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Three Dimensional Printing (3DP) is a solid freeform fabrication process used to generate solid parts 
directly from three-dimensional computer models.  A part geometry is created by selectively depositing 
binder into sequentially spread layers of powder.  In slurry-based 3DP, a suspension of powder in a 
solvent is used to form the powderbed layer.  This slurry-based powderbed yields higher green density 
and part resolution than dry powder-based 3DP because of smaller particle size.  Vector printing requires 
that the printhead trace and define the external geometries of a part before raster filling the interior, a 
new approach in comparison to conventional, raster-only printing.  Drop-on-demand (DOD) printheads 
allow binder droplets to be ejected when needed rather than relying upon charge-and-deflect 
mechanisms used in continuous jet printheads.  Integrating these concepts for vector, DOD printing has 
the potential to enhance the 3DP process by providing greater part resolution and surface finish.  The 
3DP slurry-based process and vector, drop-on-demand printing are examined as potential methods to 
produce Tungsten Carbide-Cobalt (WC-Co) tooling inserts. 
 
The research focuses on three fundamental process steps: (1) development of a stable slurry, (2) 
determination of jetting parameter values for optimal powderbed deposition, and (3) implementation of 
vector, DOD printing for the binder.  Due to unforeseen circumstances, the first two objectives are only 
briefly introduced in Chapter 1 and summarized in Chapter 3.  Further details may be found in the 
Diplomarbeit document of Olaf Dambon.  Two approaches are explored to develop a stable, jettable 
slurry.  One method involves using a water-based Tungsten Carbide slurry and a Cobalt Acetate binder; 
the other method utilizes an alcohol-based Tungsten Carbide-Cobalt slurry and an organic binder.  
Various suspension properties, such as sedimentation density and viscosity, are measured to assess the 
degree of slurry stability.  After adequate slurry formulations are developed, an investigation of 
powderbed formation is conducted.  Due to the low solubility limit of the Cobalt salt in water and the 
persistent defects in water-based slurry powderbeds, the alcohol-based approach is pursued and, because 
of its greater efficacy, is used for optimizing powderbed jetting parameters.  An effective combination of 
line spacing, flow rate, and drying time is determined for producing powderbeds with minimal surface 
roughness and high packing density.  Experiments are subsequently conducted in vector DOD printing of 
various geometries using a piezo-actuated, drop-on-demand printhead and Bridgeport three-axis milling 
machine.  A Hewlett-Packard inkjet cartridge is initially used for vector testing of the milling machine; a 
Siemens PT-88S printhead is used to assess and optimize binder droplet formation parameters, such as 
voltage waveform and fluid properties.  Functional conditions for vector printing and DOD droplet 
generation are developed and deliver acceptable performance.  Successfully printed geometries with 
high-definition lines (140-170 µm line width) and smooth surface finish are produced using sanded, jetted 
alumina slurry powderbeds.  Following necessary refinements in slurry redispersion and slurry-binder 
compatibility, the same vector process can be repeated with jetted WC-Co slurry powderbeds. 
 
Thesis Supervisor:  Emanuel M. Sachs 
Title:    Professor of Mechanical Engineering 
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1.1. THE THREE DIMENSIONAL PRINTING PROCESS  

Similar to other rapid prototyping (RP) technologies such as stereolithography and selective laser 

sintering, Three Dimensional Printing (3DP) is a solid free-form fabrication technique developed at the 

Massachusetts Institute of Technology that produces three-dimensional parts directly from computer-

generated models [1].  This unique RP process has successfully fabricated parts using various materials, 

including ceramics, metals, and polymers [2].  Every part is manufactured by “inkjet” printing droplets of 

binder into a sequence of two-dimensional powder layers [2-7].  The binder placement information for 

each layer is determined by applying a slicing algorithm to the computer-generated model [6].  Two basic 

types of Three Dimensional Printing exist (1) dry powder-based 3DP and (2) slurry-based 3DP.   

In dry powder-based 3DP, the first of the two processes developed, a thin layer of powder is 

evenly distributed across a piston.  A nozzle then selectively deposits binder into the powder to define 

the part geometry.  After drying the binder, the piston is subsequently lowered by a one-layer increment, 

and a new powder layer is spread over the surface of the previously printed one.  Unbound powder from 

the preceding layers can support portions of the binder-printed part, thereby allowing overhangs, 

undercuts, and internal volumes to be created [2].  This procedure is repeated until the complete part 

geometry is printed.  The excess powder, which lacks binder, is then removed to extract the finished part 

[4].  Figure 1.1 illustrates the basic, dry powder-based 3DP process.  Subsequent post-processing steps, 

such as de-binding and sintering, are performed if necessary [5]. 

 

Figure 1.1 Illustration of the dry powder-based Three Dimensional Printing (3DP) 
process. 

1 
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Spreading smooth, uniform layers of dry powder becomes a problem when the particle size 

decreases below approximately 50 microns [4].  This difficulty arises from the high surface area to volume 

ratio of and van der Waals attraction between particles, which tend to agglomerate.  This uneven 

spreading phenomenon results in a low packing density and thus poor part definition within the 

powderbed.  In response to this problem, a new approach has been developed that modifies the dry 

powder-based 3DP process by using a slurry, a flowable liquid suspension of particles in a solvent, 

instead of dry powder to deposit a powderbed layer. 

In slurry-based 3DP, the suspension is produced by mixing a powder, a solvent (i.e. water or 

alcohol), and a dispersant.  The dispersant prevents particles from flocculating in the slurry, thus 

allowing the mixture to be easily jetted from a small orifice nozzle—typically 100 to 200 microns in 

diameter.  The slurry (otherwise known as a dispersion) is then raster printed across a porous substrate.  

The pores in the surface beneath the jetted slurry absorb the liquid portion of the slurry, leaving a thin, 

even, and compact layer of powder.  A period of heat-assisted drying ensures adequate removal of 

moisture from the powderbed layer and protects against crack formation [8].  The binder is then 

selectively printed into the layer.  The layer is once again dried to remove binder liquid from the 

powderbed.  These steps are repeated until the part is defined [8].  Figure 1.2 depicts this process. 
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Figure 1.2 Illustration of the slurry-based Three Dimensional Printing part 
production process. 

An additional step is necessary in order retrieve the part from the resulting powderbed.  Since 

the slurry powderbed has significant cohesive strength, the printed part cannot be removed by brushing 

away the unbound powder.  The entire powderbed must instead be submerged in a redispersing agent 

that separates the excess powder while preserving the binder printed regions.  Figure 1.3 on the following 

page illustrates this extraction procedure.  A more detailed explanation of slurry-based 3DP and its 

fundamental development may be found in Jason Grau’s thesis [8]. 
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Figure 1.3 Redispersion technique for the slurry-based 3DP process that removes 
unbound regions of powder by submerging the entire assembly in solvent 
to retrieve the printed part. 

 

1.2. VECTOR DROP-ON-DEMAND PRINTING VS .  STANDARD 3DP  METHOD  

In terms of how geometry can be defined by 3DP, two basic approaches exist: raster printing or 

vector printing.  In addition, two different types of printheads—a continuous jet (CJ) and a drop-on-

demand (DOD)—can be used to print the binder.  Vector drop-on-demand printing requires that the 

process of vector definition and drop-on-demand droplet generation work in unison to define the shape 

of a part.  This printing style is being explored as a new binder deposition process for Three Dimensional 

Printing.  The current 3DP process utilizes raster printing to define shapes and a continuous jet nozzle to 

generate droplets.  There are several fundamental differences between these two printing methods. 

Raster printing involves an iterative, stepwise movement along a part’s geometry.  In a simplified 

model, given the designated area to be printed in a layer, the shape is divided into a set of equal, parallel 

lines that each represents approximately one line spacing of binder droplets (see Figure 1.4).  For either 

printing method, the line spacing created by binder droplets is determined by measuring the width of 

bound powder resulting from a single line of printed binder and then using a certain amount of overlap 

to ensure adequate stitching between lines. 
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Figure 1.4 Single dashed lines indicate the division of the desired rectangular shape 
into a set of parallel lines that are each less than one binder droplet line 
spacing wide to introduce overlap.  These lines are the paths that the 
nozzle will follow to define the part geometry in this layer. 
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The binder nozzle moves along each parallel line selectively depositing binder to delineate the 

shape and, after completely traversing across the powderbed, shifts over one line spacing to deposit the 

next binder dose.  This process is repeated for each layer until the entire part has been printed.  Figure 1.5 

depicts how raster printing is performed as described above. 
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Figure 1.5 Illustration of raster printing.  The nozzle places binder droplets by 
moving along the parallel line divisions depicted in Figure 1.4. 

In addition to raster printing, the standard 3DP method employs a continuous jet nozzle.  This 

type of nozzle uses pressure to move binder through a cylindrical piezo that breaks the stream into a 

series of droplets [9].  Electrical signals charge the droplets and control their movement by directing them 

to either the powderbed or a catcher.  Figure 1.6 illustrates this printing process.  This charge-and-

deflection scheme allows any desired geometry to be defined by selectively placing droplets onto the 

powderbed.  For a more detailed discussion of continuous jet operation and characterization, refer to [9]. 

 

Figure 1.6 A continuous inkjet breaks up into droplets inside the control electrode E.  
Due to mechanical vibrations generated by the piezoelectric ceramic P, all 
droplets have equal mass.  Each droplet can be charged individually by 
applying a suitable control voltage to electrode E at the moment the 
droplet is formed.  Depending on this charge, the droplet will be deflected 
in the transverse electric field between electrodes D1 and D2, either onto 
the paper or into the gutter G [9]. 
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In contrast to the parallel slicing, linear method of raster printing, vector printing involves 

moving the nozzle along the part contour to trace the desired geometry.  The nozzle thus progresses in a 

primarily nonlinear fashion with adjacent parallel lines along the contour.  The line spacing for each 

vector line is determined in the same manner as raster printing.  Figure 1.7 shows how a vector trace for a 

rectangular part could be defined. 
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Figure 1.7 Dashed line defines the imaginary division of a desired rectangular shape 
into a spiraling vector trace with line spacing less than one binder droplet 
line spacing wide.  This line depicts the path that the nozzle will follow to 
define the part’s shape in this layer. 

Using the trace in Figure 1.7, the nozzle moves along the part contour, deposits binder, and 

gradually moves inward along progressively smaller contour lines to fill the interior of the geometry.  

This process is repeated in each layer until the entire part has been printed.  Figure 1.8 illustrates this 

printing process for a single layer. 
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Figure 1.8 Illustration of vector printing.  The nozzle places binder droplets by 
moving along the adjacent, parallel contour lines depicted in Figure 1.7. 

Vector printing is complemented by the use of drop-on-demand droplet production.  Drop-on-

demand systems use electrical signals “to control the moment when an individual drop is ejected” [9].  
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The fluid is dispensed from the nozzle by activating a transducer, commonly a piezoelectric device that 

changes shape with an applied charge.  Instead of using high pressure to eject a continuous stream of 

droplets as before, a DOD nozzle uses a pressure impulse generated by the transducer to accelerate and 

then separate the fluid from the nozzle to form a drop [9].  This signal is only sent when a droplet is 

required to define the geometry so no “catcher,” as required in CJ printheads, is necessary.  The signal is 

represented by an electrical waveform that causes the piezo to contract upon an applied positive voltage.  

Figure 1.9 provides a simplified cross-section of a typical DOD printhead and its components.  A more 

detailed discussion of drop-on-demand operation and characterization can be found in [9]. 

 

Figure 1.9 A thick piezo-tube cast in a plastic unit (Heinzl, 1975) as a type of drop-
on-demand system containing a nozzle N, ink chamber or ink channel C, 
ink conduit L, and piezoelectric transducer P, which is excited by short 
electrical signals S [9]. 

The combination of vector printing and drop-on-demand droplet generation presents a new 

method by which to produce 3DP parts.  In comparison to the conventional raster, continuous jet printing 

process, several potential advantages exist which will be discussed in Section 1.4.  An investigation into 

the operating parameters for this printing process is one portion of the research presented in this thesis.  

The primary effort, however, has been to incorporate this technology into the production of tungsten 

carbide-cobalt tooling inserts. 

 

1.3. TUNGSTEN CARBIDE-COBALT TOOLING INSERTS  

Tungsten Carbide-Cobalt (WC-Co) tooling inserts are machining tools used for metal removal 

when manufacturing hard steels.  Insert geometries typically have a rectangular or diamond shape.  

When compared to steel, tungsten carbide tools have several superior characteristics: (1) strength in 

compression, (2) rigidity and abrasion resistance, (3) heat resistance, (4) machine tool accuracy, (5) 

reduced machine downtime and maintenance, (6) chemical stability, and (7) reduced scrap.  The Cobalt 

acts as a binder material in the insert to hold the tungsten carbide particles together.  Tooling inserts are 

commonly used in automotive, aeronautic, medical, and farming applications [10, 11].  Figure 1.10 shows 

two standard tooling inserts in their sintered and unsintered forms. 
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Figure 1.10 Two conventional types of WC-Co tooling inserts.  Each set consists of an 
unsintered (left) and a sintered (right) form.  Tooling inserts provided 
courtesy of Valenite, Inc. 

Conventional Tungsten Carbide-Cobalt components, also known as cemented carbides, are 

manufactured through a powder metallurgy (PM) process, which involves powder processing, 

production of grade powders, powder consolidation, sintering, and finishing [10, 11].  This process 

usually takes an average of three to four days to complete.  These cemented carbide inserts are composed 

of three fundamental constituents: the ceramic-phase tungsten carbide, the metallic binder Cobalt, and 

various alloying elements (such as Titanium Carbide or Vanadium Carbide) [10].  Other impurities, such 

as sulfur, calcium, or phosphorus, may be present in miniscule amounts without weakening final tool 

properties [12].  Complex chemical reactions are involved to produce these basic powder components.  

The prepared ingredients are then combined in a slurry and milled in a conventional ball mill, attrition 

mill, or vibratory mill for a few hours to produce a homogeneous mixture.  The slurry contains a 

protective solvent (i.e. acetone) that minimizes heating and oxidation and a dissolved lubricant (i.e. 

paraffin wax) that solidifies when dried and also impedes oxidation.  The solvent is subsequently 

removed from the mixture by a process known as spray drying.  A nozzle atomizes the slurry by 

spraying it into a stream of hot nitrogen gas and forms dried spherical aggregates of powder and wax 

approximately 150 to 250 microns in diameter [10, 11].  Many references provide detailed descriptions of 

variations in this slurry processing technique [10, 13-15].  Through several types of consolidation 

techniques, such as hydraulic isostatic pressing, extrusion, or injection molding, the grade powder is 

formed into the desired shape.  This billet is then machined to a net shape if necessary.  Sintering 

operations first de-wax at 400 to 500 °C and then sinter the parts to full density at 1300 to 1600 °C.  This 

final sintering temperature depends on the Cobalt content.  The Cobalt binder begins to melt, and liquid 
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phase sintering occurs.  During this time, the WC particles rapidly coalesce and form a “fully dense, 

virtually porosity-free microstructure” [10].  Hot isostatic pressing (HIP) may also be performed after or 

during the sintering process to eliminate residual porosity, pits, or defects [10, 11].  Finishing operations, 

such as diamond grinding, are performed to yield appropriate material and surface properties for the 

final production piece [10]. 

Valenite and Kennametal are two companies that produce these tooling inserts.  As joint sponsors 

of this research, they seek to explore the capabilities of Three Dimensional Printing as a new method for 

manufacturing their products.  The slurry-based 3DP method and vector drop-on-demand printing 

previously discussed introduce several advantages compared to the conventional tooling insert 

production process. 

 

1.4. MOTIVATION  

Many enhancements to the 3DP method and to manufacturing WC-Co tooling inserts can be 

realized through pursuit of this research.  The slurry-based 3DP method generates high-density green 

parts that are necessary for sintering to full density [16].  The slurry processing route permits high 

definition, small featured part production because of the sub-micron powder used [16] and is well suited 

to fabricating multiple copies of miniature parts [17].  Vector printing represents a new and improved 

method for defining part geometry by tracing the outline directly instead of by raster printing (refer to 

the comparison in Section 1.2).  This vectoring technique offers the potential for higher quality surface 

finish and edge definition for printed parts.  Drop-on-demand printhead technology provides a simpler 

mechanism for starting and stopping the binder stream, which in turn leads to more accurate droplet 

placement.  With a smaller droplet size compared to standard CJ printing, finer features may be 

constructed, and the resolution of printed parts will increase.  Using these three technologies, the final 

implementation would likely utilize a single DOD printhead per part for vector tracing and raster filling 

of binder onto a smooth jetted slurry powderbed [17].  Multiple parts would be produced simultaneously 

by arranging nozzles in a grid array with center-to-center spacing slightly greater than the dimensions of 

a part.  Each nozzle is dedicated to a single part, so if one nozzle fails, only one part is lost.  The nozzle 

configuration moves in a coordinated vector motion with each nozzle printing the same pattern, thus 

making high production rates possible [17].  In comparison to the industrial tooling insert production 

process, the advent of 3DP tooling inserts will reduce inventory and permit mass customization of orders.  

Research into new tooling geometries can be more easily performed, and more complex-featured tools 

may be generated with this new method.  Many challenges exist, however, to make this vision a reality.  

Several of these issues are addressed in this research with recommendations for future or alternative 

work discussed in Chapter 3.  Inspired by the preceding motives, the specific goals addressed by this 

thesis are outlined in the following section. 
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1.5. OBJECTIVES  

The long-term, ultimate goal of this research is to manufacture WC-Co tooling inserts by Three 

Dimensional Printing.  Slurry-based 3DP and vector drop-on-demand printing are two major elements 

being investigated.  In order to meet this objective, other people have and are currently contributing to 

this effort by looking at specific aspects of these elements.  Their work has laid a foundation and 

supplemented the research reported in this thesis.  Several tasks have been and also need to be 

accomplished.  The primary purpose of this thesis is to examine three of the initial, fundamental issues in 

producing WC-Co tooling inserts by 3DP:  

 
• Tungsten Carbide-Cobalt slurry development  

• Tungsten Carbide-Cobalt powderbed production 

• Vector drop-on-demand printing of Tungsten Carbide-Cobalt tooling inserts. 

 
These objectives are studied in this order.  The following paragraphs provide a brief discussion of the 

topics examined for each objective. 

The first step in making 3DP tooling inserts is to develop a slurry that can be jetted through a 

nozzle in order to create a powderbed.  To produce a jettable slurry, two approaches are considered.  

Many factors, such as redispersion and binder interaction, must be considered in adapting a material 

system for slurry-based 3DP.  One method utilizes a water-based slurry composed of WC powder.  One 

major disadvantage is that Cobalt cannot be used in an aqueous slurry because of its reactivity with 

water.  Instead, a Cobalt salt solution is printed into the powderbed to introduce the Cobalt, bind the WC 

powder, and define the part geometry.  The solubility limit of the Cobalt salt in solution is measured as it 

limits the amount of Cobalt that can be introduced in the final part.  In the second approach, a non-

aqueous based slurry composed of WC-Co powder is explored.  This process negates the issue of 

including Cobalt in the slurry by using an organic non-reactive solvent.  An organic binder would then be 

printed into the powderbed.  To evaluate slurry stability, density, particle size, and viscosity 

measurements as well as jetting experiments are performed. 

After a suitable slurry has been devised, parameters for powderbed production are considered.  

The influence of factors, such as saturation thickness, flow rate, drying time, and line spacing, on the 

quality of a powderbed surface are identified and observed.  Two different slurry-jetting setups are used 

to conduct this study: the rotary machine for preliminary tests and the hood machine for later, more 

precise slurry jetting experiments.  Powderbeds are produced with both aqueous and non-aqueous slurry 

systems.  The effect of each factor in producing a smooth powderbed surface is measured, and the most 
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important factors and their appropriate values are identified.  A set of reproducible smooth powderbeds 

is created using an alcohol-based slurry. 

The issues relevant to vector drop-on-demand printing of binder are examined next.  The 

parameters required for vector printing using a three-axis milling machine and for drop generation using 

a DOD printhead are investigated.  In order to evaluate the vector printing capabilities of the 3-axis 

milling machine, a standard DOD inkjet printhead is used to generate ink droplets that are deposited 

onto paper.  The vector printing setup also incorporates function generators and a CCD camera to control 

and verify binder droplet formation, respectively.  Various test shapes to be vector printed are created 

using both the internal machine programming language and automated tool path definition software.  

Different electrical waveforms for actuating the piezo are evaluated for their respective DOD droplet 

formation characteristics.  Each waveform is subjected to a range of voltages and frequencies to define 

conditions for stable single droplet formation.  After functional vector printing and droplet formation 

specifications are established, the first geometries are printed onto slurry-jetted alumina powderbeds, 

and the single layers are successfully extracted.  A set of vector geometries is then created on jetted WC-

Co powderbeds.  The results from these two experiments are examined for surface finish and line quality. 

 

1.6. ORGANIZATION OF THE THESIS  

Originally, the thesis was arranged into three main sections corresponding to the objectives 

described above with each chapter covering a specific goal.  In light of extenuating circumstances, the 

scope of this thesis has consequently been focused towards presenting material concerning only vector, 

drop-on-demand printing, the third main goal described in Section 1.5.  The majority of the two previous 

goals, especially investigations into aqueous WC slurry powderbed deposition, non-aqueous WC-Co 

slurry formulation, and WC-Co slurry powderbed deposition, are covered in Olaf Dambon’s 

Diplomarbeit document [18].  The remaining portions of this section discuss the previous thesis 

organization in further detail. 

Chapter 2 addressed the issues of WC-Co and WC only slurry development.  Experiments and 

results are reported for formulating jettable versions of both aqueous and non-aqueous slurries.  Chapter 

3 discussed powderbed production and its associated factors.  Important constraints are determined, and 

non-aqueous WC-Co powderbeds with a smooth surface finish are ultimately produced, although 

subsequently discovered reactivity complications involving the associated dispersant make alternative 

dispersant evaluations necessary.  Segments of the information presented in Chapters 2 and 3 are covered 

in greater detail by Olaf Dambon in his report [18], and all relevant data will be identified accordingly.  

The implementation of vector drop-on-demand printing for producing tooling inserts is presented in 

Chapter 4 (now Chapter 2).  An investigation of vector printing and DOD binder droplet generation is 

conducted, and single layers of various geometries are successfully printed and extracted from jetted 
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alumina powderbeds.  Chapter 5 (now Chapter 3) finally summarizes the work performed and discusses 

upcoming developments that will influence this research.  Finally, recommendations for future work and 

further investigation are made. 
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2.1. VECTOR DROP-ON-DEMAND PRINTING PROCESS PARAMETERS  

In addition to the material considerations of slurry and binder system development, the goal of 

manufacturing WC-Co tooling inserts by Three Dimensional Printing also involves implementing vector, 

drop-on-demand printing technology.  This process requires integrating accurate, vector-capable 

translation equipment for performing printhead-powderbed relative movement with a versatile DOD 

printhead that can produce droplets from various binder systems.  Many possible solutions exist to 

address these needs.  In conducting this research, the necessary functionality is extracted from 

commercially available tools, including a milling machine and a conventional inkjet printhead.  To use 

this method effectively for producing 3DP parts, a number of associated parameters must be examined.  

Each of the following sections deals with one of these primary topics. 

Section 2.2 details the component specifications of the vector printing configuration and provides 

an evaluation of their respective capabilities.  The primary vectoring instrument is a Bridgeport 3-axis 

milling machine.  The remaining equipment includes a switch mechanism for DOD control, a function 

generator and amplifier for printhead activation signaling, a camera-LED visualization system for 

verifying droplet stability, and two different DOD printheads.  The programming of various geometries 

is performed first manually for simple shapes and then, for more complex structures, by using 

conventional computer-aided manufacturing (CAM) software, in which virtual milling functions 

translate a desired vector or raster path into a series of equivalent machine commands.  A series of ink-

based vector DOD tests are conducted on the milling machine and provide valuable insight into the 

vectoring limitations of this setup. 

Binder droplet generation is another important aspect of this printing process and is discussed in 

Section 2.3.  Mechanical actuation and fluid property considerations affect the viability of printing a 

particular binder system through the DOD printhead.  The two most pertinent fluid characteristics are 

the bulk viscosity and surface tension.  Mechanical energy is imparted to the binder through a 

piezoelectric element present within the DOD printhead that deforms based on a user-defined voltage 

waveform geometry at a certain frequency.  The compression and expansion of the fluid is the driving 

force for droplet formation.  The complex interdependencies between all associated droplet formation 

variables make optimization difficult.  To conduct droplet formation experiments, a specially designed 

test stand known as the Droplet Observation Station, or Nozzle Test Station, is used.  A multitude of 

waveform timings and voltages are analyzed over a range of frequencies with several binders in order to 

develop an understanding of how droplet stability is affected.  To address function generator limitations, 

a second function generator is added to the vector printing setup to prevent waveform degradation at 

2 



C H A P T E R  2:  Vector Drop-On-Demand Printing of Tungsten Carbide-Cobalt Tooling Inserts 

29 

low frequencies.  These experiments yield a functional set of droplet formation parameters for the DOD 

printhead, which is used to conduct vector printing experiments with alumina as outlined in the 

following section. 

The application of vector drop-on-demand printing for 3DP production of test geometries on a 

single alumina layer is explained in the final Section 2.4.  The process begins with slurry processing and 

powderbed jetting to prepare an alumina substrate for vector printing.  Several geometries are 

programmed for vector outline definition and interior raster fill: (1) a simple square, (2) a tooling insert 

cross-section, and (3) a central grid with external frame designed to print and preserve individual lines 

for width measurements.  Using the droplet formation parameters previously determined through 

extensive testing, two sets of experiments are performed: one with as-jetted alumina powderbeds and a 

follow-up with sanded powderbeds to permit a more lucid evaluation of vector printing quality 

independent of the original powderbed surface texture. 

 

2.2. VECTOR DROP-ON-DEMAND PRINTING EQUIPMENT &  CONFIGURATION  

As a functional, preliminary design, the vector drop-on-demand printing configuration used for 

this research consists of a collection of standard commercial equipment, each customized for a particular 

task.  Vector movement functions are carried out by a Bridgeport EZ-Trak programmable milling 

machine.  A comprehensive listing of its relevant features is given in the following sections.  Along with 

its engineered specifications, a practical evaluation of its vectoring behavior is performed, which 

identifies an issue with velocity control that leads to a compromise between production rate and part 

quality.  To control the drop-on-demand printhead, a mechanical micro switch is attached to the milling 

machine vertical quill and connected to the printhead signal circuit.  The printhead activation state is 

therefore controlled by the height of the quill and the position of the micro switch.  Initially, only one 

function generator is used to send the printhead waveform signal at a set frequency.  This arrangement 

causes the waveform signal to deteriorate as the frequency decreases.  The problem is resolved with the 

addition of another function generator, so that one controls the droplet frequency while the other defines 

the waveform geometry.  The first function generator sends an input signal at the desired frequency to 

the second.  The voltage waveform is generated at the specified trigger rate and is subsequently 

amplified.  A separate, large-scale amplifier is required for actuation of the binder system printhead, 

while a transistor chip provides signal magnification for the ink-based DOD printhead.  The correct 

voltage waveform and frequency is confirmed with an oscilloscope connected to the function generator 

and amplifier.  In order to verify stable printhead operation, the droplet stream is observed with a CCD 

camera and LED strobe situated on the opposite side of the printhead.  To generate the normally large 

amount of machine code that controls the milling machine during vector and rastering movement, 

MasterCAM manufacturing software is used to build a model and then automatically calculate the 
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appropriate tool paths based on a desired printing method.  Two printheads with different DOD 

actuation mechanisms are used for consecutive stages of the vector, DOD study.  For evaluating the 

vector printing DOD setup, a standard black inkjet cartridge manufactured by Hewlett-Packard is chosen 

to trace ink paths onto paper.  Subsequent vector printing DOD experiments using 3DP binder systems 

employ a more robust and durable printhead made by Siemens.  A general overview of the entire final 

vector printing setup without DOD actuation control is shown in Figure 2.1. 

 

 

Figure 2.1 Overview of the equipment and connections for vector drop-on-demand 
printing using a conventional 3DP powderbed and binder system.  
Essentially, a Bridgeport EZ-Trak 3-axis milling machine provides vector 
movement, while a Siemens PT-88S printhead ejects drop-on-demand 
binder droplets onto the powderbed substrate.  The process begins with 
function generator A, which sends frequency input signals to function 
generator B.  Function generator B sends the printhead voltage waveform 
to the amplifier (P1) at the rate specified by the trigger frequency received 
from A.  The voltage signal amplifier multiplies the waveform 100 times 
to the required operating level and transfers it to the printhead (P2).  Two 
oscilloscope verification connections check the droplet frequency (O1) and 
amplified voltage waveform (O2).  The droplet visualization setup has a 
control circuit C that takes the input frequency (V1) from function 
generator A and signals the LED to strobe at a particular time and length 
offset (V2).  The CCD camera sends the LED-illuminated droplet image 
back to a television screen for verification (V3) of binder deposition 
accuracy and droplet consistency.  Note that the drop-on-demand control 
functions provided by a micro switch and positioning of the quill are not 
pictured above (refer to Section 2.2.1.3 for implementation details). 
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The following sections explain in greater detail the specifications and functions for each of the 

components shown above, including the incorporation of the micro switch with the milling machine quill 

for controlling DOD printhead activation.  A summary of the ink-based vector DOD printing results 

along with corresponding analyses is included in the concluding Section 2.2.6.  The overall performance 

of this setup with respect to ink-based testing is an important measure for future reference, especially for 

vector motion, because similar phenomena will likewise be reflected in the quality of the final printed, 

binder-based alumina geometries discussed in Section 2.4 since the modifications to this setup will only 

involve the DOD printing conditions and the deposition media. 

