of

device Uls can be developed. Essentially, the CSR architecture aims to support, simplify, and

facilitate device design, development, and maintenance. The primary CSR system architecture

design issues include:

* Support for different back-end processing environments. The CSR system architecture is

more of a computing paradigm than a processor architecture. It promotes the use of hardware

and software building blocks for the design, development, and maintenance of devices. To

this end, the CSR architecture is an interconnect specification between a variety of back-end

processing environments, front-end device user interface "shells", and the associated

software mix.

" Extensible one- and two-socket building blocks. It is assumed that most CSR-based

devices will be built around one or two CSR modules. The size of many mobile devices are

strictly constrained such that they can fit easily into shirt or coat pockets. Many stationary

devices are also constrained in their size such that they are not overly cumbersome or

aesthetically unpleasant. However, some devices, such as set-top boxes, may require a larger

number of CSR modules. Nonetheless, many implementations of the CSR architecture will

emphasize and optimize for one- and two-socket CSR devices, while providing means for

extending the architecture to a larger number of sockets.

53

* Native support for the use of commodity components in device design. Device design is

most simple when it is reduced to selecting and interconnecting various off-the-shelf

components. In order to support such a simple design flow, CSR modules can directly

interface with many off-the-shelf commodity components, such as digital-to-analog

converters (DACs) and RS-232 serial transceivers.

" Ready availability of a large variety of CSR peripheral modules. The utility of CSR-

based devices is greatly improved and their lifetime extended by simply having a variety of

interesting peripheral devices available as pluggable CSR modules. Examples of exciting

and innovative peripheral devices that are available as pluggable modules include those

found as PCMCIA PC Cards and Handspring Springboard modules.

" High-bandwidth computer-module-to-computer-module communications. Multiple CSR

computer modules may be used within CSR-based devices to economically expand their

computational resources. A high bandwidth, low latency communications path between the

modules is important to efficiently realize a parallel multi-computer. If PCMCIA PC Cards

are used as CSR modules, the 32-bit CardBus interface provides 132 Mbytes/second

bandwidth with configurable, guaranteed latency.

" Sufficient communications performance to support typical multimedia applications.

Devices that host network-based content and services will usually implement a multimedia

user interface. These devices will provide a combination of audio, video, and tactile

representation of content, and their underlying architecture must support the simultaneous

bandwidth requirements for a multiplicity of modalities.

* System symmetry. System symmetry refers to the ability to connect both computational and

peripheral resource modules to all sockets of a CSR-based device. Symmetric systems allow

consumers and manufacturers to swap-in and swap-out CSR modules to any socket,

unencumbered by the need to locate computer-only or peripheral-only sockets. Symmetry

also enables CSR-based devices to be powered by multiple computational resource modules,

with either module providing the primary hosting services.

54

* Low cost and small form factor system. A systems architecture that can be implemented

with little cost and in little physical area can be used to build a broad variety of devices, from

small to large and from inexpensive to expensive. Accordingly, low cost and small physical

size are overriding design criteria of the CSR architecture.

The CSR implementation described herein supports all of these features. CSR currently has been

used to develop a palm-sized computing device capable of real-time decoding of MP3 audio as

well as supporting interactive games using the device's LCD touchscreen for input. CSR has also

been used to develop a set of software-based physical interactive devices and children's toys that

are capable of downloading and embodying content. Finally, CSR has been used to develop a

multimedia digital picture frame capable of downloading pictures and associated audio streams

over a wireless cellular network.

The remainder of this chapter describes the current implementation of the CSR architecture in

more detail. The next section describes an implementation of CSR based on PCMCIA PC Cards

that leverage the availability of a wide assortment of PC Card peripherals. The section thereafter

discusses the implementation of the CSR Interconnection Fabric Backplane (IFB), which is

essentially a datapath for connecting together various CSR modules and the network device

"shell". The chapter concludes by describing the implementation of various CSR-based network

devices, and gives experimental data and analysis of the CSR System.

3.2 PC Card-Based CSR Modules

PC Cards are credit-card-sized integrated circuit cards that allow upgrading and augmenting the

peripheral capabilities of mobile computing environments. The Personal Computer Memory Card

International Association (PCMCIA) defines and maintains the specification standard and

promotes interoperability between computer manufacturers and PC Card peripheral

manufacturers.

55

Today, many peripherals can be found packaged as PC Cards, including network interface

cards, joysticks, audio and video accelerators, volatile and non-volatile memories, digital

cameras, and wireless communication devices. The convenience and economic benefits of PC

Cards have led to their widespread adoption with not only laptop computers supporting the

standard, but also some television set-top boxes, DVD players, and digital cameras providing PC

Card sockets.

The low power consumption, small credit-card-size, ruggedized packaging and popularity of

PC Cards distinguish them from their peripheral brethren, and make them a good candidate on

which to base the design of an implementation of the CSR System. A PC Card-based CSR

System comprises the following components:

" CSR peripheral modules, which are standard, off-the-shelf PC Card peripherals;

* CSR computer modules, which are computational resources within PC Card packaging, and

supporting communications with CSR peripheral modules as well as with off-the-shelf and

custom components of device shells;

" CSR Interconnect Fabric Backplane, through which a variety of off-the-shelf PC Card

peripherals (or, CSR peripheral modules) and one or more CSR computer modules may be

electrically connected together as well as with the device shell to compose together an entire

system for a network device.

The following two sub-sections review the two primary PC Card electrical interfaces specified by

the PCMCIA, and discuss which peripherals use which interface and why.

3.2.1 16-Bit PC Card Interfaces

The original PC Card electrical interface is based on either an 8- or 16-bit datapath and is similar

to the popular desktop ISA bus interface. PC Cards supporting this specification use a simple

asynchronous hand-shaking protocol. As the 16-bit PC Card interface was the original PC Card

56

interface specification as well as the simplest, most off-the-shelf PC Card peripherals available

today are based on this interface.

Figure 11 graphically depicts a typical 16-bit PC Card transaction cycle. The handshake

protocol is segmented into three phases. The first phase is the Setup Phase, which specifies the

transaction type. The second phase is the Command Phase, which actually executes the

transaction. The third phase is the Hold Phase, which ensures that the receiving party of the

transaction can reliably latch the data and then ends the transaction. Each three-phase transaction

can only communicate a single 8- or 16-bit data packet, and the timing for each phase determines

the overall bandwidth.

The primary signals involved in a 16-bit PC Card transaction are a 26-bit address (Addr) that

specifies the desired read or write location, two Card Enable (CEl# and CE2#) signals that

select the desired PC Card and also provide byte addressing information, write enable (WE#) that

specifies whether the current transaction is a read or write transaction, output enable (OE#) that

enables and disables data line drivers for the 8- or 16-bit datapath (Data).

16-bit PC Cards can transfer a maximum of two bytes per transaction, and have a minimum

total transaction cycle time of 100 nanoseconds. This gives a maximum theoretical bandwidth

supported by these cards to be 20 Mbytes/second.

57

Addr

CE1#

CE2#

OE#

WE#

Data

Setup Command

I I
I I
I I

I I
I I

Hold

Figure 11: 16-bit PC Card electrical interface and protocol overview for a read

transaction.

The simplicity of the 16-bit PC Card interface together with its reasonable bandwidth make it

an excellent interface for PC Card peripherals. It is not surprising that most PC Card peripherals

are in fact based on the 16-bit interface. PC Card peripherals that require additional bandwidth

are based on the CardBus PC Card interface. The next section reviews the CardBus specification.

3.2.2 32-Bit CardBus Interface

CardBus PC Cards use a 32-bit, synchronous communication protocol similar to the popular

Peripheral Component Interconnect (PCI) local bus interface found in most contemporary

desktop computing environments. Also like PCI peripheral devices, CardBus PC Cards support

bus-mastering that enables them to communicate data with lower latencies than simple slave

devices that are fully dependent on their host computer system.

58

I

Figure 12 shows a typical CardBus transaction. CardBus PC Cards achieve higher bandwidth

than 16-bit PC Cards by using a high-speed synchronous clock and by supporting data bursting,

which reduces transaction overhead by allowing multiple data packets to be associated with a

single address that is automatically incremented after each completed cycle.

The primary signals involved in a CardBus transaction are shown in Figure 12. The

synchronous clock signals (CCLK) provides the central reference on which all other signals are

based, and all signals are latched on the rising-edge of CCLK. The CardBus Frame (CFRAME#)

signal bounds the start and end of each transaction. The first asserted cycle of CFRAME# also

specifies the transaction address on the 32-bit CardBus Address and Data (CAD) lines as well as

the transaction type on the 4-bit CardBus Configuration and Byte-Enable (CCBE#) lines. After the

first asserted cycle of CFRAME#, the 32-bit CAD lines carry data, while the 4-bit CCBE# lines carry

byte-enable information. The transaction initiator asserts CardBus Initiator Ready (CIRDY#) on

each cycle on which it is driving valid data over the CAD lines. The transaction target asserts

CardBus Target Ready (CTRDY#) on each cycle on which it has latched data from the CAD lines.

CCLK

CAD

CFRAME#

CCBE#

CIRDY#

CTRDY#

Address 1t Data 2"" Data 3 Data 4 th Data
Cycle Cycle Cycle Cycle Cycle

Figure 12: 32-bit CardBus transaction.

59

Each cycle on which both CIRDY# and CTRDY# are asserted represent a valid transfer of data

between the initiator and the target. CFRAME# is deasserted one cycle before the final data

transfer. CFRAME# and CIRDY# are deasserted upon the completion of the entire transaction, and

signify an idle bus.

CardBus PC Cards can transfer a maximum of four bytes (32-bits) per cycle, and have a

minimum cycle time of 30 nanoseconds (33MHz). This gives a maximum theoretical bandwidth

supported by these cards to be 132 Mbytes/second. The higher bandwidth of CardBus PC Cards

comes at a cost. These PC Cards are more difficult and expensive to design and manufacture.

Accordingly, only peripherals that require the increased bandwidth or reduced latency can be

found as CardBus PC Cards. The most common CardBus cards are high-speed network

interfaces.

Having reviewed the two primary PC Card interfaces, the following section discusses

characteristics of CSR Interconnect Fabric Backplanes (IFBs). The IFB architecture determines

to a large part the architecture of CSR computer modules and affects many of its design

decisions.

3.3 CSR Interconnect Fabric Backplanes

Within the current PC Card-based implementation of the CSR System, off-the-shelf PC Cards

provide peripheral resources, while CSR computer modules provide computational resources. An

interconnection fabric is necessary to provide electrical connectivity between the peripheral

resources and the computational resources, as well as connectivity with the components of the

device.

The CSR Interconnection Fabric Backplane (IFB) provides this connectivity. It is a small

electrical fabric that is embedded into each device, and comprises receptacles for mateably

accepting CSR modules. A typical CSR-based device may support one or two CSR modules,

while some may support a larger number.

60

CSR Computer CSR computer
or Peripheral module

Module
Central

Computational
Resource

CSR Computer CSR Computer
or Peripheral ++_or Peripheral

Module Module

(a) (b)

Figure 13: (a) Embedded computational resources for managing CSR Modules versus
(b) CSR computer module acting as the central computational resource managing other

CSR Modules.

3.3.1 Central Computational Resource

16-bit PC Cards and 32-bit CardBus cards were designed to augment the peripheral resources of

mobile computing environments, e.g., laptop and notebook computers. In the CSR architecture,

not only must we provide a means to easily augment and upgrade the peripheral resources of a

network device, but also its computational resources. In the PC Card-based CSR System, both

peripheral resources and computational resources are found within a PC Card packaging -

essentially, all resources are PC Cards, with their label distinguishing the various peripherals and

computational devices.

The PCMCIA PC Card Standard is based on a central computing resource around which

various PC Card peripherals connect. If the CSR System follows this architecture, then CSR

computer modules would simply be peripheral computational resources that are managed by the

central computing resource. This is shown in Figure 13(a). The central computational resource

may use a processor whose sole purpose is to manage attached peripheral and computational

resources.

61

An alternative, shown in Figure 13b, is to have CSR computer modules that are both

removable and also act as the central computational resource. This solution relieves devices from

having any fixedly-attached computational resources that must interface with all CSR modules.

The system of Figure 13(b) requires that a CSR computer module be present to provide

computational resources to the network device and a CSR peripheral module can only be used in

conjunction with a CSR computer module. Conversely, the system of Figure 13(a) does not place

such a restriction and CSR peripheral modules may be used singly without a CSR computer

module. Both architectures may support a multiplicity of computational and peripheral resources.

The current implementation of the CSR architecture as described herein is based on the non-

centralized bussed architecture of Figure 13(b).

3.3.2 Significantly Bussed Datapath

Assuming a device that supports two CSR modules, Figure 14 shows two possible system

architectures for the CSR Interconnect Fabric Backplane. Figure 14(a) shows a point-to-point

architecture and Figure 14(b) shows a significantly bussed architecture

Point-to-point datapaths have a single load on its signal pins, while significantly bussed

datapaths comprise a majority of shared (or bussed) signals with a small number of point-to-point

dedicated signals. The sharing of signals between multiple devices removes the need for an

intermediate point-to-point IFB controller. This reduces the pin count of IFB controllers, the

number of traces and printed circuit board (PCB) layers of IFBs, which in turn, reduces overall

size and cost. A smaller and less expensive IFB is more broadly applicable to devices across a

variety of market segments.

62

CSR Module

Backplane
Controller

CSR Module

Interfaces to
network device

"Shell"

(a)

CSR Module Backplane

-Controller

CSR Module

Interfaces to
network device

"Shell"

(b)

Figure 14: Two types of datapath interconnection architectures. A (a) point-to-point
datapath has a single load on each of its signals, while a (b) significantly bussed datapath

has multiple loads on most of its signals with just a few signals point-to-point.

A significantly bussed PC Card-based CSR architecture supports both of the primary two

electrical interfaces defined by the PCMCIA for PC Cards (16-bit PC Card and 32-bit CardBus

cards) and also supports additional interfaces for interconnecting with off-the-shelf integrated

circuits, such as digital-to-analog and analog-to-digital converters, infrared transceivers, and light

emitting diodes, that may be common and useful to many device shells. Supporting both the 32-

bit CardBus interface as well as the 16-bit PC Card interface enhances system flexibility and

applicability, while supporting the use of high volume, off-the-shelf integrated circuit chips for

device shells keep lead times and development cycles short and production costs low.

In order to support a multiplicity of electrical interfaces over a fixed number of connector pins

(e.g., the 68-pin PC Card connector), CSR computer modules and CSR Interconnect Fabric

Backplanes support a time-multiplexed multibus interface. The next section describes this

63

SComputer
or Peripheral

Module

High Bandwidth Communications
Path Supporting PC Card Interfaces

CSR Computer
or Peripheral

Module

Significantly Bussed
Interconnection

Device Shell
Components

Multiple Communications Paths
Supporting Communication Paths to

network device Components

Figure 15: Multiple bus communication protocols over a single bussed environment.

multibus interface, the algorithms and mechanisms for dynamically selecting the appropriate

interface, and completely specifies the system architecture for one- and two-socket CSR IFBs.

3.4 Two-Socket CSR IFB Specification

Devices based on two-socket CSR IFBs will perhaps be the most popular. These devices can

accommodate two CSR modules, one of which is a CSR computer module, and the other is either

a CSR computer module or a CSR peripheral module. As depicted in Figure 15, modules are

interconnected, together with the components of the device shell, over a significantly bussed

datapath. The CSR modules communicate with one another using a PC Card-like interface, while

CSR computer modules communicate with device shell components using electrical interfaces

commonly found on off-the-shelf commodity integrated circuits, such as Serial Peripheral

Interface (SPI), RS-232, 8-bit parallel interfaces.

64

Figure 16 depicts the schematic for a two-socket CSR FB that supports two synchronous

serial interfaces (SPI interface) and one asynchronous parallel interface. Most signals are directly

bussed, with only a small number of the signals interfacing with the IFB Controller. The thick

line between the two CSR sockets represents signals defined by the PCMCIA Standard that are

not already shown in the diagram.

65

CSR Module Socket 1

W CI

- ~ -~~-. - ~ ~CSR Module Socket 0]

i _ _ _ _ 2i I i i

C a,

C, 0

C-

:1*C-
C,

C -C
U -C-
C I C C

E_

Parallel Intf

Figure 16: Two-socket PC Card CSR IFB specification.

66

Backplane Controller

igi
*, z z~t

00
cc~

F_-

-

I

The following sections specify the current implementation of the two-socket PC Card-based

CSR IFB.

3.4.1 Static Reconfiguration For Efficient Module-to-Module Communications

CSR IFBs reconfigure themselves to support the electrical interfaces and protocols of various

CSR modules. This reconfiguration is static in that it is initiated upon both sockets being

occupied by CSR modules, and the reconfiguration changes only in response to new CSR

modules being swapped in or out.

The current implementation supports the two primary interfaces defined by the PCMCIA

standard - the 16-bit PC Card interface and the 32-bit CardBus interface. The many differences

in these electrical interfaces make designing a bussed IFB difficult. Table 1 shows all possible

ways the two sockets may be populated, and the communication interface that is used for

module-to-module communication. The sockets are fully symmetrical in that CSR computer or

peripheral modules may be connected to either socket equally well. 16-bit PC Cards and 32-bit

CardBus cards are not supported in the absence of a CSR computer module, but two computer

modules can be connected together to form a multi-computer.

Socket Socket Selected Interfacet

Empty Empty None

CSR computer module Empty None

CSR computer module CSR computer module 32-bit CardBus

CSR computer module 32-bit CardBus PC Card 32-bit CardBus

CSR computer module 16-bit PC Card 16-bit PC Card

Table 1: Possible different ways the sockets of a two-socket IFB can
be populated, and the interface protocol that is used for

communication between CSR modules connected to those sockets.

t The 16-bit PC Card and 32-bit CardBus protocols and electrical interfaces used by CSR computer modules and
CSR IFBs are not exactly as specified by the PCMCIA. Slight variations as discussed herein are required to support
the CSR architecture. However, standard off-the-shelf 16-bit PC Cards and 32-bit Cardbus cards can be used without
modification.

67

CSR computer modules use the 32-bit CardBus interface as its default communication

mode. This takes advantage of the high bandwidth and low latency nature of the CardBus

interface during not only computer-module-to-CardBus-module transactions but also computer-

module-to-computer-module transactions. Only if a 16-bit PC Card occupies an IFB socket does

the system reconfigure itself to use the slower 16-bit asynchronous interface.

In order to reconfigure itself for different CSR modules, IFB controllers employ an interface

discovery mechanism to determine the electrical interface supported by newly connected CSR

modules. This interface discovery mechanism is based on the two pairs of card detect (CD1 and

CD2) and voltage sense (VS1 and VS2) signals defined by the PCMCIA Standard. PCMCIA

defines an interpretation of interface type and initial voltage requirement based on the state (e.g.,

VCC, GND, or flow-through) of these pins. The information about module interface type, in

conjunction with the information in Table 1, is used to reconfigure the IFB Controller as well as

CSR computer modules so as to support module-to-module communications. Unsupported (IFB

specific) combinations of CSR modules (e.g., one 16-bit PC Card peripheral and one 32-bit

CardBus peripheral) may be handled by simply not delivering power to the sockets.

Since most signals are bussed directly between sockets, and are not connected to the IFB

Controller, the IFB must only re-configure a small number of signals. Reconfiguration of the IFB

Controller involves changing from a mode that supports 32-bit CardBus transactions to one that

supports 16-bit PC Card transactions. The following list enumerates the 32-bit CardBus signals

that are affected during static reconfiguration.

CardBus Bus Request (CREQ) and Bus Grant (CGNT). The IFB Controller acts as the

central resource arbiter for CardBus cards and CSR computer modules, and provides a simple

round-robin arbitration mechanism. Both pairs of these signals are point-to-point lines between

each socket and the IFB Controller. However, in the 16-bit PC Card mode, the request and grant

signals become the Input Port Acknowledge (INPACK#) and Write Enable (WE#) signals,

respectively. Accordingly, reconfiguration to the 16-bit PC Card mode requires that the IFB

Controller make the Write Enable signal a flow-through signal, with the command flowing from

68

the socket occupied by the CSR computer module to the socket occupied by the 16-bit PC Card.

