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Abstract

Numerical methods are developed to study various applications in electromagnetic
wave propagation and scattering. Analytical methods are used where possible to
enhance the efficiency, accuracy, and applicability of the numerical methods.

Electromagnetic induction (EMI) sensing is a popular technique to detect and
discriminate buried unexploded ordnance (UXO). Time domain EMI sensing uses a
transient primary magnetic field to induce currents within the UXO. These currents
induce a secondary field that is measured and used to determine characteristics of the
UXO. It is shown that the EMI response is difficult to calculate in early time when
the skin depth is small. A new numerical method is developed to obtain an accurate
and fast solution of the early time EMI response. The method is combined with the
finite element method to provide the entire time domain response. The results are
compared with analytical solutions and experimental data, and excellent agreement
is obtained.

A fast Method of Moments is presented to calculate electromagnetic wave scat-
tering from layered one dimensional rough surfaces. To facilitate the solution, the
Forward Backward method with Spectral Acceleration is applied. As an example, a
dielectric layer on a perfect electric conductor surface is studied. First, the numerical
results are compared with the analytical solution for layered flat surfaces to partly
validate the formulation. Second, the accuracy, efficiency, and convergence of the
method are studied for various rough surfaces and layer permittivities.

The Finite Difference Time Domain (FDTD) method is used to study metama-
terials exhibiting both negative permittivity and permeability in certain frequency
bands. The structure under study is the well-known periodic arrangement of rods
and split-ring resonators, previously used in experimental setups. For the first time,
the numerical results of this work show that fields propagating inside the metamate-
rial with a forward power direction exhibit a backward phase velocity and negative
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index of refraction. A new metamaterial design is presented that is less lossy than
previous designs.

The effects of numerical dispersion in the FDTD method are investigated for lay-
ered, anisotropic media. The numerical dispersion relation is derived for diagonally
anisotropic media. The analysis is applied to minimize the numerical dispersion error
of Huygens' plane wave sources in layered, uniaxial media. For usual discretization
sizes, a typical reduction of the scattered field error on the order of 30 dB is demon-
strated.

The new FDTD method is then used to study the Angular Correlation Function
(ACF) of the scattered fields from continuous random media with and without a
target object present. The ACF is shown to be as much as 10 dB greater when a
target object is present for situations where the target is undetectable by examination
of the radar cross section only.

Thesis Supervisor: Jin Au Kong
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Electromagnetic wave theory is well-established scientific discipline, whose applica-

tions include, but are not limited to, remote sensing, digital and analog electronics,

power systems, wireless and wired communications, radar systems, optics, and as-

tronomy. Each application involves the creation, manipulation, and/or reception of

electric and magnetic fields. The behavior of electromagnetic fields is completely de-

scribed by Maxwell's Equations, a set of four partial differential equations (PDEs)

that relate electric and magnetic fields in time and space. Physical media are ac-

counted for in Maxwell's Equations through a set of two equations known as the

constitutive relations. To calculate an electromagnetic field from a set of sources in a

given physical geometry, the supporting medium must be characterized through the

constitutive relations and the appropriate boundary conditions on the electric and

magnetic fields must be enforced. Natural and man-made geometries are often irreg-

ular and inhomogeneous (i.e. complex), and the solutions to Maxwell's Equations are

almost always nontrivial.

Consider the design of a remote sensing system. Remote sensing has many def-

initions: in general it is defined as "the acquisition of information about an object

without being in physical contact with it" [1], or more specifically it is "the science

of acquiring, processing, and interpreting images that record the interaction between
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26 Chapter 1. Introduction

electromagnetic energy and matter" [2]. A remote sensing system must have a sensor

that measures electromagnetic waves and, for the case of active remote sensing, must

have a source. The source (or sources) creates an electromagnetic field that propa-

gates through a medium, inducing further sources and fields, that are then measured

by the sensor. Calculating the field from the initial source and the effects of the

medium is necessary to predict what the sensor will measure. For example, ground

penetrating radar (GPR) systems are designed to detect landmines. The source and

sensor in such systems are transmitter and receiver antennas. The designer of a re-

mote sensing system needs to calculate the wave from the transmitter antenna, the

scattered wave from the landmine, and the effect of the ground on the transmitted

and scattered waves, all to predict what type of response to expect at the receiver

antenna. The sensor, ground, and landmine could be characterized and accounted

for through the constitutive relations and by enforcing the correct boundary condi-

tions, thus enabling a solution of Maxwell's Equations. Unfortunately, depending on

the complexity of the sensor, ground, and landmine, the problem is difficult if not

impossible to solve analytically. The designer then has two options. First, an exact

(perhaps analytical) solution should still be sought, but is usually only attainable for

specific canonical problems. Therefore, approximations of the sensor, ground, and

landmine characteristics must be made to simplify the problem. For example, if the

source is approximated as a plane wave, if the ground is assumed to be homogeneous,

and if the landmine is approximated as a sphere, then the scattered wave is exactly

described by a convergent infinite series (Mie scattering [3]). However, these can be

significant approximations that can result in significant error. The second option

available to the designer is a numerical, also known as computational, method that

searches for a solution to the complete problem. Numerical methods are powerful

tools that enable the solution of the differential, integral, or algebraic equations that

arise in engineering and physics problems. Depending on the method, irregular ge-

ometries and inhomogeneous media can easily be incorporated. However, often such
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methods in their basic forms create a large matrix equation (or series of matrix equa-

tions) that require excessive computational time and memory to solve. As a result,

the evolution of numerical methods toward better efficiency and accuracy is a nat-

ural topic of research. While some efficiency gains can be made through improved

algorithms that accelerate the solution of the matrix equation, major improvements

in speed or accuracy are usually a result of reformulating the numerical method to

include analytical techniques based on physical insight into the problem.

This thesis develops numerical methods to solve various problems in electromag-

netic wave theory, incorporating analytical techniques where possible to improve the

efficiency, accuracy, or applicability of the methods. The methods presented in this

work are not specific to the topics studied, and can be applied or expanded to other

applications. The following sections introduce the numerical methods that form the

foundation of this thesis. The applications of the thesis will then be discussed, ad-

dressing their importance and the reasons why improved numerical methods are re-

quired.

1.1 Background of Numerical Methods

A popular numerical method used to solve PDEs, such as Maxwell's Equations, is

the Finite Element Method (FEM). The FEM is widely used in many scientific areas,

particularly in civil and mechanical engineering applications [4, 5]. The FEM uses

either the Rayleigh-Ritz method [6] to solve variational problems, or the method of

weighted residuals [7] (such as a Galerkin method) to solve problems that are posed

with a PDE and associated boundary conditions. For electromagnetic wave problems,

the FEM could be used to solve the Helmholtz equation in a finite space with given

boundary conditions. The FEM relies on discretizing the solution of the governing

equation. The domain of interest is discretized into a mesh, the elements of which

give the method its name. The unknown solution is expressed as a summation of
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basis functions that each exist over a single element. The Galerkin method reduces

the PDE to a system of ordinary differential equations, or to a system of simple

algebraic equations. The result is a sparse matrix equation that can be efficiently

solved with a suitable linear algebra package. The FEM may be used in the time or

frequency domain, and is being continuously improved. In particular, the problem of

modeling unbounded media on a finite mesh has been solved with absorbing boundary

conditions (ABCs) [8]. Furthermore, spectral methods have been developed [9], new

basis functions have been implemented [10], and newer sparse matrix solvers and

preconditioners have been applied [11]. Chapter 2 uses the FEM to solve Maxwell's

Equations in a potentially inhomogeneous and irregular object.

Another popular numerical method is the Method of Moments (MoM) [12]. The

MoM is actually very similar to the FEM, and can be thought of as the weighted

residual method applied to integral equations. The starting point for the MoM is

usually Green's Theorem or Huygens' Principle [3], both of which express an ob-

servation field in terms of the incident field and an integration over a finite surface

(such as a scattering body) containing sources. The MoM requires the Green's func-

tions for the domain between the sources and observation points. Hence, the MoM

is well-suited for scattering problems where the unknowns are the currents over the

scattering body that exists in a medium that may be characterized with a Green's

function. The MoM is usually solved in the frequency domain, where numerous the-

ories have been developed to deal with the Green's functions. The method solves for

the unknown sources (usually currents) over the surface from a given incident field.

As with the FEM, the surface (or volume) is meshed and the unknowns are expressed

in terms of basis functions. A weighted residual method can then be applied (also

referred to as inner product), reducing the problem to a set of algebraic equations

that yield a dense matrix equation. However, because the MoM solves unknowns

over a surface and the FEM must solve unknowns everywhere in space, the MoM

dense matrix is much smaller than the FEM sparse matrix. Recently, a time do-
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main MoM (marching-on-in-time scheme) has been investigated [13] and is a topic of

current research. Enhanced MoM techniques are continuously developed, often with

efficiency in mind. Avenues of research include Green's function manipulation [14],
spectral methods [15] and novel basis functions [16]. Chapter 2 uses an two dimen-

sional MoM coupled with an FEM and a new numerical method. Chapter 3 extends

a one dimensional MoM formulation to solve the scattered fields from layered rough

surfaces.

Finally, the Finite Difference Time Domain (FDTD) method is perhaps the most

popular numerical method used to solve Maxwell's Equations. Introduced by Yee [17]

in 1966, the FDTD method was not widely used until the advent of modern com-

puters and the work by Taflove [18] and others [19]. The FDTD method is a PDE

method, solving Maxwell's Equations directly using central differencing in space and

an explicit Euler method in time. Space is discretized into a regular grid (usually

Cartesian, spherical, or cylindrical), with unknowns placed around each node. The

unknowns are usually the electric and magnetic field vectors, and the grid discretiza-

tion is on a sub-wavelength scale. Each unknown is solved using the adjacent field

vectors and the method is iterated forward in time. The appeal of the FDTD method

lies in its simplicity, elegance, ease of use, and efficiency. While the FEM has more

flexibility in its mesh, and hence its ability to solve problems with arbitrary geome-

tries, it is more complex to implement than the FDTD method. Many improvements

in the FDTD method have been published in the past 10 years, incorporating ad-

vanced ABCs [20, 21, 22, 23] to account for unbounded domains, and implementing

higher order schemes [24, 25] to improve accuracy. The FDTD has also been modified

to become an implicit time stepping method [26, 27] that is unconditionally stable,

allowing for larger time steps and faster solutions (at the expense of accuracy). Re-

cently, spectral methods have been incorporated, and the FDTD method has evolved

into newer forms such as the Multi-Resolution Time Domain method [28]. Chapter 4

of this thesis concerns a new application of the FDTD method, while Chapter 5 and
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Chapter 6 introduce a new, more accurate FDTD method.

1.2 Thesis Work

This thesis concerns the development of models that predict electromagnetic wave

propagation and scattering in complex media. The work in this thesis is based almost

entirely on previously published or forthcoming (submitted for publication) material

by the author.

Chapter 2 presents a numerical method for time domain electromagnetic induction

(EMI) sensing of conducting and permeable targets. Time domain EMI sensing uses

a transient primary magnetic field to induce currents within the target. These cur-

rents induce a secondary field that is measured and used to determine characteristics

of the target. The application in mind is the detection and discrimination of buried

unexploded ordnance (UXO) [29]. EMI sensing of UXO lies within the magnetoqua-

sistatic (low frequency) regime, at which soil is transparent. Despite that, due to

the enormous amount of scrap (exploded ordnance) that surrounds UXOs, detection

and discrimination remains a difficult problem. Hence, the availability of accurate

forward EMI models is necessary to develop useful inversion algorithms. However,

standard numerical methods that rely on spatial discretization have difficulty solving

this problem due to the small penetration (skin depth) of the primary field into the

target. In Chapter 2, a standard FEM is used for the interior of the target, cou-

pled with an MoM for the exterior of the target. It is shown that these numerical

methods are indeed inaccurate, early in time after the primary field transient, as they

cannot resolve the skin depths of typical UXO materials. This work addresses the

problem with a technique that replaces the interior FEM with the divergence equa-

tion of the magnetic field, which only requires a mesh on the target surface. The

new technique requires an expression for the normal derivative of the magnetic field,

which is calculated using an approximation based on the analytical solution of the
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governing equation. For larger skin depths, however, the FEM method is still used

for the interior region. The result is a hybrid technique that can accurately calculate

the entire EMI time domain response with greater accuracy and efficiency than was

previously possible.

While Chapter 2 examines the EMI sensing technique that uses very low fre-

quency (magnetoquasistatic) fields, most remote sensing systems utilize electromag-

netic waves at higher frequencies, such as microwave or millimeter wave radar systems.

For buried object detection and discrimination, using higher frequency waves results

in scattered fields that yield more information (greater resolution) of the target. How-

ever, as opposed to EMI sensing, the ground and surface are no longer transparent

at higher frequencies, so reflections and scattering from the surrounding soil must be

taken into account. Chapter 3 addresses the problem of electromagnetic wave scatter-

ing from an arbitrary number of layered rough surfaces. Specifically, the formulation

allows for layers of geophysical media that may represent snow or foliage. The goal of

this work is to develop accurate models to study the effects of terrain on the perfor-

mance of ground based radar and communication systems. However, the method is

equally well-suited to studying the effects of a stratified ground on the performance of

ground penetrating radar systems (in general, the material properties of soil vary with

depth). The MoM is used to calculate electromagnetic wave scattering from stratified

regions that are separated by rough surfaces. Compared to the single surface case, the

solution of scattering from multiple surfaces requires significantly more memory and

computational time. Given the large terrain size of interest, spectral and iterative

solution techniques are adapted for a tenable solution. As an example, a dielectric

layer on a perfect electric conductor surface is studied. First, the numerical results

are compared with the analytical solution for layered flat surfaces to partially validate

the formulation. Second, the accuracy, efficiency, and convergence of the method are

studied for various rough surfaces and layer permittivities.

The previous cases concern problems that begin with a space containing a complex
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(uncontrolled) medium, such as a buried UXO or geophysical medium, and require

models that predict the effects of such a medium on electromagnetic waves. In such

cases, the complex medium is part of the problem and the scattered electromagnetic

waves are the solution. However, there are other problems that begin by specifying

a desired electromagnetic wave behavior, and require an engineered medium to cre-

ate and support that behavior. Obtaining the desired electromagnetic wave behavior

is then the problem, and the medium is the solution. Such a case is examined in

Chapter 4, which presents an implementation of the FDTD method to model a meta-

material that exhibits a negative index of refraction. Metamaterials are composite

structures, engineered to exhibit electromagnetic properties that do not naturally oc-

cur. In this case, the metamaterial is a periodic array of metallic wires and split ring

resonators (SRRs) designed to yield simultaneously negative permittivity and perme-

ability, and thus a negative index of refraction, at certain frequencies. The simulation

is based on a recent experimental setup [30] that was the first to demonstrate that a

negative index of refraction is realizable. However, the experiment was controversial

and further validation was necessary. The goal of this chapter is to present a numer-

ical demonstration of the negative index of refraction using a well-established FDTD

method. Three parameters are studied: the transmission coefficient of a slab, the

phase variation of the propagating fields within the metamaterial, and the refraction

of a wave through a prism. The work in this thesis is based on a publication [31] that

was the first to use a numerical method to simulate the entire metamaterial structure

and show the resulting negative index of refraction. Various metamaterial geometries

are studied, and a new SRR geometry is introduced.

In Chapter 5, the numerical error of the FDTD method is studied in detail. Like

many other numerical techniques, the FDTD method approximates continuous space

physics on a finite grid. The error of the method depends on the discretization of

the grid, specified by the user to balance accuracy, stability, and speed. The most

fundamental error of the method is known as numerical dispersion error, which is the
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difference between continuous and discrete space dispersion relations. In this work,

Maxwell's equations in discrete space are used to derive the numerical dispersion

relation of anisotropic media that are modeled with the FDTD method. Exact ex-

pressions are also derived for the reflection and transmission coefficients from planar

boundaries in the FDTD grid. With these expressions, a new method is presented

that reduces the error of plane wave Huygens' sources that are commonly used in

FDTD simulations. Applications of this new method include microstrip circuit sim-

ulations and subsurface sensing models. The latter is the focus of Chapter 6, where

the new FDTD method is employed in a ground penetrating radar simulation. The

application is similar to the EMI sensing of buried UXO in Chapter 2, but in this

case a radar in the MHz frequency range is used. At radar frequencies, the soil is no

longer transparent, and spatial fluctuations of the soil material significantly perturb

the electromagnetic waves. Such soil material fluctuations are not deterministic, and

a random medium model is used. A post-processing technique, the Angular Correla-

tion Function (ACF), is applied to the scattered fields from random media with and

without embedded targets. The effectiveness of the ACF is studied to determine if it

aids in target detection in the presence of volumetric clutter.

The summary of the publications associated with each chapter is shown in Ta-

ble 1.1.

Chapter Subject Publication
2 Time Domain Method for EMI Sensing [32, 33]
3 EM Wave Scattering From Layered Rough Surfaces [34]
4 An FDTD Study of Left Handed Metamaterials [31]
5 Numerical Dispersion Compensation in FDTD [35]
6 Detection of Targets Using the ACF [36]

Table 1.1: Publications associated with each chapter of the thesis. Conference abstracts
are not included.
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Chapter 2

Hybrid Time Domain Method for

Electromagnetic Induction Sensing

2.1 Introduction

The detection and removal of buried unexploded ordnance (UXO) is an expensive and

challenging task. In the United States, an estimated 11 million acres of land may con-

tain buried UXO [37]. The problem is more widespread in European countries, where

millions of buried UXO remain from two world wars. The overwhelming task of find-

ing and removing these UXO is exacerbated by the fact that almost three-quarters

of the costs and efforts are expended responding to sensor false-alarms caused by

metallic clutter [38]. Hence, accurate detection and discrimination techniques are a

popular area of active research. Ground penetrating radar is one area of focus, al-

though it is hampered by significant clutter from the surface and surrounding soil [39].

Another promising technique is electromagnetic induction (EMI) [40] sensing, which

uses frequencies at which the natural environment is transparent (generally less than

500 kHz). In time domain EMI sensing, targets are first saturated in a static primary

magnetic field that is then shut off. The transient primary field causes currents to flow

in the target, inducing a secondary magnetic field that is measured with a receiver
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H H

H H

Figure 2-1: A sensor transmits a static primary magnetic field that is turned on and off.

The induced magnetic field is measured to infer characteristics of the object.

coil. These currents, and the secondary field, eventually decay to zero due to the

finite conductivity of the target. Depending on the instrument, the receiver coil takes

sample of the decaying secondary field anywhere between 50 A s and 0.1 s after the

primary field transient. The secondary field is often referred to as the EMI scattered

field. Frequency domain EMI sensing measures the induced field from primary fields

at discrete frequencies instead of a transient. The time or frequency domain profile

of the scattered field reveals characteristics of the target such as dimension, perme-

ability, and conductivity. Figure 2.1 shows the geometry of the problem. As a new

detection and discrimination technology, research in EMI sensing is concentrating on

developing three areas: forward models, hardware, and inversion algorithms. This

work concerns the first area: the development of an efficient and accurate forward

model of time domain EMI scattering. Many EMI systems operate in the time do-

main, which offers more flexibility in receiver and transmitter coil placement. Current

models treat the problem at various levels of complexity, often trading off accuracy
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for efficiency. For example, UXO can be approximated by canonical geometries, for

which analytical solutions exist. Indeed, the EMI response from a conducting and

permeable sphere [41] is well established. The EMI response from spheroids has

recently been developed [42] and successfully applied to model spheroid-like UXO

geometries. Note that this solution for the spheroidal geometries will be referred to

as the 'analytical solution' in this work, even though it is actually an infinite series.

Other simplified models include approximations of the UXO as multiple dipoles [43],

which has shown promise for basic shapes. However, UXO are usually heterogeneous

and irregular objects, and in such cases general numerical solutions are required to

obtain accurate results.

Common numerical methods for EMI scattering, such as the finite difference or

the finite element method (FEM), rely on a meshed discretization of the target to

solve for the interior fields (or currents). However, these fields often penetrate only

a very shallow depth (skin depth) into the target immediately after the transient

primary field. Depending on the material, the skin depth may remain quite small for

the entire decay time (and measurement time) of the secondary field. To accurately

model the interior fields, the spatial discretization must be fine enough to resolve the

skin depth, which is usually much smaller than the dimensions of the target. The

same problem applies to frequency domain methods, where the skin depth decreases

as frequency increases. For example, a typical non-magnetic UXO has a conductivity

of 10 7 S/m, which results in a skin depth of approximately 5 mm at 1 kHz (or 1 ms).

For magnetic materials, such as steel (p, = 100), the skin depth is on the order of 10'

m. Given that most targets of interest are 0.1 m to 1 m in size, the stringent mesh

requirements can become difficult to satisfy, even for a 2D body of revolution (BOR)

mesh. Hence, contemporary time domain numerical methods can only accurately

model the later time (or low frequency) response, which is particularly unfortunate

because the secondary field decays rapidly and often is too weak to be measured in

late time. Integral equation approaches also suffer from this problem [44], as the
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surface must be discretized finely enough to resolve the interior Green's function.

Often frequency domain numerical treatments have simply avoided the problematic

high frequency regions [45], neglecting important EMI response characteristics. Other

methods treat the target as a perfect conductor and neglect the interior fields, which

may work for the very early time (or high frequency) response but leads to incorrect

results at all other times [46, 47] where the interior fields are neglected. Various

other methods have been tried, such as impedance boundary conditions [48, 49] and

special finite element basis functions [50, 51], all with limited success. Even the

frequency domain analytical EMI scattering solutions for spheroids cannot be solved

at high frequencies, and a Small Penetration Approximation (SPA) [52] or asymptotic

methods [14] must be used instead. Recently, a new numerical method called the Thin

Skin Approximation (TSA) was developed to model the middle to high frequency

EMI response, and accurate results were obtained [53]. However, it is still difficult to

obtain an accurate time domain response from a frequency domain model that is only

accurate at either low or high frequencies. In this work, a time domain TSA method

is developed and combined with standard numerical methods to obtain a solution

that is accurate for any skin depth.

In this paper, a method of moments (MoM) is used to solve the boundary integral

(BI) for the exterior region [54]. Two separate formulations are used for the interior

region, depending on the skin depth. When the skin depth can be resolved on a rea-

sonable mesh, an FEM is used to solve the interior problem for the magnetic vector

potential [55, 56, 7]. The technique will be referred to as the FE-BI method. When

the skin depth is small, the divergence equation for the magnetic field is implemented

in the interior, similar to [53]. A new method is developed in which the normal deriva-

tive of the magnetic field is calculated using a type of TSA, so that no interior mesh

is required. This second technique will be referred to as the TSA-BI method. The

two approaches, FE-BI and TSA-BI, can both be solved separately in their regimes

of validity to obtain the entire time domain response. The method's accuracy will be
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compared with analytical solutions for spheres and spheroids, as well as experimental

results. Various typical target geometries can be studied to identify important char-

acteristics of the time domain response that may be useful for inversion algorithms

such as a Support Vector Machine or the Linear Least Squares method. Furthermore,

objects with simple material inhomogeneities (such as aluminum and steel parts) can

be examined for identifiable characteristics in the time domain response.

2.1.1 Formulation

The geometry under consideration is that of a conducting, permeable axisymmetric

target, an example of which is shown in Figure 2.1. The object has a conductivity on

the order of a- = 10' S/m, may have a relative permeability pi, from 1 to 100, and

has a relative permittivity El, = 1. The region outside the object, V2 , is considered

weakly conducting, U2 < 1, and nonpermeable, A2,= 1. Consider the wave equation

for the interior magnetic field,

- a2H oHV2H - p 2 - o-i_ = 0 (2.1)

For the object of interest, the u-1p1 product is many orders of magnitude larger than

the cipi product, and Equation 2.1 reduces to a diffusion equation. This is equiva-

lent to neglecting the displacement current and applying magnetoquasistatic (MQS)
approximations. Hence, inside the object we have

V x77=7 (2.2)

which results in

V - J = 0 (2.3)

In the FEM, it is more convenient to work with the magnetic vector potential, A.

Specifically, A is continuous across adjacent finite elements with differing permeability
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Figure 2-2:

S 12 . The two

An axisymmetric three dimensional object with volume V enclosed by surface

dimensional generating surface and contour are Q1 and F 12 . The normal vector

out of the object is hi, and the normal vector into the object is ft 2.

or conductivity. As will be shown in the next section, continuity is necessary for nodal

based FE methods. The definition of A is

E =V x A= p17H (2.4)

which, combined with Faraday's Law, results in

J = uIE = -ol - ulV4at
(2.5)

where 4 is the scalar electric potential. Now Equations 2.4 and 2.5 can be substituted

into Equation 2.2 to obtain

1 - a1A
X I V X A + ia + Or V4 = 0t

P i at
(2.6)

where Equation 2.3 is automatically satisfied by the nondivergence of the curl vectors.

The definition of A in Equation 2.4 is incomplete, and a gauge must be specified to
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2.1. Introduction

guarantee uniqueness. For MQS problems, it is common to use the Coulomb gauge,

V . A = 0 (2.7)

This allows Equation 2.6 to be rewritten as

1 - 1 -- A
Sx -V X A - V + + - 1V1 = 0 (2.8)

The first two terms of Equation 2.8 then reduce to the vector Laplace operator.

However, Equation 2.3 is no longer satisfied, and must be separately enforced with

V(71- + V4D =0 (2.9)
( t

Thus Equations 2.8 and 2.9 are the governing equations for the object interior. The

exterior wave equation can also be reduced to MQS, in this case due to low frequencies

of the EMI problem where the wavelengths of the exterior fields are large with respect

to the object. Given the insignificant current, the magnetic field is irrotational and

can be represented in terms of a scalar potential,

H = -V'O (2.10)

Combined with V - B = 0, the equation for the nonmagnetic exterior is simply

V2V@ = 0 (2.11)

With Equations 2.8, 2.9, and 2.11, there are three equations with three unknowns.

With a suitable surface gauge for A, the scalar electric potential and Equation 2.9 can

be eliminated to simplify the problem. This is demonstrated in the following section.
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2.1.2 Solution Uniqueness

The curl and divergence of A have been specified in Equations 2.4 and 2.7, and are

sufficient to guarantee uniqueness in free space. However, in a finite region it is also

necessary to specify the boundary condition of A. Consider two vector potentials

A 1 and A2 that arise as solutions to the same physical problem. Were the solutions

unique, the difference between them, AO = A, - A 2 , would be zero. From Equa-

tions 2.2 and 2.7,

V x Ao = 0 (2.12)

V -Ao = 0 (2.13)

From Equations 2.12 and 2.13, AO can be expressed as the gradient of any scalar (e.g.

X), resulting in

Ao = VX (2.14)

v2X = 0 (2.15)

In order to satisfy Equation 2.15 in free space, X must be a constant. However for a

finite region this is not necessarily true and so VX can be non-zero. For this problem,

a suitable boundary condition for A on S12 is

i- 1.= 0 (2.16)

which results in
axx= 0 (2.17)
9n,

on S12. A constant is only solution to the Laplace equation in a closed domain with

a Neumann boundary condition. Thus x must be a constant within the region, AO is

zero, and uniqueness is obtained. Furthermore, Equation 2.16 reduces the boundary
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condition Equation 2.22 to

0 (2.18)
On,

and, if o-1 is piecewise continuous, Equation 2.9 becomes

V2@D = 0 (2.19)

Hence the interior scalar potential is a constant or zero, and Equations 2.9 and 2.22

are no longer required. The magnetic vector potential A is the only variable required

in the interior region, solved with Equation 2.8.

