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Abstract

OPTIMAL THRUSTER SELECTION WITH ROBUST ESTIMATION FOR
FORMATION FLYING APPLICATIONS

By

Trent Yang

Submitted to the Department of Aeronautics and Astronautics on May 21, 2003 in
Partial Fulfillment of the Requirements for the Degree of Master of Science in

Aeronautics and Astronautics

The research goal was to develop a computationally fast mapper that can
be easily configured to any spacecraft with various types of actuators. The
estimation process must be compatible to the mapper and have a fast yet robust
fault detection algorithm. A robust fault detection system must be sensitive to
failures without raising any false alarms.

The linear program (LP) mapping system presented in this thesis was first
introduced by Crawford in 1968 (Ref. 42) and has been since used on a number
of vehicle control systems (Ref. 9, Ref. 41). In this paper, several new
innovations are developed as extensions to the basic LP. First, a solution
scheme is presented to handle thruster performance degradation due to fuel flow
loss from multiple thruster usages. Second, new techniques for solving linear
programming problems with uncertain data are explored. In particular, a robust
LP (RLP) formulation is developed here to deal with uncertainty in either the
thruster performance or the velocity and positional measurements.

The estimation process is a combination of a Kalman filter and a
Generalized Likelihood Ratio (GLR) test for actuator fault detection. A new
model-comparison (MC) approach is introduced in conjunction with the GLR test
to quickly and reliably determine the exact nature of the failure, once a
malfunction has been detected.

Finally, the simulations of the estimator and thrust mapper system are
performed on the SPHERES and Orion formation flying test beds and results
show improved control capabilities along with significant fuel saving.

Technical Supervisor: Bruce Persson,
Title: Senior Member of the Technical Staff at Draper Laboratory

Thesis Advisor: Jonathan How
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Move towards multiple autonomous satellites

Beginning in the early 1990s, NASA (National Aeronautics and Space

Administration) started the concept of smaller, faster and cheaper satellites for

future space satellite missions. Instead of the old monolithic space vehicles that

carried multiple instruments for various scientific needs, NASA envisioned a fleet

of smaller satellites having dedicated capabilities onboard to autonomously

perform individual tasks while working in concert with the other satellites.

Several reasons made this approach to future space missions appealing. First,

large monolithic satellites usually take a long time to build and test due to

different lead times on all the instruments and electronics involved. When the

entire satellite is finally assembled and readied for flight, many of the

technologies onboard could be outdated and inefficient. Furthermore, there is

extreme pressure for the launch to be successful. A single failure would mean

jeopardizing not only a billion dollar project but also many years of labor from

thousands of scientists and engineers.

By using multiple satellites, many of the above problems are alleviated.

Since not all instruments on a mission need to be available at the same time, the

most urgent ones can be built first and made operational while they wait for the

rest to be made and launched. Each satellite, by shortening its manufacturing

time, can also be outfitted with the latest electronic and computer technologies to

guarantee performance and reliability. By spreading the instruments across

various satellites and using different launch times, one could also reduce the risk

of complete mission failure due to single satellite or launch failures. Even if one

or more of the individual satellites failed, the overall mission could still continue,
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albeit at a reduced capacity. This is a much better scenario than losing an entire

mission from one single failure on a monolithic satellite.

While the concept of using multiple satellites is good, there are many

barriers to be crossed and technologies validated before we can realize the full

potentials and benefits of such a vision [Ref. 39]. One of the main challenges in

the realization of fully autonomous space vehicles is in optimizing the control

architecture of these micro-satellites. Humans currently perform almost all

mission planning and spacecraft diagnostics remotely from mission control

centers. In order to reduce the possibility of increased human errors from

working with multiple satellites, the spacecraft need to be fully autonomous to

plan and execute their own activities in accordance to high-level goals stated by

ground controllers. Rather than have humans do the detailed planning

necessary to carry out the desired tasks, the "smart" satellites will formulate their

own plans, using high-level goals provided by the operations team. Each

spacecraft will then devise their own plan by combining those goals with its

detailed knowledge of both the condition of the spacecraft and how to control it. It

then executes that plan, constantly monitoring its progress. By transferring the

normal human functions of mission operation and monitoring to artificial

intelligence, a spacecraft would be more agile to respond to unexpected

circumstances such as sudden failures or malfunctions. Furthermore,

decreasing human operational responsibilities should also significantly decrease

operating costs, which is always a large portion of any space mission budget

[Ref. 40]. Also, for future deep space missions, it is imperative that most mission

operation and diagnostics to be performed onboard to ensure real-time planning

and maneuvering without taking up valuable resources on the Deep Space

Network.

14



1.2 Relevance of this research to autonomous satellites

In this Thesis, the control algorithms developed are part of a modular

architecture where each function can be easily replaced without affecting other

tasks (see Fig. 1).

Control Architecture

Estimator 4

High level
P erContMaster Thruster Plant

plnsin Planner/Controller Mapper _1

Fig. I Block diagram of how the thruster mapper and estimation fits into the overall picture

A modular control scheme allows individual functions to have very specific and

defined tasks that can be specifically tailored to multiple spacecrafts. By dividing

the main control task into several pieces, it is also easier to optimize each

function to a specific need.

Each function in the control architecture serves an important role that

would be critical to the autonomous control of any spacecraft. The high-level

mission planner is designed to translate human-mandated goals to specific

targets that the spacecraft can achieve (i.e. rendezvous at location x,y,z) [Ref. 2].

Next, the spacecraft optimizes the best control/trajectory to achieve the goal

under certain requirements such as minimizing fuel or time [Ref.1]. Once the

mission planning is complete, then a resource allocation tool (thruster mapper) is

required to determine which actuators to use for different acceleration needs

[Ref. 41]. Along with this thruster mapper system, an estimation algorithm is

needed to monitor the performance of all actuators. This will enable failures to

be automatically detected and the updated actuator performance data can be fed
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back to both the mapper and mission planning systems. This thesis focuses on

the last two functions of the autonomous control architecture - the thruster

mapper and estimation algorithms.

1.3 Background and Previous Research

In recent years, there has been a large body of research that have

focused on the various parts of the modularized control architecture for

autonomous spacecraft. Although most of the effort has been focused on the

high-level planning and control algorithms [Ref.1, Ref. 2, Ref. 14, Ref. 34, Ref.

35], there has been some research into a mapping and estimation/fault detection

system [Ref. 23, Ref. 24, Ref. 25, Ref. 41].

Different ways of approaching the mapping function have been proposed

and shown to work. Some researchers [Ref. 24] have used a neural network

approach. Although this process is fairly complicated and requires heavy

computing power, it was argued that optimizing the control of on-off spacecraft

thrusters is a nonlinear constrained problem that is extremely hard to solve [Ref.

24]. But, as shown recently by Buffington [Ref. 41] and previously by Crawford

and Bergman [Ref. 3 and Ref. 42], the mapping problem can be solved through a

Linear Program (LP) that is both efficient and scalable to any number and type of

control surfaces. The LP technique has also been utilized and applied with great

success by Draper Laboratory in the Space Shuttle flights [Ref. 3].

Estimation and fault detection has long been an important part of any

control theory. The most common and widely used optimal filtering technique

since the 1960s has been the Kalman filter, which is based on the theories of N.

Weiner [Ref. 15]. The Kalman filter allows recursive processing of noisy

measurement data which makes it readily implementable for most real-time,

multiple-input/multiple-output applications. Previous research have used the

16



Kalman filter with great success in estimating various properties of a spacecraft

including mass, and thruster performance (Ref. 17).

1.4 Contribution of this Thesis

The purpose of this research is to build upon previous knowledge of

mapping and estimation techniques and find optimization methods that can be

applied to different types of micro-satellites. The desired characteristics of the

thruster mapper and estimation systems is that they must be generic,

computationally fast and robust. The algorithms must be generic in the sense

that they are compatible with the high-level control algorithms and the actuators

typically found in small autonomous spacecraft. They also need to be robust to

various actuator failures that may occur and adapt accordingly. Finally, the

algorithms must be small enough to operate in real-time on a micro-satellite that

typically has limited computation capability and memory space.

For both the thruster mapper and the estimation process, several

appropriate techniques are considered and their strengths and weaknesses are

analyzed. One complete model of the mapper and estimation modules is then

applied to the Orion formation-flying mission [Ref. 8]. The mission provides an

excellent test scenario where the micro-satellites not only have to operate

autonomously but also have many constraints not usually seen on larger, more

expensive spacecraft. These constraints include noisier measurement systems,

less redundancy in system components, minimum amount of fuel and tougher

control requirements for new missions such as formation flying and station

keeping.

1.4.1 Thruster Mapper

The thruster mapper approach used in this thesis is based on a linear

programming (LP) technique that has been previously investigated in Ref. 3 and
17



Ref. 41. The LP formulation is quite simple and can be adapted to accommodate

various types of actuators. Due to its high computation and memory

requirements, the neural network approach will not be considered here.

Several new innovations to the LP process are developed in this Thesis.

A special tailored simplex method is first devised to speed up the computation

time for the linear program. Other contributions to this research area include

dealing with degradation effects from multiple thrusters firing at once and

uncertainty in the parameters of the linear program, namely the actuator

performance and desired acceleration.

Degradation can result from multiple thruster firings due to limited

pressure levels in the propulsion system. Testing of a propulsion system

developed for the Orion micro-satellite [Ref. 5] has shown non-trivial degradation

effects that depend on the design of the mechanical system and the mode of

operation.

Uncertainty exists in the models of all physical systems. The purpose of a

robust algorithm is to find solutions that are good for all possible situations. In

the thruster mapper system, uncertainty can arise in two areas - the actuator

performance level and the desired acceleration. Uncertainty in the propulsion

system can be tested on the ground prior to flight. On the other hand, the

desired acceleration level is usually a function of the onboard measurement

instruments' sensitivity. For example, if the high-level trajectory planner is

working in the Local Vertical Local Horizontal (LVLH) frame, then the thruster

mapper would have to convert the required acceleration into the body frame

using current attitude information. This extra coordinate transformation is

necessary because the actuators' performance levels are stored in the body-

frame. Any errors from onboard sensors used for attitude measurements will

directly translate into uncertainty for the desired acceleration level in the body-

frame. A robust formulation of the LP thrust mapper is used to handle these

uncertainties and the results are compared to the non-robust solutions.
18



1.4.2 Estimation

The estimator for this system (shown in Fig. 2) performs three tasks. First,

it runs a real-time filter to track the performance of each actuator. Residuals,

calculated from the difference between the expected and measured

accelerations, are used in the detection algorithm to quickly determine any

unexpected failures and isolate the faulty actuator. When a failure is detected,

the identification algorithm is responsible for determining the exact level of failure

for the actuator in question and updating the new actuator performance levels.

That information is then passed onto both the planner and mapper algorithms.

Measuremets Kalman filter redi Aq Fault No failure
------ Detecti on

Actuator /Isolation
finngs

failurt.

Failure Type Update thruster
Determnation mapper matrix

Fig. 2 Detailed picture of the estimation block

The estimation filter is based on a static Kalman filter with small changes

designed to reduce computation time and incorporate any degradations due to

multiple thruster firings. Three different failure detection algorithms are analyzed

in this thesis. The Chi squared (X2) and General Likelihood Ratio (GLR) tests

use the innovation (residual) values from the Kalman filter while the threshold

detection method checks the estimated values against a set of predetermined

values for fault detection. All three approaches are analyzed and compared in

terms of total computation time, probability of detecting a failure, and number of

false alarms.

19



1.5 Laboratory Demonstration of Algorithms

The Orion formation-flying mission [Ref. 6] provides an excellent

opportunity to test out the algorithms on a fully autonomous multiple spacecraft

mission. Unfortunately, any real data will have to wait until its launch in 2003

(one year after the completion of this thesis). However, two laboratory testbeds

are available that can be used to simulate critical aspects of the mission such as

satellite communication, real computational limits, and different high-level control

structures.

The SPHERES testbed consists of miniature satellites that can be tested

either in 1-g laboratory environments or on NASA's reduced gravity KC-135

flights [Ref. 7]. The purpose of SPHERES is to test and debug various control

algorithms associated with autonomous spacecraft flight. Testing on the system

has shown that the thruster mapper developed in this Thesis could be

seamlessly inserted into the existing control system and at the same time provide

far superior actuation control than their previous system (see section 2.3.1).

The second environment involves an innovative hardware-in-the-loop

testbed developed at MIT's Space Systems Lab for the specific purpose of

simulating multiple autonomous spacecrafts [Ref. 8]. Estimation and fault

detection procedures are tested and shown to perform as expected. Although

this simulation testbed does not include any hardware except the computers, it

provides a realistic interface between the software algorithms and the

communication between satellites.

1.6 Thesis Organization

There are three main sections in this thesis. The first section, Chapter 2

and Chapter 3, deals with outlining the basic principals of the thruster mapper

20



along with the theories necessary for dealing with multiple firing degradation and

uncertainty in the linear program. The second section, Chapter 4 and Chapter 5,

deals with the estimation block, which includes the Kalman filter, fault detection

and variable updates. Both chapters contain a theoretical section along with a

validation section where the algorithms developed are tested in either of the two

simulation environments described above.

Finally, the last section, Chapter 6, discusses how the two functions,

mapper and estimation, work together especially in the context of the Orion

mission. Various uncertainties and failures are simulated on the testbed and the

performance of the spacecraft with and without the mapping and estimation

process are compared and analyzed.
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Chapter 2

Thruster Mapper

2.1 Introduction

The thrust-mapping task is an essential link between the main software

controller and the actuators on any spacecraft that have decoupled the control

from the mapping process (see figure below).

Desired Pbsitio, Des ied Actuatorpatternt
motion, etc C ontrol Accelerations (T) Thrust. (U1, U2, ... Ur) Spacecraft

--- Module M Actuators

Fig. 3 Control strategy of having a "control module" and a "thrust mapper". The "control

module" is only responsible for determining the optimal accelerations at each step while

the thrust mapper finds the on-times for the available actuators that meets the desired

accelerations.

The main controller is responsible for calculating how much acceleration

or velocity change is needed in each direction to achieve a desired motion. It is

then the job of the mapper to convert those requirements into specific on-off

times for the actuators that are available. The actuators could vary from different

types of gas-propulsion systems to momentum wheels or even simple drag

plates. An effective mapping program must be able to work with all the actuator

types and be fast enough to have a very short delay time between the controller

and the execution of the desired accelerations.

Since most spacecraft have redundant actuators for protection against

failures, there is usually more than one set of actuator on-time solutions that can

satisfy the desired accelerations. A good thrust mapper design should find the

solution that minimizes total fuel or actuator usage. These are especially
23



important parameters for any small spacecraft that can only carry a limited

amount of fuel. Other considerations in the design of a thruster mapper include

accounting for thrust reduction from multiple thruster firings and uncertainty in

actuator output or desired motions. The thrust degradation is a result of the

limitations in mass flow rate when several thrusters fire at the same time [Ref. 5].

This phenomenon can be well characterized during ground testing and tabulated

ahead of time. Uncertainty arises in several different forms. One uncertainty

could be the performance of the thrusters. For example, the jets on the Orion

satellite have been shown to have a +/- 10% variation in thrust [Ref. 5]. The

second type of error evolves from uncertainty in the desired acceleration levels

as determined by the main controller. This could be due to either uncertainty in

the final target or errors in the on-board measurement instruments.

2.2 Problem Formulation

Considering all the above requirements, the thruster mapper, shown in

Fig. 3, must take a generic set of desired rate changes and find the output vector

of discrete thruster values (on/off times) that minimizes a specified cost function.

The desired forces and torques comes from the main control module (e.g. a PID

controller) and is assumed to be in the body coordinate frame. If some other

reference frame were used then a transformation to the body frame would be

necessary.

The output of the thrust mapper is the on-times for all of the available

actuators to obtain the desired acceleration or rate change, T. Each element of

the on-time vector, U, is a number between zero and the maximum on time

during a particular control period. For example, if the controller for a certain

spacecraft is running at 0.2 Hz, then at each iteration, the thruster mapper

solution could vary between zero and five seconds, the maximum on-time for that

period. Alternatively, the vector of U's could also be designed to represent the
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percentage on-time for the actuators. The fraction between zero and one would

then represent the percent on-time for an actuator during each control period.

On most spacecraft propulsion systems, the total combined actuator effect

is a linear combination of all the actuators with very little additional non-linear

coupling effects from multiple actuator firings. This scenario lends itself to using

a linear program (LP) for solving the problem [Ref. 3 and Ref. 4] if the effects of

using each actuator are known. In some instances, the performance of a system

is degraded by a coupling effect that is discussed in section 2.4. The LP solution

can also be modified to handle this non-linearity.