Similarly, the Input Port Acknowledge signal is made a flow-through signal, with the command

flowing from the socket occupied by the 16-bit PC Card to the socket occupied by the CSR

computer module. Routing CREQ and CGNT through the IFB controller prevents false module-to-

module transactions from being initiated during CSR module removal due to electrical signal

disruptions over the bussed IFB. Other implementations may choose to directly bus CREQ and

CGNT between the two CSR sockets with the leader computer module providing system

arbitration.

CardBus Synchronous Clock (CCLK). The CardBus Clock signal is the clock around which

all interface transactions are synchronized. CCLK is provided by the IFB Controller as two

separate point-to-point signals to each socket. However, in 16-bit PC Card mode which is

asynchronous, the signal becomes the 16 th bit of the address (ADDR16). During reconfiguration,

then when the IFB Controller configures the signal as a flow-through lines, with data flowing

from the socket occupied by the CSR computer module to the socket occupied by the 16-bit PC

Card.

CardBus Clock Run (CCLKRUN). The CardBus Clock Run signal is used to implement a

low power mode that can slow or completely stop the system clock (CCLK). In 16-bit PC Card

mode, this line becomes the Write Protect (wP) signal. During reconfiguration, the IFB Controller

configures the signal to be a flow-through line, with data flowing from the socket occupied by

the 16-bit PC Card to the socket occupied by the CSR computer module.

Card Reset (CRST). Card Reset is used to globally reset both 16-bit PC Cards as well as 32-

bit CardBus cards. The polarity of the signal differs with each type of card, and the IFB

Controller must be configured to deliver the appropriate polarity reset signal. 16-bit PC Cards

require an active-high reset signal, while 32-bit CardBus cards require an active-low signal.

Essentially, the FB Controller is configured such that the bussing of signal lines between the

two sockets is completely transparent to off-the-shelf 16-bit PC Cards and 32-bit CardBus cards.

69

3.4.2 Dynamic Reconfiguration for Narrowpath Communications

and Target Disambiguation

Narrow datapath communication channels (hereinafter narrowpaths), such as serial and 8-bit

parallel channels, require just a few signal lines and support interfacing with off-the-shelf 1/0

components. Most off-the-shelf commodity components, such as digital-to-analog converters

(DACs), analog-to-digital converters (ADCs), and codecs, use narrowpath interfaces to reduce

pin count and overall integrated circuit (IC) package size and cost.

CSR computer modules can directly interface with off-the-shelf ICs and components using

narrowpath interfaces, thereby eliminating the additional cost and size of glue-logic and other

bridging components. Allowing CSR computer modules to directly communicate with off-the-

shelf narrowpath components also reduces design time, design complexity, and errors borne out

of complexity.

Referring again to Figure 16, narrowpath channels on CSR IFBs may include serial interfaces

such as Serial Peripheral Interface (SPI), Microwire, and RS-232, parallel interfaces, such as 8-

bit micro-controller interfaces and Enhanced Parallel Port (EPP), and single bit-toggling

interfaces. Each narrowpath channel is completely independent, and can execute asynchronous

with neighboring narrowpath channels.

In order to support both wide datapath PC Card interfaces as well as narrowpath interfaces

over a single bussed medium, CSR IFBs use a target disambiguation mechanism to clearly

identify the target of each transaction. This disambiguation mechanism effectively reconfigures

the IFB, allowing communication to proceed between the appropriate source and target agents.

The current implementation of IFB Controller uses a set of chip enable signals for enabling and

disabling narrowpath channels as well as enabling and disabling module-to-module

communications.

CSR computer modules that are connected to multi-socket, bussed IFBs cannot simply use the

shared bussed lines as narrowpath chip selects as these lines are used for module-to-module

communications as well. In the current implementation of PC Card-based CSRs, the leader

70

Narrowpath Components

.. CS

IFB Controller

(a)

Shared Chip Select
==CS

Global Chip Select

IFB Controller
(b)

Figure 17: Target disambiguation mechanism implemented through (a) a dedicated chip
select signal, and (b) a global chip select signal ANDed together with a shared chip select..

computer module asserts the appropriate chip select signals by first communicating with IFB

Controller. In turn, IFB Controller delivers the chip select signals to the appropriate narrowpath

components. Once the computer module has finished its transactions, it ceases communications

over the bussed signal lines, and instructs the IFB Controller to de-assert the narrowpath chip

enable signals.

This chip enable mechanism for narrowpath transactions may be implemented using a variety

of means. Figure 17 depicts schematically two such mechanisms. Figure 17(a) shows the use of

point-to-point chip enable signals between the IFB Controller and each narrowpath component.

With such an implementation, the leader computer module communicates with the IFB

Controller using the event messaging subsystem (as described in Section 3.4.5) and instructs it to

assert or de-assert the chip enable signals for the appropriate narrowpath channels. Conversely,

71

Figure 17(b) shows the use of a global chip select signal in conjunction with individual bussed

chip enables. In this mechanism, using the event messaging subsystem, the leader computer

module instructs the IFB Controller to assert the global chip select signal, while the individual

narrowpath channels assert their own chip select signals. Assuming an active-high logic level for

each of the chip select signals, a logical AND gate is used to deliver the actual chip select to each

of the narrowpath components. The need for the discrete logical AND gate can be eliminated by

capturing the functionality within the IFB Controller. That is, by making each of the shared chip

select signals point-to-point with the IFB Controller and moving the logical AND gate and the

global chip select into the IFB Controller, a single chip select signal can be delivered to each

narrowpath component.

3.4.3 CSR Computer Module Leader Election

The two-socket CSR IFB described herein supports up to two CSR computer modules. In order

to facilitate configuring the entire system, the IFB Controller selects a leader computer module to

set up the device shell and the other CSR module upon startup, as well as to maintain system

integrity during normal operations.

Leader computer modules have expanded responsibilities, and enjoy enhanced benefits. The

leader computer module initializes the other CSR module by partitioning the IFB address space

and programming its hardware to respond to the allocated address partitions. The leader module

also reads information about the device shell through the IFB Controller. This information allows

the leader computer module to configure its own hardware interface as well as its software

structures to communicate with the various components of the device shell. The communication

mechanism between leader computer modules and IFB Controllers is described in the next

section. The leader computer modules also communicate with and transfer data between

narrowpath components.

The actual election process can be a simple one based on geographical position on the IFB.

One implementation of the leader election process is as follows:

72

e If there is just one CSR computer module connected to the IFB, then that computer

module is the leader.

9 If there are two CSR computer modules connected to the IEFB, then the computer module

occupying the lowest numbered socket is the leader.

The IEFB Controller-selected leader computer module may communicate with the IFB Controller

to request that leadership be passed to the other computer module. This may be useful if the other

computer module is in fact a more resource-rich module, and can more effectively undertake the

leadership responsibilities.

Migrating leadership status can also be used to improve system performance. For instance,

consider a two-socket IFB that is populated with two CSR computer modules. The first module is

optimized for running complex security applications with minimum power consumption, while

the second module is optimized for graphics-intensive applications (e.g., games). Both modules

have provisions for handling leader module duties. As the mix of applications that are executed

by the device migrate from graphics-intensive to security-intensive, migrating leadership from

the graphics module to the security module can also improve performance and lower system

power consumption. This is primarily because the leader computer module communicates with

and transfers data between the narrowpath components (this is a restriction of the current

implementation that simplifies system arbiter design). Transferring leadership status to the

module that most frequently interacts with narrowpath components reduces unnecessary data

copies, whereby improving performance and lower power consumption.

3.4.4 System ROM Interface

Since CSR modules are fully generic, they require a means to understand the device-specific

implementation details of each device to which they are connected. For instance, before a CSR

computer module connected to an CSR-based audio device can properly function, the module

must first understand how to communicate with the device shell's digital-to-analog converter and

the actual format and bit resolution of the data to be delivered to the DAC.

73

Such device shell-specific information is stored in a location accessible by the leader CSR

computer module. This information may include the number of CSR modules supported by the

IiFB, the number and type of components connected to the narrowpath interfaces, the capabilities

of the IFB Controller, and information relevant for software environments such as key device

drivers. This information may be stored locally, or the local storage may simply be an identifier

that can be de-referenced to locate the relevant information. One common possibility is a

network-based database that can be located and indexed using such an identifier.

3.4.5 Interrupt and Event Messaging

The interrupt and event handling mechanisms supported by the CSR architecture provide means

for asynchronous messaging between CSR modules as well as between CSR computer modules

and IFBs (narrowpath components and FB controller). Messaging needs between CSR modules

include:

" Interrupts defined by the PCMCIA and used by off-the-shelf PC Cards

" Synchronization between multiple CSR computer modules

Messaging needs between CSR computer modules and IFBs include:

" Transferring information between IFB Controllers and CSR computer modules. This

information may include system ROM information, announcements by modules that it is in

fact a CSR computer module, computer module leader election results, new module

connect/disconnect signals and configuration information, as well as initiation signal for

dynamic or static reconfiguration.

* Interrupt requests from device shell components using narrowpath interfaces.

In order to limit the pin count of IFB Controllers, interrupt and event messaging between FB

controllers and each CSR module socket is implemented by using a serial protocol. This RS-232

serial protocol is layered on top of the status change and interrupts request pins of CSR computer

modules. These pins function as specified by the PCMCIA for off-the-shelf 32-bit CardBus cards

74

and 16-bit PC Cards, but are seamlessly and automatically redefined for CSR computer modules

when inserted into a CSR IFB.

The interrupt request and the status change lines are specified as output pins (from the

perspective of PC Cards) by the PCMCIA. CSR computer modules may be implemented so as to

use one of the pins (e.g., the interrupt request pin) as an input signal and the other pin (e.g., the

status change pin) as an output signal. Then, a serial communication protocol may be layered on

top of these two pins to achieve a two-way communication mechanism. These communication

channels may carry encoded interrupt and event messages.

With point-to-point lines between the IFB controller and each socket's interrupt request and

status change notification signals, standard 16-bit PC Cards and standard 32-bit CardBus cards

are able to use interrupt requests and status change notifications as specified by the PCMCIA.

Since IFB controllers track which sockets are occupied by standard 16-bit PC Cards, 32-bit

CardBus cards, and CSR computer modules, it is able to selectively communicate interrupt and

event messages with CSR computer modules.

IFBs may also support interrupt requests from device shell ICs and components. Narrowpath

interrupt request are point-to-point signals between IFB controllers and narrowpath components.

Level or pulse interrupts may be supported by IFB controllers, which are then encoded and

redirected to CSR computer modules.

Different interrupt and event messages may be encoded differently over the serial

communication channel. High priority communications, such as interrupt requests, may need to

be short and support low-latency message delivery. Lower priority messages, such as leader

election results, do not have stringent timing requirements, and may be delivered using a slower

encoding. For instance, the first three bits of an eight-bit packet, may encode up to eight high

priority event types, with the following five bits conveying information specific to that high

priority event. If the first three bits of the packet of a communication are not asserted, then the

latter 5 bits may convey the command. The command encoded within the latter 5 bits of the first

packet may be followed by more packets that contain data related to that command. This is more

appropriate for slower and longer messages.

75

3.4.6 Connection and Disconnection of CSR Modules

Connection and disconnection of CSR modules over the bussed JIFB environment may cause

electrical disruption, resulting in potential data corruption or false transactions.

PC Cards implement different pin lengths for power and ground as well as certain card detect

pins. These pin length differences can be leveraged to defined and build an early warning system

for bussed IFBs. Card detect pins are the shortest pins, and PC Cards make contact with these

pins last, while power and ground pins are the longest and make contact first. The majority of

signal pins are medium length pins.

CSR IFBs may define and use card detect pins to provide an early warning of CSR module

connection into an IFB socket. IFB controllers may determine that a CSR module is being

connected by using a few of the ground pins as input signals. This mechanism assumes that all

ground pins on the PC Card are connected to a single ground plane (or at least are connected

together). The IFB socket may drive most of the ground pins to ground. However, for a few

ground pins (say 2 pins, on extreme ends of the connector), the PC Card socket may pull-up

(with a resistor) the pins to Vcc. When these two ground pins are detected as ground (low), the

IFB may assume that a PC Card is being connected to the PC Card socket.

Once the PC Card has been fully seated (e.g., the card detect lines show that the PC Card has

been fully seated into its socket), the IFB may then again drive the card connect pins to ground

(e.g., not using them as inputs and not pulling the lines up to Vcc). When the IIFB detects that the

card is being removed (e.g., by monitoring the card detect pins), the IFB may wish to again

enable the card connect pins.

In CSR IFBs, when a PC Card is being connected (e.g., card connection event detected) the

IFB may notify CSR computer modules that there will shortly be electrical disturbances on the

bussed signal lines. This may allow CSR computer modules to halt any new transactions from

starting over the bussed signal lines.

76

If the IFB is in the 32-bit CardBus mode, the IFB controller may simply remove bus grant

from all modules, effectively halting all communications within a predetermined number of

cycles. The bus arbiter may again be enabled once the electrical disturbances have subsided.

It is important to note that during the electrical disturbances associated with the connection

and disconnection of CSR modules over the bussed lines of the IFB, important signal lines may

momentarily glitch, causing false transactions to be signaled. Accordingly, CSR computer

modules ignore key transaction control lines (e.g., CFRAMIE# in CardBus mode and Card Enable

1 and 2 in 16-bit PC Card mode) while a module connection or disconnection event is happening.

3.5 One-Socket CSR IFB Specifications

One-socket CSR IFBs that support a single CSR module are similar to two-socket IFBs with just

a single computer module connected. In this case, the single CSR computer module only uses the

narrowpath interface channels to communicate with the components of the device shell.

Figure 18 depicts the schematic of a one-socket CSR IFB that supports two synchronous serial

and one asynchronous parallel narrowpath interface. Since there is only one CSR module socket

and there is no need to support communication between 16-bit PC Cards or 32-bit CardBus

cards, many signal lines may be eliminated from interfacing with the IFB Controller.

77

CSR Module Socket 0

Izvf

LI

C

C,

C

C

C,

C

Figure 18: One-Socket CSR Interconnect Fabric Backplane.

78

cl-I ~

Serial Intf Serial Intf

Backplane Controller

Y - U -

I I

I I I

C

z >

I ~ Parallel Ind I

3.6 System Extensibility

Presumably, one- and two-socket IFBs will be most popular for building a variety of mobile and

small home and office devices. There are, however, instances where a larger number of sockets

may be desirable. More sockets provide more flexibility for using various peripherals and

additional computational resources, and are attractive for use in larger devices, such as set-top

boxes. This section describes two methods for supporting a larger number of CSR modules in

devices. The first method is based on linking together one- and two-socket bussed IFBs. The

second is based on a switched fabric IFB design that inherently scales to support a large number

of CSR modules.

3.6.1 Bussed IFB Extensibility

Capacitive loading limitations prevent the one- and two-socket bussed PC Card-based CSR IFB

architecture from scaling in a straightforward manner. However, one reasonable means of scaling

the architecture is through the narrowpath interfaces. Buffers using narrowpath interfaces may be

used to synchronize and to communicate data between multiple one- and two-socket CSR IFBs.

This system architecture is shown in Figure 19. Different supported narrowpath interfaces and

groups thereof (based on required bandwidth) may be used for linking multiple IFBs together,

and a variety of linking topologies may be used, such as a linear cascade or a star topology.

Communication packets destined for a linked IFB are directed to the appropriate narrowpath

ports, where the packets are buffered and then re-transmitted to its intended target.

Consider building a four-socket CSR IFB based on interconnecting a pair of two-socket IFBs.

If the buffers used support a high-speed 10 MHz SPI interfaces with 18- and 16-bit total packet

size and payload, respectively, the maximum theoretical payload bandwidth between the linked

IFBs is:

i0ns xl6bitsx2Ports
1

x18bits
10MHz = 2.22 Mbytes per second

8 bits per byte

79

CSR Module Device Shell
Narrowpath
Components

CSR Module

CSR IFB

CSR IFB

CSR Module

Buffer

Device Shell

Narrowpath
CSR Module Components

Figure 19: CSR architecture scalability based on coupling a pair of two-socket CSR IFBs
together.

This, however, assumes that the narrowpath interfaces fully monopolize the IFB bus. If we

assume the narrowpath interfaces control the IFB bus 33% of the time, the maximum theoretical

bandwidth is simply one-third, or 741 Kbytes per second. Using a number of parallel narrowpath

interfaces, increasing the clock frequency, or a combination thereof can achieve larger

bandwidths.

3.6.2 Switched Fabric IFB

A circuit switched IFB can be used to interconnect a large number of CSR modules together over

a single fabric. Figure 20 depicts such an architecture. The IFB implements an n x n socket-to-

socket circuit switched connection that is very similar to the two-socket bussed IFB depicted in

Figure 16 and described herein. The point-to-point signals between each socket and the IFB

80

Narrowpath Components

CSR Module

CSR Module

CSR Module

I- H-
H-

CSR Module

CSR Module

CSR Module

Figure 20: A circuit switched IFB supports communication between a large number of
CSR modules.

controller that are shown in Figure 16 remain as point-to-point signals for each of the n-sockets

of the circuit switched IFB. The bussed signals between the two sockets shown in Figure 16 are

socket-to-socket signals in the circuit switched IFB. The switching of circuits between sockets

can be changed dynamically on each transaction, or it can be set statically once the parties (e.g.,

CSR modules) of the communication have been connected to the IFB.

CSR modules also communicate with narrowpath components in a similar fashion. Typically,

the leader CSR computer module communicates with other CSR modules as well as with the

narrowpath components. Accordingly, the IFB switches signals between CSR module targets and

narrowpath component targets.

81

3.6.3 Interface Extensibility

Bussed IFBs and circuit switched lIFBs that re-drive signals from one CSR module to another,

unimpeded and uninterrupted provide a means to change the electrical interface and protocol of

source and target CSR modules. These effectively bussed traces taken together can be thought of

as a passive backplane that allows the free flow of electrical signals between two modules. The

free flow of electrical signals supports the introduction of new interfaces between CSR modules,

without having to retrofit FBs with new IFB controllers. That is, new CSR modules, possibly

with more efficient protocols or proprietary interfaces, can be immediately introduced into

already-deployed CSR-based devices. New CSR modules and their associated electrical

interfaces need only adhere to the specifications of the point-to-point lines that connect with the

IFB Controller and the total number of pins supported by the connector.

3.7 PC Card-Based CSR Computer Module Specification

PC Card-based CSR computer modules provide host- or peer-computational resources within PC

Card packaging. The computational resources of these modules may be based on general-purpose

microprocessors and digital signal processors (DSPs), reconfigurable processors, or application-

Memory Processing
Banks Env

CSR
LInterface

INetworktea Subsystem PC Card
Cntrl CCr

Connector

Figure 21: High-level block diagram of an implementation of the PC Card-based CSR
computer module.

82

specific integrated circuits (ASICs). Each module may further comprise various types of volatile

memory and non-volatile storage, and networking capabilities. A high-level block diagram of a

PC Card-based CSR computer module is shown in Figure 21.

The interface to the components of a CSR computer module is through the CSR interface

subsystem. The subsystem receives and delivers communication packets to their intended target

in the appropriate format.

3.7.1 Processing Environment

Any processing environment can be used for the back end system of CSR computer modules.

The CSR architecture simply defines and specifies the interface. A family of CSR computer

modules that are based on a variety of backend environments can be used to configure devices

for optimum performance with respect to user preferences.

[19] predicts that beyond the year 2000, 90 percent of computer cycles will be spent on

multimedia applications. The processing resources for these applications can be delivered

through general-purpose microprocessors, such as Intel Pentiums [31] and StrongARMs [30] or

Transmeta Crusoe [18, 44] processors. However, application-specific processors can yield

performance necessary for multimedia applications more efficiently with respect to performance,

Metric Application-specific Processor

MDomai-specific
Processors

Coverage

Figure 22: Spectrum of computational resource module processor architectures.