 

2.2.1. Bridgeport Series I EZ-Trak DX 3-Axis Milling Machine 

As a tool available for general 3DP research, the Bridgeport Series I EZ-Trak DX Milling, Drilling, 

and Boring machine [19] (henceforth referred to as a “milling machine” for brevity) possesses a number 

of features essential for providing vector printing functionality.  The milling machine consists of the 

following major structural components: the base, the knee with table, the turret, the ram, and the spindle-

quill assembly.  The operator’s control box and the CRT display with keypad provide critical control 

functions and automated input-output feedback.  The main power switch and computer hardware 

interface for transferring program files by floppy are located in the large metal control cabinet attached to 

the back of the turret column.  The knee allows for z-axis adjustment and supports the X-Y table, which 

provides the requisite vector-raster translation motions.  The operator’s control box specifically houses 

both the green spindle start button, which must be activated to execute any programmed machine code, 

and the red emergency stop button.  As part of the electronic hardware interface, the 9” monochrome 

CRT display and keypad present status information and control functions, automate axis motion, and 

allow programming of machining operations using the native EZTRAK® Software [20].  The spindle-quill 

assembly, identified as (b) in Figure 2.2, has several important functions.  First, the printhead is situated 

on the spindle axis by fashioning a holding device (refer to Figure 2.1 for the Siemens printhead mount) 

that is then secured in the spindle by a collet.  To keep the printhead stationary and before powering the 

spindle motor with the operator’s control box start button, the spindle must be disconnected from the 

motor by placing the Speed Range Lever, located on the right-hand side of the spindle-quill assembly, in 

NEUTRAL (refer to the “Hi-Neutral-Lo Lever” in Figure 2.2 (b) for further identification).  Please note, to 

prevent potential equipment damage and/or personal injury, the SPINDLE MUST NOT BE ENGAGED.  

Second, the spindle motor speed can, and should, be reduced to a minimum while the motor is powered 

by using the Speed Change Handwheel.  Beyond providing safety benefits and energy conservation, 

lowering the rotational speed reduces the external vibrations on the printhead and thus helps preserve 

droplet stability and placement accuracy.  Third, the quill raises and lowers the printhead to an 

appropriate operating level and, as described in Section 2.2.1.3, also serves as an interface for micro 
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switch DOD control.  The two illustrations referenced and enhanced from [20] in Figure 2.2 identify a 

significant number of Bridgeport controls. 

 

Figure 2.2 Two illustrations of the Bridgeport Series I EZ-Trak DX 3-Axis Milling 
Machine with basic components identified: (a) the entire machine and (b) 
the spindle-quill assembly.  The tool quill primarily serves as an 
attachment point for the DOD printhead.  The z-axis distance between the 
powderbed and printhead is adjusted by changing the vertical extension 
of the quill.  The quill movement also functions as the activation 
mechanism for a micro switch that provides printhead start-stop control 
(refer to Section 2.2.1.3).  The precision, motorized X-Y table supplies 
vectoring and rastering capability by positioning the powderbed under 
the stationary printhead.  The y-z axes shown in (a) establish the 
correlation between machine and geometry orientation for all vector 
printing experiments discussed. 

With the level of integrated hardware and software available, the Bridgeport Series I EZ-Trak DX 

is capable of processing complex computer numerical control (CNC) programs to direct its movement.  

This automated manufacturing function is adapted for the vector 3DP process.  The computing hardware 

includes a standard 80486 DX-based PC system along with a 32-bit 68030 Bridgeport Motor Drive 

Controller (BMDC) that is tied directly to the PC data bus [20].  The EZTRAK® Software contains various 

program routines that allow for sequential or simultaneous movement in three-dimensions, directional 

speeds or feed rates, tooling changes, and geometry scaling.  These available motion functions are 

sufficient to meet the demands of the current study.  The machine programs for vector printing 

(b)(a) 

z

y
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experimentation are created either manually for simple vector-only geometries by using the Bridgeport 

Graphical User Interface (GUI) or by using additional computer-aided manufacturing software (refer to 

Section 2.2.4 for details and for input conditions used for later vector tests).  This latter method is 

particularly well suited to generating the normally large number of tool paths needed for the internal 

geometry raster fill. 

In terms of motion performance for the Bridgeport milling machine, the specifications provided 

by the manufacturer [19] appear sufficient for the purposes of vector printing geometries on the scale of 

WC-Co tooling inserts.  The three axes, defined as table travel (x-axis), saddle travel (y-axis), and spindle 

travel (z-axis), have 762 mm, 305 mm, and 127 mm of possible movement, respectively.  The positioning 

rate for the X-Y table ranges from 2 to 2,540 mm/min with a minimum increment of 0.001 mm (1 micron).  

For control and machine precision, the input, servo, and display functions provide 0.001 mm resolution 

measurements with a positioning accuracy of ± 0.025 mm and a positioning repeatability of ± 0.02 mm.  

The degree of accuracy may contribute to errors in the placement of DOD binder droplets and thus affect 

the edge quality of printed parts, but with respect to other possible sources of error in the process, this 

deficiency should not be a major factor. 

 

2.2.1.1. Operating Conditions for Vector Printing Experimentation 

Given the performance characteristics and features of the milling machine detailed in the 

previous section, a range of suitable operating conditions are determined in relation to the functionality 

of other components.  To explore the vector-raster capabilities of the Bridgeport milling machine, a basic 

setup is devised to trace lines and shapes onto paper using a DOD printhead; this arrangement is later 

enhanced with the introduction of a printhead start-stop control mechanism which completes the 

requirements for “drop-on-demand” printing functionality (refer to Section 2.2.1.3 for details).  A 

standard Hewlett-Packard (HP) inkjet cartridge, with a nozzle array of resistive heating elements [21], is 

chosen as the visualization mechanism.  A corresponding wiring interface and a cartridge holder are 

appropriated from a commercial inkjet printer to connect the inkjet printhead to a basic waveform 

generation circuit.  The HP cartridge and interface apparatus are held by a three-prong test tube clamp 

whose stem is then inserted into a collet and mounted on the spindle of the milling machine.  To address 

connectivity issues between the circuit and printhead, the interface connector and cartridge mount are 

later replaced with a pair of wires that are soldered to specific pins on the back of the printhead to actuate 

a single nozzle.  A function generator sends the required frequency and voltage waveform signals 

through the circuit to generate droplets.  Detailed information about the printhead and its actuating 

waveform is provided in Section 2.2.5.1. 

During the initial course of testing, the question of printhead reliability arises due to the 

unexpected failure of multiple nozzles.  The reasons for this occurrence may be attributable to improper 



C H A P T E R  2:  Vector Drop-On-Demand Printing of Tungsten Carbide-Cobalt Tooling Inserts 

34 

cleaning of the nozzle array, which may have inadvertently damaged the printing mechanism, drying of 

the ink in the nozzle, communication issues between the printhead and control circuit, or the degradation 

of nozzle resistor performance through continual use [21].  The potential for nozzle failure is minimized 

by improving maintenance procedures and by changing the connection between the printhead and circuit 

as previously mentioned.  Another cause for printhead failure, known as switch bounce, develops with 

the subsequent introduction of a micro switch for start-stop droplet control.  The implementation of this 

DOD function and the associated circuit used to remove this negative side effect are explained in Section 

2.2.1.3. 

Using this configuration with and without the micro switch, the process of printing lines and 

geometries with the milling machine and DOD printhead is studied with ink as the “binder” and paper 

as the “powderbed substrate.”  The ink and paper, as well as the printhead, are later replaced with more 

representative 3DP items, as discussed in Section 2.4, but for initial testing, these conditions permit 

configuration and vector printing issues, which are of primary concern, to be diagnosed and addressed.  

To simulate and accurately model binder printing parameters, the size of an ink drop “primitive” on 

paper is measured; the average size of a drop is approximately 115 microns.  The printhead frequency 

and milling machine vector speed are thereby coordinated to obtain various droplet distributions and to 

check for geometry and spacing consistencies over a wide range of conditions.  A variety of shapes, 

including lines, rectangles with straight and curved corners, and a tooling insert, are programmed and 

executed over a span of vectoring speeds (from 100 mm/min to 2,400 mm/min) and orientations (0° to 

50° rotation).  An example of one such vector geometry is shown in Figure 2.3. 

 

 

Figure 2.3 Illustration of a vector printed, ink-droplet geometry using the HP 51626A 
printhead without DOD activation control.  The corresponding program 
(092399.pgm) details the commands entered manually through the 
Bridgeport programming GUI and processed by the milling machine.  The 
movements for the above tooling insert shape are performed at a 
vectoring speed of 360 mm/min and droplet frequency of 26.09 Hz. 

X

Y 

� 

�

9 mm 

0000 EZTRAK    1 MODE|MM  |TUE SEP 07 20:28:44 1999 

0010 || STOP 

0020 RAPID ABS X0. Y0. Z0. 

0030 RAPID ABS X11.112 Y.794 Z0 

0040 || STOP 

0050 LINE ABS X.510 Y9.689 Z0 F360 

0060 BLEND|LN ABS X0 Y10.117 Z0 R.794 CCW F360 

0070 LINE ABS X-11.112 Y.794 Z0 F360 

0080 BLEND|LN ABS X-12.058 Y0 Z0 R.794 CCW F360 

0090 LINE ABS X-.510 Y-9.689 Z0 F360 

0100 BLEND|LN ABS X0 Y-10.117 Z0 R.794 CCW F360 

0110 LINE ABS X11.112 Y-.794 Z0 F360 

0120 BLEND|LN ABS X12.058 Y0 Z0 R.794 CCW F360 

0130 LINE ABS X11.112 Y.794 Z0 F360 

0140 RAPID ABS X0 Y-3 Z0 

0150 CIRCLE OUT X0 Y0 Z0 Z-.0001 Z0 R3 P0 P0 D0. F360 F360

092399.pgm
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Note that additional z-axis positioning commands would be necessary to incorporate DOD control 

functionality into the above tooling insert outline to eliminate the connecting droplet path between � and 

�.  Approaches for raster filling the interior—using methods such as a zigzag, spiral, or section-based 

fill—are also studied by compiling more extensive machine programs.  An extensive summary of these 

ink-based tests is provided in Section 2.2.6.  Based on the examination of droplet spacing at several 

speeds, notable Bridgeport milling machine limitations exist that can limit part accuracy and are 

discussed in the next section. 

 

2.2.1.2. Evaluation of Vector Printing Limitations 

With the aforementioned setup using a standard HP cartridge to print ink onto paper, a series of 

lines and shapes are generated to evaluate the vectoring capabilities of the Bridgeport EZ-Trak milling 

machine (refer to Table 2-A for an overview). 

 

Table 2-A: 
BRIDGEPORT SERIES I EZ-TRAK DX MILLING MACHINE VECTOR EVALUATION PARAMETERS 

� ��

ABSTRACT GEOMETRY ABSTRACT ROTATED GEOMETRY TOOLING INSERT GEOMETRY

Ink Droplet Frequency 10 Hz 2.5 Hz 7.13 Hz

Frequency Variations 40 Hz 2.5 Hz
(1)

, 5 Hz
(2)

, 10 Hz
(3)

, 40 Hz
(4) 5 Hz to 452 Hz

Vectoring Speed 600 mm/min 150 mm/min 120 mm/min

Speed Variations 2400 mm/min 150
(1)

, 300
(1&2)

, 600
(3)

, 2400
(4)

 mm/min 120 to 2,400 mm/min

Associated CNC Machine 

Program 
819992.pgm 819995.pgm 090799.pgm

Purpose & Notes Transformation of the rectangle 

geometry with various corner radii; 

evaluation of vectoring capabilities for 

more complex geometry definition; 

observed a speed reduction (as 

indicated by droplet spacing) before 

each change in direction executed by 

the milling machine; vector deceleration 

scales proportionately with increasing 

default vectoring speed

ABSTRACT GEOMETRY
(1, 2, & 4)

 rotated 20° 

from horizontal; also tested at 10° and 

50° from horizontal with 600 mm/min 

vectoring speed; evaluation of vectoring 

capabilities at a various angles to test x- 

& y-axis independence, stability, and 

control; observed that vector 

deceleration before each direction 

change is independent of geometry 

orientation relative to milling machine 

axes

Actual tooling insert geometry; 

evaluation and verification of desired 

vector geometry; dimensions derived 

manually from actual tooling insert; 

vector deceleration observed at speeds 

of 300 mm/min and above; lack of drop-

on-demand control implementation 

leads to connecting trace between 

external outline and internal circle

NOTE: � & � contain manually drawn, dashed traces of the inkjet-printed geometry to aid in visualization.
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Using droplet separations mostly between 230 microns (2x the average droplet diameter) and 1 mm, 

multiple rectangles, abstracts, and tooling insert geometries are printed.  The rectangle with sharp and 

rounded corners represents the basic four-sided polygon necessary for tooling insert definition, while the 

abstract shape provides a more complex variation with differing corner radii.  This latter shape is also 
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printed at several angles of rotation to evaluate the geometric accuracy of the milling machine 

independent of its default axes.  The tooling insert is programmed based on manual measurements made 

on an unsintered sample and successfully illustrates the ultimate geometric requirement for this research. 

Although the Bridgeport milling machine is clearly capable of vector printing the necessary 

geometry, the overall accuracy in part definition and consistency in droplet spacing decline 

proportionately with increasing speed.  By comparing the printed droplet spacing with the intended 

value (based on a set frequency and speed), a noticeable deceleration is observed to occur just prior to 

any direction change starting at speeds of 300 mm/min.  This phenomenon is less obvious, though no 

less present, at the juncture of a sharp corner versus the region before a curve.  For a circular geometry, 

the decrease in speed only occurs at the end of the trace before starting another command.  Tests with the 

rotated abstract shape indicate that the speed deviation is independent of the machine axes and occurs at 

any angle.  At 2,400 mm/min, the deceleration effect is greatly magnified with an associated distortion in 

form, especially evident with the tooling insert center hole definition.  Figure 2.4 illustrates the 

deceleration effect at various speeds on the corner profile of a tooling insert geometry. 

 

 

Figure 2.4 Depiction of Bridgeport milling machine vector movement limitations.  
One curved edge of the tooling insert geometry is shown.  Ink droplet 
spacing is used to measure velocity consistency.  At speeds below 
approximately 254 mm/min, the droplet spacing remains constant 
regardless of direction changes.  Above 254 mm/min, observable 
deceleration occurs immediately preceding a change of direction.  For the 
above samples, the frequencies (F) and feed rates (R) maintain a 
designated droplet spacing of 230 µm for visual comparison. 

R: 1200 mm/min 
F: 86.96 Hz 

R: 300 mm/min 
F: 21.71 Hz 

R: 150 mm/min 
F: 10.87 Hz 

Direction of Vector Movement 

Droplet Spacing: 230 microns 

R: 600 mm/min 
F: 43.48 Hz 

 

Droplet Overlap at 
Velocity Change 

460 µm 



C H A P T E R  2:  Vector Drop-On-Demand Printing of Tungsten Carbide-Cobalt Tooling Inserts 

37 

The milling machine motion limitation can be generalized as follows: the faster the speed, the larger the 

deceleration and the less accurate the geometry.  This consideration restricts the maximum 3DP vector 

printing rate to that which will preserve an acceptable uniform binder distribution and minimize possible 

distortions.  This behavior also necessitates another important compromise. 

The determination of an acceptable vectoring speed requires reconciling the demand for binder 

droplet accuracy with the now conflicting goal of maximizing production rate.  By evaluating the degree 

of droplet spacing error at various speeds, a value of 4.2 mm/sec (254 mm/min) is interpolated to be the 

fastest setting that guarantees uniform droplet spacing.  Based on an acceptable overlap of 50% as 

observed with a 230-micron droplet spacing, it is determined that 600 mm/min would be an appropriate 

compromise between binder placement accuracy and production rate for experimentation with this 

setup. 

Although the deceleration effect occurs as a function of speed, another possible way to 

compensate is to consider droplet size.  In tests of the abstract geometry, at 300 mm/min and 2.5 Hz, the 

relatively large droplet spacing of 2 mm makes the deceleration virtually imperceptible.  So even though 

the deceleration still occurs, its presence is minimized because of low droplet frequency, or in other 

words, large droplet spacing.  In this manner, the undesired effects of speed change can be reduced by 

decreasing droplet frequency with a corresponding increase in droplet volume, so that binder placement 

is not as dependent on speed consistency.  In light of other 3DP considerations, however, this solution 

may not be practical since high frequency, low volume droplets can produce parts with higher resolution 

and detail than low frequency, high volume droplets. 

For further discussion of these vector printing results, along with an examination of other ink-

based milling machine experiments, refer to Section 2.2.6. 

 

2.2.1.3. Implementation of Drop-on-Demand Controls 

Another aspect of the vector drop-on-demand printing process to be addressed is the operational 

control of the printhead.  In considering the numerous options available to satisfy this objective, the 

decision is made to implement a mechanical micro switch into the existing milling machine vector setup.  

The Honeywell 1SM2 Micro Switch is the particular switch version chosen.  The switch interfaces with 

the vertical movement of the quill and, depending on the plunger state, starts or stops the DOD printhead 

function.  The ability to integrate easily with the Bridgeport milling machine along with the minimal and 

effective control requirements dictated by the positioning of a mechanical snap-action contact make this a 

highly practical and effective solution. 

The quill of the milling machine controls the z-axis positioning of the attached tool or, in this 

case, printhead.  Mounted on an aluminum bar that is fastened to a magnetic block, the Honeywell 1SM2 

Micro Switch is configured so that the control circuit remains functional when the plunger is released, or 
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in the normally closed position, thereby allowing droplet generation to occur.  When the quill column is 

raised, the micro switch plunger becomes depressed against the upper ledge of the quill (labeled as Part A 

in Figure 2.5) and causes the mechanical contact to move from the normally closed to the normally open 

terminal.  Current flow to the printhead circuit is stopped thereby halting printhead droplet formation.  

The location of the micro switch relative to the quill, magnetic support assembly, and part identification 

and dimensions supplied by Honeywell are depicted below in Figure 2.5. 

 

B

A
Platform C

Magnetic 

Block D

Aluminum Bar

Micro Switch

Dimensions (in inches):

NO NC
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Block D

Aluminum Bar
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Block D

Aluminum Bar

Micro Switch

Aluminum Bar

Micro Switch

Dimensions (in inches):

NO NC

Dimensions (in inches):

NO NC  

Figure 2.5 Graphical representation of the DOD control method along with detailed 
dimensions of the Honeywell 1SM2 Micro Switch.  Some measurements 
are omitted for clarity; refer to Honeywell Catalog Listing 1SM2 [7025] 
(Issue 13, Drawing Number M) for further details.  Fastened to an 
aluminum bar, the micro switch is positioned and held magnetically by 
Block D onto Platform C of the milling machine.  When Column B of the 
quill moves up or down, the micro switch plunger is depressed by or 
released from Part A, respectively.  The current setup permits printhead 
operation when the micro switch is released.  Drop-on-demand control is 
therefore dependent on the vertical position of the quill in relation to the 
micro switch. 

To ensure reliable DOD control, the actuation of the plunger must conform to the operating 

specifications of the Honeywell design.  First, with the plunger completely released, or in the free position, 

the common contact is in the normally closed (NC) state.  As the plunger is depressed, it reaches its 

operating point but beforehand must move a distance known as pretravel, which is 0.03” max [22].  At the 

operating point, the common contact accelerates from the normally closed to the normally open (NO) 
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contact and within milliseconds strikes, bounces, and comes to rest in the NO position.  Moving down 

past the operating point does not change the state of the common contact; the amount of this overtravel is 

0.10” min [22].  In order to return the micro switch to the NC position, the plunger must be allowed to 

reach its release point, which is above the operating point.  The distance between the operating and release 

points is called differential travel, which is 0.004” max [22].  Of these measurements, the most important 

value for determining z-axis quill movement is the differential travel (0.004 inch).  To guarantee that 

adequate displacement occurs in the micro switch, the z-axis is programmed to travel ± 0.01 inch after 

positioning the quill (1) to account for pretravel tolerances and (2) to depress the plunger just past the 

operating point, but before the minimum overtravel.  Therefore, when the z-axis moves down to start 

printing, the plunger is released a distance greater than the differential travel and subsequently returns 

the switch state to the normally closed position.  The reverse also applies for subsequently stopping the 

printhead: by raising the quill the same distance from its previously set position, the plunger moves 

down once again past the switch operating point. 

By introducing this control device into the current vector DOD printing setup with the HP 

printhead, the likelihood of printhead failure increases—as observed in practice—because of the 

phenomenon known as switch bounce.  When the common contact of the micro switch moves from one 

terminal to another due to plunger actuation, the physical connection requires time to stabilize, and the 

associated mechanical vibrations lead to unpredictable electrical signal oscillations.  The resulting voltage 

fluctuation increases the probability of nozzle failure, especially in the case of the HP printhead.  An 

electrical circuit is thus constructed to eliminate this problem and provide a stable switching signal for 

DOD control. 

The circuit design utilizes two microchip components.  First, a dual J-K  positive-edge-triggered 

flip-flop with preset and clear (SN74109) removes the transient switch contact signals that are input 

through Pins 1 and 5 and outputs on Pin 6 a high- or low-level state to the second chip.  The quadruple 2-

input positive-NAND gate then processes the signal from the flip-flop input on Pin 1 with the printhead 

pulse frequency input from a function generator on Pin 2.  The output from the first NAND gate is 

evaluated through a second NAND gate.  The resulting output, an active (H) or inactive (L) state, is sent 

back to the printhead circuit through Pin 6.  For integration with the HP printhead, the input source for 

Pin 2 of the first NAND gate comes from the function generator that supplies the frequency TTL signal, 

and the output is returned to the input of the drive circuit (refer to Section 2.2.5.1 for printhead circuit 

details).  To implement this micro switch control with the Siemens printhead, the input to the first NAND 

gate through Pin 2 is taken from the frequency trigger signal sent from the first function generator.  The 

output from the second NAND gate is returned to the external trigger input of the second function 

generator that holds the arbitrary waveform.  Information about the two function generator setup for the 
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Siemens printhead is provided in Section 2.2.2 with a detailed explanation in Section 2.3.7.  The pin 

designations and logic conditions are referenced from Texas Instruments data sheets obtained in the lab.  

Refer to Figure 2.6 for relevant chip identification, wiring connections, and associated function tables. 
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Figure 2.6 Electrical circuit diagram designed to eliminate switch bounce and control 
DOD printhead signal delivery using two microchip components.  Switch 
bounce increases the likelihood of printhead failure due to the voltage 
oscillation that occurs when the mechanical common contact changes 
from one terminal to the other.  First, the switch signal is processed 
through a flip-flop contained in the Type SN74109 chip to isolate and send 
only the initial transition pulse.  The output is then filtered along with the 
printhead frequency pulse signal through two NAND gates in the Type 
SN7400 chip to achieve the desired logical output: the printhead activates 
only when the micro switch plunger is in the released position. 

To add a drop-on-demand control function to the existing configuration requires addressing 

several issues with the HP and Siemens printheads.  In both cases, the reliability and consistency of 

droplet generation upon initiation and re-activation must be improved.  For the HP inkjet cartridge, the 

fragile nature of the resistive elements in its nozzles requires careful introduction of the voltage signal to 

prevent permanent damage.  Another issue with the HP printhead is the possibility of nozzle clogging 

due to dried ink.  The alterations to the printhead interface and the development of a switch debouncing 

circuit have mitigated the severity of these obstacles.  Unfortunately, a less functional situation exists for 
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the Siemens printhead.  On the one hand, the debouncing circuit is applicable to the Siemens printhead 

and prevents possible piezo damage from the mechanical switching process.  On the other hand, to adapt 

the piezo-driven system to different binder fluids involves an intensive study of various droplet 

formation parameters.  As demonstrated by the efforts described later in Section 2.3, the complex 

relationship between and cursory knowledge of these parameters in actuating the piezo for stable droplet 

generation compounds the difficulty of establishing an equilibrium condition without the consideration 

of such a dynamic contribution.  Further discussion of the considerations related to DOD control with 

each respective printhead is presented in Sections 2.2.6 and 2.3.6. 

With the nominal implementation of DOD activation control for the Hewlett-Packard printhead, 

the possibility of vector representations possessing several distinct external profiles can be studied, such 

as the tooling insert geometry with center hole. 

 

2.2.2. Function Generators & Amplifier 

The specifications and purpose of the function generators and amplifier differ slightly for each 

printhead.  A few basic requirements, however, are identical for both systems.  At least one function 

generator is necessary to send a frequency pulse signal that controls the rate of droplet generation.  In 

both instances, a standard TTL waveform is output from the function generator to be processed.  The 

respective amplifiers subsequently magnify the low voltage actuation waveform to the appropriate levels 

for printhead operation.  Beyond these similarities, the contrasting designs of each printhead lead to 

significant differences in component selection. 

The Hewlett-Packard printhead only requires a common feature found on many function 

generators: output of a TTL level square wave frequency signal.  Thus, no specific model is necessary as 

long as a suitable frequency range can be designated; any of the following function generators used with 

the Siemens printhead will work.  The voltage square wave output is sent to the customized HP control 

circuit and modified to produce the appropriate waveform geometry while preserving the set frequency 

(refer to Section 2.2.5.1 for further circuit details).  The proper actuation waveform is then delivered to the 

amplifier for additional processing. 

The signal amplification for the HP printhead is integrated into the control circuit design used for 

waveform processing.  A transistor chip is used to increase the signal voltage; no additional equipment is 

needed.  The output is passed on to the printhead for droplet generation.  An oscilloscope is connected to 

the transistor output for waveform geometry, amplification, and frequency verification. 

The Siemens printhead also possesses a standard control circuit for waveform creation and 

processing with frequency input, but in the course of evaluating stable droplet generation for various 

binder systems, an examination of waveform modification, discussed in Section 2.3, necessitates an 

alternative method for inducing printhead actuation.  To define a custom waveform for DOD printing, 
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the Hewlett-Packard 33120A 15 MHz Function Generator/Arbitrary Waveform Generator is utilized.  

This function generator has four 16,000 data point storage areas for retaining desired waveform patterns 

[23].  Because of its arbitrary waveform capability, the HP 33120A function generator is also used in the 

design of a test station for droplet observation that includes an efficient method for programming 

arbitrary waveforms.  Discussed in the following Section 2.3.1, this Nozzle Test Station is used 

extensively in the study of binder droplet generation with the Siemens printhead.  Initially, a single HP 

function generator is programmed with the actuation waveform, and the voltage signal is sent to the 

amplifier at a set frequency.  The degradation of waveform geometry with decreasing frequency prompts 

the addition of another function generator to separate these two parameters.  The second function 

generator sends a TTL square wave frequency signal to the external input of the HP function generator.  

The high-resolution, frequency independent arbitrary waveform is triggered at this rate and is 

subsequently sent to the amplifier.  Since the second function generator only provides frequency control 

for the Siemens printhead by interfacing with the HP 33120A, a number of different models are 

acceptable for this task.  Over the course of this research, three different function generators are used for 

this purpose: (1) another HP 33120A 15 MHz Function Generator, (2) a Lodestar FG-2102AD 0.2 Hz - 2 

MHz Function Generator, and (3) an Inster FG-8016G 2 MHz Function Generator.  Specific details on the 

process and parameters used in this two function generator setup and the correlation between arbitrary 

waveform resolution and frequency in the HP 33120A are explained in Section 2.3.7. 

In contrast to the HP printhead transistor, the amplifier used for the Siemens printhead is a 

Krohn-Hite Model 7500 Wideband Power Amplifier (DC to 1 MHz • 140 Vrms • 75 Watts).  The 

amplification settings specified for the printhead waveform are 100x (40 dB ± 0.2 dB) Fixed Gain, DC 

input coupling (with low frequency cutoff at approximately 1 Hz), and zero Volts DC offset [24].  As a 

result, the arbitrary waveform scale is thus magnified 100 times and sent to the Siemens printhead.  An 

oscilloscope is once again connected to the Krohn-Hite output to verify waveform geometry, 

amplification, and frequency. 

 

2.2.3. Droplet Visualization Setup 

During the first stages of vector DOD printing with the HP printhead, droplet visualization as an 

inspection of printhead stability is not as important in comparison with the following binder-based 

droplet generation tests performed with the Siemens printhead.  The HP inkjet cartridge operates under 

fairly normal conditions using the conventional waveform geometry and fluid chemistry for droplet 

formation.  The presence and consistency of droplets are easily verified by visual inspection of the ink 

deposited on paper.  The Siemens printhead is evaluated using various 3DP binder systems and non-

standard waveform shapes in an attempt to generate a stable droplet stream in unfamiliar conditions.  

Therefore, to measure and confirm droplet stability and uniformity, a visualization setup is devised as an 
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important tool for vector DOD printing experiments using the Siemens printhead on the Bridgeport EZ-

Trak milling machine. 

The functional components of this visualization system are adapted from equipment 

specifications used in the Droplet Observation Station, or Nozzle Test Station (refer to Section 2.3.1).  The 

Siemens printhead visualization system consists of a CCD camera, LED attachment, control circuit, and 

television monitor.  Images of these components, their orientation, and their connections, identified with 

blue Vx arrows, are shown in Figure 2.1.  The camera with LED attachment is mounted on a tripod and 

temporarily secured to the milling machine X-Y table with tape.  The printhead is positioned between the 

camera lens and the LED.  In order to align the droplet stream with the focus plane of the camera, a piece 

of paper is attached to the side of the printhead parallel to and in line with the row of orifice nozzles.  The 

camera focus is then calibrated on the vertical plane denoted by the paper, which approximates the plane 

of droplet formation from any orifice.  The diode pulse is synchronized with and activates at the droplet 

waveform frequency.  The control circuit receives the frequency setting from the printhead function 

generator and provides pulse width and delay modulation for the LED so different states of droplet 

development can be observed, and the CCD camera captures this stroboscopic image and displays it on 

the monitor screen. 

