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Abstract

An automated software system has been developed to allow robots to learn a gener-
alized motor skill from demonstrations given by a human operator. Data is captured
using a teleoperation suit as a task is performed repeatedly on Leonardo, the Robotic
Life group's anthropomorphic robot, in different parts of his workspace. Stereo vi-
sion and tactile feedback data are also captured. Joint and end effector motions are
measured through time, and an improved Mean Squared Velocity [MSV] analysis is
performed to segment motions into possible goal-directed streams. Further combina-
torial selection of subsets of markers allows final episodic boundary selection and time
alignment of tasks. The task trials are then analyzed spatially using radial basis func-
tions [RBFs] to interpolate demonstrations to span his workspace, using the object
position as the motion blending parameter. An analysis of the motions in the object
coordinate space [with the origin defined at the object] and absolute world-coordinate
space [with the origin defined at the base of the robot], and motion variances in both
coordinate frames, leads to a measure [referred to here as objectivity] of how much any
part of an action is absolutely oriented, and how much is object-based. A secondary
RBF solution, using end effector paths in the object coordinate frame, provides pre-
cise end-effector positioning relative to the object. The objectivity measure is used
to blend between these two solutions, using the initial RBF solution to preserve qual-
ity of motion, and the secondary end-effector objective RBF solution to increase the
robot's capability to engage objects accurately and robustly.
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Title: Assistant Professor

Thesis Supervisor: J.J. Slotine
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Chapter 1

Introduction

1.1 The Scenario

A robot is being sent into space to repair part of the Hubble telescope. NASA decides

that the mission is too dangerous to risk such a long EVA [extra vehicular activity,

or spacewalk] for a human, so either a robot must complete the task, or the Hubble

will become useless within a few years. In order for the robot to successfully fix the

Hubble telescope, precise grasping of bolts, holding of drills and other tools, placement

and unscrewing of nuts, and in general, a dexterity rivaling that of a human, are all

required.

The only current method of perfoming such tasks [assuming the robot is mechan-

ically capable of them] is through teleoperation. Teleoperation involves a motion

capture device, typically a type of body suit worn by a human. This suit records

the motions that a human makes, and through software, can control the robot to

mimic the agent's movements. Currently, this is the method by which a robot will

fix the Hubble Telescope. As long as the human is capable of performing the exact

movements necessary, the robot will do the same and successfully complete the tasks

at hand.

However, teleoperation is known to be extremely exhausting for the operator.

Professional teleoperators cannot typically work more than an hour or so at any time.

So, how can we improve this situation and allow a robot to work autonomously, but
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still perform the tasks that need to be done as if a human were present herself?

1.2 Learning by Demonstration

The major next step is to create robotic systems that can learn by demonstration.

That is, by showing a robot how to accomplish an activity in certain specific instances,

the robot generalizes the actions, and can then perform them successfully under a

variety of circumstances. This is one example of imitation learning, much research of

which has been done in the last decade. However, there is no easy metric by which to

gauge pure imitation of motion, except human perspective. Most of the time a direct

reflection of behavior can appear quite convincing, so there is no easy way to tell how

well the imitation is really being done.

Object manipulation adds a new facet to this problem that: it allows a better

measure of a robot's ability to learn tasks in general . Typical imitation tasks are

open-loop tasks, in that there is no direct feedback on the system, whereas object

manipulation tasks are closed-loop. A robot can either successfully interact with an

object or it cannot [for example, it can pick up a ball or it can't]. And by a variation

of interaction tasks, one can easily gauge the ability of the robot to perform a task.

Task imitation, even for object manipulation tasks, is quite easy, in the specific

sense. Recording a set of joint angles of a robot over a time series and simply play-

ing those joint angles back with a well designed control system has been employed

by many industries, including Hollywood, manufacturing, performance art, etc, for

decades. However, the ability to interact with objects in a general way, where the

robot has only seen specific instances of interaction and must generate different but

similar behaviors, is still a nascent research field. And therein lies the main research

problem - what does it really mean to be similar to something? Questions like this,

and answers to them, are the subject of this work, and arguably form the kernel of

larger artificial intelligence research.
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1.3 Previous Work

Much work has been done exploring robotic imitation. It is available in widespread

literature. Below are some descriptions of current work in the field, contrasting the

work done in this research, and reasons for deviations from others' work.

1.3.1 Stephen Schaal, Rizzolatti, Mirror Neurons, and Imi-

tation Learning

Stephen Schaal [31] has focused on recent developments in the field of learning through

imitation. Algorithms for making robots human-like are not yet truly able: a learning

approach is necessary to avoid the need to hard code every human-like behavior

or teleoperate a robot through every task. Learning typically proceeds by trying

different actions, and feeding back a reward based on performance, which alters future

actions. There are exponentially many options for a large degree-of-freedom robot

to proceed through time, so "it is necessary to either find more compact state-action

representations, or to focus learning on those parts of the state-action space that

are actually relevant for the movement task at hand." Schaal states that compact

state-action representations "will be shown to be a natural prerequisite for imitation

learning in the form of movement primitives."

Babies were shown, by researchers such as Meltzoff and Moore, to possess the

ability to imitate facial expressions, even without having seen their own faces, which

led many to believe that imitation, an ability not possessed by even many higher

mammals, was in fact an expression of higher intelligence. Rizzolatti and others

found that specific neurons that were correlated with certain goal related movements,

such as 'grasping-with-the-hand', and that some of these neurons were active during

entire sequences of an action, rather than just subsequences. This prompted some

to connect certain neurons with entire motor acts or schemas. Furthermore, some

neurons were found to fire when the animal was executing an action, as well as when

observing the action. This spawned the notion of mirror neurons, which has direct

consequences for imitation theories, as one mechanism is possibly responsible for both
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observation and then reenactment of these goal directed movements.

There are several common approaches to imitation learning. The first is direct

learning of a control policy, which usually involves the knowledge of how to turn a

task-level command [such as 'accelerate the finger'] into a motor level command [such

as 'move the shoulder motor at a certain velocity, etc.']. This has the advantage of

not relying on knowledge of the teacher's goal, however, unless an explicit method

of reward is defined, no self-improvement is possible. A second approach is learning

from demonstrated trajectories. This typically involves a user explicitly defining a

goal criterion, which is then used by a robot with an initial set of trial data to make self

improvements until the goal criterion is reached, through several iterations. A third

progression is learning from model-based imitation. This involves approximating

the dynamics of a task by a forward model, although so far, this has tended to

prove a fragile method of learning. Consensus has only been reached insofar as to

determine that imitation research must involve a theory of motor learning, action

representations, and the connection between perception and action [31].

1.3.2 Baird and Baldwin: Early References

In 2001 Baldwin and Baird [8] were one of the first to pinpoint the need to discern

intention in human actions. They pinpointed several locations of important data - for

example, the gaze direction of the human performing the task indicates much about

intentionality [incorporation of that sort of data is currently beyond the scope of this

work]. They stated the fundamental research goal of this research: "What kind of

information about intentions and intentionality is actually available in the surface

flow of agents' motions?" They believe that "exactly what the relevant statistical

patterns of motion are, how predictive of intentions they really are, so forth - is a

truly important topic of future investigation." They also state that some parts of

that research goal are impossible by definition to observe from the outside of the

agent performing the action: "One can carry out a variety of actions to fulfill a

given intention, and a given action is consistent with a variety of possible intentions."

Thus, in some senses, there will always be parts, in the mind of the agent, that will
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determine the true intentions of an action. The goal of this research is to see to what

extent we can separate those intentions out, working specifically on joint movement.

1.3.3 Motion Segmenting

One section of this paper deals with segmenting motion by intentional boundaries, a

topic that has been explored in many different paths by many different researchers.

Matarid [23], in work done by himself and other work along with Jenkins [19] have

explored the use of the mean-squared velocity of joints as a technique by which to

segment motion along intentional boundaries. This work is further described below

so an analysis will be left until then. Matarid and Jenkins, however, analyze these

segments with an alternative technique, which has taken favor recently in the robotics

community, known as PCA, or Principal Components Analysis. Basically, instead of

using joint angles as the fundamental basis set by which to measure motion, PCA seeks

to find the minimal energy basis set that can be used to represent the motions at hand.

This has the advantage of presenting a simpler view of the data; however, the desire of

this research was to try to gain an impression of how well a simple and straightforward

representation of the data, not relying on PCA or similar analyses that cloud original

data, could accomplish the task of motion segmentation and generalization. During

some of Matarid's research, with Nicolescu, they performed a similar task learning

analysis on a higher level [25], involving a robot traveling along a large stage with

different objects in its path, and learning from several trials, the general path approach

and actions to be performed at different locations [23, 19, 5, 26] . Much research has

been focused on solely the problem of input motion segmenting and reconstruction

using lower dimension representations. This work seeks to circumvent that path,

using straightforward techniques to not only reconstruct original paths of motion,

but to generalize to new novel motions. Other researchers such as Tennenbaum et

al [20] have sought to combine PCA with multidimensional scaling [MDS] to further

this research, in the last several years. Other alternatives have been explored by

researchers such as Kulbacki et al [22]. Some research has been applied to discrete

systems, using laws of entropy and information theory analysis to segment text into
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words, for example [27], with quite amazing results, without the knowledge of any

language-specific information. It is of note, that none of the papers found ever dealt

with error tolerance in motion segmentation, e.g. spurious data points and the careful

selection of the proper markers - all of these assume that the motions were similar

enough when performed that they would be segmented properly; however, it was found

with our robot early on, that this is not always the case, especially when performing

an action at different locations in space. Therefore much time was spent on the

improvement of previous work to build a more robust segmentation method, in the

use of statistical markers, as well as in spurious data point selection and correction.

1.3.4 Teleoperation

Several researchers have employed teleoperation of different sorts, to try to accomplish

motion segmenting and more generally, for learning by robots. Some have employed

optical motion tracking systems [5], but the majority have [in recent past] employed

the use of some sort of teleoperation suit, which is worn by the user and measures joint

angles by potentiometer feedback [16, 15]. Researchers like Hoshimo focus specifically

on viewing the angles in the frequency domain instead of the time domain, in order

to mix different emotional stylings of motions together for variations [typically for

use in animated character development].

Andy Fagg at University of Massachusetts Amherst has done much teleoperation

based research [29], focusing mainly on extremity use for grasping tasks. As can

be imagined, even one specific task, at a high level of detailed viewing, contains

many advanced problems, and this current research would only propose a first step

toward a generalization of actions that would successfully accomplish object grasping.

Primary concern in his research focuses on tactile feedback, using measures of high

density tactile feedback to generate object properties, and to use these properties to

apply a generalized grasping technique to a specific instantiation [28]. Much of this

research extends the idea of using a single geometrical control law to define a grasp,

instead applying multiple control laws to be active simultaneously, resulting in more

robust grasping techniques. This research was primarily performed on Robonaut, as
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well as the Upper Torso robot at the Laboratory for Perceptual Robotics.

1.3.5 Robonaut

The most similar research currently being performed on learning through teleopera-

tion involves Robonaut, the humanoid robot currently under development at NASA's

Johnson Space Center. Robonaut was built with the intention of being able to replace

human astronauts for EVA tasks, which occur in harsh or dangerous environments for

astronauts, such as in the vacuum of space. Robonaut has a complex enough mechan-

ical system that it is capable of performing highly dextrous tasks such as repairing

features on spacecraft, grasping human tools such as a drill, and accurately using

these tools. However, operating such a robot under teleoperation has been shown

to be a very mentally and physically strenuous task for a human' [16]. Robonaut

employs thermal, position, tactile, force and torque instrumentation, to use as sen-

sory feedback for task learning and analysis. Its arms alone possess over 150 sensors

each, and its body comprises 47 degrees of freedom. Special design was employed

specifically for the harshness of the space environment. Roughly thirty people work

directly on the Robonaut project at NASA, and many researchers including those at

the Robotic Life Group, develop algorithms and techniques with the goal of eventual

implementation on Robonaut, for future space missions.

Peters et al [16] have researched the specific task of Robonaut learning through

teleoperation. Much of their current research overlaps with research performed in this

paper. Specifically, they first analyze teleoperation data to segment it into known in-

tentional boundaries, and then try to combine those into a canonical motion describing

the action. In earlier work, during segmentation of motions using a mean-squared

velocity analysis [described below], they were required to manually add another pa-

rameter for the specific type of motion being employed, in order to gain correct

segmentation. The work also required manual selection of thresholds. This current

'Any reader not convinced of this is encouraged to drop by the Robotic Life Group's lab and don

the teleoperation suit, to teleoperate Leonardo [our robot] for a couple of minutes, and determine if

you feel any differently.
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work seeks to rid the need of any manual changes for any action, in terms of thresh-

olds and parameters, to thus create a learning system that in the future becomes fully

autonomous.

1.4 Possible Approaches

This research is still in its infancy. No huge leaps have been accomplished, and many

people are still applying fundamentally different strategies to solving these problems

- no one good solution has yet been demonstrated. Below are a brief description of

some of the techniques researchers have been attempting to apply to this context.

Generally the research problem involves interpreting data that is never perfect, and

then interpolating and extrapolating from those data points, to new points that must

be defined somewhat loosely. When a human agent teleoperates a robot, and tries to

do exactly the same thing multiple times, he behaves slightly different each instance.

All of these instances could still be said to be 'correct'. Therefore, to properly analyze

these situations we need techniques that specialize in 'noisy data,' and can analyze

this data in a useful manner. Many types of statistical learning techniques exist

to accomplish these tasks, including hidden markov models, bayes' nets, and neural

nets. Where we have chosen a specific technique, reasons will be described. However,

a general overview of these statistical learning methods is provided in Appendix A,

for reference.

Our research path is as shown in Figure [1-1]. Data is first captured by a teleoper-

ation suit, tactile sensors, and vision cameras, while an operator demonstrates a task

on the Robotic Life Group's robot, Leonardo [as will be described below]. Each set

of data is known as a trial, and when the operator has demonstrated several trials,

they are sent to the first module, which analysis boundaries, to parse these actions

along intentional boundaries, into motion primitives, as described above. Once final

markers have been chosen and the results have been used to align the trials with

respect to each other, the actions are analyzed spatially. This allows the system to

correlate changing actions and motions with movement of an object. A special refer-
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ence frame referred to here as the 'object world frame' allows interpolation of motions

with high precision, compared to the more standard technique of interpolation using

radial basis functions. The proper blending of these two solutions allows a solution

that retains the original quality of motion of the demonstrated trials, while precisely

manipulating the end effector to successfully complete the task.