83

energy consumption, and physical area. These custom processors come at the price of less

flexibility. Figure 22 graphically depicts energy efficiency of different classes of processor

architectures, and the applicability of those architectures to a wide variety of applications [1].

The figure shows that dedicated ASICs provide the best energy efficiency (and therefore, battery

life) but have little coverage. Metrics other than energy efficiency can also be used. These

include security, amount of memory available for caching network content, size and weight, and

interactive performance. Based on individual preferences (which can change over time), users

can use CSR computer modules with the back-end processing environment that meets their

needs.

Multiple CSR computer modules connected over an IFB can also be used to coordinate

applications running on distinct operating systems. Consider a CSR computer module based on

an x86 processor running a Microsoft Windows environment, while another module is based on a

PowerPC processor running MacOS. These two CSR modules can be connected over an IFB

such that the device runs software and services from both environments. Since the CSR

architecture is based on data communication and it specifies packets at the protocol level,

operating system and application differences (e.g., between Windows and MacOS) are

transparent and seamlessly eliminated before they are delivered to the device shell.

3.7.2 Real-time Narrowpath Channels

CSR computer modules support direct interfaces with common off-the-shelf commodity

components through standard interfaces, such as Serial Peripheral Interface (SPI), Microwire,

RS-232, 8-bit parallel, and Enhanced Parallel Port (EPP). Allowing computer modules to directly

interface with off-the-shelf components obviates the need to develop glue-logic circuitry, and

eliminates their cost and size.

The most inexpensive of these components are simple resources, such as DACs and ADCs

that perform a function as directed by a controller. Some DACs convert the digital value

presented to them into its equivalent analog value. These components are typically not intelligent

and do not support a notion of time, which is oftentimes important to properly using them.

84

Voltage

Time

Voltage

Time

Figure 23: (a) Writing data samples using a digital-to-analog converter at constant
predetermined time intervals to reconstruct an original audio waveform. (b) Writing

data samples to a digital-to-analog converter at precise variable time intervals to create a
time-division multiplexed signal.

Consider, for example, the DAC that is used to create the analog waveforms shown in Figure 23.

Figure 23a depicts digital values are converted at equal time increments into an analog waveform

that faithfully reconstructs an original audio waveform, while Figure 23b shows how digital data

converted into analog signals at precise varying time intervals can be used to create time-

division multiplexed (TDM) signal. The TDM signal can be used to convey encoded messages to

a receiver, or to activate and de-activate LEDs, motor drivers, or switches.

Reading or writing data packets at particular time instances can be accomplished using a

variety of mechanisms, including software timers, interrupts from real-time clocks, and dedicated

peripheral controllers. Real-time operating systems notwithstanding, neither software timers nor

interrupts from real-time clocks can offer fine granularity over the timing. Instead, dedicated

peripheral controllers are typically used to precisely time communications between a

microprocessor and a peripheral circuit. Peripheral controllers usually also contain data buffers

85

Microprocessor Buffers, Timers, andwith Local Bus Protocol Engine
Interface

Buffers, Timers, and
Protocol Engine

Local Bus

Peripheral
Components

_ Peripheral
Components

CSR computer module

Figure 24: CSR device architecture using simple resources.

so that the microprocessor, which may be running at a much faster speed, can efficiently transfer

large blocks of data to and from the peripheral circuit.

Although these dedicated controllers are relatively simple, they do consume expensive real

estate on a printed circuit board and add cost to device shells. Ideally, device shells should

comprise only simple and inexpensive resources, and should not require the use or development

of custom buffers and timer circuits. These should be available through the CSR computer

modules, and configurable to meet the needs of the particular device shell. Figure 24 graphically

depicts this architecture.

CSR computer modules provide mechanisms for buffering communications between the

backend processor environment and the device shell components, and also provide means for

flow control (or, packet rate control) so that direct electrical connection may be achieved between

the removable CSR computer modules and the components of the device shell.

The primary challenge in developing the buffering and flow control mechanisms within CSR

computer modules stems from each CSR computer module's use of a multibus time-multiplexed

electrical interface. These mechanisms must provide guarantees that real-time deadlines are met

86

even with the use of a time-multiplexed interface. To this end, we first discuss the narrowpath

channels in more detail, and, in the next section, describe the facilities developed to address the

issues arising from the time-multiplexed interface.

Typical integrated peripheral controllers, such as those supported by the StrongARM, provide

mechanisms to delay each packet from the one preceding it. The SPI interface supported by the

StrongARM SA-1100 allows software to specify the serial clock frequency so that the start of

each packet is appropriately aligned with its real-time constraints. That is, the ith packet is

stretched sufficiently so that the (i+1)th packet meets its timing. This approach is inappropriate

for CSR computer modules because time-slots that are unused by narrowpath channels are used

for PC Card transactions. Accordingly, narrowpath transaction times must be reduced to as small

as possible.

The mechanisms provided by the StrongARM also do not support dynamically changing time-

delays. Consider a device shell built using a quad digital-to-analog converter, which comprises

four digital-to-analog converters in a single package with a single back-end electrical interface.

Quad DACs are inexpensive and use less PCB area than four individual DACs. Each of the four

analog outputs may be used to generate four unique and different waveforms. Depending on the

actual waveform mix, the data presented to the quad DAC may not have a fixed frequency, but

rather the frequency may change over time as needed to generate the desired waveforms. For

instance, the time-delay between the first packet and the second packet transmitted to the quad

DAC may be 20 microseconds, but the time-delay between the second packet and the third

packet may only be 11 microseconds.* Providing only the simple means of adjusting the serial

clock speed of the SPI channel to meet real-time constraints would not support the use of quad

DACs.

CSR computer modules provide more robust mechanisms for supporting direct real-time

communications with off-the-shelf components. These mechanisms are centered on the use of

* Time-delay refers to the delay in units of time between the start of the ith packet and the start of the (i+J)th packet.
The actual time to transmit the bits is not considered. An alternate means of specifying time-delay is to use the time
gap between the end of the ith packet and the start of the (i+ J)th packet.

87

delay packets in addition to normal data packets. Through the use of delay packets, the processor

environment can explicitly and dynamically specify the rate or time-delay between subsequent

communication packets. For example, a data packet followed by a delay packet of ten

microseconds followed by another data packet instructs the narrowpath channel to start to output

the second data packet ten microseconds after the start of the first data packet. This way, the

microprocessor can transfer in blocks large numbers of packets to be output by each narrowpath

channel.

Reading and writing of data packets are handled similarly. Reads first require a read-request to

be generated by the processor, which is eventually filled with valid data from the narrowpath

component, and returned to the processor. The actual read data is returned to the microprocessor

through an inbound buffer. Once data is available, the inbound buffer interrupts the processor

and requests that the data be copied and purged from the buffer.

In order to maintain system timing, inbound buffers use time- and space-based watermark

mechanisms. As inbound (to be delivered to the processor) data packets are accumulated in the

inbound buffer and the buffer reaches a particular threshold, an interrupt is generated to avoid

overflowing the circular buffer. Space-based watermark mechanisms rely on backend "push" to

deliver packets on time. The sporadic nature of interactive devices may not always provide

sufficient "push". A time-based watermark mechanism generates an interrupt a fixed amount of

time after the entry of the first packet. In order to reduce the number of time-based interrupts

generated, both the waiting period and the threshold (number of entries) can be specified and

configured based on the application mix. A time-based watermark mechanism, used in

conjunction with a space-based watermark mechanism, guarantees the timely delivery of

temporally sensitive communication packets to their intended target.

Although the use of delay packets provides flexibility, they nonetheless represent an overhead

- from the additional packets transferred from the processor to each narrowpath channel buffer

and from the use of limited buffer entries. Waveforms, such as audio signals, use a set frequency

or time-delay, which can be leveraged to minimize the number of delay packet used and their

88

associated overhead. This is accomplished by simply programming each narrowpath channel

with the fixed amount of time to delay each packet from the one previous to it.

89

SPI 1 FIFO Buffer

Data iF
Delay 20 us
Delay 50 us

Data1C
Delay 50 us

Data IC
Data 1B

Timing -- - - -- -- ------
Unit

Buffer Controller
and Protocol

Engine

10 us Data 1A

20 us Data IB

30 us Data 1C

80 us

150 us

SPI 2 FIFO Buffer

Data 2D
Delay 20 us
Delay 20 us

I Data 2C
I Delay 20 us

Data 2B
Delay 20 us

Timing
- - - -unit

Buffer Controller
and Protocol

Engine

10 us Data2A

30us

50 us

120 us

Figure 25: Mechanisms for fine granularity control over communications.

Delay packets and pre-programmed time delays can be used together to build a more robust

and flexible system. In this scheme, pre-programmed time-delays reduce the number of delay

packets that are sent from the microprocessor, while the occasional use of delay packets allow

introducing a longer or shorter delay between two subsequent packets. The appearance of a delay

packet in a narrowpath channel nullifies the pre-programmed time delay between those two

90

Data 1D

Data IF

packets. Figure 25 depicts the use of delay packets and pre-preprogrammed delays for two SPI

narrowpath channels. Each channel has a pre-programmed delay of 10 microseconds (us) with

individual inter-packet delays overriding this default.

3.7.3 Multibus Interface Configuration and Bus Selection

Each CSR computer module supports the use of a variety of bus interfaces and protocols. These

interfaces may include standard interfaces, such as SPI or EPP, or they may be proprietary

interfaces. Figure 26 shows a schematic representation for the internal architecture for CSR

modules and depicts how a multiplicity of bus interfaces is supported.

Each of the bus interface blocks is fully self-sufficient. They have the ability to communicate

data and commands between it and the processor environment, and also comprise the buffers and

protocol engine required to properly format and communicate packets to and from device shell

components.

The interface controller block is perhaps the most important block and implements the most

interesting functionality. The interface controller has two primary responsibilities:

" Configure the bus interface of CSR modules once they are connected to a CSR-based device

shell (e.g., IFB); and,

" Manage the dynamic switching-in and switching-out of bus interfaces such that all real-time

constraints are met and system integrity is maintained.

To this end, the interface controller controls the individual enable signals for each of the bus

interface blocks, and also communicates with the host environment to which the CSR module is

connected. These connections are shown in Figure 26.

Since CSR computer modules are general processing environments and can be used with a

variety of device shells, each module must configure its bus interface and internal structures such

that it can appropriately control and coordinate the individual components of each device shell to

which it is connected. This requires a communication protocol between CSR computer modules

91

Interface Controller
Interface

Enables

Figure 26: CSR Computer Module Internal Structures for static- and dynamic-
interface reconfiguration.

and device shells. Once a computer module has been connected to a device shell and it has been

reset, the interface controller immediately tries to communicate with the device shell. This

communication aims to determine the exact characteristics of the device shell.

The interface controller of the computer module first transmits a predetermined message

encoding announcing itself (e.g., "I am a CSR computer module") to the host environment using

the interrupt and event messaging subsystem (as described in Section 3.4.5). This notifies the IFB

that the connected module is in fact a CSR computer module, and is available to be selected as

the leader computer module for the device.

92

32-bit CardBus Interface

16-bit PCMCIA Interface

SPI/Microwire Interfaces

4-

4-

System
e

I
I
I
I
I
'Bit Toggling Interface

U

Physical
Connector

EPP Interface

S tart

CSR computer module
announces itself to the IFB

IFB selects the leader
computer module

Selected N After time-out, sets its interface

asleader as a peripheral PC Card, and
waits to be configured the leader

IFB programs module with
device shell-specific

information, including
information on other

connected modules

Leader module sets its
interface to control device

shell components

Communicates with other
modules and configures

each for operation.

Figure 27: System configuration flow graph for CSR computer modules.

Once the IFB has selected the leader computer module, it then programs that module with

information about the device shell. This could simply involve transferring an identifier that the

computer module can de-reference (either locally or remotely over a network connection) to

ascertain the exact specifications of the device shell. Otherwise, the IEFB can also store locally the

specification information and transfer it to the leader module as necessary. This information is

decoded by software running on the local module, and used to configure the interface and timing

93

structure of each narrowpath channel. The semantic structure and methodology underlying the

generation and use of CSR device shell specifications is discussed in more detail in Chapter 5.

The IFB also notifies the leader computer module about information pertaining to other

modules that are currently connected (or become connected or disconnected). This information

primarily pertains to the bus interface supported by the other modules, and whether the other

modules are CSR computer modules. This information is used to configure the bus interface to

use either the 16-bit PC Card or the 32-bit CardBus interface. With its bus interface configured,

the leader computer module initiates communication with any other connected modules, and

begins to configure them for proper operation. This is accomplished in accordance with the

PCMCIA specification. This entire flow is depicted in Figure 27.

Once the static interface configurations have been completed, the role of the interface

controller of CSR computer modules changes to managing the dynamic switching of the selected

static interfaces. The application mix and its associated I/O characteristics determine to a large

part the dynamic switching of PC Card and narrowpath interfaces.

The dynamic nature of switching-in and switching-out bus interfaces of CSR computer

modules is dictated by the need to meet narrowpath channel timing. The application mix that is

to be executed by the system determines the packet size, the effective clock frequency, and the

packet period. As soon as all of the narrowpath channels are idle (for that cycle), the statically

selected PC Card interface - either 16-bit PC Card or 32-bit CardBus - can be switched-in.

Once the PC Card interface is switched-in, the leader CSR computer module must take steps

to guarantee that PC Card communications do not monopolize the IFB and the real-time

constraints of all of the narrowpath channels are met. Since 16-bit PC Cards can never initiate

transactions, CSR computer modules have full control as to the total time utilized. The number

of 16-bit PC Card transactions possible between narrowpath transactions is simply the total time

available divided by the cycle time for each transaction.

32-bit CardBus transactions pose a bigger challenge to maintaining narrowpath timing since

these cards can initiate transactions. CardBus cards implement a latency timer register that can be

94

programmed with the maximum number of cycles a card can communicate at any one time. This

register was originally envisioned to guarantee that other CardBus cards can initiate transactions

without having to incur an exorbitant latency period. The CSR architecture takes advantage of

the latency timer register to divide multi-packet CardBus transactions into a set of smaller burst

size transactions. These smaller sets are communicated back-to-back to transfer the original

amount of data. The number of these sets that are in fact transferred between two narrowpath

transactions is controlled by the CardBus arbiter. The arbiter provides a grant signal to 32-bit

CardBus cards, knowing that the de-assertion of grant will halt the transaction within the latency

timer number of cycles from the start of the transaction.

The 1/0 characteristics of some application mixes may not be supported by the PC Card-based

CSR architecture if their bandwidth needs or real-time constraints are too demanding. If the 1/0

characteristics of the application mix is within the tolerances of the PC Card-based CSR

architecture, they can be analyzed and used to optimize the performance of the device.

These optimizations fall into two categories: (a) power consumption and (b) quality

adjustments. Power consumption can be minimized by reducing the number of packets that are

transferred over the PC Card connector between the CSR computer module and the device shell.

For instance, if an application is decoding and transmitting to a DAC packets that represent

voice-quality audio, the packet frequency can be reduced, thereby reducing 1/0 bandwidth and

power. In the same vein, packet frequency (as well as other techniques such as reducing bit

width) can be reduced so that a larger amount of time is available for PC Card transactions.

3.7.4 PC Card-based CSR Computer Module Signaling Specification

CSR computer modules place computational resources within a PC Card packaging. Although

the architecture supports the use of off-the-shelf PC Cards and CardBus cards, some signals of

CSR computer modules may not fully conform to those specified by the PCMCIA. The following

chart enumerates and specifies the input/output direction of the implementation described herein

95

for each of its supported interfaces. The narrowpath interfaces specify the signal for two SPI

interfaces (prefixed by SO_ and S I) and one 8-bit asynchronous parallel interface.

Pin 16-bit PC Card Interface 32-bit CardBus Narrowpath
Memory-Only I/O and Memory Interface Interfaces

I/O Signal I/O

SOCLK
SOCS
SODOUT
SODIN
SlCLK

Sl_CS

Sl_DOUT
SlDIN

Signal
GND
D3
D4
D5
D6
D7
CEl#
A10
OE#
All
A9
A8
A13
A14
WE#
READY
VCC
VPP1
A16
A15
A12
A7
A6
A5
A4
A3
A2
Al
AO
DO
DI
D2
WP
GND
GND
CDl#
Dll
D12
D13
D14
D15
CE2#
VSl#
RFU

DC
1/0
1/0
1/0
I/O
I/O
0
0
0
0
0
0
0
0
0
I
DC I
DC I
0
0
0
0
0
0
0
0
0
0
0
1/0
1/0
1/0
I
DC
DC

0
0
I
0
0

0

I
0

N4
N4

Signal
GND
D3
D4
D5
D6
D7
CEl#
AlO
OE#
All
A9
A8
A13
A14
WE#
IREQ#
VCC
VPPI
A16
A15
A12
A7
A6
A5
A4
A3
A2
Al
AO
DO
Dl
D2
IOIS16#
GND
GND
CDl#
Dl1
D12
D13
D14
D15
CE2#
VSl#
IORD#

I/O
DC
1/0
1/0
1/0
1/0
1/0
0
0
0
0
0
0
0
0
0
I
DCIN
DC IN
0
0
0
0
0
0
0
0
0
0
0
1/0
1/0
1/0
I
DC
DC

1/0
1/0
1/0
1/0
1/0
0

Signal
GND
CADO
CADI
CAD3
CAD5
CAD7
CCBEO#
CAD9
CADLI
CAD12
CAD14
CCBE1#
CPAR
CPERR#
CGNT#
CINT#
VCC
VPPl1
CCLK
CIRDY#
CCBE2#
CAD18
CAD20
CAD21
CAD22
CAD23
CAD24
CAD25
CAD26
CAD27
CAD29
RFU
CCLKRUN#
GND
GND
CCDl#
CAD2
CAD4
CAD6
RFU
CAD8
CAD10
CVS
CAD13

1/0
DC
DC

1/0
1/0
1/0

1/0
1/0

1/0

1/0
DC
1/0
1/0
1/0
1/0
1/0
110
1/0
1/0
1/0
1/0
1/0
1/0
1/0
I
I
DC IIN
DC IN
I
1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0

0
0

1/0
1/0
1/0
1/0
1/0
0

96

ADDR/DATAO
ADDR/DATA1
ADDR/DATA2
ADDR/DATA3
ADDR/DATA4
ADDR/DATA5
ADDR/DATA6
ADDR/DATA7
WAIT
DATASTRB

ADDRSTRB
READ/WRITE

J.

1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0
I
0

45 RFU IOWR# CAD15 I/O
46 A17 0 A17 0 CAD16 I/O
47 A18 0 A18 0 RFU
48 A19 0 A19 0 CBLOCK# I/O
49 A20 0 A20 0 CSTOP# 1/0
50 A21 0 A21 0 CDEVSEL# 110
51 VCC DCIN VCC DCIN VCC DCIN
52 VPP2 DC IN VPP2 DC IN VPP2 DC IN
53 A22 0 A22 0 CTRDY# 1/0
54 A23 0 A23 0 CFRAME# 1/0
55 A24 0 A24 0 CAD17 I/O
56 A25 0 A25 0 CAD19 I/O
57 VS2# VS2# CVS2
58 RESET I RESET I CRST# I
59 WAIT# I WAIT# I CSERR# 1/0
60 RFU INPACK# I CREQ# 0
61 REG# 0 REG# 0 CCBE3# 1/0
62 BVD2 I SPKR 1/0 CAUDIO 1/0
63 BVDI 0 STSCHG# 0 CSTSCHG 0
64 D8 1/0 D8 1/0 CAD28 1/0
65 D9 1/0 D9 1/0 CAD30 1/0
66 D10 1/0 D10 1/0 CAD31 1/0
67 CD2# CD2# CCD2#
68 GND DC GND DC GND DC

Table 2: Signal specifications for PC Card-based CSR computer modules.