2.2.1 Linear Program Formulation

Consider a spacecraft with four actuators. Turning on each actuator will

affect the spacecraft motion in a way that depends upon the actuator strength, its

location on the spacecraft and the spacecraft's mass properties. Table 1 shows

an example matrix that summarizes the effects of each actuator on the motions

of the spacecraft.
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Table 1 Example of a matrix (A) relating the effecting of

movement

each actuator on the spacecraft

Each column of the A matrix (Table 1) describes the spacecraft acceleration due

to turning on that particular actuator. Using the above matrix, a linear program

can be set up to find the on-times for all the actuators to satisfy any desired rate

change, T.

LP Objective: minimize: (C K 7

LP Constraint: iT=AU+GS

0 U Uupperbnd

S > 0
LP Limits:

A is a m x n sized actuator performance matrix, where m is the total degrees of

freedom (normally 6) and n is the total number of actuators available (see Table
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(2)

(3)

Actuator Actuator Actuator Actuator

1 2 3 4

x-dir
5 -3 -2 0

(cm/sec2)

y-dir
0 2 4 -6

(cm/sec2)

z-dir
1 0.5 -2 0

(cmn/sec 2 )

0-dir
3.5 2 -5 0

(rad/sec2)

-dir 0 0 -3 4
(rad/sec2)

(p-dir 0

(rad/sec2)



1 for example); U is the on-times for each actuator; Uupperond is the maximum

allowed time to turn on a thruster per control period, and C is the cost of using

each actuator. In cases where the actuators are not able to completely satisfy

the desired accelerations, a series of slack variables, S, are utilized. The slack

variables should be a length of 2m x 2m for satisfying both the positive and

negative directions for each axis of motion. G represents an identity matrix of

size 2m x 2m and K is the cost of using the slack variables.

Preferences for using certain actuators can also be accommodated

through a cost scheme for each of the thrusters. The relative cost, Ci, of using

each actuator is determined by the designer's preference in using the actuators.

For example, if both momentum wheels and thrusters were available, one would

likely assign a higher cost to use the thrusters in order to save fuel usage.

Otherwise, if all actuators on a spacecraft are equally preferred, then the cost

vector, C, would have a constant and equal value for each element. Next, the

cost of using the slack variables needs to be determined.

If the objective is to obtain as much of the desired forces/torques, T, as

possible, one would assign higher costs, K, to using the slack variables than the

actuators (K >> C). However, there are times when saving fuel is just as

important as accomplishing the desired spacecraft movements. In those

circumstances, the cost ratio between the actuators and the slack variables (C/K)

can be adjusted to the desired trade-off level.

2.3 Special Tailored Simplex Algorithm for Spacecraft

There are many commercial and off-the-shelf products that contain linear

program solvers. But most of these solvers are written to be very generic, which

tends to increase valuable computation time. A thrust mapper on any spacecraft
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must be computationally fast to avoid any unnecessary delays in executing the

control commands.

There are two common methods to solve any linear programming problem

- the Simplex and Interior-Point methods. For the thruster mapping problem, the

simplex method is selected as the base algorithm. In most spacecraft

applications, there are usually redundant actuators in all degrees of motion; this

leads to multiple optimal solutions that would satisfy the minimum fuel usage

requirement. The Simplex solution, since it traverses the boundaries of the

solution space, will always pick the minimum number of thrusters to fire.

Whereas an Interior-Point algorithm may find a solution faster but would not

always minimize the total number of actuators used. There are several reasons

for wanting to minimize the number of actuators being used at once. First of all,

one can reduce degradation resulting from multiple thruster firings if individual

gas tanks serve multiple thrusters (see discussion in chapter 2.4). Second,

having too many actuators working at once will slow down the estimation process

that is used to determine the performance and failure of the actuators (see

estimation section in Chapter 4). Third, in many future space missions, there will

be many close proximity maneuvers between satellites and in some cases, jet

plumes from thruster firings can negatively affect or even damage close-by

satellites. By reducing the total number of jets firing, one can reduce the

restrictions on close proximity maneuvering.

The simplex algorithm developed here is an extension of a Draper

Laboratory algorithm [Ref. 9]. The simplex algorithm works by looping through

each degree of freedom in the problem (six for most spacecraft problems) and

finding the best combination of actuators to satisfy the LP constraint at the lowest

cost (equation 1). There are five basic parts to a Simplex algorithm: Setup,

Invite, Exclude, Decision, and Return Solution (see APPENDIX A for full

algorithm). Setup determines an initial solution and is executed only once per

call to Simplex. Invite finds an unused actuator to bring into the basis in order to
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reduce the cost. The basis, B, is the set of actuators (or slack variables) that is

selected to satisfy the LP constraint:

Bu = b

where b is the vector of desired acceleration or rate change. B, the basis, is an

m x m matrix whose columns correspond to the performance levels of selected

thrusters. And u is the m x 1 vector of on-times for the selected thrusters to

satisfy the constraint.

Exclude makes the decision on which column of the basis should be

replaced with the new incoming actuator. Decision determines if the replaced

basic variable goes to zero or its upper bound. Return Solution computes the

cost of the solution and determines whether or not to terminate the simplex

algorithm. The process is terminated if it is determined that no columns of the

basic matrix, B, can be replaced with a new actuator to reduce cost.

In most Simplex algorithms, the Setup function determines an initial sub-

optimal solution to the problem. The algorithm developed here avoids that initial

calculation by building the set of required slack variables into the solver. The

initial slack variables and solution to the LP problem is set to the desired

acceleration vector, T. In summary, the LP problem under the new algorithm

appends the following initial conditions to the problem.

S =T
LP initial solution: (4)

B= diag(sign(T))

Where T is the vector of desired acceleration and the rest of the formulation is
kept the same:

LP Constraint: T= A U+ GS (5)
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LP Objective: minimize: (C K S (6)

LP Limits: 0 ! U ! Uu,,,,bnd (7)
S > 0

The second difference is how the algorithm stores and updates the cost of

inviting a non-basic actuator to replace a column in the basis, B. In most simplex

solvers including the Draper algorithm [Ref. 9], an inverse basis matrix is utilized

in evaluating which non-basic actuator to invite. In this algorithm, the relatively

computational-heavy inverse matrix is replaced with a linear combination matrix.

The variables and decision process involved are as follows:

The linear combination matrix, Y (mxn), contains n m-dimensional

coefficient vectors which relate the actuators to the basis. It is initialized to:

Initialization of variable Y: Y = B-'A (8)

Where A is the actuator performance matrix and diag(sign(T)) is the initial basis

(see equation 4). Next, we find the appropriate actuator to bring into the basis

that would have the greatest impact on the total cost. The z-vector contains the

cost change of bringing in each actuator that's not already in the basis and is

initialized to:

z=kY-C
Initialization of jet evaluators: k = KI ,, (9)

Where k is a 1 xm vector of Ks, the cost associated with using the slack variables,

and C is the vector of costs of using the available actuators. The maximum

element that is greater than zero in the vector z is the invited actuator:

Search for max. evaluator: [Zmax imax ] = max(z > 0) (10)
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Where imax is the index of the invited actuator that corresponds to the maximum

z-element, Zmax.

After determining which basic column to exclude (see APPENDIX A), the

Y matrix and z vector are updated as follows:

Y.
Y jexVi = ... n

je 'max

Y.
y. =. Y e~ y. Vi=1.n; j= 1..m; j #jex (1

Y.
Y.

Jex, max

where the index jex is the basis vector to be excluded. By directly updating the

linear combination matrix, Y, instead of computing a new B-1 matrix, significant

computation time can be saved. Simulations show a 30% decrease in

computation time for sample spacecraft mapper solutions.

The third difference from general conventional simplex algorithms is that

this algorithm is designed to handle upper bounds on the decision variable (eqn

7). If there were no upper bound constraints, the number of non-zero decision

variables in the solution will be, at most, equal to the number of equality

constraints [Ref. 9]. When this upper bound is lowered, the solution may require

more than m non-zero decision variables where m is the number of degrees of

freedom in the problem. This is due to the fact that the actuators being selected

to fulfill the desired rate change could reach the maximum on time (upper bound)

before completely satisfying one of the constraint objectives. Furthermore, the

linear combination coefficient matrix, Y, and the evaluator vector, z, are updated

differently if either the incoming actuator or the one exiting the basis goes to its

upper bound:
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Y..=-Y,;Vj=1 ... m (12)

z. = -z.I I

This operation is performed in the place of equation 11 when the incoming

actuator, i = imax, goes to its upper bound. If i is the index of the outgoing vector

then equation 12 is performed in addition to equation 11. Switching the polarity

signals any further changes to the usage of that thruster will involve it coming

down from its upper bound instead of increasing from zero.

Finally, this algorithm also differs from the Draper algorithm in that it does

not consider negative constraints on the decision variables. Since all jets in this

mapping problem have a non-negativity requirement (i.e. cannot have an on-time

of less than zero seconds), it is not necessary to consider negative decision

variable solutions, which will save valuable storage and processing requirements.

See APPENDIX A for the entire algorithm.

Testing of this algorithm was done using the system configuration of the

Orion spacecraft. In all, the spacecraft configuration has twelve actuators (see

APPENDIX C) and the desired accelerations are in the full 6-degrees of freedom.

The computation speed of this algorithm is compared with several off-the-shelf

solvers and the results are summarized in Table 2.

Algorithm Used Avg # of flops for Time equivalent on a

solution spacecraf t computer*

Algorithm in Thesis 2,200 0.0122 sec

Draper Algorithm 4,200 0.0233 sec

Matlab LP 28,000 0.35 sec

Table 2, Linear Programming Algorithm Speed Comparison. * processor used on the

ORION spacecraft mission is a 200Mhz StrongARM processor (Pentium class).
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2.3.1 Testing on SPHERES

The thruster mapping algorithm developed in the previous sections was

implemented and tested on the SPHERES satellite (see Ref. 7 for details on the

SPHERE project). Regretfully, no concrete test data can be presented due to

problems with the measurement system at the time. But running this algorithm

on SPHERES demonstrated two very important aspects of this process. First, it

was easily compatible with the control system currently employed on SPHERES

without any major changes either to the mapping algorithm or the SPHERES

control architecture. Second, even though SPHERES ran their control loops at

20 Hz, the simplex algorithm was able to complete all calculations within that

extremely short time period. This was an extremely important point because in

order to save computation time, the SPHERES control team had implemented a

very crude mapping algorithm where at each iteration, it just turned on the

thrusters that are pointed in the direction of the desired motion. This crude

algorithm was used instead of a more exact solution due to its short computation

time and since the controller was running at such a fast speed it was not

absolutely necessary to obtain the exact accelerations at each step. But, the

simplex algorithm proved that not only was it computationally efficient in

calculating the solution but gave a much better solution than the original method.

Table 3 shows performance of both mappers in terms of the average percentage

deviation from the desired control command for each control iteration.

Mapping method Avg. % error

LP Mapper in Thesis 0

SPHERES' crude mapper 15.18

Table 3, Mapping algorithm comparison between LP method vs. SPHERES mapper. Avg.

% error is defined as: error = (actual dv - expected d v)/(expected d-v)
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2.4 Thruster Mapping with Degradation

For many small autonomous space vehicles, only a minimal number of

fuel tanks are carried in an effort to save space and weight. At the same time, in

order to increase reliability and guard against single failures jeopardizing an

entire mission, the number of thrusters is usually high (around 10-12). This

means that one tank and pressure valve usually serves several thrusters; leading

to a performance degradation when multiple thrusters are fired at once. This

phenomenon can be easily tested and calibrated on the ground. An example of

a spacecraft propulsion system that displays this degradation is the ORION

spacecraft.

On the ORION spacecraft, two constant pressure tanks are used to serve

twelve individual thrusters. Testing of the hardware model show that the force

outputs from the individual thrusters decline rapidly as the number of on thrusters

increase (Fig. 4).

Thruster Degradation on ORION Spacecraft
80.0

y = 6.1876x - 6
60.0 ---------------- ---- --- ------------- P2--- - 7------- -----

- 40.0 - -------------- - - - - - ----- ----- - ---- -- ----

20.0 -- -- -- --- --- -- ---- ---
- 40.0

20.0 - -4- 11

0 2 4 6 8 10

# of thrusters open

o total results - Linear (total results)

Fig. 4 Thruster force degradation due to multiple on jets

On average, turning on six thrusters at the same time would cause a 30%

drop in the expected power output of each actuator. If left uncorrected, the

actuation loss will directly translate into unattained spacecraft movements. This
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would lead to inefficient control systems or worse yet, false failure alarms in the

estimation process.

Three different ways of dealing with this phenomenon are explored in the

next two sections. The first two methods involve an iterative scheme for

converging on the correct solution. The third algorithm uses a mixed integer

linear programming (MILP) method that is more simplistic but not as accurate.

2.4.1 Iterative Method 1

The basic ideas of this algorithm are to keep the LP mapping algorithm as

before but add an outer loop that will differentially adjust the commanded

(desired) rate change vector, T, in response to the errors caused by degradation.

Fig. 5 shows a graphical representation of the process:
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Desired acceleration
or rate change, T

LP mapper

Determine degradati on due to
multiple thruster firings

diff~ 0 Determine difference (diff)
b etween actual acceleration (T,)
vs..original desired acceleration
(T~)t

diff> 0

Di ffer entially determine new
desired acceleration, T

Actuator
on-times

(Ul,U2,...Un)

Fig. 5 Iterative method 1 for dealing with multiple thruster on degradation

The LP mapper (see section 2.2.1) returns a vector of on-times for all the

thrusters that satisfy the desired acceleration, T. Using these on-times, one can

determine which thrusters will be on at the same time at any given moment. For

example, given a on-time vector of:

[11
2

U= 0I;

101
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Thrusters one and two will be on at the same during the first second of operation,

which would result in a degradation of:

degradation=%deg*{]

L0-

where %deg is the known degradation percentage due to two thrusters operating

at the same time. Next, the true expected acceleration due to the current

thruster on-times can be found along with the difference from the original desired

acceleration as given by the controller:

T = Au - degradation
a

difif=T-Ta

If the difference is small (i.e. diff - 0) then one can

module with the current set of on-times, U. Otherwise,

again with a higher desired acceleration.

aT,

Ta

0 0T
T
0

0 0

0
T

Tam

exit the thrust mapping

the LP mapper is called

where m is the degree of freedom in the problem or the length of the b-vector.

The derivative is intended to increase the desired acceleration in the directions

that are most deficient due to actuator degradations. An approximation for the
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partial derivative is used because the true partial differential equation is difficult to

calculate due to the upper-bound limit for the actuator on-times. If more than m

actuators are needed, the derivative matrix would be non-square. (see

APPENDIX E).

Table 4 shows an example which converged to the desired acceleration level in

only two iterations of this algorithm.

Force [5;1;1;0;0;0]
required: Tdesired

Iterations Ti (Desired rate Tact (Actual rate Degradation

change) change due to
degradation)

1~ 5~ 4.52 0.48
1 0.82 0.18

1 0.82 0.18

0 0 0

0 -0.18 0.18

_0_ _ 0.18 -_-0.18_

2 5.531 4.97 0.6

1.2195 1.0 0.22

1.2195 1.0 Tdesired 2
0 0 [Ted 0

0.18 -0.03 0.21

_-0.18 _ 0.03 -0.21_

Table 4, degradation convergence example using differential convergence. Note: this

example uses the ORION spacecraft's thruster alignment and degradation factors.

By using a differential convergence scheme, the method is fast and usually very

accurate. But due to the numerical approximation for the differential equation,

, the algorithm under certain conditions will degrade into an infinite loop.
aTa

Although this phenomenon can be detected and corrected during operation, it

would still cause extra computation time - usually on the order of three extra

iterations and the solution would not be optimal.

With these drawbacks in mind, a second iterative method is developed

that asymptotically converges to the desired accelerations. By avoiding the
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numerical instabilities involved with the differential equation, simulations show

that the second method provided numerical stability but at a cost of longer

convergence time.

2.4.2 Iterative Method I

The central idea of this algorithm is to use an iterative method to find the

extra thruster firing necessary to make up the losses due to degradation (Fig. 6).