 

2.2.4. Vector Geometry Composition & Programming 

To compose the geometries used for vector testing, initial machine programs are created 

manually using the Bridgeport EZTRAK® Software within the native milling machine GUI.  A collection 

of vector-only shapes are designed, ranging from a rectangle to a tooling insert, primarily for assessing 

the effectiveness of the Bridgeport Series I EZ-Trak DX milling machine as a vector definition tool and the 

incorporation and testing of other components to the process.  The discussion of this configuration 

development and refinement is presented throughout Section 2.2.1.  With the increasing functionality of 

the vector DOD printing configuration using the HP printhead, more complex printing programs are 

developed which more accurately represent the 3DP production process with vector profile definitions 

and interior raster fills.  Composing these machining procedures efficiently requires the implementation 

of external CAM software. 

The software used to design and compile machine programs for outline vector printing and 

raster interior fills is MasterCAM version 7.2 by CNC Software, Inc.  This CAM package allows for 

versatile design and modeling of any geometry for production with CNC-capable machines, using a 

collection of representative virtual machine tools.  The 3DP vectoring and rastering of binder droplets on 

a powderbed substrate is simulated as a subtractive milling procedure with the tool diameter equivalent 

to the ink or binder droplet diameter.  Three geometries are designed with MasterCAM for vector DOD 

printing implementation: (1) a square, (2) a tooling insert, and (3) a centered, perpendicular grid design 
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with support frame.  Each of these geometries are examined in detail and defined with the appropriate 

parameters for use with each printhead before creating the corresponding Bridgeport machine program.  

To define the position of the printhead above the substrate, the z-axis origin is set as the top surface of the 

powderbed with the printhead orifice ideally positioned 500 microns above.  In practice, the distance is 

slightly increased because the origin cannot be precisely calibrated without damaging either the 

powderbed or printhead. 

To define an adequate line spacing and overlap between consecutive parallel vector or raster 

lines, the diameter of a binder droplet must be known.  Ideally, the measurement should reflect the as-

printed condition of the droplet absorbed in the powderbed.  To make this determination for one specific 

binder system, considerable time and effort is required to analyze and account for the behavior of liquid 

infiltration in a particular powderbed composition, not only to calculate the diameter for individual 

droplets, but also to formulate a theory for optimal line definition.  For the vector DOD printing 

experiments conducted in this thesis, particularly with the binder system used in Section 2.4, taking into 

account the number of variables already present for examination, such an accurate diameter assessment 

must be postponed and substituted with a best guess approximation for droplet size and line spacing. 

Fortunately, for ink-based tests using the HP printhead, this measurement, while not 

representative of actual binder-powderbed interactions, is easily determined by measuring the ink drop 

size left on paper.  With an average 115 micron droplet size, as calculated earlier in Section 2.2.1.1, all 

MasterCAM geometry files prepared for vector DOD printing using the HP printhead assume a 58 

micron separation (or 50% overlap) between consecutive sets of parallel lines.  Using this droplet spacing, 

relevant observations can be made concerning the potential distribution of binder based on the vector 

and raster performance of the current experimental setup (refer to Section 2.2.6 for a summary).  The 

spacing between adjacent droplets in a single line may be controlled by varying either the droplet 

frequency or speed of the milling machine. 

In contrast, the basis for an average droplet size used for binder printing with the Siemens 

printhead is less accurate though still fairly reasonable.  The relevant vector DOD printing experiments 

using several MasterCAM-designed geometries are outlined in Section 2.4.  The particular binder system 

used is functionally composed of Polyacrylic Acid (PAA) with glycerol, which is deposited into slurry-

jetted alumina powderbeds.  The binder droplet size as generated by the printhead in air is chosen to 

determine the line spacing and overlap parameters in MasterCAM.  To determine this droplet diameter, 

two separate measurements are taken, and both yield similar results.  One method of calculating the 

droplet size involves manual measurement of a scaled image as seen on the Droplet Observation Station 

(refer to Section 2.3.1 for details).  The second approach to determining the average droplet size in air 

uses the mass of binder ejected at a certain frequency over a known time period.  Section 2.3.8 includes a 

detailed explanation of this calculation.  With a stable voltage waveform, the average droplet size of the 
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PAA binder from the Siemens printhead is 44 microns.  This size estimation, though not optimal, 

essentially reflects the smallest diameter possible for a binder droplet in the powderbed because the 

droplet is believed to expand in diameter upon impact.  The same conventions used for the HP inkjet 

printhead are applied for each Siemens binder-based machine program: a 50% overlap, or 22-micron line 

spacing, between adjacent parallel lines.  Therefore, assuming the same droplet spacing is used for 

consecutive binder drops, the printed powderbed geometries resulting from this droplet diameter 

assumption will likely be cohesive. 

Each of the three geometries designed in MasterCAM serves a purpose.  The square is developed 

to test a basic, fundamental shape for 3DP part production.  Geometric distortion can be easily identified; 

edge quality and corner sharpness are also important characteristics to assess.  For vector DOD printing 

using either printhead, the square is programmed with a reinforcing set of exterior vector traces followed 

by a linear, horizontal zigzag raster fill starting from the bottom and progressing upward.  The tooling 

insert geometry signifies the primary reason for this study of vector DOD printing.  The MasterCAM 

design is based on the CNMA 432 tooling insert provided by Valenite with an increase in dimensional 

scale to reflect green density and to account for the expected decrease in sintered size.  Figure 2.7 

provides a cross-sectional illustration of the CNMA 432 insert labeled with sintered dimensions. 

 

Figure 2.7 Technical diagram of a finished, conventional WC-Co tooling insert cross-
section.  Unit measurements are provided in inches.  The dimensions and 
geometry depicted above serve as the basis for the model and machine 
tool paths generated by MasterCAM for vector printing the tooling insert 
shape.  Dimensions for the 3DP model are scaled to compensate for 
shrinkage during sintering.  Data for the CNMA 432 Tooling Insert 
provided courtesy of Valenite, Inc. 
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Based on an ideal, jetted powderbed with 55% green density, calculations for as-printed part 

dimensions assume that complete sintering provides a 45% reduction in volume to achieve full density 

with constant mass.  In actuality, the part mass will decrease slightly with the decomposition of organic 

components in the slurry and binder.  Since these component quantities are relatively small, however, the 

associated mass change is negligible and is currently ignored.  Using these assumptions, 

 
V A R I A B L E S  ρb  = Density before sintering 
  ρs = Density after sintering 

 Vb = Volume before sintering =  xb * yb* zb 
 Vs = Volume after sintering  =  xs * ys * zs 
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Therefore, if the shrinkage occurs isotropically, then the green dimensions should be 22% larger than 

their sintered counterparts.  Note that this calculation also does not account for how the interior hole 

affects the volume decrease. 

The MasterCAM tooling insert model is adapted for use with both printheads.  For the HP inkjet 

cartridge, a more accurate model of the tooling insert with inclusion of the center hole can be printed as 

the result of effective DOD control functionality and relatively stable droplet generation.  Moreover, 

simpler tooling insert models without the center hole are programmed to compare various raster fill 

methods, including angled zigzag, spiral, and sectioned fills.  For the Siemens printhead, the tooling 

insert model is programmed without the center hole for printing PAA binder into alumina using a 130° 

raster-fill method.  The center grid design with support frame is a specialized geometry intended for the 

Siemens printhead to preserve individual vector DOD printed lines of PAA binder into alumina so that 

corresponding line width measurements can be taken. 
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2.2.5. Drop-On-Demand Printheads 

Two printheads serve as the primary droplet generation mechanisms for this research: (1) a 

Hewlett-Packard 51626A Black Inkjet Printhead and (2) a Siemens PT-88S Printhead.  Based on the 

principles of DOD operation discussed in Section 1.2, each printhead is used for a separate portion of 

vector DOD printing development.  The HP 51626A is employed mainly for equipment evaluation and 

testing, while the Siemens PT-88S is utilized first for investigation of droplet generation with various 

binders and second for the functional implementation of vector printing PAA binder into alumina.  Both 

printheads do similarly perform vector DOD printing experiments with the milling machine setup using 

machine programs of various geometries designed in MasterCAM, but with differences in fluid systems 

and droplet generation performance, the specified vector and rastering parameters for each printhead 

contrast greatly.  It should be noted that a prototype printhead being developed by Hiro Tsuchiya, a 

visiting scientist from TDK, is also used briefly for an examination of droplet formation.  His printhead 

design is intended to function with the TDK Slurry-Vector Printing Machine currently in development 

(refer to Section 3.2 for information).  The amount of work conducted with his customized printhead in 

this research is significantly less than the collection of results obtained with the other two.  Hiro’s DOD 

design does share a common actuation process with the Siemens printhead, and a brief comparison is 

given between the two printheads in Section 2.3.  This similarity in piezo-actuated droplet formation may 

allow possible correlations to be made between behaviors, parameters, and measurements made with 

each printhead although further research and analysis is required to draw any conclusions. 

With the common ability to exert droplet production control over a range of frequencies, the two 

DOD printheads achieve this objective differently.  The HP printhead produces droplets by heating fluid 

with individually accessible resistive elements [21].  In contrast, a piezoelectric element induces pressure 

fluctuations in the fluid to control droplet formation for the Siemens printhead.  In addition, as discussed 

previously in Section 2.2.2, the waveform generation process differs greatly as well with a significant 

departure from normal operating conditions for the Siemens PT-88S in order to accommodate different 

binder systems.  Figure 2.8 provides an illustration of these two printheads and their respective 

components. 
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Figure 2.8 Illustrations and part identification of the two drop-on-demand 
printheads used for experimentation: (a) the Hewlett-Packard 51626A 
Black Ink Inkjet Printhead, used primarily for geometry and vector 
evaluation tests with ink and paper, and (b) the Siemens PT-88S 
Printhead, used ultimately for generating a single 3DP vector printed 
layer by depositing liquid organic binder onto a dried slurry powder 
substrate.  Essential components of the HP 51626A printhead are 
identified in the three different views shown above.  Pictured in 
composite and expanded form, the Siemens PT-88S printhead provides 
only droplet generation functionality as a sub-system of a more modular 
Siemens inkjet printer assembly. 

As seen from the construction of each printhead in the figure, by including the ink reservoir with the 

DOD nozzles, the Hewlett-Packard 51626A Black Ink inkjet cartridge is a more compact and integrated 

design compared to the Siemens PT-88S.  In contrast, the Siemens PT-88S is a more specialized and 

modular sub-component of a complex assembly.  Other distinctions between the two printheads are 

outlined in the following sections. 

 

2.2.5.1. Hewlett-Packard 51626A Black Ink Inkjet Printhead Specifications 

The Hewlett-Packard 51626A Black Ink Inkjet cartridge, shown in Figure 2.8 (a), is a thermal 

inkjet printhead that uses an array of resistive heating elements as a drop-on-demand mechanism.  The 

droplets emerge from the printhead because of momentum caused by collapsing bubbles that form in the 

ink chamber.  The nozzle heating element produces a momentary vapor bubble that then collapses; a 
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reaction force is generated that allows a droplet to overcome the ink surface tension and propel out the 

nozzle.  Capillary force then refills the nozzle for another cycle [21].  The droplet frequency can range 

from 40 Hz to 5,000 Hz, and a maximum distance of 600 microns is recommended for accurate droplet 

placement.  The fluid reservoir capacity is specified as 40 mL [25].  According to the Material Safety Data 

Sheet, the associated ink chemistry is composed of primarily water (> 85%), 2-Pyrrolidone (< 8%), and 

other salts (< 4%) with a pH between 8.3 and 8.7 and a density of 1.0 to 1.2 g/mL [26]. 

The HP printhead uses two chips in its drive circuit to generate and scale its waveform geometry.  

The HC4538 is a dual retriggerable monostable multivibrator, which takes the TTL level rising edge input 

from a function generator.  The circuit then modifies the square wave to the appropriate printhead 

waveform.  The output from Pin 6 is then fed to Pin 1 of the IRF530, a Metal-Oxide-Semiconductor Field-

Effect-Transistor (MOSFET).  This transistor amplifies the signal, which is then sent to the printhead at 

the frequency set by the function generator.  A diagram of this waveform generation circuit is provided in 

Figure 2.9. 

For the most part, the HP 51626A printhead provides a functional DOD system for visualizing 

vector printed geometries.  With the addition of a micro switch for activation control of the printhead, the 

current configuration is fully capable of simulating binder deposition methods onto a substrate using ink 

and paper.  A number of these vector and raster-fill geometries are evaluated and summarized in Section 

2.2.6.  The printhead does experience problems, however, with occasional nozzle failure.  In general, the 

resistor elements decrease in performance over time and are susceptible to failure when subjected to 

physical or electrical stress.  As noted earlier in Section 2.2.1.1, increased reliability is possible with proper 

maintenance and caution when cleaning the nozzle plate.  In addition, the determination of switch 

bounce and the designed circuit compensation (see Section 2.2.1.3) are in part due to the efforts from 

diagnosing nozzle failure. 
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Figure 2.9 Electrical wiring diagram for droplet generation using the HP 51626A 

DOD print cartridge.  A function generator TTL square wave output 
signal sent through the HC4538 microchip controls the droplet frequency 
of the printhead.  The HC4538, a dual retriggerable monostable 
multivibrator, modifies the voltage waveform input to the proper 
geometry for droplet generation, and the subsequent MOSFET (Metal-
Oxide-Semiconductor Field Effect Transistor) amplifier IRF530 scales the 
shape to the proper voltage.  The resultant waveform geometry, 
frequency, and amplitude are verified by observing the MOSFET output 
with an oscilloscope. 

 

2.2.5.2. Siemens PT-88S Printhead Specifications 

Like the HP 51626A, the Siemens PT-88S is another inkjet printhead, but the droplet generation 

mechanism is electromechanical instead of thermal.  The Siemens PT-88S printhead has eight cylindrical 

piezoceramic actuators that encase eight corresponding fluid channels.  The piezo transducer functions 

by converting electrical energy to mechanical motion: a positive applied voltage causes the piezo to 

constrict, while a negative voltage causes it to expand.  Based on measurements by Hiro Tsuchiya, the 

average diameter of each piezoelectric is 1.59 mm.  The internal channel has a diameter of 0.69 mm and 

meets an orifice plate with a hole that tapers from 0.100 mm to 0.080 mm in diameter.  The eight nozzles 

all converge on this single orifice plate with the eight respective holes distributed approximately 350 

microns apart.  Figure 2.10 provides a cut-away illustration of the printhead that shows this nozzle 
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configuration.  The control voltage for actuating the piezoceramic tube ranges from approximately 90 to 

180 Volts with a maximum frequency of 2.9 kHz.  A maximum distance of 2 mm between orifice plate 

and paper is recommended for accurate droplet placement.  The material used to encapsulate the 

printhead is known as Epoxonic HBX 93, a resin produced by Siemens; the orifice plate is believed to be 

made from Nickel and Chromium, although composition analysis is necessary for certification.  An 

electrochemical process is used to etch the holes and define the orifice plate geometry, while a photoresist 

layer preserves the remaining material.  The accompanying ink provided by Siemens has a viscosity of 23 

cP, a surface tension of 46 dynes/cm, a pH of 11.5, and a density of 1.13 g/mL.  The MSDS states that the 

chemical composition includes 73% Ethylene Glycol, 20% Diethylene Glycol, and 7.0% other compounds.  

Most of this performance and material data is provided by Günther Wöhlert of OCÉ Printing Systems 

USA, Inc. 

To actuate an individual piezo, electrodes must be connected to the corresponding pins--one to 

the piezo, the other to ground, and a voltage waveform signal must be applied.  A wiring diagram, table 

of pin assignments, and pin orientation illustration are supplied in Figure 2.10.  The standard Siemens 

waveform circuit is only used briefly in the beginning to verify printhead functionality under normal 

conditions with ink and to test droplet formation stability for a Polyacrylic Acid-based binder system.  

Because the duration of its use is so short, the design and operation of this circuit is not documented.  

Instead, because the standard actuation method failed to work with the PAA binder system, the 

possibility of waveform modification is pursued.  In order to conduct this examination, a HP function 

generator is programmed with arbitrary waveforms of varying times, voltages, and frequencies.  The 

signal is then amplified by 40 dB (100x) gain and connected to the printhead for evaluation.  The 

dependency between waveform resolution and frequency in the single function generator is discovered 

during this study, and thus the two function generator setup is conceived (also described in Section 2.2.2 

with a detailed explanation of this effect in Section 2.3.7).  This waveform customization approach 

towards DOD printing various binder systems using the Siemens piezo-actuated printhead proves to be 

an effective and potentially versatile process.  The study of droplet generation by changing waveform 

geometry and other printing parameters is presented in Section 2.3.  By investigating these relationships, 

an effort is made to understand how reliable, consistent droplet formation is achieved. 

One potentially severe disadvantage related to this printhead is the impending lack of 

availability, which will increase substantially after November 2000.  According to Günther Wöhlert, 

Siemens will cease production of this printhead at this time.  The remaining inventory will be available 

for some time, but depending on demand, estimates as to when these supplies will be depleted cannot be 

made.  Currently, three Siemens printheads, along with replacement O-rings and orifice plates, are 

known to be available for further experimentation. 
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Figure 2.10 Cross-section and diagram of pin connections for actuating each piezo 
transducer for the Siemens PT-88S printhead.  Although nine nozzle 
connections are indicated in the wiring diagram, only eight are functional.  
Each of the eight tubes is surrounded by a cylindrical piezoceramic 
actuator that expands and contracts with corresponding voltage.  To 
activate a nozzle, the positive electrode with amplified waveform signal is 
connected to the corresponding pin, and the negative electrode is 
connected to a ground pin (either Pin 3 or 13).  All nozzle tubes converge 
on a common orifice plate. 

In terms of reliability, the Siemens PT-88S does not suffer from nozzle failure as seen with the HP 

printhead.  In fact, the default printing conditions using Siemens ink are reliable and considered ideal.  

Instead, by attempting to adapt the Siemens PT-88S to different fluid systems, extensive investigation into 

multiple printhead variables is necessary to find a set of stable droplet generation conditions.  The 

correlations between printhead variables are still not well understood, so the prospect of determining 

optimal binder droplet conditions is relatively low for now.  So from a reliability standpoint, the issue of 

droplet formation instability as the result of many possible factors is of paramount concern.  Another 

potential impediment to DOD printing with various fluids involves the reactivity of binder chemistries 

with printhead components.  During the droplet formation study of binder systems containing PAA, a 

substantial degree of corrosion on the orifice plate is observed over a short period of time.  This gradual 

Pin 
Orientation

17 18

1 2

Siemens PT-88S 
Nozzle Wiring 

Diagram 

Pin Signal Notation Explanation

1 HZ Ink-jet Print Head Heater

2 TDK.TF Temperature Sensor

3 0 V Ground

4 KFSU9 Selection of Nozzle 9

5 KFSU8 Selection of Nozzle 8

6 KFSU7 Selection of Nozzle 7

7 KFSU6 Selection of Nozzle 6

8 KFSU5 Selection of Nozzle 5

9 KFSU4 Selection of Nozzle 4

10 KFSU3 Selection of Nozzle 3

11 KFSU2 Selection of Nozzle 2

12 KFSU1 Selection of Nozzle 1

13 0 V Ground

14 WJMT.B Wiper Motor Terminal B

15 TJEL1 Ink Electrode 1

16 WJMT.A Wiper Motor Terminal A

17 TJEL3 Ink Electrode 3

18 TDK.TJEL2 Ink Electrode 2



C H A P T E R  2:  Vector Drop-On-Demand Printing of Tungsten Carbide-Cobalt Tooling Inserts 

53 

deterioration and increase in orifice diameter manifests itself by causing droplet instability under once 

acceptable conditions and by directing droplet streams out of alignment.  Further details on the orifice 

plate corrosion that occurs with PAA binder is discussed in Section 2.3.2. 

 

2.2.6. Ink-Based Vector Drop-On-Demand Test Geometry Results 

To perpetuate efforts towards producing WC-Co tooling inserts with this relatively new 

approach to Three-Dimensional Printing, the development of a vector DOD printing system using the 

Bridgeport Series I EZ-Trak DX milling machine as the vector component is commenced.  Two different 

DOD printheads are selected for this system: (1) the Hewlett-Packard 51626A Black Ink Inkjet cartridge 

and (2) the Siemens PT-88S Inkjet printing mechanism.  The HP 51626A cartridge is initially chosen for 

evaluating and diagnosing the equipment integration.  This process involves conducting vector DOD 

experiments with ink and paper using programmed CNC machine programs.  After determining the 

average ink droplet size on paper to be 115 microns, a multitude of geometries are created and analyzed.  

A detailed summary of these tests is presented in Table 2-B; other significant results obtained for ink-

based vector DOD printing are documented in scans shown in Figure 2.3, Figure 2.11, and Table 2-A. 

The geometric complexity of vector printing tasks gradually increases as the capabilities of the 

milling machine is assessed, more effective programming techniques are used, and DOD control is 

implemented.  Progressing from lines to rectangular shapes to tooling inserts, the results of these early 

experiments indicate that increasing milling machine speed leads to a decrease in geometric accuracy and 

droplet spacing with noticeable effects starting at approximately 300 mm/min.  These errors occur due to 

unexpected decelerations during program execution at every change in direction.  Section 2.2.1.2 

discusses this phenomenon in greater detail.  A compromise is made between accurate droplet placement 

and production rate by allowing for a 50% overlap to occur at a 230-micron droplet spacing.  This amount 

of geometric distortion is deemed acceptable, and the corresponding milling machine speed equates to 

600 mm/min.  With an effective DOD control micro switch, the tooling insert vector geometry is 

successfully printed without extraneous ink droplets connecting the exterior diamond perimeter with the 

center hole. 

Afterwards, an examination of interior raster fill methods is also performed in coordination with 

the now completely functional vector trace.  By designing geometries and compiling the resultant 

machine code with MasterCAM software, the lengthy task of calculating and programming tooling paths 

is obviated, and a number of different rastering approaches are prepared.  For ink-based vector DOD 

testing, an accurate representation of a tooling insert profile is designed based on a dimensioned sample 

provided by Valenite, and the majority of raster-fill testing is conducted using this shape.  Four different 

methods are evaluated: (1) section fill, (2) spiral fill, (3) horizontal raster fill, and (4) 130° linear raster fill.  

Note that the decision to use the 130° angle is not a general recommendation but rather a consequence of 
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the tooling insert geometry.  For rastering tests that include vector outline definition, the profile of the 

tooling insert is traced consecutively four times with decreasing scale from the exterior to the interior of 

the geometry.  Based on the tooling paths defined in MasterCAM, which rasters from the bottom up 

(moving in the positive y-axis direction), the ability to activate and deactivate the HP printhead is 

essential for accurate reproduction of the tooling insert using the section fill.  Note that the three latter 

rastering methods do not include rastering exclusion of the center hole.  Figure 2.11 provides scans of 

actual printed samples that employ these internal fill techniques.  A listing of parameters and notes for 

these experiments is included in Table 2-B. 

 

Table 2-B: 
SUMMARY OF VECTOR PRINTING TESTS WITH THE 

BRIDGEPORT SERIES I EZ-TRAK DX MILLING MACHINE 

Vector Geometry Description

Straight Line

To test basic machine 

vectoring capabilities

093099.PGM*

100699.PGM*

100, 150, 200,

300, 600, 2400

1.67, 2.5, 5,

10, 11

• Lines have accurate length 

and linearity

• Droplet spacings indicate 

accurate speed

* Tests of the DOD micro switch 

control are conducted later using 

single & multiple consecutive lines

Rectangle with Sharp

& Rounded Corners

To assess standard, multi-

sided geometry with sharp and 

rounded corners; to establish 

fundamental tooling insert 

shape definition

819991.PGM

825991.PGM
100, 600 1.67, 10

• No problems performing task

• Observed vector deceleration 

based on droplet spacing near 

direction change regions

Abstract Shape

(refer to Table 2-A for illustration)

To determine vectoring 

definition versatility and 

evaluate machine limitations
819992.PGM

819993.PGM

819994.PGM

819995.PGM

826991.PGM

826992.PGM

150, 300, 600,

2400
2.5, 5, 10, 40

• Also observed deceleration 

effects for this geometry

• Determined that direction 

change deceleration is a 

function of vectoring speed and 

independent of shape 

orientation (rotation made no 

difference)

Tooling Insert Vector Outline

with Hole

(refer to Figure 2.3 for illustration)

To perform actual vector 

printing of a conventional 

tooling insert geometry profile 090799.PGM

092399.PGM

0923993.PGM

120, 150, 300,

360, 450, 600,

1200, 2400

4, 5, 7.13, 10,

10.87, 14.1, 20,

21.71, 26.09,

29.4, 32.61, 40, 

43.48, 64.9,

86.96, 120, 173.9

• Initial measurements and 

programming done manually 

on Bridgeport on-board GUI

• Used data from previous 

experiments to minimize 

vectoring deficiencies

Tooling Insert Vector Outline

+ Raster Fill with No Hole

(refer to Figure 2.11 for illustration)

To incorporate and evaluate 

different raster filling methods 

for the insert interior
Tool1012.PGM

1020991.PGM

1020992.PGM

1020993.PGM

1020994.PGM

1020995.PGM

T50R1028.PGM

TSIO1028.PGM

TSOI1028.PGM

T50R1029.PGM

254, 300, 600,

900, 2400

18.41, 21.74,

43.48, 86.96,

173.9

• Because of deceleration 

effects, ink concentrations 

noticeably higher in regions 

with frequent direction changes

• Determined that diagonal 

130° raster fill provides most 

uniform distribution

• Programming complications 

prohibit hole inclusion

Tooling Insert Vector Outline

+ Raster Fill with Hole

& DOD Micro Switch Control

(refer to Figure 2.11 for illustration)

To assimilate and test 

complete functionality required 

for vector drop-on-demand 

printing of WC-Co tooling 

inserts

T1R1028.PGM

T2R1028.PGM
240, 600 17.38, 43.48

• Objective of producing tooling 

insert layer through vector 

DOD printing achieved

• Optimization of printing 

parameters with actual powder 

& binder chemistries required

Notes

&

Summary

Purpose

Sample

CNC Machine 

Programs

Vector Speed 

Variations

(mm/min)

Droplet Frequency 

Variations

(Hz)
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MasterCAM programming limitations in tool path definition make inclusion of the center hole 

problematic for some of the raster fill tests, as shown in Figure 2.11.  For the spiral fill, the tool path 

creation routine has difficulty transitioning smoothly between the circular fill pattern in the center to the 

linear, diamond pattern along the sides.  For the linear raster fills, either horizontal or angled, the 

software appears unable to adjust the z-axis height dynamically—equivalent to turning the DOD 

printhead off and on—while rastering directly across the circular center.  The approach that successfully 

incorporates the center hole is the section fill method, illustrated in Figure 2.11 (1).  This process, while 

similar to the linear raster fill, does not move across the center hole but instead completes the fill by 

rastering as much as possible in one pass and then returning to do the remainder.  In a similar manner, by 

rotating the section fill, the 130° raster fill could also be performed with inclusion of the center hole. 

 

 

Figure 2.11 Depiction of a completed vector-printed tooling insert drawn with ink 
along with four different raster fill approaches.  These methods are 
examined as potential rastering techniques for defining the interior after 
vector perimeter tracing: (1) two sections consecutively, A & B, (2) 
spiraling inward or outward, or either (3a) or (3b) a single raster fill with 
printhead start-stop control over the insert hole.  The 130° raster fill 
method shown in (3b) provides more uniform ink distribution along all 
insert edges in comparison with (3a).  Milling machine programming 
constraints and droplet control issues hinder rastering assessment with 
inclusion of the center hole for (2), (3a), and (3b).  All samples shown are 
performed at the maximum permitted vectoring speed of 600 mm/min. 

In any case, worthwhile conclusions are drawn about each rastering method from the simplified 

tooling insert geometries produced.  For comparison, the raster fill experiments are performed at the 

maximum acceptable speed of 600 mm/min, which results in deceleration errors around rastered regions 

with direction changes.  The distribution of “binder” is reflected by the darkness of printed regions.  

Ideally, the entire vector, raster-filled part should have a uniform ink concentration.  These ink-based 

Vector Trace (4x) Complete Tooling Insert 

(3b) 130° Raster Fill(1) Section Fill 

A 

B 

(2) Spiral Fill (3a) Raster Fill
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results highlight the disadvantages of a particular method by clearly denoting the higher binder 

concentration regions.  Using this criteria to evaluate each rastering method, the approach with most 

uniform binder distribution using current vector printing DOD conditions is the 130° linear raster fill.  As 

shown in Figure 2.11 (3b), the boundaries of the insert geometry have higher relative ink concentrations 

than the interior, but the gradient along the entire edge remains constant.  This result may possibly prove 

useful in actual 3DP binder printing as a means of reinforcing or refining the edge finish of a part if 

differential slipcasting does not become a factor.  In comparison with the other raster-fill methods, the 

uniformly distributed, increased ink concentration around the perimeter that results from this process 

appears to be the most potentially useful.  As mentioned earlier, by rotating the section fill to the same 

angle, the center hole can be included in this rastering process. 