3.7.5 Two-Way Configuration Registers

Configuration registers of CSR computer modules are accessible through the local interface (i.e.,

by the local processor of the computer module) and through its remote interface (i.e., the

interface presented outward from the module's PC Card connector). In the case of leader

computer modules connected to CSR IFBs, software running on the local processor of the

computer module may choose to disallow access to all or some registers through the remote

interface. However, if the computer module is connected to a standard PC Card socket then the

computer module allows access to at least the PCMCIA-defined configuration registers through

its remote interface.

97

3.7.6 Conclusion

This chapter described and specified one implementation of the CSR architecture, which is based

on pluggable computational resource modules as well as interconnect fabrics that provide a

means for module-to-module communication. The CSR architecture also simplifies device

development through a structured device design cycle that supports the use of off-the-shelf,

commodity components to implement each device's functionality. The next chapter evaluates the

implementation of the CSR architecture described herein with respect to a variety of metrics,

including power consumption, cost, and performance.

98

Chapter 4

CSR System Evaluation

In order to evaluate the CSR architecture and CSR-based devices, an entire prototype system and

testbed has been developed. This section describes the implementation details of our prototype

CSR IFBs and computer modules, as well as the implementation details of one of our testbed

CSR-based devices - a wireless network-based multimedia picture frame.

Next, we evaluate the PC Card-based CSR architecture described herein with respect to cost,

performance, and power consumption. The CSR architecture was primarily motivated by the

need for a simple, yet formalized, design methodology for creating a variety of user interfaces

(devices) through which to interact with network content and services. Since these devices

fundamentally enable the delivery of content and services to consumers, their primary design

goal is low cost. At the same time, the devices themselves must not retard the development or

deployment of new content and services because of inadequate local (client-side) computational

resources or communications performance. Accordingly, we evaluate the PC Card-based CSR

architecture's performance, and show it to be sufficient to support a variety of multimedia

applications. Finally, since many of these devices will have limited energy sources (e.g., from a

battery) or have constrained physical size (e.g., for aesthetic reasons), power consumption is also

evaluated. We show that the overhead introduced by the architecture is minimal, while in fact the

99

use of domain- and application-specific CSR modules caters to user preferences and improves

performance along different dimensions.

4.1 Prototype System Development

4.1.1 Prototype Two-socket CSR IFB

Figure 28(b) depicts the schematic representation of our prototype two-socket CSR IFB. The

significantly bussed implementation is simple with most traces directly connected between the

two sockets and the device shell components. System power is delivered through a set of

standard cell batteries connected to power and ground planes of the IFB.

A Xilinx XC4013XLT-PQ208-09 [45] Field Programmable Gate Array (FPGA) is used to

implement the IFB Controller. Thirty-eight signal pins of the FPGA are used to interface with

IFB and device component signals. The thick arrow line in the figure shows data and control

signals between each device component and CSR modules, whereas the thin arrow line shows

the chip select and interrupt request signals interface through the IFB Controller.

100

LCD Controller
FPG A

FPGA

DRAM Bankl

SA-1100

DRAM BankO eieSe

Components

Flash Bank

=+

I FB

CSR Computer Module

(a) (bh)

Figure 28: (a) Prototype implementation of an Intel StrongARM-based CSR

computer module, and (b) a two-socket bussed CSR IFB.

4.1.2 Prototype CSR Computer Module

Figure 28(a) shows the schematic representation of our prototype CSR computer module. The

module is based on an Intel StrongARM SA-1100-AA [30] microprocessor, with 16 Mbytes of

self-refresh dynamic random access memory (DRAM) and 4 Mbytes of Flash. The CSR interface

is implemented using a Xilinx XC4062XL-BG-432-09 FPGA [45] that straddles the PC Card

connector on one side and the system memory bus on the other side. The FPGA appears to the

SA- 1100 hardware and to the operating system as the third DRAM bank with a standard DRAM

interface on the system memory bus.

101

CSR Module

CSR Computer
Module

IFB
Controller

ADC

DAC:D

Device Shell

LCD

Figure 29: A photograph of the prototype CSR-based multimedia picture frame (top)
and the schematic diagram for the system (bottom).

4.1.3 CSR-based Multimedia Picture Frame

Figure 29 depicts a simple schematic diagram of a prototype CSR multimedia picture frame, as

well as a photograph of the actual implemented device. The device is capable of receiving

102

network-based multimedia data that can then be decoded and rendered through the picture frame.

Not only can the device display images, e.g., in JPEG or GIF format, but it can also render audio

material associated with the images. The device is capable of automatically looping through sets

of multimedia content, or the user can use voice commands to select particular pictures. The

small footprint and familiar shape of the device (e.g., similar to standard picture frames) gives it

an intuitive user interface and makes it appropriate for use in locations within homes and offices

where a bulky personal computer would not be appropriate.

4.2 System Analysis and Metric Evaluation

The CSR System grew out of a need for an architecture for developing a variety of network

devices, each with custom user interfaces that facilitate interaction with different classes of

content and services. Recognizing that a single computational platform cannot sufficiently

optimize different user-defined parameters such as interactive performance and battery life, the

CSR architecture proposed a segmentation between device UIls and their underlying

computational resources. This segmentation is placed close to the device-specific UI components

so as to simplify device UI development and lower unit costs. Additionally, with little electrical

circuitry a part of the device UT, each CSR computational resource module can more fully

optimize the device. This section evaluates the PC Card-based CSR architecture along these

motivating goals.

The first part of this section summarizes the device design cycle inspired by the CSR

architecture, and provides simple design time and design complexity analysis. We also analyze

device deployment models to investigate opportunities to reduce the cost of CSR modules and

CSR-based devices.

The second part of this section evaluates the bussed implementation of the PC Card-based

CSR architecture described herein. The bussed implementation (as compared to a point-to-point

implementation) was motivated by a desire to reduce the cost and size of CSR IFBs that must be

embedded into device shells. Smaller and less expensive IFBs can be embedded within a larger

103

Computational Resources

harder UI dev. easier UI dev.

more expensive UI less expensive UI

less optimization more optimization

Figure 30: The segmentation proposed by the CSR architecture for the development
of network content devices.

variety of device shells, thereby making the architecture more broadly applicable. At the same

time, the bussed implementation must provide performance sufficient to support typical

multimedia applications. To this end, we present a comparison of both cost and size between

IFBs based on a bussed architecture versus those based on a point-to-point architecture, and

demonstrate that the bussed implementation is less expensive while providing sufficient

performance for typical multimedia applications.

The third part of this section analyzes the power consumption of a bussed PC Card-based CSR

architecture. The modular nature of CSRs and the use of connectors is evaluated from a power

consumption perspective. The power consumption of CSRs is compared with that of more

traditional embedded solutions, and hybrid architectures that offer lower power consumption but

with lower system flexibility are explored.

4.3 Cost Analysis

Cost is one of the most important factors to consider in systems design, and oftentimes motivates

making trade-offs in other areas. Figure 30 depicts the positioning of the segmentation between

device Uls and computational resource modules as selected by this implementation of the CSR

architecture. The division is chosen to be close to the device UI so that UI development is simple

and unit costs are low. Simple device UI development spurs the creation of a variety of custom

Uls, while still catering to compressed time-to-market requirements. Since CSR modules are

used to optimize the performance of device Uls with respect to user preferences and changing

104

network content, minimizing the amount of circuitry and complexity of device UIs allow these

optimizations to affect a larger part of the device (as per Amdahl's Law).

In the next sub-sections, we evaluate in detail various aspects of the device architecture and

design cycle that contribute to overall device cost.

4.3.1 CSR Device Design Cycle

The PC Card-based CSR architecture presents an abstraction layer to the design of devices, and

structures the design process. The abstraction layer presented by CSR is similar to that of

standard battery cells. A designer must merely understand the voltage requirements and current

consumption of a design, choose the appropriate cells (e.g., AA, AAA, C, D), and place the

proper set of battery clips. The structure placed on the power system design because of standard

cell batteries greatly limits design complexity, eliminates many design errors, and reduces the

qualifications, the training, and the number of required personnel.

To design a power system with batteries, a designer need only understand two simple rules:

(a) place batteries in parallel to increase current; and (b) place batteries in series to increase

voltage. With these two simple rules, a designer can build a complete and reliable power system.

The designer need not understand the actual workings of a battery cell, nor must he concern

himself with choosing the optimal battery type for the device. The use of standard battery clips

will allow manufacturers and consumers alike to seamlessly and cost-effectively track innovation

in the battery industry.

Device design with the CSR architecture is similarly easy. A designer must follow these steps

to design a CSR-based device:

(1) Select a one- or two-socket CSR IFB to embed into the device;

(2) Build the functionality of the device using discrete off-the-shelf integrated circuits and

components, making sure that each IC or component uses one of the many CSR-supported back-

end electrical interfaces;

105

(3) Place these ICs and components on the IFB, connecting the back-end interface signals to

the appropriate data and control paths as specified in Figure 26.

(4) Ascertain that all bandwidth requirements, real-time constraints, and overall quality-of-

service needs of each of the device components are met. A set of simple-to-use rules as well as

an entire design automation environment are described in Chapter 4.

The structured and reasonably simple design flow of the CSR architecture simplifies device

design and eliminates much design complexity (and therefore errors), thereby reducing

development and maintenance costs.

Using the CSR architecture and its structured design cycle, a developer with little training in

hardware systems was able to design and fully build a personal digital assistant (PDA) with

stylus-based touchscreen and LCD, audio output capability, and wireless networking. Another

similarly trained developer was able to build a small autonomous vehicle capable of self-

navigation using infrared sensors and GPS positioning data. Each of these projects was

effectively realized within three weeks of design and development time. However, it is important

to note that much of this time was spent in stabilizing the CSR computer module and CSR IFB

prototypes.

A veteran designer of 20 years predicts a 38% reduction in overall design and development

time for intelligent, interactive toys and devices built using the CSR architecture [62]. The

compression in development time is primarily attributed to the following characteristics of the

CSR architecture:

" Simplicity of device UT development. The use of CSR modules eliminates the large amount

of time that is spent in building the device's system platform and booting the operating

system environment. Instead, device designers are able to immediately build innovative and

ergonomic device Uls around the CSR interface. Custom applications for that device Ul can

also be built immediately on top of the CSR module's operating system environment.

" Fast interaction with working device Us. Designers and focus groups are able to "play with"

new device Uls, quickly decipher which Uls and play patterns are appropriate, and iterate

106

Device UJ

A pplications

OS and Syt em Modul es

HardwaePlatform

device UI device
iteration iteration

prototype product prototype product

CSR Design Flow Embedded Design Flow

Figure 31: Comparison of device design cycle based on CSR architecture and
status quo embedded architectures.

over different models. Since iteration over refined Uls is an inherently sequential process, a

rapid development time for each device UI iteration is important.

SSeamless transition and design flow from prototype to final product. CSR devices are based

on a modular architecture where a device UI hosts one or more CSR resource modules. This

modularity simplifies prototype development but also immediately leads into final

manufacturable product design.

Figure 31 shows a comparison between the design flow of devices based on the CSR architecture

and status quo embedded architectures. Device design is segmented into four independent

development blocks - the hardware platform, the operating system (OS) and system software

modules, the custom applications, and the device user interface (UI). In the CSR design flow,

device UI and custom applications can be immediately developed and hosted by existing

hardware platforms and operating system environments. Iterations over the devices are simply

107

iterations over the device UI and custom applications, without modification to the hardware

platform or the operating system environment. This is in stark contrast to status quo embedded

systems development where each prototype iteration as well as the final product design step

involves modifications to and subsequent verifications of each of the four development blocks.

Essentially, the CSR architecture extends the component software model [41, 42] to include

hardware, and in doing so, realizes many of the benefits of the component software model. These

benefits include ease-of-development around well-defined application programming interfaces

(APIs), more rapid development times, and reduced development costs. Component re-use

enables development costs and times to be prorated across multiple products, and supports more

robust development and quality assurance measures.

Chapter 4 investigates the design flow inspired by the CSR architecture in more detail, and

proposes an automated design environment that further simplifies overall CSR-based device

design and development.

4.3.2 Device Deployment Cost Models

CSR modules are fully generic, and can make up the computational and peripheral resources for

most device shells. Since CSR modules can be produced independently of the actual device shell,

and the modules can cut across multiple market segments, the total achievable yearly volume for

CSR modules can be extremely large.

Manufacturing learning curves and economies-of-scale can be leveraged to reduce the unit

cost of each CSR module, and therefore the overall cost of each CSR-based device. Cost

estimation and learning curve models state that beginning from a critical minimum volume, each

incremental doubling of volume reduces units costs by 20% [58, 59, 66]. The solid line in Figure

32(a) shows the relationship between unit cost and total volume, assuming that the critical

minimum volume for CSR modules is two million units. The horizontal dotted line depicts a

constant $20 amount that would have to be paid per unit system if modular resources were not

used. The figure shows that the unit cost of CSR modules drop from an initial value of $20 to

108

$16 for four million units, which is further reduced to $12.80 for eight million units. In this case,

the hard costs of the computational resources of a device are reduced by $7.20, or 36%.

The cost savings of such a modular solution comes with the requirement for a set of

connectors and associated circuitry. The gray line (middle) in Figure 32(a) shows the total unit

cost for a CSR module and a pair of connectors. After 2.8 million total unit volume, the cost of

the modular CSR solution is identical to that of an embedded solution. After 8 million units, the

cost savings of the CSR solution is $5.92 and at 16 million units, the cost saving is $8.74, or

43.7%.

The modularity between CSR modules and device shells also supports the use of just-in-time

inventory models [5, 40]. Using a just-in-time model, device shells can be manufactured, with

the appropriate CSR modules assembled together just prior to device fulfillment. This allows

companies to efficiently allocate limited assets only to the development of device shells, with the

additional cost of CSR modules being only incurred upon fulfillment.

The just-in-time model may also reduce device inventory risks. With unpredictable consumer

demand and fad-like consumer purchasing cycles, device manufacturers are oftentimes left with

unsaleable inventory in their warehouses and retail channels. In order to recoup some of their

costs, manufacturers sometimes slash the price on these unsaleable inventory lots. For CSR

$25

$20 - - - ------- - - ------------------------ --------------------- '-

$15 unit cost of CSR modules?-$15
and connectors

$10
unit cost of CSR modules

$5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CSR Module Units (MM)

Figure 32: Device deployment cost analysis.

109

device inventory based on a just-in-time model, unsaleable inventory only includes device shells.

It is not sufficient to slash the price of only device shells, as CSR modules must be bundled with

the shells.

The following analysis shows that it may sometimes be more cost-effective to simply discard

device shells, rather than bundling them with CSR modules and selling them at a reduced price.

Let r represent the percentage of inventory that is unsaleable, b represent the percentage of total

device cost that is represented by the CSR modules, and s represent the percentage of total

revenue that is recoverable by using a modular architecture such as CSR. The relationship

between these variables is represented by the equation:

s = rxb

As increasingly more complex computational resources are used within devices, the value of b

will continue to edge upwards. Assuming a constant value of r, the increasing value of b will

drive potential economic benefits of using the CSR architecture linearly upwards. Conversely,

the use of rapid-turnaround just-in-time models for the development and delivery of device shells

may drive the value of r downwards. The simplicity of device shells will encourage the use of

these rapid-turnaround just-in-time models. However, the need to have inventory on-hand to

offer customers superior service will prevent r from ever reaching 0%. Nonetheless, as long as

the price reduction required to liquidate inventory is greater than the percentage of total device

cost represented by CSR modules b, it is economically more attractive to discard device shells all

together rather than bundle shells together with CSR modules and sell them at a discount. This

again reinforces the decision to push the segmentation between device Uls and CSR modules

close to the device-specific U.

4.3.3 Device Life Cycles and Total Cost of Ownership

Table 3 enumerates the lifecycle of different classes of devices. These lifecycles are affected by a

variety of factors, including:

110

Product Class Avg Life
(yrs)

Cordless telephone 10
Color TV 8
Camcorder 7
CD player 7
VCR 6
PC 6
Telephone answering machine 5
Fax machine 4

Table 3: Average lifecycle for products in various
classes.

Industry Clockspeed. Competitive pressures and innovation cycles differ by industry to

industry. A slower rate of fundamental innovation in products negatively affects consumer

purchasing cycles, and lead to longer device lifecycles [25].

Device Cost. More expensive devices have longer lifecycles, as it is economically difficult for

consumers to purchase new models.

Personal Factors. Personal factors also affect individual product lifecycles. A particular

device that has sentimental value to a family will have a longer lifecycle, in spite of new product

innovations and feature introduction.

In most cases, homes, offices, and mobile environments will have a broad array of devices,

each with its own lifecycle. However, unlike today's standalone devices, tomorrow's network-

centric products will rely on network content, applications, and services. The computational and

peripheral resources of longer lifecycle devices may have to be upgraded or augmented in order

to allow consumers to take advantage of new services, or simply to enjoy these services at a

comfortable interactive speed (e.g., upgrade for performance only).

The cost savings of simply being able to upgrade devices without having to always fully

replace them (some of which are irreplaceable) is governed by:

t = u x (1- b)

111

where b is the percentage of total device cost that is represented by the CSR modules, u is the

percentage of devices whose CSR modules are replaced either for upgrades or for maintenance,

and t is the total cost savings of upgrading CSR modules instead of replacing complete devices.

Expensive devices, such as those with large, high-quality LCDs, have large (1-b)s, and incur

tremendous cost savings by simply upgrading CSR modules.

For many network devices, the device is merely the enabler for the delivery of network

content and services. In these cases, revenue is derived primarily from the delivery of content and

services, and not from the sale of network devices. In fact, most of these devices will be sold at

cost, if not below cost. Accordingly, it is in the interest of content distributors to lower the total

cost of ownership t of network devices by allowing consumers to simply swap CSR modules.

4.3.4 Pin Count, Size, and Cost

This section analyzes the cost savings of the bussed PC Card-based CSR architecture as

compared to a point-to-point implementation. The bussed implementation fundamentally affects

the IFB, and in particular, the IFB Controller. The pin count of CSR modules is determined by

the connector used, and therefore, is fixed to 68 pins in the case of PC Cards.

Pin count primarily determines the cost of an integrated circuit. Not only are pins expensive,

but the packaging needed to accommodate a larger number of pins is also expensive. Pin count

also determines the minimum size a chip's silicon die since the die must be large enough to

accommodate that number of I/O pads.

Pin count of a chip also affects the overall size of a system. A large pin count chip has a larger

number of traces that must be routed on the printed circuit board (PCB), which affects not only

the size of the PCB but also its number of layers. Moreover, even if a particular device

implementation does not utilize all the narrowpath channels, a point-to-point IFB controller

would need to implement all the pins, and therefore increase size and cost needlessly.

112

Metric Bussed Point-to-Point Notes

Two-socket Interconnect Fabric Backplane Controller
Size Signal Pin Count 38 164

Standard Package PC44 PQ208 Assumes 20% of pins for
Pin Count CS48 VCC and GND.
Gate Equivalents 39,400 n/a
Package Size 17.5x17.5 mm 2 30.6x30.6mm 2

7x7mm2

Package Cost <$1 $ 2.38

One-socket Interconnect Fabric Backplane Controller
Size Signal Pin Count 25 104

Standard Package PC44 TQ128 Assumes 20% of pins for
Pin Count VCC and GND.
Gate Equivalents 26,200 n/a
Package Size 17.5x17.5 mM2 16x22mm 2

Package Cost I <$1 > $1
Table 4: Size and cost analysis for one- and two-socket CSR IFB Controllers.

Table 4 compares the pin count, package size, and package cost of our bussed PC Card-based

CSR implementation to that of a point-to-point implementation [65]. The comparison is shown

for both the two-socket and the one-socket CSR IFB.

Having discussed the cost and strategic advantages of the CSR architecture, the remainder of

this chapter evaluates the performance of the herein described PC Card-based CSR

implementation.

4.4 Performance Analysis

4.4.1 Scheduling and Bandwidth Performance

The implementation of the PC Card-based CSR architecture aims to minimize overall IFB cost

and size by building a bussed interconnect fabric. Multiple interfaces traverse the shared fabric in

a time multiplexed manner, with each interface only receiving a series of allocated time slots for

transactions. This section analyzes the effect time multiplexing has on application performance

and available bandwidth.