Skynet Software Data Flowchart

cat y eeeion sand Final Alignent
te, aist

Candidate Episode Final Episode
Markers Markers.

Leo ardo

Figure 1-1: The layout of the skynet learning by demonstration softwae. Data is

captured by a teleoperation suit, stereo vision cameras, and a tactile sensor, and
travels into the software, as a task is demonstrated repeatedly. From these task

trials, several stages analyze the motion primitives and episode boundaries that make

up these larger sequences, so they can be properly time-aligned and compared. Once

this time alignment is complete, the trials are analyzed spatially, to determine how

the action changes based on the movement of the object the robot is interacting with,

and from this, a generalized motion sequence is generated for any object position,

providing a general solution to that action for all objects in the robot's workspace.

1.4.1 Conclusions

Some or all of these techniques can be combined to form a larger, more powerful

system. For this task, however, the focus remained on statistical analysis. The main

reason was to observe how well a system could learn these behaviors, while everything
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about how the system worked was explicitly known. It is possible, of course, to apply

a neural net or hidden markov model to the problem of task learning in robots;

however, even if the technique solves the problem, no immediate knowledge about

how to extend the technique to new domains will be evident. Also, as mentioned

above, statistical learning algorithms tend to require many input samples, and in the

case of a human repeating tasks, it is likely that the human will want to input the

absolute minimum number of samples to yield a useful result. Several samples of an

action, applied in different contexts, should be enough to teach a computer model

how to execute the samples in general. By focusing on an explicit technique, we are

assured that any successes are fully understood and can be exploited in future work.

Furthermore, in contrast to the work of Jenkins, et al [19, 5], no mention is

made here about movement primitives. Movement primitives, as described above,

are one useful method to chunk information about body motion in anthropomorphic

[or nonanthropomorphic] robots and humans alike. However, they all require some

outside agent to input the movement primitives, or another system to learn such

primitives. The system described within this research could be extended to function

as the latter; in its processing it divides actions into subactions, which could then

be added to a library of primitives - furthermore, these movement primitives are

classified and characterized [by a set of rules that can be generalized] so that they

can be used in new situations that have not yet been observed. The development of

these movement primitives and action sequences from a small sample set of human

demonstration data is described in this document.
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Chapter 2

Data Capture

This chapter provides an overview of the hardware and software systems used to cap-

ture the human task demonstration data. The human actor decides on an action, and

performs that action, while wearing a motion capture suit known as a "Gypsy Suit."

This gypsy suit records the motion of the actor, and after geometric processing to de-

termine external joint measurements, sends this information to a file that is saved on

the computer. While performing the action, Leonardo, the Robotic Life Group's an-

thropomorphic robot, mimics the action given by the gypsy suit sensors. Meanwhile,

other code runs that records the value of a tactile sensor embedded in Leonardo's

Right Hand. Also, data from several cameras records the position of salient objects

in Leonardo's visual field. This data is then all saved as an "action trial" and is

analyzed in later sections. Figure [2-1] shows the hardware layout involved in this

recording system, which then goes on for software processing.

2.1 Leonardo

Leonardo (see figure [2-2]) is the most expressive robot currently in existence [on

Earth]. At under three feet tall, he possesses 65 actuators, allowing expressiveness

never before seen robotically. Each of his four fingers is individually actuated; he has

over thirty muscles in his face alone, with which he can raise his eyebrows, stick out

his tongue, smile, frown, laugh, cry. His range of expression is still daunting to the
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Figure 2-1: The hardware layout for Leonardo's task recording and playback sys-
tem. Motion is captured from the teleoperation suit, while tactile information and
stereo vision data are grabbed concurrently, each traveling through its own hardware
processor, and onto the network, where it is all saved by the recording computer.
Meanwhile, the teleoperation suit data is passed onto the Leonardo control computer
and is used to control Leonardo in real time.
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researchers that work with him; only about 75% of his actuators are currently being

driven, leaving most of the facial expression ability still untapped. However, even

with that large a fraction missing, he has been shown to be an emotionally visible

prescence [13, 6]. Leo is the platform on which all of these action learning experiments

Figure 2-2: A photo of Leonardo, the emotionally expressive robot, holding a ball,

and surrounded by some of the buttons he uses in object manipulation tasks.

are performed. However, it is to be noted that all of the algorithms that follow

are completely generalized to any jointed robot, which needn't be anthropomorphic.

It only needs a method by which to have actions demonstrated to it, which can

be any mapping learned by a human actor. The only code specific to Leonardo is

the section defining Leonardo's joints and their geometric relations, so that the end

effector location can be accurately determined, with reference to vision data. All

other code is universal, and with a paragraph change in code, this action learning

would be applicable to a new robot.

Leo is driven by a dedicated and customized set of motor controller boards de-
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signed by Matt Hancher, a former student of the Robotic Life Group [14]. These

boards live in Leonardo's base, as well as in his skull [for the facial actuation]. Each

of the actuators is a DC motor that uses potentiometers for absolute position feed-

back, as well as motor shaft encoders for velocity feedback. The motor control boards,

which can control 64 channels and manage all the power transmission for them, each

use a PD controller with variable Proportional and Derivative gains, for a variety of

motor responses.

2.2 Gypsy Suit Hardware

In order to get the human agent's motion, we require a method of measuring the

agent's joint angles at a high rate in time, with a high degree of accuracy. Devices

that accomplish this are known as teleoperation devices, as they are typically used to

operate a real or animated character in real-time, but not from within the robot itself.

The main methods of gathering joint angles from an agent are magnetic, optical, and

rotational sensors.

Magnetic and Optical systems provide high accuracy of measurement, and can

offer benefits over a rotational-based system, such as providing absolute position

measurement. However, each requires a dedicated space with which to work with the

agent/suit, and typically the overall system weighs over 100 pounds. They are also

very expensive.

The Robotic Life Group uses a rotational based system, known as the 'Gypsy Suit',

made by Animazoo, makers of Motion Capture Data and Equipment [18], shown in

Figure [2-3]. This system uses potentiometers [rotational variable resistors] to gauge

the angles between joints. These potentiometers are placed on all of the independent

joints, through the use of an exoskeleton. The potentiometers used are sensitive to

0.1250, far beyond the needs of our data capture resolution. These potentiometer

values are probed at 120 Hertz, which allows reasonable derivative [joint velocity]

data.

There are 42 rotational sensors in the Gypsy Suit system full body model, covering
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Figure 2-3: A Picture of the author wearing the Animazoo Gypsy Suit, a motion
capture device used to collect motion data from a human participant as they perform
some object oriented task.

35



the head, neck, shoulders, elbows, wrists, torso, waist, and legs. The model we possess

does not use leg sensors, as Leonardo is not an ambulatory robot, but rather is fixed

atop an aluminum base [note that all the techniques described would still transfer

transparently to an ambulatory robot]. Furthermore, one inertial gyroscope located

in the rear waist area gives waist orientation information, which is otherwise not

known without leg sensors. The combination of these sensors gives full upper-body

orientation, 120 times a second. For purposes of simplicity and testing, only the joints

of the right arm, including the shoulder, as well as torso rotation, were used. Table

[2.1] lists the employed joints, as well as tactile data, treated as an eighth independent

joint. This allowed a variety of demonstrations, while keeping the computational

complexity low, as well as the complexity of the Leonardo software model used. This

will be easy to extend in future work.

All of these sensor values are gathered and sent over a wireless network to a

hub [allowing the user to roam freely without the chain of wire attachments]. This

wireless hub is connected to the serial port of the computer, where it communicates

with Animazoo's proprietary software for calibration and communication with other

pieces of software, such as the one written for controlling Leonardo.

Table 2.1: A list of all the teleoperation suit joints employed in the action recording
process, with their corresponding channel. Each joint was sampled at 120 Hertz over
the action trial.
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Joint Number Joint Name
1 Torso Rotation
2 Hip Front Back
3 Hip Side Side
4 Right Shoulder In/Out
5 Right Shoulder Forward/Backward
6 Right Upper Arm Rotation
7 Right Elbow In/Out
8 Right Forearm rotation
9 Right Wrist In/Out
10 Tactile Feedback



2.3 Gypsy Suit Software

x

Figure 2-4: Screenshots of the Gypsy Suit Character Display software, as well as the
software used in calibrating the suit to a new actor.

The Gypsy Suit Display Recording Software is shown in Figure [2-4], along with

a screenshot of the actor calibration files. This software, provided with the Gypsy

Suit hardware, allows one to calibrate the suit to a specific actor.

Since the potentiometers that measure joint angles cannot be placed inside the

body at the exact locations of the joints, the measurements must be made indirectly,

by measuring the angles a certain distance away and knowing a priori those distances,

so that the real angles can be computed through geometry.

This is the use of the Gypsy software. Different actors are of different sizes, and

therefore joint lengths, so the offsets of the sensors from real joints can be input into

this software to determine the mapping between potentiometer data and real joint

37



angles. This is done mostly by an iterative trial-and-guess process. For each joint

there are three parameters that can be changed. The first is scale, which corresponds

to the measurement of how many radians of joint angle change for every unit of

potentiometer change. The second is offset, where the zero values of the pots [and

angles] are chosen. And the third parameter is known as 'tweak.' Tweak, given the

knowledge of human body geometry and the position of the sensors, changes the

geometric mapping of sensor offset to human body.

The process generally involves assuming a zero pose and adjusting offsets until they

seem reasonable, then adjusting scale until right angle poses reach true right angle

measurements, and then the tweaking parameter is massaged until the mapping seems

most reasonable. This iterative process can be accomplished in roughly a half hour

with trained users, and is a bit longer if high accuracy is required. Better methods

of calibration have been discussed and initial versions have been tested [[12]].

2.4 Tactile Hardware and Software

Leonardo uses Force Sensitive Resistors [FSRs] made by Interlink Electronics in order

to receive tactile feedback from the world around him. Work is underway [led by Dan

Stiehl in the Robotic Life Group] to give Leonardo a quite detailed sense of touch in

his hands, with dense arrays of these FSR sensors.

An FSR is a resistor that functions similar to a load cell; the polymer they are

made of responds to an increase in force with a decrease in electrical resistance. They

can be designed to respond to forces from under IN to over lOON. The tactile sensor

is laid in series with a fixed resistance, forming a voltage divider, which is polled

at roughly 60 Hertz by a PIC microcontroller, using a 10 bit A/D converter. This

microcontroller then transmits the tactile channel data over the IRCP network and

is stored along with the joint time-series. Figure [2-5] shows the type of FSR tactile

sensor eventually embedded in Leonardo's hand. This array is for a future revision

of Leonardo's hands - currently only one FSR sensor was used.
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Figure 2-5: The array of tactile sensors [FSRs] on Leonardo's hand, before being
covered with silicone skin. A single sensor was implanted for these experiments, as
the full hands had not yet been developed.

2.5 3D Vision

Leonardo employs three pairs of digital video cameras to accomplish complex 3D

visual analysis. Two of these three pairs are known as stereo pairs, carefully calibrated

cameras aligned optically, to act similarly to human eyes, and use parallax to infer

distances of objects, instead of merely height and radial directions (9 and <b). The

stereo cameras employed by Leonardo are made by Videre Design [9], and are shown

in Figure [2-6].

The Videre Stereo Camera consists of two 1.3 megapixel CMOS imagers, con-

nected to a PC via firewire interface. They can capture up to roughly 60 frames per

second. For the Robotic Life Group's image processing, these sensors are only used at

320x240 resolution [as otherwise the manipulations for depth are too computationally

intensive to occur at a high frame rate], and the video is analyzed at roughly 10 Hertz.

These cameras can analyze roughly 240 levels of depth in an image. Similarly, they

can return color information which is also analyzed to track people or objects.

For these experiments, only one set of these cameras is used. This set of cameras
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Figure 2-6: The stereo vision cameras employed by Leonardo for object and human
recognition, made by Videre design.

is placed on the ceiling above Leonardo, and points straight downward, at Leonardo's

workspace. This gives a very accurate measure of the location of objects in Leo's

visual field. Using color information about the objects, Leonardo can also name

and differentiate between objects of the same shape. With these vision systems, an

accuracy of < 0.5" in (x, y, z) position can be obtained. The view of the overhead

cameras is shown in Figure [2-7], as well as the computer processed view of colors

and indication of object location.

2.6 Gypsy Suit and Tactile Recording Code

All of these disparate elements are sent over ethernet from different computers, us-

ing the Inter-Robot Communications Protocol, developed by Matt Hancher for the

Robotic Life Group [14]. It allows the clean transfer of different types of information

between computers and between different robots. In this case, gypsy suit data, tactile

feedback data, and visual object identification data all enter a PC over ethernet, and

are sent to the Gypsy Suit data grabbing and recording program. The tactile feed-

back and visual feedback are formatted by other people in the Robotic Life group,

whereas the Gypsy Suit data is formatted by this code.
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Figure 2-7: The overhead view of the stereo cameras made by Videre, as well as the
computer processed view, showing button positions, as well as a color coding for the
button's on/off state [black = off, orange = on].
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2.6.1 Euler Angle representation

The Gypsy Suit data is gathered in a standard representation for animated charac-

ters, called Euler Angles. An Euler Angle representation is a typical representation

for three dimensional vectors in terms of rotations about different axes, eg., given an

arbitrary vector in 3-space, it can be represented as the vector (1,0,0) rotated about

the y axes by some amount, then about the z axis. If this vector also needs orienta-

tion, a third rotation about another axis provides that. Typically the Euler Angles

are represented in terms of the plane-reference terms, Roll, Pitch, and Yaw, which

describe its rotation about the different axes. Figure [2-8] shows the roll/pitch/yaw

example for a plane, and a simple thought experiment shows that it can yield any

orientation plane in 3-space. For a detailed description of Euler Angles, see [33].