During each iteration, one finds the difference between the desired acceleration,
Tdesired, and the actual acceleration after degradation, T. The difference is then

fed back into the LP mapper to find the optimal thruster firings to make up that

loss (see Fig. 6). After each iteration, the upper-bound time vector, Uupperond,
must be updated to reflect each thrusters usage during this iteration:

Ui+1 ,,,, =U.,,, -U.
U lupperbnd -

1
upperbnd -U

To speed up the convergence of this algorithm, the cost vector, C, of using

the actuators needs be updated after each iteration. The cost of previously

selected thrusters should be lowered to ensure that the LP mapper would not

needlessly select new thrusters to satisfy the degradation difference.

C = C -U * factor

where the variable, factor, can be tested to provide the desired level of cost

reduction compared to amount of thruster usage. Numerical simulations show

that for the Orion spacecraft, a factor value of greater than 0.1 is more than

sufficient to achieve the desired effect.

By giving the thrusters that are already being used a lower cost, the LP

mapper would be more likely to use those thrusters to make up the acceleration

deficit instead of picking new thrusters. Reducing the number of total thrusters
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being used should reduce total degradation, which in turn lowers the overall time

for convergence.

Fig. 6 is a graphical representation of this iteration scheme.

Original Desired
acceleration or rate

change, Tns

L
Total +
on-tine

Determine degra
multiple thrus

diff- Determine dif
between actual ac
vs. original desir
Udesied

Actuator
on-times

(Ul1, U2,... Un)

Fig. 6 Diagram of Iterative method 11

A detailed algorithm for this method along with the algorithm for determining the

degradation due to multiple thruster can be found in the Appendix B.

Table 5 shows an example of the mapping problem using this algorithm

(Note: compare to Table 4 for differences in convergence between the two

iterative methods):
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Force [5;1;1;0;0;0]
desired: Tdesired

Iterations Ti (acceleration Tact (acceleration after
wanted) degradation

15] 4.521
1 0.82

1 0.82

0 0
0 -0.18

L0i 0.18

2 0.48 4.928

0.18 0.9676

0.18 0.9676

0 0
0.18 -0.033

-- 0.18_ _ 0.033

3 ~0.072 4.99-

0.032 0.99
0.032 0.99

0 0 Tdesired

0.03 -0.01

-0.03_ _0.01_

Table 5, degradation convergence example using differential convergence. Note: this

example uses the ORION spacecraft's thruster alignment and degradation factors.

The second column shows the desired acceleration given to the LP solver at

each iteration, T, and the last column is the total achievable acceleration, Tact,

from adding together all the actuator on-times from each iteration.

The convergence speed of this algorithm hinges entirely on the total

number of thrusters, their alignment and the degradation factors of the particular

spacecraft in question. Using the ORION spacecraft, which has twelve thrusters,

and a degradation factor of approximately 6% for each additional thruster used

(Fig. 4), the maximum number of iterations to converge to within 1 % of the

desired acceleration level is less than seven.

Section 2.4.4 provides a more detailed comparison of the performance of

the different iterative methods.
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2.4.3 MILP algorithm for degradation

In this section a new programming algorithm is explored that may provide

a simpler, non-looping, method of solving for the degradation problem. The

mixed integer linear programming technique is employed here with limited

success.

Mixed integer linear programming is different from ordinary linear

programming in that some of the variables can be constrained to be integers

only. This feature can be exploited to approximate the degradation factor due to

multiple thruster firings. Several new variables are added to the original LP

formulation. The binary variable vector, use, signals whether each of the

actuators is being used or not. Each element in the vector is either the number 1

if that particular thruster is used or 0 otherwise. The variable numon represents

the total number of actuators used during the firing period. The degradation

factor due to multiple thruster firings is given by Degrade f. For ORION, the

degradation factor is 6.2% (see Fig. 4). The variable, degrade, is the total

degradation due to all the thruster firings during each iteration. The MILP

programming was written in the AMPL mathematical programming language

[Ref. 10] and the following equations show the implementation of the additional

variables within the LP program.

Extra MILP constraints: U(i) ; uuppernd(i)use(i) (13)

num _on = sum(use) (14)

degrade = (numon - 1)degradej (15)

Old LP equation: T=AU+BS (16)

New MILP equation: T = A U(1- degrade)+ BS (17)
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Although this method seems much simpler than the looping LP algorithm,

there are two severe drawbacks. First, by using one degradation factor,
degradef, the designer is assuming that the degradation level from multiple

thruster firings is fairly linear. Although testing found this linear phenomenon on

the ORION propulsion system, see Fig. 4, this cannot be assumed for all other

spacecrafts. The shape of the degradation curve is dependent upon the

hardware engineering of each unique propulsion system. Second, this algorithm

does not differentiate between thrusters that are on for different amount of time in

a control period. All the thrusters that will be fired during each iteration are

considered to be overlapping even though one may fire for four seconds while

the second fires for only one second. This would increase the total degradation

factor and cause over usage of the thrusters and waste fuel.

Finally, due to the use of integer variables within the program, a different

algorithm that can solve mixed integer linear programs (MILP) must be used to

solve the problem other than Simplex. Currently there are several popular

methods including [Ref. 11]: Branch and Bound, plane cutting and if only binary

variables were used, the Balas/additive algorithm. All of these methods are more

complex and time consuming than the simplex LP thus they provide no

guarantee of faster solution times. In the following section the branch and bound

approach is utilized and the computation speed is compared to the looping-LP

algorithm.

Future work in this area could explore other more intelligent programming

methods for dealing with the above-mentioned drawbacks.

2.4.4 Performance of Degradation Algorithms

First, we shall compare the accuracy of the algorithms in obtaining the

desired acceleration. The test simulation uses the ORION spacecraft data (see

APPENDIX C for full ORION system layout with relevant data information).

43



Three different conditions were tested - rotational only acceleration, translational

only acceleration, and full 6-DOF movements. Fig. 7 shows the performance of

all three algorithms in terms of providing the desired acceleration compared with

using the original simplex method that had no consideration for possible

degradation effects.

Average Percantage difference from requested
acceleration due to degradation

20%

15% -- ---- -- ----- -- - ------------

1 5% - -- --

0%

translation only rotation only all

Types of requested acceleration

L0 simplex N method 1 0 method 1l milp

Fig. 7 Average error in achieving desired acceleration due to degradation

Fig. 7 shows that the second iterative method guarantees a true

convergence while the differential iteration algorithm (method 1) performs well in

the rotational or translation only requirements but failed to converge reliably in

the full 6-DOF situations due to the numerical inaccuracies discussed in section

2.4.1. The MILP solutions were consistently worse because of its assumption

that all thrusters will degrade by the same amount no matter how long they are

on for (as explained in section 2.4.3).

Data for Fig. 7 were compiled through testing the various algorithms under

a large number of different randomly selected acceleration requirements. Each

algorithm individually came up with the best thruster on times to obtain the
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desired velocity change and then those results were post analyzed utilizing the

known degradation percentages.

Although accuracy is important, the algorithm would be useless if it took a

large number of loops to converge. Using the ORION spacecraft data, the

following figures show the performance of the two iterative algorithms under

different conditions.

Average Computation Time vs. Simplex Method (no degradation
consideration)

7

0

4)4
0O3-

0

P=0_

translation only rotation only all

Types of acceleration requested

I Method I D Method Il

Fig. 8 Time comparison of the two iterative loops vs. no iteration

Fig. 8 shows the average time to compute the mapping algorithm using

the iterative methods compared with the time it would have taken with no

iterations (i.e. no consideration for degradation). On average, it took four

iterations (Fig. 9) on either algorithm to converge to the desired acceleration.

Overall that equates to using five times as much time as the original Simplex

method that did not compensate for the degradation phenomenon.
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Average number of loops for convergence

6

5

4
CL
53
0

2

1

0
rotation only all

Types of acceleration requested

m Method I 0 Method 11

Fig. 9 Number of iterations before convergence using the different methods

In general, method 1, using the differential convergence algorithm, takes

fewer iterations to converge than method 2 but due to its higher computation

intensity per iteration, the total time required for each method is approximately

equal. Method 1 has a slight advantage if the requested accelerations were

either translation or rotation only but if combined, method 2 was faster. In the

worst-case scenarios, both methods took up to nine times longer to find a

solution than the original simplex LP calculation. Although these times seem

high at first, one must keep in mind that the average computation time of one

simplex calculation is less than 0.01 sec (see section 2.3).

The MILP method although not as accurate as the iterative methods, did

have the advantage of having a faster computation time. Fig. 10 shows the

average computation time of using the MILP algorithm vs. the iterative methods.
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MILP Solution Time vs. Iterative Methods

Fig. 10 Average MILP algorithm solution time compared to iterative algorithms

While the time savings for acceleration requirements of translation and rotation

only were limited (at most 20%), the MILP algorithm significantly outperforms the

other methods when both translation and rotational movements are required.

These data suggest that the MILP methodology should be further explored to

determine whether a more accurate algorithm could be found while still retaining

the time savings.
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Chapter 3

Robust Linear Programming For Uncertainties in the

Thruster Mapping Problem

3.1 Introduction

In the above sections, the linear programming method used to determine

the on-times for each thrusters assumes perfect knowledge of the desired

spacecraft motion, and each thruster's performance. In reality, nothing is known

precisely. In fact, all knowledge of a satellite's performance will be based on

noisy instrument measurements and even the desired spacecraft movement

vectors are computed based on imprecise knowledge of the states of the system.

In this chapter, new techniques for solving linear programming problems

with uncertain data are explored. The two major categories of uncertainty are in

the A matrix and b vector for the general Ax=b LP problem. (Note the b vector

plays the same role as the desired rate change vector, T, in the LP mapper. And

the solution, x, would be the same as the on-times vector, u). For symmetric and

non-symmetric uncertainties in the b vector, different techniques of solving the

problem are presented in this Chapter. For the A matrix, a robust formulation is

developed that deals with column-wise uncertainty. Column-wise uncertainty

assumes that uncertainty in each column is independent. The column wise

uncertainty is a specific case of the more general row-wise uncertainty problem,

and can still be formulated into a Linear Programming problem while the general

row-wise problem is no longer an LP program [Ref. 12].

Theoretical and numerical test results show that under special cases of

error distribution, where the errors in b are symmetric and the errors in A are also

symmetric and are a small percentage (<50%) of the original values, the robust
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LP problem collapses down to the original Ax=b problem. In fact, this Thesis

shows that this special case of error distribution is the most likely of the errors to

be encountered, thus for most spacecraft problems, the original linear

programming formulation is the best method even in the face of uncertainty.

3.2 Uncertainty in b

Uncertainty in the b vector can arise from many different situations. In the

spacecraft thrust mapping problem, the most common uncertainty or errors are

due to noisy measurements. For example, if the desired acceleration values are

received from the controller in terms of one reference frame (i.e. LVLH), then it is

necessary to perform a transformation to the body-frame to accomplish the

thruster mapping problem. The mapping problem is usually done in the body

frame because the thruster performance levels (matrix A) are usually tested and

stored in that frame. If the attitude of the spacecraft is not known exactly then

the transformed acceleration value will have an uncertainty factor attached to it

(see example in second half of this section).

One robust formulation with uncertainty in the b vector is to find the

solution that minimizes the maximum error due to all possible b's [Ref. 13]:

Robust LP Formulation: min(max(bi - Ax)) (18)
x i=1..L

Satisfying this constraint means finding the solution, x, that will minimize the

maximum possible deviation from all possible desired states, b;.

One solution to this problem involves forming another, slightly larger,

linear program for the uncertainties. Let us begin by manipulating equation 18

into the following equivalent form:

|| Ax-b. , |<S;Vi=1...L (19)

50



Ax-b <S

Ax-b > -S (20)

The variable S is the maximum difference between Ax and any of the possible

b's. Now, combining the two inequalities and still maintaining the desire to

minimize S, we have the following linear program:

minimize(HS + cx)

A I x
LP formulation w/ b vector uncertainties: [< B (21)

B= b b2 ... bL

-b, -b2 ... -

where H >> c to ensure that we are first minimizing S, and the total on-times

second. Now, if the number of uncertainties in b is small, then we can just

calculate the new LP formulation, equation 21, for each set of b's, ' and find

the smallest combination of x and S's. But if the uncertainty set is large or

continuous, it would be extremely time consuming if not impossible to solve

equation 21 for every case and post analyze the solutions.

One method of solving equation 21 without considering every case of b is

by minimizing each row of the matrix B [Ref. 14]:

bmini = min(Bij); Vj=1...2m (22)

where m is the length of the original vector b. Now the uncertainty problem can

again be solved with one LP calculation [Ref. 14]:
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minimize(HS + cx)

robust formulation w/ uncertainty in b: [x < (23)

- A - S""

This formulation minimizes the maximum error, S, if the uncertainties for

each element of b are independent. Because the brmin vector is formed

individually from each row of B (eqn 22), the robust formulation considers all

possible combinations of the elements in B. For the thrust mapping problem,

although one may encounter situations where the uncertainties in each element

of the desired state vector, b, are independent, the most common uncertainties

have specific characteristics that limit the total number of possible b's.

The most common uncertainty in the desired state vector, b, are from

uncertainty in the measurement system. One example that is encountered by

every spacecraft involves uncertainty in the measured attitude state. When the

rate change requested by the master controller is not in the body frame, one has

to make a reference frame-transformation:

Reference frame rotation to body: bbody= Robodybo

where bo is the reference frame the controller is working in. Robody is the

transformation matrix to the body frame. Since the transformation matrix, Robody,

depends upon accurate knowledge of the attitude of the spacecraft, any

uncertainties in those parameters can be modeled as an extra rotation away from

the body-axis:

Rotation w/ uncertainty in attitude: b = Rerrrb - R R Yboerrbody - error obody

where b is the desired state vector used in the mapping equation Ax=b and Renfor
is any extra rotation due to uncertainty in the attitude information. In general the

Rerror matrix is a combination of the rotational uncertainty in all three axis:
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1 0 0 cos(0) 0 - sin(O)_ cos(V) sin(y) 0-
Rerror = 0 cos(#) sin(#) 0 1 0 -sin(y) cos() 0

0- sin(#) cos(#) sin(O) 0 cos(O) j_00 1

where 0, # and V/ are the measurement errors in each of the three angular axes.

If the errors are small then we can apply the small angle theorem and Rerror
becomes:

1 yf -0R = y 1 #
error [1 0.o

0 -

Under this type of error, the uncertainty in each element of the desired state

vector, b, are dependent on each other.

By taking the minimum across each row, the robust algorithm as defined

by equations 22 and 23 considers a much larger set of uncertainties than the

given problem. Unfortunately, there are no simple methods to limit the solution

space without sacrificing the speed and ease of this robust formulation. The

trade-off is between efficiency and quality. This robust formulation is a one step

process that gives a quick and all-inclusive answer. While it may not be the

"best" solution for all types of uncertainties, it does guarantee a fast and feasible

solution that adequately considers all the uncertainties. Numerical testing find

that the robust formulation on average gives answers that are 20% closer to the

true desired b than purely solving the original Ax=b, problem without considering

the uncertainties.

3.2.1 Symmetric Errors in b

The uncertainties in b need not be considered if its errors are symmetric.

If the errors in b are symmetric, the robust solution breaks down to the original
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problem of Ax=bo and that is the exact solution to the problem. Symmetric errors

in b are very common. For example, continuing the attitude measurement

example in the above section.

Reference frame rotation to body: boy, = Ro~bodyb

Rotation w/ uncertainty in attitude: b = Rerrorbbody = RerrorRobodybo

error =

If the measurement system is not biased

uncertainty will be the same for all three

uncertainties in b, Ab, due to measurements

1 0

Ab= -0 1

6b[ -0

y-0

1 $b

towards any of the axis, then the

angles (0=<=xV). In that case, the

will be:

--

1bbody -bbody

1-

If the angle errors, 9, are symmetric and unbiased, then

element in b will also be symmetric:

the uncertainty for each

ab_ = abs(min(zAb)) = abs(max(zAb))

The following proof shows that under the above conditions of symmetric

uncertainties in the elements of b, the robust solution is always the same as the

default solution (Ax=bo).

First, consider the constraint of minimizing the maximum error (b-Ax) due

to uncertainty in b, Ab. The formulation can be rewritten as two simultaneous

equations:
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Ax:-b< + Ab + S
-Ax ! -bo + Ab, +S (24)

Vi=1...L

Since the Abs are symmetric and we want to minimize the positive slack

variables, S, the above equations can be reduced to the following:

Ax = k+ Ab_ + S
- Ax = -bo + Ab_ + (2)

Only the equivalence case needs to be considered to minimize S because all

other cases would only increase S. If bo is in the solution space of Ax, then

regardless of what symmetric uncertainties, Ab, are present, the best solution is

always the original problem Ax=b, and the maximum error is S=Abma.