113

PC Card Intf

SPI 0 Intf

SPI 1 Intf Time

Narrowpath Interfaces Active

Figure 33: PC Card-based CSR Multibus Interface Scheduling.

Figure 33 depicts the time-multiplexed scheduling between narrowpath and PC Card

interfaces. The figure shows two narrowpath interfaces - both using SPI - active simultaneously,

but working asynchronously and with different time frequencies. The frequency of individual

narrowpath interface is dictated by its associated narrowpath component. For instance, if a DAC

component with a backend SPI protocol is used to render audio through a speaker, each packet

may need to be delivered to the DAC in 30 microsecond intervals. The number of bits

transmitted to the DAC together with its clock frequency determines the time duration (e.g.,

width) of each narrowpath transaction. The union of the time slots allocated to the two SPI

components represents the total time dedicated to the narrowpath interface. It is important to note

that the total narrowpath time segment is a dynamically varying quantity, depending on the

alignment of the independent narrowpath transaction packets.

All remaining time is used for PC Card transactions. Narrowpath interfaces are scheduled first

as each narrowpath transaction may have individual real-time deadlines. PC Card transactions,

on the other hand, may simply have deadlines for the delivery of blocks of data. In order to

guarantee that PC Card transactions do not delay narrowpath transaction, the maximum

transaction time (in clock cycles) may be specified and constrained. PC Cards may utilize larger

blocks of free time by cascading smaller transactions back-to-back.

Figure 34 shows bandwidth distribution to narrowpath and PC Card interfaces for simple

applications using a variety of 16-bit PC Cards and 32-bit CardBus cards. The device is a simple

network radio that receives digital content, decodes it, and outputs it to a digital-to-analog

converter, which, in turn, converts the data to an analog signal and outputs it to a speaker. The

114

figure examines the effect on PC Card bandwidth with changing narrowpath conditions. The

variables of interest are (a) the frequency of packet delivery to the DAC, which affects audio

quality, (b) the clock speed of the DAC, which affects the time required to transmit each packet

to the DAC and the amount of time available for PC Card transactions, (c) the clock speed of the

PC Card, which affects PC Card communication bandwidth.

The figure and its associated table show actually used narrowpath bandwidth and total

available PC Card bandwidth values for voice- and CD-quality audio. CD-quality audio requires

44kHz frequency, whereas voice-quality audio requires just 11kHz sampling frequency. Since the

number of narrowpath transactions and the amount of data transferred during each transaction is

fixed, increasing the clock speed of the DAC simply makes available more bandwidth for the PC

Card. Increasing the effective clock frequency of the PC Card, obviously increases only the total

bandwidth available to the PC Card.

The two plots below the table graphically depict the presented data for CD- and voice-quality

audio devices. The graphs demonstrate that increasing the clock speed of PC Cards (or the

effective clock speed for asynchronous PC Cards) is more effective in increasing total bandwidth

available for PC Card transactions than increasing the clock speed of narrowpath components.

For instance, using a 33 MHz 32-bit CardBus card instead of a 10 MHz (100 ns cycle time) 16-

bit PC Card increases available bandwidth by 567%, whereas using a 10 MHz SPI DAC instead

of a 2 MHz SPI DAC increases available bandwidth for PC Cards by 7%. It is important to note

that using CardBus cards are especially effective not only because of their higher clock speed but

also because of their wider 32-bit datapaths.

115

Pkt
Size

Device Characteristics (Bits)
Payload Freq Bandwidth Mux Time

(Bits) (MHZ) (MBps) (ns)

Voice Quality, Low Speed DAC with NP 16 12 2 0.02 8,000 9%

Slow PC Card PC 8 2 1.82 82,000 91%

CD Quality, Low Speed DAC with NP 16 12 2 0.09 8,000 35%

Slow PC Card PC 8 2 1.30 15,000 65%

Voice Quality, High Speed DAC with NP 16 12 10 0.02 1,600 2%

Slow PC Card PC 8 2 1.96 88,400 98%
CD Quality, High Speed DAC with NP 16 12 10 0.09 1,600 7%

Slow PC Card PC 8 2 1.86 21,400 93%

Voice Quality, Low Speed DAC with NP 16 12 2 0.02 8,000 9%

Fast PC Card PC 16 10 18.22 82,000 91%
CD Quality, Low Speed DAC with NP 16 12 2 0.09 8,000 35%

Fast PC Card PC 16 10 13.04 15,000 65%

Voice Quality, High Speed DAC with NP 16 12 10 0.02 1,600 2%

Fast PC Card PC 16 10 19.64 88,400 98%
CD Quality, High Speed DAC with NP 16 12 10 0.09 1,600 7%

Fast PC Card PC 16 10 18.61 21,400 93%

Voice Quality, Low Speed DAC with NP 16 12 2 0.02 8,000 9%

CardBus Card PC 32 33 121.48 82,000 91%
CD Quality, Low Speed DAC with NP 16 12 2 0.09 8,000 35%

CardBus Card PC 32 33 86.96 15,000 65%

Voice Quality, High Speed DAC with NP 16 12 10 0.02 1,600 2%

CardBus Card PC 32 33 130.96 88,400 98%

CD Quality, High Speed DAC with NP 16 12 10 0.09 1,600 7%

CardBus Card PC 32 33 124.06 21,400 93%

Voice-Quality

Available PC
Card BW
(MBps)

140-

80-

60)

40

20

PC Card Clock
(MHz)

10

Narrowpath
Clock (MHz)

CD-Quality

140-

120

100

80

611

40-

20-

33

Narrowpath
Clock (MHz)

Figure 34: Total bandwidth utilization by narrowpath channels and maximum
bandwidth available to CSR modules for two configurations of a simple CSR-based

audio device.

116

10

PC Card Clock
(MHz)

-4

2

The C-like pseudo-code shown in Figure 35 describes a simple algorithm for discerning the

time available between multiple independent sets of narrowpath interfaces. Each independent

narrowpath interface is assigned a subscript character. The variable 1_a denotes the length of

each transaction packet, and is determined by the number of bits transmitted in the packet and the

clock speed of the transmission. In asynchronous hand-shaking transactions, such as those using

parallel and RS-232 serial interfaces, 1_a is the entire cycle time of the transaction. The variable

d_a denotes the periodicity of transaction packets, and is determined by the packet's target (or

source) 1/0 component, e.g., digital-to-analog converter. For instance, a audio output application

may deliver digitized audio level packets to a digital-to-analog converter on 30 microsecond

intervals.

la (synchronous) =bitwidtha X
cika

1
da (synchronous) =

fa

Each independent narrowpath channel and the application or sets of applications that use each

channel are characterized by different 1_a and da. Accordingly, the pccard-gap value is a

dynamically changing value depending on the alignment of transaction packets from the various

narrowpath channels.

117

--- r. -~ _ -~-.~------~ -- -

d-a

lNa

a _

M Time

occupied = FALSE;

state = UNOCCUPIED;

for (i = 0; i < (d_a * db *

{

) ; i++)

if (remainder (i / da) <= 1_a)then occupied = TRUE;

if (remainder (i / d-b) <= lb)then occupied = TRUE;

if (state == UNOCCUPIED AND occupied == TRUE)

unoccupied-stoptime = i;

state = OCCUPIED;

if (state == OCCUPIED AND occupied == FALSE)

{
unoccupiedstarttime = i;

state = UNOCCUPIED;

pccard-gap = unoccupied stoptime - unoccupiedstarttime;

}

Figure 35: C-like psuedo-code that describes how to determine the available time

between narrowpath transactions, which in turn can be utilized for module-to-module
communications.

118

Narrowpath
Interfaces

In order to maximize bandwidth available to PC Cards, each of these dynamically changing

pccard-gap values must utilized to the fullest and using the most efficient PC Card

transactions. CardBus cards support burst transactions in which a single address packet is

following by a number of payload or data packets. The overhead of burst transactions is simply

the address packet, which is amortized by a large number of data packets. The desire to use large

burst transactions is tempered by the desire to fill as many pccardgap time slots between

narrowpath transactions as possible with PC Card transactions.

Figure 36 shows the effective payload bandwidth achievable for various burst transaction

sizes. Multiples of small burst sizes, such as using two payload packets following the address

packet, can more fully take advantages of the time gaps between narrowpath transactions, but

each of these transactions have large amount of overhead (e.g., 33%). Once the burst size

becomes too large, many time gaps are left unutilized, and overall bandwidth suffers.

Figure 36(a) depicts the optimal burst size for a CSR-based audio device based on two SPI

narrowpath components. The first component is a digital-to-analog converter that can receive 24

bits of data with a maximum clock frequency of 4 MHz. To realize CD-quality audio, data

packets must be delivered to the DAC every 23 microseconds. The second component is an

analog-to-digital converter that can receive 16 bits of data at a maximum clock frequency of 2

MHz. It is also sampled every 23 microseconds. The audio device also uses a 32-bit CardBus

network card, capable of transferring data between an Ethernet network and the connected CSR

computer module. The optimal burst size, as shown in the figure, is 283 . This burst size with a

33MHz 32-bit CardBus achieves a maximum bandwidth of 78 Mbytes per second between the

network card and the CSR computer module.

Figure 36b shows the optimal burst size for the same audio device as in Figure 36a, but with

the sampling period of the ADC increased to 90 microseconds, and with independent left- and

§ CardBus cards support burst sizes in multiples of 16. Accordingly, the actual optimal burst size is 256 with an
aggregate bandwidth of 72 Mbytes per second.

119

right-stereo channels. Figure 36c shows the optimal burst size for an audio device capable only of

mono audio output (i.e., the ADC has been eliminated).

These slight variations in hardware configuration may simply be a result of changes in

application software. For instance, an application that allows digitizing of analog music may

select a greater ADC sampling rate than that used by a voice recognition application. Figure 36

shows that such changes in software may result in corresponding changes to the optimal burst

size for CardBus transactions. This allows the application mix and its associated 1/0

characteristics to be analyzed apriori (e.g., at compile or configuration time) so as to configure

the CSR architecture for optimal module-to-module performance. Even if the optimal bandwidth

is not required for any particular application mix, the optimization process minimizes power

consumption from module-to-module 1/0 communication by eliminating unnecessary overhead

packets.

120

100 -

90 -

80 -

70-

60-

50-

40 -

30 -

20-

10 -

0-

90 -

80 -

70 -

60 -

50 -

540-

30 -

0 20 -

10 -

0

120

100 -

80-

60 -

40-

20 -

0-

*w~q~.p~! /

-k "- t Mn 01 Mn -4 K- M' Ch M r- t- M 0-1 in -..
rq Mn K- f n 00 M M0 W0 Ch~ W0 C%

P- r- V- N M M ~ in

Transaction Burst Size (cycles)

(a)

- K- ~ % in K- '~ % in - K ef~0% n - K- e 0% in I

r~inK- e n 0= Ch efq40 0 %- '00

Transaction Burst Size (cycles)

(b)

t % - kn Mf W- CN t-- In M~ - 0% K- n M~ -4 ON - in M
R'in 0 " 4 %~ n 00 0 1 0 0% " 4 - = M~

Transaction Burst Size (cycles)

(c)

Figure 36: The optimal CardBus transaction burst size for achieving maximum
module-to-module communication bandwidth.

121

VA,"

Only 32-bit CardBus cards support burst transactions. 16-bit PC Card transactions support the

transfer of a single packet of data per complete cycle. Figure 37 shows the bandwidth available

for module-to-module communications using 16-bit PC Cards for the same device and

configuration as that of Figure 36. Data for a variety of different transaction cycle speeds as

specified by the PCMCIA are presented.

Next, we analyze bandwidth for IFB-to-IFB communications. As described in Section 3.6,

sets of one- and two-socket IFBs can be connected together to realize multi-socket IFBs that are

appropriate for larger devices, such as set-top boxes and hubs. In this architecture, IFBs

communicate with one another using the narrowpath channels, but there typically are no real-

time deadlines for the delivery of individual packets. Instead, there are real-time deadlines for the

delivery of blocks of data. Accordingly, IFB-to-IFB communications can be inlined with other

narrowpath communications. This mechanism makes IFB-to-IFB communications transparent,

effectively hiding intra-IFB communications such that PC Card transaction time is not reduced.

122

14-

12 -

10 -

4 -

2

0

100 150 200 250 300

Transaction Cycle Time (ns)
10 (a)
9

8

7

6

2-

I -
0-

100 150 200 250 300

Transaction Cycle Time (ns)

16- (b)

14-

12 -

10

;j -

6 -

4 -

2 -

0 -

100 150 200 250 300

Transaction Cycle Time (ns)

(c)

Figure 37: Maximum module-to-module bandwidth achieveable with 16-bit PC Cards
for various cycle speeds.

Figure 38 shows the maximum bandwidth achieved by inlining IFB-to-IFB communications

with standard narrowpath channels for the audio device configurations associated with Figure 36

and Figure 37. Each graph shows a variety of narrowpath interfaces and cycle times (a SPI

interface with 1.25 MHz, 2 MHz, 5 MHz, 10 MHz, and 20 MHz as well as a 8-bit Parallel Port

123

interface with 2 MHz, 10 MHz, and 20 MHz) plotted against packet length. Since the standard

narrowpath channels determine the total amount of time available for intra-IFB communications,

maximum bandwidth is achieved by varying the packet length for each particular cycle time. This

scheme most fully utilizes the time available for intra-IFB communications and results in

maximum bandwidth.

The data shows that standard 8- and 16-bit packets are not always optimal. Instead, for the

system configuration depicted in Figure 37(a) and using a 1.25 MHz SPI interface, a 10-bit

packet results in the maximum bandwidth. The data presented assumes that each packet has no

overhead (i.e., 100% payload) once the channel has been configured. Moreover, the data

represents the bandwidth achievable by the source IFB only. Effective IFB-to-IFB bandwidth is

limited by the minimum achievable bandwidth of both the source and the target IFB, and the

application mix 1/0 characteristics of each. Increased bandwidth can be realized by dedicating

narrowpath channel time to intra-IFB communications (i.e., make IFB-to-IFB communications

non-transparent by explicitly allocating additional time than that already warranted by standard

narrowpath channels). Differences in packet length and cycle time between the source and the

target IFB can be rectified by the narrowpath buffers used.

124

10 PP 20MHz

- SP-I ZOMHz
S--- ---------------------- - ---------- z

- PP 2MHz

~\ SPI 5MHz -

V 0.1
SPI 2MHz

SPI 1.25MHz

0.01

100

S10

0.1

0.01 -

ana

1 11 21 31 41

Packet Width (bits)

(a)

PP 20MHz
PP 10MHz

SPI 20MHz

PI1.25M fl1z I 2M Hz .

1 11 21 31 41

Packet Width (bits)

(b)

10 -
PP 20MHz

1 - SPI 20MHz
--- -- -- -- -- -- -----

-PP MHz - - --

-- -N.-- -- SPI 5MI~z0.1-
SPI 2MHz

SPI 1.25MHz
0.01

1 11 21 31 41

Packet Width (bits)

(c)

Figure 38: Maximum bandwidth available for IFB-to-IFB communications for a
simple CSR-based audio device plotted against packet width (in bits) the figures
assume that IFB-to-IFB communications are fully inlined with other narrowpath

communications.

125

I

Subsystem Required
Bandwidth (MB/s)

Graphics 30 to 40
Full-motion video 2 to 9
Ethernet 2
Hard disk 5 to 20
CD quality audio 1
Cellular data network 0.001
3G cellular data network 0.125 to 0.250

Table 5: Bandwidth requirements for various multimedia
subsystems.

Having analyzed the maximum achievable bandwidth for module-to-module and IFB-to-IFB

communications, we next discuss the bandwidth required for typical multimedia subsystems.

Table 5 lists the bandwidth for these typical subsystems. Devices may be based on a single listed

subsystem or a combination thereof.

The module-to-module bandwidth data shown in Figure 36 demonstrates that sufficient

bandwidth exists over a bussed IFB to support each of the subsystems listed in Table 5. The

bandwidth of the lower speed and narrower datapath 16-bit PC Cards as shown in Figure 37

cannot support the requirements for a graphics subsystem nor can it support a high-performance

hard disk drive. Similarly, the IFB-to-IFB bandwidth data presented in Figure 38 demonstrates

that by using a high-speed parallel narrowpath interface, all but the graphics and high-

performance hard disk drive subsystems can be supported.

126

4.4.2 Isochronous and Asynchronous Communication Limits

The relationship between isochronous narrowpath communications and asynchronous PC Card

communications was shown in Figure 33. Since narrowpath communications have real-time

constraints, they are scheduled first. Any remaining time is allocated to PC Card

communications. The following equations show the relationship between the amount of time

allocated to narrowpath communications and that allocated to PC Card communications.

F t
1 when Rem() < ck

fk(t)= Pk
0 when else

(PX px. x-xpn)

LPCCardavg = (P X P2 X ---X Pn)- A W I f2 -W n W

t=1

where fk(t) states whether the kth narrowpath channel is active at time t. Ck is the total cycle time

for data transmission as determined for synchronous interfaces by the product of the number of

serial bits transmitted and the transmission clock period. Pk is the worst-case periodicity of the

transmission. Figure 35 depicts Ck and pk as 1_a and d-a, respectively. LPCCardavg relates the

average percentage of time that is allocated to PC Card transactions as opposed to narrowpath

transactions.

LPCCardavg provides a simple rule-of-thumb for determining the amount of bandwidth that is

available for module-to-module communications once a set of narrowpath components have been

selected. However, it is important to note that LPCCardavg is only an approximation, as the actual

amount of useable time for module-to-module communications is constrained by each module's

minimum transaction time. If a module's minimum transaction time is larger than the time

available between two narrowpath transactions, then that time is not useable and cannot

127

contribute to overall module-to-module bandwidth. The PCMCIA defines multiple minimum

transaction times for 16-bit PC Cards, including 100 ns, 200 ns, 250 ns, 500 ns, and 600 ns. The

32-bit CardBus interface uses an address cycle followed by a set of data cycles. The minimum

transaction time is therefore the sum of the address cycle and a single data cycle. Assuming a 33

MHz CardBus clock, the minimum transaction time is 60 ns (2 cycles at 33 MHz).

4.4.3 Application I/O Performance

This section analyzes the performance of the PC Card-based CSR architecture from a software

application perspective. The round-trip time to read data from 1/0 resources - either other CSR

modules or device shell components - must be sufficiently small to enable the simple and

reliable design of software applications. A large round-trip time limits the utility of interactive

applications.

Table 6 enumerates the round-trip time to read data from both CSR modules and device shell

components. The first two rows show round-trip times for reading configuration data from a

3Com Megahertz 10/100 LAN CardBus card (Model 3CXFE575BT). The card was clocked at 10

MHz, which is significantly slower than its peak frequency of 33 MHz. Each read request from

configuration space returns a single 32-bit data word, which specifies salient information about

the CardBus card.

The timing data is gathered from the delivery of the first read request from the SA- 1100 to the

CSR computer module FPGA (see Figure 28) to the completion of the transaction as signaled by

the FPGA back to the SA- 1100. The single packet round-trip time demonstrates the importance

of using a time- and space-based watermark mechanism in the inbound FIFO as described in

Section 3.7.2. After a set elapsed time, even if the FIFO is not nearing capacity, software is

notified of the inbound data. The 256-packet read overflows both the inbound and outbound

FIFO buffers, and must be segmented by software (e.g., based on FIFO ready interrupts) and

delivered to the circular FIFO buffer. It is important to note that the current implementation of

CSR computer modules add reasonable overhead to each read or write transaction. This overhead

128

Read Location Transaction Size Round-trip Notes
and Count Time (ns)

3Com 10/100 LAN CardBus Card 1 32-bit packet 480 Single data packet is delivered
rapidly because of time- and space-
based inbound FIFO watermark

3Com 10/100 LAN CardBus Card 256 32-bit packets 66,230 Multiple outbound and inbound
packets take advantage of circular
FIFO buffer

SPI-based Touchscreen Controller 1 16-bit packet 8,690

Table 6: Round-trip times for application software running on a CSR computer module
to read data from another CSR module and narrowpath component.

derives from outbound and inbound interrupts received by the StrongARM 1100, as well as from

memory reads and writes. An integrated ASIC implementation will reduce these overheads.