Y
applied second

applied last

x
applied first

z (toward viewer)

Figure 2-8: A plane, illustrating the use of Euler Angles to define a rota-
tion and orientation of a vector in 3-space. Roll, Pitch, and Yaw in this
case refer to rotations around the Z axis, the axis, and the x axis, re-
spectively. This is known as an ZYX-Euler Angle definition, also known
as the NASA Standard Aeroplane represntation. Picture reprinted from
http: //www. euclideanspace . com/maths/geometry/rotat ions/euler/

Unfortunately, Euler Angle representation is not directly useable by Leonardo's

motor system. Since each motor in Leonardo's extensive set is oriented by the previous

links in its system, an absolute orientation does not yield useful information about

the orientation of a joint relative to the previous joint. Furthermore, and of higher

importance, is that Leonardo's motor system is a motor system - that is to say,
Leonardo's shoulder does not automatically assume a general 3d vector orientation

for the arm. His arm works in a very specific configuration of rotational joints, and
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this configuration needs to be known before being able to figure out the angle each

of those motors must assume to orient the shoulder into the correct orientation. For

example, Leonardo's shoulder is comprised first of a rotational joint, determining how

far forward or back his arm points, and serially connected [after that joint], another

cable driven joint determines how far out [along the I, axis] his arm rests. Therefore

we need several stages to get these Euler Angle representations into a useable form.

The first need is to represent these Euler Angles as rotation matrices. Rotation

matrices, with a universal coordinate system [ie. a unique representation] allow far

easier decomposition of vectors into rotations in axes that we care about, namely the

axes in which the motors actuate Leonardo's arm. In order to convert to rotation

matrices, we use a familiar tranformation between representations. For example,

if the Euler Angle representation is the NASA Standard Aeroplane representation

[rotations about z, y, and x respectively], the transformation is

C(O)c() -c(O)s(#) s(O)

R = c()s(O) + s())s(9)c(#) c(4)c(#) - s(4')s(O)s(#) -s(Vk)c(6) , (2.1)

(O)s() - c()s(9)c(#) s(0)c(#) + c(4)s(O)s(#) c(<)c(O)

where s(#) and c(#) represent shorthand for sin and cos, respectively. The derivation

of this transformation is standard and thus not given here. For a detailed derivation

of Euler Angle to rotation matrix conversions, see [[3]].

Now every joint in Leonardo's system is represented not by a universal Euler rep-

resentation, but by a rotation matrix. The final step is in representing these rotations

relative to previous joints, and then decomposing these relative rotation matrices into

principal axes of rotation of the actuators involved in each joint, for example shoul-

der rotation and shoulder in/out motion. Before even this can occur we must first

fix the discrepancies between Leo's motor system and the Gypsy suit sensor system.

The Gypsy suit records rotations for the collar as well as for the shoulder, whereas

43



Leonardo has no collar actuators. Thus we compose the two rotation matrices,

Rshoulder RGypsy,shoulder RGypsy,collar-

Note that order here is important, since rotations in general are noncommutative.

We will now follow through the example of the right shoulder to show how actuator

values are derived from overall rotation matrices. The same analysis follows down

the arm and is similar in the torso, and is therefore left as an exercise to the reader.

From our composition of the collar and shoulder gypsy data and conversion to ro-

tational matrices, we now have RrShoulderOverallRotation, describing the overall rotation.

In a sense, now, we need to compose this rotation matrix up from the known able mo-

tions of Leonardo's motor system. In the case of his right shoulder, first he possesses a

rotational joint that moves the shoulder forward and backward [OrShoulder Rotate], then

a rotation lifting the shoulder outward [OrightShoulderlnOut], and finally, the upper arm

rotates to yield orientation [OrUpperArmRotate]. First we decompose the part of the ro-

tation matrix that rotates his arm from the downward position -y to the forward

position 2. This is

OrShoulderRotate= arctan RrShoulderOverallRotationyz

'\Rr ShoulderOverall Rotation,zz

This leaves the rest of the rotation matrix to be dealt with by the remaining joints,

RrShoulderMinusRotation -RrShoulderRotate,x x RrShoulderOverallRotation,

where -- RrShoulderRotate,x describes the rotation matrix of the reverse rotation about

the i, axis [the axis in which the rotation occurs]. We are essentially dividing out the

part of the rotation that we have accounted for in the rotating actuator.

Similarly to what we have done for the first actuator, we now find out the angle

to move the second actuator, which here is

rShoulderInOut = -7/2 + arctan Rr Shoulder Minus Rotation,xz

RrShoulder Minus Rotation,zz I
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where the offset of 7r/2 is due to the difference of the origins of the actuator rota-

tion and the rotation representation by the Gypsy Suit. These components show by

thought experiment that they compute the amount by which a vector pointed in the

i direction [that is, straight to Leonardo's right] would be moved into the direction,

or straight forward. Now we can subtract this out, as we have done above, to yield

RrShoulder MinusEverything =Rir/2-rShoulderInOut,y x RrShoulderMinusRotation,

where RrShoulderMinusEverything represents the shoulder rotation matrix, with the for-

ward/backward and in/out components divided out. Finally, we calculate the rotation

of the upper arm with this final remaining component,

(RrShoulder MinusEverything,xy
0 upper ArmRotate = arCtLan

\RrShoulderMinusEverything,yy

which then fully defines the motor motions that yield the correct orientation of

Leonardo's upper arm.

A similar analysis is carried forth for Leonardo's torso and hips, elbow, lower arm,

and wrist motions. These final joint settings are then sent to Leonardo and played

back in real time as the Gypsy Suit system records the motions.
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Chapter 3

Task Data Integration

This chapter describes the first section of the Skynet program, that which inputs the

actor trial files, creates the Leonardo robot Matlab object, and applies those actions

to the model, generating end effector status and motion derivative status during the

trials. Motion is filtered where need be, so that digitial artifacts do not cause unusable

derivative data.

3.1 Matlab Robot Creation

First, the Skynet software creates a robot object in Matlab. This occurs in the

makerobot .m program'. Most of the robot-specific creation code is based on the

Robot Toolbox for Matlab [[7]], created by Peter Corke. This toolbox includes tools

for robot creation, tools for forward and inverse kinematics, as well as tools for com-

puting dynamics of complex systems.

The way to create a robot in Matlab is to define it by all of its joints, and the

method by which they move. This has become a commonplace process, and so a stan-

dard method of representation has been developed, known as the Denavit-Hartenberg

Coordinate method.

All of the programs listed with .m in the filename are Matlab m-files, the code of which is listed

in the Appendices
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3.1.1 Denavit-Hartenberg Coordinates

The Denavit-Hartenberg Coordinate system works by defining an orthonormal coor-

dinate system for each robot joint. After these are defined, then each joint is related

to the next through a transformation. This is the information stored in the Represen-

tation. Figure [3-1] shows two joints in a complex robotic system, and the involved

parameters.

Zn+1

Zn

n+2

-~ a

Figure 3-1: Two joints of a larger robotic system, and the important parameters in
the Denavit-Hartenberg Representation.

Four parameters are involved between each pair of joints. In the figure, the coor-

dinate systems of joints n + 1 and n + 2 are marked by dots. These four parameters

stand for four transformations [non-commutative] that bring the two frames into co-

incidence [Coordinate axis Zn passes through link n + 1 by definition].

The four transformations are as follows:

1. A rotation On+, about the Zn axis to bring Xn parallel with Xn+,1

2. A translation dn+1 along the Zn axis, to make the x-axes collinear.

3. A translation an+, along the X, axis to make the z-axes coincide.

4. A rotation an+, about the X axis to bring Zn parallel with Zn+,1
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Quite often, several of the four transformations are zero. Table [3.1] lists the Denavit-

Hartenberg coordinates for Leonardo's torso and right arm subsystem. Figure [3-2]

shows the Leonardo subsystem, as generated in Matlab. In the figure, it remains at

rest position.

Table 3.1: A list of the Denavit-Hartenberg Coordinates for Leonardo's torso and
right arm subsystem, for use in the Matlab Robotics Toolbox.

Joint Joint Name a A 0 D
1 Torso Rotate 7/2 0 0 7.365
2 Hip Front Back -/2 0 0 0
3 Hip Side Side r/2 -2.83 0 0
4 Right Shoulder Rotate -7/2 0 0 -1.36
5 Right Shoulder In/Out w/2 0 0 0
6 Right Upper Arm 7r/2 0 0 -3.99
7 Right Elbow 7/2 0 0 0
8 Right Forearm -7/2 0 0 2.81
9 Right Wrist 0 1.50 0 0

3.2 File parsing in Matlab

The next process of Skynet is to incorporate all the gypsy suit, tactile, and vision

data into Matlab, in a useful form. This occurs in parseFile .m. As described above,

the data of all types for each trial is saved in a .sky file, with a predefined format

of Jointname / Data Points / Data, where data is represented as (time, value)

pairs, all with proper delimiting. The file gets parsed for these strings until the file

is complete. Inside the file is data for every joint in Leo's subsystem, as well as an

eighth 'joint,' representing the tactile feedback.

After this, we use the Leonardo Robot model to compute the End Effector po-

sitions [his right hand, which is the only part that interacts with objects]. This is

done by computing the forward kinematics of the robot, with fkine.m. This simply

calculates all the geometries of each joint at their current angles [as a function of time]

and sums them, to give end effector position. Figure [3-3] shows a plot of the robot

end effector position, during a button pressing action, gathered with parseFile .m.
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Matlab Robot Model for Leonardo

15

N -

5.

0 -- Leonardo
5

0 50
-. 0

-5
-5

Y (Leo ) -10 -10 X(Leox)

Figure 3-2: A picture of Leonardo's torso and right arm subsystem, generated as a
Matlab Robot object, as part of the Robotics Toolbox. Leonardo is shown in his zero,
or rest, position.
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Figure 3-3: A 3-d plot of Leonardo's end effector position during a button pressing
action. The robot model is shown at the end of the action.
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3.3 Data Filtering

It will be important in subsequent sections to possess data about the velocity of end

effector, and joints. Therefore, we must calculate these derivatives from the data

gathered. However, there is much noise, in the gypsy system itself, as well as in the

fact that we are using a digital system with discrete values. In order to deal with

this, the data is splined at a lower resolution. First, the derivative data is created

using finite differences,
Oqi _ qi(tj) - gi tj-1)

at At'

where qi is the ith joint, and At is the time difference, usually 1/120 second.

Much of the data that comes in is digitally noisy, due to time and sensor dis-

cretization, as well as signal noise. We use a cubic splines to resample this data set at

a lower frequency [or coarser mesh], in order to clean this noise, essentially applying

a low pass filter. This coarser mesh finds a simpler functional representation of the

complex known function, thus getting rid of higher harmonics in the motion, but

retaining the overall shape and quality. Care must be taken to keep a high enough

resolution that important time-sensitive data is not lost, such as the moment of con-

tact with an object; the more data is smoothed [with any technique, not only splines],

the more those impulses are lost, as they represent higher frequency content. In this

implementation, the spline was made at a time resolution of 0.2 seconds 2.

A spline is an interpolation of a known function, over a new basis set. It can

be used to find new values of functions where previous values were not known, and

also can be used to smooth functions, by splining a fine mesh over a coarser mesh.

Splines are only one method of interpolation, and interpolation is used extensively

in this research; therefore it merits a slight digression into the different methods of

interpolation we will employ during the course of this work.

2 Given that it is a cubic representation, the spline preserves time data to less than 0.2 second
accuracy.
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3.3.1 Methods of Interpolation

Through this and many other sections of this research, it becomes necessary to take

a digital representation of a function [by definition discontinuous], and resample it

over a different abscissa. Usually the abscissa is representing some value of time,

and we need to resample the joint angle data, over either a finer mesh, or simply a

different one, to be compared with other samples from other trials. Each different

trial originally has a unique time sample set.

Linear Interpolation

There are many ways to resample data, or in this case, interpolate the data, as

we always have the data covering the span we need, and we only need to find new

points in between those sample points [therefore needing no extrapolation techniques,

which become more complex]. The most obvious is by linear interpolation. Linear

interpolation works by assigning, for any x1 < X < x 2 , with f(x) =y,

f = y1 +Y2 - (x - XI).
X2 - X1

This can be thought of in analogy with local approximations of the derivative of the

function, but in a discrete setting.

Linear interpolation has advantages over other methods, the main one being that

it is extremely fast and produces generally accurate results. However, as shown

below in Figure [3-4], in the comparison between different interpolation routines, if

the original data points are widely spaced, then any smoothness of the interpolated

function is lost. More specifically, the derivative of the interpolated function becomes

discontinuous, with gaps at every original data point. Assuming the data set is joint

angles represented over time, this means that the velocity of the joints will jump

suddenly at every marker point. This will cause jerky and unconvincing non-lifelike

motion in the robot. In a project dedicated to creating lifelike motion in a robot, this

is unacceptable.
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Cubic Splines

The most common solution to the problem of discontinuous derivatives3 is to use cubic

splines. Cubic splines yield a smooth derivative, as well as a continuous derivative at

the abscissas.

A cubic spline is a piecewise third-order polynomial system, that connects the

original data points. A general third order system can be represented as

g(x) = ao + aix + a 2x 2 + a 3x 3

an equation with four unknowns. Four conditions need are satisfied by the standard

cubic spline: first, the two data points xO and x, must be matched exactly, and also

the second derivatives match at the points [ie when calculated from both sides, so

that the second derivative remains continuous, although not necessarily differentiable].

This yields a unique solution, satisfying the above constraints. The derivation of the

parameters is beyond the scope of this, but the reader is referred to [[2]].

The cubic spline solves the initial problems of smoothness of derivative and conti-

nuity of the second derivative. However, this is by no means a unique way to smoothly

interpolate between points. In fact, an infinite number of alternative solutions exist,

merely by removing the previous constraints on the second derivatives, and placing

new ones instead. Why is this useful? Cubic splines cause several problems in our

domain.

The first problem is the loss of minima and maxima. A typical cubic spline, in

order to match second derivative constraints, often oscillates very strongly over points.

This is once again shown in Figure [3-4]. In the situation where we are interpolating

around a maximal data point, often these oscillations will travel beyond the original

data. In interpolations of time series, this means that the interpolation can yield

time values outside of the original range of time! This would lead to erroneous data.