Another important consideration in vector DOD printing of tooling inserts is the production rate, 

an issue addressed with the compromise in maximum milling machine speed.  Measurements of the time 

required to complete the vector outline, interior raster-fill printing of the tooling insert geometry are 

performed.  To complete the section fill tooling insert geometry, which includes the center hole, requires 

approximately seven minutes at a rate of 600 mm/min.  The spiral fill tooling insert without a center hole 

takes around eight minutes, though it is likely that including the hole would reduce this time since less 

would be printed.  For the linear raster fill tooling inserts, without a center hole, around eight minutes are 

needed.  However, if the center hole were included and the linear raster fill included DOD start-stop 

control across the hole, the time is expected to be identical, if not more, due to the extra repositioning 

movements of the z-axis and the same surface area to cover.  The times required to complete the vector 

DOD process can be decreased by increasing the milling machine speed at the expense of droplet 

placement errors and possible geometry distortion.  These effects are machine-dependent, however, and 

will likely be reduced with the introduction of more advanced, specialized vectoring equipment. 

The most efficient method of raster-filling the interior, a linear fill with DOD printhead stops 

across the center hole, is not performed as the result of several factors.  A reliability issue with actuating 

the micro switch control, which may be attributed to either the switch or the Bridgeport quill positioning, 

makes consistent stop-and-start operations a concern.  In addition, the HP printhead exhibits occasional 

instability by failing to restart on command.  Another obstacle is the lack of properly programmed 

machine code due to MasterCAM limitations, as mentioned earlier.  Though this style of raster fill is 

technically possible, under ink-based printing conditions, it would be prohibitively time-consuming to 

manually code the necessary tool paths and, for studying raster-fill variations, would not actually be 

necessary since conclusions can be made using the no-hole insert geometries.  In the future, the need to 

adapt machine programming to accommodate a tooling insert center hole for vector DOD printing is 

expected to be unnecessary with the forthcoming slurry, vector 3DP machine from TDK (refer to Section 

3.2 for details).  In the end, although these problems could be addressed, at this stage in vector DOD 
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printing development, other issues need to be addressed, such as the integration of binder-based DOD 

printing discussed in the next section. 

Ultimately, the purpose of implementing vector drop-on-demand printing with this milling 

machine configuration is to demonstrate the ability to produce a WC-Co tooling insert geometry having a 

vector outline and an interior raster fill.  In this regard, the culmination of this effort is successful.  The 

design and integration of a micro switch DOD control and the determination of vector printing 

parameters based on equipment limitations are also important developments.  Although difficulties with 

machine tool path programming, milling machine speed limitations, occasional micro switch control 

errors, and HP printhead reliability prevent an optimization of every vector DOD parameter—specifically 

with rastering methods and production speed, a significant amount of knowledge is acquired.  Thus far, 

experiments with this configuration have measured and validated its vector DOD printing capability.  

Now, the inclusion of binder-based DOD printing is considered with changes to the printhead and fluid 

system. 

 

2.3. DROP-ON-DEMAND PRINTHEAD DROPLET FORMATION  

With the introduction of 3DP binder systems instead of ink, the previously employed HP 51626A 

printhead is replaced with a different drop-on-demand printhead, the piezoelectric-actuated Siemens PT-

88S, to study droplet formation with different fluid chemistries.  In the Siemens PT-88S, eight piezo 

transducers are used to produce droplets by changing electrical energy, described as a voltage waveform 

at a certain frequency, into mechanical motion.  For these cylindrical piezos, applying a positive voltage 

causes contraction and shortening, while applying a negative voltage causes expansion and lengthening.  

The binder within the fluid channel is subjected to an ensuing pressure pulse that moves through the 

liquid and ideally leads to a volume separation at the orifice.  Given the differences in fluid properties for 

various binder systems, the default Siemens waveform for ink may or may not work for these conditions.  

Therefore, to establish stable droplet formation conditions requires assessing the influence of and the 

relationship between the printhead actuation parameters of waveform voltage, timing, and frequency as 

well as the binder properties of surface tension and viscosity. 

The Siemens PT-88S is the primary printhead utilized for droplet formation testing, but a 

prototype printhead design by Hiro Tsuchiya is also briefly evaluated.  Like the Siemens design, Hiro’s 

printhead concept uses a cylindrical piezoceramic actuator.  However, several important differences exist.  

With his single fluid channel and fewer filter stages, no manifold is necessary, and fluid flow has less 

resistance.  The Siemens PT-88S uses an unbonded, removable orifice plate that is held in place by a 

spring, while Hiro’s design uses a permanently bonded orifice plate.  This rigid fixation is intended to 

reduce orifice deflections from the piezo pulses that could prevent droplets from being ejected.  The 

voltage requirements for his prototype design also differ from the Siemens printhead specifications.  
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Several waveform modification tests conducted with Hiro’s printhead provide valuable insight to the 

droplet formation phenomenon, but since his printhead design remains in development at this time, 

implementation of vector DOD binder printing and the study of droplet formation are left to the Siemens 

PT-88S printhead. 

The 3DP binder systems examined in this study include (1) a water-based Polyacrylic Acid (PAA) 

binder in two concentrations, (2) an alcohol-based PAA binder, (3) a PAA binder with a water-and-

alcohol solvent mixture, and (4) colloidal silica (CS).  The PAA chemistry includes a cross-linking agent 

that strengthens the binder printed part upon low temperature curing so it can be retrieved during 

redispersion.  The alcohol-based version of this binder is intended to be used with the WC-Co slurry-

jetted powderbeds.  Note that droplet formation tests performed using the colloidal silica suspension are 

not directly applicable to the processing of WC-Co.  This binder is commonly used for dry alumina 

powder.  Though the colloidal silica does not relate directly to DOD binder printing of WC-Co, the effects 

of waveform voltage, timing, and frequency on droplet stability for this system appear to share common 

trends in comparison with the other binder systems tested.  Regardless of chemical composition, several 

conclusions are made concerning droplet stability in relation to performance parameters for the drop-on-

demand Siemens printhead.  In retrospect, a considerable amount of work is conducted with the CS 

suspension and a number of droplet formation parameters are analyzed in coordination with the Siemens 

printhead, so the general relationships observed between droplet formation parameters can be attributed 

to work with both PAA binder and colloidal silica. 

To observe the effects of changing printhead or binder parameters on droplet stability, a 

specifically designed tool for this purpose known as the Droplet Observation Station (DOS) or Nozzle 

Test Station is used.  Developed by Garth Grover, the test station consists of four component systems: (1) 

a fluid system for governing binder flow to the nozzle, (2) a motion system for positioning the nozzle and 

camera, (3) an electronics system for controlling each test station component and setting nozzle 

parameters, and (4) a video system for droplet visualization [27].  The fluid system is less important due 

to the independent fluid control inherent with DOD printheads.  The setup of this observation station 

proves invaluable for testing various waveform geometries and observing their effects on droplet 

formation and stability.  The DOS also provides a method for estimating droplet size and speed by 

referencing the images captured by the visualization system.  Further details of this DOS and its 

implementation are provided in Section 2.3.1. 

For tests using the Siemens PT-88S printhead, nozzles four or five are primarily used to evaluate 

droplet formation and stability, although other nozzles are also tested to diagnose the possible effects of 

piezo orientation with no apparent difference in droplet formation performance (refer to Section 2.3.8 for 

details).  Based on the printhead assembly discussed in Section 2.2.5.2, the two fluid channels associated 

with nozzles four and five are the most perpendicular to the orifice plate and thus provide the most 
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unimpeded route for fluid flow out of the orifice.  These nozzle selections guarantee the greatest isolation 

of piezo actuation performance in relation to droplet generation while minimizing undesired influences 

from other factors, such as the interaction of printhead components with the fluid along its output path.  

The performance of droplet generation should not be affected, however, with the selection and use of 

other nozzles. 

With the number of printhead variables to consider, waveform timing and voltage along with 

frequency, each with a range of possible values, coupled with the influence from binder fluid properties, 

the task of developing an effective set of DOD printing conditions for generating a fast, stable droplet 

stream requires extensive experimentation and analysis.  Beyond these variables, other effects on droplet 

stability are observed and assessed.  The efforts reported in the following sections attempt to establish a 

basic understanding of the relationship between each parameter and how these factors contribute toward 

droplet formation.  Currently, a focus on stability is pursued with droplet velocity a secondary 

consideration.  An optimization of droplet size is also important, with smaller volumes allowing for 

higher resolution part definition at the cost of greater environmental influence.  With increases in 

production speeds, however, the DOD ejection speed may become more influential in determining 

accurate droplet placement.  It should also be noted that the droplet generation conclusions derived from 

these experiments are believed to apply only to the specific printheads used as indicated.  The 

construction and interaction of the printhead piezoceramic element with surrounding printhead 

components add another layer of complexity not considered in this study.  Limitations of the acquired 

data and suggestions for further research will be discussed as appropriate. 

 

2.3.1. Droplet Observation Station Setup 

To pursue an understanding of droplet formation and its contributing factors, a tool for 

observing and changing these conditions must be developed.  Fortunately, such an instrument exists as 

the result of work done by Grover [27].  The main station components used for this research involve the 

motion system for orienting the camera relative to the printhead orifice, the electronics setup for 

inputting various waveform parameters, and the video system for observing and recording the stages of 

droplet development.  As seen in Figure 2.12, the motion system is composed of “three leadscrew linear 

motion stages driven by stepper motors” [27], two for the “X-Z Axis” that controls printhead positioning 

and one for the “Y-Axis” that adjusts camera distance.  The electronics subsystem includes motor 

controllers and uses a PC with National Instruments LabView software to control various printing 

parameters.  LabView allows for creation of virtual instruments that control waveform timings and 

voltages as well as LED pulse width and delay.  The video system consists of a CCD camera with LED 

strobe mounted on the opposite side of the printhead.  The LED illuminates at the printhead frequency to 

capture a specific stage of droplet development, and the camera sends these images to a standard 
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television screen.  Using this configuration, the efforts to determine an optimum set of conditions for a 

single, uniform droplet stream are considerably enhanced. 

In terms of analyzing droplet formation, the Nozzle Test Station or DOS yields many pieces of 

valuable data.  For one, the Droplet Observation Station provides an efficient and versatile method of 

testing waveform geometries.  Through a series of extensive tests using different fluid systems, the effect 

of voltage, timing, and frequency on droplet stability is examined.  To conduct these experiments, first 

the waveform geometry with appropriate voltages and timings, the droplet frequency, and the LED pulse 

width and delay are set through a LabView Virtual Instrument (VI).  Setting the LED pulse width and 

delay determines the image brightness and stage of droplet development seen by the CCD camera, 

respectively.  An LED delay of zero measures the point of ejection from the orifice since the delay 

accounts for waveform propagation and droplet formation within the nozzle.  The pulse width 

determines the length of time the LED stays on to capture a droplet state.  If the pulse width is too long, 

image clarity is affected because of droplet movement.  Typically, for the following experiments, a pulse 

width of 10 microseconds is chosen.  The waveform parameters and frequency are sent from the LabView 

VI to an HP 33120A Arbitrary Waveform Generator (refer to Section 2.2.2 for performance details) for 

actual printhead application.  Originally, only one function generator is used for setting the printhead 

waveform geometry and frequency, but due to waveform degradation at low frequencies, another 

function generator is later added for printhead frequency designation only.  Details about this 

phenomenon and its solution are discussed in Section 2.3.7.  The waveform signal is sent from the HP 

33120A at either its own or another function generator’s trigger frequency to the Krohn-Hite Model 7500 

Amplifier (refer to 2.2.2 for specifications and settings) which magnifies the waveform voltage by 100 

times.  The Siemens PT-88S printhead actuates on this amplified signal sent through connector pins to an 

individual piezo.  The resulting droplet behavior is observed in real-time on the monitor, and the camera 

images can be digitally recorded in TIFF image files for later reference or analysis. 

If the printhead conditions specified for testing do not compel immediate droplet production or 

produce irregular droplet patterns, certain diagnostic procedures can be attempted.  First, make sure the 

binder reservoir level is below the orifice plate to ensure negative pressure within the nozzle; this factor 

proves to be an important consideration in maintaining droplet stability over time (refer to Section 2.3.6 

for more information).  Another starting or stabilizing process to try is to clean the orifice plate with a Q-

tip wetted with a compatible solvent while waveform actuation is in progress.  Alcohol solvents are 

preferred since they dry quickly and therefore reduce the chance of interference with droplet ejection.  

Following this attempt or in conjunction, the binder can also be forced through the Siemens printhead 

and streamed through the nozzles to ensure the binder completely fills the piezo-actuated fluid channel.  

If multiple attempts fail, as a last resort, a thorough disassembly and cleaning of the printhead may be 

necessary.  Of course, an ineffective waveform or other droplet stability issue, such as orifice plate 
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corrosion, may be the cause of unstable or non-existent droplet formation failure (refer to Section 2.3.6 for 

more information). 

 

 

Figure 2.12 Picture and detailed schematic of the Droplet Observation Station.  
Originally, the nozzle and camera positions are adjusted by using a 
custom LabView Virtual Instrument (VI) to activate the stepper motor 
driver (shown above).  This automated positioning system is later 
replaced with a manual set of two precision micrometer translating stages 
to provide X-Z axis movement.  A desired waveform, with its 
corresponding frequency and varying voltage amplitudes, is then 
programmed using another designed LabView VI, which sends the 
information to a function generator.  The function generator passes the 
signal through an amplifier that then connects to the printhead.  Note that 
since the printhead relies on DOD piezo actuation, the binder supply does 
not require pressurization.  The VI also permits LED strobe length and 
delay designations relative to the original waveform frequency to 
visualize the different stages of droplet development from the printhead.  
The base diagram and picture shown above are provided courtesy of 
Garth Grover [27]. 

The DOS can also be used to calculate estimates of droplet velocity and diameter by using a 

known scale calibrated to the magnification shown on screen.  Examining the CCD camera output on the 
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monitor, the distance between two consecutive droplets (if seen) can be measured and the velocity 

determined based on frequency.  Another method involves knowing the LED strobe, or pulse, delay for 

two image captures of the same droplet.  By measuring the distance traveled by the droplet over this 

change in LED pulse delay, the velocity can be estimated.  One final method for estimating the droplet 

velocity is to find the change in pulse delay for the droplet to travel 1 mm as scaled on the screen.  The 

droplet diameter can be approximated using this same scale.  A more accurate calculation of droplet 

diameter is to measure the binder mass deposited at a set frequency over a known period (refer to Section 

2.3.8 for detailed analysis). 

 

2.3.2. Binder Chemistry and Properties 

Because binder systems can possess a wide range of properties, the process of DOD droplet 

generation must be customized to each situation, or if possible, the binder system properties can be 

adjusted.  The fluid properties of viscosity, surface tension, and density are most important in developing 

an effective set of DOD printing conditions.  Table 2-C compares these attributes for the binder systems 

examined in this study.  Five different binder systems are tested with the Siemens printhead:  

•  2.4 v/o PAA + 0.26 v/o Glycerol + 97.3 v/o Water 
•  2.4 v/o PAA + 0.26 v/o Glycerol + 97.3 v/o Ethanol 
•  10 v/o PAA + 1.1 v/o Glycerol + 89.5 v/o Water 
•  10 v/o PAA + 1.1 v/o Glycerol + 12.1 v/o IPA + 77.3 v/o Water 
•  Colloidal Silica (Binder “B” Formulation [28]) 

For this research, the effects of viscosity and surface tension are examined in relation to DOD printhead 

droplet formation. 

In order to produce 3DP parts on alumina substrates with any printing method, the currently 

established water-based binder composed of Polyacrylic Acid (PAA) is utilized.  Typically, the 

concentration of PAA is 2.4 volume percent (v/o) for use with alumina.  This binding solution also 

includes an amount of glycerol (0.26 v/o for the typical binder), which cross-links with the PAA when 

cured at 150 °C to allow for subsequent redispersion and part retrieval [29].  This chemical bonding 

behavior maintains the structural integrity of the printed part until it can be sintered to full density.  In an 

effort to apply this same binding process to WC-Co slurry-based powderbeds, an alcohol version of this 

binder is created by replacing the water solvent with Ethyl Alcohol.  This substitution is necessary to 

prevent Cobalt oxidation in the presence of water.  Although issues with powderbed redispersion may 

hinder successful implementation of this binder system, the PAA chemistry meets the three criteria for an 

effective binder system as explained by Sherry Morissette: (1) be removable in a non-oxidizing 

atmosphere, (2) possess low residual carbon content, and (3) contain minimal contaminating species 

relative to the powder composition [30].  Refer to Section 3.2 for information about WC-Co slurry-binder 

developments. 
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Table 2-C: 
COMPARISON OF FLUID SYSTEM PROPERTIES 

EVALUATED WITH THE SIEMENS PT-88S PRINTHEAD 

Fluid System
Viscosity

(cP)

Surface Tension

(dynes/cm)

Solution Density

(g/cm
3
)

Siemens Ink (Type 2) 23 cP 46 dynes/cm 1.13 g/cm
3

2.4 v/o PAA + 0.26 v/o Glycerol

+ 97.3 v/o Water
2.8 cP 72 dynes/cm 1.01 g/cm

3

2.4 v/o PAA + 0.26 v/o Glycerol

+ 97.3 v/o Ethyl Alcohol
< 2.8 cP

†
22 dynes/cm

†
0.800 g/cm

3

10 v/o PAA + 1.1 v/o Glycerol

+ 89.5 v/o Water
21 cP 72.1 dynes/cm 1.04 g/cm

3

10 v/o PAA + 1.1 v/o Glycerol

+ 12.1 v/o IPA + 77.3 v/o Water
33 cP 46.3 dynes/cm 1.01 g/cm

3

Colloidal Silica

(Binder "B" Formulation)
3.5 cP 43.3 dynes/cm 1.21 g/cm

3

Ethyl Alcohol 1.2 cP 22.3 dynes/cm 0.7849 g/cm
3

Isopropyl Alcohol 2.4 cP 22 dynes/cm 0.7812 g/cm
3

Water 1.0 cP 72.8 dynes/cm 0.998 g/cm
3

F L U I D    P R O P E R T I E S

at Room Temperature

(either 20 °C or 25 °C)

†
 Viscosity and surface tension not directly measured; estimates based on properties and proportions of chemical components

 
 

Though it would be ideal to formulate a single waveform geometry appropriate for all binder 

systems, a stable printing condition determined for one composition will most likely not be as effective 

for another.  This variability in droplet generation effectiveness using the same actuation waveform is the 

result of differences in fluid properties, particularly viscosity and surface tension, for each system.  As 

seen through initial DOD printhead tests, these bulk properties play an important role in the viability of 

droplet generation.  In analyzing Droplet Observation Station results, however, an identical waveform 

timing is shown to be acceptable for two binder systems—the water-based 2.4 v/o PAA binder and 

colloidal silica—with similar viscosity, but differing surface tension, which may indicate a stronger 
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correlation between droplet formation and the former fluid property.  Further research is necessary to 

qualify this statement, since optimizations are still possible for both binder systems to enhance droplet 

generation performance, which may in turn greatly differentiate printing parameters in relation to their 

respective fluid properties.  As a practical matter for now, this common result, used for subsequent vector 

printing experiments onto alumina as discussed in Section 2.4, is presented in detail in Section 2.3.8. 

The viscosity and surface tension of a binder system have an important effect on droplet 

formation with a piezo-actuated DOD printhead.  If the fluid viscosity is high, then a significant pressure 

fluctuation is needed to create any droplet because waveform propagation effects dissipate quickly.  

Alternatively, if the viscosity is low, the pressure waves caused by piezo actuation do not diminish as 

quickly and tend to induce split streams and errant droplets.  Based on Hiro’s experience, this low 

viscosity behavior is confirmed to occur with the Siemens printhead when using the standard ink-based 

waveform.  If the surface tension is relatively high, then the fluid has a difficult time separating to form 

droplets due to strong intermolecular bonds.  If the surface tension is low, then the binder fluid is likely 

to wet the orifice surface and once again make droplet formation difficult.  It is possible, though, that 

changes in the printhead actuation parameters can reduce these effects and generate a stable droplet. 

Through droplet generation tests with the Siemens PT-88S, it is observed that water-based 10 v/o 

PAA binder is not capable of being printed with the standard Siemens waveform.  The relatively high 

surface tension of this fluid system, in comparison with the standard Siemens ink, is therefore believed to 

hinder droplet creation under default printhead conditions, although the possibility of successful droplet 

generation with a more effective waveform is not pursued.  Nevertheless, an effort is made to reduce the 

surface tension of the PAA binder in order to approximate as close as possible the properties of Siemens 

ink.  To increase binder viscosity and decrease surface tension, isopropyl alcohol (IPA) is added in place 

of water.  Another possible method for increasing viscosity, if necessary, is to add more Polyacrylic Acid; 

greater concentrations of PAA, however, are more likely to lead to differential slipcasting.  By adjusting 

binder viscosity and surface tension to closely approximate the same properties of Siemens ink, the 

logical prediction follows that the standard waveform used to actuate the Siemens printhead should also 

produce binder droplets from the PAA system.  An optimal mixture of IPA and water as solvent are 

found that closely match the surface tension of the Siemens ink (refer to Table 2-C for concentrations) 

with only slightly higher viscosity. 

A few unsuccessful attempts are made to generate droplets with the standard Siemens waveform 

and this modified alcohol + water-based 10 v/o PAA binder.  One possible explanation is that the higher 

viscosity, while only 10 cP higher, plays a significant role in preventing droplet formation.  Alternatively, 

perhaps another fluid property or printing condition must be accounted for.  Nonetheless, because of this 

difficulty, it is decided that modifying the printhead waveform parameters may prove to be a more 

effective approach.  In the end, by looking at the waveform shape, the efforts to manipulate binder fluid 
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properties become less critical to achieving successful, stable droplet generation, and the negative effects 

of extreme viscosity or surface tension can be compensated for to some extent.  These alternative 

waveform modification tests are documented in the following sections. 

The influence of fluid properties on stable droplet generation is effectively illustrated by 

experiments conducted with the 2.4 v/o PAA + 0.26 v/o Glycerol + 97.3 v/o Ethyl Alcohol binder.  After 

establishing a functional waveform geometry and frequency for the water-based 2.4 v/o PAA binder and 

colloidal silica using the Siemens PT-88S printhead (refer to Section 2.3.8 for details), the same DOD 

printing conditions are applied to this alcohol-based chemistry, which has lower viscosity and lower 

surface tension.  In comparison with the two previous binder systems, the ability to produce a stable 

droplet stream for the alcohol-based 2.4 v/o PAA binder with these same settings is only moderately 

successful, with less reliability and questionable longevity.  Initially, a higher transition voltage versus 

the water-based 2.4 v/o PAA binder is determined for optimal single droplet generation—109 Volts 

versus approximately 97 Volts—though this state deteriorates over time and does not return when the 

voltage is varied in subsequent tests.  After approximately 1.5 hours, the voltage transition threshold 

between single and multiple droplets increases from 109 Volts to 120 Volts, with the original voltage level 

no longer consistent.  Even at 120 Volts, droplet stability lasts for only a few minutes.  Refilling the 

printhead reservoir lowers the maximum stable droplet voltage to 115 Volts, which remains stable for 15 

hours, but the droplet velocity is noticeably lower than the original steady state condition, which still 

cannot be restored.  Though other factors may contribute to this behavior, such as the change in reservoir 

level relative to the orifice (refer to Section 2.3.6 for an explanation) and the likelihood of orifice plate 

corrosion, similarities in other important parameters suggest that differences in fluid properties—the 

lower viscosity and significantly lower surface tension—also affect the binder’s droplet generation 

performance.  More extensive testing of this binder system is postponed in order to pursue more 

important research objectives.  Furthermore, due to negative interactions currently being investigated 

between this binder and the WC-Co powderbed, the continued study of stable droplet formation for this 

particular binder solution may prove unnecessary. 

One important note about binder chemistry involves the issue of corrosion between the binder 

and the Siemens PT-88S orifice plate material.  During droplet formation testing with the Siemens PT-88S, 

a significant amount of orifice plate corrosion occurred as the result of using the PAA-based and possibly 

colloidal silica binders.  Because of the acidic nature of the PAA binder composition, it is believed that the 

orifice plate corrosion can most likely be attributed to this reactivity rather than to interactions with the 

apparently more neutral colloidal silica (refer to [28] for chemical composition).  Indicated initially by 

residual markings on the orifice plate that could not be removed, a degree of corrosion is evidently 

observed early in droplet formation studies with the PAA binder, but the extent and rate of corrosion are 
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not explicitly documented at the time.  The consequences and influence of orifice plate depletion and hole 

enlargement are not assessed until severe and unexpected droplet instabilities occur, detailed as follows. 

Towards the conclusion of DOS testing, a significant and inexplicable decrease in the transition 

voltage for a formerly stable droplet waveform is observed.  Using the CS binder after months of 

printhead testing with the same nozzle, the aforementioned voltage decreases from the expected 102 

Volts to 92 Volts.  Attempts to maintain stable droplets quickly deteriorate and prove immune to other 

diagnostic adjustments.  These unexplained behaviors prompt the thorough cleaning of the Siemens 

printhead at which time the presence of crooked streams are noted when water is forced through the 

nozzles.  Replacing the orifice plate cures this problem and restores the printhead to its previous 

functional state. 

Based on this apparent change in droplet behavior as the result of orifice plate corrosion, it is 

possible that over the course of the experiments described in the following sections that expanded or 

irregularly corroded orifice holes may contribute to or even prove to be the primary causes of 

performance inconsistencies or degradation over time.  This gradual increase in orifice diameter, though 

not completely understood, is clearly proceeded by the development of crooked and irregular streams 

with slow moving droplets that eventually prevent correct printhead functioning.  The severity of 

corrosion for an orifice hole can be verified by forcing water through the printhead and checking for 

proper stream alignment.  In addition, visual cues are present as well, such as the development of craters 

around the orifice hole and permanent stains. 

The orifice diameter increases proportionately as a function of operating time; however, the exact 

correlation requires further investigation.  A different orifice plate than the one mentioned above is later 

examined after approximately 29 hours of total use distributed between four nozzles (numbers three 

through six) with the water-based 2.4 v/o PAA binder.  Starting with the standard 80 micron diameter, 

the rate of corrosion is apparently inconsistent with nozzle four having a diameter of 104 microns after 6 

hours, while nozzle five has a smaller diameter of 90 microns after 11 hours.  Nozzle six and nozzle three 

also exhibit an inverse behavior: 108 microns after 3.5 hours compared to 100 microns after 8 hours.  This 

unexpected trend in corrosion rate indicates that other variables, such as waveform geometry and 

frequency, most likely also play a role.  Nevertheless, corrosion is clearly evident as the result of this PAA 

binder system. 

Further study is necessary to understand this chemical interaction between the PAA binder and 

the orifice plate and the rate at which the reaction occurs.  Until this corrosion process is clearly 

understood, it is advisable to evaluate the selected orifice hole periodically during operation for 

structural integrity and diameter accuracy when using this binder chemistry.  The associated effects of 

orifice plate corrosion, such as a continuous change in droplet position towards the orifice at a constant 
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pulse delay, a reduction in transition voltage, or crooked streams when flushing nozzles, also serve as 

good indicators of impending nozzle failure. 

Note lastly that the three final items in Table 2-C are for comparison only and are not 

individually tested for droplet formation analysis in the Siemens printhead.  These basic solvents are 

significant and fundamental components of the binder systems tested.  They greatly influence the fluid 

properties of viscosity and surface tension because of their large relative concentration in solution.  In 

addition, these solvents are also used for adjusting these properties.  In addition, the benchmark Siemens 

Ink (Type 2) is not extensively tested but instead serves as an established, functional starting metric for 

adjusting other fluid systems.  Though all of the remaining fluid systems are evaluated with the Siemens 

printhead, experiments with the two 10 v/o PAA binder systems do not include visual documentation in 

the form of image captures, because attempts to generate droplets with these particular fluid 

compositions are largely unsuccessful.  All relevant information from each fluid system, however, is 

considered in the analysis of the following sections. 

 

2.3.3. Effect of Waveform Timing on Droplet Stability 

The waveform geometry, based on timing and voltage, plays an important role in droplet 

formation.  It defines an actuation process for the piezo that creates pressure pulses in the binder fluid for 

droplet generation.  The typical waveform examined in this study consists of three stages: a ramp up 

stage (a), a steady state (b), and a ramp down stage (c).  Each section describes voltage change over time, 

and as a whole, the waveform shape appears trapezoidal in nature (refer to Table 2-D for an illustration).  

In general terms, according to Hiro, the sustained timing segment (b) is believed to be most important for 

high surface tension liquids.  Though many different timings and voltages can be used, this basic 

actuation process is chosen for its simplicity and similarity to the default Siemens waveform and is 

sufficient for defining stable droplet generation.  Because of the large number of possibilities for 

waveform definition, continued examination of various timings may yield further improvements in 

droplet stability and performance. 

From experiments with colloidal silica, several conclusions can be made about the effect of long 

and short timing segments.  As seen in comparisons of waveform timing in Table 2-D, the first segment 

(a) appears to have little affect on droplet speed; this behavior is observed for waveform timings of CS in 

which only the first segment is changed (1 µs: 8 µs: 1 µs, 2 µs: 8 µs: 1 µs, 4 µs: 8 µs: 1 µs, and 8 µs: 8 µs: 1 

µs).  The latter two timing segments have a much greater effect on droplet speed.  By comparing the two 

pictures for segment (b), it can be concluded that the longer the middle segment, the greater the droplet 

speed as indicated by the presence of two drops for the shorter (b) segment on the same scale.  When 

reversing the timing between the two latter segments for CS (4 µs: 8 µs: 1 µs versus 4 µs: 1 µs: 8 µs), by 

increasing (b) and decreasing (c), the “transition” voltage, or voltage at which a single droplet forms 
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satellites, decreases (104 Volts versus 121 Volts), and the droplet speed increases (1.5 m/s versus 1.25 

m/s).  It should be noted that despite the differences in these variables, both waveforms have produced 

stable droplets for extended periods of time. 