The last row in Table 6 shows the round-trip time to read data from a device shell component

using the SPI narrowpath interface. The component is a touchscreen controller that returns the x-

and y-coordinates of the stylus on a resistive touchscreen. The value of the touchscreen controller

buffer is returned immediately upon a read request (e.g., there is no delay to read the

touchscreen).

4.5 Power and Energy Analysis

It is important to study power consumption because many CSR-based systems will be mobile

devices that rely on a battery source for energy. Minimizing the power consumed by a system is

important for the following reasons:

" Increased battery life. Energy-efficient devices reduce the number of times that batteries must

be swapped in and out, thereby increasing convenience.

" Reduced fully loaded device weight. Batteries contribute a significant percentage of the

weight of a mobile device. Since power efficient devices can last hours if not days on a

reasonable sized battery, the weight of the device and the battery is much less than if the

device were to use a larger and more bulky energy source.

129

* Reduces the amount of heat generated by the system, and supports the development of mobile

devices that do not need built-in cooling mechanisms.

* Reduces the possibility of system failure from overheating.

* Reduces overall device costs by limiting the cost of batteries and by eliminating the cost of

cooling mechanisms, such as fans.

130

CSR Module Backplane
ModuleController

CSR Module

Interfaces to
network device

"Shell"

(a)

CSR Module

IU~m...m~mmmm..IBackplane
Controller

CSR Module

Interfaces to
network device

"Shell"

(b)

High Speed
e 4 Peripherals

Emedded'
Host System st Hegmwpeed

Components

Figure 39: The three architectuggs compared for power analysis.

In our study and evaluation of power consumption, the three architectures shown in Figure 39 are

compared. The first architecture, shown in Figure 39(a) depicts a CSR architecture based on a

bussed IFB as described herein. The second architecture, shown in Figure 39(b), is a CSR

architecture based on a point-to-point IFB. The point-to-point IFB eliminates the need to time-

multiplex multiple interfaces over a shared bus, and also reduces the capacitive load that must be

switched during each transaction. The third architecture, shown in Figure 39(c), is a status quo

custom embedded architecture. In this architecture, there are no pluggable modules, and the host

system uses a wide datapath such that direct and dedicated paths exist between each peripheral

and the host system.

131

The power consumed by a system is proportional to:

CxV 2 xf

where C is the effective capacitance switched, V is the voltage at which the circuitry operates,

andf is the average signal switching frequency. Therefore, reducing any or all of C, V, orf will

reduce the power consumption of a system. C and f each have a linear relationship to power,

whereas V has a squared relationship and can impact system power more aggressively. Changes

in V may also affect signal propagation speed, and therefore limit the maximum system operating

frequency.

Table 7 shows the power consumption of a PC Card-based CSR radio device in various

operational states. The first row shows that power consumption for the processor alone is

minimum. In this state, the processor is simply fetching and executing instructions from Flash

memory. Next the processor configures the entire system, including the dynamic random access

memory (DRAM) banks. Since DRAMs must continuously be refreshed, they consume a

significant amount of power. Moreover, DRAMs operate at a reasonably high frequency, and the

processor must switch the capacitance of all components on the memory bus at that frequency.

Since, in our current implementation, the FPGA is located on the main memory bus, it, together

with the DRAM banks, Flash banks, and associated PCB traces, present a large capacitive load to

the processor. An application-specific integrated circuit (ASIC) implementation of CSR

computer modules in which the FPGA circuitry is integrated together with the processor core

presents an opportunity to reduce power consumption significantly. Communications between

132

Description Current (mA)
Processor boot up with DRAMs idle. 180
System configuration with DRAMs active. 420
Software MP3 decode with no output to DAC. 510
Software MP3 decode with stereo DAC connected. 780

Table 7: Power consumption of a PC Card-based CSR radio
device in various operational states.

the processor core and the FPGA circuitry would be on-chip, and therefore could be based on a

lower voltage and with lower capacitance. The external memory bus would only house the

DRAMs, Flash, and ROMs.

Power consumption can also be reduced and performance enhanced by using a reconfigurable

co-processor. The co-processor may comprise a set of reconfigurable blocks, each of which can

be configured by software to implement a particular function, such as MP3 decoding. The

primary processor, on the other hand, can execute software that implements control and

management functions. By using dedicated functional cores realized within a set of

reconfigurable processors, runtime performance can be enhanced while power consumption is

reduced.

Another significant jump in power consumption results from the CSR computer module

driving data and commands across its connector and onto the digital-to-analog converter (DAC)

of the radio, which is physically located on the device shell. Since compressed audio files, such

as MP3, are decoded by the processor and then transmitted to the DAC as raw audio packets, the

1/0 bandwidth is large. The large number of 1/0 communications over the capacitive connectors

and their associated traces also contribute to the jump in power consumption.

[57] presents an evaluation of the power consumption of 3Com's Palm Pilot. For the 19MHz

Palm Pilot, power consumption is between 152 mW to 188 mW. At 3 volts, this is 50.7 mA to

62.7 mA of current consumption. Comparing these results to those of the 190 MHz CSR-based

system enumerated in Table 7 shows that power consumption is roughly an order-of-magnitude

less for the Palm, which is what we would expect for the lOX reduction in frequency. It is

important to note that although power consumption is proportional to the frequency f, the

switching capacitance C, and the square of the voltage V (P oc CV2J), the time necessary to

complete any task is proportional to the inverse of the frequency f (t Oc 1/). Now since, energy E

is proportional to the power consumed P times the total time t, energy consumption is

theoretically invariant with frequency f. But a reduction in frequency typically increases energy

consumption as it extends the time that associated components remain powered. In fact, for

133

Modular Embedded
Bussed Point-to-

Point

Avg trace length 5 p-to-p to IFB Cntrl 1000 mils x 2 1000 mils x 2 1000 mils
42 lines between modules 1000 mils
9 lines to narrowpath 2000 mils

Avg capacitive load per pin 5 p-to-p to IFB Cntrl 12 pF x 2 12 pF x 2 12 pF
42 lines between modules 12 pF
9 lines to narrowpath 24 pF

Avg capacitive load per pair 4 pF 4 pF n/a
of connector pin

Total capacitive load per pin 5 p-to-p to IFB Cntrl 17 pF x 2 17 pF x 2 13 pF
42 lines between modules 21 pF 17 pF, 13 pF
9 lines to narrowpath 34 pF

Table 8: Capacitive loading from pin input capacitance and PCB trace lengths for each
of the architectures of Figure 39.

interactive devices, such as personal digital assistants, in which burst transactions are dominant, a

higher clock frequency will reduce overall energy consumption.

Next, we take a closer look at the sources of power consumption in the CSR architecture, and

present a comparative analysis between the power consumed by features of the CSR architecture

and that of more traditional architectures. A primary difference between the CSR architecture and

traditional embedded solutions is the modularity between CSR modules and device shell

components. This results in an increase in capacitance, and therefore, a proportional increase in

power consumed, by the connectors and associated traces of the modular CSR architecture.

Additionally, the implementation of a bussed CSR architecture as described herein contributes to

power consumption in two ways. First, the shared bus of the IFB houses multiple capacitive

loads, each of which is switched during module-to-module and module-to-device-shell

communications. Second, the time multiplexing of multiple interfaces over the shared bus affects

the frequency by which each signal line is switched. A discussion of both capacitive loading and

switching frequency issues and their effect on power consumption by the bussed CSR

architecture follows.

Table 8 enumerates the capacitances associated with the implementation of each of the three

architectures of Figure 39. The modular two-socket bussed architecture (depicted in Figure 39(a))

134

has 5 point-to-point signal lines (not counting DC power and ground lines) that interface with the

IFB controller. Assuming a device shell comprised of three SPI components, there are 9 signal

lines with three (two CSR modules and one narrowpath component) loads each, and 42 signal

lines that are bussed directly between the two CSR modules. The capacitances associated with

each of these lines are shown in Table 8 assuming nominal values of 12 picofarad input

capacitance and 1000 mil (1 inch) trace length per pin.

The modular point-to-point architecture requires a retransmission of each transaction by the

IFB controller. Module-to-module communications must traverse two pairs of connectors, while

module-to-narrowpath communications only traverses a single pair of connectors.

Accordingly, module-to-module communications incur 17 pF of capacitive load twice. Module-

to-narrowpath communications incur 17 pF of load for module-to-IFB-controller

communications, and an additional 13 pF of load for IFB-controller-to-narrowpath

communications. We find that as long as more lines are bussed only between the two CSR

modules than between the two CSR modules and the narrowpath components, the modular

bussed architecture incurs a slightly lower capacitive loading on average.

The custom embedded solution incurs the lowest capacitive load, as single, direct paths exist

between each two potential communicating parties. Moreover, since modular connectors are not

used, no additional capacitive loading is incurred. Each pin of this architecture drives just 13 pF

of capacitive load. It is important to recognize that the high volumes of CSR modules (as

opposed to typical custom embedded solutions) will afford manufacturers the time to optimize

each module's power consumption (e.g., from improved ASIC construction and superior PCB

layout and routing), thereby offsetting some increase in capacitive loading.

135

r - - - -- - - - - - - - - - - -- -

CSR Module

._ _Device Shell
Components

Memory Processing
Banks Element

CSR
Interface

NtrSystem
C .

I

~~ IFB Ctr

SLCDR computer module W11 Ctrl

Ctr merged onto the device shell

Figure 40: Embedding CSR computer modules into device shells to lower signal

capacitance.

Interestingly, the additional capacitance of using connectors and a modular solution can be

reduced by simply embedding at least one CSR module into the device shell. In this scheme, a

single connector may be used to support an additional CSR module. This architecture still

maintains a simple and seamless flow from prototype development to final product release, while

optimizing the capacitive load. This is shown in Figure 40.

The capacitive loading incurred during narrowpath communications can be reduced by

providing point-to-point buffers for those signals. For example, assuming that a system uses three

SPI narrowpath channels, these nine signals can be buffered and re-driven to their intended target

as shown in Figure 41. The buffer simply routes and re-drives data (with no format conversion)

to the narrowpath ports when narrowpath communications are to transpire and re-drives data to

the other CSR module otherwise. Determining when narrowpath communications are to be

136

CSR Module .__

CSR Module ------ -----

Figure 41: Buffering selected narrowpath signals to lower capacitive loading for
narrowpath communications.

switched in and a mechanism with which to configure the IFB is discussed in Sections 3.4.2 and

3.7.3.

Having quantified the amount of capacitance that must be switched for each signal class, we

next evaluate the actual switching frequency. Since CMOS-based systems consume power only

when a signal is switched, comparing the switching frequency of the CSR architecture to that of

status quo embedded solutions provides a valuable benchmark.

Custom architectures oftentimes provide dedicated paths for classes of signals so as to reduce

switching frequency. For instance, consider the effect of separating the address bus from the data

bus. If the address is incremented consecutively, only a few bit toggles are necessary to realize

each subsequent address. The unrelated data values do not corrupt the address bus, and bit-wise

proximity of each subsequent address value is leveraged to reduce overall switching frequency.

Dedicated busses for different signal classes reduce frequency at the cost of a larger number of

signal paths and their associated pins, ASIC size, and required routing area. All of these

contribute to an increase in unit cost.

A tabulation of raw bit switching count for a split-bus architecture (labeled "Dedicated

Paths") as well as that for a PC Card-based CSR bussed architecture (labeled "Time-multiplexed

Paths") are shown in Table 9. A theoretical maximum switching count that is based on all time-

multiplexed bits switching on each cycle is also shown. The percentage increase (labeled "%

Incr") is with respect to the switching count of the split-bus dedicated architecture. The data

presented is from a simulated audio device comprising two SPI-based DACs for stereo audio

output and one SPI-based button controller capable of controlling a few interactive buttons (e.g.,

137

play, stop, pause). The data underlying the switching count is from one minute of streaming

sinusoidal data, consisting of two 44 kHz sampling streams, each of which are fetched by a CSR

computer module from either a 16-bit PC Card or a 32-bit CardBus card, buffered by the

computer module, and then decoded and output at the appropriate time to both DACs.

32-bit CardBus cards implement an address and data bus which time-multiplexes address and

data values over a common 32-bit bus. Since the first cycle of a CardBus transaction is an

address cycle followed by a burst of data cycles, one expects little change in switching count

from time-multiplexing narrowpath transactions in between two CardBus transactions. This is

verified by the data presented in Table 9.

16-bit PC Cards, on the other hand, implement an address bus and a separate data bus. 24-bits

of address and up to 16-bits of data can be driven over the 40-bit split bus. Correlations between

and bit proximity of subsequent addresses may be reduced by time-multiplexing narrowpath

transactions over the address bus. One would expect less disruption by time-multiplexing

narrowpath transactions over the data bus since typically, there is little correlation between

subsequent data values. This is especially so if the data is compressed, encrypted, or generally

encoded.

138

Dedicated Time-Multiplexed Theoretical
Paths Paths Maximum

Switching Switching % Switching %
Count Count Incr. Count Incr.

16-bit PC Card with 3 SPI channels time-multiplexed 550,144,903 552,182,882 0.37% 597,663,121 7.95%
with the PC Card address bus

16-bit PC Card with 3 SPI channels time-multiplexed 439,112,130 440,131,205 0.23% 462,871,290 5.13%
on every other cycle with the PC Card address bus

16-bit PC Card with 3 SPI channels time-multiplexed 328,383,741 328,386,531 0.00% 328,448,829 0.02%
only as necessary with the PC Card address bus

16-bit PC Card with 3 SPI channels time-multiplexed 550,391,431 542,706,981 -1.3% 597,663,121 7.95%
with the PC Card data bus

16-bit PC Card with 3 SPI channels time-multiplexed 439,235,452 435,079,581 -0.9% 462,871,290 5.13%
on every other cycle with the PC Card data bus

16-bit PC Card with 3 SPI channels time-multiplexed 328,384,075 328,373,210 0.00% 328,448,829 0.02%
only as necessary with the PC Card data bus

32-bit CardBus card with 3 SPI Channels time- 458,420,524 450,840,599 -1.6 505,938,724 9.4%
multiplexed on each cycle

32-bit CardBus card with 3 SPI Channels time- 337,938,438 337,937,510 0.00% 337,939,260 0.00%
multiplexed only as necessary I _ III

Table 9: Bit switching count for a split-bus dedicated architecture and for a time-
multplexed bussed architecture. A theoretical maximum based on all time-multiplexed

bits switching on each cycle is also shown. The percentage increase is with respect to the
split-bus dedicated architecture switching count.

The data in Table 9 shows that there is a slight increase (less than one-half of one percent) in

switching count when the narrowpath transactions are time-multiplexed over the 16-bit PC

Card's address bus. Interestingly, there is a slight decrease in switching count when the

narrowpath transactions are time-multiplexed over the data bus. Either way, the theoretical

maximum switching count increase is under 8%.

The data presented also shows that switching count can be lowered further by simply reducing

the number of times that PC Card transactions are interspersed with narrowpath transactions.

That is, it is more efficient to simply increase the number of PC Card transactions each time the

PC Card interface is activated than it is to space-out PC Card transactions equally following

every narrowpath transaction. The third and sixth rows of Table 9 show that required module-to-

module bandwidth is maintained while switching count is reduced dramatically by fully utilizing

the time between subsequent narrowpath transactions. This optimization can only be used if

139

sufficient buffer space exists in CSR computer modules to temporarily store the data fetched

from the other CSR module.

The foregoing discussion on capacitive loading and switching frequency has shown that

capacitive loading is the dominant factor contributing to the increase in 1/0 power consumption

by the PC Card-based bussed CSR architecture. Referring back to Table 8, the loading of a

majority of signals increases by 62% (from 13 pF to 21 pF) while the loading of the small

number of narrowpath signals increase by 162% (from 13 pF to 34 pF). The 1/0 power

consumption of narrowpath communications is primarily affected by the additional loading of

other CSR modules, while that of module-to-module communications is primarily affected by the

loading incurred by the use of PC Card connectors. It is important to note that the capacitive

loading data is based on maximum rated values for the PC Card connectors, associated traces and

vias, CSR modules (and PC Cards), and typical narrowpath components. The actual values will

be smaller in most cases.

Figure 40 and Figure 41 depicted systems based on the CSR architecture but with reduced

capacitive loading from the elimination of a set of connectors and multiple loads, respectively.

Each of these techniques can be used to reduce the power consumption overhead of using the PC

Card-based CSR architecture and pluggable CSR modules.

4.6 Discussion

This chapter presented the specifications for the CSR architecture and an implementation of the

PC Card-based CSR architecture. The primary design goal of CSRs was to create a system

architecture that facilitates the rapid development of devices such that a flurry of easy-to-use

devices that implement a platform for the delivery of a variety of network content and services

can be quickly realized. Such a system architecture would not only allow network content

providers to differentiate themselves through their content and service offerings, but also through

the user interface of the device through which the content is delivered.

140

Such a system architecture must take a holistic view incorporating the many metrics and

tradeoffs involved in systems design. The three primary metrics are cost, power consumption,

and performance. Each of these metrics trade off with one another. For instance, power

consumption can be reduced arbitrarily by simply trading off performance and cost. Performance

can be increased by simply trading off cost and power consumption. Although all of these three

metrics are important, perhaps the most important and the one that the PC Card-based CSR

architecture stresses, is cost. Essentially, if a device is too expensive, no matter how attractive its

performance and power consumption are, it will not be deployed in mass quantities, and it will

not become a platform for mass network content and services.

Traditional embedded systems optimize for cost by amortizing design time over a large

volume of devices. This allows designers to leverage longer design cycles to also optimize for

performance by painstakingly tailoring software to the embedded system and for power

consumption by customizing any ASICs and their printed circuit board layout. However, as

content providers strive to offer superior service and customize their offerings to thinly sliced

market segments, and sometimes even to individual consumers, the volume over which an

embedded system can be amortized becomes increasingly small. This raises unit costs, and

because of the compressed design cycle, performance and power consumption also suffers. This

is depicted in Figure 42.

The CSR architecture is based on a high volume platform (CSR modules) that can simply be

"skinned" with device shells to create low volume custom devices. The relationship between

embedded systems and CSR-based devices along the dimensions of power consumption,

performance, and cost is discussed next.

141

Performance

CSR
High Volume

Embedded

Low Volume
Embedded Cost ($)

Power
(Watts)

Figure 42: The trade-offs between power consumption, unit cost, and performance
for high- and low-volume embedded solutions as well as for modular CSR-based

systems.

Cost. The added cost of using the modular CSR architecture is the cost of connectors and the

cost of assembling device shells and CSR modules with local labor. Assuming the cost of

connectors is bounded at 10% of the cost of CSR modules (e.g., $2 for connectors for $20 CSR

modules) and assuming the cost of local assembly is bounded at 5% of the cost of CSR modules

($1 for local assembly for $20 CSR modules), total additional cost is bounded by 15% of the cost

of CSR modules. Recalling from Section 4.3.2, that unit costs of CSR modules drop by 20% with

each incremental doubling of volume after a critical minimum, the added costs of using CSR

modules is more than fully recovered in a mature CSR-based device market. The significant

reduction in design time demonstrated in Section 4.3.1 and Chapter 5, the small size and cost of a

significantly-bussed IFB implementation as shown in Section 4.3.4, the decline in total cost of

ownership by manufacturers and consumers swapping CSR modules discussed in Section 4.3.3,

and the cost savings from the use of just-in-time assembly and cost recovery from unsaleable

devices described in Section 4.3.2 further bolster the position of CSR-based devices as a system

architecture whose cost savings rival that of high volume embedded systems.