2.1.3 Boundary Conditions

Across the boundary, it is necessary to enforce continuity of ft x H and t -B. This

is ensured by

i - (V x A) - 2  P.oV) = 0 (2.20)

1
-(V x A) x il- V@b x f2 = 0 (2.21)

on S12 (see Figure 2-2). Another boundary condition is that no current may flow into

the nonconducting regions, hence

(aA
i at + V ) 0 (2.22)

( t

With Equations 2.8 and 2.11, combined with the gauge of Equation 2.16 and the

boundary conditions of Equations 2.20 and 2.21, the problem is reduced to a system

of two equations with two unknowns. The interior equation over the finite, possibly

inhomogeneous target volume is well-suited to an FEM implementation, while the

unbounded exterior problem can be solved with a boundary integral formulation.
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2.2 Finite Element - Boundary Integral Method

The FEM is used for the interior region (region 1, Equation 2.8), and a Boundary

Integral (BI) formulation is used to handle the infinite exterior region (region 2,

Equation 2.11). The two methods are combined using the appropriate boundary

conditions.

2.2.1 Interior Problem

Formulation

The FEM requires a restatement of the governing differential equation using an ap-

proximation technique, examples of which are the variational method or the weighted

residual method. This derivation will focus on the latter, using a Galerkin formulation

to obtain

W - V x VxA- W - V - + W-- dV= O (2.23)
V1 p1 P It)

where V1 represents the volume of region 1. Integrating by parts:

f-(V x W (V x ) dV - i W x (V x A)-idS
V1 /1 12 1-

±j (v-w) (V A)dV + 1 -(V. A)W - f1 dS
V1 pV J12 p1

fvW -§o-dV =0 (2.24)
V1  at

results in the general vector equation for the interior of the object that may be

solved by the FE method. The surface integrals are evaluated over S12 , and are used

to enforce the boundary conditions. The boundary condition of Equation 2.16 for

A must also apply for the weighting function W, and may be enforced by setting
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the second surface integral of Equation 2.24 to zero. However, Equation 2.16 for

A must still be enforced as an essential (or Dirichlet) boundary condition, which

will be discussed later in this section. For axisymmetric geometries, considerable

computational savings can be gained by taking advantage of the symmetry of the

problem. Any arbitrary incident field is first decomposed into azimuthal Fourier

modes. The three dimensional problem of Equation 2.24 can then be reduced to a

two dimensional problem by integrating out the azimuthal dimension and solving over

the object cross-section in the (p, z) plane. The incident modes decouple in an obvious

fashion during the azimuthal integration, leaving a set of two dimensional equations to

be solved for each mode. The scattered field is then reconstructed from the sum of the

solutions for each incident field mode. This work will begin by considering only axial

or transverse primary magnetic fields, such as H P = H(p, z) or HPR = %H(p, z).

In such cases, the exterior scalar potential can be described by

00

4'(p, #, z) = E p' (p, z) cos(pO) (2.25)
p=O

Where Op(p, z) is a function describing the scalar potential in the (p, z) plane for the

pth mode. The interior vector potential and weighting function are represented as

A(p, #, z) = EAf) (p, z) sin(p) + qA")(p, z) cos(p#) + 2A z)(p, z) sin(pk)
P=O

(2.26)
00

W ( p, b, z ) = ( [w(P) (p, z) sin(q#) + qW ') (p, z) cos(q#) + 2W z) (p, z) sin(q#)
q=0

(2.27)

Using these forms in Equation 2.24 results in p- 1 terms that lead to difficulties in

evaluating the integrations near the axis of revolution. To avoid this problem, a
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modified vector potential may be used instead:

-A A(p, , z)
A(p, 0, z) = ' ' (2.28)

p

The FEM is then used to solve for A instead of A, and the p term is reintroduced

in post-processing. (Henceforth, the relationship of the A and W terms on (p, z) will

be suppressed.) This method eliminates the singularity in the integrand, and results

in straightforward analytical expressions for the FE integrations of Equation 2.24,

as detailed in the next section. However, this method requires that A itself is a

well-behaved function. In general, A is a function that has pf dependence, in which

case A has p'-- dependence. Hence, if n > 1, which happens to be the case for axial

excitation, then A is a suitable unknown and may be used to eliminate the singularity.

However, for the transverse case, components of A may not depend on p at all, and so

A may have a p- 1 singularity at the origin. The FEM cannot be used to solve for such

a function, as the coefficients of elements on the origin would diverge. In that case,

the singularity in the integrand has been exchanged for a singularity in the solution,

which is less desirable. As a result, for the transverse case A will remain the unknown,

and the singularity in the integrand will be dealt with by moving the mesh 1 pm off

the axis of symmetry. Extensive numerical testing reveals that this approximation is

both stable and accurate. Analytical expressions (to follow in this section) can still

be used for the majority of the terms in Equation 2.24, providing fast and accurate

solutions. For the p- 1 singular terms, a quadrature numerical integration technique

will be used [57].

The simplest case of uniform axial excitation (i.e. I =HPR) is represented

with p = 0. For that case, the primary magnetic scalar potential is 4'o(p, z) = z (from

Equation 2.10). The exterior unknown is V) and AO is the only interior unknown.

The Coulomb gauge is automatically satisfied in this case, and the second volume

integral of Equation 2.24 is no longer required. Furthermore, the boundary condition
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Equation 2.16 is also automatically satisfied. Hence, for uniform axial excitation,

Equation 2.24 becomes

I -(O (vMop92 K) -VW()) + pW + 2A(P) " + 2AO)W(O dpdz

11 WO x (V x AO) . h 1dS + UIWO) p2dPdz 0 (2.29)
112 [11 fl 0 a

In Equation 2.29, the do integration has been carried out, yielding 2wr terms that

have been dropped. The interior volume integration domain has become a surface

(cross-section of V) domain in the (p, z) plane, and is defined as Q1. The surface

has become a contour at the intersection of S and the (p, z) plane, defined as 112.

Note that dV = dppddz and dS = pdqds, where s is the tangential variable along

F12 . The V operators now only contain p and z components. The surface integral in

Equation 2.29 has been left in vector form to implement the boundary conditions.

The case of uniform transverse excitation (i.e. H P =HPR) is represented with

p = 1. For that case, all three vector components of the magnetic vector potential

must be kept. The number of terms in the volume integration increases by more than

a factor of ten, and will not be included here. Incident field modes above p = 1 may

be included to represent other incident field cases, such as a linear transverse field

(i.e. H = ix). In such cases, each term in the volume and surface integrations is zero

for p # q (due to the orthogonality of the modes), and hence only the p terms are

required.

Finite Element Method

The FEM approximates the unknown function as a set of polynomial basis functions,

each of which has local support within a finite element. In this work, the derivations

will be limited a nodal FEM with first order interpolative polynomials over triangular

elements. The Silvester universal matrices will be used [7], and thus extension to
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higher orders is straightforward.

The interior region, Q, is discretized into a triangular mesh using a Delaunay al-

gorithm. The mesh contains the set of n = {1, 2,.. .N} nodes, located at coordinates

{(Pi, zI), (p2, z 2 ),... (PN, ZN)}. The magnetic vector potential and weighting function

are represented over each triangle by scalar basis functions:

-A = [ A()a( ) + A$()ci4) + 2Az)a4) (2.30)
n=1

Wp = a. + . + ±a (2.31)
mM

where, for example, ant represents the basis function at the nth node in the p di-

rection. The magnetic vector potential has now been expanded as a summation over

modes, basis functions, and vector components, hence Anlpp) is the unknown p coeffi-

cient for the pth mode at node n. To demonstrate the FEM implementation, consider

the axial case where p = 0, for which A0 is the only interior unknown vector (over

the mesh nodes), Equation 2.29 over each finite element can then be written in matrix

form as= a)=(1) =(2) =(3) A() = 10A =) -
(SAA + SAA + SAA) Aa +FAA t A =0 (2.32)

where AO= [AO AO .AO]' and

=_(1) I (") a2 8 0' (no)
SAAmn = p2 ap + dpdz (2.33)

P1 f Op Op Oz (9z)

=1 2+ a + dpdz (2.34)~~(Pi 7 JJP (2) ap a p 2.4

=(3) 2 f
SAA(mn = 7  a)a/ dpdz (2.35)

FAA,mn = 0-1 p2 4) a$)dpdz (2.36)
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and 5 ,A is the integral over the surface (now contour) of the object. The choice of

AA and VA subscripts notes which which variables the matrices operate on and in

which equation they are obtained. For example, the OA subscript means that the

matrix will be operating on the V) variable but is contained in the equation for A. In

Equation 2.32, S9A currently operates on A, and will be related to 4' in Section 2.2.3.

The implementation of the FEM will be specifically outlined for Equations 2.33-2.36,

and the higher order p cases are easily generalized from these integrals. It is next

necessary to choose a suitable set of basis and weighting functions ac to substitute

into Equation 2.32.

Simplex Coordinates

For the following sections dealing with the FEM, the subscripts and superscripts will

be dropped for generality. In two dimensional space the triangle is known as a simplex

shape, which is the minimum possible nontrivial geometric figure. A triangle with

indices a, b, and c is defined as triangle 1 - 2 - 3. The area of a triangular simplex,

whose coordinates are (pI, zI), (p2, z 2 ), and (p3, z 3 ), is

1 Pi ZI
1

R= 1 P2 Z2  (2.37)
2

1 pO Z3

Within each triangle can be defined three simplex coordinates, one associated with

each vertex. Each simplex coordinate, C, is defined to be equal to one at its cor-

responding vertex and decreases to zero at the opposite edge. The value of each (

can be expressed in terms of the ratio of two triangles; for example (1 is the ratio of

the area of the triangle (1 - 2 - 3 over the area of triangle 1 - 2 - 3. This can be

understood given that the ratio of triangle areas is the same as the ratio of triangle
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heights. Hence, the simplex coordinate (1 can be written as:

lPz

1 P2 Z2

P3 Z3 (2.38)
1 Pi Zi

1 P2 Z2

1 p3z

and all the simplex coordinates are:

(1 p2 Z3 - P3Z2 Z2 - Z 3 P3 - P2 i
(2 2 Pzi - PiZ3 Z3 - Zi PI - P3 P (2.39)

(3PIZ2 - P2zi Z1 - Z2 P2 - PI z

The simplex coordinate system is advantageous in that it is strictly local, and as such

any formulations can be derived independent of triangle shape.

Basis Functions

The simplex coordinates are the first order basis functions over the triangular finite

elements. Higher order basis functions can also be derived in terms of the simplex

coordinates using a set of Lagrange polynomials. A set of pth order polynomials

Lu(P, () is defined by

u-i

Lu(P, ) = kH (P( - k), u > 0 (2.40)
k=O

Lo(PI) = 1 (2.41)

The Ph order basis functions over the triangle are

aijk ((1, (2, (3) = Li(P, (1)Lj (P ( 2 )Lk (P, ( 3), i + ' + k = P (2.42)
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Each triangle of order P contains X = (P + 1)(P + 2)/2 basis functions, which equal

unity at point ijk and zero at all other points. Various numbering schemes may be

chosen over the triangle [7]. The first order basis functions cioo, aeoi, and a001 are

simply (1, (2, and (3, respectively.

Universal Matrices

The surface integrals in Equation 2.32 may now be restated in terms of simplex co-

ordinates and solved over a single arbitrary triangle. The S matrices in the following

are local element matrices, defined with an 'e' superscript. The previously defined

matrices will be referred to as the global matrices. SImn is the product of the basis

and weighting functions, and can be expressed in simplex coordinates as

S(3)e 2R dpdz (2.43)SAA,mn - f a n'm R24

where the integration is carried out over the triangle area. Using the identity

I dS f ij!k!2! (2.44)
R (i+j+k+2)!

the integral can be expressed as a constant matrix, multiplied by the area of the

triangle. Hence the element matrix is simply

-(3)e 2R =
SAA T (2.45)

The matrix T is known as a type of universal matrix, named as such because it is the

solution to the integration of simplex polynomials over any triangular element. T for
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a first order element is simply:

2

1

1

1 1
2 1

1 2

(2.46)

Matrices for higher order polynomials are easily derived. T is also the simplest uni-

versal matrix, and alone is insufficient to characterize any of the other integrands in

Equation 2.29, which contain derivatives and powers of p.

Universal Matrices: Differentiation Operators

Differential operators may also be expressed as universal matrices. The derivative of

any Pt' order basis function polynomial can be represented in terms of P - 1 order

polynomials. However, for simplicity it is easier to represent the derivative as a poly-

nomial of the same order as the original function. The derivative of A with respect

to p can be written as

aA
op

N N 3

n pn=1 i=1

From Equation 2.39 it can be shown that

0(D zi+l - zi_ 1  bi
Op 2R 2R

and
19i Pi-1 - Pi+i Ci

0Z 2R 2R

A differentiation matrix may now be derived to express the derivatives of the simplex

O n 0(p A n0ap )~ (2.47)

(2.48)

(2.49)
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coordinates in terms of the basis polynomials, such that

= E D ak (2.50)
k

Equation 2.50 may be solved for D(, the values of the differentiation matrix D. This

is done by solving Equation 2.50 at each node n on the triangle for each basis function

ak, taking into account that all basis functions vanish at that node except an. Hence,
(i)

the values of D are found through differentiation of an evaluated at node k:

D (') (2.51)

k

Combining the above steps, a derivative may be expressed as

aA N 3 b
= 1 ~ E DaCek) An (2.52)

ap n=1 (i=1 2Rk

or, in matrix form relating the nodal values of A to the nodal values of the derivative

of A (A,p)
_ ( bi-=(i)T -

AIap= 2R D A(2.53)

Once these matrices are obtained, differentiation of basis function polynomials over

the triangular elements becomes a simple sum of matrix multiplications.

Universal Matrices: Embedding Operators

The integrals of Equation 2.29 also contain powers of p, which cannot be handled

with the T and D matrices alone. Hence a third universal matrix, C, known as an

embedding operator, is introduced.
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First, p may be written as a linear interpolate of it's three nodal values,

3

P = (2.54)
i=1

3 3

P 2 = E Ap i ( (CiG (2.55)
i=1 j=1

and, to maintain symmetry when only p is present, it is necessary to use

3

A = pA - A =Yp ( Q (2.56)
j=1

Integrals with p and A now take the form of

Jf(am) (( a,,)dpdz (2.57)

which contain polynomials of a higher order than the basis functions. To deal with

these integrals, it is desirable to express each term in the integrand of Equation 2.57

as a higher order polynomial, so that previously derived universal matrices may then

be applied. The process of transforming a polynomial of order P to an order P + 1

representation is referred to as embedding. For example, a polynomial basis function

of order P can be expressed in terms of a higher polynomial as follows

3 3
(P) a) (c(P) Cy(j) (P+1)

0i 1- = (( i ak (2.58)
j=1 j=1 k

Note that the superscripts of the polynomials a refer to their order. The coefficients

Ci can be found in the same manner in which the coefficients of the differentiation

matrices were obtained:

C 0) = .o ) k +(2.59)
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The resulting matrix is referred to as the embedding matrix C, with X(P) rows and

XP+1 columns. Substituting Equation 2.58 into Equation 2.57 results in:

,a()(ja,n)dpdz = Z ( C ) f
U V

Ia +0 +dpdz = y(ii)

The new integral has the form of T for order P + 1, and the equation can be written

in matrix form as
(ij) = (T C(P+1)(j)T

(2.61)

The three universal matrices T, D, and C are sufficient to form an analytical solution

of the integrations in Equation 2.29 over a single triangular element.

Implementation

n can now be written as

S = - 1
p1 J I i

1 3Alipi E
/1 = 1 j=1

PJJ

p2 mpap a
n 0am n dpdz

p Oz &z /

+ (adpdz

1<

3 3

pjE E (bkb1 + Ckcl)

Ocan a~l
a(,C ap

±Z E Ok Z 1
k=1 ~ 11

jj 0a dpdz

an 09(l dpdz

(2.62)

Using the universal differentiation matrix, Equation 2.62 can be written as

1 1
3 3

i=1 j=1

3pjzE
k=1 1=1

3

(bkbl ±ckcl)E 17 D mk) flu)

U V
I)4amCjandpdz

(2.63)

The integral in Equation 2.63 can be recognized as that of Equation 2.60, and hence

Ii (2.60)

E A p 4

~4R2

p=1 j=l
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can be replaced by its corresponding universal matrices as follows

3 3 3 3

Ri=1 j= k=1 =1

1 3 3 3 3

= 1 4R pd >P 2 k1 1 j= = i=1
(bkbl + ckCl) Z Z D(k)Y'j)DRl)

U V

((k)b(i)=(N+)C (j)TT()T
(bkbl+ CkCi)D C T C D

The double summation over k and 1 in Equation 2.62 can be reduced to a single

summation by using the identities

bib +cicj = -2Rcot Ok

b + c =2R(cot Oj + cot Ok)

(2.65)

(2.66)

where i, j, k are the vertices of the triangle, Ok is the angle between the sides of

the triangle at node k, and R is the area of the triangle defined in Equation 2.37.

Substituting the trigonometric identities into Equation 2.62 and manipulating results

in

=: = E
Mi=1 j=1

pi cot Oj
k=1 0k+1 a(k-1

( 0n- " dpdz

(2.67)

Which in matrix form is

(1)e 1 3

S = P

3 (ijk)

P E P Z cot OkQ
j=1 k=1

- (k-1)(k-) (i) (N+1)=(j)T (k+1)(

(2.64)

where

Q(ijk) 1
2

(2.68)
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S2e is written as

S122e p an

3 3

2=1 j=1

+ ama) dpdz

2a( anOp

(2
k=1

+a e dpdz
O+ )

an
3

+ k

k=1

o an dpdz

3 3 3

S EE b
i=1 j=1 k=1

i~i2R

+ ± aM~jajdpdz)

which in matrix form is

(2)e 1 3 3 3

s - Z pi bk
i=1 j=l k=1

3

k)

S2DM

D (k

2(k)T(i)(P+1)C(j)T2D C T C

(If ai j jandpdz)

(2.70)

(i)=(P+1)=(j)T=(k)T)
+C T C D) (2.71)

The final surface integral term in Equation 2.32 is

3 3

F=o-1R AZp3C T C

i=1 j=1

(2.72)

The element matrices are evaluated for each triangle in the FE mesh and are used

to construct the global matrices. The local coordinate of each term in the element

matrix is mapped to its corresponding global coordinate and term in the global matrix.

FEM Equation, Axial Case
=(1) =(2) =(3)

If we define SAA = SAA SAA + SAA, the FEM equation can be written as

SAAA 0 + FAA a(

57

-( ) -
+ SV)AA = 0 (2.73)
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Section 2.2.3 will address the derivation of SPA, resulting in an equation in terms of

Ao) and V. The time derivative will be addressed in Section 2.2.4.

FEM Equation, Transverse Case

For the transverse case, all the vector components of A must be considered. The

unknown vector for p = 1 becomes A1 = [A(P)A()A z)]'. As mentioned previously,

Equation 2.24 contains many more terms than for the axial case, and the derivation

is not included here. However, the analytical forms of Equations 2.33 - 2.36 may still

be used, along with similar variations, for the majority of terms that are nonsingular.

Singular terms are dealt with using numerical integration, with the entire mesh moved
=(1) =(2) =(N)

1 pm off the axis of symmetry. For this case, we define SAA = SAA+SAA+- - -+SAA,

and the finite element equation is

SAA A1 + FAA A 1 + 4SA A 1 = 0 (2.74)
at

The boundary condition h - A = 0 must also be enforced as an essential boundary

condition in Equation 2.74. This can be done by redefining the 1 on the boundary

in terms of a rotated coordinate system,

yqjn)1

A (2.75)

LiJ

where h and . are the normal and tangential vectors to the surface contour in the

(p, z) plane, respectively, and the R/ superscript refers to the rotated unknowns. This

is accomplished with the use of rotational matrices [4]. The rotation can be performed

on a global level, but will be demonstrated here for a single element e. Each element

matrix is 9 x 9, containing interactions between the three vector components at each

of the three nodes. The relationship of the cylindrical and rotated coordinate system
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1p

S z n

3

IF1

Figure 2-3: Rotation of cylindrical coordinates to tangential and normal coordinates for

the surface unknowns. The essential boundary condition of i A = 0 can then be easily

implemented.

is shown in Figure 2-3. For the matrix equation with a given right hand side Z,

=e =
AS= (2.76)

the variables are transformed to the rotated coordinate system using a rotation ma-

trix R

A, = R A'- (2.77)

(2.78)

Substituting Equations 2.77 and 2.78 into Equation 2.76 yields

(2.79)

=T= = =T
Using the identity R R = I, premultiply Equation 2.79 by R to get
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(2.80)

Chapter 2. Time

-S e,7Z A~

e,7Z =T =e -

S =KZ S
_Z = -

For example, given the element shown in Figure 2-3, and organizing the unknown A1

by node, the rotation is simply

cos 0 0 - sin0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

sinO 0 cos0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 cos 0 0 - sin 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 sin0 0 cos0

A (n)

11

A(O

A(s)

A(P2

A(O2

A~z2

A(n

31A(2.83

(2.83)

Using a global coordinate rotation, the FEM equation for the transverse case can be

written as:

(2.84)S7 A1 +=7 F A1 +R 7 Z3AAA +FA-A,+ S7AAl = 0

2.2.2 Exterior Problem

The interior problem has been implemented in the FEM, and must be coupled with the

exterior governing equation (2.11) through the boundary conditions on S12 . Although

Equation 2.11 may also be solved with an FEM, such an approach is not optimal for

the unbounded exterior region. Instead, an integral equation approach is used.

(2.81)

(2.82)

where
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Formulation

The exterior region is governed by the Laplace equation for the scalar magnetic po-

tential 0. Starting with Green's theorem,

~d {( g ) 0 2 ( 1) V2 0(Y')}

dT { ) 0 ( ) -g (T ') 00(v) (2.85)
J1+s 2 (122

where )(-r) = 4 PR (T') + OS (I), the sum of the primary and secondary potentials.

The volume V2 is the exterior region, bounded at the target by S12 and at infinity by

S,. The normal coordinate n2 is directed out of V2 (see Figure 2-2). The field 4(T)

follows the Laplace equation:

V2V) = 0 (2.86)

The Green's function obeys

V2 g (7, T) = -5 (T - T') (2.87)

and for free space is
1

= (2.88)
47r IT - r I

Substituting Equations 2.86 and 2.87 into the left side of Equation 2.85 gives:

f d-?- [V)( )72g (Tj V) _ g(T V) V20( - 0(T) 7; E V2 (2.89)
2 0 V2

The surface integral at S, gives the primary field. Taking Y to the surface requires

the removal of singularity of the normal derivative of the Green's function. For a

smooth surface, this value is ±1/2 depending on whether the surface is approached

from inside or outside V2. The difference in sign from the singularity in the Green's
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function therefore accounts for the two possible right hand sides of Equation 2.89.

When the surface is not smooth, such as on an FE mesh, different values from 1/2

may be obtained, so a general C(Y) is used in the formulation.

C(T)4'(T) + j (F')8O -Di n') , dS' = <PR(Y) (2.90)

Again, given the axisymmetry of the object, Equation 2.90 only needs to be solved on

the (p, z) plane. However, both the sources and the Green's function are dependent

on 0, so that dependence must be dealt with before moving to a two dimensional

problem [581.

Having chosen the cosine dependence for the scalar potential (Equation 2.25), the

same azimuthal decompositions must be performed for all the terms in Equation 2.90.

We can write

00

4'(p, 0, z) = E p(p, z) cos(p#) (2.91)
p=o

00

P=~O

00

0(p', 0', z') = V) (p', z') cos(q#') (2.93)
q=O

00

g(p, #, z; p', 0', z') = E g*(p, z; p', #', z') cos(p#) (2.94)
p=O

Substituting Equations 2.91-2.94 into Equation 2.90 results in

00 f (A zz; p, q5, z'

C()4p(p, z) + q(p', z') cos(q#') 0 g*(p,, a p ', Z

00 00 a0b0, Z') 00 P

- gP*(p, z; p', 0', z') )n' cos(qo') dS' = op/'(pz) (2.95)
P=O q=O p=O

where the linear independence of the cosp terms has been used. The form of Equa-
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tion 2.95 can be rewritten as

C(Y)O'(p, Z) +
p=O

( i z') 4 Np(p, z;p',z')

p=O q=O

SpP,O z; p/, Z') D'1Iq (,',Z)
00

dS1 = LEOp(,Z)
P=zO

.yq(p, z; p', z') =-

z; p', ', z') =

g*(p, z; p', 0', z') cos(q') do'
pr

g (p, #,Z; p',#,±7I z') cos(p#) d#

Careful examination of Equations 2.97 and 2.98 reveals that pq (P, z; p', z') = 0 for p #

q. Hence, for each mode p evaluated separately (and dropping the second subscript

of the Green's function), the final boundary integral equation becomes

(F (' F I' -) _ ( ?, p (r' )
Jv pTl a n' . -j ' T' 7) Dn' ),p'dr' = MPR(T)

evaluated over the contour F, the intersection of S12 and the (p, z) plane. The Green's

function of Equation 2.97 is dependent only on p and z, and can be interpreted as

the Green's function of ring sources. Using the change of variables #f = # - 0', the

Green's function may be written as

ir cos(pot)doft

47 yp2 + p'2 - 2pp' cos t + (z - z')2
(2.100)

With another change of variables #1 = Ot/ 2 , Equation 2.100 becomes

1 I 7r/2 1- 2sin 2 (pPt) dot
27V/a + b-r/2 V1 - m2 sin2 4

(2.101)

where

(2.96)

(2.97)

(2.98)

C(T)Vb(7) + (2.99)
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where

a=p 2 +p/ 2 + (z--z')2

b 2pp'

2b

m=a+b

The Green's function of Equation 2.101 can be expressed in terms of complete ellip-

tical integrals of the first kind, K(m), and second kind, E(m).

Axial Case, p=O

When p = 0, the integral of Equation 2.101 is exactly the complete elliptical integral

of the first kind,

(2.102)= K(m)
wr a + b

The normal derivative of the Green's function is treated in the same manner:

, 0 K(m)
a z a+b

, , a K(m)itOP7r va +b

8K(m) 1
am m

we obtain

ajo,(r ,') 
an'

, (m) (z - z')
7r (a - b) va + b

, , p+ al b
b -Fv'a +b

(a - 2p' 2 ) E(m) _K(m)
a - b

(2.105)

Transverse Case, p=1

When p = 1, the integral of Equation 2.101 becomes

Si( ) = (1067rv/a +b

2 N
-2) K(m)m2n

2
+ 2 E(m)JM I

an'

Using

(2.103)

E(m)
I - m2

- K(m) ) (2.104)

Chapter 2.64
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and the normal derivative of the Green's function is

= -T _ z ' K(m) - (m)
On' Nb a bL a-b 

1fl. ata - p'/2) -2 2p2p/2 -~)+ - 'bp' a (a - p'2 )K(m) - aa-p)2pp 2 E(m)1
7rbp'Va +b [( - bK~m

(2.107)

where we have used
&E(m) _1OE__ - [E(m) - K(m)] (2.108)

am m

The Green's functions for higher order modes can be derived in the same fashion.

Boundary Integral Method

An MoM is used to solve the boundary integral of Equation 2.99. On the FEM mesh,

the contour F contains Nr - 1 flat segments connected by Nr nodes. The location

of node n is defined by (pn, zn) and is denoted by En. We define the nth patch Pn

of length An to lie between node Fn and node Fn+1. The unknowns of 4' and a arean

represented with linear basis functions a. First we introduce a local coordinate s on

each patch Pn, increasing linearly from 0 to An. Hence, on patch pn between node Fn

and node Fn+l, the global coordinates may be written in terms of local coordinate as

P Pn + Pn+1 sPn (2.109)

Z Zn + Zn+1 - Zn (2.110)
An S

The unknowns of mode p may be represented as

Nr

S(T') = [" (s') + a" (s')] V'np (2.111)
n=1

On ) lalr On(2.112)
n=1
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The linear basis functions are then simply

a" (s) = S/A-1

0

n" (S) =1s/An

0

S E Pn-1

S Pu-1

S E Pn

(2.113)

(2.114)

s 0 Pn

Note that patches po and pN, do not exist, hence the first and last basis functions are

al and aNr, respectively. Substituting Equations 2.111 and 2.112 into 2.90 results in

N+1f

n=1 Fn

N+1 J(n+)

-[an (s') + an (s')] P(r, r')p'ds'
_n=1 l -

n+1

p' dsj VPnpa(s') + an (S')]

OI = P(r)_
an (2.115)

A Galerkin scheme using the testing function [am (s) + amh (s)] then used to obtain:

N+1 jm+1

1: C(s) [a'"
n=l1 Fm-1

N+1 m+1 Fn+1

+ [al
.n=1 Fm-1 rn-1

(s)+ a, (S)] [an(s)+a"n(s')] Pn', p'ds'ds pp

~N+1 IF.+, ]n+1

- [N jr jnm (s) + "r

.n=1 Fm-1 n- I

=] [aml (s) + a"m (s)] ?/P(r)ds
rm-1

a"n (s')] (r, r')p'ds'ds n

(2.116)

for m = 1 ...N. The integrations in Equation 2.116 can be solved numerically using

a quadrature scheme. However, care must be taken when dealing with the singular

integrals and when integrating near the axis of symmetry.