While a lack of data prevents conclusive analysis for the water-based PAA binder, the general 

trends presented above should still apply.  Of course, further tests of the PAA system are necessary to 

verify these trends.  As an initial effort into droplet generation with the Siemens DOD printhead, the 

value and effect of each parameter, such as the timing segment, is unfortunately not consistently 

accounted for.  Many tests are performed with different waveform timings; the ability to compare 

differences, based on changes in only one segment, is not available with currently compiled data.  While 

this prevents extensive analysis of individual timing segments for the PAA binder, the efforts made at the 

time did not consider this objective.  Instead, the determination of a stable overall waveform is desired, 

and this goal motivates the experiments and tests performed.  The determination of a stable printing 

condition for the water-based 2.4 v/o PAA binder is discussed in Section 2.3.8. 

The Siemens printhead can be successfully actuated based on a certain total timing range.  This 

acceptable length of actuation times is determined in part by the design characteristics of the printhead.  

Given the maximum piezo ejection frequency specification of 2.9 kHz provided by Siemens, the longest 

possible waveform timing must fit within this boundary of 344 microseconds, which in terms of the scale 

of timings examined should not be a problem.  Though the absolute minimum is not clearly defined, 

based on experimental observations, a particular operational interval can be identified.  From the 

experiments conducted for all binder systems, the shortest functional timing length achieved is nine 

microseconds, while the maximum is 17 microseconds.  Many variables can influence the waveform 

interval, such as the individual timing segments and their corresponding voltage levels as well as the 

fluid system tested.  Therefore, the determination of a conclusive timing range for the Siemens PT-88S 

requires further study. 

In addition, a definite correlation exists between waveform timings, corresponding voltage 

changes (presented in the following section), and droplet velocity for each binder system.  Through 

numerous waveform experiments, particularly with colloidal silica, images captured on the DOS indicate 

that the droplet position varies at the same measured time from ejection (set by the LED strobe delay of 

the DOS) when the printhead is actuated with different waveform timings.  The exact measure of droplet 

speed variation is not currently known, but analysis of the present data and future tests on the DOS will 

yield valuable insights and quantification of this relation.  The effect of each timing segment, its 

associated length, and the number of segments used are all influential factors that warrant further 

examination.  This relationship is a potentially valuable area for more study as a means for adjusting or 

maximizing droplet exit velocity, which would aid in accurate binder placement. 
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Refer to Table 2-D in Section 2.3.8 to view a general summary of droplet formation parameters for 

the two major binder systems examined, the water-based 2.4 v/o PAA binder and colloidal silica. 

 

2.3.4. Effect of Voltage on Droplet Stability 

The effect of voltage on droplet stability is multifaceted.  The process of voltage actuation as 

defined in the waveform causes the Siemens piezoceramic to first contract at a constant rate, remain 

contracted for a period of time, and then expand back to its original state at another constant rate.  This 

cumulative motion causes fluid to pass through the enclose nozzle tube with the piezo expansion 

inducing droplet cutoff at the end.  In one respect, the relationship between stability and voltage can be 

easily defined.  A high maximum voltage leads to multiple droplet streams or satellites and faster droplet 

speeds.  In addition, the greater the applied maximum voltage, the greater the volume of binder ejected, 

whether as a single stream or as multiple streams.  The transition voltage defines the level at which a 

single stable droplet breaks into multiple drops.  Although it is possible that satellite drop formation 

could occur below the transition voltage at a level that induces sufficient pressure instability in the 

nozzle, no evidence of this phenomenon is recorded.  On the other hand, low voltages (below the 

transition voltage) generally create a weak, wavering droplet stream that eventually stops completely as 

the piezo actuation becomes ineffective. 

It has been observed that every waveform for every unique binder chemistry appears to have its 

own voltage transition point whereby a stable single droplet will begin forming satellites.  This large 

variation prevents extensive generalizations about the effect of voltage on droplet stability.  It is believed 

that if droplet formation can be initiated with a particular waveform, then a transition voltage exists at 

which a single droplet state occurs, though the degree of stability and other performance measures, such 

as speed, may not be acceptable.  Perhaps with further testing, a significantly large sample of different 

binder systems can establish more broadly applicable and quantitative theories.  Several conclusions are 

made, however, based on observations of the two major binder systems tested. 

Based on initial analysis of both the 2.4 v/o PAA + water and colloidal silica binder systems, an 

unexpected correlation is developed between maximum voltage and droplet frequency.  Given a 

particular waveform, such as the 2 µs : 6 µs: 1 µs for the PAA and colloidal silica binders as well as the 

colloidal silica 2 µs : 8 µs: 1 µs to a lesser extent, as the frequency increases, the maximum voltage that 

yields a stable, single droplet stream decreases.  For the 2.4 v/o PAA binder, this relationship is most 

clearly demonstrated.  For a frequencies of 300 Hz and 200 Hz, a maximum voltage of 150 Volts is 

acceptable.  However, at 400 Hz the voltage must be reduced to 140 Volts, and at 500 Hz the voltage must 

be even lower at 135 Volts.  Intuitively, these two parameters should not be interdependent.  One possible 

reason for this observation may be the use of only one function generator to perform these waveform 

tests.  By only using one, the waveform resolution decreases as frequency decreases because of a data 
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point limitation in the equipment, and this change in the waveform geometry is likely to lead to a 

different piezo actuation behavior than expected (refer to Section 2.3.7 for further details).  One other 

potential explanation may involve the piezoceramic’s contraction and expansion capability.  Depending 

upon the rate at which the piezo can change shape, its delayed response to a large voltage increase or 

decrease as dictated by the waveform geometry may introduce actuation errors since the piezo is unable 

to react in time and stabilize at higher frequencies. 

The other aspect of voltage influence on droplet stability relates to the rate of voltage change.  

This effect is defined by both waveform voltage and waveform timing.  As mentioned in the previous 

section, testing of actuation timings and voltages on the DOS demonstrate that the associated geometry 

affects droplet velocity.  Waveform timing and the corresponding voltage levels for each segment both 

contribute significantly to stable droplet development, so the recommended study of droplet velocity 

must logically take both of these variables into account.  In some sense, it is possible to isolate these two 

waveform variables as attempted in this discussion, but the combined effect must also be considered.  

Presumably, since large voltage changes lead to large piezoelectric movements, and the corresponding 

actuation energy is then transferred to the fluid, increasing voltage should lead to a faster droplet speeds, 

but further qualification and quantification is recommended.  Based on current data, higher maximum 

voltages with the same waveform timings are shown to produce stronger, progressively faster droplet 

streams, although the voltage level must be restrained at some point to prevent satellite droplets from 

forming. 

The research conducted only examined positive voltage actuation.  The possibility of negative 

voltage waveform segments is recommended as an area for future study and may yield more effective 

droplet stabilization either as an inverse trapezoidal waveform or as a segment of a positive-negative 

voltage variation.  Hiro has devised a functional waveform for his prototype printhead that starts with a 

negative voltage, piezo expansion step that then progresses to a positive voltage state before returning to 

zero.  This waveform is demonstrated to be stable for the a wide range of frequencies (between 100 Hz 

and 1000 Hz) using a water-based 3.5 v/o PAA binder system. 

Refer to Table 2-D in Section 2.3.8 to view a general summary of droplet formation parameters for 

the two major binder systems examined, the water-based 2.4 v/o PAA binder and colloidal silica. 

 

2.3.5. Effect of Frequency on Droplet Stability 

In general, frequency should not play a significant role in droplet stability but should instead 

only control droplet spacing in flight and on powderbed deposition.  The objective of establishing a stable 

droplet formation condition involves finding a voltage-timing waveform that preserves a single droplet 

stream over a wide range of frequencies.  Frequency affects droplet speed, however, to a small extent.  

When the piezo contracts or expands, a pressure pulse is generated through the fluid.  It perpetuates 
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through the nozzle tube that carries the fluid out to the orifice and is reflected at the opposite end, 

sending back a smaller amplitude wave.  If the two colliding pressure waves are in phase, then the 

resulting wave has greater amplitude and more energy is imparted on the fluid than just the piezo 

actuation, leading to a droplet with higher than expected exit velocity.  The converse is also true: pressure 

waves with inverse phases act to reduce the droplet velocity.  This phenomenon is observed with the 

DOS for the water-based 2.4 v/o PAA binder when tested using the stable 4 µs: 8 µs: 1 µs: 97 V waveform 

geometry at 952, 970, and 1,011 Hz.  At other frequencies, which are currently unpredictable and not 

necessarily reproducible, a stable single droplet can suddenly form satellites.  This phenomenon is 

commonly observed among all binder systems when a stable droplet at one frequency is subjected to 

frequency changes.  Through analysis of current data, it appears that droplet instability as a function of 

frequency is more likely to occur in higher ranges (above 400 Hz), in particular with the waveform 

timings and voltages tested.  The limited scope of data and the extensive interdependencies between 

waveform variables and frequency suggest further study is needed to validate and quantify this 

frequency generalization. 

Normally, the frequency is a setting that is determined in relation to the vector printing speed to 

satisfy a desired binder droplet spacing for a powderbed.  Because the vectoring equipment possesses a 

limited speed capability, a droplet spacing designation acts as an external constraint to limit the range of 

possible frequencies available for achieving droplet stability.  Due to the interdependent nature of the 

waveform timing, voltage, and frequency, a suitable set of droplet formation parameters within a 

restricted frequency range can most likely be defined.  Under stable printing conditions, frequency does 

not affect droplet velocity.  This variable independence is expected and verified through extensive DOS 

testing using functional single-drop printing parameters.  To deal with droplet instabilities that arise 

within the frequency spectrum, such as satellite droplets, multiple constant or erratic streams, or a 

crooked, yet stable, droplet jet, a multitude of approaches can be taken. 

If a frequency setting results in satellite droplet formation, several options are available to attain a 

single droplet state.  Given an effective waveform geometry, it is believed that residual droplet satellites 

that occur at a desired frequency can be eliminated by adjusting the maximum voltage level.  One 

potential cause of multiple droplets is the pressure fluctuation within the printhead that occurs at the set 

frequency.  When holding the waveform constant, the frequencies at which multiple droplets form are 

seen to occur at various intervals between stable droplet states.  Thus, another method to eliminate 

extraneous droplets is to change the frequency.  The resulting change in droplet spacing for the printed 

part can be compensated for by altering the translation speed of the vectoring component.  It should be 

noted that when instabilities emerge at a particular frequency the droplet behavior exhibits a hysteresis 

effect whereby reverting the frequency back to an originally stable range only a few hertz away will not 

necessarily eliminate the disturbance.  Continued frequency increase or decrease is necessary to return 
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the droplet condition back to a single state.  For example with colloidal silica, experiments demonstrate 

that when a stable 4 µs: 8 µs: 1 µs: 118 V waveform at 500 Hz is reduced in frequency to 100 Hz, a satellite 

drop forms.  Though a single droplet is present down to this level when the instability develops, the 

frequency must be raised back to 300 Hz before the multiple droplets recombine.  Though it is possible 

that the satellite droplet would eventually dissipate by changing the frequency up only slightly—to 

perhaps 101 or 102 Hz, which were originally stable—the amount of time this would require is unknown 

and reserved for future study.  By changing the frequency from 100 Hz up to 300 Hz, the pressure 

fluctuations in the printhead are gradually counteracted, and the satellite droplets eventually disappear.  

The rate of frequency change, however, also plays a role in maintaining or establishing droplet stability.  

Rapid changes in frequency are more likely to create or maintain existing droplet disturbances, so 

relatively slow frequency modulation is recommended.  The effect of frequency rate of change and the 

degree to which it affects droplet stability are not completely understood, but a comprehensive 

understanding would require further study. 

Certain frequencies cause internal printhead pressure fluctuations that interfere with stable 

droplet formation.  These frequencies result in streams that appear crooked initially but straighten upon 

further frequency change.  This behavior may also be due to orifice plate corrosion, though this 

contribution is not easily verified from collected data due to a lack of awareness regarding its potential 

severity until later in the droplet generation evaluation process. 

Overall, the most important consideration for frequency is verifying that the desired frequency at 

which vector printing will take place does not produce droplet instability.  This criteria is evaluated and 

confirmed for droplet formation conditions used in the following vector DOD printing tests discussed in 

Section 2.4.  For the most part, frequency does not play as critical a role in droplet generation as the 

waveform timing and voltage. 

Refer to Table 2-D in Section 2.3.8 to view a general summary of droplet formation parameters for 

the two major binder systems examined, the water-based 2.4 v/o PAA binder and colloidal silica. 

 

2.3.6. Other Effects on Droplet Stability 

Several other effects on droplet stability are observed that do not fit into the above categories.  

The top of the binder reservoir should always remain below the orifice level to maintain a negative 

pressure in the printhead.  This condition is the normal pressure state within the piezo tube of the 

Siemens printhead as well as in Hiro’s similar DOD printhead design.  The more positive the pressure 

within the piezo tube, the slower the droplet ejection speed because of the tendency towards orifice 

surface wetting.  The excess binder on the orifice dissipates the droplet energy as it emerges from the 

printhead and thus reduces its speed.  As the binder supply is depleted and the reservoir level decreases, 

the more negative pressure and suction into the orifice increases.  This prevents wetting of the orifice 
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surface and thus allows the ejected droplet to travel faster without dissipating energy at the printhead 

outlet.  If the reservoir level progresses too far below the orifice, the negative pressure may eventually 

cause air to be sucked into the piezo tube, which also causes problems with droplet generation.  The effect 

of reservoir level on droplet speed is clearly demonstrated with Hiro’s DOD printhead design.  Under 

stable droplet formation conditions, using a 4 µs: 1 µs: 8 µs: 160 V waveform geometry at 600 Hz, the 

addition of binder to the printhead reservoir reduces the speed of the droplet by 0.52 m/s, a significant 

13% reduction from the initial speed of 3.92 m/s before binder is added.  The same behavior can be 

observed without increasing the reservoir volume, but by only changing its height relative to the orifice.  

Ideally, the height differential between the reservoir and orifice should remain constant so that pressure 

changes from binder depletion do not affect droplet generation, although this factor is not closely 

monitored for every experiment and may unknowingly contribute to observed phenomena.  The 

reservoir level is verified as a diagnostic step when severe printing problems, such as a failure to start 

with a known functional waveform, occur.   

Printhead droplet generation is fairly sensitive to disturbances and vibrations in the fluid supply 

line and reservoir, as seen in tests on the DOS and when doing vector printing with Bridgeport.  Given a 

stable droplet condition, disturbances, such as the vibration of the milling machine spindle or intentional 

vibrations of the fluid line, are observed to cause the droplet state to become erratic, although the 

circumstances under which this instability occurs are not fully understood; the probability of a return to 

steady state is also difficult to predict.  To alleviate this potential effect, it is recommended that (1) the 

milling machine motor vibrations be minimized by reducing its rotational speed and (2) the connections 

between printhead and reservoir remain isolated and stationary. 

With a progressive decrease in ejection speed over time, the presence of cross-winds can greatly 

affect proper droplet placement on the powderbed.  In some cases, cleaning the orifice plate with a 

compatible solvent or flushing the piezo tubes with binder or solvent may correct errant droplet 

behavior.  This process eliminates any buildup of binder or contaminant along the fluid path that can 

affect droplet formation.  Orifice plate cleaning in itself introduces another impedance, although usually 

temporary, to stable droplet formation.  A certain amount of time must elapse for residual solvent to 

evaporate from the orifice plate surface.  During this time, lingering solvent around the orifice may 

interfere with the properties of the ejected drop, notably its speed.  This behavior is clearly illustrated by 

the observed gradual shift in droplet position at a set strobe delay on the DOS after the printhead has 

been cleaned. 

The issue of printing time may also play a role in droplet stability, but the reasons for this 

dependency require further examination.  Over the course of studying droplet formation, observations of 

droplet stability over extended periods—on the scale of hours—indicate  that the speed of the droplet 

tends to decrease.  The exact cause of this variation is uncertain, though many possibilities exist.  One or a 
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combination of (1) change in the reservoir level relative to the printhead, (2) gradual magnification of 

internal printhead disturbances from the actuation process, or (3) corrosion of the orifice plate (as 

discussed in Section 2.3.2) could contribute to this phenomenon. 

The implementation of drop-on-demand controls through use of the micro switch (discussed in 

Section 2.2.1.3) presents another source of potential droplet instability.  With the current understanding of  

the Siemens printhead functionality with various binder systems, a consistent, steady droplet stream is 

less likely to be preserved upon stopping and restarting of the printhead.  With the large number of other 

variables influencing the droplet formation process, maintaining a state of equilibrium already requires 

considerable effort.  Given a functional waveform, however, the likelihood of an immediate single-drop 

state starting or resuming is increased, though not guaranteed as evidenced by many DOS tests.  If the 

droplet generation process is allowed time to stabilize, then with previously functional conditions, the 

return to a steady, stable droplet state is highly likely.  Another concern is that the probability of 

inconsistent droplet behavior increases as the time between stopping and resuming the DOD printhead 

increases, indicating that binder volatility plays a role in DOD control.  From observations of the binder 

systems tested, a reproducible and stable restart is greater for intervals of less than ten seconds.  The 

drying of binder in the nozzle or on the orifice plate surface that affects the droplet formation path may 

explain this time dependence.  The amount of time necessary to reach steady state after restart is 

currently unpredictable but ranges from several seconds to around a minute based on experimental 

observations.  To understand and quantify this stabilization process will probably involve the correlation 

of many factors, including those previously discussed, and thus will require further study. 

 

2.3.7. Effect of Frequency on Waveform Resolution 

Initial tests of droplet formation utilize only one HP 33120A Arbitrary Waveform Generator 

(detailed in Section 2.2.2), whose output sends the piezo-actuating waveform signal at a particular 

frequency.  Based on the prescribed LabView program settings, only 10,000 points are available per cycle 

for defining a waveform.  Each data point represents an equal increment of time.  This limitation affects 

the resolution, or the number of points, available to represent a particular waveform geometry, whose 

voltage change typically occurs on a microsecond scale.  Using the trapezoidal waveform shape described 

in Section 2.3.3, the transitions from zero Volts to the steady state maximum voltage and back are ideally 

smooth and linear.  For tests of droplet stability at low frequencies, however, the resolution of the 

expected waveform is severely degraded due to the lack of data points in the function generator to define 

a particular time period.  For example, at 100 Hz with 10,000 data points to represent this interval, the 

amount of time per data point (tdata point) is calculated to be 
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So taking the inverse yields 
 

µs 1t point data =  

 

which is fairly coarse considering the time scale of the voltage waveform.  If the voltage goes from zero to 

100 Volts in 5 microseconds, then each data point (Dx) would remain constant for 1 microsecond at 20 

Volt increments (i.e. D0 = (0 Volts, 0 µs), D1 = (20 Volts, 1 µs), D2 = (40 Volts, 2 µs),… etc.).  Therefore, each 

data point represents a relatively long period of time at a particular set voltage.  By generalizing the 

above equation, it is obvious that lower frequencies increase tdata point, and the inverse is true for higher 

frequencies decrease tdata point.  As a result, the desired linear increase in voltage becomes more segmented 

and exhibits a stair step effect.  This digitization phenomenon increases as the frequency decreases using 

the single function generator setup.  With each time step increase in voltage, a certain amount of time is 

required to reach this next voltage level.  The rate at which this voltage change can occur is limited by 

equipment performance so the larger the necessary voltage increase from one time step to the next, the 

less precise the voltage adjustment and the greater the distortion of the intended waveform. 

For approximately the first 40% of the droplet generation tests, this waveform resolution 

degradation is present.  Therefore, increasing waveform irregularities are likely contributors to problems 

observed with droplet formation during these experiments. 

This increasing waveform distortion with decreasing frequency problem is solved with the 

addition of a second function generator.  By using one function generator, specifically the HP 33120A, to 

set the waveform function, the resolution remains independent of the droplet frequency.  To obtain a 

high-resolution waveform, the frequency chosen for waveform definition is 50 kHz, which provides tdata 

point = 0.002 µs.  As long as the droplet generation setup includes two function generators, one for setting 

the droplet frequency and the other for waveform definition, the effect of low frequency waveform 

corruption on droplet stability is eliminated. 

The process for setting up and connecting these two function generators for waveform-frequency 

independence is as follows.  The first function generator (FG1), assuming it is an HP 33120A, is used to set 

droplet frequency, while the second function generator (FG2), which must be an HP 33120A, holds the 

arbitrary waveform defined at 50 kHz resolution.  The FG1 is set to Burst Mode with internal triggering at 

a user-specified Burst Rate (initially at 500 Hz) and 1 cycle Burst Count.  Using the default 50 Ω Output 

source, FG1 sends a trigger waveform signal, a standard TTL square wave with 50% duty cycle, that is 

split between the External Trigger connector on FG2, the LED for visualization, and an oscilloscope for 

frequency and voltage verification.  The FG2 is programmed with the waveform and sends the signal at 

the frequency specified by the External Trigger, set by using Burst Mode with a 1 cycle Burst Count, and 
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an external trigger source mode.  The Single setting activates the External Trigger connector and uses the 

rising edge of the TTL pulse from FG1 to send the waveform.  The FG2 output source is set for high 

impedance and sends the data to the amplifier.  The final scaled waveform geometry is subsequently 

processed by the Siemens printhead. 

 

2.3.8. Summary of Droplet Formation Parameters 

In studying the process of drop-on-demand printhead droplet generation, a number of important 

parameters are examined.  To observe droplet formation and evaluate its associated variables, 

experiments are conducted on the Nozzle Test Station.  The effects of binder chemistry, waveform timing, 

voltage, frequency, and other general environmental factors on droplet stability are measured, observed, 

and analyzed.  The problem of waveform resolution as a function of frequency in the single function 

generator setup may have also contributed to certain instabilities; this low-frequency waveform error, 

however, is addressed with the addition of a second function generator for separate droplet frequency 

control.  The complex relationships between all of these factors make analysis of behaviors difficult to 

attribute to a specific cause.  Many possibilities for further study are suggested in the course of discussing 

the preceding sections.  An attempt to summarize the relevant concepts and conclusions follows. 

In terms of binder chemistry, the fluid properties that most affect droplet formation are surface 

tension and viscosity.  The general influence of surface tension dictates that if high, droplets do not 

separate easily from the fluid column in the nozzle channel, and if low, orifice surface wetting becomes 

likely.  With high viscosity binder, pressure fluctuations from piezo actuation disappear quickly, 

hindering droplet formation, while a low viscosity fluid tends to induce split streams and satellite 

droplets.  The difficulty in DOD printing of the water-based 10 v/o PAA binder with the Siemens 

standard waveform indicates that the relatively high surface tension most likely hinders droplet 

production under these conditions.  By reducing the surface tension to more closely match Siemens Ink 

(Type 2), it is assumed that droplet generation with the standard Siemens waveform will prove more 

successful.  The surface tension is reduced to the same level as the ink by adding IPA in place of water; 

this substitution also raises the viscosity, however.  Attempts to generate droplets with this new 

alcohol/water-based PAA binder under the same conditions previously attempted prove unsuccessful, 

which may be attributed to the increased viscosity relative to ink or the contribution of other droplet 

formation parameters not accounted for.  The viability of droplet generation with this PAA binder may 

still exist if changes in waveform parameters are studied.  This approach of examining printhead 

actuation parameters is pursued as an alternative to binder property modification.  Another example of 

the effect of viscosity and surface tension on droplet stability is a comparison between alcohol- and 

water-based 2.4 v/o PAA binder using the same printhead waveform geometry.  Although the alcohol-

based binder exhibits some signs of eventual stability, irregularities in transition voltage and extremely 
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low droplet speed indicate that given the similarities in other printing parameters, the large difference in 

surface tension is likely a contributing factor to this stability reduction.  One concern related to binder 

chemistry is the observed corrosion of the Siemens PT-88S orifice plate when using Polyacrylic Acid-

based binders.  The amount of corrosion for several nozzles is measured over known periods of operation 

with no conclusive correlation.  An apparent inverse relationship between operation time and orifice 

diameter corrosion for two of the nozzles indicates that other factors, such as waveform and frequency, 

are significant in determining corrosion rate.  Further study of this phenomenon is recommended so that 

the degree of corrosion can be more reliably predicted since orifice diameter changes can lead to droplet 

instability. 

Waveform timing and voltage contribute to defining the overall piezo-actuation process.  The 

standard waveform geometry examined is trapezoidal in nature with three stages (refer to Table 2-D for 

an illustration).  In terms of waveform timing, it is believed that the first timing segment is not influential 

in determining droplet velocity.  The second segment (b), however, appears to increase droplet speed 

with increasing time.  If the values of segments (b) and (c) are interchanged so that (b) increases and (c) 

decreases, it has been observed that the transition voltage decreases and droplet speed increases.  In 

terms of overall timing intervals tested (a + b + c), droplet formation, though not always stable, is 

observed to occur between 9 and 17 microseconds of total time.  Times tested above and below appear to 

be non-functional, although much more work on this study of waveform timing is recommended.  The 

influence of waveform timing on droplet speed is also an important correlation that requires further 

analysis.  Waveform voltage, if examined by itself, determines the degree of actuation for the Siemens 

piezoelectric transducer.  With the trapezoidal voltage variation, higher maximum voltage settings lead 

to multiple droplet streams, higher speed, and higher volumes.  The transition voltage defines the level at 

which a stable single droplet will break into satellites.  This value varies depending on waveform 

geometry and binder chemistry, so no conclusive generalizations are possible.  One observation of 

transition voltage in CS and PAA systems indicate that at higher frequencies, the transition voltage 

decreases, even though a relationship between these two variables is not intuitively expected.  This 

behavior may be dependent on changes in waveform resolution, which for these observations, is affected 

by low frequencies (refer to Section 2.3.7 for details), or on the ability of the piezo to function accurately at 

different frequencies.  The waveform voltage combined with waveform timing determine piezo actuation 

rates and influence droplet speed.  Further study is required to correlate this relationship.  In addition, 

since this study only examined positive voltage variation, the possibility of negative voltage in waveform 

definition should also be explored as another means of achieving stable droplet generation conditions. 

Ideally, droplet frequency should not affect formation stability.  The frequency does affect 

droplet speed to a small extent.  Depending on the phase of actuated and reflected pressure waves in the 

nozzle channel, greater or less energy can be imparted to the fluid based on the amplification or 
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interference of these pulses, respectively.  Observations suggest that droplet instabilities caused by 

frequency characteristics tend to occur in higher ranges (above 400 Hz), though further study is needed.  

Droplet stabilities at certain frequencies can be compensated for by either a small change in frequency or 

a reduction in voltage.  The rate of frequency change is also a factor in maintaining droplet stability.  Slow 

frequency modulation is recommended, although the exact effect is not clearly understood.  Generally, 

the primary concern for a droplet formation setting is ensuring the frequency chosen for vector DOD 

printing does not exhibit the instability effects previously observed. 

The other major effects on droplet stability involve reservoir level, disturbances and vibrations, 

orifice cleaning, duration of operation, and micro switch start-stop timing.  To maintain the expected 

negative pressure within the Siemens piezo tube, the reservoir level must be kept below the level of the 

orifice plate.  If level is too low, then the high negative pressure can also interfere with droplet stability.  

Ideally, the relative height difference should remain constant for consistent droplet generation.  

Disturbances and random vibrations to the reservoir and supply line can also affect droplet stability.  

Orifice plate cleaning can affect droplet formation by leaving residual solvent that must evaporate from 

the surface.  Printhead operation time also appears to contribute to stability issues, though the exact cause 

is unknown.  Possible time-dependent factors include changes in reservoir level, internal printhead 

disturbances, and orifice plate corrosion.  The DOD micro switch start-stop control function also affects 

droplet stability by introducing sudden interruptions to an otherwise complex equilibrium condition that 

depends upon many variables.  The amount of time necessary to resume steady state operation depends 

partly upon the duration prior to resumption of printing and varies from seconds up to a minute, but this 

stability transition is not currently predictable or guaranteed.  It is observed that intervals of less than ten 

seconds between printhead restarts provide greater reliability. 

By adjusting each of the above parameters, a stable droplet printing condition can be achieved.  

Because of the complex interactions of these variables and the remaining questions to be answered, it is 

difficult at this time to define an effective droplet formation strategy.  Given a particular binder 

composition, adjusting the remaining variables may yield many possible stable droplet formation 

conditions.  In terms of waveform timing, it appears that a longer holding period at a level voltage 

relative to the ramping stages yields better results.  The ramping up and down of the voltage should also 

be relatively quick, although the ramping up phase appears to have little effect on droplet velocity.  

Beyond these generalizations, many possible timings exist.  If a particular waveform cycle is unstable at 

one particular voltage or frequency, changing either or both of these parameters within the performance 

parameters of the printhead may stabilize the droplet stream.  The volume and speed of the droplet 

under a given set of formation conditions will most likely vary when using another possible stable 

waveform timing, voltage, and frequency setting.  Given the many possibilities for generating a stable 

droplet, these additional criteria can further serve as limiting conditions for determining an appropriate 
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waveform geometry and frequency.  The exact relationship between these resulting droplet 

characteristics and the mechanical actuation process, however, is currently unknown and is one possible 

area for further study.   