A second proof of the above problem is based on the convex optimization

theory as presented in [Ref. 13]. The structured worst-case pertubation

function, e, can be computed as:

eC(x) = maxAx-b,
-T i=1,...,mi x 1

AT = [a0  , p ..... , PaL,] (26)

BT =[b0 pb,..... , pbL ,]

where the pa.and pb.are the errors associated with A and b. The robust

solution is solved as [Ref. 13]:

min max Aix -bI (27)
x i=1,...,m i1

or
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A01 x - b

mm max pA1 ~x - pb11  (28)
X i=1 ..m

pALji - PbLj I

but if there is no disturbance in A then the problem reduces to:

A0,x - boi
0 - pbO

mm max (29)
x i=1,...,m

0-pbL,i I

Since one cannot change the uncertainties in the b terms (pb) then the best

solution is to make A,x - b,, = 0. Collecting together all n elements, the

solution becomes Aox = b0 , which is the original problem without the

uncertainties.

3.3 Uncertainty in A

Uncertainty in the A matrix for the thruster mapping problem (Ax=b) arise

from to the variability of each actuator's output. Every time an actuator is used,

its actual thrust power may vary according to the reliability of the propulsion

hardware. For example, on the ORION spacecraft, ground testing of the

propulsion system shows that the thruster performance is only guaranteed to

±10% of the pre-calibrated levels. Of course, one would like to find solutions that

are insensitive to these errors when calculating the on-times for each actuator.

Again, we can set up the robust problem similar to the uncertainty in the b-vector
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by looking for the solution, x, that minimizes the maximum possible error (b-Ax)

from all the possible As:

min(max(b - Aix)) (30)
x i=1..L

where L is the number of total possible A's. Following the robust formulation with

variations in b, we can form a new LP constraint equation as follows:

||ix - b 11 S; Vi =1...L (31)

Aix -b < S

Aix -b > -S (32)

The slack variable S is the difference between the desired rate change, b, and

the effective rate change from using the actuators, Ax. Now, combining the two

inequalities with the desire to minimize the maximum S, we have the following

set of linear objective and constraints:

minimize(HS + cx)

A,* b (33)
S

At* = 'l ; V I ... L
-A,. -1U

If the uncertainty in each column of A is independent (i.e. each actuator's firing

uncertainty is independent) and are "column wise" then the above system of

linear constraints (eqn. 33) is equivalent to the following robust LP formulation

(Ref. 12):

A*x* - b*,x* 0;
Robust LP for variations in A: a sup(a1  (34)

aieKi
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where Ki represents the total set of possible A's and

A = -
-A -1_

x = (35)

, b
b*=

It should be noted here that the case of column-wise uncertainty is conservative:

the constraints of the robust formulation correspond to the case when every entry

in the constraint matrix is as "bad" (as large) as it could be [Ref. 12]. For the

mapping problem, this "conservatism" is not a problem when the values in each

column of the A matrix all have the same sign (i.e. either all positive or all

negative). If the signs vary for each element then the robust formulation (eqn 34)

will give answers that are more conservative (see discussion on conservatism in

3.2). This conservatism is introduced because the algorithm considers the

elements in each column of A to vary independently. To understand why the

mixing of signs in the A matrix is a problem, lets compare two different actuators

of a sample problem:

The sample spacecraft operates in three-degrees of freedom:

A= -1 1;b= 1;x<5

If a +/- 10% uncertainty is present in both actuators, the robust formulation the

problem would be:

A*x* < b*,x* >0;

a= sup (ai)j
ajeKi
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1.1 1.1 -1
-0.9 1.1 -1

A *=[A -1] 1.1 1.1 -1

A -1 -0.9 -0.9 -1

1.1 -0.9 -1

-0.9 -0.9 -1

This formulation assumes that the "worst" (largest) possible A's are:

Robust Formulation's worst-case scenario:

1.1 1.1 -0.9 -0.9

Aworst =Aorst = 0.9 -0.9

1.1 11 -0.9 -0.9

But because each element in a column cannot vary by itself (i.e. the elements of

a column vector are not independent), the real "worst" case scenarios are:

Actual worst-case scenarios:

A' -1.1 1.1; - 0.9 -0.9

1.1 1.1 -0.9 -0.9

The second column of the actual worst-case scenario is equivalent to the robust

formulation but the first column is not. The example shows that for the case

when all the elements in a particular actuator column do not have the same sign,
the robust formulation will consider a constraint space that is larger than the

actual constraint space.

Numerical testing can be used to test the conservatism of the robust

formulation. The test is set up to determine if one can find a solution, x, that

gives a lower objective value (eqn. 33) than the robust solution. A sample set of
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possible solutions, x, can be found by considering different column combinations

of As:

A,x, =b;Vi =1...L

where L is the

example, some

total number of different combinations of A.

possibilities of A are:

Using the above

1.02 0.95 .1 1 .1 0.91

A= -1.02 0.95 ; -1.1 1.1 ; 0.91

1.02 0.95 1.1 1.1 0.91

Again, note that each column's variation is independent

within a particular column must fluctuate together.

11
1f....
1j

but all the elements

For each A;, there is a unique solution, xi, that satisfies the desired rate

change. The post analysis to determine the best x; involves finding the maximum

possible error from using each set of solutions:

min[max(A,x, - b)];Vi=1...L
j=l..L

Table 6 shows the percentage of correct solutions using robust formulation under

various types of variations in the columns of the thruster mapper, A.
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Table 6, Percentage of correct solutions for different types of variations in A. Note: the

values of the A and b matrices in all simulations were completely random to give an idea

of the general conservatism of the algorithms

From the numerical tests based upon the above formulations, it is found that the

robust LP formulation finds the best solution under all circumstances unless the

elements in the thrust mapper matrix, A, has both positive and negative values.

One further interesting result is that the default solution, xo, which does not

consider any variations in A was found to be the best solution if the variations in

A were symmetric and small (<10%) (see Table 6).

One way to combat the "conservatism" of the robust formulation is to

consider the actuator uncertainties as "row-wise" uncertainties. In the case of

"row-wise" uncertainty, a robust program can be found to reflect the fact that the
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Types of variation in the columns of thruster Ax=b solution Robust LP
mapper, A No consideration for formulation

variations in A A*x*<= b*
e Symmetric errors 100% 100%
* Errors less than 10% of original values
e All columns had same max variations
e Entries in A are all positive or all negative
e Non-symmetric errors 0% 100%
" Errors less than 10% of original values
e All columns had same max variations
e Entries in A are all positive or all negative
* Symmetric errors 0% 100%
e Errors greater than 100% of original

values
e All columns had same max variations
e Entries in A are all positive or all negative
e Symmetric errors 32% 100%
e Errors less than 10% of original values
e Columns had different max variations
e Entries in A are all positive or all negative
e Symmetric errors 90% 92%
e Errors less than 10% of original values
e All columns had same max variations
e Entries in A are either positive or negative



coefficients of the constraints cannot simultaneously be as bad as every one of

them could be [Ref. 12]. Unfortunately, the general "row-wise" uncertainty

problem can only be transformed into a conic quadratic program (CQP) [Ref. 12]

that is much more computationally complex than an LP problem. Due to this

drawback, the conic quadratic solution was not pursued in this Thesis but future

work could help to define the trade-off between computational complexities of a

CQP vs. the "conservatism" of the robust LP solution.

3.4 Other Ways of Dealing with Uncertainties in A and b

The previous sections 3.2 and 3.3 considered uncertainties in both the

matrix A and vector b to be hard constraints that must be satisfied. An

alternative method of solving for this class of uncertainties is through stochastic

programming [Ref. 32]. A sample formulation for the thruster mapping using

stochastic programming is:

minimize: cx

constraint: prob(||b - Axjj S) 1- alpha

x,S 0

In this formulation, x is still the unknown solution but S is a predetermined error

that one is willing to tolerate and alpha is the probability of failure. This

formulation requires the knowledge of the probability distributions of A and b.

To transform the above probabilistic constraints into an equivalent

deterministic equation is considered in Ref. 32 and will not be discussed here.

The main point is that if the distributions of A and b are continuous then the

deterministic equations become a set of nonlinear constraints that are much

more computationally complex to solve for than the robust formulation developed

in sections 3.2 and 3.3. But, if the distribution is discrete, the new constraints
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can be transformed into a linear mixed-integer program [Ref. 32]. Further

research is needed to determine if that is a viable alternative in terms of

computational burden.

3.5 Conclusions

This chapter analyzed the thrust mapping problem under uncertainties in

both the A and b matrices. Uncertainties in the A matrix arise from variations in

the actuator performance or uncertainties in the measurement system. The b

vector can also be inexact due to poor measurements or uncertainties in the

control system. In both cases, robust formulations of the original LP problem

were derived along with a performance comparison with the original Ax=b

solution that did not consider the uncertainties in the system. The robust

solutions designed in this thesis focused on computational speed with some

sacrifices in precision. Although the robust solutions may be conservative in

some specific cases, it did guarantee a better solution than the original thruster

mapper under all conditions.

For the b vector, if the uncertainties are symmetric, it was shown that the

robust formulation reduces to the original Ax=bo solution. If the uncertainties are

skewed, then the robust solution is on average 20% better than the original

solution.

For the A matrix, the most common and likely uncertainties are column-

wise uncertainties. This assumes that each actuator is independent and could

have varying degrees of deviations. Again, the robust algorithm developed here

opted for speed with some sacrifice in the final solution. These flaws appear

when the elements in each column of A do not have the same sign (i.e. some

values of the column are positive while the others are negative). This
''conservatism" is negligible when the uncertainties are small or extremely large.
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Chapter 4

Estimation

4.1 Introduction

In order to guarantee the continued success of the thruster mapper model
developed in the above sections, it is essential to have a continued monitoring
system on the performance of the thrusters. A sound monitoring system will not
only provide the best estimate of the performance of the thrusters but also allow
fast detections of failures.

Fig. 11 shows the basic structure of the estimation and fault detection
algorithm.

Measw mQts
Kalman filter _r Fault No ailure

----- +Detection
Actuator /Isolation
firings

failurl

Failure Type Update thruster
Deterination mapper matrix

Fig. 11 Estimation and Fault Detection

This chapter describes how estimates of the thruster performance values
can be generated using knowledge of the thruster on-times and measured
velocities. A basic Kalman filter system is used for continuous monitoring of the
thruster performance levels. This filter was selected both for its ease of
implementation and statistical reliability to provide the best estimate at each step.
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4.2 Kalman Filter and Estimation

This section provides a simple and straightforward method to formulate

the estimation problem of determining the performance of each of the actuators

onboard a satellite. The estimation states are the elements that form the thruster

mapper matrix (Table 1 in section 2.2.1). In that example, there are four

actuators and six degrees of freedom. This leads to a state vector, x, of length

24 x 1 by arranging each column under the previous ones.

4.2.1 State Dynamics

First, it is assumed that the actuator's performance levels are stable and

any failures and degradations happen in an unpredictable fashion. The

deterministic model for the state dynamics can be described as:

State dynamics '(t) = 0 (36)

This continuous equation can be rewritten in discrete form for computer

processing as:

Discrete state dynamics Xk+1 = xk (37)

where the single-step state transition matrix, D is simply the identity matrix of size

L x L where L is the length of the state vector x and is also the product of the

number of actuators (n) and degrees of freedom (m=6).

At each discrete step, an additive noise term is added to the discrete

dynamics equation to account for unmodeled system variations:

State dynamics w/ noise Xk+1 -- Dxk + Wk (38)
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where Wk is a L-dimensional hypothesized white gaussian sequence that's

independent of Xk with the following properties:

E(Wk)=0

E(WkW)T (39)
E kgg )=Qk >0

The noise in the system, wk, serves two purposes in this setting. First it is an

attempt to describe some of the unmodeled variations in the system. For

example, sometimes there are inherent uncertainties in the thruster output levels

due to inexact mechanical or valve control techniques. Second, it prevents the

filter gains from becoming overly optimistic after a period of time. If they do

become optimistic, the filter will tend to ignore recent data and thus fail to track

variations in the state estimates, x, as they occur [Ref. 17]. Furthermore, the

values of Qk can be tuned to attain desired response properties in the filter.

Finally, if unknown changes occur in the performance properties of the

actuators, either due to failures or large degradatation, then the state dynamic

equation will become:

State dynamics w/ failure ,k+1 = Ox + Wk + '5 k+1;0 Y (40)

Where v is the unknown failure jump, 0 is the jump interval and 6k;O is the

kronenecker delta function defined to equal 0 except when k=0, then it takes the

value of 1. This definition will be of importance when failure detection is

discussed in the following sections.

4.2.2 Propagation of Statistics and Measurement Incorporation

First, we must define the statistics associated with measurement states, Z.

In most spacecraft applications, especially small satellite operations, no

instruments exist for the sole purpose of measuring the performance of each of

the actuators. But, some type of velocity measurement system must exist to
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perform vehicular control. This information can be used readily to help in the

estimation of the actuator output levels.

At each discrete step, measurements of the impulsive change in the

translational and angular velocities are taken as:

Measurement equation: Zk = - Uk (41)

Where U is a mx1 vector that captures both the angular, o, and translation, v,

velocities:

_k_U k (42)

Usually, instruments take these velocity measurements with known degrees of

uncertainty. This noise, ud, can be usually approximated as a white gaussian

sequence with statistics of:

E(u' ) = 0
Measurement Uncertainty ) (43)

E(ukuk) = R, > 0

It is assumed that we have an initial estimate of the actuator performance

levels when the satellite begins operation. This prior estimate may come from

ground testing before flight and will be denoted as xk where the "hat" denotes

the estimate, and the "super minus" indicates this is the best estimate prior to

incorporating any measurement at time step k. It is now helpful to assume that

we know the error covariance matrix associated with <k-. First, the estimation

error is defined to be the difference between the actual values, Xk, and the

current best estimate, Xk:

Estimation error: ek =x X (44)
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Assuming that the estimation error has zero mean, the associated error

covariance matrix is:

Error covariance P- = E(e-e, ) = E[(x k )(Xk - -)T] (45)

In most cases, the estimation problem begins with no prior measurements and

the error covariance matrix, Pk, would equal the system error covariance, Qk
[Ref. 15].

We are now ready to determine the new estimate, k, by incorporating the

most recent noisy measurement with the prior estimate. Using Bayes theorem

and conditional density properties [Ref. 15], the optimal new estimate based on

minimum mean-square error can be found through blending the new

measurement with the prior estimates:

Measurement Update: Xk = X + Kk (Zk - Hk ^~ ) (46)

Where Hk is a m x L matrix that contains the on-time information for all the

actuators at time step k and Kk is the blending factor that is known as the Kalman

gain.

Substituting equation 46 into equation 45, the updated covariance matrix

is found to be:

Pk =(I -KkHk)P, (47)

Note, there are several other expressions of Pk that would yield the identical

answers and should be considered if equation 47 does not produce satisfactory

arithmetic solutions due to digital round-off errors [Ref. 15].

Lets now consider propagating the error covariance matrix. The error

covariance associated with 2<-a is found through first determining the priori error

equation:
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ek+1 = Xk+1 - Xk+1 = Dkek + k 

The propagation of the error covariance matrix, P, is the expected covariance of

the estimation error, e. In our particular case, the propagated error covariance,

p+1 , is just the last covariance estimate, Pk, plus the system uncertainty, Qk,

since <D in a static Kalman filter is the identity matrix.

Propagated Err Coy: P+k = E(e-,,e) = <D PDT + Qk

Finally, the optimal Kalman gain, Kk, that minimize the mean-square

estimation error is:

Kalman gain: K---P-H[(HkP7H[ +RY1

4.2.3 Kalman Filter Summary Equations

The previous sections gave the mathematical background for the

formulation of the equations in using the Kalman filter to estimate the

performance of the thrusters. The estimates from the filter are optimal in the

sense that the mean square of the estimation error is minimized. Several

assumptions were made in using this filter and they are: the dynamics and

measurement equations are linear in terms of the state and that the additive

process and measurement noises are zero-mean, white, gaussian and

independent of each other and the state.

In summary the filter equations are as follows:

The propagation equations in between measurements are:

State propagation:

Err covariance propagation:

~k+1 = (~

(D , = DT CD
P,, -- k Pk + Qk

(49)

(50)

(51)

(52)
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where (D is the identity matrix.