Chapter 2.66

~ N+1

C(s) E [al, (s)
n=1

+ a"ns]+ [
-

(s) + a", (,)] [a" (s) + r" (s)] ds V),



2.2. Finite Element - Boundary Integral Method

Singular Integrals (Self-Term)

When T -+ T', m approaches 1, and the value K(m) goes to infinity.

67

A singular-

ity then exists along the s = s' line in the domain of integration for the self-terms

Cm,m and Zm,m. To enable the evaluation of these terms, the elliptic integrals can be

expressed in terms of Legendre functions of the second kind [59], using

Q-1

Q2 b) = [(2 - a2) K( ) - 2E( )]

aQi (7) W1 (7) - Q _1)

27 2 2 2 _ 2

2

7+1

(2.117)

(2.118)

(2.119)

(2.120)

Substituting Equations 2.117-2.120 into the expressions for jo (Y, ') and 'o(T') results

in

2

N2-b7r

an' V2-7p'

(2.121)

2 )
a - 2p' 2 Q (Y)

+ b 2 J

- bip' / OI-Y
v/ 2brp' P O-7

b+ a b
, 1 Yoo

Now as T' -- > , y -- 1, and the Legendre functions can be expanded as:

2

1
2

DQ I ( 2Y)
87 2 (7-1)

(2.122)

(2.123)

(32 )
(2.124)

(2.125)
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Substituting Equations 2.124 and 2.125 into Equations 2.121 and 2.122 results in

In (p - p)2 + (z - z)2
64pp'

(2.126)

+ P2 _ /r2 + (Z - Z')2-

(p p)2 + (Z -Z')2

h' -2' (z - z')

V2b7 ((p - p') 2 + (z - z')2)
(2.127)

For the self term, P2 = p2, z 2 = z2, and A = A', hence

p - p' (s - s')

z - z = (s - s')

P2 -PIl

Z2 A ZI)

(2.128)

(2.129)

The singularity of Equation 2.126 then has the form of ln ((s - s') 2 ), which is in-

tegrable. The logarithmic term in Equation 2.127 has the same form. The two

remaining terms contain singularities of the form 1/(s - s')' (n > 1), which is not

integrable as s -+ s'. To handle these integrals, a new variable is introduced y = s -s'.

The integrals now have the form of

j- j A+y fa j x f ]

-cj A+Y ~f (s, y) dsdy + A 8 )dsdy
-A 0 Y e J "

(2.130)

where c is the infinitesimal limit around the singularity, which is now at the y = 0

axis. These integrals can then be solved numerically using a quadrature scheme.

2.2.3 Boundary Conditions

The separate equations for the interior and exterior domains may be related through

the boundary conditions. First we return to SVA, from the surface integral of Equa-

tion 2.29 that can be used to enforce the continuity of the tangential magnetic fields.

-1
S(r, r') = 2b

2 vfb7 r

n(r, r')

In (p p) 2 + (z - z')2
64pp'

V"I_
n'.-p'2 1
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The kernel of the integral may be rewritten as

W x (V X A) I= W - (VxiA) x i (2.131)
A1 PI

Using the continuity of the tangential magnetic fields,

V X A4-
x ni = HI x ft = -H2 X h2 = VV X h2 (2.132)

Pi

Taking into account axisymmetry, the surface integral may then be expressed as:

jI W x (V x )il dS = j - V@ x h2dS (2.133)
S12 I JS1 2

Equations 2.27, 2.28, and 2.111 can now be used to obtain basis and weighting func-

tion representations of W and 4'. For the transverse case,

S Amn =

- Nr (P2 - P1) p [an (s) + an (s)] ,) + [an (s) + an ()

n=1 Fn-1

+ (z2 - Zi) [a" (s) + an (s)] a0) + [an (s) + a" (s)]a ds

(2.134)

The weighting function Tm is a two-dimensional finite element function that exists

over the entire structure, hence the resulting matrix is N x Nf in size. However, the

kernel of Equation 2.134 is the product of the two types of basis functions over the

surface contour, and hence the integral is zero for interior nodes. Only the edges of

the weighting functions on the surface contour contribute to the integral, and can be

described in the same fashion as the basis functions. For the axial case a( and a(P)

are both zero.

The second boundary condition is the continuity of ft - B, and can be implemented
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in the boundary integral equation. The two unknowns in Equation 2.139 are 4, the

scalar potential, and its normal derivative 2. Given that H = -V4' in the exterior

region, we can show

00 B 2 - h2 B 1 - hi (V x A) -h (V x pA) -i
an= V@b - n2 - P- - Po - -o P (2.135)

Substituting the expression for A into the 2 integral of Equation 2.116 for the axial

case yields

N+1 - e+1 n+

SAO,mn = + Y I [ jr j')p' [al (s) + cfr (s)] (2n 'zz
Mn=1 . -1 En-1

p'n' O( q - n/ a - p + n/ a z dsds (2.136)

Recall the subscript notation AO here refers to the matrix operating on the A variable

in the equation for 4'. The basis function in Equation 2.136 is the two-dimensional

finite element function, hence the resulting matrix is NF x N. Again, the integral is

zero for basis functions on the interior nodes. For the transverse case the integral is

SA1,mn =+ [F m+1 (r, r') [o" (s) + oT (s)] (aof n'rz

Si__ / +c$~ -' r \ nPOn=1 . m-i rn-1

+ pn n E - z(P) - p/n/p a" a + n'a )z ds'ds (2.137)

2.2.4 Matrix Equation

The interior and exterior equations may now be combined into a single matrix equa-

tion. The interior problem, shown here in terms of A without a coordinate rotation,

is ultimately defined by the matrix equation

Sa A+ a -A+ e = 0 (2.138)SAAA+FAA-A+SA(21at
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where SAA and FAA are found directly from Equation 2.29, and S'bA is found from

Equation 2.133. Equation 2.116 has the form

N7' A-V) A = fPR (2.139)

-PR
where IF is the integration of the primary field and weighting functions over the

surface contour.

Frequency Domain Solution

For the time harmonic excitation, HPR(t) =

of equations to solve becomes

[SAA - i'WFAA

-SO

~S~IJA

HPRe-iwt , the -+ -iw, and the system

A 0
-PR

The exterior potential can then be found by integrating

the BOR with Equation 2.90.

I (2.140)

A and 4 over the surface of

Time Domain Solution

Consider a series of discrete time steps Atm, for m = 1,.. . , M. The step size may be

increased in time as Atm = m2AtO [60]. The simplest way to solve Equations 2.138

and 2.139 in the time domain is to use the implicit Euler method [61]. Given time

steps m and m + 1, this method can be expressed in the form of

(m ) - (m) (( )) f(M i)
Atm = ( m+ )- m+) (2.141)

which is unconditionally stable but accumulates error in time on the order of Atm.

Using the implicit Euler method in Equation 2.138 results in

SAA A(m+1) AA A(m+1) + QA V(m+l) AA A(m) (2.142)AA At~)+ " --
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Two cases are considered, the response to HPR(t) = H PRu(t) (turn-on) and HPR(t) -

HPR[1 - u(t)] (turn-off), where u(t) is the step function. For the turn-on case, the

magnetic field is zero everywhere at t = 0, and the primary field is imposed through

V)PR for t > 0. The turn-off case uses the FE-BI method static solution as the initial

condition, with VPR = 0 for t > 0. The two Equations, 2.24 and 2.99, may then be

solved for the two unknowns A and 4'. For each azimuthal mode, the system may be

written in matrix form as

AtrmSAA + FAA -AtmSpA A(m+1) FA (2.143)
-PR 213

L SAO SV) J (Tn+1) _j L (M) _

where FAA, SAA, and SOA arise from the integrations over the FE-BI mesh in Equa-

tion 2.24 (FAA from the integral with the - term). The matrices SAO, Soet and

--PR
TPR arise from the integrations over the patches of Equation 2.99. A(m) and

are the unknowns at time step m. A(m) contains the three vector components of A

for the transverse case. Note that it is not necessary for the primary field to shut

off as an ideal step function. Other functions, such as a ramp or exponential decay,

can be included in the system in the time dependent TR4 on the right hand side of

Equation 2.143.

The FE-BI method outlined thus far can solve the EMI scattered fields from an

axisymmetric target under a uniform axial or transverse primary field. Other uniform

excitations can be found from a superposition of these two cases. Non-uniform cases

may be studied using higher order modes for which the Green's functions must be

derived. For UXO sensing devices, the primary field is a step or ramp function, and

is either turned on or off at t = 0. As mentioned earlier, and will be shown in the

Section 2.3, the FE-BI method cannot resolve the small skin depths that exist in early

time. However, for an increasing time step, it is apparent from Equation 2.143 that

the FE-BI will always converge to the static ( -+ 0, late time) solution. Hence, it

is necessary to develop a new method that will demonstrate early time accuracy.
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2.3 Finite Element - Boundary Integral Results

In this section, the numerical solutions are compared with analytical solutions. The

limitations of the FE-BI method are first demonstrated by comparison with frequency

and time domain solutions for a conducting and permeable sphere. Time domain

comparisons are then made between the numerical and analytical solutions for prolate

and oblate spheroids. If the numerical result is denoted as fnum(t), and the analytical

solution is denoted as fana(t), then we can define a normalized error e(t) to be:

e(t) = Ifnum(t) - fana(t)
max(Ifana(t)j)

The normalized error is used to demonstrate the accuracy of the FE-BI solution. The

numerical method is then compared with time domain experimental results. Finally,

the efficiency of the method is investigated.

2.3.1 EMI Scattering from a Sphere

Comparisons can be made to J. R. Wait's solution for a sphere in a uniform magnetic

field [41]. The radius of the sphere is 5 cm. A magnetic sphere with /t, 100 and a

nonmagnetic sphere with p, = 1 are investigated. Both spheres have a conductivity

of - = 10' S/m. These properties are representative of metals found in UXOs, such

as aluminum and steel. The uniform primary magnetic field is turned on as a step

function, and the induced field is calculated 20 cm above the origin. Given that small

skin depths are expected, in is natural to use an FE-BI mesh that has a nonuniform

discretization that is finest near the surface. Two meshes are used as examples, as

shown in Figure 2-4, that each enforce a minimum 1 mm element size near the surface

(i.e. subsurface discretization). The meshes are generated by the Matlab command

pdemesh for the given geometry. The first is referred to as a coarse mesh, containing

400 nodes and 65 boundary nodes. The second is refereed to as a fine mesh, containing

2085 nodes with 129 boundary nodes, and is a single refinement over the coarse mesh
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0.05 0.05

1 0 0

-0.05 ''-0.05
0 0.02 0.04 0 0.02 0.04

p (in) p (in)

Figure 2-4: Coarse and fine meshes for the sphere, using the Matlab mesh generator. The

radius is 5 cm. A 1 mm discretization (normal direction) is enforced at the surface.

(each element is divided into four elements). The fine mesh contains more unknowns

should yield greater accuracy at the expense of computational efficiency. The CPU

times for the various meshes and methods will be given in a subsequent section. Note

that there are many possible mesh options, and these two are simply meant to be

representative of typical choices.

Figure 2-5 shows the axial magnetic vector potential, A(O), inside the nonmagnetic

sphere from an 7 = 2 u(t) (axial) primary field. The fine mesh is used. Recall that

the current J is the derivative of A(O) with respect to time. In very early time at

t = 3.0 ps, the skin depth appears to be on the order of 1 mm. Physically, currents

appear on the surface of the sphere to oppose the changing magnetic field. As time

progresses, the skin depth increases as the fields (and currents) penetrate farther
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into the sphere. Due to the finite conductivity, the currents decay as they diffuse

inward. At t = 23.8 ms, the system has reached the static solution; the currents have

diffused into the sphere and decayed to zero, hence the field AM no longer varies in

time. Figure 2-6 shows the axial magnetic vector potential, A(, inside the magnetic

sphere for the same primary field. In very early time at t = 3.0 1 s, the skin depth

is too small to be resolved on the mesh, and only a few surface nodes are nonzero.

At t = 0.247 ms, the skin depth has increased and the mesh begins to resolve the

fields. As time progresses, the skin depth continues to increase, but by t = 23.8 ms

the system has not yet reached the static solution. These plots of AM give a general

sense of the [ dependent time scales of the EMI response, as well as the capabilities

of the FE-BI method with the fine mesh. Next, the induced fields will be examined

to quantify the accuracy of the FE-BI method.

Figure 2-7 shows the axial and transverse responses from the nonmagnetic sphere.

In early time (equivalently at high frequencies), currents are set up along the circum-

ference of the sphere to oppose the changing magnetic field. The induced magnetic

field from these currents is therefore in the opposite direction as the primary field. As

time progresses, these currents diffuse and decay into the sphere, until finally the late

time static response becomes zero. In both the axial and transverse cases, the agree-

ment between the analytical solution and the coarse mesh FE-BI solution is excellent.

Figure 2-8 and Figure 2-9 show the axial and transverse responses, respectively, from

the magnetic sphere with M, = 100. The frequency domain solutions are shown for

comparison. In these cases, the early time (high frequency) response is similar to

the nonmagnetic sphere. In late time the induced field is nonzero in the same direc-

tion as the primary field (the static solution). The FE-BI mesh cannot resolve the

smaller skin depths that appear in these cases, and significant error is observed over

1 kHz in the frequency domain and before 1 ms in the time domain. However, as

predicted in the previous section, the FE-BI method does converge to late time static

solution. The FE-BI method also converges in very early time or high frequency,
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b

a

e =0.25 e =0.5 e =1 e =2 e= 4

Figure 2-10: Spheroid shapes whose EMI response is used to compare the FE-BI results

with exact solutions. Elongation e is the ratio of b (on the z axis) to a (on the p axis).

at which time the fields are zero within the object and the integral equation alone

provides an accurate solution. Note that the FE-BI method is converging slowly to

the analytical solution; increasing the mesh resolution from 400 nodes to 2085 nodes

has only approximately halved the error. Section 2.4 will introduce the new method

that eliminates the early time error.

2.3.2 EMI Scattering from Spheroids

Using Equation 2.144, the accuracy of the FE-BI solution can be compared with the

analytical solution [14, 62, 63]. In addition to the sphere, the EMI scattered field will

be calculated from spheroidal geometries. The spheroid radius on the p axis is referred

to as a, and the length on the z axis is referred to as b. Five different spheroids

will be used for this comparison, with elongations (e = b/a) between 0.25 and 4,

relative permeability p, = 100, and conductivity o = 10' S/m S/m. The spheroid

geometry is shown in Figure 2-10, along with examples of the various elongations.

The minor axis (a for prolate spheroids, b for oblate spheroids) is kept constant at

0.05 m. Figure 2-11 shows the error of the FE-BI solution using the coarse and fine

meshes similar to the sphere case. The maximum error in the FE-BI solution occurs

in early time from 10- s to 10- 4 s. The maximum error for the fine mesh varies

from 0.02 for the e = 4 (prolate) spheroid to 0.12 for the sphere. Despite enforcing
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from spheroids with minor axis 0.05 m, u = 107 S/M, pr = 100. Uniform primary field
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the 1 mm subsurface discretization for all geometries, the meshes may still have

inhomogeneities and regions of coarse discretization that contribute to the solution

error. In addition, the FE-BI method may be more accurate for certain geometries

and excitations. For example, with axial excitation the induced currents circle the

equator of the spheroid and diffuse inward. The currents have a tangential profile

that varies with the surface profile. For the prolate spheroid, the radius of curvature

is larger at the equator and the currents have a relatively smooth tangential profile.

For the oblate spheroid, the opposite is true. Hence the FE-BI mesh is better able to

resolve the currents (in the form of AM) for the prolate cases, and the error is lower.

In general, the fine mesh offers a significant improvement in early time error for all

spheroid geometries. Furthermore, the coarse mesh solutions exhibit further error of

up to 0.05 in intermediate time (10-3 s to 10-2 s).

Figure 2-12 shows the FE-BI error for the transverse excitation case. In this case

the currents circle the spheroid between the poles, where the prolate spheroids have

the smaller radius of curvature. Hence the prolate spheroid solutions have a higher

error than the oblate spheroid solutions. The errors are generally higher for the

transverse excitation case compared to the axial excitation case, approaching 0.15 on

the fine mesh and exceeding 0.25 on the coarse mesh. The intermediate time error

is again present for the coarse mesh. Figure 2-13 shows the FE-BI normalized error

for the induced field from the 5 cm radius sphere with various permeabilities. As

the permeability increases, the skin depth decreases, and the FE-BI method accuracy

gets worse. The maximum error is approximately 0.35 for the P, = 500 case. Both

the axial and transverse excitations show similar results. The error for the coarse

mesh (not shown here) is worse as expected, with a maximum error of 0.5 for the

Pr = 500 case. Tables 2.1 and 2.2 show the mesh sizes and solution CPU times on

the fine and coarse meshes, respectively. A 2 GHz Pentium 4 with 512 MB of RAM is

used. The size of the spheroid increases as the elongation increases, so the number of

elements also increases to maintain the mesh constraint of a 1 mm resolution at the
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e Total Nodes Surface Nodes Axial Solve (s) Transverse Solve (s)

4 3287 177 104.0 703.7

2 2611 149 78.5 490.9

1 2085 129 62.2 346.9

0.5 2745 145 81.7 557.6

0.25 3645 185 121.6 892.5

Table 2.1: CPU times and mesh sizes for the fine mesh. Matlab mesh generator used,
enforcing a 1 mm discretization at the surface. A 2 GHz Pentium 4 with 512 MB of RAM
is used.

Table 2.2:
enforcing a
is used.

CPU times and mesh sizes for the coarse mesh. Matlab mesh generator used,
1 mm discretization at the surface. A 2 GHz Pentium 4 with 512 MB of RAM

e Total Nodes Surface Nodes Axial Solve (s) Transverse Solve (s)

4 596 89 27.0 80.3

2 491 73 22.1 61.1

1 400 65 20.3 51.6

0.5 524 73 23.2 69.2

0.25 634 93 29.4 89.3
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surface. The number of unknowns increases between 50-75% for the oblate or prolate

spheroid cases. The axial case is solved up to eight times faster than the transverse

case. This is due to both the requirement of numerical integrations (as outlined in

Section 2.2.1), as well as the increased number of unknowns. For the coarse mesh, the

transverse case takes up to three times longer to solve than the axial case. Finally,

the solution on the coarse mesh is up to ten times faster than the fine mesh.

The results in this section indicate that the FE-BI method is very inaccurate in

early time for objects with pr = 100. Furthermore, as the FE-BI method's mesh

discretization is increased, the accuracy increases slowly while the solution time in-

creases rapidly. The next section will present a method to improve accuracy and

efficiency in early time.

2.4 Thin Skin Approximation - Boundary Integral

Method

For the high frequency case, or for the early time response to a step change in the

primary field, the previous section showed that the FEM has difficulty resolving the

skin depth in early time. An alternative to the FEM is required. One possibility is

the TSA method, developed in an earlier work to solve the three dimensional high

frequency EMI scattering case [53]. In this section, the method will be extended to

the time domain axisymmetric case. The TSA method can then be combined with

the BI method of Section 2.2.2, replacing the FEM. The new method will be referred

to as the TSA-BI method.

2.4.1 Interior Equation

The TSA method begins by enforcing V - B = 0 inside the target, or equivalently

a divergence free magnetic field for a piecewise continuous permeability. A diffusion
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Figure 2-14: The interior control volume used in the divergence equation for the TSA

approximation, shown in the (p, ) plane. The volume is a ring in three dimensions.

equation (such as Equation 2.8) is no longer used inside the target. A volume V

is first defined as an interior control volume directly beneath node i on the target

surface, as shown in Figure 2-14. Note that the problem is still in three dimensions

at this point, such that Vi is a three dimensional ring-like volume, and node i is on a

circular contour Li around the axis of symmetry. A'+ and A7 are the inner and outer

areas, joined by surfaces A'+ and As_. The fields are expressed in the local coordinate

system that was introduced in Section 2.2.1. A weighted integral expression of the

divergence equation for the magnetic field in the control volume is then

JdVai iV - = dVi {v - (a H) -- 7 -Va'd} =O (2.145)

where a' is a weighting function. The magnetic field in the local coordinate system

is H = HC") + qH(O) + sH(s). Applying the divergence theorem to Equation 2.145

and dividing through by the volume depth d yields [53]
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d A a'H(f) - -f dA a'H(n) + - dA a' H(s) dA o'H()d ~ iH n diA n ddKH~ As~ di~
2J~+ 2- 2± 2-i

JdVH. -Va = 0 (2.146)

As d is reduced, the first two integrals merge to a normal derivative of the integral

over A+. The integrals over A+ and A; reduce to line integrals over L±i+ and Li_ 1,

which are the paths created by nodes (i+1) and (i - 1) around the axis of symmetry.

At this point the weighting function, oz', can be defined. A Galerkin formulation is

used, so that the basis and weighting functions are the same. As a result, an a' must

be chosen that can approximate the magnetic field and be compatible with the BI

formulation. (Note that the BI formulation applied the weighting and basis functions

after the problem was reduced to two dimensions; here, they are applied immediately

to the three dimensional problem.) Hence, in the (4, 2) plane, a' must also be a linear

(rooftop) function, defined as ao in Section 2.2.2 (Equations 2.113 and 2.114). Using

this function in Equation 2.146, both line integrals are zero, because a' is zero at

Lj+1 or Li_1 (regardless of the azimuthal variation). The magnetic field in the final

integral of Equation 2.146 may be expressed in terms of 0 using Equation 2.10 to

obtain

A dA a'H(n) + dAVV - Va' = 0 (2.147)

The two remaining unknowns in Equation 2.147 are H(n) and V, which need to be ex-

panded in terms of a'. Recall that V) has a cosine azimuthal variation (Equation 2.25),

and by taking its gradient the magnetic field may be expressed as

H = 1 H [H(P)(p, z) cos(p) + $H( (p, z) sin(po)+ H5z)(p, z) cos(p5)] (2.148)
p=o

For an axisymmetric target, h has only 3 and 2 dependence, and therefore H(n)

has only cos(po) azimuthal variation. As a result, the weighting function for Equa-
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tion 2.147 can now be written as

a'(p, 0, z) = a (p, z) cos(q#)
q=O

(2.149)

The normal component of the magnetic field can be written as a summation of basis

functions over the contour:

Nr

H (n) = H() al

j= 1

Nr 00

SY Z H(7H a cos(pb)
j=1 P=0

The weighting and basis functions are defined such that i -Va' = 0, so the first term

of Equation 2.147 can be expressed as

N 0 a dAa H() a cos(pk)
j=1 p=O A

1 OAn (n)
A7 On,

+ fdA at cj cos(p#)

Equation 2.151 can be substituted into Equation 2.147. The azimuthal part is inte-

grated out, for which the terms where p # q yield zero. The result is a two dimensional

integral over the entire surface contour:

A n H (

Nr oo Fi+1

+ 1 E p, ds P7ai
j=1 P=O fri-1

DH
+ ds p ac aj

an,-)

+ 2
' aj + Pai aj

for i 1,.. . , NF. Hence, we have an equation in terms of V), H(n), and 9H(n) along the'9n'

surface. The problem remains to find an expression for alH in terms of H(n), which

would yield an equation with two unknowns that can be solved with Equation 2.143.

(2.150)

Nr oo

(2.151)

Nr oo

j=1 P=O

(2.152)
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2.4.2 Thin Skin Approximation

The TSA was shown in [53] to be successful in the frequency domain using an'

-iknH("), where , is a correction factor. For a time domain TSA, we begin by

considering that the interior magnetic field is governed by the diffusion equation,

similar to Equation 2.8. One dimensional solutions of the diffusion equation for a

step change at a boundary is the complementary error function [60], denoted as 'erfc'.

A time domain TSA can be implemented by assuming that the normal component

of the magnetic field at each node can be approximated by the one dimensional

solution in the normal direction. Hence, the magnetic field will be defined as a

function of time and the normal direction, H(n)(n, t). For a given discrete time tm,

the normal component of the magnetic field on the contour at n = 0 is denoted as

H() (0, tm) = H ( . The initial condition for the magnetic field on the contour is
(M)

H (" ,and is either equal to zero when HPR(t) - u(t), or is the static solution when

HPR(t) - 1 - u(t). The FE-BI method can be used to find static solution very

efficiently, as no time stepping is required and a coarse mesh can be used. If the

normal component of the magnetic field on the contour at t1 is to change to H we

can approximate the normal dependence of the solutions as

H(n)(n, t ) - H (n + (H(n - H n)f(t - to, n) (2.153)

where

f (n, t) = erfc ( (2.154)
(2,./A (t))

where A =1/ c~p. Equation 2.153 can be found directly from the one dimensional

diffusion equation for the given parameters and appropriate boundary conditions. At

time t = t 2 , the magnetic field would again change, this time to H 2n) and the solution(2)1

of the interior magnetic field would be

H(n)(n,t 2) = H (n + (H (n - H (j))f(n,t 2 - to) + (H (n - H () f(n, t 2 - t 1 ) (2.155)(0 1) (0)() (1)
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and so on, such that the solution for any t = tM would be

M

H(n) (n, tm) = H o') + E(H (n)whi0) (t t
m=1

which can be cast in integral form as

H n) (n, tM) = H +(0)

- H 1) )f (n, tM - tm-1)

/ t H C" )(n ) 
f(T

0 dT 
f (n, tM

The normal derivative of HC() for mode p at node i in Equation 2.152 can then be

written as a recursion

pj,(M) __

Oni
MS2 M

V A- E

H(*) - H (n)
pj,(m) pj,(m-1) R(tM, tm)

Atm
(2.158)

where R(tM, tm) = [ -tm - t -~ tm--) and Atm = tm -tm-l. The normal

derivative may then be substituted into Equation 2.152, resulting in an equation with

two unknowns on the surface: H .and 0(m) The final form of the interior equation

is

(7) -2
pi,(M) m 7

1 BA" 1rf ::
+ A

1 z

Nr oo

- E pj,(M) ds (PVai V cyj +
j=1 p=:::

H (n
pj,(M- 1)

AtM

M-1 H(n) - H(n)
pj,(m) pj,(m-

M=1 AtM

Equations 2.159 and 2.99 can then be used to solve for the unknowns on the surface,

H 2) and V(M). An interior mesh is not required, and hence the TSA-BI method is(M)

much more efficient than the FE-BI method. Furthermore, there is no restriction the

(2.156)

- T) (2.157)

j=1 p=O

ds p aci o-

2 Nr oop 2

p i 
_j

- r+1

-) R(tm, tn)_ I -

2

ds p cicj

(2.159)
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skin depth in early time. However at some later time, when the fields have significant

penetration into the object, the semi-analytical form of H( will no longer be valid

and the method will fail. The regime of validity of TSA-BI method is investigated in

the following section.

2.5 Thin Skin Approximation - Boundary Integral

Results

The TSA-BI solution can also be compared with the analytical solution for a sphere.

Figure 2-15 shows the nonmagnetic sphere's induced magnetic field at z = 0.2 m

for the axial and transverse excitation cases. In both cases, the TSA-BI method

is very accurate in early time but begins to diverge from the analytical solution at

approximately t = 10-4s. At that time the skin depth begins to depend on the

geometry and the ID semi-analytical approximation of Equation 2.154 is no longer

accurate. Figure 2-16 shows the induced field from the p, = 100 sphere. The accuracy

is excellent in this case, with the TSA-BI method solution diverging slightly from

the analytical solution at approximately 10-2 s. As shown in Figure 2-6, the skin

depth appears to be small through intermediate time. Hence, the semi-analytical

approximation and the TSA-BI method remains accurate for most of the time history.