The fluid properties of viscosity and surface tension are important contributing factors that may 

also deserve further attention.  For the majority of this study, the effort is focused on optimizing 

printhead operational parameters with no adjustments to binder chemistry.  In one sense, it would be 

ideal to establish stable DOD printhead parameters for any desired fluid composition.  By determining 

fluid properties that facilitate stable droplet generation, however, the variability of other parameters may 

be reduced and lead to faster development of desired operating conditions.  The dependencies between 

fluid properties, the particular DOD printhead, and the piezo-actuation variables, however, are likely to 

complicate such an investigation. 

Note that Table 2-D: Droplet Formation Parameters & Results is separated over the following three 

pages for reference. 
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Table 2-D: 
DROPLET FORMATION PARAMETERS & RESULTS 
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Table 2-D (Cont.): 
DROPLET FORMATION PARAMETERS & RESULTS 
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Table 2-D (Cont.): 
DROPLET FORMATION PARAMETERS & RESULTS 

   

W
a

v
e

fo
rm

 T
im

in
g

H
ig

h
H

ig
h

S
ta

rt
u

p
 F

re
q

u
e

n
c

y

6
5

0
 H

z
 @

 9
7

 V
o

lt
s

1
5

0
0

 L
E

D
 D

e
la

y

N
o

z
z
le

 4

1
0

0
0

 H
z
 @

 1
0

4
 V

o
lt
s

2
0

0
 L

E
D

 D
e

la
y

N
o

z
z
le

 4

5
0

0
 H

z
 @

 1
5

0
 V

o
lt
s

5
0

0
 L

E
D

 D
e

la
y

N
o

z
z
le

 4

M
a

x
im

u
m

 S
ta

b
le

 V
o

lt
a

g
e

4
 µ

s
 :

 8
 µ

s
 :

 1
 µ

s
4

 µ
s
 :

 8
 µ

s
 :

 1
 µ

s

T
y
p

ic
a

lly
 9

7
 V

o
lt
s

T
y
p

ic
a

lly
 1

0
0

 t
o

 1
0

4
 V

o
lt
s

L
o

w

7
5

 H
z
 @

 9
7

 V
o

lt
s

5
0

0
 L

E
D

 D
e

la
y

N
o

z
z
le

 3

F
re

q
u

e
n

c
y
 R

a
n

g
e

S
ta

rt
u

p
 C

o
n

d
it

io
n

5
0

0
 H

z
 @

 1
5

0
 V

o
lt
s

5
0

0
 L

E
D

 D
e

la
y

N
o

z
z
le

 4

L
o

w

1
5

 H
z
 @

 1
0

4
 V

o
lt
s

5
0

0
0

 L
E

D
 D

e
la

y

N
o

z
z
le

 4

C
 U

 R
 R

 E
 N

 T
  

  
O

 P
 T

 I
 M

 A
 L

  
  

C
 O

 N
 D

 I
 T

 I
 O

 N
 S

R
e

la
ti

v
e

 t
o

W
a

te
r-

b
a

s
e

d
 2

.4
 v

/o
 P

A
A

*

R
e

la
ti

v
e

 t
o

C
o

ll
o

id
a

l 
S

il
ic

a
*

W
a

te
r-

b
a

s
e

d
 2

.4
 v

/o
 P

o
ly

a
c

ry
li

c
 A

c
id

 B
in

d
e

r

[ 
2

.4
 v

/o
 P

A
A

 +
 0

.2
6

 v
/o

 G
ly

c
e

ro
l 

+
 9

7
.3

 v
/o

 W
a

te
r 

]

C
o

ll
o

id
a

l 
S

il
ic

a
 B

in
d

e
r

[ 
B

in
d

e
r 

"
B

"
 F

o
rm

u
la

ti
o

n
 ]

n
/a

S
lig

h
tl
y
 L

o
w

e
r

(0
.7

 c
P

 l
e

s
s
)

n
/a

S
ig

n
if
ic

a
n

tl
y
 H

ig
h

e
r

(2
8

.7
 d

y
n

e
s
/c

m
 m

o
re

)
n

/a

S
lig

h
tl
y
 H

ig
h

e
r

(0
.7

 c
P

 m
o

re
)

* 
R

e
fe

r 
to

 T
a
b
le

 2
-C

 f
o
r 

F
lu

id
 P

ro
p
e
rt

y
 V

a
lu

e
s

V
is

c
o

s
it

y
S

u
rf

a
c

e
 T

e
n

s
io

n
V

is
c

o
s

it
y

S
u

rf
a

c
e

 T
e

n
s

io
n

S
ig

n
if
ic

a
n

tl
y
 L

o
w

e
r

(2
8

.7
 d

y
n

e
s
/c

m
 l
e

s
s
)

n
/a

W
a
v
e

fo
rm

 G
e

o
m

e
tr

y
 

N
o

ta
ti

o
n

a
 :

 b
 :

 c
 :

 h

V
o
lt
a
g
e
 (

V
)

T
im

e
 (

µ
s
)

a
b

c

h



C H A P T E R  2:  Vector Drop-On-Demand Printing of Tungsten Carbide-Cobalt Tooling Inserts 

83 

Note that the pictures shown in Table 2-D depict the printhead orifice plate surface on the left 

with the droplet traveling to the right.  In reality, the printhead is oriented on top with the droplets 

moving downward.  In addition, the brightness and contrast of each picture are adjusted for clarity.  

Though the table above provides a characterization of droplet formation behavior as influenced by 

particular variables, the other factors not depicted above but discussed in the preceding sections also 

contribute significantly to droplet stability. 

Based on the results of extensive experimentation with both the water-based 2.4 v/o PAA and 

colloidal silica systems, an “optimal” set of stable droplet formation parameters for each binder is 

defined.  These droplet generation conditions are not guaranteed to be completely reliable for either 

system, as evidenced by the occasional instabilities observed during testing, but for the most part, many 

experiments are successfully conducted using these settings.  In comparing the results of these 

experiments, the choices made for these two systems are the most effective and most scrutinized.  The 

determination of efficacy for droplet generation is defined as a repeatable set of conditions that permit 

continual DOD printhead output without complete failure through the course of each test and that 

maintain droplet uniformity as verified by visual inspection beforehand and afterwards.  Some speed 

variation and occasional instability are expected.  The parameter values listed at the bottom of Table 2-D 

for droplet formation meet these criteria.  Coincidentally, the most functional waveform timing 

developed for both the water-based 2.4 v/o PAA binder and colloidal silica are identical.  In addition, the 

droplet diameter (Dx) based on mass deposited over time are also similar, with DPAA = 44.0 µm and DCS = 

44.6 µm.  The calculation of droplet radius (0.5· DCS) for colloidal silica is performed as follows: 
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The droplet radius calculations for the water-based 2.4 v/o PAA binder are performed similarly.  These 

printing parameters are also observed to be nozzle independent as seen with the PAA binder system.  

Based on DOS tests, four different nozzles (numbers 3, 4, 5, and 6) produce the same initially stable 

behavior—before corrosion affects the orifice diameter—when these settings are applied. 

Two main differences exist in the stable droplet conditions of these two binder systems: droplet 

speed and corrosion concerns.  Using the estimation based on the change in droplet position over a 

known time delay (as seen on the DOS), for colloidal silica, the droplet speed is calculated to be 1.5 m/s, 

while for water-based 2.4 v/o PAA binder, droplet speed is calculated to be much faster at 3.6 m/s.  In 

terms of corrosion, the Siemens orifice plate composition is particularly sensitive to the effects of the PAA 

binder chemistry and requires vigilant inspection, while the reactive nature of colloidal silica is not as 

evident, based on current knowledge, though further evaluation may be needed. 

Note that the high and low frequency capabilities stated for these optimal waveforms are 

observed to produce stable droplets for only a short duration (on the order of minutes) and therefore 

require extended periods of testing to ensure reliable long-term operation.  Due to the complex, and 
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sometimes seemingly fickle, nature of drop-on-demand printhead droplet formation for various fluid 

systems, additional research into this process and its associated elements is recommended and will likely 

yield greater optimizations or a different, more effective set of printing conditions.  Nevertheless, the 

currently functional DOD printing conditions outlined above are utilized in the following vector printing 

experiments of water-based 2.4 v/o PAA binder into alumina powderbeds and produce a valuable data 

set for analysis. 

The primary objective of this investigation is to determine a set of stable printing conditions that 

allow for binder-based vector DOD printing.  In addition, a greater understanding of process variables 

for DOD droplet generation is obtained, although many issues exist for further exploration.  Ultimately, 

with advances in the slurry-binder interactions of the WC-Co, this 3DP production process can be 

adapted to WC-Co tooling inserts.  The general consensus states that an optimal waveform will produce a 

droplet 0.25 times the orifice diameter.  Based on the research reported above, this goal is still far from 

being realized.  Nevertheless, further progress into 3DP vector drop-on-demand development is pursued 

in the next section. 

 

2.4. VECTOR PRINTING TEST GEOMETRIES &  PRIMITIVES ONTO ALUMINA 

POWDERBEDS  

The next step in the vector DOD development process for Three Dimensional Printing involves 

combining the previous equipment implementations discussed in Section 2.2 with the stable DOD 

printing conditions for the Siemens PT-88S specified in Section 2.3.8.  Using this largely functional 

configuration, with the exclusion of the DOD control, two sets of experiments are conducted by DOD 

printing the 2.4 v/o PAA + 0.26 v/o glycerol + 97.3 v/o water binder solution into slurry-jetted alumina 

powderbeds.  An initial series of tests are performed using slipcast alumina powderbeds, primarily for 

analysis of DOD printing line quality, but apparent powderbed composition issues prevent successful 

extraction of binder-printed regions, thereby making meaningful analysis of results difficult.  In order to 

compose a representative powderbed substrate for binder printing, a standard 30 v/o alumina slurry is 

jetted on the Hood Machine, an established slurry 3DP production device, to produce two rastered 

powderbeds (discussed in Section 2.4.1).  The jetted samples are distributed on rectangular borous silicate 

pieces and separated for individual vector DOD printing tests.  The first set of experiments, presented in 

Section 2.4.3, use these as-jetted alumina powderbeds to produce two series of lines at different droplet 

spacings, a square with linear raster fill, and a tooling insert geometry with no center hole and 130° raster 

fill.  Several problems experienced through the course of completing and analyzing these binder-printed 

samples prompt another set of experiments to be done.  Issues with failed single line extractions and an 

incomplete tooling insert geometry are analyzed.  The major conclusion of the first set of experiments is 

that the slurry powderbed topography contributes significantly to final part quality—too much, in fact, to 
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clearly assess the product of vector DOD printing.  One of the major alterations to the vector DOD 

process, then, is to begin with sanded alumina powderbed top surfaces to create an ideal, smooth profile 

for binder printing.  In addition, a grid with support structure is designed to preserve individual lines for 

subsequent line width analysis.  The results from these experiments provide more effective insights into 

vector DOD printed edge quality and surface finish.  In addition, measurements of individual line widths 

indicate potential line resolution improvement versus standard slurry-based parts with conventional 

3DP.  The second set of experiments are discussed and analyzed in Section 2.4.4.  Finally, a comparison of 

these two sets of experiments is performed. 

The initial set of DOD printing tests using slipcast alumina powderbed substrates is not 

particularly effective.  The experiments are also conducted on the Droplet Observation Station to simplify 

vector functionality since only the evaluation of single lines is desired.  Though not an ideal model of a 

slurry-printed surface, slipcast beds are relatively simple and quick to produce and, if nominally 

effective, would prove much more efficient to use than constructing properly jetted powderbed surfaces.  

Refer to [8] for detailed information about both the slipcasting and the standard slurry-jetting process.  

Although the absorption and composition characteristics of slipcast powderbeds differ from conventional 

jetted powderbeds [31], an attempt to use this type of powderbed is made based on past success with 

binder droplet testing. 

The experiment seeks to observe line quality with four different droplet spacings: 5 µm/drop, 10 

µm/drop, 15 µm/drop, and 20 µm/drop.  The droplet spacings are determined by altering the droplet 

frequency while keeping the vector speed constant.  The water-based 2.4 v/o PAA binder is used with 

the Siemens printhead and the optimal droplet formation settings described in Section 2.3.8.  In order to 

provide a smooth horizontal layer height for printing, the top surface of each slipcast sample is sanded.  

The tests are performed successfully without droplet instability.  After the samples are cured for one hour 

at 150 °C in Argon (refer to [29] for details about the curing process), the following attempts at extraction 

fail.  The binder lines are visible on the treated powderbed surface, but the redispersion process is 

unsuccessful.  Potential problems may have resulted from the slurry slipcasting process.  Besides having 

a higher packing density, slipcast alumina powderbeds possess a lower concentration of Polyethylene 

Glycol, the chemical used for redispersion, than jetted powderbeds because the dissolved redispersant is 

more effectively removed from the slurry when poured onto a porous plaster substrate [31].  In addition, 

a discoloration in certain regions of several slipcast samples may indicate that contamination or 

decomposition of the slurry occurred.  Unfortunately, no significant data is obtained from these slipcast 

powderbed experiments.  These results do indicate, however, that a properly processed, slurry-jetted 

powderbed would be much more effective for binder-based vector DOD printing experiments.  Thus, a 

set of two powderbeds is produced using a standard 30 v/o alumina slurry and the Hood Machine. 
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Afterwards, the vector DOD printing setup, illustrated in Figure 2.1 and described in detail 

within Section 2.2, is used for further experimentation.  Two alterations are made from the original 

complement of assembled equipment.  One significant modification involves the substitution of the 

default Siemens PT-88S orifice plate with a gold-plated version in an attempt to prevent, or at least retard, 

corrosion from exposure to the PAA binder.  Fortunately, through the course of experimentation, no 

difference in droplet formation performance is observed.  The other adjustment is the removal of the 

Honeywell 1SM2 Micro Switch DOD control.  As discussed in Section 2.3.6, the complications and 

instabilities from stopping and starting the printhead outweigh the benefits of retaining drop-on-demand 

control; thus, preservation of stable droplet generation is simplified. 

Only single layers of vector-printed binder are produced for this initial study.  Though multiple 

layers for significant three-dimensional part production are the eventual goal, a single layer provides 

fundamental insight into the binder-powder interaction on an isolated level and also provides base 

measurements of layer thickness, line widths, and feature size for comparison with future experiments.  

With the advent of technology being developed by TDK, the possibility for multi-layer, DOD, vector-

printed parts is presented in the final chapter, Conclusions & Future Work. 

 

2.4.1. Alumina Slurry Processing and Powderbed Jetting 

Due to the problems with slipcast alumina powderbeds outlined in the previous section, two 

representative 3DP slurry-based powderbeds are produced using the conventional, raster slurry-jetting 

technique on the Hood Machine.  Located in the Ceramics Processing Research Laboratory (CPRL), the 

Hood Machine is an essential tool for slurry powderbed production.  Depicted in simplified form within 

Figure 2.13, the Hood Machine uses a rastering technique with a fast and slow axis to build a powderbed 

in sequential layers.  Each layer is formed as a merged assembly of individual slipcast lines.  The slurry is 

jetted from a 127 micron nozzle onto a porous substrate with flow rate controlled by air pressure.  A two-

pump recirculation system is used to keep the slurry suspension uniform in composition and to prevent 

settling or agglomeration of powder particles over time.  A computer controls the rastering motion 

mechanism, the powderbed layer dimensions, and z-axis control.  After each slurry layer is jetted, a 

drying cycle removes excess liquid from the powderbed to prevent defects from forming.  The 

description provided above is general in scope; a detailed explanation of the slurry-jetting process for 

powderbed formation using the Hood Machine can be found in [29]. 

In order to manufacture the powderbed on the Hood Machine, a standard 30 v/o alumina slurry 

is prepared.  The slurry is composed of submicron alumina powder along with Polyethylene Glycol 

(PEG), Nitric Acid, Methanol, and water.  Four additions are used to introduce the alumina powder into 

the slurry mixture with subsequent ball milling between additions.  After 18 hours of total milling time, 

the slurry is filtered and then jetted on the Hood Machine.  For more details about the slurry chemistry 
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and the associated preparation process, consult the work of Jason Grau and Scott Uhland in [8] and [29], 

respectively. 
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Figure 2.13 Illustrations and process information related to the two slurry-jetted 
alumina powderbeds constructed for the proceeding vector printing 
experiments.  The inset picture, though taken from a different alumina 
powderbed, accurately characterizes the powderbeds’ appearance and 
texture.  A standard 30 v/o alumina slurry is jetted onto two sets of five 
rectangular borous silicate (BS) substrates.  The diagram includes 
dimensions for an individual BS piece and for the corresponding jetted 
powderbed on each substrate.  A unique number is assigned for each BS 
piece for future identification in the experiments (refer to the following 
sections).  A set of axes for each item above indicates the powderbed 
orientation relative to the Hood Machine designated axes (labeled 
“Machine Fast Axis” and “Machine Slow Axis”) for slurry jetting.  In 
addition, the same axes correspond to the powderbed orientation for 
vector DOD printing.  Note that the origins shown are not accurately 
identified.  Due to the relatively symmetrical designs to be evaluated, the 
smallest x-y powderbed dimension (11 mm) acts as a limiting size factor 
for vector DOD printed geometries. 

As shown in Figure 2.13, the two linear powderbeds are jetted onto ten individual, rectangular 

borous silicate substrates.  Each piece has approximately 19 mm x 22 mm in area for powderbed 

definition; five pieces are aligned together to form one powderbed substrate for slurry jetting.  This 

powderbed will be disassembled into its composite pieces so multiple vector DOD binder printing tests 

can be conducted.  The borous silicate substrates are therefore numbered for future identification.  The 
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two powderbeds are comprised of 46 layers with a layer height of approximately 56 microns, defined by 

a mass flow rate of 4.2 to 4.3 g/min.  The powderbed deposition process is completed without incident.  

The texture of the powderbed surface is relatively smooth and uniform, although the artifacts from a 

linear, raster process are clearly present as illustrated in Figure 2.13.  These surface features from the 

slurry jetting process will play a role in determining the final part quality in the first set of experiments 

described in Section 2.4.3. 

The smallest horizontal powderbed dimension (i.e. neglecting vertical height) of 11 mm places a 

limitation on the size of the vector DOD print geometry.  Since all of the MasterCAM designs are fairly 

symmetrical, caution is required to ensure the entire binder deposition process remains on the alumina 

powderbed surface by limiting geometry measures to less than 11 mm.  This maximum dimension 

requires several of the geometries to be scaled down in order to fit, and this reduction affects the size of 

the sample and its corresponding programmed line spacings. 

 

2.4.2. Binder Droplet Formation Parameters 

The Siemens PT-88S printhead is used for drop-on-demand printing of 2.4 v/o PAA + 0.26 v/o 

glycerol + 97.3 v/o water binder.  The functional waveform parameters chosen for binder droplet 

formation are 4 µs: 8 µs: 1 µs: 97 V (refer to Section 2.3.8 for discussion about this selection).  Using these 

conditions, the droplet speed is determined to be 3.6 m/s, and the average droplet diameter in the air is 

estimated to be 44 microns.  The droplet size is determined and verified using two different methods: (1) 

by measuring the mass of dried binder deposited over time and then calculating backwards based on 

density and frequency (refer to Section 2.3.8 for details) and (2) by visual inspection of droplets on the 

monitor during tests with the Droplet Observation Station.  The second method provides a quick, though 

slightly less accurate, droplet diameter calculation due to the granularity of the scale used.  For further 

discussion about the measurement and development of these parameters, refer to Section 2.3. 

 

2.4.3. Vector Printing Using Unsanded Alumina Powderbeds 

Following the difficulties of DOD printing onto slipcast powderbeds using the Nozzle Test 

Station, a more effective, but complex, examination of vector drop-on-demand printing for 3DP with the 

water-based 2.4 v/o PAA binder starts with a set of experiments that implement the Bridgeport milling 

machine vector printing configuration, Siemens PT-88S DOD printhead, and slurry-jetted alumina 

powderbeds.  The Siemens printhead is actuated using the stable droplet generation parameters provided 

in Section 2.4.2, and the alumina powderbeds are the products of the standard powderbed deposition 

process described in Section 2.4.1.  Using a slightly modified vector DOD setup as detailed in Section 2.4, 

four different tests are used to characterize the now adapted 3DP binder-based process: (1) five lines with 

different droplet spacings determined by vectoring speed, (2) five lines with different droplet spacings 



C H A P T E R  2:  Vector Drop-On-Demand Printing of Tungsten Carbide-Cobalt Tooling Inserts 

90 

determined by frequency, (3) a square block with linear raster fill, and (4) a tooling insert geometry based 

on a Valenite CNMA 432 Insert.  The powderbeds do not require much preparation, other than 

referencing and orientation confirmation.  Five powderbeds on separate borous silicate substrates are 

used for these experiments with one sacrificed as a calibration piece.  Previously used for ink-based 

vector DOD printing with the HP 51626A printhead, two geometries designed on MasterCAM, the square 

and the tooling insert, are adapted to the 2.4 v/o PAA binder droplet parameters and converted to 

appropriate CNC programs for execution on the milling machine (refer to Figure 2.14 for illustrations).  

The other two five-line droplet spacing experiments are input manually with the native Bridgeport GUI.  

The first three vector DOD experiments are completed successfully, but the tooling insert geometry fails 

unexpectedly during raster definition.  The first two line droplet spacing tests exhibit strange 

redispersion behavior during the extraction process, while the latter two geometries redisperse 

effectively.  The failure to extract line width measurements from the two five-line droplet spacing 

experiments necessitates further experimentation and formulation of a more effective design for line 

preservation.  Observations of the extracted vector DOD printed geometries suggest that the powderbed 

linear raster deposition process creates a dominant geometric anisotropy that affects the surface finish 

and edge quality of the printed part.  The irregular, undulating profile created by slipcasting individual, 

consecutive slurry lines poses significant problems for consistent binder placement and thus considerably 

reduces geometric accuracy.  The results and conclusions from these experiments create impetus for the 

next round of testing described in Section 2.4.4. 

 

2.4.3.1. Alumina Powderbed Preparation 

Before experimentation can begin, several steps must be taken to allow for correct printhead 

positioning and, after testing, correct piece identification.  To prepare the alumina powderbed samples 

for experimentation, the five samples from the first powderbed are taken, and a record of each numbered 

piece used is made.  The borous silicate substrates are numbered from one to five.  The alumina sample is 

checked for correct orientation relative to the machine axes prior to printing (refer to Figure 2.13 for 

identification of corresponding powderbed axes).  Neglecting height, the smallest dimension of 11 mm, 

corresponding to the width perpendicular to the slurry-jetted powderbed x-axis, is oriented parallel to 

the machine default y-axis.  One of the five alumina samples, identified as Piece 4, is designated as the 

“calibration” powderbed, which is used only for defining the correct z-axis positioning of the Siemens 

printhead.  This calibration sample is not used for experimentation because the z-axis level is checked 

between each vector DOD test, and since the printhead remains continuously operational without a DOD 

micro switch control, the powderbed is therefore subjected to numerous random binder droplets that 

would invalidate any potential results. 
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2.4.3.2. Vector Drop-On-Demand Printing Parameters and Observations 

As previously explained, four experiments are conducted to examine various vector DOD 

printing parameters: (1) individual line characteristics as a function of vectoring speed, (2) individual line 

characteristics as a function of droplet frequency, (3) edge quality and surface finish of a vector outline 

trace, linear raster fill square block, and (4) edge quality and surface finish of a vector outline trace, 130° 

raster fill tooling insert with omitted center hole.  The first two droplet spacing tests to evaluate 

individual line quality are programmed directly into the Bridgeport EZ-Trak milling machine.  The latter 

two geometries are designed and exported as machine programs using MasterCAM.  The corresponding 

powderbed samples follow the same numbering designation as listed above, except for Piece 5, which is 

used for the tooling insert geometry since z-axis calibration is performed with Piece 4 (discussed in the 

previous section).  Piece 1, or also Test (1), examines the effect of droplet spacing on line width by varying 

the milling machine speed.  The same droplet spacing parameter is tested with Piece 2, except that 

frequency is varied instead.  For both tests, five droplet spacings are selected: 10 µm/drop, 20 µm/drop, 

30 µm/drop, 40 µm/drop, and 45 µm/drop.  Each spacing specification is performed on a separate 

parallel line across the entire length of the powderbed.  Formerly used for ink-based testing, the square 

block for Test (3) is re-programmed in MasterCAM for the water-based PAA binder system and compiled 

with tool paths that define four consecutive vector traces shifting from the exterior to interior and a 

horizontal linear raster fill (refer to Figure 2.14 (a) for an illustration and parameters).  The tooling insert 

is also adapted from ink-based experimentation and implements an identical four vector trace (refer to 

Figure 2.14 (b) for an illustration and parameters).  The interior raster fill is likewise linear but oriented at 

130° from horizontal.  The reason for selecting this raster method is to ensure the most evenly distributed 

binder concentration gradient along the geometry edge as seen during ink-based vector DOD testing 

(refer to Section 2.2.6 and Figure 2.11). 

Common line spacing parameters are used for both the square and tooling insert.  Based on the 

droplet size of the PAA binder in air, the tool diameter in MasterCAM is defined to be 44 microns.  A 50% 

overlap is present between all parallel adjacent lines and is equivalent to a 22-micron line spacing.  

Although the droplet diameter does not represent the binder behavior upon powderbed impact and 

absorption, which would be a more accurate line spacing assessment, this nominal droplet diameter 

designation and degree of overlap guarantees stitching between two adjacent printed lines.  Used with 

ink-based testing as well, the four vector profile traces defined in both the square and tooling insert 

machine programs are designed to impart the desired vector characteristic to the geometry boundary and 

to diminish, if not eliminate, the effects of the interior raster fill. 

To achieve reasonable geometric accuracy at an acceptable production rate, the milling machine 

speed is maximized for both Tests (3) and (4) at 600 mm/min or 10 mm/s (refer to Section 2.2.1.2 for an 

explanation).  Given this speed, the spacing between consecutive droplets is controlled by the frequency, 
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and this value is adjusted to establish a fairly uniform droplet spacing in all directions.  Note that for 

proper implementation, the CNC programs generated by MasterCAM require that additional stop 

commands be injected at the beginning and end of the program to allow for vector printing equipment 

adjustments, such as z-axis height verification to prevent damage from incorrect calibration. 

 

Figure 2.14 Annotated illustrations of (a) the square and (b) the tooling insert shapes 
rendered in MasterCAM.  The tooling insert outline contains both sintered 
and unsintered dimensions for comparison.  Based on calculations 
presented in Section 2.2.4, the unsintered dimensions are 22% larger than 
sintered.  Each geometry outline is defined by four consecutive vector 
traces 22 µm apart that transition from their respective exterior 
boundaries to the interior.  These geometric boundaries define a single 
layer to be vector printed, and parsing input for tooling properties 
(droplet size), z-axis depth, feed rates, and raster-fill style (spiral or 
linear), MasterCAM automatically generates a CNC machine program in 
plain text.  The execution order for both (a) and (b) are identical: four 
vector traces along the exterior perimeter followed by linear interior raster 
fills.  Minor editing of this program is then performed to permit necessary 
equipment adjustments particular to the Bridgeport milling machine 
setup.  Note that the center hole of the tooling insert is not included in the 
machine program used.  These programs are transferred via 3.5” floppy 
disk to the Bridgeport milling machine computer for execution. 

The origin of the programmed geometry is determined by using a sacrificial “calibration” 

powderbed, Piece 4, for these tests.  The z-axis origin is defined as the top of the powderbed surface, and 
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the vertical spacing between the printhead and powderbed is expected to be 500 microns.  This 

orientation is determined manually by slowly lowering the milling machine quill until the printhead 

contacts the powderbed sample.  Note that the separation distance between the orifice plate and 

powderbed is actually greater than expected because the z-axis origin is located at the interface between 

the lowest point on the Siemens printhead—the orifice plate holder, not the orifice plate—and the 

powderbed.  Considering the variability of each calibration, the presence of the orifice plate holder only 

adds to the actual z-axis distance, and this total quantity, which is not clearly quantified, is reflected in 

the separation distance shown in Table 2-E.  The x- and y-axis zero points are also set using this piece.  As 

stated in the previous section, due to serving this function and the associated exposure to random binder 

droplets, Piece 4 cannot be used for experimentation.   

Nozzle 5 on the Siemens PT-88S is chosen for binder droplet production.  The printhead remains 

active during the entire experimental set (Pieces 1, 2, 3, and 5) to minimize potential instabilities caused 

by evaporated binder on the orifice plate, internal pressure fluctuations, inconsistent re-activation, etc.  

Based on observations of DOD behavior during tests with the Droplet Observation Station, it is believed 

that a steady equilibrium droplet state, once established, is easier to maintain with a continuously 

operational printhead.  This constant condition therefore contaminates the “calibration” powderbed.  To 

minimize differences in powderbed placement after calibration, a consistent positioning of the borous 

silicate substrates is ensured by locating pieces along two perpendicular edges, the edge of the support 

block and a secured metal strip. 