The update equations across measurements are:

State Update: Xk = <± +K Ck

Covariance update:

Where

Residual:

Kalman gain:

Residual covariance

Pk = (I- KH k)Pk

s, -=Z -Hk ~

K = PHY-1k =PkH +k

Yk=HkPkH[T ±R

The vector sk is the zero-mean residual and Yk is its covariance. Because the

residual term from the Kalman filter is well characterized, it will be exploited later

for fault detection (Chapter 5).

Other notes of interest is that the Kalman gain is independent of the state

but depend upon the applied impulses, Hk. This means that the gain will always

be time varying even when R and Q are constant and the error covariance

reaches a steady-state operation.

4.2.4 Filter Simplifications

One standard approach to speeding up the Kalman filter is by determining

the steady-state Kalman gain, K, so one would not have to calculate it at every

step. The Kalman gain vector, K, is independent of the state but is closely

related with the applied thruster firings, H. Since in the actuator estimation

problem, the applied actuator firings are changing at every time step, even when

the residual covariance of the estimate reaches a steady-state value, K will be
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time varying. Thus, one cannot precompute a steady-state K value beforehand

to save computation time on-board.

Because of the possible large number of states (degree of freedom [m]

times number of actuators [n]), one method of saving computation time would be

estimate only the values of the state that is used in the current iteration. At each

step only a few of the total actuators will be required and since all thrusters are

independent of each other, only the states that relate to the currently used

thrusters need to be estimated. At every time step, the number of floating point

calculations depend heavily upon the size of the error covariance, P. If instead of

passing in the values of all twelve actuators but only the ones that are used are

processed, then the number of floating point calculations saved per time step

based on a full 6-DOF spacecraft is over (n*6)3 where n is the number of idle

actuators. Furthermore, since this is a static Kalman filter and <D is the identity

matrix, the propagation equations can be reduced to an addition of the last best

estimate and the related noise. Under these simplifications the Kalman filter

equations are:

State propagation: Xk+ =Xk (58)

Err covariance propagation: = PA ±Qk (59)

The update equations are the same as equations 53 - 57 except that the states,

x, and associated error covariance matrix, P, will be:

Estimated States and Error Cov: .2k (i),Pk (i,i) (60)

where i is a vector that contains the indices of the states that are associated with

the actuators that were fired in this step. For example, if actuators one and three

of a four actuator spacecraft fired at step k, the i vector for that case would be:

i = [1,2, ... , 6, 13, 14, ... 18] (61)
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Chapter 5

Fault Detection and Re-Organization

5.1 Introduction

Beyond maintaining a good estimate of the actuator performance levels, it

is also essential to have a fast fault detection system that can quickly and reliably

detect and isolate any failures to the actuation system. Speed and robustness

are both important components of this system. When a failure occurs, one can

always wait for the estimation to converge to the new values but that usually

wastes a lot of fuel as it will take several firings before the estimator can

converge close to the new value. The reason for this is if estimation occurs

during multiple actuator firings, then the error would likely be spread to the other

actuators that were also on and it would take the estimator a long time to

completely contribute all the errors to the failed thruster. Thus it is important to

develop an algorithm that not only can quickly isolate a failure but also identify

the exact failure nature. But an algorithm that is extremely fast in detecting any

failures would also be useless if it routinely misdiagnoses the failure. There are

two types of errors that can occur in detecting failures. The type I error is defined

as not detecting an actual failure while type II error is when a failure is falsely

detected. Table 7 illustrates the two failure types:
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Decision Failure Present No Failure

Failure detected Ok Type II error

Failure NOT detected Type I error Ok

Table 7, Decisions errors for fault detection

Sometimes a type I error is referred to as the significance level of a

statistical test [Ref. 18]. The higher that error, the more likely the test would not

determine a failure when it occurs. Unfortunately, if the detection levels are set

low so as to minimize type I error, it is usually at the expense of having more type

I errors. Type Il errors are especially intolerable because a wrong fault detection

would risk permanently losing a working actuator as the compensation algorithm

may shut down any actuators that are not working correctly. Thus a system that

is designed to respond quickly to failures must necessarily be sensitive to certain

high frequency effects and this in turn will tend to increase the sensitivity of the

system to noise and the occurrence of false alarms [Ref. 19]. This fundamental

tradeoff between these design issues must be grounded in the actual system in

question. That is, if the spacecraft has many redundant actuators then it may be

tolerable to have a high false alarm rate vs. a system without substantial back-up

capabilities. Other considerations include on-board computing power and

mission requirements on control precision. A complex detection system may

reliably find and isolate any failures to guarantee performance, but it probably

would come at an extremely high computation cost that most small spacecrafts

cannot provide.

Many fault detection algorithms have been developed in the past 30 years

due to increases in computing power and improvement in on-board

instrumentation. The different methods include 'failure-sensitive' filters,

innovation or residual based detection, model-hypothesis testing and neural

networks [Ref. 19]. The 'failure-sensitive' filter refers to filters that have state
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estimates which are more sensitive to failures than normal filters. Examples of

such filters include using a limited memory filter, increasing noise covariance or

simply fixing the filter gains [Ref. 27 and Ref. 28].

The innovation or residual based detection system is the most popular of

the aforementioned group. The fact that the monitoring system can be attached

to the Kalman filter is particularly appealing to most applications since that should

cut down on redundant computation costs. A number of statistical tests can be

performed on the Kalman filter residuals including chi-squared testing, and

generalized likelihood ratio approach (GLR) [Ref. 16, Ref. 17, Ref. 19, Ref. 21,

and Ref. 22]. The chi-squared tests draw on the fact that the residuals should be

white, zero-mean and independent. Deviations from any of those properties can

be detected using the chi-squared tests. The GLR method is slightly more

complicated because it tries to isolate different failures by using knowledge of the

different effects such failures would have on the system innovations. In the

thruster mapper system, the model effects of each actuator failure is just the

acceleration characteristic of each thruster (columns of Table 1).

Trying to detect and isolate the failures to certain pre-computed models

motivates the model-hypothesis approach. These methods have the benefit of

doing both system identification and state estimation. Usually a large "bank" of

linear filters based on different model hypotheses are run simultaneously and the

innovations from the various filters are used to compute the conditional

probability that each system model is the correct one. Although proven to be

fairly accurate [Ref. 19], this method usually carries a high computation burden to

accommodate all possible, or at least the most likely, failure modes.

Finally, much work has been done on implementing a neural network-

learning algorithm to accommodate any type of failure. The idea is that the

estimation procedure is coupled with a learning algorithm that analyzes all

incoming measurements to determine the best estimate of the performance of

the systems. Several detailed studies have been done in this area and the
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results have been extremely positive, especially when dealing with unanticipated

faults, which are hard to characterize using any other fault detection method [Ref.

29]. The drawbacks to this method are that detecting anticipated faults may take

relatively longer time than using some of the other methods [Ref. 24, Ref. 23]

and it has high computation and storage requirements.

For this thesis, we picked several of the above methods that were thought

to be more suitable for small satellite applications. Small satellites are usually

characterized by relatively low computing power, noisier instruments, and very

few or no redundancies in system parameters. Also, the detection method must

work well with the above-described thruster mapper and estimation systems

described in Chapter 2 and Chapter 4. With those requirements in mind, three

different innovations based tests using the chi-squared method, a GLR approach

and an estimator threshold test were compared under different failure and

system conditions, such as noise and actuator performance levels. The

estimator threshold test basically relies on the estimates of the Kalman filter to

detect failures. If the state estimates become significantly different than the

original value, a failure would be signaled.

Once a failure has been detected, it is usually then necessary to isolate

the failure to be able to update the system model for the control system. A model

comparison technique is introduced here that can work with any of the detection

systems. The technique involves relatively low computation time and can be fine

tuned to any system depending upon noise levels and accuracy requirements.

5.2 Fault Detection and Isolation

5.2.1 Problem Definition

The overall performance of the thruster mapper system greatly depends

upon its ability to adapt to changes in the actuator system. One of the most
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basic yet important tasks in estimation is the ability to detect failures rapidly and

update the system to the post-failure model. There are many types of failures

that could affect the performance of any system: initial misalignment, long-term

degradation and sudden abrupt failures.

Initial misalignment refers to the possibility of actuators being misaligned

during its flight to space. This type of failure is fairly uncommon and will not be

studied in-depth in this thesis (although in Chapter 6, we will test the

effectiveness of the method described below). First of all, it would be nearly

impossible to identify the true behavior of the actuators if one is to solely base

the values on the estimation process (section 4.2) during initial normal operations

after launch. This is because of the high number of estimated states (number of

actuators x DOF) and the limited observable space (6 degrees of freedom). One

possibility of testing for such failures is to use each actuator at least once after

launch to test for any mishaps during its space travel. The resulting estimates of

the performance of each actuator can be easily used to measure the likelihood of

failure compared to default (expected) values (see Chapter 6 for results).

The second type of failure, long-term degradation, is much more common

and can result from many different hardware issues including decreased

pressure from the propulsion valve or clogging of the thruster plumbing. If such

long-term degradation is known and can be modeled through ground-testing, it is

then a simple case of attaching such a model to the estimation system:

m easuremeL Kam an Filter D egradation model

Fig. 12 Implementation of known degradation model

But, in some cases the exact nature of the degradation history is not known and

must be determined in-flight. Two possibilities immediately arise as possible
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methods in calibrating for this degradation. If the system noise levels (actuator

performance and measurement accuracy) are low, then the Kalman filter can be

designed to have a fast response time through either high Q/R ratio or artificially

keeping the state covariance factors high. A "fast" Kalman filter will respond to

new measurements more readily and be better able to track long-term

degradation factors.

The second method involves using the fault detection algorithms

developed in the next section for abrupt changes. The intuition behind this

method is that if the inherent system noise is high, then one cannot rely on the

Kalman filter to accurately track small degradation levels. But over time, as the

actuator performance is significantly degraded by such forces, then one should

be able to detect the large deviation as a single-time failure and update the

model as such. Fig. 13 shows the behavior of the model vs. the actual system

for this scenario.

Actual vs. modeled behavior

1.2

1 . - - - -- - - -- -- ------- -------- ----------

0 a 0 . 8 -------------- ----- - ------- ------ - - - - - - - - -
2 0.6------------- - -------
0

0.2 ------------- ------ - --- ------------- -----------

1 16 31 46 61 76 91

time

- actual degradation - model behavior

Fig. 13 One possibility of detecting long-term degradations in actuator system that are

hard to model

The robustness of this system and the speed with which it updates degradation

will greatly depend upon the noise level of the system and the designer's

willingness to tolerate false alarms (see following sections).
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The third type of failures, abrupt on/off failures, is much more likely to

happen than the initial misalignment failures and cannot be modeled unlike the

long-term degradations. Luckily, extensive studies have been done on this class

of failures and many solutions have been demonstrated to work in the aerospace

industry [Ref. 16, Ref. 19, Ref. 20, Ref. 21, Ref. 22, Ref. 30, Ref. 29]. The

design of failure detection systems involves many factors of consideration. First

of all, the detection system must work with the rest of the system structure

including the thruster mapper and the Kalman filter. Second, there is the trade-

off between the responsiveness of the detection system.and the willingness to

tolerate false alarms which can significantly degrade the performance of the

overall spacecraft. Third, hardware issues such as sensor redundancy must be

considered. Finally, the trade-off between computational complexity and

performance is especially crucial for small autonomous spacecrafts that typically

do not be carry the state-of-the-art computers and have limited storage capacity.

Although there are many different fault detection methods, our system with

the limited measurement capabilities (measurements are six degrees of freedom

only - not individual thrusters), no sensor redundancy, relatively high

measurement noise and poor computing power make most of the systems

impractical. For example, the "failure-sensitive" filters, which have relatively low

computation time, require extremely accurate measurements or else not only

does the fault detection performance degrade, but the estimator becomes sub-

optimal as well [Ref. 19].

The simplest detection method would be to rely on estimates of the

actuator performance from the Kalman filter (Estimator threshold test). When the

estimated values cross certain thresholds (such as 80% or 60% of original value)

then one can declare a possible failure in that actuator. Although simple, this

method has many drawbacks. First, the filter could become very insensitive to

new measurements after prolonged operations. If a failure occured, the

estimates would change very slowly, thus making a fast detection nearly
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impossible. If one tried to sensitize the filter by lowering the measurement noise

value in the filter, R, one may run the risk of having an erratic system that is

extremely sensitive to the inherent noise factors in the system. Also, in our

particular problem, the high ratio of estimated states vs. number of actual

observable space limit the performance of the Kalman estimation process. For

the above reasons, in most real-life situations, one cannot simply rely on the filter

for failure detection.

In our system where one must make the decision on failures from single

measurements because thruster firings change continuously over time while the

measurements are of the same variables, the most robust systems to use are the

innovation-based detection systems. Two classes of innovation-based detection

systems are compared here and both are based on the chi-squared test. The

first test is a generic chi-squared test on the innovations and is based on the

work of Mehra and Peschon [Ref. 22] who determined many statistical tests to be

performed on the innovations. The second innovations-based approach is called

the generalized likelihood ratio (GLR) and is motivated by the shortcomings of

the simpler chi-squared approach and can be used to isolate different failures by

using knowledge of the effects each failures have on systems.

5.2.2 Simple Chi-Squared Tests

The innovations (or residuals, F) of the Kalman filter are defined as the

difference between the actual system output and the expected output based on

the model. Under normal conditions, the error signal is "small" and corresponds

to random fluctuations that match the variations present in both the system and

the measurement devices. It is well known that a Kalman filter generates

innovation values that are white, zero-mean and Gaussian in nature [Ref. 22]. In

this case the chi-squared test value at step k is a chi-squared random variable

with m degrees of freedom.
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Chi-squared test value lk = $ s'(j)Y- j (62)
j=1

In the equation, , the residual, and Y its corresponding covariance, are both

precalculated values from the Kalman filter; m is the number of degree of

freedom in the system - usually six. If a system abnormality occurs, the statistics

of - change and the detection rule takes the form of:

/, >63=> FAILURE
chi-squared detection rule: k (63)

1k ; 3=> NOFAILURE

with the aid of chi-squared tables, one can find the desired level of 6 that gives

high detection rate at an acceptable rate of false alarms.

The implementation of the above chi-squared test is extremely simple and,

not surprisingly, it has rather severe limitations in performance. The method is

basically an alarm method - i.e. the system makes no attempt to isolate failures

- and only those failure modes that have dramatic effects on the residual are

detectable by this method [Ref. 19]. By considering the components of &

separately, it might be possible to increase the detection rate and at the same

time attempt to do some failure isolation also. Two variations of this method are

considered below.

The first variation involves just looking at each component of the residual,

e. If the test detection is based on the last available measurement, the SDOF

(single degree of freedom) chi-squared test is:

Single Chi-squared test lk (i) = M'(i)Y1 (i)e(i);Vi=1..m (64)

k >(i) > -> i'h componentFAILURE

1k(i) -> ithcomponentNOFAILURE
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At each step, one or more components of the residual may have an abnormally

large deviation, which leads to a fault detection. Since each actuator is known to

only affect the spacecraft in a limited number of directions (based on its thruster

mapper), one can then make an educated guess as to which thrusters could

have failed to produce the fault detection in the individual component of l. For

example, if the only actuators on a spacecraft are completely described by Table

1 and the individual chi-squared test finds a failure in the 5 th element, /(5), then

the only thrusters that could have caused this would be actuators 3 and 4. This

variation on the chi-squared test will give some knowledge for failure isolation but

since on most spacecrafts there will be multiple actuators affecting one direction

of movement, it will still be extremely hard to pin-point the exact failure. The third

(or second variation of) chi-squared method described below tries to further

refine the process.

The second variation in the chi-squared model involves looking at

combinations of the components of I in determining failure. The intuition behind

this method is that while there may be multiple thrusters that affect each direction

of motion, there will be at most two or three thrusters that will affect the

spacecraft exactly. Again using Table 1 as a sample set of actuators on a

spacecraft, it is clear that all four actuators affect the spacecraft uniquely in that

no two of the actuators affect the same set of directions. Thus a chi-squared test

may be of the form:

Set Chi-Squared Test: k (i) = E'(f)Y (f)v(j) (66)
setofdirections,j

An example set of the j would be: j = [1, 5, 6]. This case corresponds to the

detection of failures for the actuators described in Table 8.

This method provides a fast yet robust method of isolating the failures along with

fault detection. The Set Chi-squared test can correctly identify the failure

actuator as long as there are not two or more thrusters aligned in the same
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direction. For example, if a spacecraft had two actuators such as [Table 8], it

would not be able to distinguish between which of the two thrusters actually failed

by having only the Set Chi-Squared test.