The normalized error analysis can be performed for the TSA-BI method, shown in

Figure 2-17 for the axial case. For the nonmagnetic case the TSA-BI method begins

is very accurate in early time, and begins to diverge from the analytical solution at

approximately 10-4 s for each spheroid. At 0.1 s, the error ranges from 0.1 to greater

than 0.6, and will continue to diverge in time. For the M, = 100 case, the error is

very low over the entire time history, with a maximum of between 0.01 and 0.05 at

0.1 s. Figure 2-18 shows the TSA-BI method's error for the transverse excitation case.

The trends are similar to the axial excitation case, although the oblate spheroid with

e = 0.25 exhibits larger error for both the p, = 1 and p, = 100 cases. Figure 2-19
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Figure 2-15: Induced magnetic field at z = 0.2 m, from a sphere with r = 0.05 m, Ar 1,
a- 10 7 S/m. Uniform primary field turned on at t = 0. Solid line is the analytical solution,
dash line is the TSA-BI method.
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Figure 2-16: Induced magnetic field at z = 0.2 m, from a sphere with r = 0.05 m,

P, = 100, - = 10 7 S/M. Uniform primary field turned on at t = 0. Solid line is the
analytical solution, dash line is the TSA-BI method.
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Figure 2-17: TSA-BI Result. Normalized error of the induced magnetic field at z = 4b m
from various spheroids. Minor axis a or b = 0.05 m - = 10 7 S/M. Uniform primary field
turned on at t = 0.
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Figure 2-18: TSA-BI Result. Normalized error of the induced magnetic field at z = 4b m
from various spheroids. Minor axis a or b = 0.05 m o- = 10 7 S/M. Uniform primary field
turned on at t = 0.
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Figure 2-19: TSA-BI Result. Normalized error of the induced magnetic field at z = 0.2

m, from a sphere with r = 0.05 m, U 107 S/M. Uniform primary field turned on at t = 0.
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2.5. Thin Skin Approximation - Boundary Integral Results 99

shows the TSA-BI normalized error for the induced field from the 5 cm radius sphere

with various permeabilities. As the permeability increases, the skin depth decreases,

and the TSA-BI method accuracy gets better. The maximum error is approximately

0.275 for the p, = 1 case. Both the axial and transverse excitations show similar

results.

Given that the TSA-BI method is accurate in early to intermediate time, and

the FE-BI method is accurate in intermediate to late time, it is natural to combine

them. The FE-BI method can be run efficiently on a relatively coarse mesh, and

the TSA-BI method is run separately. The two results may be combined at the

point in time where they converge the closest. Figure 2-20 shows the results for the

axial and transverse excitation cases when p, = 100. For the combined method, the

maximum error occurs in intermediate time when the two methods converge. For

the axial excitation case, the maximum error is 0.035 which occurs in the solution

for the e = 0.5 oblate spheroid (see Figure 2-17). For the transverse excitation case,

the maximum error is 0.05, which occurs for the e = 0.25 oblate spheroid case (see

Figure 2-18). In both cases, and for other spheroids, the error is small and certainly

sufficient for inversion techniques. Figure 2-21 shows the normalized error using the

combined method for a sphere with various permeabilities. The maximum error is

0.025, which occurs for the p, = 50 case. The error of the combined method is very

low regardless of the permeability.

Finally, for efficiency concerns it is useful to study the error of the combined

method for larger time steps. In general, the FE-BI and TSA-BI methods may be

adjusted to march in time as t = n-zAto (where Ato = 10-- s). The implicit Euler

method used for both methods (Equation 2.141) accumulates error on order of At.

For the previous results, -y = 2 was chosen due to the V/ evolution of diffusion

equations. For that time step, the TSA-BI and FE-BI methods are very accurate in

their respective regions of validity, so the time stepping error must be small. Hence,

-y can be increased to achieve faster solution times while still maintaining reasonable
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Figure 2-20: FE-BI and TSA-BI Combined result. Normalized error of the induced mag-

netic field at z = 4b m from various spheroids. Minor axis a or b = 0.05 m o = 10 7 S/M.

Uniform primary field turned on at t = 0.
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Chapter 2. Time Domain Method for EMI Sensing

Table 2.3: CPU times of the combined method for different time steps - t =

At = 10--7s. A 2 GHz Pentium 4 with 512 MB of RAM is used.
nYAt where

accuracy. Tables 2.3 and 2.4 provide the CPU times and normalized error as -y is

increased. All the cases dealt with earlier are presented in the tables. Generally,

the -/ = 4 solution is calculated five times faster than the -y = 2 solution. The

maximum error increases slightly as y increases, and the user can ultimately decide

what compromise to make between accuracy and efficiency.

2.6 Comparison With Experiments

As discussed earlier, EMI scattering sensors operate in both the frequency domain

and the time domain. An advantage of time domain instruments is that the primary

field is off when the measurements are taken. Hence, more sensitive measurements

can be taken and the receiver coils may be set in any configuration. Figure 2-22(a)

shows an experimental setup of a chrome-steel sphere placed within a Helmholtz coil.

The primary coils are 1.57 m on a side and are separated by 0.89 m. The primary

Solution Time (s)
Case y = 2 = 2.5 y = 3 'y=

4

e = 4, Axial 38.6804 18.8927 12.2039 7.5153

e = 4, Transverse 92.5527 47.1724 30.9015 19.5674

e = 2, Axial 33.1828 16.1154 9.7389 5.8130

e = 2, Transverse 73.3687 37.5907 23.7468 14.7628

e = 1, Axial 31.7138 14.7736 9.0409 5.2574

e = 1, Transverse 63.0937 30.9593 19.9475 12.2008

e = 0.5, Axial 45.6018 21.4460 13.1201 7.3437

e = 0.5, Transverse 91.0218 45.2780 29.0230 17.3571

e = 0.25, Axial 49.2875 24.2587 15.2836 9.0718

e = 0.25, Transverse 111.3347 55.9075 36.2661 22.5182
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Case y = 2 y = 2.5 y = 3 y = 4

e = 4, Axial, p = 1 0.0149 0.0157 0.0169 0.0298

e = 4, Axial, p = 100 0.0073 0.0148 0.0101 0.0152

e = 4, Transverse, p = 1 0.0150 0.0158 0.0170 0.0296

e = 4, Transverse, p = 100 0.0096 0.0135 0.0192 0.0369

e = 2, Axial, P = 1 0.0080 0.0090 0.0145 0.0304

e = 2, Axial, p = 100 0.0130 0.0139 0.0153 0.0236

e = 2, Transverse, P = 1 0.0078 0.0087 0.0141 0.0298

e = 2, Transverse, p = 100 0.0100 0.0432 0.0163 0.0323

e = 1, Axial, p = 1 0.0280 0.0282 0.0282 0.0350

e = 1, Axial, p = 100 0.0174 0.0188 0.0216 0.0333

e = 1, Transverse, A = 1 0.0219 0.0221 0.0228 0.0329

e = 1, Transverse, p = 100 0.0276 0.0276 0.0278 0.0293

e = 0.5, Axial, A = 1 0.0036 0.0073 0.0132 0.0279

e = 0.5, Axial, A 100 0.0192 0.0200 0.0216 0.0392

e = 0.5, Transverse, A = 1 0.0065 0.0092 0.0140 0.0299

e = 0.5, Transverse, A = 100 0.0360 0.0313 0.0338 0.0394

e = 0.25, Axial, p = 1 0.0037 0.0067 0.0118 0.0270

e = 0.25, Axial, A = 100 0.0118 0.0122 0.0133 0.0235
e = 0.25, Transverse, A = 1 0.0165 0.0171 0.0180 0.0317

e = 0.25, Transverse, p = 100 0.0504 0.0541 0.0553 0.0622

Table 2.4: Maximum normalized error of the combined method for different time steps
t = nriiAt where At = 10- 7s.
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(a) Helmholtz coil, courtesy of: Zonge Engineering, 3322 East
Fort Lowell Road, Tucson, AZ 85716.
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Figure 2-22: Comparison of the combined method with experimental data from a

Helmholtz coil. Parameters extracted are a = 2.2 x 106 S/m and pr = 31.
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field is turned off and the induced field (OB/&t) from the sphere is measured in the

receiver coil. The transmitter coil is modeled with the Biot-Savart law to calculate

the primary field incident on the sphere. The primary field is used as the input to

the FE-BI and TSA-BI methods, and incorporates the 50 p s linear ramp of the

instrument. The induced field is calculated over the area of the receiver coil, and a

quadrature integration is used to calculate the effective &B/&t. The parameters of

the sphere are unknown, so a Nelder-Mead simplex (direct search) method is used

to match the FE-BI and TSA-BI combined method to the data. The best match

occurs when - = 2.2 x 106 S/m and A, = 32. There is some ambiguity in this result,

as another reasonable match is - = 4.2 x 106 and A, = 78. Previous results have

indicated that the response depends on the p,l/ ratio as much as the parameters

themselves [64]. Figure 2-23 shows the Zonge TEM field instrument that is used by

Zonge Engineering to detect and discriminate UXO. The chrome steel sphere is buried

17 cm below the instrument. The transmitter is a large octagonal coil, surrounding

the three smaller receiver coils. The entire instrument is again modeled with the Biot-

Savart law to obtain the primary field, which in this case is not uniform but must be

approximated as such. Transverse excitation is obtained by tilting the instrument on

its side. Using the parameters determined from the Helmholtz coil, the FE-BI and

TSA-BI combined method yields results shown in Figure 2-24 that are very close to

the experimental data. As is common practice, a magnitude correction factor of 2.3

is applied to both results, which likely accounts for unknown factors in the receiver

circuitry.

2.7 Conclusions

This chapter presented a hybrid time domain numerical method that can calculate

the EMI response from a UXO target with greater accuracy and speed than previous

available. In response to a transient primary field, a conducting and permeable UXO

105



Chapter 2. Time Domain Method for EMI Sensing

Figure 2-23: TEM instrument, courtesy of: Zonge Engineering, 3322 East Fort Lowell

Road, Tucson, AZ 85716.
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Figure 2-24: Comparison of the combined method with experimental data from the Zonge
TEM instrument. Parameters used are - = 2.2 x 106 S/m and Mr = 31, previously extracted
from the Helmholtz coil data. Magnitude correction of 2.3 applied to both cases.
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target produces a transient secondary field. In early time, the field within the target

has a small skin depth that is difficult to model with conventional numerical methods

like the FEM. To demonstrate this, an FE-BI method was implemented and shown

to be inaccurate in early time. The ability to resolve very small skin depths in

early time (or high frequency) was enabled by the TSA method that replaces the

interior FEM and does not require an interior mesh. The TSA-BI method produced

a faster and more accurate solution to the EMI problem for early to intermediate

time scales, compared to the FE-BI method. For certain materials, such as steel,

the TSA-BI method was shown to be accurate throughout the entire time of interest.

Furthermore, the methods were combined, so that the TSA-BI solution was used

for early time and the FE-BI method was used (on an efficient mesh) for late time.

Compared to the standard FE-BI method, the new method is much more accurate

and at least ten times faster. The results were compared with experimental results,

and the agreement was excellent.
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Chapter 3

Fast Calculation of

Electromagnetic Wave Scattering

from Layered Rough Surfaces

3.1 Introduction

Electromagnetic wave scattering from rough surfaces is a popular topic of research,

with applications in remote sensing, communications, optics, and radar system mod-

eling. Approximate analytical techniques have been developed to solve the scattering

from a single surface, but those solutions are usually based on limiting cases such as

small roughness [65, 66, 67]. Numerical techniques have more general applicability,

albeit at the expense of computational complexity. A common solution method in-

volves a 1D approximation of the rough surface that is then solved with the Method

of Moments (MoM) [68, 69]. The ID approximation is widely used because full 2D

surface simulations are computationally limited to small domains, even with advanced

solution techniques [70, 71]. Current research is focusing on increasing the applicabil-

ity and, in particular, the efficiency of both ID and 2D surface scattering simulations

[72].
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Chapter 3. EM Wave Scattering From Layered Rough Surfaces

Less attention has been paid to the general case of scattering from stratified rough

surfaces, such as scattering and propagation over terrain, where the layers may repre-

sent a geophysical medium such as snow or foliage. Most work has either focused on

a single penetrable rough surface, or has relied on analytical techniques for scattering

from layered media with flat interfaces. For some cases, modeling a layered medium

with a single rough surface is sufficient, especially if the surface is nonpenetrable,

while for other cases an analytical approach may be sufficient if the interface rough-

ness is small. However, many other cases do not fall into either category, and require

a model that can account for stratified rough surfaces. For example, recent work [73]

has calculated the effective permittivity of a flat layer of foam on the ocean surface,

with remote sensing applications in mind. A model of scattering from stratified rough

surfaces could be combined with those studies to account for the rough ocean surface

and irregular distributions of foam, with few restrictions on the surface profiles. Other

applications include scattering from sea ice, soil, and even propagation in waveguide

geometries. This chapter concerns the development of a precise model that can com-

pletely model the scattering from stratified rough surfaces. Without incorporating

the effects of such layers for propagation, over forest or sea ice for example [74, 75],

the results may be very inaccurate.

The MoM solution for a single large scale ID surface is generally solved with pulse

basis functions and point matching, although some solution techniques use special-

ized basis functions for specific incident fields [76]. The unknowns in the MoM are

the surface currents, which must be sampled with typically ten pulse basis functions

per wavelength. For large surfaces the number of samples, N, can be prohibitively

large. The MoM matrix equation requires O(N 2 ) memory and up to O(N 3) opera-

tions to solve, a computational complexity that can render the problem intractable.

Recent effort has focused on efficient solution techniques for the ID MoM problem.

A complete survey of current numerical techniques for rough surface scattering may

be found in [72]. One of these techniques is the Forward Backward (FB) iterative
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method [77, 78], that reduces the memory requirements to O(N) and the compu-

tational requirements to O(N 2 ). The FB method is based on the physics of the

problem, splitting the scattering contributions into forward and backward traveling

components, often converging much faster than an O(N 2 ) conjugate gradient solu-

tion technique. The efficiency of the FB method has been greatly increased with

the recently developed Spectral Acceleration (SA) algorithm [79, 80, 15], which fur-

ther reduces the computational complexity to O(N). The combined method will be

referred to as FBSA throughout this chapter.

This work focuses on scattering from layered rough surfaces, using integral equa-

tions derived for M stratified regions separated by M - 1 rough interfaces and solved

with the MoM. Each rough interface may be unique, and each region may have a

unique permittivity (the formulation can be easily extended to permeable layers). Fast

techniques become important as the number of unknowns increases to 2(M- 1)N, and

therefore the FBSA algorithm is applied. Scattering from a single penetrable rough

surface has been solved with canonical grid methods [81, 82], and recently with the

FB method [83]. The formulation presented in this chapter applies the FBSA method

to an arbitrary number of layered rough surfaces. For the sake of illustration, scat-

tering from a dielectric layer on a Perfect Electric Conductor (PEC) is investigated.

The accuracy and efficiency of the method are compared to analytical methods for

flat surfaces and the exact MoM. Furthermore, convergence of the method is studied

for various surface roughness and layer permittivities.

3.2 Formulation

We consider a layered medium as shown in Figure 3-1, containing M regions and

M - 1 rough surface interfaces. An incident field V4' (T) impinges on surface Si, and

we wish to calculate the scattered field V)' (T) in region V1. Note, however, that the

formulation can be used to calculate the scattered field in any region from a source
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in any region. For TE and TM incident fields, o represents the electric field and the

magnetic field, respectively. In any region 1, the total field is denoted by oi and the

scattered field is denoted by 0'. The notation in this work follows that of [691.

3.2.1 Integral Equations

Using Green's Theorem, for any region V1, we write:

JfrI [4i (T') V 2gl V) g, (T 7;) V 2 b1

d' + dY' + dY' [l (V') ft* - Vgl (T, 7') - gi (T, -') h* - Vol (7'33.1)

where /1 (T) = /"c (T) + o1 (7) in region V, 01 (T) = 08 (T) elsewhere, and the integral

over S) refers to the integral over all surfaces at infinity. The normal vector fi* to the

surface S, is directed outward from the region V1, such that in Figure 3-1 the normal

vectors are related by nt* = hl-I on Sl_1 and ft* = -hl on S. The Green's function

in two dimensions is the Hankel function:

g1 (T, T') H(i) (ki 1 7 - ') (3.2)
4

An integral in region V1, where 1 = 2, 3, ..., M, contains four surfaces, S" = S,_ +

S,+, Sl-1, and S1 . The integrals in regions V and VM contain the surfaces at infinity

and Si or SM, respectively. For the cases considered in this work, the incident and

scattered fields vanish at the edges of the surfaces and guided modes in the layers

generally decay due to the interface roughness, such that the integrals at S,_ and

S)+ contribute zero. The integral at infinity in the lower halfspace also vanishes by

the Sommerfeld's radiation condition and the integral in the upper halfspace gives

rise to the incident field [84]. The source and observation points, ' and T, are both

on the surface, requiring the analytic extraction of the singularity from the normal
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derivative of the Green's function [69]. On Si, from the integral equation for region

V1, we have

- ds'g1 (Y) hi -Vgji (,')2 S

+ jds'gi (T, T') hi -V~b b P) in (T)
JSi

(3.3)

The general integral equation for region V contains both S, and SI+1:

/1 (T) + ds'bi (I')

- 1 1 d s ' 41 (T ') f 1 ± -

hi - Vg (r,') 

g1 (, Y') +
IS1+

- J ds'g, (T, -') f, - V4' (')

ds'g, (VY') ft+1 - V4' 1 (T') 0

Finally on SM-1, from the integral equation for region VM, we have

bm(T)+ j m (m-1 V M (r,'T)

-j ds'gm (7,/) ftM-1 VM (') = 0
JSM_1

(3.5)

Each region V, has two unknowns that must be solved, 01 (T) and it -Vol (T), on each

bounding surface. Each surface S then has four unknowns, two from region V above

and two from region V+1 below. The four unknowns can be reduced to two through

the boundary conditions. In the TE case, 01 represents the electric field, hence

T(r) - Qxi(V)

Hl(T) = x 17 l(7j)
iwp,

hi x ~,(7) = - (fi - V b(T))

(3.6)

(3.7)

(3.8)

(3.4)
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The boundary condition of continuous tangential magnetic and electric fields yields

Vw (r) = o1+ 1 (r) , r E S (3.9)

hi - Vol (T) = - V+1 ±70+1 (T) , 7 E S, (3.10)

on S. For the TM case, where / represents the magnetic field,

Hl(-) = '1 (T) (3.11)
1

El(T) =-y x 1701(-) (3.12)

E(x () = -- (hti V'oi()) (3.13)

The boundary conditions are then

(T) =o1+1 (r) , T E Sl (3.14)

hi- Vol ( =+ - Vol+1 (T) , Y E S, (3.15)
61+1

on Sl. Applying the boundary conditions to Equation 3.1 may now yield integral

equations in terms of the unknowns ol and hl -Vol on surface Sl. Hence the subscripts

on the unknowns refers to both the region and the surface on which they exist. For

ease of notation, the unknown i -Vol (T') is denoted as U1.

3.2.2 Method of Moments (MoM) Implementation

The MoM may now be applied to the integral equations. Point matching with pulse

basis functions is used in this work. All the surfaces are assumed to be of equal length

L, divided up into N segments of width A. = L/N. The z coordinate is denoted by

f1 (x) for surface Sl, and the center of the m'h surface segment is (xm, fi(xm)). The

unknowns on surface S, at segment xm are denoted as 0m,I and Um,i. At each position

Xm, there are M -1 segments and 2(M -1) unknowns. The differential surface length
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at xm is expressed as dsm,i = dxm,i 1 + (dl::) = Axzlm,i. Equation 3.3 may be

written as
=(, U,1 - =(, )nc

A U1+ B V$1 =V@ (3.16)

Note that the A and B coefficients each have three superscripts, the first referring

to the Green's function subscript, the second to the surface of observation, and the

third to the surface containing the source. Equation 3.4 splits into two sets of MoM

equations; first

pjA U-1 + B + A U B 0 (3.17)

for observation points on S1- 1, and second

pA U1-1 +B +A U 1+B V1 = 0 (3.18)

for observation points on S1. For the TM case, we define p, = /c1 1 , and for the TE

case pi = pi/pi_1 = 1.0. Finally, from Equation 3.4, we obtain

(3.19)(M,M-1,M-1)_ 
+(M,M-1,M-1)-pM-1A Um-1 + B bmj = 0

For a region V, given observation at xm on Sb and source at x, on Sc, the coefficients

may be written as

A( ,c) 4 { : )H (ka |m,b

W(a,c) 1 + In

B(ac) =

- rn,cI) Alm,b

k ,a x m )]

- (1H a rm,b-rn,c z f,mn
4 Tm,b-Tn, c

1- W(a,c) f,'(x m ) A
2 47r 1+fb'(XM)

2

for (b = c,m / n) or b= c
(3.20)

for (b = c, m =n)

for (b=c,m rn) or b:c c
(3.21)

for (b = c, m = n)
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where w(a,c) =1 if a = c and -1 otherwise, -y is the Euler constant, and Af,mn =

(fC(xn)(xn - Xrm) - (fc(Xn) - fb(xm))). Furthermore,

Tm,b - TnCI-V/(Xm -Xn) 2 + ((Xm) - ,X)2

The solutions for the scattered fields in any region may then be obtained using the

appropriate integral equation and boundary conditions. A medium with M regions

and M - 1 surfaces will produce 2(M - 1)N unknowns that can be solved with the

resulting 2(M - 1)N equations, significantly increasing the computational cost and

memory requirements over a single surface problem. For brevity, the formulation is

continued for a three region geometry, containing four unknowns 1bl, U1 , '42, and U2

on two surfaces S1 and S 2. Equations 3.17-3.19 can be written as

Z I= V (3.22)

where

A B 0 0
= (2,1,1) =(2,1,1) = (2,1,2) =(2,1,2)

p2 A B A B
Z ==(2,2,1) -(2,2,1) -(2,2,2) -(2,2,2)

p2 A B A B
=(3,2,2) =(3,2,2)

0 0 p3A B

'1-inc

and - 0
I=V

U 2  0

2 0
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3.2.3 Forward Backward (FB) Method

In this section, the FB method is applied to the three region geometry. The formu-

lation can be extended to the M region geometry in a straightforward way.

Begin by splitting each of the submatrices in Z into upper, lower, and diago-

nal parts, denoted with superscripts U, L, and D, respectively. For example, the

submatrices for region (1, 1, 1) are split as

A =A +A +A (3.23)
(1,1,1) _U(Lll =L (1,1,1) =D ,(1,1,1)

B =BB +B +B (3.24)

The unknown vector is split into forward and backward components, denoted with

superscripts f and b, respectively,

= +7 (3.25)

The matrix Z can also be split up, each component containing all the corresponding
-D

components of the submatrices. For example, Z is a block diagonal matrix con-

taining all the diagonal submatrices. With the matrices split, Equation 3.22 can be

rewritten as

D - L -f -bDf (I +V) (3.26)

=D-b =U -f -bZ I = -Z (I + I) (3.27)

This system of equations is solved with forward and backward substitution. To solve

the system, the iterative method 'sweeps' forward and backward across the surfaces,

similar to the single surface case. The group of unknown quantities on each surface

at position xm are solved with all the previously calculated values at x, where n < m

in the forward sweep and n > m for the backward sweep. The system may be written
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as

-mmd = Lm - mn(df + dn) (3.28)
n<m

LmmAm = - E Lmn(dn+ 4) (3.29)
n>m

where L is defined as

Amn' Bmn 0 0

p 2 Am' Bm' 1n A$m'n Bmn2 '

Lmn =n mn

0 0 p3A(,' 2  B(32 ,

-f 4' 4' 4and the vectors contain the unknowns at xm, for example dm - iUlfm ofm Ulm f m]'

and -m = [<flc 0 0 0]. Each step of the FB method is now a set of 2(M - 1) (in

this case 4) equations containing all the interactions of V) and U. Thus each for-

ward/backward sweep requires N(N - 1) number of 4 x 4 matrix vector products and

2N inversions of 4 x 4 matrices. As a result, the overall algorithm remains O(N 2),

although N has increased by a factor of four over the case of a simple single PEC

surface. The FB method converges at a rate that depends on the roughness of the

surface, as each step in the iterative process takes into account another change of

direction of the scattered waves. For most rough surfaces the incident wave does not

scatter forward and backward on the surface more than a few times, and so the FB

method converges in a few iterations as will be shown in subsequent sections.

3.2.4 Spectral Acceleration (SA) Method

The next step is to incorporate the SA algorithm into the FB method to achieve

further efficiency gains. The SA algorithm is demonstrated here for the forward
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scattering case. The first step splits the integration domains into strong and weak

regions, written as

m-MA-i M-1_

Lmm z n= m Z E Lmn -Z Lmnd = mWmSm (3.30)

n=1 n=m-M,

= f
so that W is the summation of matrix vector products Lmn d for n < m - M, - 1,

where M8 A. is the strong region. The SA algorithm is used for the summations in

the weak region, and the standard FB method is used for summations in the strong

region. The SA algorithm uses the spectral definition of the Hankel function for two

points on the surface, Tm and T7r,

H() (kfm - nI) = f eik[lxmxn-l cosa+(f(xm)-f(xn))sin a] da (3.31)

where the contour of integration Fi is shown in Figure 3-2. The spectral representation

of the Hankel function is next substituted into W, and the integration and summation

are interchanged. The resulting expression for Wm is

m-Ms -1 =A M-M ,- - -A
Wm = L mnd = 1- mndndc = I m -Fm da (3.32)

n=1 r1 n=1 r1

eikifi(xm)sina A$1) BS) 0 0

where eik2f1(xm)sin mn p2 Amn B$n AmSn 13n

Ym = ik2f2(xm)sina P2A,1 L(2, 2,2) (2,2

eik3f2(xm) sin 0 0 p A3,2 B0,2

where A and B are the spectral versions of A and B, respectively, and do not depend

on the vertical location of the observation (which has been extracted to jm)- The

two superscripts refer to the Green's function (region) and source surface location.
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Specifically,

A c) = 1 + f (xm)eika[(xm-xn) cosa-fc(n)sin a] (3.33)

B" = Amn)ka [1 + f(xm) cos a + sin a (3.34)

The computational benefit of the SA method is that the expressions for Fm(a) can

be updated recursively as

Fm =Fm-1-h+Lmn dn, where n=m- 1 -M, (3.35)

where h = [eikiAx COSa eik2Ax COSa eik2A COSa eik3Ax COS]'. The set of unknowns at xm

are calculated by exactly integrating (summing the matrix-vector products in Equa-

tion 3.28) the preceding surface currents in the strong region, and using the SA

method for the surface currents in the weak region. The contribution of the weak

region to the unknowns at xm are calculated by updating Fm(a) and integrating over

I 1 . Hence, the computationally demanding summation of matrix-vector products

over the entire surface preceding xm is replaced by the integration over IF.

In Equation 3.31, when evaluating the Hankel function in the spectral domain

given source (Ta) and observation (Tm) points, F is usually replaced by the steepest

descent path, FSDP, passing through the saddle point. Along 1 7
SDP the integrand does

not oscillate and decays exponentially away from the saddle point, and the integration

requires fewer sampling points. The saddle point is located along the real a axis at

tan-l[(zm-zn)/(Xm-Xn)]. For the SA method, the integration for a given observation

at rm is taken over a summation of all sources in the weak region, whose saddle points

are spread out along the real a axis. There is no longer a unique FSDP path, so a

new linear integration path F3 is chosen tilted at angle 6, as shown in Figure 3-2.