3 Note that in the theoretical sense, the signal is discrete, and therefore does not even possess a
well-defined derivative. However, in the case of interpolation, there is always an ideal continuous
function that is created from the original data points which is then polled for values along the new
abscissa. This continuous function is the function we would like to possess continuity of derivative.
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Possible Methods of Interpolation
0

5.5
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4.5
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E 3.5

3

1.5 2 2.5 3 3.5
Index

4 4.5 5 5.5 6

Figure 3-4: A comparison of different interpolation techniques, including linear inter-

polation, interpolation by cubic splines, and interpolation by Hermite cubic polynomi-

als. Note the only cubic and Hermite interpolations yield a continuous derivative, and

only Hermite interpolation yields this continuous derivative without any overshoot,
which leads to a temporary reversal of the time series.
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Effect of Time Reversal on Interpolation
I I I I I~ I I I I I

100-

80-
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U)

40-
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0-
I I I II I I I

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4
Time [sec]

Figure 3-5: An example of the results of time reversal caused by cubic spline in-
terpolation on a time/index series. The function was originally smooth, but due to
non-monotonicity of time in the data, the function envelopes into itself, which is in-
terpolated by Matlab as having a much higher harmonic spectrum [so that it remains
a single-valued function].

56



The second problem with cubic splines also stems from the spurious oscillations. In

oscillating, often an originally monotonic data set can be interpolated with a non-

monotonic interpolated set. In a time series, this means that an originally steadily

increasing data set can be interpolated as sometimes traveling backwards in time!

This is clearly problematic for time series of animation data, but for a more interesting

look, Figure [3-5] represents, in a digital system such as Matlab, the end effect of

time temporarily traveling backwards [where, since Matlab automatically connects

neighboring ordinate data points, a massive oscillation becomes pronounced].

Hermite Cubic Splines

Another type of cubic interpolation known as a Hermite Cubic Spline solves both of

these issues. A Hermite Cubic Spline, like a normal Cubic Spline, uses the differentia-

bility of the interpolated function and matching of function values, it uses a different

set of requirements for the other two parameters, namely the values of the derivatives

at the endpoints. These are not pre-defined, but instead selected specifically to create

respect of monotonicity, as well as retention of maxima and minima.

The results of this spline, compared with linear and standard cubic interpolat-

ing routines, is shown in Figure [3-4]. The Hermite interpolating function is the

cleanest for our purposes, and almost all of the interpolation performed later in this

work [in the time domain] is performed using Hermite polynomial splines. For more

information on Hermite Cubic Splines, see [[1, 10]].

A view of the time series for one joint during a trial is shown in figure [3-6], along

with another plot of the unfiltered derivative data, and the cubic splined derivative

data, which is then used for the further derivative analysis. Before filtering, the

derivative data is almost completely useless, with false trips almost completely to the

origin.

57



Example joint with cleaning
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Figure 3-6: A plot of one joint during the button pressing action,
derivative motion, unfiltered and splined for further analysis use.
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Chapter 4

Episode Analysis

4.1 Introduction

So far the subsystems of gypsy suit, tactile feedback, and visual stimulus feedback

have been combined and brought into a model of Leonardo, to be analyzed. At this

point it is possible to watch robotic animations of each of the action trials. However,

it is not yet possible to easily compare these different trials.

Every time an action is performed, it takes a different amount of time, whether

done consciously or unconsciously, by the actor. Furthermore, suppose that the action

is comprised of different basic motions - for example, a reach, a grasp, a release, and

then a recoil. Every time the actor performs this group of tasks as one fluid motion,

each of the basic motions [four in this sequence] take different amounts of time.

Suppose we would like to view the average of three examples of the same motion,

in some meaningful way - a task was performed three times, and we would like to

generate a canonical representation of that task, which ideally would use the three

actions to generate a representation that would accomplish the same goal as the

originals, in the sense of how the action manipulated the object [this could be the

pressing of a button, the sliding of an object, etc.]. The natural first thought would

be to average the joints of the three representations involved. However, the since

the lengths of the actions are not in general the same, this causes undefined areas to

average, and since most everything is not [in general] aligned, no high resolution of
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any joint movement will remain. Every part of the movement will become muddy.
Figure [4-1] shows the result of straight forward averaging of a joint during an action.

Raw Averaging of Joint Data

original Raw Motns
0.2 -

2 0.1 -

0
CM

-0.1

-0.2

0 2 4 6 8 10 12

0.2
- Average Raw Motion

0.1 - .

-0.1
0.2

0 2 4 6 8 10 12
Time (sec)

Figure 4-1: A view of one joint angle over three trials of the same action [pressing
a button], and below, a straightforward averaging of the motions], showing how all
resolution of the pattern itself is lost.

The next improvement is to change the length of all of the episodes to be the

same, and then average them. We naturally choose the final length to be the average

of the input lengths, and then we can average these motions. Figure [4-2] shows the

result of this process. Even though the results are cleaner, they are definitely not

acceptable to resolve all the important aspects of the motion. Notably, the maxima

and minima are not aligned, so the joint will never reach quite the extremes that it

would if the maximal and minimal points were more aligned.

In general, the motions performed by an actor are largely misaligned. The different

lengths of phases cause any regular averaging technique to lose the most important
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Motion Averaging over simple Time-Averaged Joints During an Action
1
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Figure 4-2: A view of three example joint actions, averaged in length, and then the

resultant average motion. Note that the maxima and minima of the original motions

are lost, due to misalignment.
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information about actions. A better technique is needed to automatically determine

the natural boundaries between phases.

4.1.1 Alternative Approaches

There have been several different research approaches to auto-segmenting long series

into principal components. We will call these components episodes. One of these

involves discrete episoding, the technique of which was shown primarily in analyzing

long strings of text with no spaces, and auto-segmenting the long string into compo-

nent words [27]. The amazing thing about this technique is that it knows nothing of

English, and in fact works similarly on any language, able to split the correct words

over 50% of the time. The main principle it uses to accomplish this task is that of

windowed entropy analysis. This means that it cycles through the text, looking at a

window of n letters at a time, and studies the frequency of combinations of certain

letters. Higher frequency corresponds to lower entropy, and after a full modeling anal-

ysis is made, it begins to cut the text, in order to achieve the overall lowest entropy

of the system. This system, functionally discrete, is not directly applicable to the

system at hand, but future work may attempt to add these entropy techniques.

4.1.2 The Matarid Segmenting Technique

By far the most commonly accepted technique in this field of auto-segmentation was

originally employed by Matarid [23, 19]. It is based in a fundamental observation of

human activity. When humans engage in a complex action, they typically change

direction and speed. Between segments of an action, there is a typical acceleration

or deceleration involved. The Mataric technique exploits this fact, by looking for

changes in the overall motion of the joints involved in the robot.

The mataric technique for segmentation works as follows, given two constants, c

and k:
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1. Find the Mean Squared Velocity of the Involved Joints, as a function of time:

MSV(t) = d(i

where N is the number of joints, and MSV is the mean squared velocity.

2. For each time t,

" If

MSV(t - 1) < c,

that is, the previous values were low enough,

* If

MSV(t) > c,

i.e. the current value is above the threshold,

" Search through the remaining times u > t, until finding an MSV that

satisfies

MSV(u) > k * c,

where k is known as the multiplicative factor. If one is found, then the

index t is considered an episode beginning.

The same thing then happens with comparisons reversed [i.e. >--+<, etc], to find the

endings of episodes, which look for earlier peaks which then have sufficiently low dips.

One caveat is added - in order to make sure that every episode is matched with an

ending, we check that a final episode is found at the end of the action, and if it is not

[i.e. the joints were still moving too much] we manually add an episode ending.

Figure [4-3] shows the MSV during an action of button pushing, with marked

episode beginnings and endings, for three different trials. Roughly speaking, the

episodes correspond to the reach, push down, release, and retract phases. The last

two phases are treated as one episode, as the retraction from the button and the

retraction back to the starting phase do not involve much slowdown. Adding in a
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tactile feedback discriminator would allow these to be further separated, as would

lowering the tolerance for episode boundaries [as can be seen, the last episode is very

close to being split into two episodes in these cases, due to the dip in the middle of

the episode].

MSV For Button Pushing Action
6

- Joint MSV
(4 Start Markers
4 4- End Markers

2-

0-
0 2 4 6 8 10 12

6

2 4-

c2-

0
0 1 2 3 4 5 6 7 8 9

6

(D
24-

0
0 1 2 3 4 5 6 7 8 9

Time (sec)

Figure 4-3: MSV analysis of a button push, for three different trials. Episode be-
ginnings and endings are marked as noted in the legend. The lower graph shows the
tactile feedback data. As seen in the episode graphs, this separation corresponds with
the reaching to grasp for the button, the press of the button, and the retract from
the button action, which involves retraction from the button, as well as back to the
starting position.

The Mataric technique, mentioned or employed in [23, 19, 5, 26, 16], often has

special adjustments made to deal with certain implementations. For example, [16]

combined the general MSV analysis with an analysis of the maxima and minima of

the elbow joint [on Robonaut] to create a full episode set. This, unfortunately needed
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to be accomplished manually. The adjustments below were made in an attempt to

make a much more fault tolerant system that could deal with real 'in the field' use

by people who did not know anything about the techniques, and therefore would

not cater to their method [i.e. slowing between episodes]. It is worth stressing, that

all of the research found discussing this topic has involved some amount of manual

thresholding, or other manual adjustment, or used knowledge about the specific task

at hand to alter the analysis technique, and research is still open on solving the general

analysis problem with no human intervention. This work is a step in that direction.

4.1.3 Modifications to the Mataric Segmenting Technique

As can be seen above, the basic Mataric technique finds the majority of the boundaries

between action episodes. However, certain elements are missing, nost noticeably the

boundary created when contact is made between the end effector and the object.

Several aspects of this analysis are also not universal. The constants c and k are fine

tuned by hand to create the best episoding of the action, but this is not automated

in any way. Therefore, several improvements were made to the Mataric technique in

order to create a fully automatic, and fault tolerant, system.

The first of these was the use of tactile data. Almost universally, the sudden

contact between the end effector and an object signifies the beginning of a new episode

[and the ending of the previous one]. However, often the end effector will continue

moving similarly when contact is made. Therefore, instead of only using joint mean

squared velocities, we also make an addition of the velocity of the touch sensor. As

the touch sensor represents a ten bit (1024 valued) register, and the joints represent

radians of motion (generally at most, 2 radians), a strict comparison can not be made.

Furthermore, to allow the fact that sudden touches are near instantaneous, and we

are making a derivative analysis, we add only a factor of 1/10000 of the touch sensor

data to the original MSV data, for an improved MSV:

-A'SvM - N2 + 1 dw (t)
improved, tactile dt/ 10000 dt
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where w(t) represents the tactile sensor value at time t. As with the joint data, the

derivative data is taken with finite differences and then filtered. Figure [4-4] shows the

need for tactile filtering, as sometimes unsure contact could cause sudden wavering

of the signal, causing higher frequency components, and thus increasing the tactile

derivative data greatly.

Bad Tade Data [in Far Right Buton Push]
400

. - svfor Joints
- MSV for End Effector Only

>300

1909

a 1 2 3 4 5 6 7 8 9
Tim (SeC)

X 1w5 Tace Data

0 1 2 3 4 5 6 7 8 9
Tue (0c)

Figure 4-4: An example of unusable tactile data. Due to an unsure contact between
robot hand and object, the tactile sensor wavered, and the derivative data reflects
this wavering, which would lead normally to many false episode boundaries.

Furthermore, the constants chosen have been automatically chosen for new ac-

tions, based on the amount of action involved. Previously, a high activity action or a

typically low activity action would have no crossings and therefore no episode bound-

aries. Figure [4-5] shows the effect of a differing value of c on the episode boundaries.

Therefore, a method was devised to automatically find a suitable value for the two
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constants. Constant c represents the cutoff value for little amount of motion. Con-

stant k represents the multiplicative factor, such that the MSV must reach the value

ck after dipping below c to signify an episodic event. In order to find reasonable

values, the mean and average of the overall signals were found:

tTMSV~t
< MSV >-= PMSV = TT

where T is the length of time of the entire action, and

UMSV (MSV(t) - LMSV) 2 >

where, as in the first part, < X > stands for the time mean of X.

Effect of changing values of C

2

0.
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Figure 4-5: A comparison of MSV episide analysis showing different values of
suggests a usefulness to a dynamically chosen value of c, suitable for the
action being demonstrated.
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Then, suitable values, found largely by trial and error, were chosen for c and k:

1
C = PISV - -UMSV, (4.1)

2

1 , (4.2)
/1 MSV - 1 OAISV'

such that
1

ck = 1pMSV - IMSV,
2

creating a symmetric distribution about the mean of the MSV.

In order to create higher fault tolerance, a main worry arises: How to make sure to

ever miss any important episodic boundaries. The key in this section of the analysis

is to try to get every possible episode boundary, even if that means falsely labeling

boundaries. The next section of this work deals with combining these separate trials,

to find the 'true' episodic boundaries through a series of comparison tests.

One other element is changed, which improves the MSV analysis. With the

thought that usually it is the end effector , and not the individual joints, that attempt

to create the goal-oriented motion, instead of using a normal joint-summed MSV, we

only use the three components of the end effector position, giving a cartesian, true

measure of the velocity square of the motion of the robot's end effector. Thus, the

final MSV analysis uses as the MSV

MSVfta=(t)= dXEE
2  dYEE

2  dZEE
2 ) 1 dw(t)

na dt dt dt 10000 dt

where (XEE(t), YEE(t), ZEE(t)) is the position of the end effector at time t. Figure [4-

6] shows the possible advantages of the end effector MSV over a normal joint-based

MSV analysis. The end effector MSV reveals higher peaks, and removes more false

motion that may be occuring as noise, without any goal-oriented intention. However,

the joint MSV can reveal secondary motions that may be important.

Below are several figures showing the application of this finalized, improved episod-

ing technique, to different action sequences. Figures are shown for button pressing

(figure [4-7]), sliding of an object (figure [4-8]), and swatting at an object (figure
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Comparison of End Effector MSV with Joint Based MSV
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Figure 4-6: A comparison of end-effector MSV analysis, with a joint-based MSV anal-
ysis. As is seen for this particular episode, peaks and troughs are marked differently
with an end-effector analysis; the end-effector MSV results in lower noise than the
joint-based analysis, although the joint-based MSV offers more information about
secondary motions that may be important.
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[4-9]). Below each is a view of the tactile MSV alone, for comparison.
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Figure 4-7: A view of the final episoding analysis of a ball
view of the tactile MSV data alone, for comparison.

lifting action. Below is a

4.2 Future Improvements

In the future several improvements should be attempted, that should allow this system

to more exactly gauge episode boundaries. The first of these would be the use of a

fully dynamic constant c. It would be possible to implement a value of c that changed

during the action, by always treating it as the minimal value allowed [based on the

previous local minimum], and using the value of k as the main element differentiating

episode boundaries from intra-episode sections. This has not been yet tested, but

should notice more fine-tuned episode boundaries.