L

x-dir y-dir z-dir 0-rot 4-rot tp-rot

Actuator 1 3 m/sec 0 0 0 -2 rad/sec 1 rad/sec

Actuator 2 -1 m/sec 0 0 0 4 rad/sec -2 rad/sec
I - - I

Table 8 Example of two actuators that cannot be distinguished using the set chi-squared

method

Even though actuators 1 and 2 had opposite directions, they still affected the

same axes of movement. Since the chi-squared test is direction blind due to the

residual term multiplying by itself (eqn 66), it is impossible to know which actuator

failed in the above example using only the Set Chi-Squared test. One method of

resolving this difficulty is to increase the estimation filter's sensitivity to new

measurements for the actuators in question once a failure is detected. This can

be achieved by increasing the covariance of the estimates and waiting for the

estimates to converge to the new values. If possible, it is desirable to be able to

fire the actuators in question alone for a couple of time steps to speed up the

convergence time. But if the actuators failed in the middle of an experiment, or

satellite maneuver then it is not likely that one would have the luxury of using the

actuators in question to speed up the estimation process.

It is then desirable to form a detection test that will automatically isolate

the failure without relying on the slower filter estimate process. The following

section describes a much more robust detection process that not only is as

sensitive to the failures as the generic chi-squared tests, but can also isolate the

failures to specific actuators.
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5.2.3 Generalized Likelihood Ratio (GLR)

The GLR test was in part designed to overcome the shortcomings of the

simpler chi-squared test and can be applied to a wide range of actuator failures

with the ability to isolate the failed actuator by using knowledge of the different

effects of such failures on the spacecraft. The GLR test also relies on the

measurements and residual values of the Kalman filter based on the no failure

model [Chapter 4]. The hypothesis of the test can be expressed in terms of the

innovation/residual values:

Ho : , = E
GLR Hypothesis Ho: = (67)

Hi: =, -- ok + Gk;Ou)

Where sok is the expected residual value without failures at time step k, Gk is the

pre-computed failure signature (i.e. columns of the thruster mapper matrix), 0 is

the time of failure, which in our problem is always assumed to be the current

step, k, and v is the magnitude between 0 and 1. To determine if there was a

failure in the last step, we must compute the maximum likelihood estimates

(MLE) of v and 0. From the MLEs, one can then compute the log-likelihood ratio

for failure vs. no failure.

Since all the relevant densities of the problem are gaussian, the MLE of v

is [Ref. 16, Ref. 31]:

MLE of v: 0 = S (k)X(k) (68)

Where S is deterministic:

S(k)= GT (k)Y' (k)G(k) (69)

and X is the linear combination of the residuals:

Z(k) = G(k)Y- (k)(k) (70)
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v can be interpreted as a least squares estimate of the failure magnitude

assuming that the failure happened on step k and that we have no a priori

information about the value of v. Furthermore, S-1 can then be viewed as the

error covariance of the estimate of v.

It follows then that the generalized log likelihood ratio for the decision rule

is [Ref. 31]:

2

MLE of 0=k: 1k = (71)
Sk

The decision rule for the hypothesis test (eqn 67) is then:

HI

GLR decision rule: lk 1

Ho

where /k has a chi-squared statistic and 3 is a threshold value that is chosen to

give the desired tradeoff between false and missed alarms. Typical values of 3

depend on the values of the actuator's acceleration levels and would vary from

spacecraft to spacecraft.

Since everything is linear, at each step one can detect for multiple failure

signatures, G, where each one is the effect of an actuator on the spacecraft. For

example if a spacecraft had four actuators (Table 1 in section 2.2.1) then there

would be four separate GLR tests and each G would correspond to the actuator

values in the mapper (columns of Table 1 in section 2.2.1). Since this test was

designed for abrupt failures that occur one at a time, the largest likelihood ratio

will be compared against the threshold.
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HI

Multiple Failure Signature GLR Test: max(lk (0)

Ho

This will guarantee that only one actuator is declared to have failed at any given

time step. This is a useful analysis especially when multiple actuators have

similar effects on the spacecraft. In that case, one failure will likely lead to

multiple likelihood ratios, /, that are above the given threshold, 6.

5.2.4 Comparison of Fault Detection Tests

In this section, the fault detection methods described in the above sections

- estimator threshold, chi-squared tests, GLR test - are applied to a sample

spacecraft. The objective is to determine which method is best suited for small

spacecraft missions where one has limited computation time and relatively noisy

measurement systems. Three important characteristics are examined for the

various detection algorithms - Robustness (detection/false alarm ratio), average

time to detection and isolation after a failure has occurred, and the computation

burden of the algorithms. There are two important timing issues for each

method. The first issue is the raw computation time at each time step. An

extremely robust system would be completely useless if it takes minutes or even

seconds to compute at each time step. For example, on the ORION spacecraft

mission, the control system time step is less than three seconds and all

calculations must be done during that time period. The second important timing

issue is the total time required for detecting a failure and isolating that failure to

the right actuator. The GLR test should outperform all of the other algorithms in

this department since it combines both the detection and isolation step in one.

The chi-squared tests only identify possible failure suspects and one has to wait

for the estimation to change significantly to isolate a failure. And the estimate
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threshold should be slowest but the most robust. The robustness of a detection

system can be measured in terms of detection rate vs. false alarm rate. As

previously discussed, to increase detection rates, one must typically also tolerate

a higher number of false alarms. The better method should always have a higher

detection to false alarm ratio under any system properties such as measurement,

system noise levels, Kalman filter values (R,Q values) and detection thresholds.

The sample spacecraft is modeled after the ORION satellite and it has

twelve thrusters that will provide at least one redundant control thruster for each

direction of the six degrees of freedom. Three different types of failures were

applied to the tests - full on, full off and partial degradation. The results show

that the GLR test is the superior choice. It always performed as well or better

than any of the other algorithms in terms of its robustness to false alarms vs.

detection rate, and vastly outperformed everyone in the time to detect and isolate

a failure under various system properties. The GLR did have a higher

computation burden, but it was still well within the system requirements (see

Table 9).

The first set of tests compared the robustness of the various detection systems

under various noise levels and system properties.
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Detection vs. false alarm ratios for 75% degradation level (other types of failure

had similar results):

Fig. 14 Detection vs. False Alarm Ratios for different measurement and actuator firing

standard deviations.

Fig. 15 Detection vs. False Alarm Ratios for different Detection

the Kalman Filter.

Levels and R,Q values in
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Fig. 14 and Fig. 15 show the detection/false alarm ratio for the five

different detection algorithm for a single actuator degradation to 25% of original

level. In Fig. 14, the x-axis for both graphs are the standard deviation fractions

for the measurement system and the actuator firing uncertainty. As expected,

the detection rate/false alarm rate decrease significantly as the uncertainty in the

system parameters increase. In the first graph in Fig. 15, detection/false alarm

ratios were gathered for various detection levels for the different methods. In

general, raising the detection threshold will increase the detection/false alarm

ratios. But this comes at a cost of lowered detection rates for actual failures.

The second graph shows that varying the R/Q ratio in the Kalman filter will also

have a significant effect on the detection algorithms robustness. If one increases

the R/Q ratio (an assumption of noisy measurement values), the algorithms tend

to have a higher detection/false alarm ratio.

In general, the GLR method performed as well or nearly as well as any

other method under all the test variations. Although the threshold on estimator

method matched the GLR's detection/false alarm rate for different measurement

and system noise levels, it lagged in terms of time to detection.

The second set of tests compared the time to detection and isolation of

the failure after its occurrence.
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Total Detection + Isolation time:

Fig. 16 Time to Detection and Isolation of failure for different measurement and actuator

uncertainties
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Fig. 17 Time to Detection and Isolation for different Detection Levels and R,Q values in the

Kalman Filter.
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Fig. 16 and Fig. 17 explored the time for each algorithm to successfully

detect and isolate a single 75% degradation failure. The different conditions

tested are the same as the graphs in Fig. 14 and Fig. 15. In general, the time to

detection variable was determined to be not nearly as elastic as the

detection/false alarm ratio. Overall, the GLR algorithm consistently outperformed

the other methods by at least a factor of three and sometimes as high as ten or

more.

As mentioned in the previous sections, the overall "goodness" of a

algorithm is a combination of its detection speed and robustness in failure

detection. The above figures clearly show that the GLR method is superior to the

other algorithms under almost every variation in system and environmental

conditions.

Finally, one must test to see if the GLR test is feasible in terms of the

computation power available on small satellites. To test, the algorithms were ran

on a Pentium class processor - the average processor used on current small

satellites. While the GLR test does take relatively longer computation time than

any other method, it is not significant because all the algorithms finished its

computations in milliseconds:

# of floating point - time on pentium
calculations processor (msec)

generic chi squared
test 1800.5 9.0025

single chi square test 1794.5 8.9725
set chi-squared test 1803.5 9.0175

GLR test 8202 41.01

Table 9 average computation times for various detection algorithms

The number of floating point calculations counts the total number of arithmetic

operations that are on average performed in each algorithm. Each basic

operation (addition, subtraction, multiplication, division) on any two real numbers

counts as one calculation. The average total computation time on a Pentium-
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class processor is indicative of average processing time on a current small

satellite, since computing power on spacecrafts usually lag real-world computing

standards by at least 4-5 years.

Modeling of a sample small autonomous spacecraft have shown that the

GLR technique is far superior than the other methods in detecting and isolating

actuator failures on spacecrafts that have limited computation power and limited

measurement/on-board diagnostic capabilities. On average, the GLR method

had a detection/false alarm ratio that was several magnitudes better than the

other methods. Its detection speed was also consistently two to three times

faster than its nearest competitor.

5.3 Fault Estimation and Compensation

Following the detection and isolation of the failed thruster, one would like

to know how the thruster failed and be able to update that information back to the

thruster mapper as fast as possible. Complementing the GLR detection method,

several approaches have been developed to re-estimate the state once a failure

has been detected. The different approaches involve directly adding the failure

level, v, to the estimates or simply increasing the covariance of the estimate filter

or a combination of both [Ref. 31]. However, in many cases the GLR estimate, v,

may be quite inaccurate and simply updating the state estimate based on it could

lead to instabilities [Ref. 31]. Intuiti'ely, this increase in uncertainty can be

reflected through a higher error covariance. But as shown above, waiting for the

filter to converge through a higher covariance may take longer than desirable.

Furthermore, under the above conditions, it is not possible to fully distinguish

between a full "on" or full "off" failure. A full "on" failure is characterized by an

actuator that is stuck in the on position while a full "off' failure is characterized by

a thruster's failure to turn on.
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Under these conditions, a new model comparison method is introduced

here that has shown a great deal of robustness under various empirical tests.

5.3.1 A Model-Comparison Approach

The standard approach to adaptive reconfiguration in the event of a failure is an

indirect method where the controller waits for the estimation to converge to the

new value before updating the parameters. However, such an approach has

been shown to be relatively slow and can handle only small to moderate

uncertainties [Ref. 25]. Furthermore, for our particular problem of actuator

performance identification with a high number of states to be estimated (number

of actuators x degrees of freedom), the Kalman filter, estimation process can only

be relied upon as an approximate calibration device. In fact, on most small

spacecraft missions where one of the primary controller objectives is to conserve

fuel, a thruster may not fire for more than one or two times in a row before a long

period of rest. It would take an extremely long time for the estimation process to

obtain enough information for the estimation to converge to the new correct

values. Thus, a method is desired for immediately estimating the new actuator

performance once a failure has been detected.

In this section, a model-comparison estimation process is described where

multiple failure possibilities are applied to the identified failed actuator and the

most likely of the set is chosen as the best failure estimation.
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Fig. 18 Multiple-model failure estimation

In Fig. 18, T represents the failed actuator as determined by the failure

detection and isolation algorithm. The Ms are the various anticipated failure

modes that may affect an actuator. The three most normal failure modes are:

full on (actuator cannot be turned off), full off (actuator cannot be turned on), and

partial degradation (thruster only operating at a percentage of its original level).

Several models to describe the level of partial degradation of the actuator can be

accommodated. For example, five different partial degradation models may be

used where the first describes the case where the actuator has degraded in

performance by 20%, the second 40% and so on.

To model a full on failure, one can assume that the actuator was turned on

for the maximum on time during the last measurement period:

Full-on Failure Model: u(i) = max on_time

Where u is the vector of on-times and i is the failed actuator in question.

Modeling full-off and partial degradations can be easily achieved through

changing the known quantities of the actuator performance values within the

thruster mapper matrix, A:
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Full-off Failure Model:

Partial Degradation model: A(:,i) A(:,i)d
0 < d = degradation level < 1

The expected results from each of the failure models can be quickly

calculated since that only depends upon the mapper matrix and the on-times of

the actuators, u:

Failure Model Result: y = Au

The results from each failure model is then compared to the actual measurement

results:

Model Residual: E = Z - y

Where Z is the actual rate changes recorded by the on-board measurement

system. If one assumes that the characteristic of the model residuals are similar

to the original residuals, 6, in the Kalman filter then the same chi-squared test

using the filter residual variance as described in section 5.2.2 can be used to test

for which failure model was the most likely:

n

Failure Model Likelihood Test: i= E,'(j)Y-'(j)E, (j)
j=1

Where li is the chi-squared value of the ith failure model and Y is the residual

variance from the Kalman filter. Note that even if the model residuals here do not

have the same statistics as the filter residuals, it still makes sense to use the

above chi-squared test using the residual variance from the filter. The chi-

squared test is basically the norm of the residual with each term normalized by
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the inverse of the residual variance. The running residual variance from the

Kalman filter contains the variability of information of each residual, which over

time is basically how noisy the system is in that particular degree of freedom. If

the variance is high then one should discount any errors in that element and vice

versa if the variance is low.

Once all the chi-squared values, /, are calculated from the different failure

models, the model with the minimum I value is selected as the most likely failure

estimate. If the failure is found to be a full-on failure then it would be desirable to

completely turn off the thruster and notify both the main controller and the

thruster mapper so that its usage will never be required. Otherwise, the failure

was either a partial or full degradation and that can easily be updated to the

system through the matrix mapper.
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Chapter 6

Simulation on the ORION Testbed

6.1 ORION Mission Background

The main objective of the Orion [Ref. 33] mission is to demonstrate

formation-flying capabilities using optimal autonomous control algorithms and

precise relative-navigation based on carrier phase differential GPS (CDGPS).

Slated for launch in mid-2004, the mission will have 3 spacecraft performing

relative control using GPS signals (see Fig. 19):

Orion
*Six GPS antennas

*Three GPS receivers
*Full 6 DOF control

Fig. 19 Orion Formation Flying Mission

The twelve thrusters on each spacecraft provide fully redundant 6-DOF

control. Relative position and velocity information between the spacecraft are

calculated using the CDGPS solutions (see APPENDIX C for full Orion

spacecraft statistics).
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Optimal trajectories for station-keeping or formation-flying have been

developed using a convex optimization method that can be solved via linear

programming [Ref. 34]. There are several constraints inn the problem can

including: fuel minimization, time to rendezvous, maximum acceleration, actuator

rate limits, and differential disturbances such as drag and J2 effects. Given

these constraints, the LP controller finds a set of rate/velocity changes at optimal

points of the orbit that will take one spacecraft to a desired location in the given

time period. Most of these control sequences are "bang-off-bang" meaning that

the actuators are on at the beginning, off during cruise, and then on again during

a final deceleration at the end. An example of an optimized trajectory that

minimizes fuel usage is shown in Fig. 20:

Desired Velocity Oawges Plan
0.005- -- ,rCo1irr Trwctry

0-0

100
00100-0 .0 1 5e

Z
50-

-0.0

0-

F2 p p Te
cros-trak _50

0 10 20 3(5) 40 50 600 _X'W-o : 1 1
time steps (eay 5 sec) - hMf ot i

Fig. 20 Sample Optimal Trajectory

The simulation in Fig. 20 was done using the linearized Hill's dynamics

(see section 6.2) and shows an optimal trajectory for one spacecraft to

rendezvous with another (located at the origin). The initial separation between

the spacecraft is 300 meters in the radial direction and the time for rendezvous is

half an orbit.
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In this chapter, the thruster mapper and fault detection algorithms

developed in this thesis will be applied to the Orion spacecraft. Simulation

results show that degradation effects from multiple thruster firings can drastically

change the course of a planned maneuver if it is not properly controlled. The

degradation compensation algorithm developed in section 2.4.2 is applied here

with great success. Thruster failures are also shown to have mission-crippling

effects if not properly diagnosed. Section 6.4 provides a detailed study of how

the estimation and fault detection algorithms developed in Chapter 4 and Chapter

5 is applied to a real spacecraft mission. Finally, the simulations show improved

control capabilities along with significant fuel savings when the estimation and

fault detection algorithms are used along with the thrust mapper.