The choice of an optimal contour path is not trivial, and has been addressed in detail

[79, 80, 70, 15]. For the layered media case it is efficient to choose more than one

integration path, depending on which surfaces the source and observation points lie.
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SIm(u)

. Re(a)
2

Figure 3-2: Spectral integration path for the Hankel function. The integration path J'j
with 6 = 7r/4 is the steepest descent path for saddle points on the origin. With multiple
saddle points spread out on the Re(a) axis, a new integration path must be chosen with
angle 6.

The choice of 176 in this work follows that of [15], which chooses the integration path

based on the largest saddle point, aSPmaX. For the M = 3 case, three saddle points

may be chosen as:

SPmaxl = tan-1 fl()maxf( - min)

aSPmax2 tan 1 (fl(x)maxs-(X)min

CeSPmax3 tan 1 (f2(X)maxf-(X)min

where aSPmax1 and aSPmax3 are used to find the integration path when both source

and observation are on S1 or both are on S2 , respectively, and aSPmax2 is used when

source and observation are each on different surfaces.

Finally, with the appropriate parameters, the integrations in the spectral domain
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may be carried out. For example, we obtain for Wmn:

WM 4 S gm(ap) Fm(ap) (3.36)
P=-Q

where a has been mapped to the real axis using

da - Ae~4 (3.37)

a -> ap = pA'e~-j (3.38)

The number of integration points Q is chosen based on the behavior of the integrand,

as described in [15]. As with the integration path, the number of integration points

may be different for each Wm.

3.2.5 Incident Field

Any source currents for MoM rough surface scattering needs to vanish at the ends of

the domain to avoid unwanted edge diffraction. In our case, we construct a tapered

wave from a spectrum of plane waves [66],

inc(X, Z) = 9 dkxeikxx-ikozz exp (kx - kix)2q2 (3.39)

The footprint of the beam can be chosen with g, such that the magnitude is 1/e down

at Ig| wavelengths from the center. Care must be taken to avoid evanescent modes,

which have a form eikxx (with exponential decay in z) and travel along the surface.

The formulation in this work assumes that the incident field is zero along S_, and

inclusion of incident waves traveling along 0 = ±r/2 violates this assumption, result-

ing in considerable error. Grazing incidence can still be examined using the tapered

wave, but an appropriate g must be chosen such that the spectrum does not exceed

ko on the kX axis. Other types of incident fields may also be used, such as the field
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from an antenna. In such a case, care must still be taken to ensure the incident field

vanishes at the edges of the domain. Generally, the antenna may be placed near the

edge of the surface, such that the field at that edge ('behind' the antenna) is weak.

3.3 Results

For the sake of illustration, consider a three-region medium, where the bottom region

is a perfect electrical conductor, such that 02= 0 for TE incidence and U2 = 0 for

TM incidence.

Note that the same sampling rate of the surface currents is used for both surfaces.

Any 61 may be considered as long as the subwavelength sampling constraint of the

MoM is enforced in both regions.

3.3.1 MoM Comparison with Analytic Expressions

The results obtained by the numerical method can be compared to simple analytical

solutions for limited cases. The exact analytical solution is easily obtained for the

three-region medium under consideration when the interfaces are flat. Although it

is not a complete check of the rough surface formulation, this comparison is a useful

validation of the layered medium MoM formulation. The total field in region 1 is

(x, z) = 9 dk(e-ikzz + Reikz )eikx exp [(k kix ) 1  (3.40)
27r _ 0 4 .

Considering the first and second interfaces are located at z = do and z = di, we have

R - R 12 + R 2 3 ei2k1z(d2-d1) ei2 kld (3.41)
1 + R 1 2 R 2 3 ei2k2z(d2-d)

where, for the TE case, R 12 = (pikiz - p1k2z)/ (2kz + pik2z) and R 2 3 = -1, and for

the TM case, R 12 = (62 kiz - cik 2z)/(62 k1 2 + Eik 2 z), and R 2 3 = 1. For the analytical
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xIX

-50 -40 -30 -20 -10 0

Figure 3-3: TE Incident and scattered fields from dielectric layer on a PEC. The depth
of the dielectric layer is d = 10A, and the relative permittivity is E = 2.0 + i0.05. Incident
field is a tapered wave at 9 = 30', g = 4A. The surface of the dielectric is at z = 0. Units
are dB.

comparison, a relative permittivity of Eir = 2.0+iO.05 is considered, and the dielectric

layer has a depth of 10A.

A tapered wave at an angle of 0 = 300 with g = 4A is considered incident on a

surface of length L = 40A. The magnitude of the total field is shown in Figure 3-

3. Two reflected tapered waves can be seen, the first a reflection from Si, and the

second is a reflection from S2. Further reflected components are attenuated by the

lossy layer. To calculate the error of the MoM solution, the difference between the

numerical and analytical solutions are calculated and normalized with respect to the

incident field. Figures 3-4(a) and (b) show the error in the TE and TM scattered

fields, respectively. The full MoM solution compares well to the analytical solution,

with a maximum error of 0.5%. Other incident angles and surface depths produce

similar results, and the solutions converge as the sampling rate is increased.

N
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(a) TE Case.
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(b) TM Case.

Figure 3-4: Scattered field error. Scattering from a dielectric layer on a PEC with d = 10A,
E = 2.0 + i0.05, 6 = 30', g = 4A. The surface of the dielectric is at z = 0.
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3.3.2 FBSA comparison with MoM

Rough surfaces are now considered to compare the standard MoM with the FBSA

method for the three-region medium under consideration. A Gaussian rough surface

is considered in this comparison, with correlation length 1 and rms height h. Similar

to the analysis carried out in [83], three types of rough surfaces are considered. The

first is a slightly rough surface with 1 = 1A and h = A/6 (rms slope = 130), the second

is a moderately rough surface with 1 = 1A and h = A/v/ (rms slope = 450), and the

third is a very rough surface with I = 1.1A and h = 1.33A (rms slope = 60'). The

same profile is used for the upper and lower surfaces for convenience, although the

formulation does not require that restriction. The depth of the layer is d = 10A, and

the permittivity is again e = 2.0 + iO.05. The FBSA method uses a strong region of

5A. Increasing the strong region yields more accurate results at the expense of CPU

time. The convergence of the FBSA method at iteration j can be studied with the

residual error or the absolute error [85]. The residual error , r(j) is defined as

=~L -bj1 -bj

r _) V Z I Z (I ' ) (3.42)
1| V || || V |

The absolute error is calculated by comparing the FBSA solution to the MoM solution

at each iteration, and is defined as

- -MoM

a(j) = -MoM (3.43)
I ||M M

Figure 3-5(a) shows the residual error convergence of the FBSA method for the TE

case. The method converges to r(j) = 104 in j = 12 iterations for the slightly

rough surface, increasing to j = 15 iterations for the moderately rough surface. The

roughest surface has not yet reached r(j) = 10- after j = 15 iterations. Figure 3-

5(b) plots the residual error convergence for the TM case, showing slightly faster

convergence than the TE case and the same result of slower convergence for rougher
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Figure 3-5: Residual convergence of FBSA method for different rough surface rms slopes.

Incident field with g = 10A, 0 = 300, impinging on a rough surface with L = 51.2A, d = 10A,
ci = 2.0 + iO.05.
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surfaces. These trends are consistent with the FB method for single rough surfaces

[83].

Figure 3-6(a) shows the absolute convergence for the TE case. The absolute error

decreases at a similar rate to the residual error, but reaches a minimum level at

around a(j) = 10-3. This behavior is characteristic of FB iterative methods [86], and

the minimum error depends partly on the numerical precision of the computer (for

the FB method) and mostly on the accuracy of the SA technique. Increasing the size

of the strong region lowers the minimum error. Figure 3-6(b) plots the absolute error

convergence for the TM case. The TM case again converges faster than the TE case,

but reaches similar minimum error levels. The roughest surface has a minimum error

of 10-3 after 15 iterations. In practice, the absolute error is not available, and the

convergence of the FBSA method must be measured on the residual error, as well as

the accuracy of the final solution based on the size of the strong region. These results

indicate that the FBSA method does not achieve any further accuracy after it has

reached r(j) < 10-, despite the continuing decrease in the residual error.

Results of the FBSA method thus far have been presented only for E, = 2.0+iO.05,

and it is worthwhile to examine the performance for different permittivities. Table

1 summarizes the results of the FBSA method for twelve different permittivities,

averaged over ten rough surface realizations. Each rough surface is 51.2A in length,

with I = 1A and h = 0.707, and the incident wave has 0 = 300 and g = 10A. The

strong region is 5A. The method is terminated when the residual error r(j) < 102,

however the final absolute error a(j) is shown in Table 1 as an indication of the

solution accuracy. If the method does not converge within 75 iterations for any one

of the ten rough surfaces, 'NC' is entered in the table. A number of conclusions

may be drawn from the convergence data. First, the FBSA method converges faster

as the imaginary part of the permittivity increases. This is expected as a layer

with greater loss will attenuate the scattered waves and result in fewer forward and

backward changes in direction. Indeed, the FBSA method is not always successful in
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Figure 3-6: Absolute convergence of FBSA method for different rough surface rms slopes.

Incident field with g = 10A, 0 = 300, impinging on a rough surface with L = 51.2A, d = 10A,
ci = 2.0 + iO.05.
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the lossless cases. Only the TM case converges for c, = 2.0, and neither the TE nor

TM cases converge for c, = 3.0. Second, increasing the real part of the permittivity

generally increases the number of iterations required for convergence. This is likely

due again to the multiple scattering, which increases as the reflection coefficient from

the layer increases.

The convergence of the FB method for a single penetrable surface has been studied

in great detail in [83], where it was shown that the method converges slowly or not at

all for large values of permittivity such as 15 + i4 and 80 + i66. Such values are not

well suited to the formulation presented in this work either, due to the requirement

of subwavelength (at least A/10) sampling on the layers. A single interface can yield

accurate results with a A/10 free space sampling, regardless of the lower halfspace

permittivity, due to phase matching. The accuracy will depend on the angle of

incidence and roughness, see for example [82]. Note that large permittivities could

be included in this formulation at the lowest region, em.

Finally, Table 2 presents the results of the FBSA method for four different surface

separations and the three rough surfaces when the relative permittivity is E, = 2.0 +

iO.05. For each case, the upper and lower surfaces are identical, which is necessary

to avoid overlap. Both the average number of realizations (for ten rough surfaces)

and the average absolute error are shown. For certain parameters, the FBSA method

does not converge for at least one of the ten rough surfaces, and 'NC' is indicated.

Figure 3-7 plots the three different rough surfaces with d = IA. Note that the TE

case for the moderate rough surface separated by d = IA was very slow to converge, in

one case requiring more than 75 iterations, but always reached an acceptable absolute

error. Hence the number of iterations is 'nc' yet the absolute error is provided. The

FBSA method converges the fastest for the least rough surfaces, as was shown before,

as well as those that have the largest separation. These cases result in the least

amount of multiple scattering. The FBSA method does not work for the rougher

surfaces with small separations. The TE and TM cases both diverge for at least one
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,=r1.1 e', = 2.0 ',=3.0
TE , min a(j) TM , min a(j) TE , min a(j) TM , min a(j) TE , min a(j) TM , min a(j)

E, = 0.0 28, 0.004 16, 0.004 NC, NC 31, 0.003 NC, NC NC, NC
6'= 0.01 16, 0.004 10, 0.003 23, 0.005 12, 0.003 NC, 0.004 12, 0.003

' 0.05 7, 0.004 6, 0.003 8, 0.004 6, 0.003 7, 0.004 7, 0.003

r = 0.1 6, 0.002 6, 0.002 6, 0.003 5, 0.003 6, 0.003 5, 0.002

Table 3.1: Average number of iterations to achieve r(j) < 10-2 and average absolute error, versus relative permittivity (E' + ic',)
for TE and TM incidence. Layer separation is d = 5A, Gaussian rough surface with h = 0.707A and 1 = 1.OA.

I = 1A, h = 0.167A (s = 130) 1 = IA, h = 0.707A (s = 450) 1 = 1.1A, h = 1.33A (s = 600)
TE , min a(j) TM , min a(j) TE , min a(j) TM , min a(j) TE , min a(j) TM , min a(j)

d = IA 9, 0.006 6, 0.002 NC, 0.005 23, 0.004 NC, NC NC, NC
d = 2A 8, 0.004 7, 0.003 13, 0.005 10, 0.003 NC, NC NC, NC
d = 5A 6, 0.004 5, 0.003 8, 0.004 6, 0.003 14, 0.007 10, 0.005
d = 10A 5, 0.003 5, 0.002 6, 0.003 5, 0.003 11, 0.003 7, 0.004

absolute error, versus layer separation and

C\1I

Table 3.2: Average number of iterations to achieve r(j) < 10-2 and corresponding
rough surface parameters. Relative permittivity is e, = 2.0 + iO.05.
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Figure 3-7: Example surface with d 1A for the three different levels of roughness. Top
plot is for h = 0.167A and 1 = IA (s = 130), middle plot is for h = 0.707A and 1 = 1A

(s = 450), bottom plot is for h = 1.33A and 1 = 1.1A (s = 60').

of the ten very rough surface realizations in both the d = 1A and d = 2A separations.

The FBSA method is obviously not well suited for the very rough layered surfaces

that are closely spaced.

Residual errors of 10-2 are considered sufficient for accurate calculation of scat-

tered fields. Figure 3-8(a) shows the bistatic scattered field for the TE case calculated

with MoM and FBSA for the moderately rough surface. The FBSA method is ter-

minated with a residual error of 10-2. The FBSA result is very close to the MoM

result, and indeed the absolute error is 1.2 x 10-7. Figure 3-8(b) shows the bistatic

scattered fields for the TM case, and the absolute error is 6.7 x 10-7.

Finally, Figure 3-9 shows the CPU times necessary to solve the system of equations

using the MoM and FBSA methods. Four surfaces of lengths 25.6, 51.2, 102.4, and

204.8 wavelengths are considered, which when sampled at A/10 result in 768, 1536,
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Figure 3-8: Bistatic scattered field. Incident field with g = 10A, 0 = 300, impinging on a

rough surface with L = 51.2A, d = 5A, el = 2.0 + i0.05, h = A/v's, and l = 1A (s = 450).
FBSA uses a strong region of 1OA and is terminated with r(i) = 10-3.
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Figure 3-9: CPU times of the MoM and FBSA methods. Rough surface with h = A/V 2
and l = 1A (450 rms slope), cl = 2.0 + iO.05, d = 5A. FBSA method takes 8 iterations to
reach r(i) < 10-3

3072, and 6144 unknowns, respectively. An additional result for a 409.6 wavelength

surface is included for the FBSA method. The FBSA method is obviously more

efficient, scaling as O(N) while the MoM method scales as O(N 3). A 667 MHz DEC

Alpha with 4 GB of RAM is used in this work. The 6144 x 6144 matrix storage

for the MoM solution of the largest surface requires 1.8 GB of RAM. The FBSA

method calculates the matrix elements 'on-the-fly', as the full matrix storage would

be unfeasible given the very large surface sizes for which the method is best suited.

3.4 Conclusions

This chapter has presented an MoM formulation for scattering from 1-D layered rough

surfaces. Comparison with analytical solutions validated the MoM formulation for

flat surfaces. Given the linear increase in the number of unknowns for each layer, the

-e- MoM
Ea FB SA
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FBSA method has been adapted and O(M) efficiency was demonstrated. The stan-

dard MoM and FBSA formulations were compared for scattering from a three-region

medium, and excellent agreement was obtained. Finally, numerical experiments were

performed to establish the wide applicability of the method.



Chapter 4

An FDTD Study of Left Handed

Metamaterials

4.1 Introduction

Materials exhibiting negative permittivity and permeability are a popular topic of

current research due to their recent physical realization as metamaterials [87]. Re-

cent research has focused both on the behavior of these metamaterials as well as

on the incorporation of negative permittivity and permeability into electromagnetic

theory [88]. Currently, the metamaterials under study are composed of a periodic

arrangement of metallic printed lines (or rods) that exhibit a negative permittivity,

and split-ring resonators (SRRs) that exhibit a negative permeability.

To understand how these metamaterials function, it is best to follow the historical

steps that lead to the current geometry. First, it was shown that a 3D array of thin,

continuous (infinite) metal wires exhibit a frequency response similar to that of a

plasma medium [89, 90]. This type of response is well described by the Drude model:

E(w) = 60 1 - e) (4.1)
W (W + Z'Ye))

137



Chapter 4. An FDTD Study of Left Handed Metamaterials

where we, is the plasma frequency and 'ye is the damping frequency (or loss factor) [91].
At frequencies below wep (for 'Ye ~_ 0), the permittivity becomes negative, the wave

vector is imaginary, and there is no transmission. Above we,, the permittivity is real

and transmission occurs. Second, it was demonstrated that negative permeability

could be achieved using an array of SRRs [92]. The SRRs act like magnetic dipoles,

with a resonant response resulting from internal inductance and capacitance. This

type of frequency response can be approximated with a resonant model [30]:

U 2 2

Ap(W) = [to I - P 2m2 M0 (4.2)
2 - W2 m

where Wmo is the resonant frequency, wmp is the plasma frequency, and 'ym is the

damping frequency. Close to resonance, the SRRs produce strong magnetic fields

whose directions oppose the incident magnetic field, resulting in a negative effective

permeability. Once the negative permeability structures had been discovered, finding

ways of combining them with negative permittivity structures was the next step in

research, leading to the well known geometry shown in [87].

The key theoretical aspects and some applications were first investigated by Vese-

lago in 1968 [93]. In his pioneering work, Veselago introduced the nomenclature

'left-handed (LH) materials', to refer to the left-handed tryad formed by the electric

field (E), magnetic field (H), and wave vector (k), as shown in Figure 4-1. As a sim-

ple example, the LH nature can be demonstrated by considering Maxwell's Equations

for plane waves in source free, unbounded media:

x E(7) = wp(w)H(T) (4.3)

Sx77(-r) =-WE(W)E(T) (4.4)

When both p and e are negative, the E, H, and k vectors form a left-handed tryad. It

is then straightforward to show that the Poynting vector is in the opposite direction of

the wave vector. Veselago predicted LH properties such as a reversed Doppler effect,
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A

z

A A

A

Figure 4-1: Electric field, magnetic field, wave vector, and Poynting vector for left handed
media.

reversed Oerenkov radiation, and a negative index of refraction. For example, consider

the index of refraction calculated for a passive medium with negative permittivity,

=- E' + i', and permeability, y, = -p' + ip',

(-E'+ ic',)(-,t + ip'|) (4.5)

Defining Je = tan-1 (c'//E') and 6m = tan-1 (p,/p',), Equation 4.5 becomes

n V/|ei-ie,iei-iSm = eii6e/2-iJ./2 N/IrIp = -n' + in" (4.6)

To date, the range of imaginable applications extends to the field of antenna design,

vehicle coatings for altering radar cross section properties, and lenses [94].

The demonstration of the LH properties of a metamaterial is not as straight-

forward as it seems, and showing that permittivity and permeability are separately

negative over a similar frequency band does not imply that they remain so when

the rods and SRRs are combined into a unique geometry. One of the first observa-

tions of the LH nature of these metamaterial structures was inferred by observing

transmission and reflection coefficients over a wide frequency band. For the separate

geometries (rods only or SRRs only), no transmission occurs because of an imaginary
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wave number. In the frequency band where the two parameters are simultaneously

negative, transmission occurs when the combined geometry is considered. This pass-

band phenomenon was indeed observed in these metamaterials [87]. However, as

mentioned before, this transmission is not sufficient to conclude that the material is

exhibiting LH behavior, since the interaction between the SRRs and rods could result

in a positive permittivity and permeability, which would also yield transmission. A

more rigorous test to demonstrate the LH nature of a material is therefore to either

directly measure the phase inside the material (this can be done numerically, as will

be shown later, but is very difficult to realize practically), or to measure the index of

refraction of a prism. Snell's law dictates that the angle of transmission into or out of

any right-handed (RH, with positive permittivity and permeability) material must be

on the opposite side of the surface normal with respect to the incident angle. For LH

materials, however, the angle of transmission is on the same side of the normal, which

has been theoretically demonstrated and experimentally verified [93, 30]. Note that

recent work has suggested another rigorous way of calculating the index of refraction

of a LH slab by measuring the lateral shift of an incident Gaussian beam [95].

Previous numerical modeling has been carried out to study the fields inside homo-

geneous LH materials in waveguides [96], as well as stratified LH media [88]. Numer-

ical modeling of the metamaterials has been restricted to transmission and reflection

coefficient measurements [97], or fields around a single SRR or periodic array of

SRRs [98]. To date, little work has been done to investigate and verify the LH behav-

ior of fields propagating within these metamaterials. Furthermore, only experimental

work has been carried out to show the refraction from a prism with a negative index

of refraction.

The first part of this chapter will use the three dimensional FDTD method to study

the transmission characteristics, phase propagation, and index of refraction of meta-

materials to unambiguously determine their LH or RH property. Two macroscopic

configurations of metamaterials are used toward this purpose: a slab to calculate
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the transmission coefficient and phase propagation, and a prism to study the index

of refraction. The microscopic configurations of the metamaterials are based on the

periodic arrangement of rods and SRRs [87], embedded in a parallel plate waveguide.

The results of this work show that fields propagating inside the metamaterial with

a forward power direction exhibit a backward phase velocity and negative index of

refraction [31]. A brief discussion of the phenomena will follow. Finally, this chapter

will investigate a new SRR that has been suggested for infrared frequencies [99]. The

SRR is scaled to microwave frequencies and compared to the original SRR design.

4.2 FDTD Model

The numerical model is based on the experimental setup published in [30]. The

FDTD computational domain is shown in Figure 4-2, modeling a metamaterial in a

parallel plate waveguide. The structure can be either a slab or a prism (Figure 4-2),

depending on the type of study performed. The parallel plates are Perfect Electric

Conductor (PEC) sheets. Surrounding the structure is a Perfectly Matched Layer

(PML) [98] that models microwave absorber, and ensures that reflections are small.

In the model, the source is a current sheet that approximates a TE10 horn antenna,

shown in Figure 4-2 as the wide dashed line. The current sheet radiates both forward

and backward, but the wave traveling away from the structure is absorbed by the

PML. In Section 4.3.3, the transmitted power in the far-field is calculated using a

Huygens' transformation surface, shown in Figure 4-2 by the narrow dashed line.

The model chosen for the SRRs is shown in Figure 4-3(a), with a discretization size

of 0.25 mm. For an FDTD grid with a uniform cell size, an exact model of the

geometry used in the experiment [30] requires a finer discretization and thus many

more unknowns (and much longer computation time). For the sake of comparison,

a more accurate model of the experimental SRR is shown in Figure 4-3(b), attained

through a finer discretization of 0.125mm. However, due to limited computational
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Figure 4-2: FDTD computational
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domain: a metamaterial structure (prism in this case)
waveguide with PML lateral boundaries. Source is a
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(a)
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(b)

Figure 4-3: Geometry of the split ring resonators, used in FDTD with discretizations of
(a) 0.25mm, (b) 0.125mm.

resources, most of the results presented in this chapter will be for the SRR geometry

of Figure 4-3(a). The new geometry of Figure 4-3(a) will likely exhibit a different

resonant frequency and, due to the lack of analytical models, it is not known a priori

if it will exhibit a negative permeability and thus create an LH metamaterial.

The SRRs and rods are modeled as PEC materials in the standard fashion by

setting the tangential electric fields to zero. The metamaterial consists of a periodic

array of unit cells. A unit cell of the structure, in one plane, is shown in Figure 4-

4(a). As in the experimental setup, three SRRs are stacked vertically between the

PEC waveguide plates, printed on one side of a dielectric substrate (Er). On the other

side of the substrate is printed a metallic rod 0.5mm wide. A unit cell measures

5 mm x 5 mm x 13 mm. Using many unit cells in a single plane alone would cre-

ate an anisotropic metamaterial, coupling with only one magnetic field component.

Following [30], in order to create a more isotropic metamaterial, a structure in two

planes is created as shown in Figure 4-4(b), where the unit cell is repeated in the
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Figure 4-4: (a). Front and back of a single set of split ring resonators and rod. (b) 2 x 2

array of SRRs and rods.
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(,2,) and (9,2) planes. In this case, the SRRs interact with both the ± and y mag-

netic fields, while the rods still couple with the 2 electric field. The structure shown

in Figure 4-4(b) is a 2 x 2 array of SRRs, and is a typical example of the types of

structures that are examined in the following sections.

The following results are from a metamaterial structure containing 9 x 12 unit

cells. The computational domain measures 4.75 cm x 6.25 cm x 1.3 cm, or 190 x

250 x 52 cells, not including the PML. For the discretization of 0.25mm, the cor-

responding time step is 4.77 x 10-4 ns. One simulation requires approximately 14

million unknowns to be solved, and it takes about 1.5 hours to complete 4000 time

steps on a 667 MHz DEC Alpha Server with 4 GB of RAM.

4.3 Results

The FDTD model described in the previous section is used to perform three types

of simulations. First, it is necessary to determine frequencies at which negative per-

mittivity and permeability might exist. This is done by calculating the transmission

coefficient of the metamaterial, and looking for pass-band regions. Once these fre-

quencies are found, a continuous wave is used to examine the phase advance through

the structure. Finally, at the same frequencies, a prism is used to calculate the index

of refraction of the structure.

Four types of metamaterial are studied:

* Type 1: the structure shown in Figure 4-4(b) with the substrate Er = 1.0; SRR

geometry shown in Figure 4-3(a).

" Type 2: Figure 4-4(b) with Er = 3.4; SRR geometry shown in Figure 4-3(a).

" Type 3: Figure 4-4(b) with SRRs and rods in the (I,2) plane only, Er = 1.0;

SRR geometry shown in Figure 4-3(a).

" Type 4: Figure 4-4(b), with Er = 1.0; SRR geometry shown in Figure 4-3(b).
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Figure 4-5:
(Type 1).

Normalized transmitted power through a metamaterial slab without dielectric

4.3.1 Determining Frequencies of LH Behavior

Determining the transmission coefficient of the metamaterial can be done in the

FDTD model by using a wideband pulse incident on a metamaterial slab. These

simulations use the first derivative of a Blackmann-Harris pulse [100] that vanishes

completely after time period T = 1.55/f, (f, = 12 GHz). Figure 4-5 shows the trans-

mission coefficient of the Type 1 structure. Three cases are shown, for a periodic

arrangement of rods alone (without SRRs), for the SRRs alone (without rods), and

for the entire structure containing both the rods and SRRs.

The permittivity of the rods (using the plasma model of Equation 4.1) is expected

to be negative below the plasma frequency. As shown in Figure 4-5, the structure

with the rods alone has a high-pass filter behavior, consistent with the plasma model.

Hence transmission only occurs above the plasma frequency for which the permittivity

is positive and the wave number is real. For this geometry of rods, the plasma

frequency is calculated to be 26 GHz [90], which matches well with the FDTD result.
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According to [90] and the model of Equation 4.2, the SRRs are expected to have

a resonant frequency, above which there is a small region of negative permeability.

In Figure 4-5, the transmission through the structure of SRRs (without rods) has a

stop-band, 30 dB down at approximately 13 GHz. The result is consistent with the

resonant model, where transmission is not possible in the small region of negative

permeability. Note that outside of resonance, the SRRs have little effect on the

propagating field, their size being much less than one wavelength.

Now consider the Type 1 structure containing both the rods and SRRs. Below

approximately 26 GHz, the rods yield a negative permittivity and no transmission is

expected, unless the SRRs are yielding a simultaneously negative permeability that

results in an LH pass-band. In Figure 4-5, for both rods and SRRs together, it is

found that a pass-band exists between 14 GHz and 16 GHz. These frequencies are

near the resonance of the SRRs and may be the LH pass-band. Note that there are

other frequency ranges that are pass-bands, but these are not near the resonance of

the rings, so they are identified as other phenomena of the metamaterial structure.