142

Power Consumption. The power consumed by CSR-based devices is higher than that of

custom embedded devices. Section 4.5 showed that the primary contributor to this increase in

power is the additional capacitive loading incurred from the use of connectors between CSR

modules and device shells, as well as from multiple loads (CSR modules and narrowpath

components) being placed upon CSR signal lines. Although the use of the CSR architecture

introduces additional power consumption, it also presents the opportunity to use domain- and

application-specific CSR modules that cater to user preferences and more aggressively reduce

power consumption.

Performance. Sections 4.4.1 and 4.4.3 demonstrated that sufficient module-to-module, IFB-

to-IFB, and module-to-narrowpath bandwidth exists to implement most popular multimedia

applications using the current bussed PC Card-based CSR system implementation. Moreover,

CSR-based devices offer improved performance over their lifetime by providing a mechanism to

upgrade the computational and peripheral resources of the device as dictated by changes in

"killer app" content and service offerings.

143

144

Chapter 5

Characteristic-based CSR
Device Design

A simple device design flow enables Internet portals and any company whose core competence is

not in developing devices to build branded, custom, and content-specific devices. Such a design

flow removes the dependence and uncertainties associated with contracting a third-party device

manufacturer, as well as lowers unit costs and affords the portal to choose from a variety of

business models that make sense for the device.

If the device design flow is sufficiently simple then designers themselves can fully develop a

device, without having to involve a set of engineers. Removing the need to communicate creative

ideas and concepts from designers to engineers reduce overall time-to-market and system errors

borne out of miscommunication. In the Post-PC Internet, as the characteristics of content-specific

devices are used to enhance and differentiate content, and as more of our analog devices become

digital, a simple design flow empowering creative designers themselves to fully develop devices

will be necessary.

The CSR architecture provides an opportunity to enable such a simple device development

flow. Essentially, the CSR architecture abstracts away the computational resource platform of

145

devices, and also provides a structured framework around which the actual user interface of the

device can be built. The abstraction presented by the use of pluggable CSR modules eliminates

the need to make many, and oftentimes, very difficult design decisions. The difficulty in making

these decisions stems primarily from the need to develop high-volume one-size-fits-all devices

that appeal to the majority of consumers while accommodating a large variety of content and

services. Since CSR modules allow consumer to build custom platforms that cater to their needs

and preferences, these design decisions and their underlying analyses can be eliminated.

Next, the set of independent narrowpath channels implemented by the CSR architecture

simplifies device UI development. Since narrowpath channels are based on many standards-

based electrical interfaces and protocols, off-the-shelf commodity components that provide the

desired functionality (e.g., motor control, digital-to-analog conversion) can be coordinated

together to realize the desired overall UI. The use of off-the-shelf components further reduces the

risks and costs of device development, while providing rapid time-to-market.

The next sections describe a design flow and process that is enabled by the CSR architecture.

5.1 Desired Design Flow

A desirable design flow is one in which the intricacies of computer systems design are abstracted

away so that only those features that are most important to the designer (and his or her company)

remain. Some of these features include:

* Custom device user interface (e.g., plastic look-and-feel, form factor, ergonomics, knob and

button placement, and overall size)

* Device functionality

* Quality (e.g., LCD resolution, audio speaker size, and digital-to-analog converter bit

resolution)

* Component lead times and development quantity desired

146

0 Power consumption

Figure 43 depicts an interactive session between a device designer and a back-end design tool.

In the first step (step A), the designer enumerates the desired device characteristics as well as

implementation metrics (e.g., two week lead time, four hour device life on a pair of C cell

batteries) with which to gauge the device implementation. In the next step (step B), the tool

returns implementation scores for each of the specified metrics. Usually, not all of the metrics

will be met completely, and the designer will have to choose those metrics for which optimize.

The designer will have to iterate through multiple implementations of the design by specifying

new or optimized sets of metrics and characteristics until she is content with the implementation

score. Finally, the designer must request the tool to output information necessary to successfully

build the device.

Consider an example interaction between a device designer and the design tool. Suppose a

designer must develop a set of 10 prototype devices to showcase to management prior to getting

approval for mass deployment. She enumerates the desired device characteristics as well as the

implementation metrics of two week lead time and four hour battery life on a pair of C cells. On

the first iteration, the tool returns a score for one implementation that requires seven weeks of

component sourcing lead-time but offers 6.3 hours of battery life. The designer must decide

whether the additional five weeks of lead time merit the reduced power consumption of the

implementation. Given that this is a prototype, she may choose to optimize for lead-time, and

specifies so to the tool. On this iteration, the tool returns a score for a second implementation that

requires just 10 days of component lead time, but increases power consumption such that only

two hours of battery life can be sustained on a pair of C cells. Content with this score, the

designer requests an EDIF-compliant netlist for that implementation that can simply be sent to a

printed circuit board (PCB) fabrication and assembly facility for device manufacturing.

147

A.
Designer specifies salient device
characteristics and desired
imolementation metrics to the tool.

Application Service
Designer B. Provider Device Design

Tool returns implemented Tool Server
performance metric values.

C.
Designer iterates. (go to Step B)

D.|
Tool returns implementation
information.

Figure 43: Desired interactivity between designer and backend server.

The described design tool and design flow can be achieved with the CSR architecture. The

CSR architecture is in fact a greatest-common-denominator architecture in which the system

resources common to most devices are CSR modules. Only the custom characteristics and I/O

interactivity of the device must be designed and developed; the appropriate CSR modules, which

form the basis for the device platform, are simply purchased.

5.2 Characteristic-based CSR Device Design

The CSR architecture structures device design around its configurable universal interface, and

greatly simplifies the design and development cycle, while providing sufficient flexibility to

support a wide assortment of devices. In fact, this structured design flow can be automated to a

large degree and further simplified.

148

Designer Specifles Device
Characteristics

CSR Design Tool Converts Send To PCB
CSR esig Too ConertsFabrication and

Characteristicse Into Assembly
Hardware Resources Asml

CSR Design Tool Converts
Hardware Resources Into
Component Part Numbers

CSR Design Tool
Gnrates Netlist

CSR Design Tool
Guarantees Implemented

Device Timing

Figure 44: CSR-based device design flow and development steps.

Figure 44 depicts the steps involved in characteristic-based CSR device design. The designer

must first specify the desired characteristics of the proposed device. In the next step, these

characteristics must be mapped to simple hardware resources, such as audio speakers and digital-

to-analog converters. Depending on the level of the initial characteristic specification, this

mapping may be trivial or more complex. In the third step, the simple hardware resources must

be realized through selection of appropriate off-the-shelf components. During this process, sets

of simple hardware resources may be implemented through complex components. For example,

four analog-to-digital converters (DACs) may be implemented by a single quad-DAC

component, or a digital-to-analog converter and an analog-to-digital converter may be

implemented by a single codec component. The selection of off-the-shelf components, including

complex components, may be driven by specified benchmarks such as maximum cost-of-goods

and minimum device battery life. In the next step, the implemented design must be verified for

proper timing and quality-of-service with the CSR architecture and its configurable universal

149

I

interface. This step involves guaranteeing sufficient quality-of-service for not only the

narrowpath channels but also for additional CSR modules (on two-socket CSR-IFB-based

devices). The final step is to generate a useful representation for the implemented device. This

may involve generating an EDIF netlist, a routed PCB Gerber file, or perhaps even delivery of a

fully fabricated and assembled PCB.

The next sections more fully describe these five steps to characteristic-based CSR device

design.

5.3 Device Characteristic Specification

The first step in CSR-based systems design is to specify the general characteristics of the device.

As shown in Figure 45, this may simply involve checking off a set of desired characteristics from

an enumerated list. For example, consider a simple audio device capable of outputting audio

through a speaker and is based on voice input through a microphone. The designer would simply

select the Microphone and the Speaker checkboxes, which would result in the design tool

generating not only the microphone and the speaker, but also any other components necessary to

support data communication between the selected components and CSR modules. The

schematic-style graphical representation of the components appear on the right of the checkboxes

as feedback to the designer.

The characteristic specification must not only include information about the physical

components of the device but also qualitative information. Such qualitative information includes

resolution of LCD panels, which affects panel selection, and audio quality, which affects DAC

and speaker selection. Qualitative information also affects bandwidth requirements, which in

turn, affects the mix of modalities that can be supported by the IFB. For example, consider the

bandwidth requirements for voice-quality audio versus CD-quality audio and even stereo CD-

quality audio.

150

Feature and Part Selection LivePort Schematic Generation

Audio Line

Ue Ftew-ue - Par Conrolp tawe

Audio Microphone 74480

Audo<speakers

<Audio Line Onult p =7MotorCoontrolee

<dvieybilde_designpeiicatins

<physical_characteristics type=AUDIO_OUTU_IKE>

< uoSpeaker~sz pc""

<Audioq ulit s3pecCD

<physicalcharacteristics type=AUDIO_NPUT_NE>

<audio_quality spec=voice>
</physicalcharacteristics>

<desiredleadtime spec="one month">
<desiredquantity spec=10>
<desiredsize spec=min>

<devicebuilderdesignspecifications>

Figure 45: Device builder characteristic selection and underlying representation.

Figure 45 also shows the underlying representation that is gathered from user input through

the front-end GUI. The specification consists of two primary segments. The first segment is the

physical characteristics specification, which details the desired physical user interface of the

device, while the second segment is the process specification, which details the logistical issues

of the device.

151

The physical characteristics specification shown in Figure 45 consists of two pre-defined

types: AUDIO_OUTPUT_SPKR and AUDIO_INPUT_LINE. The AUDIOOUTPUTSPKR type takes

data from CSR modules and outputs them through an audio speaker. The specifications for

SPEAKERSIZE and AUDIOQUALITY are sub-types pre-defined for the type

AUDIO_OUTPUT_SPKR. SPEAKERSIZE specifies the approximate desired size of the physical

audio speaker component, while AUDIOQUALITY specifies the desired audio bit rate. CD is a

pre-defined heuristic for CD-quality audio. Similarly, AUDIO_INPUT_LINE specifies the

capture and digitization of audio signals not through a microphone but through a line-in jack.

This type has its own set of pre-defined sub-types that are interpreted with respect to audio input

as opposed to audio output.

The process specification shown in Figure 45 enumerates logistical information such as the

number of devices that will be developed and the amount of time budgeted for their

development. The desiredleadtime type specifies the maximum amount of time that is

available until the delivery of finished goods is necessary. This could be for prototype

development or volume product development. This and other process specifications are used to

more appropriately select the components to implement the specified physical characteristics.

Once a desired set of device characteristics have been transformed into a set of simple 1/0

resources, the next step is to choose the actual off-the-shelf component part numbers and to

appropriately place them on the CSR IFB.

5.4 Resource Mapping, Placement, and Quality-of-Service

Selection and placement of off-the-shelf components on CSR FBs is primarily based on the

following properties:

* Functionality: Components are selected that implement the functionality as specified by the

characteristic specification. The Resource Mapper (as described in Section 5.4.1) maps

152

physical characteristics into simple resources that can be implemented by off-the-shelf

components.

" Cost Function: Of the many off-the-shelf components that can implement a device's UI as

specified by the characteristic specification, the actually selected set of devices minimize a

designer-specified cost function. This cost function is determined using the process

specification (as shown in Figure 45) as well as with information from the manufacturer

about each component, such as unit cost and lead-time.

" Interface support: CSR computer modules must support the electrical interface of each

selected component. Many off-the-shelf I/O components use SPI, Microwire, and 8-bit

parallel interfaces, all of which are supported by the current implementation of the PC Card-

based CSR architecture. Components are placed onto the appropriate tracks of CSR IFBs

such that they match the pin-out and protocol engine positioning of narrowpath channels of

CSR computer modules.

The following sub-sections further describe component selection and placement.

5.4.1 Resource Mapping

Resource mapping reduces specified device characteristics into simple resources. These simple

resources, once enumerated, can be implemented by available off-the-shelf components.

Once a designer has specified a device characteristic, such as AUDIOOUTPUT _SPEAKER,

the Resource Mapper (RM) enumerates all of the resources necessary to appropriately interface

with CSR modules on the back-end and to output audio waveforms through a speaker on the

front-end. An AUDIOOUTPUTSPEAKER characteristic is mapped to an AUDIOOUTPUT

resource and an AUDIOSPEAKER resource. Characteristic specifications are mapped to simple

resources by using pre-defined heuristic tables.

Constraints between simple resources are also enumerated by the RM. Consider again the

example characteristic specification of AUDIOOUTPUTSPEAKER, and the simple resources

153

AUDIOOUTPUT and AUDIOSPEAKER. One possible constraint between the two resources is

impedance. An impedance matching specification avoids the selection of a digital-to-analog

converter with 1 kQ impedance and a speaker with 4 Q impedance.

The RM also optimizes sets of simple resources into complex resources. For instance, the use

of two single function AUDIOOUTPUT resources can be optimized into a dual function

AUDIOOUTPUT resource. The component selection and placement step is then able to use a dual

output digital-to-analog converter (DAC), instead of two single-output DACs.

The RM, however, does not eliminate simple resources that it optimizes into complex

resources. This is because designer-specified characteristics, such as cost, lead time, and desired

device quantity, that the RM does not take into consideration during resource mapping, may in

fact be better satisfied by un-optimized resources. For instance, returning to the example of single

and dual function DACs, if the desired lead time for a prototype device is better met by the use of

two DACs instead of a single dual DAC, the simple resources should be used instead of the

complex one.

The RM enumerates all possible combinations of simple and complex resources that can be

used to implement the characteristic specification. The comparative analyses between multiple

possible implementations are undertaken during the cost function analysis step.

5.4.2 Cost Function Analysis

The cost function analysis determines which of the multiple possible implementations of a

characteristic specification is to be selected. The actual cost function is derived from the process

specification, with values received from component manufacturers and distributors. Typical

contributors to a device's cost function include component cost, power consumption, lead-time,

and device size.

154

The following equations show the relationship between individual implementation decisions

and the overall device cost function:

n

C = ci xWi

i=o

where C is the overall device cost function, c is the individual cost function for each of the n

specified metrics and w is the weight signifying the importance to the designer of each metric.

Next, we investigate the cost functions c of a few metrics.

During prototype development, perhaps the most important metric is lead-time. The path to

quickly implementing a prototype of an envisioned device UI is oftentimes blocked with

numerous re-designs as components cannot be sourced sufficiently fast. Although the devices

that can be sourced quickly and are available at low volume may not be the optimal ones with

respect to cost and power consumption, they nonetheless represent a viable means to realize the

envisioned device UI and functionality. The cost function for lead-time CLeadTime is:

CLeadTime =MAX(ll,l 2 ,--,lk)

where 1i is the lead-time for the ith component of the device UI, and MAX represents the function

that returns the maximum of all of its arguments.

155

Cost is also an important metric, as it is oftentimes the gatekeeper between prototypes and

mass production. The cost of a device is comprised of the cost of the individual components that

implement the device UI's functionality, the cost of the CSR module connectors, the cost of the

IFB controller, the cost of the printed circuit board that houses all of the aforementioned parts,

and the cost of assembly. The cost function for device UI cost ccs, is:

n
cCost (n,q) = ki (q)+ m+b+ a(n,q)

i=0

where q is the desired quantity of devices that are to be built, ki is the unit cost of the ith (of the n

total) component, m is the cost of CSR module connectors together with the cost of the IFB

controller, b is the cost of the PCB, and a is the cost of assembly. The cost of the PCB b is

determined by the area (x x y) and the number of layers necessary to route all of the n

components, as well as the material type. The cost of assembly a is based on the number of

components to be populated as well as the quantity q of boards to be built.

The overall device cost function C is evaluated over each set of components (or

implementation) that satisfies the resources enumerated by the RM. Although C is specified as an

analytical equation, it is typically difficult to determine the single most efficient (with respect to

the cost function) implementation. For instance, consider the following information:

* Designer-specified information: Lead-time < 30 days; Cost < $10

" Device implementation one: Lead-time = 32 days; Cost = $5.74

" Device implementation two: Lead-time = 23 days; Cost = $9.49

156

Sliii. El I III

NP 0 Intf

NP 1 Intf

Narrowpath - - -
Inu Active

Time

Figure 46: The time utilized for communication with all of the narrowpath
components trade-off with the time available for module-to-module communications.

Although implementation two meets both of the specifications of the designer, implementation

one may actually be more attractive. By returning the cost function results for more than just a

single implementation of a device, the designer is free to choose the actual optimal

implementation.

5.4.3 Quality-of-Service Guarantees

The design environment guarantees that peak bandwidth requirements between CSR modules as

well as between CSR computer modules and device "shell" components are met over the time-

multiplexed bussed CSR IFB environment. In order to provide such quality-of-service

guarantees, the design environment determines the amount of time that is utilized by all

narrowpath channels, which then allows it to determine the amount of bandwidth that is available

for module-to-module communications.

There is a direct relationship between the bandwidth that is used for module-to-module

communications and the bandwidth that is used for narrowpath communications. This

relationship is depicted by the following equation:

BWModule =1- BWNP +c

where BWModule and BWNP are the bandwidth used for module-to-module communications and the

bandwidth used for narrowpath communications, respectively, and c is the amount of time for

which the IFB is idle and communications are stopped. Communications are stopped either

157

because communications during that time period is unnecessary (e.g., sufficient bandwidth

already exists) or, as was discussed in Section 4.4.1, the time slot is too small and insufficient to

support even a single module-to-module transaction.

Each narrowpath channel is modeled as either asynchronous or periodic. A channel is

modeled as asynchronous if it is unlikely to be activated multiple times in a periodic or semi-

periodic fashion. For example, the Play button of an audio device is likely to be asserted

infrequently, and can be modeled as an asynchronous event. On the other hand, a button that is

used as a video game controller (e.g., a fire button) is usually activated multiple times, and

oftentimes as fast as the user can possibly press the button. This sort of a button is modeled as

periodic, with the periodicity determined by the worst-case frequency an user can assert the

button. For example, assuming a minimum reaction time of 100 milliseconds, the worst-case

frequency of the video game button is 10 Hz. Each narrowpath channel is formalized as follows:

F t
I when Rem() < ckak(t)= Pk
0 otherwise

ck (sync) =bk X 1
clkk

ck (async) = 1k X nk

Ik

where ak(t) relates whether the kth narrowpath channel is active at time t, and Rem(x/y) is the

function that returns the integer remainder of the division of x by y. Ck is the cycle time for the kth

narrowpath channel. ck is determined for channels using a synchronous protocol by the product of

bk, the bit width of each packet, and clkk, the clock frequency of the synchronous protocol, and

for channels using an asynchronous protocol by the product of 1k, the maximum length of each

158

cycle, and nk, the number of cycles per transaction. The periodicity of each narrowpath channel is

determined by the inverse of the channel communication frequency fk.

Manufacturers' datasheets for components together with heuristics provide information

sufficient with which to determine the value of ak(t) for all narrowpath channels. For instance, Ck

for a SPI-based component is fully specified by the number of bits per SPI packet and the

frequency of the serial clock. Periodicity, on the other hand, usually cannot be determined from

component datasheets as the same component may be used for many different applications.

Accordingly, the design environment uses pre-defined heuristics for determining values of

narrowpath periodicity Pk. For example, typical packet delivery rates for implementing CD-

quality audio is 44 kHz, while that for voice-quality audio is 11 kHz. It is important to note that

ranges are usually provided for datasheet values as well as for application-specific heuristics. A

SPI-based digital-to-analog component may consistently use 16-bit packets, but may support

serial clock frequencies up to 10 MHz. The ranges in value of each component or application-

specific heuristic lead to a range in value for ak(t), which in turn affects the amount of time

available for module-to-module communications. This is quantified by the following equation:

Pk-min -ck-max 1k Pk-max -ck-min

where mk is the range of time available for module-to-module communications if the kth

narrowpath channel were the only one active. Ck and Pk were defined above.

The design environment evaluates the various potential implementations (sets of narrowpath

components) as output from the RM to determine the amount of time that is available for

module-to-module communications. If sufficient bandwidth is not available for module-to-

module communications, the equation for mk shows how narrowpath components and

application-specific heuristics can be used to trade-off narrowpath component quality or speed

for more module-to-module communication time.