Some changes are necessary for the effective execution of these experiments.  Due to powderbed 

size limitations (discussed in Section 2.4.1), scaling modification to the square and tooling insert 

geometries is required.  The square block, originally 0.5” per side, must be reduced by 10% to 0.45” per 

side to fit onto the alumina powderbed sample.  The tooling insert must be scaled down by 20% to 

preserve the entire geometry.  This reduction in overall size decreases the associated line spacing for each 

geometry by the same amount.  Therefore, instead of 22 microns, the square has a line spacing of only 20 

microns, while the tooling insert has a spacing of 18 microns.  Another operating adjustment relates to 

droplet formation.  The stable printhead voltage, while originally specified as 97 Volts, increases to 99 

Volts at 500 Hz for these experiments.  Many factors can influence the stability of droplet formation, as 

noted in Section 2.3, so some degree of variability is expected. 
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Table 2-E: 
VECTOR PRINTING PARAMETERS FOR UNSANDED ALUMINA POWDERBEDS WITH PAA BINDER 

3 4 5

Vector Geometry Description
Square Block

0.45" x 0.45"

Calibration

Powderbed

Incomplete

Tooling Insert

CNMA 432

Binder Composition

Droplet Diameter

(microns)

Droplet Frequency

(Hz)

Line 1:

Line 2:

Line 3:

Line 4:

Line 5:

1000 Hz

500 Hz

333 Hz

250 Hz

222 Hz

500 Hz n/a 500 Hz

Vector Speed

(mm/s)

Line 1:

Line 2:

Line 3:

Line 4:

Line 5:

5.0 mm/s

10.0 mm/s

15.0 mm/s

20.0 mm/s

22.5 mm/s

10 mm/s n/a 10 mm/s

Consecutive Droplet Spacing

(µm/drop)

Line 1:

Line 2:

Line 3:

Line 4:

Line 5:

10 µm/drop

20 µm/drop

30 µm/drop

40 µm/drop

45 µm/drop

Line 1:

Line 2:

Line 3:

Line 4:

Line 5:

10 µm/drop

20 µm/drop

30 µm/drop

40 µm/drop

45 µm/drop

20 µm/drop n/a 20 µm/drop

CNC Machine Program 0302003.PGM n/a 0302005.PGM

Adjacent Line Spacing

(µm/line)
20 µm/line n/a 18 µm/line

Printhead-Powderbed Separation

(microns)
500+ microns Variable 500+ microns

Droplet Waveform Function (a :b :c :h )

1
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with Different Droplet 

Spacings by Varying 

Vector Speed

4 µs : 8 µs : 1 µs : 99 V

n/a n/a

750+ microns

Alumina Powderbed Piece Reference Number
†

         †
  Refer to Figure 2.13 for powderbed piece identification and printing orientation

44.0 microns
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10 mm/s

n/a

2.4 v/o Polyacrylic Acid (PAA) + Glycerol + Water

Voltage (V)

Time (µs)

a b c

h

 
 

Observations recorded throughout indicate that droplet generation remains fairly stable for the duration 

of testing.  The first two droplet spacing experiments, Tests (1) and (2), detailed in Table 2-E above are 

completed successfully.  A note from Test (1) indicates that droplets “vibrate” due to spindle motor 

rotation.  Test (2) requires several changes in frequency.  After all five lines are printed, some fluctuations 

in droplet speed are observed at 222 Hz, but increasing frequency restores stability.  Creation of the 90% 

scaled square block is successful with droplet consistency verified afterwards.  Some concern is expressed 

about the proximity of the back side to the powderbed edge.  Approximately eight minutes elapse for 

completion of vector DOD printing on Piece 3.  During the tooling insert geometry print with Piece 5, 

unforeseen problems arise during program execution, and the 130° linear raster is terminated 
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prematurely leaving only partial definition of the insert interior.  An examination of the associated CNC 

code indicates that the final, expected commands for the raster fill are missing.  In reviewing the program 

preparation process, it appears that an incomplete transfer of the machine code occurs when the data is 

saved from one version of the program file to another using the embedded Bridgeport User Interface.  

Based on the relatively large file size of the original, complete tooling insert program, it is conjectured 

that a buffer limitation exists within the Bridgeport software and therefore causes the truncation error.  In 

addition, the assignment of incorrect timestamps for saved files may also have contributed to this 

unexpected alteration by affecting the installed software’s behavior.  Manual verification of the machine 

program within the Bridgeport UI could also have prevented the error prior to actual execution.  Droplet 

stability is verified at the conclusion of Test (4). 

After these samples are printed, the binder droplet diameter in air is calculated for verification 

using the mass of dried binder deposited in a set amount of time at a certain frequency.  After four hours 

of DOD printing with the Siemens PT-88S at 500 Hz, the mass of dried PAA binder is 0.013 g.  

Calculations, as shown in Section 2.3.8, yield an average droplet diameter of 44.0 microns.  The results 

validate the expected value used under these given conditions. 

 

2.4.3.3. Extraction of Printed Layers 

The removal of each vector-printed geometry from its powderbed substrate follows the 

established extraction procedure implemented for PAA + glycerol binder into alumina as described in 

[29].  The four test samples (Pieces 1-3 and 5) are cured at 150 °C for one hour in  Grade 5 Argon gas using 

a VWR Scientific vacuum oven located in the CPRL.  Temperature variations must be minimized to 

prevent PEG decomposition [29] that can affect redispersion, so a convection fan is used for circulation.  

Temperature levels as measured by a thermocouple (TC) indicate some fluctuations between 142 °C and 

150 °C, but differences in temperature measurement may also be attributed to TC placement relative to 

the alumina substrates. 

Subsequent redispersion is conducted by placing each borous silicate sample separately in a glass 

Petri dish and slowly introducing deionized water into the dish.  The water is absorbed into the borous 

silicate through capillary action and eventually reaches the alumina powderbed on top.  The water causes 

the PEG from the alumina slurry to expand and break apart the unbound powder.  The remaining excess 

powder is removed by subsequent spraying of the sample with water from a wash bottle.  For Piece 1 

droplet spacing Test (1), odd behavior is observed with the top layer of the alumina powderbed staying 

as one solid piece while the remainder redisperses completely.  No indications of binder-printed lines are 

evident.  After discussions with Uhland, this unexpected layer delamination may have been caused by 

PEG decomposition that occurred because of a temperature gradient in the oven; in terms of sample 

orientation in the oven during curing, Piece 1 is the closest to the edge from the center where theoretically 
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it would be hotter, so this explanation is plausible.  In contrast, Piece 3 with the square block is 

redispersed successfully (refer to Figure 2.16 for documentation pictures).  The powderbed used for 

droplet spacing line tests on Piece 2 is successfully redispersed.  The individual lines, however, are not 

recoverable because they are too weak to withstand the redispersion process.  Only fragments of the 10 

µm/drop line appear to survive, although the actual pieces are difficult to identify.  The incomplete 

tooling insert geometry on Piece 5 redisperses effectively with a clear indication of where the raster fill 

stopped.  The entire vector trace also remains intact, although the areas missing the raster fill are fragile.  

Documentation of this vector DOD printed part is shown in Figure 2.15.  As discussed in the next section, 

the most dominant feature observed from the successfully redispersed geometries (Piece 3 and 5) is the 

effect of the powderbed texture on the surface finish. 

 

2.4.3.4. Edge Quality & Surface Finish of Printed Layers 

Since line quality measurements are unavailable due to the redispersion problems with Pieces 1 

and 2, the effort to produce a line primitive for examination by vector DOD printing is continued in the 

following set of experiments discussed in Section 2.4.4.  In order to strengthen the individual line 

structure for post processing, a support frame and grid are designed to print and preserve single lines for 

evaluation.  The description and relevant details of this structure are provided in Section 2.4.4.2. 

In terms of the edge quality and surface finish of the successfully extracted square and tooling 

insert, several observations can be made.  The primary characteristic of these extracted layer geometries is 

the prevalent linear powderbed texture that results from the slurry-jetting process.  For both samples, this 

linearity dominates the surface finish and edge quality definition, although in macroscopic terms, the 

geometric accuracy is acceptable.  The fact that the complete vector trace of the tooling insert survives 

indicates that the programmed vector definition process works and provides a potential method for 

studying the quality of vector-versus-raster printing by setting an initial benchmark for geometry vector 

line thickness that is required for successful extraction in a single layer.  The oscillating nature of these 

powderbed features is particularly evident when observing part definition perpendicular to the slurry 

lines as seen in pictures � through � of Figure 2.15 and � and � of Figure 2.16.  The regularity of this 

undulating edge does show that binder droplet vector placement remains fairly consistent across z-axis 

height variation.  In examining pictures � and � of Figure 2.16, the resulting intermittent separation 

between the vector trace and horizontal linear raster fill, which runs parallel to the slurry lines, also 

demonstrates the effect the powderbed surface profile has on binder droplet placement and/or 

absorption.  The influence of vector DOD printing on edge quality can be more easily assessed when 

observing regions parallel to the alumina powderbed lines, especially in pictures � and � of Figure 2.16.  

The straightness appears to deviate to a small degree, and this irregularity may be attributable either to 

the powderbed texture or to vector DOD printing errors. 
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Figure 2.15 Pictures demonstrating edge quality and surface finish for a partially 
filled, vector-printed, PAA binder tooling insert into an unsanded alumina 
powderbed.  Incomplete command transfers between CNC machine 
program versions (detailed in Section 2.4.3.2) prevent complete raster-fill 
execution.  The superimposed axes indicate the printed part orientation 
relative to the programmed machine tool path (the y-axis points towards 
the milling machine, parallel to the default machine y-axis).  Note that the 
origin is not accurately identified.  The irregular edges, shown in the eight 
surrounding magnified pictures, occur in part because of changes in the 
height of the powderbed, which affect the distribution and placement of 
binder.  The rough, grooved profile of the original powderbed surface, 
included above, is a direct result of the linear, layered slurry deposition 
process. 

In terms of process explanations for defects, such as deviations in linearity along the edge, several 

possibilities exist.  One likely cause arises from issues with droplet formation stability.  For the most part, 

using the waveform determined from analysis in Section 2.3, the reliability of DOD printing should be 

fairly high, but the possibility of random fluctuations still exists and cannot be verified during vector 

DOD printing operations.  Errors may also result from droplet vibration that occurs due to spindle motor 

operation.  In addition, since the powderbed is not firmly mounted to the X-Y table, any disturbances 

from or affecting the translation table could cause the substrate to shift.  Since the printhead is 
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continuously operating to maintain an equilibrium state, the deposition of extraneous binder droplets at 

the beginning or end points of the process is possible when the printhead is elevated relatively high 

above the powderbed.  Finally, defects may occur due to the Bridgeport positioning accuracy limitations 

(± 0.025 mm), especially at corners or changes in direction, since this error is within range of one binder 

droplet (0.040 mm). 

 

 

Figure 2.16 Pictures demonstrating edge quality and surface finish for a vector–
printed, PAA binder square into an unsanded alumina powderbed.  The 
superimposed axes indicate the printed part orientation relative to the 
programmed machine tool path (the y-axis points towards the milling 
machine, parallel to the default machine y-axis).  Note that the origin is 
not accurately identified.  The irregular edges, as seen on the four 
magnified pictures on the right, occur in part because of changes in the 
height of the powderbed, which affect the distribution and placement of 
binder.  This fluctuating surface also causes incomplete binder merging 
between the vector outline and raster fill, even with a conservative droplet 
spacing.  The rough, grooved profile of the original powderbed surface, 
included above, is a direct result of the linear, layered slurry deposition 
process. 

Overall, the edge quality and surface finish, although not ideal, preview the potential benefits for 

3DP parts created using the vector DOD printing method.  The primary issue to resolve with part quality 

is the large influence of the slurry linear deposition process.  The texture that normally results from 

sequentially slipcast slurry lines prevents a consistent binder droplet placement due to oscillating height 

variation.  These powderbed surface conditions can perhaps be improved using the current jetting 
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process by changing relevant powderbed formation conditions, such as mass flow rate, line spacing, 

raster speed, or slurry composition.  Alternatively, as in the case of the TDK slurry-vector machine under 

development, an entirely new approach to slurry powderbed deposition can be designed (refer to Section 

3.2 for details).  As a result of these experiments, further tests are conducted with sanded powderbed tops 

to eliminate the influence of the slurry-based deposition process on the surface finish and edge quality of 

extracted parts. 

 

2.4.4. Vector Printing Using Sanded Alumina Powderbeds 

In order to better evaluate the effect of vector DOD printing on 3DP part line quality, edge 

quality, and surface finish, another round of experimentation is pursued.  Based on the dominant effects 

of the powderbed slurry-jetting process as seen in the previous experiments, the need to better isolate the 

process of vector DOD printing prompts a slight adjustment to the powderbed surface prior to printing.  

Using the same equipment, printhead, and water-based 2.4 v/o PAA binder combination again, four new 

tests are conducted with the five remaining alumina powderbeds generated as described in Section 2.4.1.  

The Siemens PT-88S printhead is assumed to use the same stable droplet formation parameters as before 

(4 µs: 8 µs: 1 µs: 97 V).  The modifications outlined in Section 2.4 to the Bridgeport machine-based vector 

DOD setup are still applied.  The powderbeds, however, require more preparation in order to remove the 

slurry-jetting artifacts from the top surface.  The top surface is sanded, buffed, and then dusted off in 

order to create as smooth a surface as possible.  A new MasterCAM-designed geometry is created, 

hereafter referenced as a Single-Line Grid design (SLG) with frame support, to reinforce and preserve 

individually DOD printed binder lines for extraction.  The four new experiments seek to examine more 

effectively the same issues as before through the production of the following: (1) a 22 µm/drop SLG with 

frame support, (2) a 40 µm/drop SLG with frame support, (3) a 32 µm/drop SLG with frame support, 

and (4) a square block with linear raster fill.  For comparison, the square block is repeated under the same 

conditions previously used.  All machine programs for this study are configured and compiled with 

MasterCAM.  All four tests are completed successfully in terms of reliable droplet generation; errors in z-

axis calibration may contribute to printed part defects and significantly affect the value of measurements 

taken.  Extraction of the cured, single-layer part from each powderbed sample is successful with the 

exception of the grid structure for the 40 µm/drop SLG design.  The final part quality is substantially 

improved in comparison with previous results primarily from the removal of the linear powderbed 

features.  In addition, measurements of single line widths suggest that the vector DOD printing process is 

capable of producing high-resolution parts with features smaller than those currently possible with 3DP. 
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2.4.4.1. Alumina Powderbed Preparation 

A similar preparation procedure to that described in Section 2.4.3.1 is performed with additional 

steps to refine the powderbed top surface.  First, the five alumina samples from the second powderbed 

produced in Section 2.4.1 are identified for future reference.  These borous silicate substrates are 

numbered six through ten.  The alumina samples are checked for correct orientation on the milling 

machine prior to printing (refer to Figure 2.13 for powderbed axes identification).  Once again, the 

smallest powderbed dimension (11 mm) is oriented parallel to the machine y-axis.  One of the five 

samples (identified as Piece 8) though originally intended for possible experimentation, eventually 

becomes the “calibration” powderbed used for setting the z-axis origin for the Siemens printhead.  Since 

printhead droplet formation is continued without interruption, Piece 8 is no longer useful for collecting 

data.  Finally, the top surfaces of these five powderbeds are gently dry sanded with 1200-grit sandpaper 

on a rotating polishing machine and then buffed with a Kim Wipe to obtain as smooth a surface as 

possible by visual inspection.  Excess, loose powder is then removed with short blasts of compressed air. 

Note that the attempt to use Piece 4 from the previous experimental set for calibration leads to 

severe miscalculations of z-axis height since it is later realized that (1) the two powderbeds produced in 

Section 2.4.1 do not have the same height and (2) the lack of top surface removal causes the height of 

Piece 4 to be presumably greater than the actual test samples, which already suffer from some variation 

as a result of the smoothing procedure. 

 

2.4.4.2. Vector Drop-On-Demand Printing Parameters and Observations 

Using the improved powderbed substrate surface for binder printing, the following experiments 

are conducted to further evaluate the performance of vector DOD printing: three for line quality 

characteristics, (1) a SLG1 with square frame support & 22-µm drop spacing, (2) a SLG2 with square frame 

support & 40-µm drop spacing, (3) a SLG3 with square frame support & 32-µm drop spacing, and (4) a 

square block with vector profile trace & horizontal, linear raster fill for comparison with previous results 

(as seen in Figure 2.16).  Note that compared with the previous set of experiments with unsanded 

alumina powderbeds, the parameters and reasons for such choices are identical.  Therefore, for further 

background regarding chosen conditions, refer to Section 2.4.3.  All geometries are designed and 

compiled in MasterCAM to obtain appropriate machine programs for execution on the Bridgeport EZ-

Trak milling machine.  The Single-Line Grid design is developed as a potential solution to preserve 

individually printed lines for analysis.  The structure is 0.40” x 0.40” in size and consists of an external 

square frame 0.15” thick that encompasses a square grid with sixteen 0.025” x 0.025” cells.  The borders of 

each cell represent a single binder printed line.  An illustration of this SLG design with relevant 

dimensions and an explanation of the programmed tool path is shown in Figure 2.17.  The square block 

uses the same parameters described in Section 2.4.3.2 and Table 2-E.  Note that for each of these 
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geometries, a vector trace is executed four times from the exterior perimeter to the interior, except for the 

center grid portion of the SLG design, with gradually decreasing radii for boundary reinforcement (refer 

to Figure 2.14 (a) and Figure 2.17).  The powderbed samples, referenced as Pieces 6 to 10, are selected to 

correspond with the following tests listed above: Piece 6 for Test (1), Piece 7 for Test (2), Piece 9 for Test 

(3), and Piece 10 for Test (4).  Piece 8 is later used as the “calibration” powderbed. 

As in the experiments described in Section 2.4.3.2, the line spacing parameter used for these 

experiments is based on the droplet size of the water-based PAA binder in air (44 microns) as generated 

under stable formation conditions.  The MasterCAM tool diameter is equivalently set, and a 22-micron 

spacing (50% overlap) between adjacent parallel lines is used.  Though this diameter is not representative 

of actual binder conditions in the powderbed, based on previous experiments, the droplet diameter and 

percentage overlap are shown to provide sufficient merging to produce a cohesive binder-printed part.  

Similar to the previous set of experiments described in Section 2.4.3, the exterior profile traces are 

repeated again for all geometries in order to separate vector definitions of the part shape from its interior 

raster fill.  For the SLGx design experiments with Pieces 6, 7, and 9, the droplet spacing is determined by 

changes in frequency with machine speed kept constant (refer to Table 2-F). 

For future reference, the drop-on-demand control process using the micro switch and quill is 

partially implemented in the machine programming of the SLG geometry.  As stated before, due to 

concerns about droplet stability during reactivation and to better guarantee the successful completion of a 

vector DOD printing experiment, the micro switch control is not, however, applied to these experiments.  

Minor adjustments to the current z-axis movement will be required for complete and proper DOD 

control. 

The milling machine speed is maximized for all four experiments at 600 mm/min or 10 mm/s 

(refer to Section 2.2.1.2 for an explanation), the speed compromise between accuracy and production rate. 

Like the situation discussed in Section 2.4.3.2, the errors associated with z-axis calibration are 

once again present but also potentially magnified.  The origin for all three powderbed axes is determined 

by using the “calibration” powderbed.  Ideally, the distance between the Siemens orifice plate and the 

powderbed can be accurately set.  Since the Siemens orifice plate holder adds to the distance between the 

orifice plate and the powderbed, the desired z-axis distance of 500 microns is underestimated.  In 

addition, calibration variability can also introduce differences in printhead separation distance for each 

powderbed sample.  In addition to these factors, an attempt to use Piece 4 for calibration leads to 

considerable error in z-axis distance for printing with Pieces 6 and 7 (refer to Section 2.4.4.1 for causes).  

The change to Piece 8 for calibration provides some improvement, but error is also introduced from the 

inconsistent top surface removal process that creates slight height variations in Pieces 6 through 10.  

These variable increases in z-axis separation between powderbed and printhead are reflected in the 

values given in Table 2-F.  The consistent positioning method for locating powderbed samples is retained. 
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Figure 2.17 Annotated illustration of the proposed Single-Line Grid (SLG) design 
rendered in MasterCAM.  This structure is intended to support 
individual, vector-printed PAA binder lines onto alumina so that layer 
quality and line width limitations can be explored.  With the exception of 
the single-line grid, the outer and inner square frames are defined by four 
consecutive vector traces 22 µm apart that transition from their respective 
exterior boundaries to the interior.  Using the same input conditions for 
tooling properties (droplet size), z-axis depth, and feed rates as the square 
and tooling insert geometries seen in Figure 2.14 along with a spiral 
raster-fill style, MasterCAM once again generates a CNC machine 
program in plain text.  The execution order proceeds as follows: (1) four 
vector traces of the exterior square frame, (2) four vector traces of the 
internal square frame, (3) spiral in-out raster fill of the interior section 
between (1) and (2), and (4) single-line grid definition.  Minor editing of 
this program is performed to permit necessary equipment adjustments 
particular to the Bridgeport milling machine setup.  These programs are 
transferred via 3.5” floppy disk to the Bridgeport milling machine 
computer for execution.  Line width and layer quality are evaluated as a 
function of droplet spacing.  Three droplet spacings are selected for 
testing: 20 µm/drop, 32 µm/drop, and 40 µm/drop.  Using the same 
edited CNC program, droplet spacing variation is achieved by changing 
the droplet frequency. 
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The Siemens printhead is again deployed with steady state conditions.  Using Nozzle 5 for the 

four experiments with Pieces 6, 7, 9, and 10, the printhead is kept operational once stable droplet 

formation equilibrium is established to minimize instabilities.  This continual operation keeps the 

calibration Piece 8 from being used as an experimental sample. 

Only one unique adjustment is necessary for performing these experiments.  The suggested 

droplet generation voltage (97 Volts) is slightly modified once again for stable printhead operation.  The 

waveform geometry (4 µs: 8 µs: 1 µs) is initially applied to Nozzle 5 at a transition voltage of 100 Volts 

and a frequency of 500 Hz.  The square block must once again be scaled to 90% of its original size. 

 

Table 2-F: 
VECTOR PRINTING PARAMETERS FOR SANDED ALUMINA POWDERBEDS WITH PAA BINDER 

8 9 10

Vector Geometry Description
Calibration

Powderbed II

Single-Line Grid

Design with

Square Frame Support

0.4" x 0.4"

Square Block

0.45" x 0.45"

Binder Composition

Droplet Diameter

(microns)

Droplet Frequency

(Hz)
n/a 313 Hz 500 Hz

Vector Speed

(mm/s)
n/a 10 mm/s 10 mm/s

Consecutive Droplet Spacing

(µm/drop)
n/a 32 µm/drop 20 µm/drop

CNC Machine Program n/a BLL31600.PGM 0302003.PGM

Adjacent Line Spacing

(µm/line)
n/a 22 µm/line 20 µm/line

Printhead-Powderbed Separation

(microns)
Variable 500+ microns 1000+ microns

Droplet Waveform Function (a :b :c :h )

Alumina Powderbed Piece Reference Number
†

         †
  Refer to Figure 2.13 for powderbed piece identification and printing orientation

44.0 microns

455 Hz

BLL31600.PGM

7

Single-Line Grid

Design with

Square Frame Support

0.4" x 0.4"

10 mm/s

2.4 v/o Polyacrylic Acid (PAA) + Glycerol + Water

6

Single-Line Grid

Design with

Square Frame Support

0.4" x 0.4"

22 µm/line

250 Hz

4 µs : 8 µs : 1 µs : 100 V

1000+ microns

Error due to z-axis calibration with Piece 4

10 mm/s

22 µm/drop 40 µm/drop

BLL31600.PGM

Voltage (V)

Time (µs)

a b c

h
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Using these parameters, the four experiments are performed and noted with the following 

observations.  Throughout these tests, just like before, a constant droplet vibration is observed as the 

result of spindle motor operation.  Test (1) for a 22-µm drop SLG1 design is printed successfully in 

approximately seven to eight minutes with a stable droplet seen after completion.  The SLG2 design for 

Piece 7 is performed successfully in eight minutes; a stable droplet is once again verified.  The process of 

completing SLG3 requires the machine program to be stopped prematurely and restarted because the z-

axis origin is set too low.  Following z-axis elevation, Test (3) is completed successfully in around seven 

minutes with subsequent confirmation of droplet stability.  The square block for Piece 10 is printed in 

eleven minutes, and a stable droplet is later observed.  The concern for this final test is the proximity of 

the square to the back edge of the powderbed and whether this positioning will lead to distortion or 

curvature of the printed part.  Throughout all four tests, the separation between printhead and 

powderbed is greater than the desired 500 microns; Piece 9 has the lowest separation distance, while 

Pieces 6 and 7 incorrectly use Piece 4 to calibrate printhead separation, leading to more substantial error. 

Tests with Pieces 6 and 7 have a rather large printhead separation distance because Piece 4 from 

the other powderbed is used to determine the z-axis origin.  As explained earlier in Section 2.4.4.1, using 

Piece 4 does not take into account the height discrepancy between powderbeds that results from the 

powderbed formation process and subsequent surface sanding.  For these two pieces, the measurement 

given in Table 2-F is considered a minimum, though actual distance between powderbed and orifice 

could be as high as 1.5 mm.  As the distance between powderbed and printhead increase, the droplet 

placement accuracy decreases.  The magnitude of this inaccuracy, though, is dependent on the ejection 

speed of the droplet.  Given that DOS measurements of the 2.4 v/o PAA binder droplet using this 

waveform with the Siemens PT-88S indicate an ejection speed of 3.6 m/s, the effect of such a relatively 

large separation distance may be negligible, although for general vector DOD experimentation the 

recommended distance should be 500 microns.  After Piece 8 is used for calibration, this source of error is 

removed, and the maximum distance between the powderbed and the printhead is reduced.  The z-axis 

calibration, however, is also affected by differences in sample height resulting from the sanding process.  

This variability occurs because each top surface is removed separately instead of sanding all samples at 

once.  Fortunately, despite the potentially severe consequences of these errors, the extraction of these 

vector DOD prints provides useful results for analysis. 

 

2.4.4.3. Extraction of Printed Layers 

The process of extraction for these four experiments is the same as that conducted for the vector 

prints onto unsanded alumina powderbeds (see Section 2.4.3.3).  First, the four samples, Pieces 6, 7, 9, and 

10, are cured and then redispersed in deionized water.  Based on the redispersion problems with Piece 1 

in the first set of experiments, closer attention is paid to the positioning of powderbed samples within the 
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oven by attempting to place all four as close to the center as possible.  The samples are cured for one hour 

in Argon with a temperature range that varies between 147 °C and 149 °C. 

Overall, the redispersion of each piece progresses as expected and in a similar fashion.  For three 

of the four tests using Pieces 6, 9, and 10, the process of powder infiltration, swelling, and subsequent 

cleaning off with a water bottle removes all of the unbound powder in approximately eight minutes, 

leaving a clearly defined printed part for examination.  Unbound powder lodged between the center grid 

lines of Pieces 6, 7, and 9 does not redisperse immediately, but after approximately seven minutes, 

subsequent spraying with a deionized removes the excess powder.  For the largest droplet spacing (40 

µm) SLG2 tested, however, the redispersion of the line structure is not successful. 

For the 40-µm droplet spacing SLG2 design, the internal grid is either destroyed or not clearly 

present during redispersion.  After a significant amount of redispersion around the exterior is complete, 

with the wash bottle cleaning only the exterior portions, parts of the grid structure are roughly delineated 

though not completely redispersed.  Upon subsequent spraying of the center portion, the grid structure 

fails to appear, with only a small corner section remaining intact.  Though it is uncertain whether the 

SLG2 is complete and well-defined prior to extraction, the force of the water bottle spray used to remove 

the final unbound portions of powder is believed to be one contributing factor for the 40-µm droplet 

spacing SLG failure.  Since the droplet spacing almost matches the droplet diameter in air, the binder 

concentration per unit area of powderbed (or percentage overlap) is less than the other samples tested so, 

with the assumption that the binder diameter does not increase significantly upon powderbed impact, the 

effect of any defect or error is more significant compared to a sample with closer droplet spacing.  Of 

course, the strength of this droplet spacing grid structure could also be enhanced with further vector 

DOD binder printing onto multiple layers, which is the next step in terms of developing this 3DP process.   

It is also possible that a different, gentler redispersion method could better preserve the fragile, if 

existent, single-line, single-layer structure.  Another possible contributing factor for effective redispersion 

may depend upon the effects of the sanding process.  In order to prevent extensive damage to the fragile 

powderbed structure, only a minimal amount of the top surface is removed.  Using sandpaper and a Kim 

Wipe to smooth the surface may, in addition to removing alumina, introduce artifacts into the 

powderbed, and this contamination may affect binder-powderbed interactions and thus the final 

properties for the vector-printed part.  Though this possibility does not appear to play a role in the 

redispersion of Pieces 6, 9, and 10, with the low binder concentrations present in the SLG2 of Piece 7, the 

contributions of contaminants, or perhaps even loose powder on the surface, may have affected grid 

development.  The significant printhead-powderbed separation distance for Piece 7 mentioned in the 

previous section may also have played a role by affecting droplet placement accuracy. 
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2.4.4.4. Line Quality of Printed Layers 

From the successful extraction of two SLG designs, one for 20-µm spacing and another for 32-µm 

spacing, measurement of the resulting line widths are performed.  For the 40-µm SLG2, measurements are 

made from fragments that are found in the redispersed powder to evaluate line width potential.  As seen 

in Figure 2.18, the increase in droplet spacing results in a decrease in line width as expected. 

In comparisons of line quality, lines in the 32-µm droplet spacing SLG3 appear to possess more 

uniform linearity than the lines at 22-µm droplet spacing.  Based on this conclusion and the fact that the 

ends of potential lines can be seen in the 40-µm SLG2, it is possible that the line quality is even greater for 

this higher droplet spacing.  In the 22-µm SLG1, the presence of extraneous droplets seen along lines in 

the upper right grid corner may indicate that droplet instability occurred during this stage of binder 

deposition and distorted line development.  It is also possible, however, that random droplets are 

deposited before or after the program is complete (see the explanation at the end of this section).  The 

horizontal lines for the 22-µm SLG1 appear smoother and more uniform than the vertical lines, and based 

on the process of grid definition as described in Figure 2.17, the similarity among vertical lines as well as 

the similarity among horizontal lines should exist.  An experiment to recreate the 22-µm SLG1 may yield 

better results with greater linearity and fewer line defects.  For obtaining small feature, high-resolution 

part definition, the trend suggested by the observed decrease in line width and smoother, more uniform 

line at higher droplet spacings is a promising development.  If the 40-µm SLG2 design is not functional, 

then by considering this trend, an effective range of droplet spacings with increasing line quality can be 

determined between the 32- and the 40-µm level, with 40-µm being the maximum possible spacing, 

although further research is necessary to firmly establish the maximum spacing limitation (refer to the 

following section for an argument refuting 40-µm as the maximum droplet spacing).. 