There is also noise in the data due to the finite time of the FDTD simulation, since

the structure is still 'ringing' slightly when the simulation is terminated at 16384 time

steps. Longer simulations have been investigated, and it has been determined that

this truncation error does not affect the general characteristics of the transmission

curves. In addition, the higher frequency portions of the transmitted fields have noise

due to both the truncated data and also the beginning of numerical dispersion. For

these reasons, the high frequency portions of the transmission data for the SRRs

and the complete structure have been truncated at 24 GHz. Figure 4-6 shows the

transmitted power for the Type 2 structure. The presence of the dielectric shifts

the resonant frequencies down, as is expected from simple physical arguments. The

stop-band due to the SRR resonance occurs at 9 GHz and the transmitted signal is

attenuated by 20 dB. A pass-band for the metamaterial structure is between 10 GHz

and 11 GHz, and is 7 dB down. Figure 4-7 shows the transmitted power for the
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Figure 4-8:
(Type 4).

Normalized transmitted power through a metamaterial slab without dielectric

Type 3 structure. The resonance of the SRRs is still at 9 GHz, resulting in a 20 dB

stop-band. The pass-band is between 9 GHz and 10 GHz, and is approximately 3 dB

down from full transmission. From these results, it appears that the SRRs and rods

in the (Q, 2) plane are not strictly required, which is expected given that incident field

is almost a TEM wave and has a much stronger Hy field than an H. field. Finally,

in Figure 4-8, the transmission data for the Type 4 structure are shown. The Type 4

structure has very similar transmission characteristics to the previous three types of

structures, indicating that the SRR model of Figure 4-3(b) is valid. For that case, the

resonance of the SRRs is located around 16 GHz, attenuating the transmitted field

by 30 dB. The pass-band occurs between 17 GHz and 18 GHz, and is 10 dB down.

These results demonstrate that wideband examination of the metamaterial's trans-

mission coefficients reveals separate characteristics of negative permittivity and per-

meability predicted by theoretical models and previous experimental studies. Given

that the SRRs create an effective negative permeability near resonance, the next sec-
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tion will focus on the nearby pass-bands in the combined SRR and rod structure to

determine if left-handed properties exist.

4.3.2 Phase Data in an LH Metamaterial Slab

One way of determining the LH property of a metamaterial is to calculate the phase

of a propagating wave inside the structure and determine if the phase velocity is

negative. Although a phase measurement is difficult to perform in experimental

settings (as the probe could couple with the structure), it is simple to calculate in

numerical simulations.

In the frequency regime of negative permeability, an SRR produces a strong inter-

nal magnetic field that is in the same direction as the incident field. It is the external,

or return field, that opposes the incident magnetic field and thus produces an effec-

tive negative permeability. The SRRs are in an array so that they approximate the

effect of longer, continuous structures like cylinders (to produce a solenoid magnetic

field) [90]. Hence the structure likely exhibits negative permeability external to the

SRR rows, where the following phase data is obtained.

Figure 4-9 shows the absolute value of the electric field plotted along the center of

the Type 1 structure. The vertical axis of the plot corresponds to the distance through

the structure, which begins at x = 6.75 mm and ends at x = 42 mm, and the horizontal

axis of the plot is time, in nanoseconds. The field is a continuous waves (CW), ramped

up with a Gaussian modulation and shown here in late time where the structure has

reached steady state. The electric field can then be expressed as Ez = cos (kx - Wt)

for which a point of constant phase C results in x = Q + 2. The visually identifiable

constant phase in Figure 4-9 is the null, which can be tracked through the structure.

The slope of this phase is the phase velocity, vp = w/k. The results shows that vp is

generally negative within the structure, but with positive slopes in regions close to

the SRRs. As the wave exits the structure and enters free space, the phase velocity

becomes +c. The field in the region of x < 0.00675 m contains both the incident field
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Figure 4-10: Exact and averaged (over 20 values) index of refraction through Type 1
metamaterial, at 14.75 GHz.

and the field reflected from the metamaterial structure, which explains the weaker

positive slope of v, than that of x > 0.042 m. Although this is a local effect (one

path through the metamaterial), it is where the transmitted power is maximum and

is demonstrative of the overall phase velocity.

The actual phase velocity of the propagating field can be determined simply by

extracting the slope of constant phase on any space-time plot similar to Figure 4-

9. Although the null is visually obvious, it is numerically easier to calculate the

slope from a maximum or minimum. Once the slope is found, one can determine

a normalized v, of the field and, given the assumption that the phase has the form

kx - wt, also determine the index of refraction as n = c/vp. Figure 4-10 shows

the calculated index of refraction, ni, through the Type 1 structure for the electric

field at 14.75GHz. The phase fluctuates as the field passes near an SRR, and ni

briefly becomes positive. To achieve a better representation of the overall phase, an
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Figure 4-11: Index of refraction through Type 1 metamaterial for different frequencies.

effective ni is calculated with an averaging window around each data point (in this

case 20 values). The effective normalized ni in this structure is fairly constant, around

ni = -1. There are edge effects at the beginning and the end of the metamaterial

structure, where ni makes a transition from positive to negative (x = 0.00675 m) and

back again (x = 0.042 m). Note that the imaginary part of ni is nonzero, given that

the metamaterial was shown to be lossy in the transmission figures. Figure 4-11 shows

the averaged ni for different frequencies in the Type 1 structure. The metamaterial

is very dispersive and inhomogeneous. In Figure 4-11, ni can be seen to become less

negative as the frequency is increased from 14.5 GHz to 15 GHz, which is due to the

narrow frequency band over which the material exhibits LH properties. Outside of

that frequency band, ni becomes very irregular and eventually the structure no longer

allows a propagating field (as the permeability becomes positive).

The averaged data of ni is dependent on the averaging window, and assumes the

form of kx - wt for the phase. To obtain another measure of the phase behavior, the

14.5 GHz
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Type 1 Type 2 Type 3

Freq. [GHz] Ab Freq. [GHz] A@b Freq. [GHz] A#b

14.5 -3.77r 10 -3.3-F 9.5 -4.07r

14.75 -2.97 10.25 -3.57r 9.75 -2.87r

15 -2.2-r 10.5 -2.0wr 10 -2.27r

15.25 -1.5-r 10.75 -1.47r 10.25 -1.57r

15.5 -0.9wF 11 -0.57r 10.5 -0.37r

Table 4.1: Total phase shift AO through the three types of LH metamaterials.

cumulative phase shift, AV), for a continuous wave propagating through the structure

can also be calculated. Table 4.1 shows the cumulative phase shift for various frequen-

cies in the three types of metamaterial. The phase shift is calculated for 14.5 GHz to

15.5 GHz in the Type 1 structure, with a maximum shift of -3.77 at 14.5 GHz. At

smaller frequencies, the phase could not me determined as the transmission through

the structure became irregular. At 15 GHz, the phase shift through the Type 1 struc-

ture is approaching zero, and the transmitted power is decreasing toward the upper

limit of the LH pass-band behavior. In the absence of the metamaterial, the free

space phase shift (kd) would be 3.57r for 15 GHz. The same behavior can be seen

in AV) for the Type 2 structure, for frequencies from 10 GHz to 11 GHz, and for the

Type 3 structure, for frequencies from 9.25 GHz to 10.25 GHz.

Figure 4-12 shows the power through the Type 1 structure at 14.75 GHz (above

the middle SRR). The small regions of backward power are blacked out, and the

system has a forward time average power propagation.

The results in this section show that the phase velocity and power are in oppo-

site directions near the center of the metamaterial. However, the fields within the

metamaterials are spatially inhomogeneous in the plane transverse to the direction

of propagation, and the LH behavior is not uniform over that plane. Edge effects

are apparent near the microwave absorber and particularly strong near the waveg-
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Figure 4-12: Power through the center of the Type 1 metamaterial, at 14.75 GHz (dB
scale). Regions of backward (negative) power are blacked out.
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+n1 , nj>1
k1

n1 n2=1

Figure 4-13: Possible directions of propagation for waves leaving a prism of material E

into free space.

uide plates. (The field inhomogeneities near the plates are due the the asymmetry of

the structure within the waveguide.) Despite that, when considering the transmitted

wave, most of the power does travel through the center of the metamaterial. Hence,

the transmitted wave is LH, while the inhomogeneities likely contribute to reflections

and losses in the metamaterial.

4.3.3 Index of Refraction Calculated with an LH Metamate-

rial Prism

Another method of demonstrating LH behavior of a material is to construct a prism

and calculate the direction of power leaving the structure. This has been carried out

experimentally [30], and was first rigorously verified with a numerical approach by

this work. Figure 4-13 shows the possibilities of Poynting vectors for power leaving a

prism of various values of nj. Upon measuring the direction of the power (3) leaving

the prism, it is possible to calculate the index of refraction using Snell's law. First

consider the direction of S leaving a prism of homogeneous dielectric (Er = 3.4).

A staircased approximation of a = 18.40 interface is used to model the prism. To
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determine the direction of the fields leaving the prism, the electric and magnetic fields

are integrated over the aperture of the waveguide and calculate the far fields using

Huygens' principle [3]. In this case S = x = EO0 x HOO = S. A pulse is

used as the excitation, and the far fields are calculated at the frequencies determined

in the previous section. The quantity S models the measurements that would be

taken with a horn antenna moved along a radial axis, varying # and keeping 0 = 7r/2.

Note that the direction of the transmitted wave yields only an effective real index of

refraction for the prism. The results for S in Figure 4-14 show the fields propagating

in the # = -14.5' direction, which corresponds to a cr = 2.96, or ni = 1.72 in the

prism. The reason for this inaccuracy is the slightly non uniform (curved) phase

front of the propagating field. Hence, this technique does not provide an exact way

to determine ni of the prism, but is instead an approximation. The result can be

an under-prediction of ni, as one side of the curved phase front is almost parallel to

the prism interface, whereas the other side may reach cut-off. Larger arrays of unit

cells would alleviate this problem. In order to build a metamaterial prism, a coarse

staircasing approximation is used, now with the metamaterial unit cells (Figure 4-4).

To build the a = 18.40 interface, we use three SRRs in Q for every single SRR in iz. The

far field plots are also shown in Figure 4-14 for the Type 1 and Type 2 metamaterials.

The Type 1 metamaterial refracts the 14.75 GHz component of the pulse at an angle

of # = 350, which corresponds to ni = -0.91. The Type 2 metamaterial refracts

the 10.25 GHz component of the pulse at # = 410, which corresponds to ni = -1.2.

The metamaterials refract smaller amounts of power around 0', which is likely due

to non-uniform phase front of the incident wave as well as edge effects (apparent

in Figure 4-15). The results in this section are consistent with the results in the

previous section, where the index of refraction was calculated directly from the phase

velocity within a metamaterial slab. In both sections, the Type 1 metamaterial index

of refraction is approximately -1, and the Type 2 metamaterial's index of refraction

is approximately -1 to -1.5. The main source of error is likely due to the effects of
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Figure 4-14: Far field
18.40.

power from prism (of various materials) vs azimuthal angle, a =

the curved phase front in the prism calculation.

For visualization purposes, Figure 4-15 shows the electric field of a continuous

wave leaving a prism of larger angle (a = 26.60), and one can see the phase fronts

indicative of a field refracted from a negative medium into a positive one (free space

in this case). The metalization of the metamaterial is indicated in white on the plot,

as is the approximate prism boundary (for illustration).

4.4 Discussion

The results of the previous section demonstrate that fields within the metamaterial

have phase velocities and Poynting vectors in opposite directions (for an equivalent

homogeneous material), and that the metamaterial has a negative index of refraction.

As discussed in the introduction, his LH behavior can be accounted for assuming that

the metamaterial has a negative permittivity and a negative permeability, predicted
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Figure 4-15: Absolute value of the electric field inside a metamaterial prism structure (dB

scale), a = 26.60.
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in studies of the rods and SRRs separately [89, 90]. Mathematically, it is easy to show

that a negative permittivity and a negative permeability give rise to an LH medium

with n < 0, but it is less obvious why such a phenomenon would exist for the com-

bined rod and SRRs metamaterial. In fact, there are generally two ways of studying

LH materials [101]: a macroscopic viewpoint that deals with the assumed negative

permittivity and negative permeability, and a microscopic viewpoint that deals with

the SRRs and rods directly. The microscopic viewpoint has been the focus of this

chapter, with an aim to develop macroscopic descriptions of the LH metamaterial.

Indeed, the microscopic viewpoint can only be studied with numerical techniques, as

the metamaterial geometry is complicated and has thus far not been explained analyt-

ically. Considerable success has been achieved by describing the rods as inductors and

the rings as capacitors in a transmission line model for the metamaterial [102, 103].

The equivalent LH behavior of the transmission line model has been experimentally

verified in two dimensions using discrete capacitors and inductors. In one dimension

it reduces to the well-known backward wave line [3]. However, more complex models

have not been developed to describe the microscopic behavior. This section will pro-

vide a brief discussion on the behavior of the fields within the metamaterial, based on

calculated FDTD fields, in an attempt to understand the results obtained thus far.

Figure 4-16 is a diagram of the four unit cells, separated by approximately kx =

w/2, of the metamaterial at three different time steps: wt = 0, wt = w/2, and wt = r.

An incident wave, ET = cos(kx - wt), impinges from the left. The electric fields

are in the plane of the page, and are illustrated with arrows, while the magnetic

fields are perpendicular to the page and illustrated with circles. Again, note that

all illustrations are based on calculated FDTD fields, analytical considerations (for

example [90]), and physical arguments. At wt = 0, the incident field excites currents

on the rods and on the SRRs. The induced magnetic field from the SRRs and the

rod are opposite between the first and second set of SRRs, and the rods stop the

incident field from entering the metamaterial. At wt = w/2, the incident field and
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induced SRR currents go to zero. The result is that the magnetic field inside the

SRRs decays, and new currents are set up to oppose the changing magnetic field (by

Lenz's law). These new currents give rise to new electric fields that couple with and

induce currents on the second set of SRRs. The combined field between the first and

second set of SRRs is shown in Figure 4-16, with the magnetic field in the - direction

and the electric field in the - direction. Between the second and third set of SRRs,

the magnetic fields are opposite in direction and the electric field from the first ring

cannot propagate past the rod. The last time step shown in Figure 4-16 is wt = 7T.

At this time the incident electric and magnetic fields are in opposite directions to

the wt = 0 time, and again induce currents on the first ring. The magnetic fields

between the first and second set of SRRs are opposite in sign, and no propagating

field exists there. The magnetic field within the second ring is decaying, again setting

up new currents and electric fields. These electric fields now couple with the third

ring, creating the magnetic fields as shown. The combined fields between the second

and third set of SRRs are shown in the figure, with the electric field in the y direction

and the magnetic field in the 2 direction. Figure 4-17 shows the process continuing

through wt = 37r/2, 27r, and 57/2 in a periodic fashion. The SRRs are resonating in

time, coupling electric and magnetic fields to the adjacent SRRs and rods. In these

three timesteps, the backward wave can be seen. At wt = 37r/2, between the third

and fourth sets of SRRs, the electric field is in the -y direction, the magnetic field

is in the -2 direction, and so the Poynting vector is in the ± direction. As the time

steps progress, this point of constant phase moves in the -: direction through the

structure: to between the second and third sets of SRRs at wt = 27, to between the

first and second sets of SRRs at wt = 57r/2, and so on.

Given the SRR resonance described above, the final row of SRRs in the structure

radiate into free space. The propagating field leaving the structure is then similar to

the radiated field from an array of magnetic dipoles (each SRR). To show this, we

create a dipole array with a similar geometry as the final row of rings in Figure 4-
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Figure 4-16: Diagram of the electric and magnetic fields within the metamaterial, based

on calculated FDTD fields. The electric fields are the arrows in the (, Q) plane, and the

magnetic fields are the circles perpendicular to the page. A plane wave is incident from the

left and sets up a backward wave within the metamaterial. Initial times wt = 0, 7r/4, and

7r/2 are shown. The separation between rings is less than kx = r/2. Two rings are shown

here for illustration purposes, but the same analysis applies to any number of rings.
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Figure 4-17: Diagram of the electric and magnetic fields within the metamaterial, based

on calculated FDTD fields. The electric fields are the arrows in the (I, ) plane, and the
magnetic fields are the circles perpendicular to the page. A plane wave is incident from the

left and sets up a backward wave within the metamaterial. Initial times wt = 37r/4, 7r, and
57r/4 are shown. The separation between rings is less than kx = 7r/2. Two rings are shown
here for illustration purposes, but the same analysis applies to any number of rings.
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Figure 4-18: Far field pattern of an array of dipoles with backward phase.

15, using 10 dipoles at an exact 30" angle instead of 12 SRRs at 26.60. The phase

difference between the dipoles is taken from the FDTD calculations (kx ~- -7r/2).

The far field array pattern from this structure can be easily calculated [3], and is

shown in Figure 4-18. The far field pattern consists of one main lobe at 30 degrees

above normal, which indicates a negative metamaterial with n ~- -1. For the SRRs

to have that phase difference (-kx), and for the structure to radiate in the direction

(+Sx), there must be a LH wave within the metamaterial.

4.5 A New SRR geometry

The previous sections contain an analysis on specific SRR geometries to compare with

experimental work. However, recent research has yielded other SRR designs that also

may provide a negative permeability. One drawback of the original SRR geometry
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Figure 4-19: New SRR geometry

is its anisotropy, which limits its potential applications, so researchers are working

toward isotropic designs [104, 105]. New SRR designs have also been created to

reduce the original SRR's bianisotropy [106, 107]. Other researchers have focused on

combining the SRRs and rods into one structure, and have been successful with the so

called Omega medium [108, 109]. With the FDTD method and analysis techniques

developed in this work, other geometries may be studied also. Consider the SRR

shown in Figure 4-19, first introduced for infrared frequencies [99] and scaled here

for microwave frequencies. A new FDTD discretization of 0.12 mm is used for this

SRR. The new unit cell in the (, z) plane is shown in Figure 4-20(a), composed of

two SRRs and a rod that is in contact with the parallel plates. The lattice constant

5.04 mm, and the parallel plate separation is 1.2 cm. Figure 4-20(b) is the view in

the (I, Q) plane of a 2x2 array of the SRRs and rods. The dielectric constant, E, is

set to free space for the following results.
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Figure 4-20: (a). Front and back of a single set of split ring resonators and rod. (b) 2 x
2 array of SRRs and rods.
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We first consider the transmission through a metamaterial slab to obtain the

frequencies of LH behavior. The wideband pulse is used to obtain S21 for a slab of

6x9 unit cells. Metamaterials containing both the new SRR, referred to as Ring A

(metamaterial A), and the original SRR, referred to as Ring B (metamaterial B), are

considered. Figure 4-21 shows S21 for both types of metamaterial. A possible LH

band for metamaterial A appears at approximately 13 - 13.5 GHz, indicating that

Ring A has a lower resonant frequency than Ring B (LH band 14.25 - 15 GHz). In the

following section, the LH behavior of this pass-band will be verified. The maximum

S21 in the LH band of metamaterial A is close to 0 dB, indicating that the structure

is almost lossless at that frequency. Note that the SRR is PEC and the substrate

is not present, so this is an idealized structure. However, the maximum transmitted

power at LH frequencies is 10 dB greater in metamaterial A than in metamaterial B

(which has the same idealized conditions). The reason for the larger transmission is

the inherent symmetry of the Ring A in the waveguide. Ring B's lack of symmetry

results in field inhomogeneities that are detrimental to transmission. Finally, the

S21 of the Ring A metamaterial is closer to that predicted by theory: a high pass

transmission characteristic (from the rods) with a single pass-band appearing near

the SRR resonance.

Now we may calculate n using a prism of metamaterial A. The longest dimension

of the prism is 6 x 9 unit cells, staircased 3 to 1 to achieve an 18.4 degree angle. As

demonstrated in the previous section, the direction of the far-field power is calculated

to determine n. Figure 4-22 shows n over the LH band obtained from Figure 4-21.

The normalized far field power is also shown. The LH band is between 12.9 GHz and

13.5 GHz, with a minimum n = -1.25. The peak transmitted power occurs at 13.2

GHz where n = -1. Finally, we consider time domain plots of a 13.1 GHz CW

wave traveling through the metamaterial prism. For the sake of visualization, a 2 to

1 staircased (26.6 degree) prism of 7 x 12 unit cells is used. Figure 4-23 shows the

absolute value of the electric field at wt = 0, wt = 7r/2, wt = pi, and wt = 3 * pi/2,
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Figure 4-22: Normalized power and index of refraction for the Ring A metamaterial.

relative to t = 1.8 ps. The viewpoint is the same as the top view in Figure 4-2.

From these plots, it is seen that the phase inside the prism is moving toward the

source, and the phase outside the prism is moving away from the source (and prism).

Furthermore, given the direction of power is perpendicular to the phase fronts for a

single frequency CW, the field leaving the prism in Figure 4-23 is above the normal,

indicating that n is negative.

4.6 Conclusions

This chapter examined three techniques to localize and demonstrate the LH behavior

of a metamaterial. First, the possible frequency band of LH behavior was determined

by calculating the transmitted power of a wideband pulse through the metamaterial.

In that frequency band, the backward phase velocity in a slab of metamaterial was
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Figure 4-23: Instantaneous absolute value of the electric field within the Ring A meta-

material, for a 13.2 GHz CW. Initial time wt = 0 is 1.8 ps into the simulation (the 8000th

time step with At = 0.226 fs).
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4.6. Conclusions

then verified, and the index of refraction was calculated. At the same frequencies, a

negative index of refraction was demonstrated by calculating the direction of power

leaving a metamaterial prism. The two methods of calculating the index of refraction

of the metamaterials gave consistent results. The FDTD model in this work uses

two different SRR geometries, one that is optimal for the uniform Cartesian grid

(i.e. realized with less computational requirements), and the other that is a model of

geometries used in previous experiments [30]. A new SRR was introduced and shown

to be less lossy than previous designs. This numerical study has enabled a greater

understanding of the phenomena that leads to LH behavior in metamaterials, and

can be easily changed to examine new metamaterial geometries in the future. To

our knowledge, this is the first time that the LH properties of metamaterials have

been verified and studied using a full wave numerical model of an entire experimental

geometry.
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Chapter 5

Numerical Dispersion

Compensation of the FDTD

Technique

5.1 Introduction

One of the main advantages of PDE based methods for computational electromag-

netics, such as the FDTD method, against integral equation (IE) based methods is

their flexibility to model complex media (e.g., dispersive, inhomogeneous, anisotropic,

nonlinear) with less additional effort. However, contrary to IE based methods, PDE

based methods are prone to phase dispersion and dissipation error, which accumulate

for large problems. It is important to study numerical dispersion in various media

to better understand the capabilities and limitations of lower order PDE methods.

If necessary, higher order PDE discretization schemes [110] or hybridization can be

used to alleviate phase dispersion (both at the cost of loss of sparsity). To better

design such higher order PDE methods for complex media, it is again important to

characterize the numerical dispersion effects of those media [111, 112]. Numerical dis-

persion analysis is a classic topic in finite-difference time-domain literature. However,
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the conventional analysis is mostly restricted to isotropic, homogeneous domains and

regular grids. More recently, studies of temporal dispersion analysis extended to fre-

quency dispersive media and spatial dispersion analysis of irregular grids have been

presented [113]. In this Chapter, the numerical dispersion effects in anisotropic (bi-

axial) and layered media modeled on a regular lattice (i.e., Yee's FDTD lattice) are

studied.

As an interesting example of the application of such analysis, the exact implemen-

tation of Huygens' sources in the FDTD lattice will be derived. Usually, Huygens'

sources are used to introduce and remove a field excitation from the FDTD com-

putational domain using the analytical expression for the incident field. Classically,

this method does not account for the numerical dispersion of the incident field, and

small errors are introduced into the simulation. Work has been done on dispersion

compensated Huygens' sources, considering 1-D phase velocity adjustments (Chapter

6, [18]) and, more recently, broad-band approximate solutions for isotropic homoge-

neous media [114]. The dispersion compensation method introduced here is exact and

can be applied to broadband simulations and is tailored for layered and anisotropic

media. This is very useful for instance in ground-penetrating radar (GPR) simula-

tions where a large dynamic range is required due to the small scattering of the buried

target (either because of large depth or low contrast). Huygens' sources in layered,

lossy media are usually handled in the frequency domain, where analysis is greatly

simplified [115]. One can treat the problem as a system response to an arbitrary

time domain impulse, where the solution is easily obtained by multiplication in the

frequency domain as opposed to convolution in the time domain. The time-domain

field incident on the layered media is first specified, and Fourier transformed to the

frequency domain. There, for each frequency component, the fields are specified as a

sum of upward and downward traveling transmitted and reflected waves, using classic

closed form expressions in Chapter 3 of [3]. The final results are then transformed

back to the time domain. The processing time of these operations are very small com-
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pared to the total FDTD time (much less than 1%) when Fast Fourier Transforms are

used. The disadvantage is the requirement that the incident fields be stored every-

where in time and space on the Huygens' surface. These memory requirements can

be prohibitive for three-dimensional sources that exist for long times on the Huygens'

surface. In our case, for plane wave incidence, it is possible to reduce the source

by one dimension as it is invariant in a transverse direction. Other approximations,

such as interpolation schemes, are also feasible. If one were to attempt this type of

excitation in the time domain, the memory costs would be traded for computational

cost. For usual discretization sizes (A/30 to A/20), a reduction of the incident field

dispersion error on the order of 30 dB (typically) is demonstrated for a 603 FDTD

cell domain.

5.2 Maxwell's Equations in Discrete Space

This section will briefly review the notation for discrete calculus on a regular lattice,

introduced in [116]. As will become clear, this notation is very convenient to treat

the complex media considered here. Begin by defining the forward difference and the

backward difference. If, in continuous space, the differentiations are:

E(t) = &tH(t) H(t) = 8aE(t) (5.1)

Then in discrete space:

= E = A (E - E|") (5.2)

and

E H = -= H 2 - HI"2) (5.3)

where E = E(nAt), At is the temporal discretization size, &t is the forward differ-

ence, and 6t is the backward difference. As an example, consider how discrete calculus
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can derive the FDTD form of Ampere's Law, shown here for the E. component:

+E = (+H - - H,) - uE. (5.4)at 19y az

The Yee FDTD formulation defines the electric and magnetic fields offset by half steps

in time and space. Central differencing is used to differentiate the fields to second

order accuracy. Due to the leapfrogging nature of the electric and magnetic fields, it

is possible to relate them with respect to a single Yee cell using forward and backward

differences. For example, the electric field on the left side of Equation 5.4 exists at

time step n, and must be related to the magnetic fields on the right side which exist

at time step n + -. Defining a forward difference as:

21

IE = (E72n+1 - Ef|) (5.5)

which is a central difference in time with respect to H. Relating the magnetic field

to the electric field in Faraday's Law instead uses a backward difference:

-Hn+! = (I - H(H"-i) (5.6)

The same applies for the spatial derivatives. The Q component of the magnetic field in

Equation 5.4 exists at (m + -, n, p+ 1), and the i component exists at (m+ , n+ , p),

where m, n, and p are the discretized steps of the x, y, and z coordinates, respectively.