Another improvement would be to not only use the MSV joint or end effector

analysis to determine boundaries. One possible addition is the direction of the end

effector vector, and the amount that that vector changes during time, as sudden

changes in direction can signal large changes, yet wouldn't necessarily show up as

large swings of motion in a normal MSV. Possibly, as in others' work [16], we could
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Figure 4-8: A view of the final episoding analysis of an object sliding action. Below
is a view of the tactile MSV data alone, for comparison.
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Figure 4-9: A view of the final episoding analysis of an object
is a view of the tactile MSV data alone, for comparison.

swatting action. Below
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add certain joint minima and maxima to the scheme. The Robonaut collaboration did

this with a specific joint maxima, knowing that the motion they were studying was

cued by a maxima of this joint - so, implementing this without any a priori knowledge

about the system presents its own set of challenges, as there would probably be on the

order of 100 new data points to work with. However, the next chapter will describe

a methodology [that could be easily extended] that deals specifically with spurious

data, and finding the maximal subset of data that yields a useful and realistic result.

Therefore, even with many extra data points, the techniques described below will

highlight how those could be sieved to find the true markers for any motion.

Furthermore, currently it is the gypsy suit angles that are analyzed for the MSV

analysis. Although this gives an extremely accurate view of the operator during the

task, it gives a less accurate view of the robot itself. The robot follows commands

given by the gypsy suit, but cannot always accomplish them. Two main examples

exist of this phenomenon. The first is with object interaction. When the gypsy suit

operator causes the robot to press a button, the gypsy suit operator must keep moving

downward, in order to increase the force on the button. However, during this time,

the button itself is not moving [or only moving slightly], therefore the MSV should

reflect a near-zero movement. Usually it is measured as one of the highest elements

of motion, due to the large motions required on the part of the operator. The second

example is when the operator is moving extremely quickly. Leonardo has a limited

velocity, in part controlled by the motor power density, but also controlled by the

controlling software. Therefore, sometimes during large velocity actions, the gypsy

suit orientation does not accurately reflect the current state of Leonardo.

To fix this issue, it would be possible to replace the gypsy suit angle measurements

with feedback directly from Leonardo, given by the potentiometers on his joints, at

the motor locations. This would solve the problem of the MSV analysis accurately

reflecting real motion of Leonardo, but it would also provide a secondary bonus:

The position of interaction with an object would be much more accurate. During

a typical button press the operator needs to move his arms wildly down to apply

enough pressing force to actuate the button. Since there is no or little visual feedback
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to accomplish this task, the operator may do this in a near-arbitrary path. These

paths would appear different to the MSV analysis, whereas the outward appearance

would be the same. Using direct feedback, a more accurate analysis of Leonardo's

current motions could be obtained.
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Chapter 5

Combinatorial Episode Selection

and Canonical Motion Creation

5.1 Introduction

In the previous section of Skynet, the algorithm tries to pick out all possible episode

boundaries, for future use. This is necessary for a fault tolerant system. Below

will show some examples of non-fault tolerant alignment, and the disastrous results

that occur. Most actions are completely unrecognizable when the wrong episode

boundaries are chosen.

Several Methods are taken to insure the proper selection of episode boundaries,

for alignment. Most importantly is the systematic comparison of different subsets of

episode markers, and then the testing of those subsets to gauge their quality. Once

this is completed, the best fitting subset is chosen. These markers are then used to

compute the canonical motion, by dynamically time warping the original time series

and averaging the different motions.

5.2 Combinatorial Selection of True Episodes

The first step on the path to final canonical motion creation is the choice of valid

episode markers in the action, for each trial. It is very likely that given multiple trials,
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different possible trial boundaries will be found, some invalid; after all, this was the

goal of the previous section [to, if anything, choose false positives that could later be

weeded out, rather than missing important boundaries]. We do this through a several

staged process.

5.2.1 Minimal Subset Selections

Clearly, if we have chosen judiciously, then we will only err on the side of too many

episodes. So, the first step is in finding the trial that contains the fewest episode

boundaries. Assuming for each trial T has possible beginning episode markers AT,

and possible ending markers BT, we find the minimal number of overall episodes

Nmin = min(| AT,|) = min(IBT,1),

where the minimum is the same in either case, since we have created the episode

boundaries to always consist of a matched set of beginnings and endings.

After this minimal number is found, we try to find the best matching of that

minimal set of markers, with the rest of the trials. This causes a sort of combinatorial

explosion, since the possibilities scale exponentially both with the number of trials,

and the minimal number of markers. However, in this case all of those parameters

are low enough that the entire calculation still [in trials so far made] takes under a

minute to perform.

To find the best match, we need to perform a calculation similar to the combina-

tions of a set of k elements from a set of n elements,

(n) = 

n !

k k! (n - k)!

However, in this case it is more difficult - the objects are typically paired, and ordered.

For example, we cannot choose two episode beginnings instead of a beginning and an

ending, and also, we cannot choose any endings before their respective beginnings,

etc. Therefore we accomplish the possible choices in two phases.
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The trial comparisons must be done in a pair-wise sense. So, first, every combi-

nation of pair-subsets is made. The analysis below is made for each of those subsets.

First two trials are chosen for comparison [the code that accomplishes this is in

makeEpisodeSets.m and findEnds.m]. Then, for each trial, all the possible sets of

starts and ends that are valid are generated.

This is done by first choosing the episode beginnings, in a simple combinations

sense. All subsets of size Nmin are chosen and saved as possibilities. Then for each

of those sets, we generate the possible valid episode endings. We do this by first gen-

erating all the possible ending sets of size Nmin as we did for the episode beginnings.

Then we test each one for validity. An important example of why the endings cannot

be simply matched up with the corresponding beginnings is illustrated in Figure [5-1].

In this case, two beginnings and two endings were chosen. However, the reality is that

the first beginning and the second ending form the true episode - the inner ending

followed by beginning is a false trigger.

The validity test consists of several stages. First, we create a running total of

how many of the ending spots have been chosen, as we increment through the ending

indeces. This is compared to the running total of starting indeces. The differences in

running totals are calculated. This is shown for an example case, in Figure [5-2].

The difference of these in the ith position,

D(i) = E(i) - B(i),

where B(i) and E(i) represent the running totals of episode beginnings and endings

currently being tested, is used for analysis. The difference string tells us about the

validity, as follows:

" A difference of 1 indicates that one more episode ending than beginning has

been chosen. This is invalid.

" A difference of 0 indicates, so far, a valid set of ending markers.

" A difference of -1 indicates that the next beginning has been placed, but has
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False inclusion of ending and start markers within a true episode

0 1 2 3 4 5 6 7 8 9
Time

Figure 5-1: An example of the need for more complex episode
this case, the true episode encompasses a false ending and a
would otherwise not allow the true episode to be selected.

selection analysis. In
false beginning, that
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Episode Subset Selection and Testing

Beginning 0 1 2 3
Total

Ending 0 - 1---.. 2 3
Total

Difference 0 -+ 1 -+ 0 P.-1 -00 - 1 -+ 0

0 = beginning marker Invalid Difference: -1

Q = ending marker

Figure 5-2: An illustration of the running total of chosen beginning and ending mark-
ers for one possible choice of ending markers. This is used in discriminating between
valid and invalid ending marker sets. Differences are shown below the markers. In
this example, an episode ending is chosen before a valid beginning has been selected,
therefore this episode ending subset selection is invalid. All possibilities are tried.
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not yet been matched with an ending. This is also valid.

" A difference of -I, but also with B(iZ'+ 1) = 1, indicates an invalid state, because

although the next difference may possibly remain -1 [with an ending in the next

index, E(i + 1) = 1], the beginning will occur before the ending, yielding a

temporary difference of -2, that wouldn't show up in the difference calculation.

" Any other difference is invalid.

Iterating through all of the possible ending subsets, we keep only those that have

all valid running totals.

Next, we find the corresponding indeces that correspond to the episode boundaries

we have selected. We also clean our action data, just to give a more general baseline

for comparisons, by chopping off trailing information, after the last episode ending, as

well as initially scaling all episodes to a normalized time scale. Now that all of these

valid pairs of episode boundaries have been generated, we test each one to measure

how well it aligns the two samples. This is used as our guide to which are the true

episode choices, based on the thought experiment that the probability that over many

trials, the highest alignment between trials will be with proper episode selection, with

probability approaching 11.

5.2.2 Optimal Alignment of test Episode Boundaries

So far, for every possible pair of trials, we have generated the valid subsets of episode

beginnings and endings. Now, we need a way to rank how accurately these align the

trials. For each pair, and for every valid subset in each, we perform the following

analysis.

First, we find the average times for each respective episode boundary, notating

these as Maverage(i). Then we compute a spline of the indeces of these times [i.e. i]

with respect to the times computed by the averages. This has the effect of continu-

ously and dynamically altering the time sequence, so that the old markers of times

'It is possible that this would result in a false positive choice. However, below, further techniques
to make sure it is not a drastically incorrect assumption are performed.
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Ta(i) and Tb(i) shift to the average locations at Maverage(i), but in a manner keeping a

continuous derivative, instead of computing this effect linearly. This process is shown

in Figure [5-3], showing two original time series, and the modified time series, lining

up the markers to the average time locations. For interpolation/splines we use Her-

mite polynomial splines, described earlier, because they insure that the time series

will remain monotonic, and thus legitimate [if time were to temporarily reverse the

interpolated result would become invalid].

Time deformation using Hermite Polynomial Splines

0.9 -

0.8 -

0.7 -

E0.6 -

0/

0.5-

E/

0.4 -,

0.3-

-Trial One

0.2 - Trial Two

0.1

0
0 100 200 300 400 500 600 700 800 900 100

Time Index

Figure 5-3: A view of the splining of two trials' time series, showing alignment to the

average episode boundary time markers, Maverage(i). The straight line represents the
standard linear time development, and the two curved paths skew the time so as to

align the markers in the trials. A steeper curve indicates faster time evolution locally.

Now, given a selection, we can rate the degree to which this set of episode markers

aligns the two episodes. We do this with a statistical correlation. First we clean up

the functions, by eliminating the excess parts of the function that cannot be aligned
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[i.e. a tail of one function stretching beyond the end of the other]. Figure [5-4] shows

an example of two trials with marked episodes, before and after alignment by the

findBestAlignment method.

0.14

0.12F-

0.1

CO

0.08

0.06

0.04

0.02

0

Comparison of two trials, one subset of possible alignment markers

I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time [sec]

Figure 5-4: An example of two trials with marked episodes, before and after alignment
by the findBestAlignment method. This episode selection is valid and has passed
previous tests, and both functions have been cleaned before processing.

The correlation coefficient is a measure of the similarity of two random variables.

It is notated as
_cov(X, Y)

where oi is the standard deviation of random variable i and cov(X, Y) is the covaarince

of X and Y,

cov(XY) = OXY = ((X- < X >)(Y- < Y >)).

Thus, getting rid of the averages, which takes care of any overall offsets that may
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be present, this is a measure of how much the two functions are similar. The closer

to 1, the closer the two functions match perfectly. This ranking applies to both trials

involved, with only this specific subset of trial markers. For each trial, this ranking

is added to a subset-specific list, to be combined with all of the iterations over all

trial and subset combinations. Figure [5-5] shows, for three trials, all the valid subset

selections and subsequent functional comparisons using this method, and all of the

generated values of correlation, o-,, for each comparison.

Valid, corr = 0.59958 Valid, corr = 0.50483 Valid, corr = 0.59016 Valid, corr = 0.50406 Valid, corr = 0.71196 Valid, corr = 0.63388
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Figure 5-5: A view of many of the possible subset and trial matches that produce valid
time series, for a button pressing action. In this example three trials are involved,
showing 18 of the many possible combinations [to save space]. Each graph displays a
value of the correlation o-, found in that specific functional comparison.

Once we are finished iterating over all trial and subset combinations, we have a

list for each trials' subsets, of rankings of matching, how well that subset lined up. In

order to truly rank how well a subset selection worked overall, we total the rankings

applicable to that subset. The reason we do not use a typical average, is that the
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pure total applies a penalty to the uses of that subset that did not generate a valid

time series [as done in the splining session]. Thus, a more correct subset would likely

be applicable in more comparisons, and thus would receive a higher overall ranking.

Whichever set possesses the highest overall ranking, is then sent to the trial object

as the final selection of true episode markers. Figure [5-6] shows three trials involved

in a button pressing action, the initial set of possible episode boundary markers for

each, and then the final selection of chosen markers.

Final Marker Selection found by maximalEpisodicAlignment.m
6-

- MSV
X False Start Markers

4 f)Q False End Markers
X True Start Markers
2 True End Markers2-

0 2 4 6 8 10 12

6-

CJ

2-

0--

0 ' I I I
0 1 2 3 4 5 6 7 8 9

6-

2-

0-
0 2 4 6 8 10 12 14

Time [sec]

Figure 5-6: A view of three trials involved in a button pressing action. The initial
possible episode boundaries are marked in each example, as well as the final selection
of markers, for use in combination for a canonical motion.

84



5.3 Canonical Motion Creation and Results

The purpose of all of the episode analysis is to align the time sequences of the multiple

actions, so they can be more validly compared to generate a canonical representation

of the action, to be performed at any spot in Leonardo's workspace. This alignment

is almost accomplished. All the valid alignment points have been found. All that

remains is to dynamically time warp each signal, similarly to how we have above, to

generate the overall motion.

First, we average all the markers for each trial, respectively [e.g. each second

episode beginning time is averaged]. This is used to compute a generally accurate

time scale for each constituent part of the motion, so that the motion will seem

realistic. Beyond this we compute the average ending time of the motion [since this

is not necessarily an episode boundary].

Then, similarly to how we computed a distorted time series above for trial com-

parison, for each trial we spline the time series so that the original time series now

matches up the important markers at the average marker times. This occurs in

alignFunction.m.