6.2 Hill's Equations

The Hill's equations of motion for any spacecraft are its relative

movements relative to a target reference orbit, as shown in Fig. 21:

Reference

- z target/orbit

Earth

Fig. 21 Hill's (LVLH) reference frame

Where the x (radial) direction is measured along the radius vector to the center of

the earth; the y direction (in-track) is measured along the velocity vector of the

target orbit with positive direction corresponding to positive velocity; and the z

axis (cross-track) is normal to the orbit plane, forming a right handed coordinate
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system (Fig. 21). The Hill's reference frame will also be referred to as the Local

Vertical Local Horizontal (LVLH) frame in the rest of the Thesis.

The continuous Hill's equations are derived from Kepler's Third Law (Ref.

35):

= 2np +3n 2 x+Fx

-2ni + F,

z -n 2 z+Fz

Where n is the orbital rate or mean motion of the

the applied impulses.

Orbital Rate

reference orbit and the Fs are

l=

Where p is the gravitational parameter of the Earth (3.986E5 km3 /s2 ) and a is the

semi major axis of the reference orbit.

The assumptions in Hill's equations are (Ref. 35):

" x2 + y2 is small compared to the target orbit's radius

. The applied forces, F, are small.

e The target orbit has a small eccentricity (i.e. nearly circular orbit).

Since the spacecraft separation for the Orion mission will be relatively small

compared to its orbit radius, the Hill's equations are a good approximation for

simulation testing. The mean orbital rate is simulated at n=0.001 1 which

corresponds to an orbit altitude of 600 km - a typical low earth orbit.
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6.3 Thrust Mapper and Degradation for Orion

Once the main controller has found the optimal rate changes for a certain

maneuver, it is up to the thrust mapper (Chapter 2) to provide them with the

available thrusters. Spacecraft properties including total mass and moment of

inertias (APPENDIX C), plus ground testing of the propulsion system provide the

needed knowledge of the acceleration available from each of the twelve thrusters

on Orion (see Table 10).

__________ ~THRUSTERS____ ___

directions 1 2 3 4 5 6 7 8 9 10 11 12
x-translation

(nmsec) -0.003 0 0 0.003 0 0 0.003 0 0 -0.003 0 0
y-translation

(mrn/sec) 0 0 0.003 0 0 -0.003 0 0 0.003 0 0 -0.003
z-translation

(mrn/sec) 0 -0.003 0 0 -0.003 0 0 0.003 0 0 0.003 0
x-rotation
(rad/sec) 0 -0.0417 0.0417 0 0.0417 -0.0417 0 0.0417 -0.0417 0 -0.0417 0.0417
y-rotation
(rad/sec) 0.0412 -0.412 0 -0.0412 0.0412 0 0.0412 -0.0412 0 -0.0412 0.0412 0
z-rotation
(rad/sec) 0.0449 0 -0.0449 0.0449 0 -0.0449 -0.0449 0 0.0449 -0.0449 0 0.0449

Table 10 Orion's Thruster Mapper

The twelve-thruster configuration on the Orion spacecrafts

redundant control in all directions. In fact, this configuration

DOF control even with one full failure to any of the jets.

allows it to have

guarantees full 6-

As discussed in section 2.4 of this thesis, ground testing of the Orion

propulsion system displayed significant degradation if multiple thrusters are

turned on at the same time. The average degradation for every extra thruster

turned on is 6% (Fig. 4). Applying this degradation to the example given in Fig.

20, one can appreciate the magnitude of its effects. In the first time period, the

master controller issues a rate change requirement:

v _ DESIRED = [-0.027 -0.027 0 0 0 0]
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Note, since no attitude data were simulated, it was assumed that the spacecraft

started out where the control frame (LVLH) was aligned perfectly with the body

frame. Any subsequent velocity change requirements also included a zero

attitude change constraint. Using the known thruster acceleration levels, Table

10, and the LP mapper (Ax = b), the optimal on-times that minimizes fuel usage

is:

ONTIMES = [4.5 0 0 0 0 4.5 0 0 0 4.5 0 4.51seconds

With all four thrusters turned on at once, the total degradation would be

approximately 18% (3 X 6%). Thus, instead of acquiring the desired rate

change, vdesired, the actual velocity change in that time period is only:

v_actual = [-o.002214 -0.02214 0 0 0 oj.

Because of this degradation, the actual trajectory of the spacecraft is completely

different than the planned maneuver. Fig. 22 shows the actual trajectory of the

spacecraft due to losses from multiple thruster firings:
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Fig. 22. Actual vs. design trajectory + lost acceleration due to multiple thruster firings

Even in this example, where a small number of thrusters (4) are needed to

satisfy the required velocity changes, the losses due to multiple thruster firings

are large enough to completely alter the course of the spacecraft. However, the

iterative thrust mapping solution as described in section 2.4.2 can be used to fix

this problem. The mapper is set to continuously increase thruster firings until the

total thruster output after degradation is within 0.1% of the desired acceleration.

Fig. 23 shows the results of the rendezvous with the iterative mapping scheme.

Because of performance degradation, more fuel usage is required to satisfy the

accelerations needed in the maneuver.
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Fig. 23. Thruster Usage with Degradation Mapper Algorithm and resulting trajectory

Overall, when taking the multiple-thruster-firing degradations into consideration, it

required the thrusters to be turned on for approximately 16% longer than before.

Most of additional thruster usage is in the early stages of the flight, where both

radial and in-track accelerations are required (see Fig. 20 and Fig. 22). All four

thrusters were used in that period, resulting in 18% degradation. The last two

firings only had two thrusters on at the same time to provide acceleration in one

translational direction (no rotations), which would correspond to approximately a

12% thrust shortfall.

Besides thruster degradation, uncertainties are also present in the Orion

thruster mapping problem. In the Orion experiment,hm attitude information will

be provided by the GIPS system. If the control reference frame (LVLH) is not

lined up with the body-frame, a transformation must be done based on the

attitude information. The basic transformation equation is:

bdt u = Rolystb

where bn is the desired velocity changes in the control reference frame and Roouy

is the rotational matrix to translate b into the body frame. Uncertainties in the
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CDGPS measurements cause an extra rotation away from the true state. The

error in the rotation would then show up as the uncertainty in the Ax=b LP

problem:

b=Rerrorbbody =RerrorRobodybo

Section 3.2 provides a detailed illustration of this process. Ground testing of the

GPS attitude information shows an average uncertainty of ±1 in each euler

angle with no extra bias towards any axis [Ref. 36]. This uncertainty leads to

symmetric errors in the desired state, b, and under those conditions, solving the

original Ax=b mapping solution gives the best robust solution to minimize the

maximum possible error (bbody - Ax) (see section 3.2.1).

The other uncertainty in the thrust mapping problem is due to the random

fluctuations in the thruster output. Ground testing show individual thruster firings

on Orion can vary between ± 10% (Fig. 4) but the deviations are independent for

each thruster. Again due to the symmetry in the errors, solving the original Ax=b

solution gives the best robust solution to minimize the maximum possible error (b

- Areaix) (see section 3.3 for full a discussion).

6.4 Estimation and Fault Detection

Precise knowledge of the thruster performance and fast detection of

failures will be a key to the performance of the Orion formation-flying mission. In

addition to the thruster mapper, the estimation and GLR fault detection methods

discussed in Chapter 4 and Chapter 5 will be applied. In summary, the

estimation procedure will be a static Kalman filter estimating the thruster

performance values given in Table 10. It is assumed that the properties of the

thrusters are static and large errors between the measured and expected

velocities can be attributed to a failure. Failures, whether full on/off or partial
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degradation, are assumed to happen randomly and are unpredictable and

independent. The GLR (Generalized Likelihood Ratio) detection algorithm

(section 5.2.3) is used for detecting and isolating a failure, while the model-

comparison approach (section 5.3.1) is used for determining the exact type of

failure.

6.4.1 Orion Spacecraft Operation Details

When a particular maneuver is desired (i.e. move one spacecraft to 500 m

away from the "master" satellite in one orbit time), the controller pre-determines

the optimal acceleration level for each time period for the "slave" craft to achieve

the desired state. Fig. 24 summarizes the activities involved for each time period

(5 seconds):

* Cortrollerdeennines * Call thrustmappr w/ * EsimationandFault * EstimationandFault
the rate clariges desired rate changes detectianbased on detectionbasedon
requiredat each time last period's actuation last period's actuation
period.

* Call thrust mappr w/ * Call thnist mapper w/
desired rate changes desired rate changes

k-ka 5 seconds -- + k k+1

Fig. 24. Orion operations procedure for each time period

At the beginning of each time period (except the very first one), the

estimation and fault detection procedure uses the CDGPS measurements to

determine the velocity changes due to last period's actuation. Each Orion

spacecraft is equipped with six GPS receivers and three coupled receivers for

CDGPS measurements. By measuring the Doppler shift in the signals received

between two spacecraft in formation, it is possible to solve for the relative

positions and velocities of the two vehicles [Ref. 38]. Current ground testing

show that using CDGPS, relative velocity and position measurements are

accurate to ± 0.5 mm/sec and 2 cm respectively [Ref. 43].
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On the Orion mission, like other formation-flying or station-keeping

operations, a typical maneuver involves one master spacecraft that remains

stationary in its orbit while the slave satellite(s) move into the correct relative

position. In this scenario, the performance of the thrusters on the "slave"

spacecraft is directly measured by the relative velocity data between it and the

master satellite:

Velocity change due to actuation: Vf,,,, = V - V

Where Vk and Vkl are the relative velocity measurement between the "slave" and

the master spacecraft at each step and the difference, Vthrust, is due to the

thruster firings of the slave satellite on step k.

6.4.2 States of Orion

The Kalman filter is used to estimate all 72 states of the thruster mapper

(Table 10). Due to the high number of estimation states, relative to the low

number of measurements, 6, the estimation/Kalman filter process is designed to

have a long response time for more smoothing of the measurement and system

noises. This is achieved through a high R/Q (10/0.01) ratio. Having a relatively

larger noise value for the measurements, Rk, vs. the system noise, Qk, makes the

estimation more smooth and less responsive to random noises but at the

expense of a slower response to failures. The estimation process thus will be

used more as a monitoring system for long-term changes in the system

characteristics while the GLR test is used for detections of abrupt failures.

While it would be desirable to have a fast response in the fault detection

algorithm, setting the detection threshold too low would likely result in a high

number of false alarms (see section 5.2.1 for full discussion). On the Orion

spacecraft, since there is only one thruster redundancy in each direction, losing

even one thruster to a false alarm would greatly reduce its capabilities.

107



Therefore, the first requirement for the threshold value would be an extremely

low false alarm ratio. Fig. 25 shows the percentage of false alarms under

different system characteristics. Note, the expected thruster firing error is ± 10%

and the measurement standard deviations are 0.5 mm(deg)/sec.

Percentage of False Alarms

50

2 0 -------- ---40--- ------- ----- ------ -- --- --- ----

1 0 --- ----- --- - ------- -- ----------- ------------------------ ---

0

i20 --

0.000005 0.00001 0.00003 0.00005 0.00006 0.00008 0.0001

GLR threshold

+ thrust err = 10%; meas. stdv = 5E-4 m(rad)/sec -- thrust err = 20%; meas. stdv = 5E-4 m(rad)/sec

-u-thrust err = 10%; meas. Stdv = 1E-3 m(rad)/sec --- thrust err = 5%; meas. stdv = 5E-4 m(rad)/sec

Fig. 25. Percentage of false alarms as a function of GLR threshold for Orion

Data for Fig. 25 were created by running 100,000 randomly generated

thruster firings. For the default case of ± 10% thruster firing error and 0.5

mm/sec measurement standard deviation, a GLR threshold of over 3x10-5

guarantees no false alarms. Simulations also showed that the number of false

alarms were also more sensitive to the fluctuations in the thruster firing than the

measurement errors. Doubling the thruster firing standard deviation (A vs. +)

caused much more false alarms than doubling the measurement errors (. vs. +).

The GLR threshold level of 5.5x10-5 was selected for the Orion spacecraft

because no false alarms were detected in any of the simulations at that level.

The next set of simulations was designed to determine the probability of

detecting a real failure at the 5.5x1 0-5 threshold level. Several factors can affect

the detection of a failure - the type of failure (full-on, full-off or partial
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degradation), the on-time of the failed thruster, and the failed thruster on-time as

a percentage of the total on-times for all the thrusters during that period. Fig. 26

and Fig. 27 show the detection probability distribution for a full-on failure and a

partial degradation. Fig. 26 shows that using a threshold of 5.5x10~5, the GLR

algorithm can detect a 50% degradation virtually 100% of the time if the failed

thruster's on-time is at least 1.5 seconds and it is 10% of the total actuation on-

time for all the thrusters combined in the control period.

Fig. 26. Detection probability for a 50% degradation at GLR threshold = 0.000055. Note:

It is impossible to have the case of a failed thruster on-time of over I second and

occupying less than 8% of total on-times.

At below 0.8 seconds of on-time, it is virtually impossible to detect the failure

because the failure signature would still be within the uncertainty in the thruster

firing and measurement errors. Similar graphs for full-off failure and partial

degradations to 25% and 75% of original levels can be found in APPENDIX D.

Low detection levels for short thruster firings are not a big concern because for
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most optimal trajectory maneuvers, the thrusters tend to have a bang-off-bang or

full-on, off and full-on profile (see Fig. 20 for example).

A full-on failure is when a thruster becomes stuck on when it should be off.

Assuming the thruster is stuck on for the full time period of five seconds,

simulations show that the fault detection algorithm will correctly identify the failure

every time at a GLR threshold of 5.5x1 05 (see Fig. 27).

Detection probability for full-on failure

110
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05

0 95 -- - -- --- ------ -------- ------
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0 20 40 60 80 100 120

percentage of total on-times

Fig. 27. Detection rate for a single thruster full-on failure at GLR threshold = 0.000055

6.4.3 Simulation Results

The full benefit of the fault detection algorithms is readily apparent when

we compare orbit maneuvers with and without detecting a thruster failure. When

a failure is detected, the thruster mapper is updated and the master controller re-

plans the accelerations needed at every time period with the updated

information. Since the smallest of deviations from the planned accelerations can

cause large deviations from the planned maneuver, an undetected thruster

failure will have large effects on the planned trajectory. Using the orbit maneuver

example given in section 6.1, the slave satellite is required to rendezvous with

the master spacecraft in half an orbit when its initial separation is 300 meters. In

the first 10-15 time periods, full thrust power is required in both the in-track and
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radial directions. If during the fifth step, thruster one, which provides half of the

needed in-track acceleration, suddenly fails and no compensation plan is made,

the slave craft will be further away from the master satellite at the end of the half

orbit than when it started (see Fig. 28).
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Fig. 28. Actual vs. designed trajectory with one thruster 50% failure in the radial direction

One possible solution method, which does not require failure detection, is to re-

plan the design trajectory whenever the actual trajectory deviates significantly

from the planned path. The results using this approach are shown in Fig. 29.

The dotted lines are the design trajectories which are re-planed when the actual

trajectory of the spacecraft deviates at least 25 meters from it. In all, over five

total control re-plans were necessary to maneuver the spacecraft close to its final

target.
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Fig. 29. Actual vs. designed trajectory with feedback control when actual trajectory

deviates 25 m from planned path.

Redesigning the trajectory without identifying the root cause of the failure may

help the spacecraft end up closer to the intended target, but at a cost of fuel

usage.

By implementing the fault detection algorithm as outlined in this thesis, the

thruster failure is detected when the measured velocity change is significantly

different than the expected values (see Chapter 5). In this particular simulation,

thruster one fails on step five when it was expected to be on for 4.5 seconds.

The fault detection algorithm, running at 1 Hz, was able to isolate and determine

the cause of failure after the first second of operation. Fig. 30 shows that the

actual measured velocity/rate changes were significantly different than the

expected rates from the known commanded on-times:

commanded on-times: U= l o o o o 1 o o o 1 0 ijseconds
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Fig. 30. Expected vs. Measured Velocity Changes from Actuator Firings with Thruster 1

failure (complete off).