The electric field Ex exists at (m + 1, n, p), hence to relate the magnetic fields one

must take backward differences. For Equation 5.4,

OzHy(m+I,n,p+!) A (HYI(m+I,n,p+!) - HYI(m+I,n,p-) (5.7)

and

aYHzl(m+in+i p) Hzl(m+ - iI,n-I,p) (5.8)2 2 7P 2m 2+2 2
y
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which are central differences in space with respect to the location E,. Substituting

Equations 5.5, 5.7, and 5.8 into Equation 5.4 results in the usual FDTD update

equation (also requiring the semi-implicit approximation for the current). A Fourier

mode on the FDTD lattice is written as

E = Eoeikxms.x+ikynAy+ikpAz-iwIlt (5.9)

where m, n, p are the spatial discrete coordinates, I is the discrete time coordinate,

and At is the time step size. In the Fourier domain, the differential operators may

be replaced as follows:

at -2i eiwAt/2 sin W =t -=ife-i& (5.10)
At 2

S -2i e ost/2 sin(= -iQe (5.11)
At 2 )

tat -> -Q 2 = - sin2 (WAt) (5.12)
(At) 2  2

where 6 t = wAt/2. One can see that the phase terms cancel when both a forward and

backward differentiation is applied successively. In addition, Q -+ w when At -+ 0,

as expected. For the spatial differentiation,

49X 2i eikAx/ 2 sin kx Ax) ZKxei6x (5.13)
Ax 2

(ax 2 i e-ikxAx/2 sin kx ) = iKxe-ix (5.14)

2 4 2 kx)
axOX - -K2 A 2 sin2 (xx (5.15)

where 6x = kxAx/2 (and similarly for y and z). Again, Kx -+ kx when Ax -> 0, as

expected. Using this notation, Maxwell's Equations in discrete space (on the Yee's
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lattice) are given by:

Sx E.,

V x H-~i
' -

2 g

= - 1-1+2g2

=at Da+J

= 0

=__ p1

(5.16)

(5.17)

(5.18)

(5.19)

where, for simplicity, 7iT + 1 refers to (m + }, n + 1, p + -). In addition, V = k +

J53 + 2Oz and V = J52 + p9O + io9. The divergence equations are derived from the

discrete charge continuity equation, V- J + Otp = 0. The constitutive relations are

also defined in discrete space as:

(5.20)

(5.21)

The electric current is defined as:

J77 = 07fe* . ET7T (5.22)

In these equations, B and H have been chosen as back-vectors while D and E have

been chosen as fore-vectors. This choice is arbitrary, and follows the notation of [116].

Now that the discrete calculus notation has been reviewed, the next section derives

the dispersion relation for discrete anisotropic media.
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5.3. Numerical Dispersion Relation For Anisotropic Media

5.3 Numerical Dispersion Relation For Anisotropic

Media

From the discrete Maxwell's Equations and the discrete constitutive relations, the

vector wave equation in discrete space may be derived as:

x Vt X7 x -Q 2 6 - E = iQJ7j (5.23)

The superscripts denoting the time coordinate have been dropped as all the terms

exist at time 1. For example, the current term on the right was originally at 1 - 1, but

in deriving the wave equation it became EJ = iQJ. This derivation is limited

to the biaxial anisotropic case, though it will be apparent that the formulation can

be extended to the general anisotropic case in an obvious fashion. In this case, a real

permittivity is defined as:

Ex

0

0

0

0

0

0

6z

and a biaxial conductivity as:

o-x

0

0

0

o-Y

0

I (5.24)

0

0

O-z

(5.25)

For a medium with anisotropic permittivity,

space becomes:

the vector wave equation in discrete

V x V 0

which can be written as:

(5.26)

(5.27)
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where V2 = - . It follows that:

tz (t E ) - [i x-xT +[ 6x 6L, 47; +- x5P t- i

+ [5y&L47 y + ±"i 5t"i

+ 2 52 kE'TiT + 6282E2,=

= (6x 6X+ 5,,+ 5 A '

+ 9 (6A + ± + Eyrn

+ (5x

Cl

5A$2

62z 5

+ 6yy + 6zA) JZ S~

The vector wave equation may be written in matrix form as:

5x Oy Ox8 O

C2 5&yz

5z6y 03 [ExTTF

54, J
E2,i -

0

0

0

where

C = -yy - zz + per 9t at + pO-xe 3 t~t

C2 = - 5A + PEA& + po-yet* 5t

C3 =-5x - yy + PeA + po-zet*5t

In usual FDTD notation, coefficient C1 for example would be:

sin 2  kzAz 4 2 (WAt) 2i

(2 (At)2 2 At
sin

2
(5.31)

and

(5.28)

(5.29)

(5.30)

4si sF n 7 M ( 2

Chapter 5.180

+ 52z ,m 

4
+T2

(x)2
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By substituting Equations 5.10 - 5.15 (and corresponding equations for y and z) in

Equation 5.30 and by setting the determinant of the matrix in 5.30 to zero, a single

algebraic equation for the discrete k is obtained, which can be solved by iterative

means. In this study the Newton-Raphson method has been used, with the continuous

k used as the initial guess. In the following sections, k will refer to the wave vector

that has been already adjusted for numerical dispersion. Extending this formulation

to the off-diagonal anisotropic case is straightforward, albeit cumbersome.

5.4 R and T Coefficients For Anisotropic, Layered

Media in Discrete Space

For Huygens' sources to be implemented in anisotropic and layered media, the reflec-

tion (R) and transmission (T) coefficients for each interface must be known. As with

the dispersion relation, these values must also be rigorously calculated for discrete

space. The formulation here extends [117], which dealt with the PML reflection error

in discrete space for TE incidence. Once both R and T are known for a single inter-

face, they can be put into a recursive formulation for multiple layers [3]. For the sake

of simplicity, the derivation will be restricted to the uniaxial case, where e,, = = Et

and o-, = o-t in each region. The fields are propagating in the -i direction, from

region 1 to region 2.

5.4.1 TE Case

Given a plane wave incident on a halfspace, the E fields in regions 1 and 2 may be

defined as:

l= Eoe ki + RTE oe ikr (5.32)

Z2 = TTE Ee ikt (5.33)
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where Eo = EoE, ki = krkx+ kjv- kjz, kr = x'krx+Qkry+krz, kt = skUx+ kty-sktz,

and T = -mAx+QnAy+pA,. On the FDTD lattice, the E fields exist at the dielectric

interface boundaries. Phase matching of the tangential components at the boundary

z = 0 may be used to find:

I+ RTE T TE (5.34)

From the discrete Maxwell's Equations, the H fields are derived as:

K x E -T

H2 = TE K %xEI
QW 2

+ RTE K, x Ei eTas+ Ri (5.35)

(5.36)

where

K - iKxiejax + yKyie6 Y1l - zKziei
6 z

Kr = Kxje 1x + yKyiei + iKzie i6 j

e= xK 2 ei2x + Ky 2 ei6 y2 - K 2ez2z

(5.37)

(5.38)

(5.39)

and Kxi = kxisirnc (6x1), 6 1 = kx 1Ax/2 and Qt = QeiwAt/2. The tangential H fields

exist A/2 above and below the boundary, so phase matching may not be used directly.

Going back to the discrete Maxwell's Equations,

iz2 x Hr± 1 (5.40)

Applying Equation 5.3,

(5.41)
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Note that when Az -+ 0, Equation 5.41 reduces to the usual continuity of the H

fields at the interface. Using the tangential H fields from Equations 5.35 and 5.36 in

Equation 5.41,

e-'z + RTE i6z1

Pi Pi

-TTE Kz2e .-

IP2

Solving for RTE and TTE in Equations 5.34 and 5.42,

Kzie-zi - Kz2e- J2L + p, iK Az
A2 /t ) /z=i -

Kzlei6" + Kz2 C-iJ2 LI - Pi iK;2Az
A2 /z=O

Kzi e1 + C-i12)

Kzieiz + Kz2 e-Mz2 l
A2

5.4.2 TM Case

For the TM case, the H fields in regions 1 and 2 may be defined as:

1,

H 2

= Hoek irl + RTM oeikrr

= TTMHoekT o

where HO = QH0 . Again, from the discrete Maxwell's Equations, the E fields may be

derived:

1 l

E2- 2

= K x HO kT+ RTMK, x HO ik,

= TTMKt x He tk

(5.47)

(5.48)

( Kz2Az) (5.42)

RTE _

TTE=

(5.43)

(5.44)

(5.45)

(5.46)

-1 iKz2Az

t, / Z=O
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where

Ki = Kxe-ixi + yKye-'6y - Kziei6z (5.49)

Kr Kxie~ xl + yKyie-' Yl + Kzie~z1 (5.50)

Kt Kx2e'x2 + Ky2ei'2 - 2Kz2e -uJ2 (5.51)

In a similar fashion as in the TE case, n2 =ewAt/2. From the discrete definition of

J, complex permittivities can be defined as:

iol
EQi Egi + z (5.52)

E 2 -+ eg2 + Z2 (5.53)

where is t (transverse) or z (longitudinal). Note that these expressions for E hold at

every point in space except p = 0 (the interface), where the tangential electric fields

are defined through the magnetic fields in both regions 1 and 2.

Obtaining the TM reflection and transmission coefficients is more cumbersome

than in the TE case, because the magnetic fields do not exist on the boundary.

Whereas in the TE case one equation could be determined by matching the incident,

transmitted, and reflected electric fields at the interface, this is not possible for the

TM case. Some approximations can be made, such as assuming the magnetic fields do

exist on the boundary, or naively applying Equations 5.47 and 5.48 at the boundary,

but both cases offer only small improvements to the continuous formulation and are

not effective over all angles and frequencies. Instead the coefficients may be solved

exactly, by calculating the magnetic fields at different points directly above and below

the interface. Consider the TM ( ) magnetic fields around the boundary, shown in

Figure 5-1 (note the n dependence has been dropped):

1 1
Y,(m+-i'P+ - - [=zkx,(m+,p) - xz,(mp) (554)
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z

Ez,(m,p+1/2)

Hy,(m+1/2,p+1/2)x
Ex,(m+1I 2p) Region 1

Region 2

Ez,(m,p-1/2)

Hy,(m+12,p-112)x
I Ex,(m+1/2,p-1) j

Figure 5-1: Magnetic and electric fields around the discrete FDTD boundary

Hy,(m+,p-) -1 [5zkx,(m+±,p-l) - 5xkz,(m,p- ) (5.55)

The electric fields around the boundary may be defined as:

5.,(m+i,p)

~ 2 z P)

Ez,(m,P+!)

1 [a + Ra-
zQEt,ave

-Kxe-"x1
(+ 1RTMa)

-Kxe-ix2

TtEz2

TTMb] (5.56)

(5.57)

(5.58)

where:

ikx1Ax(m+ )+ikzlAz(p+)

b = fteikx2Ax(m+!)-ikz2Az(p--)

(e +e62)
Et,ave = 2

2

(5.59)

(5.60)

(5.61)
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Solving Equations 5.54 and 5.55 at p = 0,

TTMz~e 2 3 2 TMK2 ez

T T~ei6,2 ei1 RTMei1 + T TMi
6 2

Z t Rt,ave/2

T TM Kz2Cn 262 T T M Kx2e i6,2

zt Et2W2 t CMz22

e-i6z1 4TM i6z1 - _6i+RTe~z Te6,

Z t,ave/11

Kz1 (e 26 zi - RTMei 26Z1)

AQ2t~u
K21 (e-i 6 1 + RTMei6Z)

Q2Eziti

(5.62)

(5.63)

These Equations are then solved for RTM and TTM using a computer algebra package.

The resulting expressions for each are quite long, and are left to the Appendix at

the end of this chapter. Again, as for the TE case, the reflection and transmission

coefficients may now be substituted into a recursive formula or propagation matrices

to obtain the transmission and reflection coefficients for a multi-layered medium.

5.5 Discrete Space Field Coefficients

It is important to note that given a TE or TM incident plane wave, the corresponding

magnetic or electric fields (implemented on the Huygens' surface) must be found using

the discrete Maxwell's Equations. This defines a discrete-space impedance which is

distinct from the continuous case and also depends on the discretization sizes.

5.5.1 TE Case Field Coefficients

For the TE case, begin by defining a transverse E field propagating in the q$ 0 (xz)

plane:

Ey= Eoe -i''

186

(5.64)
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where k = - k. The H fields are then:

At sin (kA) e-i6,/2

= A, sin (w )e-ist/2i Ey (5.65)

At sin ("x)eiS,/2
SA sin (w)eist/25E (5.66)

The phase terms above reflect the staggering of the fields in space and time. When

using these field values as Huygens' sources, the phase terms must be dropped. This

is because the incident sources for the H field components is already spatially and

temporally offset on the FDTD lattice with respect to the E field components.

5.5.2 TM Case Field Coefficients

The TM case begins with a transverse magnetic field, propagating in the q = 0 plane,

defined here as:

Hy = Hoe ik-ilAt (5.67)

from which the E fields are:

~ At sin (kzAz)eib,/2
Ex= A s i6t2 LY (5.68)

AX sin (W, 2 t

~ At sin (kxx) e-ix/ 2

E = s ) 2 y (5.69)
Ax sin ( 2 )Eczei1

5.6 Numerical Experiments

For the numerical experiments, consider a three-region medium as shown in Figure 5-

2. The total field region is empty, so the scattered fields should be zero. Dispersion

error can then be measured by examining the fields that escape into the scattered

field domain. The results will be presented as surface plots of the xz plane at y = 0

for visualization purposes, as well as dB graphs of the maximum field error (scattered

field divided by incident field) for exact quantitative evaluation. TE and TM waves
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Einc

E1,CT 1

Ro Etot Escat

E2,a 2

E3Su3

Huygens' Surface

Figure 5-2: Computational domain for discrete formulation testing

will be tested for 6 = 0' incidence and 0 = 450 incidence (<0 = 0"), which correspond

to worst case and best case dispersion, respectively. The uniaxial medium and the

incident field are chosen to examine the dispersion for typical spatial discretization

sizes, to allow for fair comparison between the standard FDTD technique and the

compensated technique. Note, however, that the dispersion compensation is effective

up to a discretization size of A/5, though obviously FDTD results would be poor

at that frequency. Region 1 of the computational domain is air (cti = 6 z1 = 1.0o,

ati = a-zi = 0.0), region 2 is an anisotropic slab with Et2 = 1.25E6, ,2 =1.5E,

-t2 = 1.0 x 10-4, and Uz2 = 1.5 x 10-4. region 3 is also anisotropic with E = 1.75E,

6 3 = 2.0E, -t3 = 2.0 x 10--4, and Uz3 = 2.5 x 10-4. The total field region is

60A, x 60AY x 60A, in size, and the scattered field domain extends 10A beyond the

total field region to to the PML. The boundaries are located at 15A-, and -15A, with

respect to the axes origin at the center of the domain. For most cases, the incident
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Figure 5-3: Bandwidth of narrowband and wideband pulses

field used to measure numerical dispersion will be a narrowband Gaussian pulse, with

a center frequency of 500 MHz (A = A/30 in region 1, A = A/21.2 in region 3). The

bandwidth of the incident pulse is such that the signal is 40 dB down at 700 MHz. In

addition, the case of a very wide bandwidth Blackmann-Harris pulse is also examined.

The bandwidth of both pulses is shown in Figure 5-3. The Blackmann-Harris pulse has

a useable bandwidth of at least 100 MHz to 1 GHz, with higher frequency components

being no more than 20 dB down from the center frequency. In Figure 5-4, as with

all surface plots presented in this section, the total field is removed for visualization

purposes. The field is traveling along the z axis (at 0 = 0) in the - direction. Note

that each facet of the surface plot corresponds to 4 FDTD cells (2 x 2 averaged). The

maximum amplitude of the incident Gaussian pulse is 100 V/m, and the time step of

this plot corresponds approximately to the maximum field value leaving the total field

domain. The numerical dispersion (uncompensated) of the FDTD domain results in

Modulated Gaussian
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Figure 5-4: TE and TM numerical dispersion error, 0 = 01 incidence, continuous formu-

lation

a scattered field error which is 14.8 dB less than the incident field, at the maximum

field error point directly below the total/scattered field box. Figure 5-5 is a surface

plot similar to Figure 5-4, after the discrete formulation has been applied to k, the

field coefficients, RTE, and TTE. In this optimized case, the scattered field error is

much smaller, 43.3 dB down from the incident field. Next, Figure 5-6 compares the

value of the scattered field error at the point on the z axis below the area where the

incident field is removed on the Huygens' surface. The error is defined as the scattered

field normalized by the total (incident) field just within the Huygens' surface. Taking

a measurement at a single point is a reasonable indication of error, as will be shown

later when the total error is summed over a second Huygens' surface. The benefits of

the discrete formulation are quite obvious here, with a noise floor for the optimized

case that is 28.5 dB lower than the uncompensated case (measured at the maximum

error in time). The average field error improvement (taken over the time that the

190



5.6. Numerical Experiments 191

2

40

20 105 0
110 251

30 25
10 0 40 35 3 52

X Axis Z Axis

Figure 5-5: TE and TM numerical dispersion error, 0 = 00 incidence, optimized formula-
tion

incident pulse is in the computational domain) is 28.4 dB. For 9 = 0' incidence,

this dispersion compensated total/scattered field formulation has nearly doubled the

dynamic range of the scattered field measurements. Figure 5-7 shows the maximum

error of a TM field (the Hy component) at 9 = 00 incidence. As expected, this is

very similar to the TE field at normal incidence, because the TM and TE cases are

both ordinary waves when propagating along the optical axis. Figures 5-8 and 5-9

show the scattered field error for a TE wave at 9 = 450 incidence, for the continuous

and discrete formulations. For the continuous formulation, the error is 19.1 dB down

from the incident field, which is better than the 9 = 00 incidence case as expected. In

the optimized case, the scattered field error drops to -42.7 dB. Figure 5-10 shows

the TE scattered field for 9 = 450 incidence at the point of maximum error. The

improvement here is 23.6 dB (at the pulse maximum in time), which is less than the

gains achieved in the 9 = 0' case. This is expected due to the fact that at this incident
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Figure 5-6: TE numerical dispersion error, 6 = 0' incidence, maximum error (measured
at (0, 0, -35))

angle there is less dispersion error in the continuous k formulation, so the discrete k

formulation yields less improvement. The average scattered field error improvement

is 23.9 dB. In Figure 5-11, the error of the total/scattered field formulation for a TM

wave at 0 = 450 incidence is shown. The maximum error is 17.9 dB down from the

incident field. The TM field error is worse than the TE field error at this propagation

angle because the TM field is an extraordinary wave. The TE wave, however, does

not see the anisotropy at any angle of incidence, and is always an ordinary wave (as

is the TM wave at 6 = 0" incidence). In these experiments, the vertical permittivity

is greater than the transverse permittivity, hence the extraordinary wave experiences

greater error (smaller wavelength means poorer discretization). Figure 5-12 shows

the error after optimization, and the improvement is evident. The maximum error is

44 dB down from the incident field. Figure 5-13 shows the error of the H. field. The

optimization has reduced the maximum field error by 26.1 dB, and the average field
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Figure 5-7: TM numerical dispersion error, 6 = 0' incidence, maximum error (measured
at (0, 0, -35))

1.5

1 I
0.5-

I-i

40.

30-- -

2010 5
10 25 2010

10 0 40 35 30 25 0

X Axis Z Axis

Figure 5-8: TE numerical dispersion error, 6 = 450 incidence, continuous formulation

Formulation
mulation

-70

-80

-90o
1200

193

-- 40

-50

r-60

-90

0

0

-.-.---.--.--

-.. ...



Numerical Dispersion Compensation of the FDTD Technique

1.5N.

1 .

0.5,

-0.5

-1,

-1.5
40

X Axis Z Axis

Figure 5-9: TE numerical dispersion error, 0 = 450 incidence, optimized formulation
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Figure 5-10: TE numerical dispersion error, 0 = 450 incidence, maximum error (measured
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Figure 5-11: TM numerical dispersion error, = 45' incidence, continuous formulation

4

4 0 -

400

20 25 201
310

10 0 40 35 3 52

X Axis Z Axis

Figure 5-12: TM numerical dispersion error, 0 = 451 incidence, optimized formulation
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Figure 5-13: TM numerical dispersion error, 0 = 450 incidence, maximum error (measured
at (0, 0,-35))

error has been reduced by 26 dB. Figure 5-14 shows the scattered field error for the

TE and TM fields over angles from normal incidence to 70 degrees. As expected both

the continuous formulation TE and TM field errors decrease with oblique incidence

due to the lower dispersion error at 45 degrees. However, the TE field error does not

increase again as grazing incidence is approached, and the TM field error increases

in an asymmetric fashion. This behavior is due to the additional error incurred in

the reflection and transmission coefficients. For the discrete formulation, the error in

all cases is reduced by at least 25 dB, and is fairly independent of angle as expected.

Figure 5-15 shows the individual effects of the numerical dispersion correction and

the discrete Fresnel coefficients. Note that these results depend on the number of

interfaces in the simulation as well as the contrast between regions. Obviously in

the limit of homogeneous regions, the numerical dispersion compensation would fully

account for all error correction. For the three-region simulation performed here, the
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Figure 5-14: TE and TM numerical dispersion error, measured over angle at (0, 0, -35).

additional correction of the Fresnel coefficients provides 18 dB greater accuracy at

normal incidence and 30 dB more accuracy at near grazing incidence. At larger

incidence angle, the solution error when only considering discrete k approaches the

continuous formulation. For grazing incident angles, it is obviously very important

to consider the effects of the Fresnel coefficients as well as the numerical dispersion

relation. The dispersion compensation of the wideband pulse is shown in Figure 5-16.

The maximum error in the continuous formulation is -10.23 dB, whereas the maximum

error for the discrete formulation is -30.1 dB, and improvement of approximately

20 dB. Note that this is likely close to the maximum error correction possible, as

the Blackmann-Harris pulse has very high frequency components that are only 20

- 25 dB down from the center frequency. This bandwidth includes frequencies up

to and including those that cannot be propagated on the FDTD grid (A = A/3),

and as such cannot be fully compensated with our formulation. Finally, consider the

effects the dispersion error could have on radar cross section (RCS) measurements
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Figure 5-15: TM numerical dispersion error, measured over angle comparing the effects
of the numerical dispersion relation compensation and the Fresnel coefficients correction

(measured at (0, 0, -35)).
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Figure 5-16: TE and TM numerical dispersion error, 6 = 0' incidence, maximum error

(measured at (0, 0, -35)), wideband pulse

(chapter 8, [18]). A second Huygens' surface enclosing the total field domain was used

to measure the scattered field error everywhere for the duration of the simulation.

These measurements were then used to calculate the far field RCS error. Figure 5-17

shows the RCS error for 500 MHz and 700 MHz frequencies, using the discrete and

continuous formulations. At 700 MHz, the discretization in region 1 is A/21 and

in region 3 is A/15. In the continuous formulation, the maximum RCS errors for

the two frequencies are-28.8 dB and -20.6 dB, whereas the errors for the discrete

formulation are -76.6 dB and -61.1 dB. The RCS error for the continuous case is

similar in magnitude to the error measured at a single point in previous Figures,

whereas the discrete case error is much lower for this type of measurement. The

reductions in error are 47.8 dB and 40.5 dB for the 500 MHz and 700 MHz frequencies,

respectively. Note that the discrete formulation is still sensitive to discretization

sizes, due to the averaging required of certain terms as well as the semi-implicit
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Figure 5-17: Radar cross section error for two frequencies, 0 = 00 incidence.

approximation of the FDTD formulation. The discrete formulation can sometimes

even exhibit a larger relative increase in error over frequency than the continuous

formulation (as in Figure 5-17), however this is not always the case. Ultimately, the

compensation method still provides broadband error reduction, with a minimum of

40 dB improvement demonstrated here. Note that this method could also be used to

correct the numerical dispersion in the scattered field region when using a Huygens'

surface for far-field calculations, where the source locations are known (radiation

problems).

5.7 Conclusions

In this chapter, the numerical dispersion effects for the FDTD method in anisotropic

and layered media have been studied. This result can be used for many applications,

and as an example a dispersion compensated Huygens' source in layered, uniaxial
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5.8. Appendix

media was presented. The new technique achieved a typical wideband improvement

on the order of 30 dB over the conventional implementation for modest discretization

sizes of (A/30 - A/20) in a 603 cell domain.

5.8 Appendix

The transmission and reflection coefficients for the TM case are:

rpTM _ 2i sin(6,z)6z1 t2 6 z2 (1 + e-2iz1) e-iz1--
6 z2

R TM

DTM
(5.7IU)

= e- 326 z15[-2i sin(6zi)Et,ave Ezi 22E 2 
622 e -i'

+ QA4 4t,ave E6t Ez1 Et2 Cz2

- 2 Q 2Cti EzI Ct2 Cz2

+ 2Z Q2 A 2 t,ave Eti E
zi sin (6z 2 )ei6 z2 Cz 2

4 Q2 A 2 t,ave Etl Ez1 sin 2 ( 5x1)Et2

2 ieti Ez, sin(Jz2 )e z2Ez 2

+ 4 E1 iEzi sin2 (6X1)ct2

- 4 sin 2 (6 x1)Et,ave Etl Q 2 2t2 Ez2

+ 4 sin 2 ( 6 X1)Etl Et2 Ez2

- 8 i sin 2 ( 6 xi)Et,ave Eti sin(z 2 )ez2z 2

+ 16 sin4 (Oxl)Et,ave Etl Et2

+ 2 i sin(6zj)czj e-ijzi Et2 Ez2

+ 4 sin(6zi)Et,ave 
6z1 sin(z2)Ez2 e2

6
z1±i

6
2

+ 8 i sin(6 zi)Et,ave Ez1 sin 2 (6xl)Et2 e-' 6 z1)

x (DTM (.1

201

(5.71)
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DTM [ Q4 A4 Etave Etl 6z1 e t2 Ez2

+ 2 Q 2 A 26tl 6 z1 e Ciz t2 Cz2

- 2 Q2 A 2 Etave Etl EzI sin(z62)Ez2 e i
6

1+ioz2

+ 4 Q2 2 Et,ave EtI Ezi e idz sin 2 (651)Et2

- 2 Sinf(6 z1)Et,ave Ez1 Q2A2Et2 Ez2

* 2 i sin(6zl)Ez Et2 Ez2

+ 4 sin(6 zi)Et,ave Ezi Sil(6z2)e23 z26z2

+ 8 1 Sin(Ozi)t,ave Ezi (sin 2( 6 X1)Et2

+ 2 Et, cz1 sin(6z2 )Ez 2 e2
3 zI±i

6
z2

- 4 Et, cz1 e- 3 z1 sin 2 ( 6X1)Et2

+ 4 sin2 (xi)Etave -n e-i6z1Q 2 ZA2 6 t2 Ez2

- 4 sin2 (6)te - 12 z2

+ 8 i sin 2 (6xi)Et,ave Eti sin(z2)Ez2 e i'zl±iz2
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Chapter 6

Detection of Targets in Continuous

Random Media Using the Angular

Correlation Function

6.1 Introduction

Electromagnetic wave propagation in random media is a topic of importance in fields

such as remote sensing [67] and communications [118]. This is because many natural

media such as foliage or soil cannot be described in a purely deterministic man-

ner [119]. For example, predictions of radar return from objects obscured by fo-

liage [120] or buried under the soil [121] are clearly dependent on the knowledge of

the effects of such media on the total scattered field response. Random media have

constitutive parameters that are random variables in space or time. Statistical models

can be used to characterize a random medium in terms of effective (mean) constitutive

parameters and fluctuations described by some correlation function. The study of sta-

tistical properties of electromagnetic wave scattering in such media can be carried out

by Monte Carlo simulations on an ensemble of random media. In some very particular

cases, a single realization may be sufficient by assuming spatial ergodicity, but in gen-
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eral, the Monte Carlo ensemble should be large enough to ensure statistical meaningful

results. The statistical description of random volumetric material inhomogeneities in

this way is similar to the statistical description of random rough surfaces [122]. In

this work, soil will be characterized as an inhomogeneous, continuous random media

with subsurface detection applications in mind [123, 115, 124, 125, 126]. A number of

studies have demonstrated that the soil constitutive parameters are highly sensitive

to both moisture [127] and material content [128], so it is important to characterize

such effects in terms of random permittivity fluctuations.

The bistatic scattered fields from targets buried in random media, using both

ensemble and frequency averaging techniques have previously been studied [129]. In

this chapter, the 3-D FDTD method presented in Chapter 5 is employed to charac-

terize the angular correlation function (ACF) [130] of the scattered fields of targets

in continuous random media. These results will serve to verify the effectiveness of

the ACF for object detection in situations where the clutter from the surrounding

volumetric scattering is important. The motivation for using the ACF is that scat-

tered fields from buried objects should exhibit greater correlation than the random

medium clutter, especially away from the memory line (or dot). This has been shown

for rough surfaces and discrete random media in [131]. The angular correlation should

be particularly large when the object has some kind of symmetry (such as spherical

or cylindrical). The goal then is to compare the ACF of a random medium for cases

with and without an buried object present, with the hope that the ACF will exhibit

significant differences.