Now we have created the final time series for each trial, for maximal alignment.

We cannot directly compare these yet, as they are not continuous systems [and for

example, Matlab requires term by term comparison]. Therefore, for each set of original

and time re-mapped data, we now spline this data over a new timeline. The new

timeline is an linearly spaced mapping from 0 up to the maximal used time found by

averaging the trial lengths, at a high enough resolution [approximately 0.01 seconds]

to gather all pertinent motions.

Now the trials can finally be compared. This is done by simple averaging, in the

case of the same action being repeated [i.e. the same spatial locations, as we have

not yet discussed spatial generalization]. Several figures show the usefulness of the

methods described in this and the previous chapter. Figure [5-7] shows, for a button

pressing trial, the final alignment between three separate trials, as well as the averaged

motion of those three trials. This is not joint data, but rather the end effector MSV
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comparison. This is compared in the same Figure to the MSV data purely averaged,

without the use of the alignment methods. It is plain to see that the MSV analysis

and episode functioning have greatly improved the correlation between motions. In

fact, without this analysis, most of the local minima and maxima are lost.

Comparison of unaligned and final aligned trials for a button pushing task

- Trial 1
5- Trial 2

Trial 3
4-

2-

1 --

0
0 2 4 6 8 10 12

6
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5- - Trial 2
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4-

u)3--
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1

0
0 1 2 3 4 5 6 7 8 9 10
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Figure 5-7: A button pressing trial, with final MSV analyzed alignment on three
trials. This view of the aligned MSV is compared to the original time averaged MSV,
which has lost almost all of its distinctive features.

Figure [5-8] shows the more fundamental importance of this analysis. It shows the

resultant three dimensions of end effector travel, after episodic alignment, for the same

button pressing action. When the systems are aligned, we generate a motion that

is cleaner [from statistical human noise reduction] than the original input systems,

shown earlier, and yet reaches the important areas that the original motions reached.

The regular averaged motion [before alignment] does not resemble the original inputs
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in terms of their spatial progression, due to the problems from time misalignment.

Aligned Button Pushing Trials for the Same Button Location, Three Trials

1 2 3 4 5 6 7 8 9 10
-- Trial 1 Data

- Trial 2 Data
- Trial 3 Data

_ --- Average End Effector Position
-- Upper and Lower Standard Deviation

0

0

0

0

w
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0

w

1 2 3 4 5 6 7 8 9 10

Figure 5-8: Another comparison of unaligned and MSV-aligned data, this time for
Leonardo's joint system. The images show the three dimensions of end effector motion
of Leonardo's end effector path. Compared to the regular averaged motion, described
earlier, this motion retains all maxima and minima of the original motions, as well as
important velocity/derivative data.
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Chapter 6

Interpolation of Motions

So far we have accomplished many steps in the process of generalizing an action from

several known examples. They have all dealt with time alignment issues. We have

decomposed the examples into known episodes, determined which of those episodes

were common to all the examples, and used alignment of those important episodes to

align the time series of all the examples, to generate a canonical time scale for the task

at hand. We have improved over previously known methods of time segmentation, in

order to make a more robust system.

Now the task of spatial alignment, and more importantly, spatial interpolation,

remains. When a robot attempts to press a button in a new location based on

examples from different spots with known locations, it is extremely important that the

robot makes successful and accurate contact with the button, otherwise the button

pressing event will not actually happen. In previous research, most interpolation

routines [used by the animation community as well as the robotics community] have

not been object oriented - that is, they have not involved an interaction between the

end-effector and an object. Therefore the exact accuracy of those techniques remains

less important than achieving the desired quality of motion.

To add to this problem, task animations are usually input by humans, demonstrat-

ing the tasks on some sort of teleoperation device. These devices are physically ex-

hausting to the user, and therefore in real-life situations [i.e. non-laboratory-idealized

situations] the user would like to perform as few as possible actions, in order to create
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a learning system. However, in systems that current exist and exhibit learning by

examples, typically around 5 examples per location [16, 17] are used to get rid of

noise issues, and then many of these spatially diverse data points are combined to

form the full model. Most learning algorithms such as neural nets typically require

many training points. If we were not limited by time we could record actions at every

0.1" of resolution in all dimensions [roughly 1,000,000 examples for a 10 inch cubic

area] and then no blending would be necessary at all, just a simple playback routine.

This will never happen in reality. Our goal is to be able to generate an accurate and

apt system that can function with < 10 trials given to the system. This would be

invaluable for saving time when teaching a robot complex tasks.

Specifically to the issue of averaging, figure 5-8 shows an example of the time align-

ment system applied to three trials of an action located in the same place. Clearly,

comparing these trials leads to a system with much cleaner motion. However, it

adds to necessary resources. Therefore, for the remaining sections, we will perform

no averaging of multiple trials from the same location; this feature could always be

transparently added, and would only clean results, but we are after the bare minimum

of resource use.

In this section of research, we aim to first capture the desired quality of motion,

and combine this solution with a solution that accurately places the end-effector

where it needs to be, in sections of the motion that require such accuracy. This

chapter explores the first half of this task, the blending of animations to create the

desired quality of motion.

6.1 Switching to the Animation Model

For the remaining sections, instead of using data gleaned from a user inputting ani-

mations from a teleoperation suit [as was used in previous sections], we now will be

using data directly gained from motion animations generated by animators in a Maya

model of Leonardo. We switch to this technique for several reasons, based mostly on

the quality of our incoming teleoperation data.
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The teleoperation data goes through several steps in order to be useful on a data

processing level, which causes initial problems. The first is in the Gypsy Suit to

Gypsy Suit software level. Each joint is separately calibrated, and in a non-linear

fashion, to account for offsets of the potentiometers not existing inside the body. The

Gypsy Suit calibration technique is somewhat reliable at achieving a useable amount

of motion tolerance, however, the human operating it has constant visual feedback

to see what they are doing, and how to modify their motions so as to fix errors

and, for example, press buttons. Miscalibrations in the suit are difficult to test, but

nevertheless, necessarily exist. And, since it is the suit angles we are measuring, not

the robot angles directly, those miscalibrations are measured and brought into the

Matlab model.

A second problem occurs because of the fundamental differences between record-

ing gypsy suit data from recording robot position data. In a button pressing task,

Leonardo places his hand on a button a pushes it down roughly one inch - however,

this force is applied by the gypsy suit operator lowering their hand roughly two feet,

to increase the proportional feedback that Leonardo applies to the button. Therefore,

in looking at recorded animations grabbed from gypsy suit data, the button locations

vary wildly, and are ill-defined: the hand never actually stops at a fixed distance,

but only at the distance that was needed at that trial to apply sufficient force to the

button. This example illustrates the further use of applying true robot angles, as

well as gypsy suit angle data, to form a full model of true robot position, as well as

robot commanded position, for use in interpolating for new motions.

A third problem arises from manipulation of the robot with the suit. Many of

Leonardo's joints are highly non-linear. This is especially true of his hips, which

not only function on a differential, but each side of the differential is driven non-

linearly by two motors attached with driving rods. When an agent operates him,

that agent can once again can use visual feedback to adjust to any necessary angle to

satisfy necessary motions. However, the nonlinearities of Leonardo's hips, torso, and

shoulders are not yet properly accounted for in the recording software. This means

that the recorded angles are not necessarily closely related to the real joint angles.
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For a joint such as the wrist, this presents not a huge problem. However, every other

joint is grounded on the hip differential. This makes any inaccuracies of that angle

alone cause huge disturbances in end effector position. This is true to the extent that

the Matlab model of Leonardo's subsystem, when shown pressing buttons at different

positions but the same height, shows the actual robot pressing buttons of heights

varying by up to roughly a foot [see Figure 6-1]. This inaccuracy makes any kind of

truly accurate location scheme [involving points interpolated from recorded demos]

extremely difficult. See Figure [6-4] for an idea of the way button pushing actions

should ideally appear, in a well-calibrated model.

It remains an separate [and time consuming] engineering task to map these non-

linearities into the model, so that the software and hardware models agree to a high

degree of accuracy, hopefully < 0.25" and preferably < 0.1", for any interpolations

to be valid and useable.

Using data directly from the software model allows us to circumvent these non-

linearities, although calibrations of joint lengths, etc, are still required. Therefore,

we leave the calibration of the real robot mapping for a later date, and present the

motion interpolation schemes as a proof of concept, to be applied to the robot once

calibrations are complete, and as a general technique for application to robots in

general. Only after real experiments on real robots will any proof of technique be

made.

6.2 Interpolation Techniques using Known Motions

We are given several time series of motions xi(t), all oriented involving an object at a

known position, (OX'i, Oyi, Oz,), where the point 0 indicates the most salient point

of the object, i.e. the exact point that most describes the action at hand [i.e. for

button pushing, this is the point of contact between hand and button]. Given this

information, we need to generate a new trajectory Y(t) that will describe the correct

motion to achieve the task when the object is located at point (OX, 0 y1 O2).

All current methods seek to leverage the known information about previous trials
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Raw End Effector Paths for Button Pressing Trial in Leonardo Model
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Figure 6-1: A 3d graph of three button pushing demos, taken from nonlinear data
from the Gypsy Suit recording software. Note how the areas of button location,
indicated by a slowed and slightly back and forth motion, appear at vastly differing
heights, even thought he true buttons are all 7 inches in height. This shows the degree
to which a nonlinear calibration of the Leonardo software model is needed.
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in some way. Clearly without these, we have little knowledge about the process

by which to complete a task. The only question is in which way to combine the

previous trials to yield a useful result. In a simple one dimensional case, a weighted

averaging method based on distances from the known points yields a decent first-order

approximation to a destination. However, generalizing this is not a trivial matter.

What we look for is a method to generalize the concept of these distances into

higher dimensional spaces. Some techniques [12] search for nearest neighbors to blend

between them with linear weighting, whereas some techniques such as linear approx-

imations exist, however do not use all of the available information from previous

trails.

Computer graphics animators have, for the past several years, applied a technique

that does this, known as Verb-Adverb Theory, which, as will see, allows us a first

order approximation to a solution to this problem; this has recently [17] been applied

to robotic learning. However, on its own, it does not provide the accuracy requisite

for a fully functioning precision system.

6.3 Verb Adverb Theory

The Verb Adverb Technique has been applied for several years [30], primarily by

animators for computer graphics characters, to generalize known motions to new

points in space, emotional parameters, etc., i.e. to solve the classic interpolation

problem. Roughly any quality of motion can be parametrized by this technique, as

long as it shows up in the movement of the joints in an observable manner. In the

syntax here, a verb is a motion of some sort. It can belong to a general class of

motions, such as 'grasping an object.' Clearly, grasping an object can happen in

different locations, and although a similar motion will be present any performance

of the grasping of an object, different parts of the motion will need to change in

order to successfully complete that task in different areas of space. In this sense, the

position of the object becomes an adverb of the motion: a specific parameter that, by

varying, can vary the output task. Adverbs can consist of emotional levels [such as
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the happiness or sadness of someone walking, which yields in different postures but

the same general motion of walking], object position [as in the grasping of an object],

or any other known/useful parameter.

Much of the work has been completed already, in terms of taking in human data,

and time aligning importance sections of that data for easy comparison. In earlier

sections we have shown that for a variety of data, this segmentation technique greatly

improves time alignment. Now, we need to generalize from these exemplars, or input

data points, to a continuous system. Since we are interacting with an object, we can

easily gauge the failure or success of our model, whereas in previous use of verb/adverb

theory, it is highly in the eye of the beholder, to what extent the blending has been

successful. However, more recent application of verb/adverb theory has been shown

to be at least somewhat successful in these tasks [17]. This is an attempt to perform

a similar analysis on a more complicated [higher DOF] system that is much less rigid

and less capable mechanically than the Robonaut system, and with fewer input trials

to yield useful results [We will need modifications to the normal verb/adverb theory

to accomplish this]. The main impetus for this is twofold: first, the standard human

operator does not desire the need to input 30 data points for a robot to successfully

complete any tasks, it is tiresome and time-consuming; knowing the minimal number

needed is beneficial; secondly, successful results are almost guaranteed at a fine enough

exemplar mesh - the less input data points, the stronger the theoretical model needs

to be to insure successful evaluation of tasks. Much of the theoretical groundwork

laid below is to be found in [30, 17]. The implementation here of verb-adverb theory

is known as Radial Basis Functions.

6.3.1 Radial Basis Functions

The general goal of Radial Basis Functions is to produce for any point ', where T E I

represents the vector of adverb parameters, a new motion animation m(, t), from

some form of interpolation of the exemplars. We keep as a simple condition for basic
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success, that whatever our interpolation scheme is, it should satisfy

m(, t) = mi(t),

where mi(t) is the ith exemplar. The adverb is the specific parametrization j of the

trajectory M', such that there exists an [unknown] mapping 'I such that

for each exemplar. The mapping is only known for the exemplars, but we would like to

know it so that we can compute the inverse [or pseudoinverse] to yield us a trajectory

r for a given parametrization '. In English terms, every functional representation [ie

any motion in a specific case] is some parametrization of a generalized function, but

we never know the parameter, or the function. We aim to turn the function around,

to yield solutions of any interpolated parametrization. Also, in our case, the object

position (OX, OY, 0) represents the 3d parameter space, and the joint angles at every

instant of time during the action represent the specific exemplar verbs. We could

employ a four dimensional parameter representation, namely (OX, OY, OZ, t) where t

represents the time during the trials, not the object time. This should yield similar

results but for ease of understanding of the code, this was left as a loop and iterated

for every time.

Typically to achieve good results, something on the order of 2n to 3n example

motions are needed - with our 3d parameter space [object location (Ox, OY, 0)], this

would mean 6-9 samples. This problem is solved in two steps: a linear approximation,

and then the radial basis functions themselves. The linear function serves as an

approximation for the entire space, whereas the radial basis functions locally adjust

that approximation to interpolation between the example motions.

Radial basis functions are a function of distance between parameters in their

parameter-space, i.e. they have the form
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where di is some distance function (between p and pi) in the parameter space. Since

it is a function of only distances, there cannot be an affine translation of any kind -

this is the main reason a linear or low-order polynomial representation is often added

to the radial basis function, to give the general baseline of quality of motion.