In comparison with line widths obtained by the standard continuous-jet (CJ) binder printing 

method, these results for vector DOD printing using a specific waveform (4 µs: 8 µs: 1 µs: 100 V) and 

specific printhead (Siemens PT-88S) yield considerably smaller line width measurements that point 

towards the possible advantages of this production process for 3DP parts.  According to measurements 

shown in Figure 2.18, the line widths measured from these experiments range from 140 to 170 microns.  

The typical, continuous-jet printing method for depositing water-based 2.4 v/o PAA binder into an 

alumina powderbed produces an average line width of 350 microns, more than twice the size of the new 

vector DOD process values.  The CJ binder line is formed by using a 40-µm ruby tip nozzle to eject an 80-

µm drop at a speed of 9-10 m/s and a 10-15 µm droplet spacing (equivalent to an 80-90% overlap).  Based 

on the set of performance parameters provided for continuous-jet binder printing, it is obvious that many 

measurements for vector DOD binder printing must still be determined, such as the actual binder droplet 

size upon impact, to understand and improve the performance of the vector DOD printing process. 

 



C H A P T E R  2:  Vector Drop-On-Demand Printing of Tungsten Carbide-Cobalt Tooling Inserts 

107 

�

x

y

��

� �

0.51 cm

0.13 cm 0.13 cm

�

�

�

��

x

y

��

� �

x

y

x

y

x

y

��

� �

0.51 cm

0.13 cm 0.13 cm

��

��

��

 

�

x

y

��

� �

0.51 cm

0.13 cm 0.13 cm

�

�

�

��

x

y

��

� �

x

y

x

y

x

y

��

� �

0.51 cm

0.13 cm 0.13 cm

��

��

��

 
 

 Droplet Spacing: 22 µm  Droplet Spacing: 32 µm  
 Line Width: 160-170 µm  Line Width: 145-150 µm 

 

 

�

x

y

��

� �

0.51 cm

�

�

�

0.13 cm 0.13 cm

��

x

y

��

� �

x

y

x

y

x

y

��

� �

0.51 cm

��

��

��

0.13 cm 0.13 cm  
 

 Droplet Spacing: 40 µm 
 Line Width: 140-150 µm 

Figure 2.18 Pictures and corresponding line width measurements for three sets of the 
vector-printed, PAA binder single-line grid design.  A surrounding square 
base structure is constructed along with an interweaving perpendicular 
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grid to support individual lines (refer to Figure 2.17 for technical details).  
These lines, based on different droplet spacings, are examined for 
definition quality and respective widths.  The superimposed axes indicate 
the printed part orientation relative to the programmed machine tool path 
(the y-axis points towards the milling machine, parallel to the default 
machine y-axis).  Note that the origin is not accurately identified.  From 
qualitative examination of the three line widths measured, the smallest 
linear feature that could be created with vector printing under these 
conditions (printhead, powderbed, and binder) would most likely have a 
minimum width of 140 microns at a 40 micron droplet spacing. 

To verify and test the independence of these experimental results, it would be worthwhile to vary 

the vectoring speed instead of the frequency, which is the determining factor for results shown in Figure 

2.18.  In addition, many other variables can be examined to affect line quality, such as the DOD 

waveform, binder chemistry, or the printhead, all of which would greatly affect droplet performance.  In 

the end, many more aspects of this printing process are opened for development as the result of this 

preliminary study. 

As seen in Figure 2.18, the left portion of the 22-µm SLG1 structure contains a column of grid lines 

still filled with excess powder.  Several factors may have contributed to this incomplete redispersion.  

One possibility may be the presence of a temperature gradient in the oven during the curing that 

increased the temperature in this region and therefore decomposed a significant amount of PEG required 

for redispersion (as discussed in Section 2.4.3.3).  Another possible explanation may be that further time 

or intensive exposure to water is necessary, although it is believed that a thorough attempt is made to 

remove the unbound powder during the extraction process and that further efforts may risk damaging 

the internal grid structure.  Droplet instability or inaccuracies in binder placement that occur from the 

rapid and multiple direction changes specified in the grid design may also have affected this region. 

Furthermore, many other sources of error exist to explain part defects.  One potential source of 

error is the degree of top surface flatness, which is only visually inspected before testing.  The possibility 

of a skew printing surface may affect binder placement accuracy.  One unforeseen error in machine path 

programming may also lead to errant droplet placement.  The final endpoint for the SLG design at (0.8”, 

0.8”, 0.9”) is potentially specified too close to the powderbed so that random drops dispersed through the 

air could be deposited onto the powderbed.  As always, the manual errors in z-axis calibration may 

contribute to errors in droplet placement since the height exceeds normal DOD recommendations.  In 

addition, the errors described in Section 2.4.3.4 still apply to these operating conditions. 

One concern regarding these results is the correlation between measured line widths and 

specified droplet spacings.  As a result of incorrect calibration, the large discrepancy in printhead-

powderbed separation from those intended for normal DOD operation (500 µm) may affect the droplet 

behavior and alter these results.  Changes in impact behavior, relative droplet placement, and velocity 

could all potentially affect line formation in the powderbed.  It is a testament to process and droplet 
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durability that relatively straight and uniform lines are formed under such conditions.  Additional testing 

for verification of these results is nonetheless recommended. 

It is important to note that although these results of line width and quality are not representative 

of WC-Co powderbeds, they portend great potential for future efforts in tooling insert development with 

this printing process. 

 

2.4.4.5. Edge Quality & Surface Finish of Printed Layers 

In a comparison of surface finish between SLG experiments, the uniformity and smoothness of 

each square support frame appear identical.  In one sense, this result is expected since the appearance of 

this top surface is determined in part by the powderbed preparation process (refer to Section 2.4.4.1).  

Nevertheless, another factor that determines the cohesiveness of this surface is the droplet spacing.  If the 

spacing between droplets is too large, then insufficient binder merging occurs and the resultant surface 

finish is affected because unbound sections between droplets redisperse and leave pockets.  Based on the 

MasterCAM specifications, one parameter remains constant between all experiments in this section: the 

line spacing of 22 microns.  With this setting, the consecutive droplet spacing is varied for each of the SLG 

designs by changing the frequency.  This difference in spacing between consecutive droplets and 

neighboring line droplets creates a dimensional variation for comparison.  For Piece 6 - SLG1, the line 

spacing x consecutive spacing setting is defined as 22 µm x 22 µm.  For Piece 7, SLG2, the values are 22 µm 

x 40 µm, and for Piece 9, SLG3, 22 µm x 32 µm.  Since the square support frame for Piece 7 appears solid, it 

follows that a 40 µm x 40 µm setting, or 40 µm line spacing, should also work since a pattern of empty 

regions would have resulted otherwise.  This reasoning establishes the basis for re-testing the 40-µm SLG2 

design on another sanded alumina powderbed and indicates that a different approach to redispersion 

may be necessary to preserve the single-layer grid structure. 

A more effective measure of surface finish is the result of printing multiple layers and examining 

the qualities of the interface between layers to form a solid surface.  This third dimension is not currently 

available with vector DOD printing using this setup, although by studying the layer depth and how it 

corresponds to droplet spacing, valuable insights into multi-layer slurry and binder deposition is 

possible.  This information should help improve the inter-layer surface finish when multiple layers can be 

processed.  The problem with examining multi-layer results is that the surface finish of the printed layer 

would exhibit the effects of linear, slurry-rastering as seen in Figure 2.15 and Figure 2.16 if current slurry 

printing technology is used.  This type of surface, as seen in the previous experimental results, can 

interfere with smooth edge definition and proper binder merging.  Until the layer surface finish is similar 

to those approximated in Figure 2.18 and Figure 2.19, the evaluation of surface finish between multiple 

powderbed layers may prove difficult or, if compared to this current state, at the very least disappointing. 
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The comparison between the two equivalent square blocks produced with vector DOD printing, 

one using a sanded powderbed and the other without, shows considerable improvement in surface finish 

and linear edge quality in the sanded alumina sample.  Both vector printed squares have accurate overall 

geometry, and both exhibit distinct corners with the starting corner at the lower left of Figure 2.16 and 

Figure 2.19 having the most agglomeration of binder, which is expected from the defined tool path and 

the lack of DOD printing control.  The edge quality of the sanded alumina square block is considerably 

better than the unsanded alumina square block, whose edges are highly influenced by the variation in 

powderbed height and corresponding droplet placement.  Closer examination of both blocks shows that 

the sanded alumina sample still has some irregularity in edge definition (refer to � and � in Figure 2.19), 

most likely attributable to droplet instability, but the unsanded alumina sample even has regions where 

powderbed height prevents the vector and raster-fill sections from merging (refer to � and � in Figure 

2.16). 

Edge quality among the SLG designs all appear good with little variation between droplet 

spacing samples.  All SLG designs exhibit defects along the external perimeter, but the z-axis depth of 

these edge defects differs with the 40-µm SLG2 showing the thinnest layer depth and thinnest defects.  In 

contrast, examining corner � of the 22-µm SLG1 and corner � of the 32-µm SLG3 indicates that these 

print conditions have a degree of associated thickness in the powderbed that increases in regions where 

droplets aggregate (defect regions).  It is expected that corner � of all SLG designs and the square should 

have a some defect, since the vector trace begins and ends in this region.  With a continuously running 

printhead, it seems likely that droplet collection would occur in this region.  For the 22-µm SLG1, this 

defect is surprisingly not observed. 

The issue with edge quality for vector DOD printing, as observed in the results of these tests, is 

the sharpness of corners.  The three SLG designs and the square block all clearly exhibit roundness at 

corner interfaces, though not for every instance.  Corner � for the 22-µm SLG1 and 32-µm SLG3 both 

appear reasonably sharp.  The remaining corners, even the internal corners of the SLG grid structures, all 

exhibit a rounded shape, which is believed to be a function of the deceleration error in milling machine 

speed.  The exact relationship of this behavior is not known; a recommended experiment to assess this 

effect is to vector trace, consecutively several times to preserve the line structure, only the external 

geometry of a shape with sharp corners.  This test may provide greater insight, if the other vector DOD 

printing variables can be controlled.  By comparing the sanded alumina samples with the square block 

from the unsanded alumina powderbed, the square with surface texture appears to have better corner 

definition.  This corner sharpness may be the result of better z-axis calibration (closer to 500 µm) for these 

prior set of experiments.  Since the powderbed-printhead separation varies and tends to be closer to 1 

mm for these sanded alumina samples, errors introduced by this distance may play a role. 
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Figure 2.19 Pictures demonstrating the edge quality and surface finish for a vector-
printed, PAA binder square into a sanded alumina powderbed.  For 
comparison, all printing parameters are equivalent to those used in Figure 
2.16.  The superimposed axes indicate the printed part orientation relative 
to the programmed machine tool path (the y-axis points towards the 
milling machine, parallel to the default machine y-axis).  Note that the 
origin is not accurately identified.  Mild sanding and buffing of the top 
powderbed surface removes the uneven remnants of the linear slurry 
deposition process and prevents the consequential edge variation 
depicted in Figure 2.16.  Thus, the edge quality and surface finish are 
independent of the slurry deposition process and more clearly illustrate 
the effect of the vector printing parameters (i.e. vector speed, droplet 
frequency, droplet separation, etc.). 

The surface finish of all powderbed samples, Pieces 6 to 10, appear smooth to a great extent.  The 

remnants of powderbed preparation are occasionally evident when observed on a smaller scale.  The 

roughness in the surface finish of these alumina samples primarily comes from the sanding process used 

prior to vector DOD printing.  Random scratches throughout the powderbed layer, seen in the corner 

close-ups of the square block in Figure 2.19 and the internal grid structure of the 32-µm SLG3 in Figure 

2.18, appear as a result of the polishing process with 1200-grit sandpaper and subsequent buffing with a 

Kim Wipe.  These surface defects cannot be completely removed using the manual polishing methods 

and the level of visual inspection available for processing.  Smoothing the surface completely by sanding 

would be inordinately time consuming and likely impossible.  The distinct presence of these scratches 

under magnification indicate that these random pits and grooves may influence the printed part quality if 

they are severe, especially as seen in the large scratch of the grid in the 32-µm SLG3; therefore, it is 
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recommended that even higher grit sandpaper be used in the future for “powderbed preparation,” or 

removal of the top surface, to minimize the effect of random surface scratches. 

Refer to previous discussions throughout Section 2.4.4 for details on other possible explanations 

for defect formation, which inevitably affect edge quality and/or surface finish. 

 

2.4.5. Summary of Vector Drop-on-Demand Printing Experiments 

The implementation of vector drop-on-demand printing for production of 3DP parts is explored 

based on the parameters for stable droplet generation and the functional assembly of equipment for this 

purpose.  Eight vector DOD printing experiments are performed in two sets of four. 

F I R S T  E X P E R I M E N T A L  S E T  

• Five single lines with different droplet spacings (speed variation) 

• Five single lines with different droplet spacings (frequency variation) 

• Square block with horizontal linear raster fill 

• Tooling insert with 130° linear raster fill 
 

S E C O N D  E X P E R I M E N T A L  S E T  

• Single-line grid design with support frame for 22 µm/drop spacing 

• Single-line grid design with support frame for 40 µm/drop spacing 

• Single-line grid design with support frame for 32 µm/drop spacing 

• Square block with horizontal linear raster fill 

The design of experiments started first from the desire to determine line widths of the Siemens 

DOD printhead droplets onto alumina.  Initially, slipcast powderbeds are used to evaluate DOD printed 

lines on the Droplet Observation Station.  After the standard curing process for alumina powderbeds, 

redispersion attempts on these slipcast samples failed.  Changes in slurry composition, such as the loss of 

the redispersant PEG, that occur from the slipcasting process may have affected the processing of these 

samples.  In order to create more functional, reliable powderbeds, a standard 30 v/o alumina slurry is 

jetted on the Hood Machine to create two powderbeds composed of ten borous silicate substrates (five 

per powderbed) that are used for the eight vector DOD experiments.  In addition, the Siemens PT-88S 

functions as the DOD printhead with stable droplet formation conditions determined in the previous 

Section 2.3.  The original printhead parameters (4 µs: 8 µs: 1 µs: 97 V) are adjusted to slightly higher 

voltage levels for each set of experiments to achieve the maximum stable droplet condition. 

The first set of experiments attempt to produce single lines, a square block, and a tooling insert to 

evaluate vector DOD printing.  The vector drop-on-demand setup developed and evaluated in Section 2.2 

is used with a few changes: the removal of the micro switch DOD control, the use of a gold-plated orifice 

plate, and the addition of a droplet visualization system.  The Siemens PT-88S printhead is employed as 

the DOD mechanism for depositing the water-based 2.4 v/o PAA binder into the slurry-jetted alumina 

powderbed.  The first four experiments above are conducted.  The tooling insert geometry fails to 
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successfully complete the raster-fill procedure.  After curing and attempted redispersion, the two sets of 

five single lines fail to survive the extraction process.  The square and tooling insert are successfully 

removed from original powderbed substrate, but exhibit dominant slurry line artifacts that make it 

difficult to distinguish the effects of vector DOD printing.  Some useful data is obtained.  The consistency 

of droplet placement by the Siemens printhead is evidenced by the periodic line oscillation along edges 

perpendicular to the jetted slurry line.  These experiments also confirmed that a 44 micron binder droplet 

size estimate, based on calculations for droplet diameter in the air while neglecting powderbed 

interaction, and a 50% overlap or 22-micron line spacing are sufficient for merging portions of an alumina 

powderbed to form a solid shape.  Throughout the experiments, DOD printhead is fairly reliable based 

on the effective waveform geometry and frequencies used.  Once an equilibrium droplet formation 

condition is established the printhead remains in continuous operation for the duration of the 

experiments.  From these experiments, the performance of the droplet generation conditions are 

validated, but the possibilities for random instability and errors are still present as indicated by defects 

along edge of printed parts.  One defect that is specifically related to the slurry-jetted powderbed lines is 

the incomplete merging between the vector and raster-fill printing steps caused by the powderbed height 

variation.  Due to problems with individual line extraction and the prevalence of slurry-based 

powderbed effects on printed part quality, another series of experiments are performed with  appropriate 

adjustments.  The top surfaces of the alumina powderbeds are sanded to create a smooth substrate that 

will illustrate the effects of vector DOD printing effectively.  In addition, a new grid structure is 

developed to support and preserve individually printed lines for subsequent line width measurement. 

The second round of experimentation examines the relationship between droplet spacing and 

line width using the Single-Line Grid (SLG) design and evaluates the general performance of vector DOD 

printing by repeating the square block geometry for comparison.  Powderbed preparation involves 

sanding the powderbed top surface with 1200-grit sandpaper, buffing with a Kim Wipe, and finally 

removing excess powder with air.  The same vector DOD setup from the previous experiments is used.  

The four tests are completed successfully, but calibration of the z-axis origin proves fairly inaccurate, with 

a distance between printhead and powderbed ranging from 500 to 1500 microns, with distances closer to 

1 mm likely.  The distance calibration error more than likely contributes to errors and defects in the 

printed parts, but results still provide useful data.  Redispersion of the 40-µm/drop SLG causes grid 

structure to fail; the reason for this failure could be from binder weakness, line defects, or redispersion 

method.  The most significant result is the measurement of line width for vector DOD printing of the 2.4 

v/o PAA binder, which ranges from 140 to 170 microns based on the grid structures of the three SLG 

designs.  The possible error in correlating measured line width with set droplet spacing prompts further 

testing to be performed.  Using the sanded alumina powderbeds, vector DOD printing quality is clearly 

evident.  Comparing line width measurements, the continuous-jet binder printing produces lines widths 
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of 350 microns while vector DOD printing form lines with less than half this dimension.  Lines possess 

good linearity; similarly, edge definition also good, except for corner sharpness.  This lack of precision 

may be the result of deceleration effects of the milling machine.  These general results for vector DOD 

printing bode well for the future production of high-resolution, small feature parts.  The application 

towards WC-Co tooling inserts will be possible once slurry-binder issues are resolved. 

Many possible factors contribute to vector DOD printed part errors.  Defects and random 

droplets observed in the grid structure and along edges for the second set of experiments may be caused 

by incorrect z-axis calibration.  In addition, potential deviations in powderbed flatness as the result of 

sanding may lead to droplet placement errors.  One major contributor is droplet instability (refer to 

Section 2.3 for discussion of its complex contributing factors).  Vibrations or disturbances from the 

Bridgeport milling machine, especially the spindle motor, influence droplet placement during testing.  

Inaccuracies in milling machine movement also lead to possible errors in geometry or droplet 

accumulations in one region.  Since the powderbed is not firmly mounted onto the milling machine, 

possible movements during testing could introduce errors.  Finally, since the Siemens PT-88S printhead is 

continuously operating, random droplets are likely to be deposited when beginning or ending an 

executed machine program. 

Several recommendations are suggested for further development in this area of vector drop-on-

demand printing for 3DP part production.  The research performed by Vedran Knezevic relates to binder 

droplet placement strategy in slurry printed powderbeds [21].  By examining the effects of the droplet 

deposition process as discussed by Knezevic, such as performing an iterative construction of the vector 

trace by merging multiple droplet segments, it may be possible to further improve part quality.  In order 

to improve reliability for the experiments conducted, the micro switch DOD control is not implemented 

for binder-based DOD printing.  Incorporation of this feature is recommended once droplet stability is 

better understood in order to achieve full vector DOD functionality.  The use of a gold-plated orifice plate 

to reduce corrosion from PAA does not affect the operating performance of the Siemens printhead during 

experimentation.  The corrosive effect of PAA on the coated orifice plate has not yet been assessed, so 

analysis of the current orifice plate condition will provide a valuable measure of effectiveness for the 

gold-plating.  Furthermore, material analysis of the Siemens orifice plate will improve understanding of 

potentially reactive chemistries and provide possible methods to eliminate or mitigate corrosive effects.  

Finally, when the technical issues have been resolved, the process of producing 3-D parts with vector 

drop-on-demand printing should be examined. 
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3.1. SUMMARY OF WORK  

In reference to the long-term goal of manufacturing WC-Co tooling inserts by Three Dimensional 

Printing, three fundamental steps required for  successful implementation are examined: 

 

• Tungsten Carbide-Cobalt slurry development  

• Tungsten Carbide-Cobalt powderbed production 

• Vector drop-on-demand printing of Tungsten Carbide-Cobalt tooling inserts 

 

The initial two objectives are performed in conjunction with the assistance of another colleague.  

The first requirement for producing a part from sub-micron powder is to develop a stable, jettable slurry.  

Two different approaches are considered: (1) water-based slurries composed of WC powder only with Co 

salt as a binder and (2) alcohol-based slurries using WC-Co powder and an organic binder.  For each type 

of system, a dispersant is necessary to suspend the powder particles in solution to prevent flocculation.  

Various measurement, such as settling density and viscosity, are made to evaluate the stability of each 

slurry chemistry.  Based on the rate of progress with these two approaches, the decision is made to focus 

on alcohol-based slurries.  The most effective dispersant evaluated up to this point is Emphos PS-21A.  

Further developments after the conclusion of this research alter the dispersant selection and are discussed 

in Section 3.2.  As stated previously in the Section 1.6, detailed information concerning the development 

of a stable WC-Co slurry can be found by referencing the Diplomarbeit document by Olaf Dambon [18]. 

Once a jettable, alcohol-based slurry is developed, relevant parameters are examined in an effort 

to produce smooth, uniform powderbeds.  To devise an effective powderbed formation process requires 

an understanding of the relationship between slurry dwell time, line spacing, flow rate, and its effect on 

powderbed development.  In the end, functional parameters are optimized to produce a smooth, uniform 

powderbed structure.  Once again, for extensive data and analysis of these issues, refer to the 

Diplomarbeit document by Olaf Dambon [18]. 

The primary focus of this thesis relates to the third objective, vector drop-on-demand printing.  

To investigate this possibility, three steps are taken.  Each process step is covered in a major subsection of 

Chapter 2.  First, an effective combination of equipment is assembled to perform the required functions.  

The capabilities and limitations of this setup are then evaluated.  The problems identified are addressed 

or compensated for.  From Section 2.2, the nominal operating conditions for this setup are then 

characterized, and the next step is initiated.  The vector DOD setup consists of a Bridgeport Series I EZ-

Trak DX milling machine for vector movement, a Honeywell micro switch for DOD control, a function 

3 
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generator for frequency specification and initial waveform generation input, a camera-LED system for 

verifying printhead operation, and two different DOD printheads.  A Hewlett-Packard 51626A Inkjet 

printhead is utilized initially for analysis of equipment performance.  The printhead is connected to the 

quill of the milling machine and traces shapes described by machine programs designed to simulate 

vector motion.  Output from the HP printhead is recorded as ink on paper.  Through this work, the micro 

switch control is successfully implemented with the addition of a switch debouncing circuit, and a 

limitation in vectoring speed is identified for the Bridgeport milling machine.  A series of geometry 

experiments are conducted with CNC programs developed natively on the Bridgeport and later, with the 

implementation of raster-fills, using MasterCAM software.  The visualization system is developed by 

using a circuit to adjust LED brightness and delay for droplet imaging on the milling machine.  After 

developing a functional configuration for vector drop-on-demand printing, the efforts to generate a stable 

droplet using the Siemens PT-88S printhead and various binder systems is pursued and covered in 

Section 2.3.  The variables affecting droplet formation, including binder viscosity and surface tension, 

waveform timing and voltage, droplet frequency, and various other factors, are examined to find a 

correlation between these settings and a steady droplet state.  Through many tests using the Droplet 

Observation Station to check various conditions, a better understanding of the relationship between the 

printhead and its parameter settings is obtained, though many questions remain unanswered.  By far, the 

complex nature of drop-on-demand droplet generation warrants further research.  In the end, a stable 

waveform geometry based on timing and voltage is established for the water-based 2.4 v/o PAA binder 

and the Type “B” colloidal silica binder.  After stable droplet formation parameters are established, vector 

DOD printing of 2.4 v/o PAA binder into alumina powderbeds is conducted and is discussed in Section 

2.4.  The two prior studies are integrated and multiple alumina prints are generated for analysis.  Two 

different sets of experiments are conducted, one with normal, as-jetted alumina powderbeds and the 

other with sanded alumina powderbeds.  The final results of these experiments provide a good 

comparison for the effectiveness of binder-based vector DOD printing versus standard 3DP part 

production methods. 

The important conclusions from this research include: (1) the printing of the first 3DP vector 

printed parts using 2.4 v/o PAA binder with alumina powder, (2) the development of a highly 

functional, though speed limited, vector drop-on-demand printing configuration using the Bridgeport 

milling machine for vector motion and either a HP inkjet or Siemens printhead for DOD printing, (3) the 

analysis of DOD droplet generation parameters and the determination of a fairly stable waveform & 

voltage operating condition for two binder systems using the Siemens PT-88S printhead, and (4) the 

production and measurement of vector DOD binder printed individual lines from the PAA and alumina 

system, whose line widths are considerably smaller (140-170 µm) than conventional 3DP binder printing 

methods (350 µm). 
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The major issues that need to be resolved include: (1) the lack of a slurry-printing component for 

the vector DOD configuration to allow for multiple layer analysis, (2) the powderbed surface texture so 

that the highly anisotropic line features from slurry deposition do not dominate the surface finish and 

edge quality of printed parts, (3) the milling machine limitations of speed and programming so that 

higher production rates and more complex geometries can be effectively tested, (4) droplet stability 

analysis and optimization, which will lead to reliable implementation of the micro switch DOD control 

function, and (5) the limited development of vector DOD printing applications at this point.  In terms of 

studying WC-Co tooling insert part production, further development of the slurry-binder system is 

necessary due to redispersion and binder interaction issues and afterwards must be followed by stable 

droplet formation analysis for DOD printing of the binder. 

 

3.2. RELATED DEVELOPMENTS &  PROGRESS  

Several important projects are concurrently under development that relate to the future direction 

of this research.  One vital study involves revisions to the WC-Co slurry & binder formulation to increase 

compatibility and facilitate redispersion.  Chosen based on experiments conducted by Olaf Dambon [18], 

the non-aqueous dispersant Emphos PS-21A was later shown to be reactive with the WC-Co powder so it 

was replaced.  The current dispersant, Polyvinylpyrrolidone (PVP), and binder, Polyacrylic Acid (PAA) 

with Glycerol, react to form a incompatible gel.  A new dispersant, known as Zephrym, does not react 

with the PAA binder but does not exhibit effective redispersion characteristics.  Due to the difficult and 

complex task of developing this slurry-binder system, ongoing research involves investigating new 

dispersants, addition of redispersant(s), or binder systems that do not require curing.  Another related 

development is the design and construction of a TDK Slurry-Vector Printing Machine currently 

underway.  This machine implements multiple new approaches to 3DP part production.  The slurry 

deposition mechanism consists of a spring-actuated, fast rastering arm that moves slurry across the 

substrate at a rate that allows lines to merge into a smooth uniform layer.  The machine will also 

incorporate eight DOD nozzles currently being developed by Hiro Tsuchiya.  The primary application of 

this new tool will be for electronics-related 3DP research.  The possibility of conducting vector DOD 

printing experiments with WC-Co will also exist.  Finally, the progress of 3DP tooling insert development 

will continue through experiments with the conventional slurry-binder printing tool known as the Hood 

Machine.  Using this functional 3DP machine to study slurry jetting and binder printing conditions will 

provide a valuable foundation for future work once a slurry-jetting, vector DOD printing machine is 

available. 
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3.3. RECOMMENDATIONS FOR FUTURE WORK  

From the discussion and analysis of the experiments performed in this research, various 

questions and concepts are posed that may warrant further investigation.  The following 

recommendations are drawn from the innumerable considerations and ideas that follow from conducting 

such preliminary research.  The process of vector printing the exterior profile is assumed to require 

multiple passes with slight changes in scale to adequately define the geometry.  Currently, the number of 

passes used is four, though this choice is somewhat arbitrary.  Research into determining the effects of 

each vector pass will provide a better understanding of how many are necessary and the benefits each 

contributes to the final part quality.  Beyond the number of passes, the vector definition process can be 

done either from the exterior to the interior of the shape by gradually scaling down or vice versa.  A 

comparison of these possibilities is also recommended to determine which method provides the best 

resulting edge definition.  Many issues and variables, in addition to those outlined in Section 3.1, can be 

investigated to further the understanding and optimization of vector drop-on-demand printing for 3DP.  

These possibilities have been discussed throughout Chapter 2.  One complex and highly variable aspect 

of this process is droplet generation and its corresponding parameters, such as waveform geometry and 

binder chemistry, both of which have numerous possibilities for adjustment.  Another important 

consideration is the sequence of vector profiling versus interior raster fills.  In terms of continuing the 

study of vector DOD printing of PAA binder into alumina, the size of a primitive drop size should be 

measured as well as the depth of infiltration.  Eventually, it would be valuable to extend the examination 

of vector DOD printing from a single layer to a fully three-dimensional part to study its surface, edge, 

and line characteristics.  In the end, the production of WC-Co tooling inserts through 3DP vector drop-

on-demand printing would be the most worthwhile development. 
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