The expected velocity changes are found by multiplying the on-times, U, with the

current thrust mapper, A (see Table 10) and the measured velocities come from

the CDGPS measurements.

The difference between the expected and measured velocity change is

then used by the GLR failure detection algorithm (see sections 5.2.3 and 6.4.1)

to determine if a failure has occurred. The GLR value for each thruster is the

likelihood of that thruster failing with the given velocity differences. The thruster

with the highest GLR value (thruster one) greater than the threshold is identified

as the failure.
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GLR values for each thruster after failure
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Fig. 31. GLR values for each thruster after failure to thruster one.

Thruster one and ten have close GLR values because their acceleration vector

(see Table 10) are very similar. Although the difference between GLR values of

two thrusters are very small, 2x1 0-5, it is statistically very significant because the

average GLR value due to measurement uncertainties and no failures is one

magnitude lower at 1x10-6. In fact, numerical simulations show that the GLR

approach is accurate in isolating the correct failed thruster 99.9% of the times.

After the identification of the failed thruster, the model-comparison (MC)

method (see section 5.3.1) is utilized to determine the exact type of failure. The

MC method utilizes the chi-squared statistics on the likelihood of the failure

corresponding to any of the given failure models. The true failure model

corresponds to the one with the smallest chi-squared statistic.
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Fig. 32. Actual vs. designed trajectory

The full-off failure for thruster one is selected for having the minimum chi-squared

value (see section 5.3.1). Once the failure magnitude is determined the thrust

mapper is updated and the master rendezvous control re-plans with the new

information (see Fig. 33):

Design vs. Actual Trajectory
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Fig. 33. Actual vs. designed trajectory with fault detection algorithm implemented
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Not only does the new plan guarantee the successful completion of the

rendezvous but it also saves fuel compared with making multiple re-plans without

the knowledge of the actual failure:

Fuel Use Comparison for feedback control w/
and w/out fault detection

1.2

1 -- ------ - - - - - - - -- ---- - --- - -

0.8 --- ----- -- ----

0.6 --- -- ------ --

u 0.4 - ---- -- --- -

0.2 ---- ----

0

rplan w/ Fault detection U mult replans wi no fault detection
I J

Fig. 34. Fuel savings from using fault detection to guarantee successful mission

completion

Simulation results comparing

simultaneous thruster failures

APPENDIX E.

other types of failures

and partial degradations

including multiple

can be found in

6.4.4 Summary of Estimation and Fault Detection Equations and Variables

for Orion

Estimation (Kalman Filter):

i = 72xl vector - from 12 thrusters and 6 DOF

State propagation:

(72)

(73)Xk±1 = Xk
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Err covariance propagation: Q+ = P + Qk

Qk -0.001

The update equations across measurements are:

State Update:

Covariance update:

Residual:

Kalman gain:

Residual covariance

Xk = Xk +Kkk

Pk =(I -KkHk )P-

.6 = Z - H s,
6k =k Hkxk

Ki = PHY-1k =PkH

Yk=HkPkHk T±Rk

Rk =10

Fault Detection Using GLR:

Ho : E 8-- Ek
GLR Hypothesis Hi: k Gk

H1: Ek - S ok + GkjiV

Where G is the failure signature and can be any of the columns in the thruster

mapper (Table 10).

HI

GLR decision rule:

MLE of O=k:

max(lk1 ) _S
i=1..n<

Ho

2

Ikj k
kgi -

Sk

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)
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%k,i G k 8 k,i

Sk =GiYkGk,i

Once a failure is detected, it is run through the model-comparison test to

determine the exact type of failure (note, j = 1... total number of possible failure

types):

failure type = MIN(l)
i

Failure Model Likelihood Test:

Failure Model Residual:

Failure Model:

Full off failure Model:

Partial Degradation:

Full on Failure:

l = Ej Y- E

Ej= Zk -- y

y1 = A u1

Aj(:,i) = 0

u. = Ui

A1 (:,i) = Ak (:,i) * degradationjactor

u. = Ui

0 & degradation Jactor 1

A (i) = Ak (im)

u1 =5 =max-ontime

Note: Ak is the thruster mapper model and u; is the failed thruster on-time given

by the thruster-mapping function at step k.
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Chapter 7 Conclusions

New thrust mapper and estimation algorithms were developed in this

thesis that can be used with on small autonomous spacecraft systems. The

thrust mapper employs the Linear Programming methodology with additional

improvements in its ability to deal with thruster degradation and system

uncertainty. The estimation procedure utilized a static Kalman filter along with

the generalized likelihood ratio (GLR) test to quickly identify and isolate any

unexpected failures in the actuators. After the initial detection, a model-

comparison (MC) estimation process is developed to accurately assess the type

of failure experienced by the actuator.

These new algorithms are modular, adaptable to various types of

spacecrafts and control systems and robust to uncertainties in the system. Both

the thrust mapper and the estimation process require minimal computation

burden and can be easily added to any autonomous spacecraft missions.

Simulations on SPHERE test bed using the thrust mapper only showed an

improvement of over 15% in performance when compared with an older

allocation method (section 2.3.1). When both the thrust mapper and the

estimation algorithms were tested on the Orion spacecraft test bed, dramatic

improvements in both fuel usage and control robustness were achieved.

Unexpected thruster failures were routinely identified and corrected in the

mapper within five iterations (section 6.4.3).
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APPENDIX A

Full Simplex Upper Bound Algorithm - Matlab version

function [J, F] = simplex upbnd(W, A, c, K,u)

% This implementation of the Simplex linear programming algorithm

% finds the fuel optimal set of jets and on-times for the commanded rate change.

% other functions called:

% xsign.m

%/

Output

J - in-vector of jet identifiers

F - m-vector of jet on-times

%/

% Inpu

% W

% A

% c

% K

% U

%u

% Loca

t

- m-vector of commanded rate change

- m x n matrix whose columns are the activity vectors of the n jets

- n-vector of costs associated with each jet

- a large cost

- ,n-vector of upper bnds

% Y - matrix representing the linear comb. of each jet vs. the basis

% y - local vector indicating the rate of change of the basic decision var. due to the value of

the invited var.
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% z - cost of gradients of replacing the basis jets

% ub - upper bound of the variables in the basis

% J_nb - n+m-vector of jets not in the basis (0-not in soln, 1-at boundary)

% case2 - boolean for if the current step corresponds to case #2

% m - # of thrust directions

% n - #of thrusters

% Ictr - local counter of how many times we've gone through the loop

% zmax - current evaluator maximum

% imax - current index of zmax

% dp - pivot ratio

% du - upper bnd ratio

% d - pivot/upper bnd ratio used in exchange

% jp - index of smallest pivot ratio

% ju - index of smallest upper bnd ratio

% jex - index of basis to exclude

% i, j - loop counters

% x - temporary ratio memory for comparison to d_p or d-u

% temp - for storing temporary variables

% j_out - index of basis going out (for case 2 only)

case2 =0;

[m,n] = size(A);

% setup the initial solution

Y = diag(xsign(W))*A; % linear combination coefficients
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z = K*ones(1,m)*diag(xsign(W))*A - c'; % evaluators

J = [n+1:n+m]'; % jet list in the basis

J_nb = zeros(n+m,1);

basis (either zero or at upper bnd)

F = abs(W); % on-times

u_b = 1 E6*ones(size(W));

for slack var. (curr basis)

u = [u; u_b];

% loop until the evaluators are non-positive

Ictr = 1;

[zmax, imax] = max(z);

while(zmax > 0.0 & Ictr < 3*m+1)

% find the basis vector to replace

y = Y(:,imax);

d_p = inf; % pivot ratio value

d_u = inf; % upper bnd ratio value

jex = 0; % index of basis to exchange

jp = 0; % index of smallest pivot value

ju = 0; % index of smallest upper bnd ratio value

% determine the best pivot

% and best upper bnd index

for i=1:m % loop through all basic variables

if y(i) > 0.0

% the basic variable will go down (lower bnd)

x = abs(F(i))/y(i);

if x < d-p

% jet list not in the

% set high upper-bnds
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dp =x;

j p =i;

end

elseif y(i) < 0.0

% basic variable will go up (upper bnd)

x = (F(i)- ub(i))/y(i);

if x < d_u

d_u =x;

u =i;

end;

end;

end;

% now determine how the incoming variable should be incorporated

% and how the basic variables should be dropped.

% case 1: one basic variable goes to zero (dropped) while a non-basis

% variable gets added.

% case 2: the non-basic variable enters the basis while the one it replaces

% goes to its upper bnd.

% case 3: the non-basic variable goes to its upper bnd.

if ((du >= u(imax)) & (dp >= u(imax)))

% case 3

% update the non-basis vector

J_nb(imax) = u(imax);

% update the on times for the jets in the basis

F = F - u(imax)*y;
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% update the cost/evaluator vector & combination coefficient matrix

Y(:,imax) = -Y(:,imax);

z(imax) = -z(imax);

else

if ((du >= dp) & (u(imax) >= dp))

% case 1

jex = j_p;

d = d-p;

% update jet boundary value for jet going out of the basis

J_nb(J(jex)) = 0;

elseif ((dp > du) & (u(imax) >= du))

% case 2

jex = j_u;

d = du;

%update jet boundary value for jet going out of the basis

J_nb(J(jex)) = u(J(jex)); % assuming slack var. will not goto upper bnd

case2 = 1;

end;

% update the solution

F = F - d*y;

% update jet vectors

J_out = J(jex);

J(jex) = imax;

% update upper bnd vector
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u_b(jex) = u(imax);

% check to see if incoming var is decreasing from upper bnd

if (Jnb(imax) -= 0)

F(jex) = J_ nb(imax) - d;

J-nb(imax) = 0;

else

F(jex) = d;

end;

% transform the linear combination coefficients and evaluators

for i=1:n

temp = Y(jex,i)/y(jex);

z(i) = z(i) - zmax*temp;

Y(jex,i) = temp;

for j=1:m

if j-=jex

Y(j,i) = Y(j,i) - Y(jex,i)*y(j);

end;

end;

end;% end of for i=1:n

if (case2 == 1)
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% update the cost/evaluator vector & combination coefficient matrix

% for the jet going out of the basis and at its upbnd

Y(:,J_out) = -Y(:,Jout);

z(Jout) = -z(J out);

case2 = 0;

end;

end;% end of different cases of replacing the basis

% find the maximum evaluator

[zmax, imax] = max(z);

Ictr = Ictr + 1;

end

% check to see if there are non-basic var that are at its upper bnd

ind = find(Jnb ~ 0);

J = [J; ind];

F = [F; J_nb(ind)];
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APPENDIX B

function [thrustersonoff, Tact] = thrust_mapper deg(T_des, D, uub)

% This function is the iterative method Il described in the Thesis for

% dealing with multiple-thruster on degradations.

% degradation factor = (numthrusters on-1)*0.06; based upon orion testing values

% variables

% output:

% thrustersonoff: variable of on, off time percentage for each of the thrusters

% Tact: expected rate change from using the set of thrustersonoff.

% input

% Tdes: desired deltav (6x1 - vel + w)

% D: mapper of each thrusters firing capabilities

% m x n where m is # of acc directions + any torque (eg x,y,torq) and n is # of thrusters

% uub: maximum on time

% local

% numt: number of thrusters

% numd: number of thrust directions

% uc: cost of thruster use

% degradationfactor: degradation factor 6% per extra thruster on

% count: number of loops for convergence
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% times: all the on times of the thrusters, sorted in ascending order

% T_c; this is the max rate change we can get without degradation

% J_u: simplex returned thrusters in basis

% Fu: simplex returned on-times for the thrusters in J_u

% first get the size of the dimensions

[num_d, num-t] = size(D);

% setup cost

u-c = ones(num-t,1); % cost of each thruster use in nominal condition

K = 1000; % high cost for slack variables

% bounds on u (thrusters on off)

uubx = u ub*ones(num-t,1);

% setup LP loop values

thrustersonoff = zeros(num-t,1);

diff = T des;

last_diff = zeros(num-d,1);

degradationfactor = 0.06;

T_act = zeros(num-d,1);

T-c = zeros(numd,1);

count = 0;

count2 = 0;
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% loop until we cannot provide any more thrust (last diff - diff - 0)

% or we are close to the wanted rate change,t des, (diff - 0)

while ( (max(abs(diff)) > 1 E-5) & max(abs(last diff-diff)) > 1 E-5)

count = count + 1;

[Ju, F-u] = simplex upbnd(diff, D, u_c, K, uubx);

% determine the degradation level due to multiple firings

% go through all the thrusters and determine which ones are on at the same time

% find all the on times

% and add to pervious on times

t_ons = find(Ju <= num-t);

thrustersonoff(Ju(tons)) = thrustersonoff(Ju(tons))+F-u(t_ons);

t_ons = find(thrusters onoff>0);

times = sort(thrusters-on-off(tons));

%loop through all the times

lasttime = 0;

count2= 0;

T_act = zeros(numd,1);

for i = 1:length(times)

if (times(i) -= lasttime)

count2 = count2+1;

curr per = times(i) - lasttime;
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% determine # of thrusters on in this period

numon = max(find(times >= times(i))) - (i-1);

%lasttimenum-t = max(find(times == times(i)));

degrade = 1 -(num on-1 )*degradation factor;

for z = 1:num t;

if (thrusterson_off(z) >= times(i))

if count ==1

% reset Wc to what we can get maximumly with no degradation

% note this is only done on the first iteration of the entire program

T_c = T-c + D(:,z)*curr per;

end;

T_act = Tact + D(:,z)*currper*degrade;

end;

end;

end;

lasttime = times(i);

end;

% find difference

last diff = diff;

diff = T c - Tact; %difference between what we have now vs. what we can get maximumly

% with no degradation
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% update the upperbnd vector and also the cost vector

new t cost = inv(1-(length(tons) -1)*0.06);

for i = 1:num_t

uub-x(i) = u_ub - thrusters_on_off(i);

if thrusters_ on off(i) == 0

u_c(i) = new t cost;

end;

end;

end;
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APPENDIX C

Orion Spacecraft Data

Propulsion System:

* Three axis control with 12 thrusters. 4 Clusters of 3 as shown

below:

IA

74

e Thruster power - 60 mN / thruster

e Moment of Inertia (Ref. 36):

o lxx = 0.575 kg m2

o lyy = 0.582 kg m2

o Izz = 0.534 kg m2

e Carrier Differential GPS Integrity

o Relative Position: accurate to - 2 cm and 20

o Relative Velocity: accurate to - 0.5 mm/sec and 1 deg/sec
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APPENDIX D

Orion Failure Detection Data
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APPENDIX E

Orion Simulation Results with Different Thruster Failures

Case one:

Start location (300, 0, 0) m ; start velocity (0, 0, 0) m/sec

End location (0, 0, 0) m; end velocity (0, 0, 0) m/sec

Manuever time: 0.5 orbits

Orbital Rate: 0.0011 1/sec

Thurster failure: #1 degraded to 50% of original level at step 1.

Without Fault Detection or Feedback Control:

Design %s. Actual Trajectory

-
-

----- ata
250

200-

1501-

-

-/

..

-350 -300 -250 -200 -150
in-track (m)

-100 -50 0

With Feedback Control:
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Design vs. Actual Trajectory
300

- design -
- actual -

200 --

150 -

100 -

50 --

0-

150

100
-350 -300 -250 -200 -150 -100 -50

in-track (m)

With Fault Detection:

300
Design vs. Actual Trajectory

- design
actual

250 -

200 -

150 -

100 -/

50 -

0

-50 -- -

-300 -250 -200 -150
in-track (m)

-100 -50

Fuel Usage Comparison:

140

)



Case 2:

Start location (300, 0, 0) m ; start velocity (0, 0, 0) m/sec

End location (0, 0, 0) m; end velocity (0, 0, 0) m/sec

Manuever time: 0.5 orbits

Orbital Rate: 0.0011 1/sec

Thurster failure: #1 and #2 simultaneously failed completely at step 1.

Simulation without Fault Detection or Feedback:

Design vs. Actual Trajectory

-2500 -2000 -1500
in-track (m)

With feedback:
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Design \e. Actual Trajectory

design
actual

-N-

-350 -300 -250 -200
in-track (r

-150 -100 -50 0

With Fault Detection (note failure 1 was found and corrected after first step while failure 2 was

found and corrected after second step):

Design vs. Actual Trajectory
300

250 -

200 -

150 -

100-

50| -

-200 -150
in-track (in)

-100 -50

Fuel Usage Comparison:
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Fuel Usage for 2 simultaneous full-off failures
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