Radial basis functions offer several advantages over other interpolation schemes

[34], notably:

" They are relatively compact.

" They compute reasonably fast [although they are not currently real-time capable

in general use].

* They interpolate sparse, non-uniformly spaced data.

" They can be evaluated anywhere, to generate any required resolution.

" Once the functions are computed initially, any new parameter set can be quickly

plugged in to generate an output for that specific form, with no repeated ground-

work.

The most important of these is the ability to interpolate between completely randomly

spaced data points. Interpolation schemes in three dimensions need more advanced

routines to designate weights for standard blends. Any that uses some form of distance

as its metric by which to weight different exemplars, can be phrased in the language

of Radial Basis Functions. Radial basis functions have been shown closely tied to

neural nets, and can be represented with a known three-layer network [[21]].

6.3.2 Radial Basis Function Selection

The radial basis functions are defined for every exemplar point in parameter space pi.

The functions for use in the radial basis can be of our choosing. It is important that

they possess certain properties, however. The main property is the need for falloff -

that is, when we get far enough away from one example point, and close to another,

the influence of the first data point should become very small.
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The goal of the radial basis function solution S(Y) is to minimize the error or cost:

N

pi - S(V) I + wI(s),
i=1

where the first term is the deviation of the spline from the real exemplar data points,

and the second term is a 'smoothness of surface' term, which can be chosen to mini-

mize other constraints, if we have any [such as some higher derivatives of the function,

so that it will become smoother]. For this work, we will choose a radial basis that gen-

erates a smooth solution, but at this point will not add any additional requirements

to our interpolation solution.

We can write the general solution to this minimization problem as a two part

solution, namely
N

S(Y) = t(7) + A R(jIX, Xi),
i=1

where xi represents the location of the ith exemplar, R(|7, fi ) represents the distance

function [of our choosing] between the point of interest and each of the i exemplar

points. t(Y) represents what is known as the trend function, the general linear function

fit that was mentioned above. It is, theoretically speaking, the closest hyperplane fit

[in the least squares sense] to the existing n-dimensional parameter data.

The initial radial basis function that we use here is

R(Y, Xi) = r = IX - Xil,

the standard distance function. This is known as the biharmonic spline. Future

research into this matter would allow more fine a selection of radial basis function,

but the biharmonic spline is chosen usually because it creates a very smooth solution

curve. Other options include the thin plate spline and the gaussian basis function.

Both of these were attempted and delivered slightly different results, but not with

any significantly lower overall errors.

Now we can generate the matrix of all Radial Basis Function influences over the
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points in parameter space,

D = [Dij], where Dij =Ri('),

for all i, j E {1, 2, - --Ne}, where Ne is the number of exemplars. The ith row therefore

recognizes the values of the ith Radial Basis Function measured at the locations of all

the Radial Basis Function locations [the exemplar points]. This will form part of our

solution, given below.

6.3.3 Linear Approximation

We need to add in the approximate overall general motion, or trend function, for these

radial basis functions to sum to something useable'. Radial functions used without

a linear element have been shown to have many problems performing adequately

[4]. We decide on a linear approximation, in lieu of no data to justify a higher

order polynomial selection. This could be easily modified, but has held decently

in experiments conducted so far [17], and no data specific to the research at hand

suggests a higher order model.

6.3.4 Full Solution

The general solution to the system of equations written above can be written in

matrix form as
D T A P

T T 0 c 0

where D is as written above, T is the trend solution, where Tij = tj (s4), c defines

the coefficients for the trend solution, A defines the coefficients for the purely radial

solution. The section of the large matrix that is all zeros corresponds to the extra

4 [it is a 4x4 submatrix] conditions that must be added to insure a unique solution,

otherwise the system as created above is underconstrained. These 4 equations are

'A radial basis function cannot cope with affine tranformations, since it is only a function of
distance. Therefore tranformations such as translations and rotations cannot be adequately captured
by this system, which in effect has no origin.
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added to insure that the radial basis function solution matches the true solutions at

the exemplar points. It is essentially the coefficients c and A that form the solution

for any new parameter input set.

6.4 Application of Verb-Adverb Theory to Gener-

alization of Motions

With this theoretical backing, we apply the Radial Basis Function technique to the

data at hand, to view its ability to interpolate and extrapolate between known trials.

To insure a robust method, we only apply 4 data points for the system, and in unequal

spacing in the three spatial dimensions [typically, a 'box' will be made, with trials

at each corner, to define well an area for valid interpolation; we seek to improve our

ability to interpolate, so that this requirement will no longer be needed].

The centers of motion described before are, of course, the spatial centers of the

object involved in the trials, (0,j, Oyi, 0Z,). This point is defined as the centroid of

the object [in our case located by our vision systems described in Chapter 2]. The

parameter involved is the spatial location of the object we would like to interact with.

Once we enter this data into our radial basis function routine [code shown in sky2.m],

the output is 41(t), the time series for each joint of Leonardo.

For every time frame, we take the parameters and known centers, and use the

radial basis function weighting [which is independent of time] to average known joint

angles at that time to create the final joint angle, for that time:

n

qi(t) = a i qi,n(t)+ an affine term,
j=1

where a,j is the weight of the J"h trial for the ith joint. After this is computed for each

joint, for each frame in the time series, we have a full temporal-spatial representation

of Leonardo performing an action.

Figure [6-2] shows the plot of the radial basis function solution to position Leonardo's

end effector on a button. The position of the button is shown, as is the end effector
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time series in 3-space. There is a large error in Leonardo's ability to locate the button

precisely - at many locations with errors greater than one inch. For gross tasks this

may not be a problem, but for any precision task, this will fail. Figure [6-3] shows

the error variation as we move the goal location around within the general area of

the trials. Near any of the original trials, as expected, the error dissipates, but as we

distance the object from the trial space [especially when leaving the convex hull of

trials] the error increases dramatically.

Top view
-1

0 Trial Object Positions
x End Effector Final Position

-2 .... ... True Object Location
End Effector Travel

-3 --.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.

-5-- ---.............................-

0

-6....................................
.7 C'

- 7 -- - - -- . ...- . . .- - - - ..- - .- - -- - -- - -- - -

- 8 -- - - ----. .. --
0

0
- 9 -- --.-.-.-.- . -.

0
1 n

-5 0

3d View

9

8 - -

7 --

6 0 -

5,

4.
0

5
-5

-10 -5

0 Trial Object Positions
C True Object Location

- End Effector Travel

5

Figure 6-2: A plot of Leonardo's end effector, showing the solution using radial basis
functions, to reach a button at a specific location located in the convex hull of demo
trials. Note that there is quite a large error found, due in large part to the lack sample
size, and due to the 'unideal' placement of trial episodes. Previous traditional research
uses many trials placed precisely to yield lower error, whereas methods described
below circumvent the need for larger sample size.

These few trials, interpolated with radial basis functions, are not able to recreate

precision motion tasks. Additional methods need exploration. In previous work with
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Error in locating object with end effector using radial basis functions
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Figure 6-3: A plot of the end effector error as it tries to locate a specific point in
space., with the motion generated by radial basis function interpolation. The color
indicates the amount of error, in inches, as designated by the colorbar on the right.
White x's mark the spot in the x-y plane of a known trial, although not necessarily
for this value of z [i.e. in different planes]. A value of z was chosen that was roughly
the average of trial points. Note that near trial points the error is generally reduced
toward zero, and when we leave the convex hull of demo trials, the error rapidly
increases.
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Robonaut [17], results using radial basis functions of a similar kind were used and

generated trials were partially successful, however, not with a high degree of accuracy.

Below, a method is described that not only reduces, but can theoretically eliminate,

this error.

6.5 Improvements on Motion Interpolation and Ex-

trapolation

It is important to remind the reader that these trial motions were completed with

no error. Since they were derived from animation data, they represent an absolutely

precise task fulfillment. The error in the end effector comes from the non-linear

averaging of joint angles - this averaging affects the end effector position in non-linear

ways.

We are looking to position and end effector relative to an object. Therefore, the

viewing of this object in absolute space is not necessarily the most natural space in

which to view the positioning problem. By viewing the trials in a new coordinate

frame, we will find two improvements to the radial basis function solution: a method

by which to gauge what parts of an action are 'object oriented', and a method by

which to reduce interpolation error when we need to, while the action is interacting

with an object.

6.5.1 Object Space

There are two natural ways of looking at a system involving a robot and an object -

from the perspective of the robot, and from the perspective of the object. However,

typically the perspective of the object is ignored. However, it has allowed several

advances described below.

From the perspective of the robot Leonardo, all trials start with the end effector

in the same position, which slightly diverges on its path to the object. From the

perspective of the object, the opposite is true. If we view a coordinate system created
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from an affine translation [no rotations], such that the object is at the origin,

(X', y', z') = (x - 0 X, y - O, z - O2)

with (X', y', z') describing our new coordinate system, then all the trials start with

the end effector in a different space, but they all converge to the same space when

nearing the object, and eventually coming into contact with it, at the origin [by

definition; note that the transformation is different for every trial]. Figure [6-4] shows

the comparison of end effectors on their way to a button in Leonardo's workspace,

showing the divergence in absolute space, and the convergence in object space.
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Figure 6-4: A comparison of end effector trajectories in absolute coordinate space
[Leonardo's workspace] and the object workspace [the transformation of which
changes from trial to trial]. Note the divergence of motion in absolute space, and
convergence in object space, during a reach towards an object.

Now that we have defined these coordinate systems, it is time to put them to use.
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6.5.2 Variances to show 'objectiveness'

A human looking at the plots of these two systems can tell the obvious: when the

motion is absolute, and not related to the object, it is present in the same locations

for multiple trials in the absolute space, but spread in the object space; and similarly,

when the motion is related distinctly to the object, then it is present in differing

locations in absolute space, but converges to the same location in object space. This

statement, analyzed with variances on the time series of end effector positions in both

coordinate systems, is representable by a computer as well:

var(Xabsolute)(t) = absolute(t) = < (i;(-- < (t) )2 >, (6.1)

v ar (XObject) = object~t = < (t)-- < X >)2 >, (6.2)

where once again Y(t) represents the end effector at time t in absolute coordinate

space, and 2(t) represents the same in object space.

This allows us to make a measure of how 'object oriented' 2 any section of the

motion. A measure of the object-orientedness of the motion is found by the fraction

of absolute variance to object variance - if the absolute variance is lower [i.e. the

object variance is higher], then the motion is more absolute than object-oriented. We

let

T (t) = gabsolute (t)

Uabsolute (t) - Uobject(t)

represent the objectivity of the action at any time t. This is normalized to be always

between 0 and 1, and is thus easy to use in consequent work below. Figure 6-5 shows

a graph of a button reach, with the first plot displaying the object and absolute coor-

dinate system variances, and the second plot showing T, a measure of the objectivity

of that time in the action. Notice that, as expected, it provides quite a solid measure

of an absolute action [because all presses begin in the same rest location] phasing into

a complete object oriented action [because they all end up at the button].

2Not to be confused with the computer programming terminology, but really, there was no more

obvious choice of diction here.
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Progression from absolute to object representation
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Figure 6-5: Two plots: The first shows a measure of variance in the absolute coordi-
nate representation of the task, and the variance in the object coordinate representa-
tion of the task. The second shows T, the measure of the objectiveness of the action
at time t, and displays a smooth transition from absolute representation [as all trials
begin in the same absolute frame] to object representation [as all trials end with the
reaching of the button].
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6.5.3 Objective Radial Basis Functions and Objective Mo-

tion Interpolation and Extrapolation

Before we explore the consequences of the T measure, there is one important result

from our coordinate transform to consider. Let us explore the button locating task.

Recall that above, with radial basis function interpolation on the end effector location,

even with zero error in trials [from animations], the end effector could not be precisely

located to an arbitrary new object location.

Now we generate a new radial basis function. This time, it is not focused on

the joint angles, and it is not located in the absolute coordinate system. This basis

function set is placed on the end effector motions, in object representation space.

What are the results of this change? First, the detraction - this measure does not yield

any explicit kinematic solution for Leonardo's joint system. However, the solution

that we do get provides us with much needed information.

First, a thought experiment - for the button pushing case at hand, all the end

effector positions always went directly to the origin. When we interpolate between

these for a button position in any button location, we always receive the result that

the end effector must go directly to the centroid of the button. However, this kind of

notice could have been made by going to the object coordinate system and simply

taking averages of the nearest approach to the object. By performing a radial basis

function analysis in this coordinate frame, we are also able to see how patterns of ap-

proach to and interaction with the object change as the object is moved in Leonardo's

workspace. All the interpolations and extrapolations will lead, by definition, to the

object, as long as the trial cases did. This is an improvement over the previous radial

basis function techniques.

For example - imagine we are locating a button and pushing it at the point closest

to Leonardo. In the object space, this pattern will appear as a trajectory toward the

origin but approaching from a different angle. Thus any interpolated motion from

these originals will approach with a new trajectory [based on trial trajectories] but

will still approach the desired end effector position, with no theoretical error.

107



6.5.4 Consequences of Objectivity and the T measure

Figure [6-6] shows the end effector path generated by the use of objective radial

basis functions, compared to the original radial basis function solution. Note that

it proceeds from roughly the correct starting area [although not precisely] to exactly

the object location area.
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Figure 6-6: A 3d plot of the end effector path from the radial basis function solution,
alongside the plot of the end effector path from the objective radial basis function
solution. Note that the latter path reaches exactly the desired object.

Clearly neither of these solutions are ideal. The first solution behaves more ac-

curately in terms absolute behavior [in this case in the beginning of the motion],

whereas the objective radial basis function solution is more precise when interacting

with objects. Ideally we would like to blend between these solutions to form the
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overall optimal solution.

This is how we employ the use of our objectivity factor T. This measure yields a

blending weight between the two solutions, to at all times weigh each based on the type

of motion being employed, absolute or object-based. Therefore, calling Xabsolute (t) the

original radial basis function solution, and Yobject(t) the objective radial basis function

solution, we obtain the full solution for the end effector,

Xfinal(t) = absolute(t) + T t ( bjet(t ) - Iabsolute (t)) .

Once again, this solution does not yield joint angles, but merely an ideal overall path.

The first half of the solution yields the desired quality of motion, and the second term,

a correction to refine the end effector path, to remove all systematic error. Figure

[6-7] shows this blended path in 3d for the button reaching task.