6.2 Angular Correlation Function (ACF)

Consider two plane waves impinging on a random medium, with incident angles 0i

and 6 2. The ACF [130] is defined as the correlation between the two scattered waves

in directions 0 ,1 and 0s2. Generally, the angles can be a function of # or 0 in a three-
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6.2. Angular Correlation Function (ACF)

dimensional geometry, but in this work is limited to #il = Oi2 = 0. The random

medium is a halfspace with permittivity:

E() = Em + Ef () (6.1)

where Y =x + yy + z and Ef (;) is a function of position Y characterizing the

random fluctuation, and is such that (Ef(-)) = 0. The fluctuation at each position is

a Gaussian random variable, with correlation function C(r1 - T 2). The generation of

Ef (T) is implemented in the Fourier domain by passing a three-dimensional array of

random numbers (with Gaussian distribution and zero mean) through a digital filter

whose response corresponds to W(k), the Fourier transform of C(T1 - -2). W(k) is

then the spectral density function of the dielectric fluctuation. This work will consider

the following correlation function [132, 133]:

(f (T1)E*(1)) = C(M1 - -2 ) = 6me e (6.2)

where 1, and l are the transverse and vertical correlation lengths, respectively, Elm is

the mean permittivity, and 6 is the variance. The correlation function in Equation 6.2

has a Gaussian profile in both the transverse and vertical directions. A typical x - y

plane cross section of one realization is depicted in Figure 6-1. Note that other

correlation functions could be used as well. A Gaussian correlation is employed for its

generality and because it can be fully described with a minimal number of parameters
1p, lz, Elm, and 6 (low order statistics). The ACF, F, is written as

F (0.1, 6i1; 0s2, 0i2) =< Es (Os1, Oil) Es* (0s2, 9 i2) >
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80

0 20 40 60 80 100 120

1.5

Figure 6-1: Cross-section of the random medium permittivity in the x-y plane. Elm = 3.5.

where E, is the scattered field and the angular brackets denote averaging. The aver-

aging can be performed in many ways, the most common being realization averaging:

rr (Os1, Oil; Os2, 6 i2)

and frequency averaging

Nr

Nr

sN (6si, Oil, n)

n=l

[131]:

where the bandwidth can be defined as 2Azf, fo - Af < fn < fo + Af, N, and Nf are

the number of medium realizations and frequencies, respectively, and P1, P2 describe

F-I6

5.5

5

4.5

4

3.5

3

2.5

2

x ON* (92 2)/ 2 (6.4)

Nf

Nfn=1 N(.1 i
fn)

x O N* s2 0 f, Pip2 (6.5)
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6.2. Angular Correlation Function (ACF)

the power of the incident fields. Equation 6.3 has a correlation that is described by

what is known as the memory effect, which is a function of the incident and scattered

wave angles. The memory effect is a result of the statistical translational invariance of

the random volume, and reduces to phase matching for the deterministic (zero vari-

ance) case. In the case of a random rough surface scattering, the strongest correlation

occurs along the memory line, described by sin 0 2 - sin 0 ,1 = sin 0 i2 - sin Oil. When

considering volumetric scattering from a random medium, another phase matching

condition exists in the vertical direction, described by cos Oil+cos 0 .1 = cos Oi2+cos 0 s2.

This latter phase matching condition makes the memory line shorter [131], creating

what is called a memory dot. Note that random medium scattering is not statistically

invariant in the vertical direction, due to loss (finite conductivity), so this memory

effect is not exact. Realization averaging is akin to Monte-Carlo averaging, and is

very useful to describe the statistical properties of scattered fields. However, while

realization averaging is useful in demonstrating the memory effects theoretically, it

cannot be applied to real subsurface detection problems because only one realization

is available in practice. Frequency averaging is an alternative technique that can

be used in practical detection problems. FDTD is suited for simulations involving

frequency averaging, with proper care taken to avoid numerical dispersion effects at

higher frequencies. Moreover, the objects must be relatively shallow, due to the fre-

quency dependence of penetration depth. A weighting function, We(f), must then be

used to compensate for the frequency dependent response of the system (penetration

depth, object size) [131]. This work will examine both realization and frequency av-

eraging techniques. The motivation for using the ACF is that scattered fields from

buried objects should exhibit greater correlation than the random medium clutter,

especially away from the memory line (or dot). This is particularly true when the

object has some kind of symmetry (such as spherical or cylindrical). The goal then

is to compare the ACF of a random medium for cases with and without an buried

object present, with the hope that the ACF will exhibit significant differences.
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The Born approximation can be used to gain insight into the ACF. Given a plane

wave incident on the half-space random medium defined in Section 2, the fields in

regions 0 (upper) and 1 (lower) can be calculated using dyadic layered Green's func-
-(O) -(O)

tions, Go, (7,') and G11 (,'), as [66]:

-E = (0) + w2[ dr' (4,')Eif(Y') E1(7') (6.6)

Jv1

EI = E +w2 J dr' G11 ( 7 Y)cli (') - E1(') (6.7)

where V is the random medium volume. Using the Born approximation [66] to obtain

the first order solution, we replace the total field P 1 in the integral by the incident

field P). The approximation is applicable when i (?') ~ cim (low contrast). The

perturbed part of the scattered field in region 0 is then:

. (= p dr' Go, (, ')EI ( E') (6.8)

The half-space Green's function in the far field is:

=(O) eik+ k
Go, (r, r') 4 [XOish(9s, #5)h(081, ksi) + kYsb(08, #$)i'(Os1, #i1)]e-k (6.9)

47rr kim

where Xoi and Yos are the transmission coefficients of the half-space interface, with

the subscript s indicating they are evaluated in the direction of the scattered fields,

and h and b are the standard polarization vectors [66]. Given two incident fields in

region 0, Ea and Eib, the unperturbed fields in region 1 are:

Ta()T = X iiahiaeliar

-(0) -

Eib (T) = Xolibhlibeib

where the transmission coefficients, polarization vectors, and k vectors are denoted
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with a or b subscripts to correspond to the respective incident fields. The co-polarized

ACF using ensemble averaging and the Born approximation may be written as:

b 6 7r 2 2XoisbXoiXosaXo iaA (6.10)

where A is:

A = I dIr'I
JV1 JV1

d-/" e Td1T'-Td1b")C (7' - V") (6.11)

and kdIa is kia - kisa (similarly for kdlb). Changing to average and difference coordi-

nates, ray = (' + ?")/2 and Td = ' - ?", we obtain:

A = d J
Ji JVI

drde ((-dla- dlb)a+(dla+kdlb)rd/2)C (r;)

Evaluating the A factor results in:

A (eik d- 

[ 21 2 d 2 +k2_d 2

p X 4 d Id E erf

sin k d- Lx/2

xkd

Lx

1P
i k+ l 
±4

sin k d-Ly /2

kd-
yld

+ Lerf , ik dl )

+ r (1 4d

(LY + ikld'P\

P 4)
+ erf -ikad P

+er f -1 4k dlikd lz
(6.13)

where kd = kxlda - kxldb and k ld = kxda + k 1db.

The dominant factors in the ACF are the first three factors of A, which are sinc

functions in terms of kx, kY, and kz. These results show that the width of the memory

(6.12)

erf

erf ( +
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line (or dot) is on the order of A/L, and A/Ly, where L, and Ly are the transverse

linear dimensions of the random medium volume considered (illuminated area). The

depth of the random medium is indicated by d, hence the random permittivity fluc-

tuations exist over a total volume defined by L. x LY x d in the halfspace. As shown

in [129], larger correlation lengths result in larger scattered fields, and hence the total

ACF increases in magnitude as the correlation lengths increase (the shape remains

similar). However, as the correlation length approaches the dimensions of the volume,

the ACF rapidly decreases to zero, as the random medium becomes homogeneous.

The ACF is determined by averaging over angles to obtain different wave vectors.

However it is also possible to obtain the frequency correlation function (FCF) by

averaging over frequency (the sinc functions depend only on k), although it is not as

likely that the scattered fields of the object will be well correlated over frequency as

they are over angles. Hence, one cannot expect that the FCF will have a significantly

greater correlation when the object is placed in the random medium.

6.3 FDTD Model

Our FDTD computational domain is show in Figure 6-2, containing a perfect elec-

trically conducting (PEC) cylinder embedded in a random medium half-space. The

incident field is introduced on the Huygens' surface A enclosing the target as well as

the random medium half-space, using the total/scattered (T/S) field formulation [18].

Using a plane wave incidence, the half-space Green's function [115] is used to calculate

the incident field everywhere on the Huygens' surface A. When calculating the inci-

dent field, the permittivity of the half-space is taken to be the effective permittivity

of the random medium. The numerical dispersion compensation scheme introduced

in Chapter 5 is used here. The scattered far field is calculated on the Huygens'

surface B in the scattered field domain [134], again using the layered Green's func-

tion. A perfectly matched layer (PML) formulated via stretched coordinates [22] is
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6.3. FDTD Model

L Huygens' Surface B

F Huygens' Surface A

Figure 6-2: Object is a cylinder, buried in the random medium halfspace with 1m = 3.5.

used to match the interior medium and truncate the computational domain. The

results presented here do not include the direct reflection from the half-space in-

terface (free-space/mean permittivity). The interface return (surface scattering) is

removed because only the perturbations to the RCS response caused by the buried

object and the random medium are of interest. Therefore, the scattered field results

shown can be considered as perturbations in the steady-state average return with no

object present. If necessary, direct returns from the interface layer can be easily ob-

tained (even analytically). Moreover, given a planar interface is considered here, the

simulations presented here do not include any surface roughness (and the associated

surface-scattering clutter) effects in the scattering results. This is purposely done in

order to isolate and better analyze the volumetric scattering effects. The possible
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o Direct Layer Reflection
E0,p0 @) Direct Object Scattering

do@ Random Media Scattering

Elm+ Ef , <Ef>=0O Object - Layer Interactions

11 Random Media Q Object - Medium Interactions

Figure 6-3: The possible interactions between the incident field, surface, random medium,
and target. Interaction 1 is not included in the results of this Chapter.

interactions are illustrated in Figure 6-3.

6.4 ACF Results

The FDTD computational domain is created by discretizing the half-space into a

140 x 140 x 74 lattice (composed of the standard Yee cells [17]), where the random soil

comprises 128 x 128 x 64 cells. This results in a system with 12.85 million unknowns,

solved at 1000 time steps, taking 683 seconds per realization on an AlphaServer

DS20E (667 MHz with 4 GB RAM). The actual physical size of the random medium

corresponds to 1.71 m x 1.71 m x 0.855 m. The discretization size is chosen to be

1.2 cm, which corresponds to A/84 in free-space and approximately A/45 within the

soil (mean permittivity) for a 300 MHz pulse (center frequency). In terms of the

central frequency and the corresponding soil wavelength, the electrical size of the

random medium is 3.2A x 3.2A x 1.9A.

The soil model has an average relative permittivity of 1im = 3.5 and conductivity

o- = 3.37 x 10-3 [S/m], which have been experimentally determined [135] for a Puerto

Rico type of clay loam [136]. The standard deviation of the soil permittivity is chosen

to be between 15% and 25% of the mean value. These values roughly corresponds to
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6.4. ACF Results

moisture content (water volume) fluctuations of a few percent, with a mean moisture

content approximately 5%. The random medium has correlation lengths (l, and l)

corresponding to approximately 5 to 7 FDTD cells (0.4 m).

The FDTD results may be compared against the Born approximation. The

incident field angles are 0,1 = 200, 0,2 = -100. Figure 6-4 shows the FDTD

simulated ACF magnitude with no object vs. the scattered field angle, averaged

over 75 realizations. The strong correlation along the memory line, described by

sin 0,2 - sin 0,1 = -0.515, is clearly visible. A peak occurs at the intersection with

the vertical phase matching condition cos 082 - cos 0,1 = -0.0451. The correlation

away from the memory line is relatively weak. Figure 6-5 shows the comparison of

the ACF obtained with both the FDTD results and the Born approximation. The

agreement is generally good, especially at the memory line. Generally, the Born ap-

proximation results overestimate the scattered fields, although it is not noticeable

given these parameters. In this figure, the agreement is poorest away from the mem-

ory line, although that is not always the case. To study the effectiveness of the ACF

for object detection, a PEC cylinder (discretized using a conformal FDTD [18]) is

placed inside the random medium. The cylinder is approximately 10 cm in length and

9 cm in diameter, and it is buried 7 cm below the surface. The ACF and bistatic RCS

of the scattered fields can then be compared (in dB), with and without the target

present, using:

AACF f (object) (6-14) ARCS = RCSf(object) (6.15)
If (no object)j IRCS(noobject)

The f subscript above denotes frequency averaging, which will be the focus in this

case. The ACF and RCS are averaged from 150 MHz to 450 MHz in 10 MHz steps.

The angles chosen for this case are 0,1 = 30" and 0 ,2 = -150. Examining the RCS

alone at any single frequency is not useful in determining the presence of the target

object because the response over angle shows only small fluctuations. The results

are depicted in Figure 6-6(a), which compares ARCS against AACF, where AACF is
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Figure 6-4: ACF magnitude for the random medium without and object, using random

medium averaging.

measured along and perpendicular to the memory line (intersecting at the peak). In

this case, the presence of the object is difficult to determine solely with frequency

averaging on the RCS because the difference does not fluctuates more that 1 dB. On

the other hand, the ACF away from the memory line shows a correlation that is 16 dB

greater when the object is present, and peaks at 3 dB elsewhere. The ACF along the

memory line in this case is less effective, showing less change than the ARCS. Note

that the peak of the memory line occurs here in both cases at 0,2 = -20', and at this

point the ACF is least effective for target detection. The effectiveness of examining

the ACF variations away from the memory line is again demonstrated in Figure 6-

6(b), where one of the scattered field directions is held constant at either 0,1 = -30

(specular direction) or 0,1 = 30' (back scattering). The ACF in the specular direction

does little better than the RCS, but for 0,1 = 30', two strong peak fluctuations of 9

dB and 10 dB are observed, as well as a third smaller peak of -4 dB. These results
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Born Approximation
- FDTD Result

-.. ..... -.. . .......

-- .
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10 30 50

Figure 6-5: Comparisons of the ACF obtained from FDTD and the Born approximation,
plotted perpendicular to the memory line.

suggest that a ground penetrating radar setup could be designed to explore this effects

by, for instance, employing two transmitting antennas at fixed angles (with one acting

also as a receiver), and a third antenna acting only as a receiver that would scan over

discrete angles or bands of angles. Finally, consider a larger domain simulation (larger

illuminated volume). In this case, higher fluctuations in the ACF may cause larger

fluctuations on AACF (because of the sinc like behavior of the ACF). Figure 6-7(a)

shows the ARCS and AACF results for a random medium that is 6.4A x 6.4A x 1.6A.

ARCS in this case fluctuates between plus and minus 2 dB, as does AACF along the

memory line. Perpendicular to the memory line, note the more interesting results

for AACF, with larger fluctuations of 3 dB and -7 dB. Moreover, in Figure 6-7(b),

the AACF in the specular, 0 ,1 = -300, and backscattering, 0 ,1 = 300, directions

fluctuates many times from 4 dB to 10 dB. Either scattering angle choice produces

three or four large fluctuations, which would result in a useful criteria and better
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Figure 6-6: Frequency averaged RCS and ACF results. The domain is 3.2A x 3.2A x 1.6A
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chance of object detection for a finite number of 0s2 measurements. Note that this

frequency averaged results are obtained by considering a single particular realization

of the random medium. May tests have been performed on different realizations and,

although the details may vary, the same general behavior was observed.

6.5 Conclusions

FDTD simulations have been employed to characterize the ACF of the scattering from

targets in continuous random media. The new FDTD scheme developed in Chapter 5

was employed to examine the effectiveness of ACF for object detection in the presence

of volumetric clutter. The ACF generated from FDTD simulations is also compared

against ACF obtained from the Born approximation (when the latter is applicable).

The memory effect of the ACF was clearly demonstrated through an average over

random medium realizations. The effectiveness of the ACF in detecting a buried

cylinder under frequency averaging was also demonstrated. When the cylinder was

placed in the medium, the ACF exhibited as much as a 10 dB greater variation than

the bistatic RCS, especially away from the memory line.
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Chapter 7

Summary

This thesis has studied various problems of electromagnetic propagation and scatter-

ing in complex media, and has developed a range of new numerical methods to obtain

solutions with improved accuracy and speed. For each topic, this summary will focus

on the original contributions, and discuss possible future directions for the research.

Chapter 2 presented a hybrid time domain numerical method that can calculate

the Electromagnetic Induction (EMI) response from a conducting, permeable body-

of-revolution (BOR) in early time (or high frequencies). The first step of the work

was to implement a standard numerical technique. An FEM was used to model the

interior of the target, and was chosen for its ability to model inhomogeneous objects

of arbitrary shape. The FEM was developed using various existing techniques in the

literature, so its implementation was an incremental development based on a combi-

nation of previously published work. The unbounded exterior domain was accounted

for using an MoM technique, adapted from mechanical engineering applications (that

refer to it as the boundary element method), and was coupled to the FEM through

the boundary conditions, resulting in the Finite Element - Boundary Integral (FE-BI)

method. The main contribution of the FE-BI method in Chapter 2 is the implemen-

tation for transverse excitation. No publications could be found that developed the

appropriate Green's functions or dealt with the additional complexities in the FEM.
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As expected, the FE-BI method was inaccurate due to the small skin depths that

occur early in time after the primary field transient. This is a problem that has

plagued many engineers in the past, in unexploded ordnance (UXO) applications and

in transformer (or electric motor) eddy current analysis (all treating axial excitation

only). The problem is often ignored, as the FE-BI solutions do eventually converge

to the correct solution later in time. However, as shown in the experimental compar-

isons of Chapter 2, the new generation of sensors take measurements in early time,

where important EMI characteristics exist. Hence, there is a significant need for an

accurate model of the EMI early time response. The Thin Skin Approximation (TSA)

method had been previously developed for the frequency domain three dimensional

case, and in Chapter 2 it is first adapted to the BOR case, then implemented in the

time domain. The resulting formulation was significantly different from the previous

TSA implementation, requiring a recursive solution that utilized the complementary

error function, the analytical time domain solution of the diffusion equation in a half

space. The TSA was then coupled to the MoM, resulting in the TSA - Boundary

Integral (TSA-BI) method that is accurate in early time. For steel UXO, the TSA-BI

method was accurate throughout the entire time of interest. Finally, the FE-BI and

TSA-BI methods were combined in a simple fashion by running each separately and

matching the point where the responses overlap in intermediate time. It turned out

that for a given mesh and for materials with larger skin depths, the TSA was accurate

for a shorter period of time while the FEM converged quickly to the exact solution.

For materials with smaller skin depths, the TSA was accurate for a longer period of

time while the FEM took longer to converge. In general, while both methods had

different regions of accuracy, their combined region of accuracy covered the entire

EMI response time. Furthermore, the TSA-BI method was very fast, and the FE-BI

method can be quickly solved on a relatively coarse mesh, resulting in a new solu-

tion method that was both faster and more accurate than the original FE-BI alone.

Further work on this subject could include a mathematical demonstration that both
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methods combined will (or will not) always produce an accurate and complete time

domain response with a given mesh discretization. Likely there is some minimum

mesh discretization necessary for both methods to converge. Another topic of study

could be the way in which both methods are combined; instead of running each sep-

arately, a better solution would be to map the TSA-BI result into the FEM mesh

when the skin depth reaches a certain value. This is not possible with the current

formulation, where the TSA uses the magnetic field and the FEM uses the magnetic

vector potential, so the combined method would require a new approach for one or

the other. It is possible that such a new approach would introduce disadvantages

that outweigh any possible accuracy or speed gains, but it is worth investigating. At

the end of Chapter 2, the results were compared with experimental data of the EMI

response from a chrome steel sphere, and the agreement was excellent. In summary,

the contribution of Chapter 2 was both a new numerical method to calculate the EMI

scattered fields, as well as a demonstrated application of time domain UXO detec-

tion and discrimination. The method is well-suited to use in inversion routines for

experimental systems like the one shown in Chapter 2.

Chapter 3 presented an MoM formulation for scattering from 1-D layered rough

surfaces. The MoM formulation for scattering from a single 1-D penetrable rough

surface is well-established, and the formulation presented in Chapter 3 was based on

this formulation and extended it to layered rough surfaces. A number of approxi-

mations were necessary to do this, such as the assumption that the fields are zero

at the ends of the surfaces. The method was partially validated through comparison

with analytical solutions for flat surfaces. Given the linear increase in the number of

unknowns (N) for each layer, the Forward Backward Spectral Acceleration (FBSA)

method was adapted and O(N) efficiency was demonstrated. As mentioned in Chap-

ter 3, the FBSA method has only recently been developed for a single penetrable

rough surface, and several new ideas were introduced to allow its implementation for

layered rough surfaces. The standard MoM and FBSA formulations were compared
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for scattering from a three-region medium, and excellent agreement was obtained.

Finally, numerical experiments were performed to establish the applicability of the

method. Although the new method can solve many cases, the convergence time in-

creases as the surface roughness increases, the surface separation decreases, and the

dielectric contrast between the layers increases, to the point where the method ac-

tually diverges. Physics based reasons for the method's failure in certain cases were

described in Chapter 3, and similar problems are also present for the single-surface

case. This new numerical tool enables more accurate solutions for applications in-

cluding remote sensing, radar system modeling, and microwave communication link

studies. However, the applications were not investigated in detail. Such studies are

more of interest to systems engineers interested in specific applications, for which they

may obtain more accurate results with the new method. Hence, the contribution of

Chapter 3 is the new numerical method that will allow engineers to solve a standard

problem of rough surface scattering with greater accuracy. A future extension of this

method would be to adapt it to two dimensional (2D) surfaces. However, given that

single 2D surface scattering simulations are computationally limited to very small

domains, layered 2D scattering simulations are probably not possible with current

computational resources.

Chapter 4 examined three techniques to demonstrate the Left Handed (LH) be-

havior of a metamaterial. This work was motivated by the controversy surrounding

such metamaterials, resulting from the difficulty in experimental demonstrations. Al-

though experimental results are the only way to prove the existence of any physical

phenomena, numerical methods like the FDTD can provide rigorous and convincing

arguments. Hence, the goal of this work was to isolate and identify unique proper-

ties, using the FDTD, that unambiguously verified the LH behavior of metamaterials.

First, the possible frequency band of LH behavior was determined by calculating the

transmitted power of a wideband pulse through a slab of metamaterial. In that fre-

quency band, the backward phase velocity in a slab was then verified, and the index
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of refraction was calculated. At the same frequencies, a negative index of refraction

was demonstrated by calculating the direction of power leaving a metamaterial prism.

Both methods of calculating the index of refraction of the metamaterials (using the

prism or phase velocity) gave consistent results. The FDTD model in this work used

two similar Split-Ring Resonator (SRR) geometries, one that has dimensions scaled

and optimized for the uniform Cartesian grid, and the other that is a model of ge-

ometries used in previous experiments [30]. The scaled SRR geometry is useful in

that it allows LH metamaterials to be simulated quickly using an efficient FDTD

grid. A new SRR design was studied and shown to be less lossy than the original

design. The numerical study enables a greater understanding of the phenomena that

leads to LH behavior in metamaterials, and can be easily changed to examine new

metamaterial geometries in the future. Furthermore, the numerical study could be

extended to include lossy metals and dielectrics, metamaterials without waveguides,

and larger prisms. In terms of original contributions, the focus of Chapter 4 was

the demonstration of the LH behavior of metamaterials, rather than the numerical

methods that were used. Indeed, the results presented in Chapter 4 are the first to

rigorously demonstrate the LH behavior of metamaterials using a complete numerical

simulation.

In Chapter 5, the numerical dispersion effects were studied in the FDTD method

for anisotropic and layered media. Discrete versions of Maxwell's Equations were de-

rived, based on previous work, and were used to derive the discrete wave equation and

numerical dispersion equation for uniaxial media. The reflection and transmission co-

efficients were then derived for planar surfaces in an FDTD grid. This information

can be used for many applications, and as an example a numerical dispersion compen-

sated Huygens' source in layered, uniaxial media was presented. The new technique

achieved a typical wideband improvement on the order of 30 dB over the conventional

implementation for modest discretization sizes of (A/30 - A/20) in a 603 cell domain.

Note that numerical dispersion was not eliminated from the FDTD method; rather,
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the scattered field noise from the Huygens' sources was eliminated. For example,

when calculating the radar cross section of a target, the incident field created by

the compensated Huygens' sources still accumulates numerical dispersion error. The

scattered field also accumulates error as it propagates away from the target. However,

the noise floor in the scattered field region is reduced (on the order of 30 dB) when

using the compensated Huygens' sources. This method has application in any study

of wave propagation through layered media. In particular, ground penetrating radar,

microstrip, and antenna applications benefit from this method, particularly when the

scattered field is weak or accurate results are required. Specific applications were not

studied in Chapter 5, and the contribution lies in the new numerical method. The

discrete Maxwell's Equations could be used to derive other numerical parameters,

such as dispersions relations for any type of media, that could also be included in an

FDTD simulation.

As the thesis began with a problem of buried object detection, it also ends with

such a problem, albeit one solved with a different method. The new FDTD method of

Chapter 5 was employed in Chapter 6 to characterize the Angular Correlation Func-

tion (ACF) of the scattered fields from targets in random media. The effectiveness of

the ACF for object detection in the presence of volumetric clutter was investigated.

The ACF generated from FDTD simulations was also compared against ACF obtained

from the Born approximation (when the latter is applicable), and good agreement was

obtained. The memory effect of the ACF was clearly demonstrated through an av-

erage over random medium realizations. The effectiveness of the ACF in detecting a

buried cylinder under frequency averaging was also demonstrated. When the cylinder

was placed in the medium, the ACF exhibited as much as a 10 dB greater variation

than the bistatic radar cross section, especially away from the memory line. Future

work on this topic could involve modeling a new source which, instead of a plane

wave, is likely to be a horn antenna of a ground penetrating radar (GPR) system. In

addition, the random media model for soil could be improved, perhaps by quantifying

224



225

the actual variations in soil material and moisture (a Gaussian correlation function

was used for mathematical simplicity). Finally, a numerical study could investigate

the utility of combining GPR results with EMI results, using the methods developed

in Chapter 6 along with the method of Chapter 2. In summary, Chapter 6 demon-

strated the utility of a new post-processing technique for remote sensing applications

when the target is in a continuous random medium. The contribution of the chapter

lies in the application, not in the method itself.

As shown in Table 7.1, each chapter of this thesis makes a contribution to appli-

cations of electromagnetic wave theory, or outlines a new method that others may

used to model propagation and scattering with improved accuracy and efficiency, or

both. It is hoped that these new methods will be useful to scientists and engineers

who routinely require solutions of Maxwell's Equations for fields in complex media.

_ Method Application

Chapter 2 N
Chapter 3
Chapter 4
Chapter 5 V
Chapter 6

Table 7.1: Each chapter in this thesis focused on numerical methods in electromagnetic
wave propagation and scattering, but some only develop improved numerical methods while
others only study new applications.
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ABC Absorbing Boundary Condition

ACF Angular Correlation Function

BOR Body of Revolution

EMI Electromagnetic Induction

FB Forward Backward

FCF Frequency Correlation Function

FDTD Finite Difference Time Domain

FEM Finite Element Method

FE-BI Finite Element - Boundary Integral

GPR Ground Penetrating Radar

IE Integral Equation

LH Left Handed

MoM Method of Moments

MQS Magnetoquasistatic

MRTD Multi-Resolution Time Domain

NC No Convergence

ODE Ordinary Differential Equation

PDE Partial Differential Equation

PEC Perfect Electric Conductor
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LIST OF ACRONYMS

PML Perfectly Matched Layer

RCS Radar Cross Section

SA Spectral Acceleration

SDP Steepest Descent Path

SP Saddle Point

SPA Small Penetration Approximation

SRR Split-Ring Resonator

TE Transverse Electric

TM Transverse Magnetic

TSA Thin Skin Approximation

TSA-BI Thin Skin Approximation - Boundary Integral

UXO Unexploded Ordnance
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