159

After iterating through the potential implementations output by the RM and the designer is

content with the properties of the selected implementation, the design environment generates a

netlist representation for the device UI that can be used for simple device manufacturing. This is

discussed in the next section.

5.5 Netlist Generation and System Configuration

Once components matching the desired characteristics have been selected, bandwidth and

quality-of-service have been guaranteed, a system netlist can be generated. A netlist provides a

textual representation and specification of pin-to-pin connections between all components. A

netlist in the popular EDIF [22] format combined with layout information (commonly available

for commodity components) can be automatically routed for printed circuit board fabrication and

component population.

Information about the device "shell" is also stored in read-only memory on the IFB. This

allows general CSR modules to be connected to custom device "shells" and have the ability to

communicate with and control each of the "shell's" components. This information may be stored

in ROM as software readable data or it may simply be a short identifier that can be de-referenced

(possibly over a network) to access the actual device-specific information. The salient aspects of

this information are the components used to implement the device "shell", the IFB architecture,

and the quality-of-service model used to guarantee performance.

5.6 System Limitations and Third-Party Integration

The CSR-based device design environment leverages the abstraction between CSR modules and

the device UI to simplify the selection of off-the-shelf components that implements a desired

device UI functionality. The key capability of this design environment is to create a netlist that

interconnects off-the-shelf components from a set of high-level device characteristics and design

metrics, such as component unit cost and lead time. Reducing this netlist into a manufacturable

160

printed circuit board (PCB) introduces a set of problems and issues that are not addressed. We

discuss these issues in this section.

PCB design comprises a number of distinct pieces, including electronics and mechanical

design, fabrication, electromagnetic interference (EMI) and radio frequency interference (RFI)

certification, testing, quality assurance, field service, and repair. Issues, such as interconnect

delay, which had a small effect on PCB routing decisions are becoming more important as clock

speeds continue to increase (and delay budgets continue to decrease). Electrical noise, primarily

from crosstalk, is increasing as board sizes shrink and traces are routed increasingly close

together. The use of higher density packages, such as ball grid arrays (BGAs), are exacerbating

simultaneous switching noise and ground bounce [29].

Proper PCB design is the hub of a successful system, and much work has been done to

simplify and automate this process. Hardware design has typically been a sort of "black magic" -

with many decisions based on rules-of-thumb, experience, and "gut feelings". Design

environments and automation tools have been made that try to capture and encapsulate many of

these rules-of-thumb and designer experiences such that constraints can be specified as electrical

specifications (e.g., clock speed and signal setup and hold times) that are automatically converted

into PCB layering decisions, floorplans, and trace lengths [29].

Design for manufacturing (DFM) places another set of constraints on PCB design. Examples

of DFM constraints include placing all capacitors on the reverse side of a PCB so as to facilitate

board assembly, and thermal issues related to soldering components such as heat sinks.

Essentially, DFM constraints concern PCB design techniques that enable high-quality, volume

PCB manufacturing and assembly for reasonable costs.

161

Embedded Intelligence

Design Netlist & Constraints
(From CSR Design

Environment)

Design
Generation

Manufacturable PCB
Design

Figure 47: Extensions to the CSR-based Design Environment for generating
manufacturable PCB systems.

Since many engineers do not have the knowledge and experience to properly design PCBs and

much time and money is wasted with PCB iteration and re-design, vendors are introducing tools

and constraint management systems that incorporate captured knowledge for reducing netlists to

manufacturable PCBs. In this scheme, engineers enter high-level electrical constraints that are

automatically converted by the software tool into mechanical designs. For example, crosstalk and

noise constraints can be specified in millivolts (mVs), which can be determined as the minimum

of the maximum noise (in mV) tolerable by any component placed on the PCB. Xynetix's

EDANavigator uses such a constraint management system that converts high-level constraints

into rules for thermal manufacturability, as well as for electromagnetic and radio frequency

interference [29]. Similarly, Cadence's SPECCTRA [33] and SPECCTRAQuest [34] tools

support floorplanning, signal integrity analysis, auto-routing, and post-layout verification.

Reducing netlists to manufacturable PCBs is a problem inherent to all hardware designs.

Given the specialized skills and design tools required to properly build PCBs, many companies

are outsourcing the actual PCB development, and instead focusing internal efforts on innovative

system designs and netlist creation. The CSR design environment facilitates the design,

162

Outsourced PCB Development

Device Design
Iterations

PCB Design &
Manufacturing

Netlist 1

System Design Iterations Manufacturable PCB Process

Figure 48: The relationship between the CSR design environment and a
manufacturable PCB design process.

development, and iterations of devices based on the CSR interface abstraction and implements

device user interface functionality with off-the-shelf components. The CSR design environment

generates a device design netlist that can then be reduced to a manufacturable PCB. The

relationship between the CSR design environment and the manufacturable PCB design process is

shown in Figure 48.

5.7 Discussion

This chapter investigated opportunities to simplify CSR-based device design. Since the CSR

architecture is based on using pluggable computational resource modules, device design consists

of developing device Uls or "shells". Manufacturers and consumers can then optimize the

performance of each "shell" with respect to user preferences for metrics including, cost, power

consumption, and interactive performance.

This chapter specified an automated design environment for CSR-based devices that greatly

simplifies device design and development, and in fact, makes it appropriate for non-technical

designers. The high-level interactivity between the designer and the design environment is

centered around user interface design and not systems design. The physical design of the user

163

CSR Design Environment

interface is followed by a set of iterative optimization phases that allow the designer to direct the

implementation of the UI such that the implementation is within desired specifications, including

lead time, cost, power consumption, and weight.

164

Chapter 6

Conclusion

As digital content subsumes analog content, and more and more networks connect content

repositories together, consumers are faced with information overload that cannot be mitigated

through a single content access device and user interface as provided by status quo PCs.

Recognizing the need for multiple content access devices, the CSR architecture proposes the use

of simple building-blocks for easily developing and maintaining devices for accessing network-

based content.

As value migrates away from the devices themselves and toward network content, the devices

and the device user interface, in particular, becomes the enabler or gate-keeper for the delivery of

content. Accordingly, network devices must be inexpensive. Moreover, in order to support a

variety of user interfaces and interactive paradigms - including mobility - network devices must

cater to multiple metrics, including power consumption, battery life, interactive performance,

security, size, and weight. Since these metrics are oftentimes at odds with one another, user

preferences can be used to determine the most attractive system design on an individual basis

instead of building one-size-fits-all devices.

165

To this end, the CSR architecture presents an abstraction for device development that lowers

development time and costs, while, at the same time, catering to individual user preferences for

the actual make-up of the device's computational resources. The CSR architecture consists of a

set of pluggable resource modules that can be composed together to form a desired

computational system, and then connected to a device UI to realize a complete, custom device.

CSR modules can be connected to any device UI (or "shell") and, thus, are high-volume, while

the device Uls themselves are custom and reasonably low volume. By composing together a set

of CSR modules, a device platform can be built that meets user preferences, and eliminates one

of the most time consuming aspects of system development - porting and configuring the

software environment to the hardware.

On the other hand, custom device UI design is simplified as it must only be built around the

well-defined and structured CSR interface without having to delve into the technical innards of

the system platform. Independent, standards-based narrowpath channels implemented by CSR

modules support the use of off-the-shelf commodity components with which to build the device

UI's functionality. The abstraction between device UI and device platform presented by the CSR

architecture together with the ability to use off-the-shelf components facilitate device

development. The CSR design environment specifies a high-level design automation scheme that

leverages the abstraction presented by the CSR architecture to enable designers to interactively

design a complete, custom device - from idea to system netlist.

The CSR architecture supports the rapid development of custom network devices that cater to

individual preferences for system performance. By minimizing the risk, development time, and

costs associated with custom device development, the CSR architecture and the CSR design

environment enable the development of a variety of devices with innovative user interfaces that

simplify interaction with the growing number and type of digital content repositories.

166

6.1 Future Work

The concepts and ideas presented herein can be enhanced and extended with future research and

development work. One of the greatest challenges to CSRs is to achieve broad usage and

applicability. To this end, CSRs should track battery usage. Any device using batteries for

electrical power should use CSR modules for computational and peripheral power. This requires

that CSRs be correspondingly smaller in size and cheaper in cost.

One means to accomplish both is to base the electrical interface of CSR modules on emerging

high-speed serial interface such as Universal Serial Bus (USB) [4] and IEEE 1394 FireWire [2].

The serial interface reduces connector size as well as the interface ASIC pin count and cost. The

simplicity of using multiple, independent narrowpath channels can be maintained by using a de-

multiplexor on the IFB that explodes the serial interface of CSR modules into multiple

narrowpath channels. Multiple CSR modules can be supported by providing a point-to-point

interface on the IFB between each pluggable module and the IFB controller. The limited number

of pins required for CSR modules implementing serial interfaces make a point-to-point solution

more attractive from a cost as well as from a physical area perspective. The primary disadvantage

of this serial-interface-based architecture at this time is the lack of available peripheral modules

in the same or similar form factor.

As CSR module characteristics become more appropriate to track battery usage, CSR modules

and batteries may even be integrated together to form a single structured building block that

provides electrical, computational, and peripheral resources. The batteries in these integrated

modules can be re-charged when the device is the on its docking-station, or simply replaced

altogether, given a modular architecture between the batteries and the computational resources of

each CSR module.

At the system platform level, more work needs to be done to understand the types of CSR

modules that are attractive to typical users and their usage patterns. CSR modules reverse the

one-size-fits-all approach to architecture and suggest a tighter coupling between system

167

architecture and individual usage patterns. This presents an opportunity to understand typical

content access and application usage patterns as well as the technology necessary to sustain these

patterns (e.g., SSL for encryption), and to create a set of system-on-chip (SoC) designs that are

targeted these specific patterns.

168

References
1. Abnous, A. and J. Rabaey. Ultra-Low-Power Domain-Specific Multimedia Processors. in

Proceedings of Proceedings of the IEEE VLSI Signal Processing Workshop. 1996. San
Francisco.

2. Anderson, D., Firewire System Architecture: IEEE 1394a. 2nd ed. PC System Architecture
Series. 1998: Addison-Wesley. 400.

3. Anderson, D., PCMCIA System Architecture: 16-bit PC Cards. 2nd ed. PC System
Architecture Series. 1995: Addison-Wesley.

4. Anderson, D., USB System Architecture. PC System Architecture Series. 1997: Addison-
Wesley. 321.

5. Anderson, D.M., Agile Product Development for Mass Customization: How to Develop and
Deliver Products for Mass Customization, Niche Markets, JIT, Build-to-Order, and Flexible
Manufacturing. 1997: McGraw-Hill.

6. Armstrong, J.R. and F.G. Gray, VHDL Design Representation and Synthesis. 2nd ed. 2000:
Prentice Hall. 651.

7. Axelson, J., USB Complete: Everything You Need to Develop USB Peripherals. 1999:
Lakeview Research. 398.

8. Axelson, J. and J.L. Axelson, Parallel Port Complete. 1997: Lakeview Research. 304.

9. Axelson, J.L. and J. Axelson, Serial Port Complete. 1998: Lakeview Research. 304.

10. Bhatnagar, H., Advanced ASIC Chip Synthesis: Using Synopsys Design Compiler and
Primetime. 1999: Kluwer Academic.

11. Broderson, R., The Case Against Von Neumann Architectures in System-on-a-Chip Design,
MIT Laboratory for Computer Science Distinguished Lecture Series, 2000.

12. Chatterjee, S. The ModuleC Network Architecture: A Novel Approach to Computing Through
Information Appliances. in Proceedings of IEEE International Symposium on Consumer
Electronics. 1997. Singapore.

13. Chatterjee, S. SANI: A Seamless and Non-Intrusive Framework and Agent for Creating
Intelligent Interactive Homes. in Proceedings of ACM Conference on Autonomous Agents.
1998. Minneapolis/St. Paul, MN.

14. Chatterjee, S. Towards a MASC Appliances-based Educational Paradigm. in Proceedings of
ACM International Symposium for Applied Computing. 1998. Atlanta, Georgia.

15. Chatterjee, S. Towards Rapidly Deployable Intelligent Environments. in Proceedings of AAAI
Spring Symposium on Intelligent Environments. 1998. Stanford, CA.

169

16. Chatterjee, S. and S. Devadas. The MASC Composable Computing Infrastructure for
Intelligent Environments. in Proceedings of IEEE Industrial Electronics Society Conference.
1999. San Francisco, CA.

17. Chatterjee, S. and S. Devadas, MASC: An User-Embeddable Hardware Platform and
Infrastructure for Information Appliances, 1999, Massachusetts Institute of Technology
Laboratory for Computer Science: Cambridge.

18. Cmelik, R.F., et al., US6031992: Combining hardware and software to provide an improved
microprocessor, 2000, Transmeta Corporation.

19. Dally, W. Tomorrow's Computing Engines. in Proceedings of International Symposium on
High-Performance Computer Architectures. 1998. keynote speech.

20. Dally, W.J. and J.W. Poulton, Digital Systems Engineering. 1998: Cambridge University
Press. 600.

21. Edwards, W.K., Core JINI. The Sun Microsystems Press Java Series. 1999: Prentice-Hall. 772.

22. Electronics Industry Association, EDIF Version 4.0. 1996: ANSI/EIA 682-1996 Standard.

23. Fallah, F., P. Ashar, and S. Devadas. Simulation Vector Generation from HDL Descriptions
for Observability Enhanced-Statement Coverage. in Proceedings of Design Automation
Conference. 1999.

24. Fallah, F., S. Devadas, and K. Keutzer. OCCOM: Efficient Computation of Observability-
Based Code Coverage. in Proceedings of Design Automation Conference. 1998.

25. Fine, C.H., Clockspeed: Winning Industry Control in the Age of Temporary Advantage. 1998:
Perseus. 288.

26. George, V., H. Zhang, and J. Rabaey. Low-energy FPGA design. in Proceedings of
Proceedings of ISLPED. 1999.

27. Harris, E.P. and e. al. Technology Directions for Portable Computers. in Proceedings of
Proceedings of the IEEE. 1995.

28. Havinga, P.J.M. and G.J.M. Smit. Minimizing Energy Consumption for Wireless Computers in
Moby Dick. in Proceedings of IEEE International Conference on Personal Wireless
Communication. 1997.

29. http://206.168.2.242/Editorial/1998/03//asic/398ASPCB.HTM, Computer Design Editorial:
PCB Design Becomes Focus of Entire Design Process, 1998.

30. http://developer.intel.com/design/strong/, StrongARM Developers Page.

31. http://developer.intel.com/platforms/enterprise/, Enterprise Computing Platforms.

32. http://ergo.3com.com/ergo/html/homepage.html, 3Com Ergo Appliances.

33. http://pcb.cadence.com/pcb/specctra/, SPECCTRA, . 2000.

170

34. http://pcb.cadence.com/pcb/specctraquest/, SPECCTRAQuest, . 2000.

35. http://www.annapmicro.com, WildCard Reconfigurable Processor Card, , Annapolis Micro
Systems, Inc.

36. http://www.cs.berkeley.edu/-neefe/ntu.fa98/liem.project.html, A Comprehensive Look at 10
Buses, 2000.

37. http://www.media.mit.edu/pia/Research/Hyphos, Hyphos: A Wireless, Self-Organizing
Network, 1999.

38. http://www.microsoft.com/WindowsME, Microsoft Windows Millennium Edition,. 1999.

39. http://www.palm.com/products/index.html, The Palm Personal Digital Assistant, .

40. http://www.partfolio.com/JIT.html, The Ideal Manufacturing Scene for Your Business,. 2000.

41. http://www.sei.cmu.edu/ata/ata-init.html, Software Architecture and the Architecture Tradeoff
Analysis Initiative, 2000.

42. http://www.sei.cmu.edu/cbs/icse99/papers/16/16.htm, Component Based Software
Engineering: A Broad Based Model is Needed, 2000.

43. http://www.sun.com/jini, Sun Microsystems Jini Connection Technology,. 1999.

44. http://www.transmeta.com/crusoe/, Transmeta Crusoe Processor.

45. http://www.xilinx.com/partinfo/databook.htm, Xilinx Programmable Logic Products Databook
2000, 2000.

46. IEEE, IEEE Standard 1284-1994: IEEE Standard Signaling Method for a Bi-directional
Parallel Peripheral Interface for Personal Computers. 1994: IEEE.

47. I]EEE, IEEE Standard for a High Performance Serial Bus. 1998: IEEE.

48. Katz, R.H., Contemporary Logic Design. 1993: Addison-Wesley. 699.

49. Kipisz, S.M., B.E. Moore, and D.L. Beatty, PC Card/PCMCIA: Software Developer's
Handbook. 2nd ed. 1999: Peer to Peer Communications. 450.

50. Kusse, E. and J. Rabaey. Low-energy Embedded FPGA Structures. in Proceedings of
International Symposium on Low Power Electronics and Design. 1998.

51. Larson, L.E., Radio Frequency Integrated Circuit Technology for Low-Power Wireless
Communications, in IEEE Personal Communications. 1998. p. 11-19.

52. Lorch, J.R. and A.J. Smith, Software Strategies for Portable Computer Energy Management,
in IEEE Personal Communications. 1998. p. 60-73.

53. Micheli, G.D., Synthesis and Optimization of Digital Circuits. 1994: McGraw Hill College
Division. 576.

171

54. Moorby, P.R. and D.E. Thomas, The Verilog Hardware Description Language. 4th ed. 1998:
Kluwer Academic.

55. Mori, M.T. and D.W. Welder, The PCMCIA Developer's Guide. 3rd ed. 1999: Sycard
Technology. 700.

56. Navabi, Z., Verilog Digital System Design. 1999: McGraw Hill. 500.

57. Newman, M. and J. Hong, A Look At Power Consumption and Performance on the 3Com
Palm Pilot, University of California at Berkeley: Berkeley, California.

58. Olive, R., Personal Communication, 1998.

59. Ostwald, P.F., Engineering Cost Estimating. Third Edition ed. 1992: Prentice Hall. 576.

60. PCMCIA, PC Card Standard Release 7.0: The Definitive PC Card Specification. 2000:
Personal Computer Memory Card International Association (PCMCIA).

61. PICMG, PICMG 2.0 R3.0: CompactPCI Core Specifications. 1995: PCI Industrial Computer
Manufacturers Group.

62. Sahler, J.T., Personal Communication, 2000.

63. Shanley, T. and D. Anderson, Cardbus System Architecture. PC System Architecture Series.
1996: Addison-Wesley. 407.

64. Shanley, T. and D. Anderson, PCI System Architecture. 4th ed. PC System Architecture Series.
1999: Addison-Wesley. 787.

65. Srinivas, N., Personal Communication, 2000.

66. Stewart, R.D., R.M. Wyskida, and J.d. Johannes, eds. Cost Estimator's Reference Manual. 2nd
ed. 1995: New York.

67. Venkatramani, A., M. Narasimhan, and R. Nagarajan, Quantifying the Costs of Universal
Encryption. 2000: Austin, Texas.

68. Wan, M., et al., Design methodology of a low-energy reconfigurable single-chip DSP system.
VLSI Signal Processing, 2000.

69. Ward, S., et al. The NuMesh: A Modular, Scalable Communications Substrate. in Proceedings
of International Conference on Supercomputing. 1993.

70. Weiser, M., The Computer for the Twenty-First Century, in Scientific American. 1991. p. 94-
104.

71. Weiser, M., Some Computer Science Issues in Ubiquitous Computing, in Communications of
the ACM. 1993.

72. Weiser, M., Ubiquitous Computing, in IEEE Computer "Hot Topics". 1993.

73. Weiser, M., The World Is Not a Desktop, in ACM Interactions. 1993.

172

74. Woesner, H., et al., Power-Saving Mechanisms in Emerging Standards for Wireless LANs: The
MAC Level Perspective, in IEEE Personal Communications. 1998. p. 40-48.

75. www.ampro.com, AMRPO Gemini Backgrounder,. 2000.

76. www.xilinx.com, ASIC Alternatives, . 2001.

173