6.5.5 Inverse Kinematic Solution

The aforementioned method provides the ideal path [and is easily generalizable to

provide precise path along with orientation, thus providing the entire 4x4 transfor-

mation matrix for the end effector at all times] in accomplishing a task, in the sense of

keeping the same quality and style of motion, while placing the end effector accurately

when need be. Current research is still being done to try to generate the ideal joint

angle solution for this end effector transformation. The ideal solution would generally

be to take the original inverse kinematic solution, and find the nearest solution to

that that at all times moves the end effector to the new final position Xfinal (t) from

Xabsolute(t). However, there are problems with employing this blindly.

Typically an inverse kinematic solution is found by iteration using the Jacobian

J of the robot, namely

Ldxi]

which, for small angles leads to dq' = J--ids. However, sometimes this inverse is

ill-defined for underconstrained systems [like Leonardo], in which case typically the
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Optimal End Effector Path for Button Pressing Task
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Figure 6-7: A 3d plot of the final generated weighted path for the button reaching
task. Note that this path initially follows the absolute coordinate system solution,
and fades to the objective solution at the point in which the typical motions diverge.
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Moore-Penrose pseudoinverse is used instead, J+. We can use this differential equa-

tion to take small steps in the correct desired direction until we approach the correct

target, given a starting set of joint angles. Figure [6-8] shows how a solution to a

nearby end effector location improves [in the sense of less needless joint motion] as

we increase the number of steps to get to the endpoint.
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Figure 6-8: A plot of the changes in 9 joint angles in Leonardo's system, before and
after finding a solution to an inverse kinematics problem, when different step sizes
are taken to reach that solution. Note that the more steps, the less overall motion
is made, although this quickly converges after about 100 steps into an unnoticeable
change.

Unfortunately, in testing this method, certain areas of motion moved drastically

when changing the solution to the ideal 7 fnaL vector. Other methods of inverse

kinematic solutions do exist, however, at the time of this writing, no method had

been found that would in general solve this problem ideally. Some other methods
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employ energy minimization, or path length minimization, which would seem to be

most useful here. Research is ongoing to create this final step for a frame-by-frame

blending solution.

However, a current solution does exist that, although not as continuous and clean,

still allows proof of the method at hand. We can somewhat easily find a single inverse

kinematic solution for the ending frame [as typically it is away from the body and

hence less prone to underconstraint errors], and skew each of the joint time series, so

that at moments of high interaction, the joint angle moves to exist in this necessary

inverse kinematic solution. This is not a final solution, and truly only a proof of

concept - before this technique is properly finished, it can already yield results that

perform better than competitive theoretical solutions. Figure [6-9] shows an example

of the original joint animation through time, which is then skewed to reach the correct

end effector forward kinematic angle at the end of the animation, when the objectivity

factor T = 1.

Overall, this technique, once combined with a higher accuracy frame-by-frame

inverse kinematic solution, will be able to deal with extremely complex interactions

with objects, always retaining precision during times when precision with the object

is needed, and always keeping the proper general shape and quality of motion insured

by the original radial basis function solution. Multiple interactions with an object

during a trial, as well as the movement of an object during a trial, can all be accounted

for in this same scheme with minimal chanes. Patterns of approach toward and

object or subtle changes on the manner of interaction with an object [i.e. point of

contact, etc] can be detected in this system, that are otherwise completely ignored

in a pure radial basis function solution. By extending the use of this technique to

allow rotations [instead of just translations] for object frame of reference, for example

in actions that involve grasping non-rotationally symmetric objects, this technique

would allow modification of behaviors for successful completion. Furthermore, for

cases such as a button press, where the initial tracking motion is dependent on object

position [placement] but the pressing stage is univeral [downward, independent of

object position], the system described above yields a solution that adequately gauges
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Skewed Joint Angle For Precise End Effector Placement
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- Original Joint Angle
- Transformed Joint Angle

- Desired Final Angle

2.2-

2-

(D

0
- 1.8 -

1.6-

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time [sec]

Figure 6-9: A plot of the time series radial basis function solution for a sample joint,
which is then skewed to reach the precisely desired end effector position by the end of
the animation. This functions only as a working solution, as more universal inverse
kinematic solutions are being researched.
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both stages of the motion, enabling robust accomplishment of these actions.
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Chapter 7

Conclusion

Below is a brief overview of all the systems that have been developed, and future

work that could improve each of these systems to create more robust, automated,

and effective robotic learning through demonstrations. In all, a system has been

developed that can record human teleoperation demonstrations of a task in which

the robot interacts with objects placed in different locations in his workspace; he can

process these tasks, aided by the use of visual and tactile feedback, and determine

how to perform these tasks successfully in new locations in space, and figure out the

proper time scales at which to perform those tasks to cause them to be realistic.

7.1 Data Capture and Integration

7.1.1 Current Status

A system has been developed incorporating tactile sensing, overhead stereo vision

for object location, and gypsy suit teleoperation data, grabbing data from these

sources at roughly 60 Hertz. Spatial information on object location is received at

an accuracy of roughly 0.1". The teleoperation suit currently controls 9 degrees of

freedom of Leonardo, from lower hips and torso movement, to wrist end effector,

although recording currently only occurs on Leonardo's right half of his body.
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7.1.2 Future Work

In future work, several different approaches would improve the episoding and spa-

tial testing sections of this work. First, the full body should be employed to allow

recordings of different actions on different sides of Leonardo's workspace, and encour-

aging more advanced techniques of blending between left and right handed motions.

Furthermore, many problems of positioning accuracy have stemmed from the cap-

ture of only Leonardo's teleoperated angles, and not his true body angles. First, a

proper model of the gypsy suit to Leonardo angle mapping needs to be employed.

Secondly, a secondary system should be added that captures Leonardo's true body

angles and records them alongside the teleoperation data [also aiding in providing a

mapping between the two, and more information about haptic feedback]. In order to

aid the reception of Leonardo's true joint angles, since many of his joints function on

nonlinear differentials and rod-based drives, true angle sensing from gyros or other

devices should be added. These measures should allow the recordings of Leonardo to

represent the reality of his physical system within tighter tolerances, ideally < 0.1"

positioning error for his end effectors. In parallel, optical systems are being devel-

oped so that instead of a teleoperation scheme, where the user controls Leonardo,

Leonardo can watch a user perform a task herself, and use his cameras to place their

end effector in his reference frame, and apply their actions to his own body. This is

a longer term scheme, however.

7.2 Motion Episoding and Time Modeling

7.2.1 Current Status

Currently, the first steps in time analysis are complete. The skynet system analyzes

multiple trials of actions, occurring with the object placed at a repeated or different

locations, and analyzes the MSV [mean-squared value of motion derivative] to find

possible segments of data, known as intentional streams. Two parameters used in

this analysis, previously programmed by hand depending on the task, have been
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automated, notably the minimum motion cutoff c and the ratio between minimum

and maximum motion needed to comprise an episode, k. The system creates a list

of all possible episodic boundaries for each trial. After this is created, the skynet

system analyzes combinations of different subsets of possible boundary markers, using

statistical correlation to determine which markers are in fact common to multiple

trials, and which time alignments create the highest statistical correlation scheme

between all trials. Furthermore, a study of the joint-based MSV and the end-effector

MSV has been performed, showing that both lead to useful information independent

of the other. From the subsets of true chosen markers, the original trials' times are

dynamically warped to give each episode a length of time that is the average of input

episode lengths, for each trial.

7.2.2 Future Work

Many steps can be taken to further automate this system, and improve its results.

Since a scheme is built to test subsets of candidate episode boundaries, as many

candidates as possible should be found. The automatic parameter selection should

be adjusted to allow more false positives, and other factors besides only an MSV

analysis should be added, such as joint maxima/minima, to count as possible episode

boundaries, as intentional streams can change not only due to a change in overall

motion content, but orientation, direction, etc.. The system needs to be able to

deal better when each trial consists of the same number of candidate boundaries -

currently, it chooses the smallest maximal subset, which in this case means all of

the markers from each trial - however, it is possible that one or more of those is

false, and a system should check subsets of all possible sizes to determine the true

markers, instead of using a maximal scheme. This requires several steps of research,

to properly weight the added trials as beneficial data, otherwise it is possible to always

find one marker as the ideal split statistically, when more markers would be useful in

the sense of true intentional boundaries. The MSV analyses of joint and end-effector

type should be combined with some weighting to capture information of both kinds

that is pertinent. Similarly, the touch sensor data, which was used at times, did not
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exhibit a reliable sensing, and was often too noisy to use reliably. When Leonardo's

new hands are installed, which employ arrays of touch sensors, this data should be

reliable and accurate, and it should properly be combined with an MSV analysis to

designate definitive episode markers, as often a sudden touch is the most reliable

sensory data showing an episodic change. For the time warping functions used to

find maximal statistical correlation, a cost function of some sort should be added

that favors minimal dynamic time warping; this will allow for the many subset tests

to rule out trivial results [such as moving all markers to time zero, which causes perfect

statistical correlation, trivially]. Finally, the time boundaries in this and all methods

researched, treat the time boundaries as static, whereas the spatial boundaries are

the dynamic part of the learning. However, in a more advanced model, the time for

episodes would also be related to the spatial object position [for example, reaching

for an object farther away should lead to the reach taking slightly longer]. This is

not yet reflected and would add a subtle, but realistic, quality to the generalization

of timing for episodes.

7.3 Spatial Interpolation

7.3.1 Current Status

The spatial analysis system currently in place creates clear benefits over previously

employed systems, in terms of its ability to interact with objects in extremely precise

ways, even with a lack of normally-sufficient data points. Like other research tech-

niques, the system uses a base of radial basis function analysis to interpolate joint

data from trials to new object positions, creating final time-series. It then outputs

these angles to give an end-effector path over time. Then, adding to previous research

techniques, a new coordinate system, in the frame of the object, is created, and mo-

tions are analyzed in this frame. This leads to a much higher precision in portions

of tasks involving the object, in terms of placement, orientation, etc., using a radial

basis function analysis on the end effector positions [in the object frame of reference].
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An analysis of variances in these different coordinate frames leads to knowledge of

which parts of an action are object-based, and which are absolute [independent of

object position], and in what capacity. This knowledge leads to a blending [using the

measure of objectivity] of original RBF solution, with the end-effector object refer-

ence frame solution, to create a solution that precisely and accurately interacts with

an object when needed, and otherwise retains the same quality of motion as the orig-

inal input trials. An inverse kinematic model solution is found, using the joint-RBF

solution as a starting point, to find the closest path for all joints that satisfies this

new end-effector constraint.

7.3.2 Future Work

In the future, several implementations would allow this system to insure more robust

performance, in a wider variety of circumstances. First, instead of only allowing

object translations in space, allowing all affine tranformations would enable object

orientation to be measured, and it's effect on robot task behavior could be calculated,

in objective radial basis function solutions. The object orientation would appear as

another set of parameters to be interpolated between using RBFs. Different types of

Radial Basis Function should be further tested, such as thin plate splines, gaussian

measures, etc.; currently the distance metric works acceptably, however, without

proper justification to ensure that it is best suited for the job.

Alternative methods of inverse kinematic solutions should be explored: the current

method uses an inverse Jacobian differential transformation method, which is highly

general in its ability to find solutions, but does not in any way prioritize joint motion

in any way. Other methods, such as energy minimization, joint travel minimization,

etc., exist, and, if properly implemented, could allow a frame-by-frame IK solution

from the initial RBF solution, that would remain smooth and accurate relative to

input trials.

In a longer term, a method to trigger episodic transitions should be built. Certain

events, such as sudden tactile feedback, signify episode transitions. Using these as

markers allows the motions to be split properly, however, in the performance of the
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new task by the robot, this data is not used to trigger different events. Thus, in

a button pushing example, the robot will perform the joint motions it thinks are

necessary to cause the button push, but will not use any feedback to insure that this

button push is actually occuring. It is a large task to incorporate episodic goals and

markers, such that the robot would know that the current episode required motion

in a certain direction until a visual marker was changed, for example. This is highly

non-trivial, especially in the case of error detection and correction, as a simple 'go

this direction until x happens' can easily cause Leonardo to destroy himself, if not

built properly.

Most importantly, once the modeling is completed describing the connections be-

tween gypsy angles, animation model, and real Leonardo robot, the spatial analysis

section needs to be implemented on the real robot - only then will the accuracy of

the theoretical methods be observed in practice, and the true power of the system

overall understood.

120



Appendix A

Statistical Learning Methods

Many methods of statistical learning exist. At several points in this research, it

is necessary to decide between approaches. For purposes of reference, below is an

overview of the most common methods of statistical learning.

A.0.3 Statistical Analysis

Statistical analysis is the most common approach to finding generalized patterns

within noisy data, and being able to gauge how accurately your generalized patterns

reflect reality. Usually a highly straightforward task, the main tool of statistical

analysis is the Linear Regression, simple or multiple.

Any time we wish to model something linearly, we can write the model as

Y = MiX + b,

where ' is a vector of observations, x is a matrix of known coefficients [such as

positions of an object], M' is an unknown vector of parameters, as well as b. It is

the goal of linear regression to find the best values of i and b, while also giving a

measure of how well the parameters were found. This is accomplished using some

form of least squares analysis, that while simple, is beyond the scope of this thesis.

This is, of course, an oversimplification of Statistical Analysis as a whole field.

There are many specific methods of advanced statistical analysis to analyze patterns,
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cluster patterns, etc. In fact, the methods below are considered statistical analysis

methods, that are more complex approaches to solving the problem stated above.

Another method known as Radial Basis Functions will come into play later, but we

defer a description of that technique until it is needed, in context. Radial Basis

Functions and different forms of splines are all tools of statistical interpolation and

extrapolation, and will be described where they are employed. Below are further basic

descriptions of other statistical techniques that are valid options in our research, but

were chosen against, for differing reasons.

A.0.4 Neural Networks

Neural networks were one of the first techniques to try to address statistical learning

problems that were too complex for ordinary statistical analysis. They were designed

to, in a fashion, imitate human brains, in the way neurons encode information through

changing thresholds. A neural network uses one or multiple perceptrons that follows

a mathematical rule of how to trigger other perceptrons, or in the end, an output

state [or 'answer' to a question], [see, for example, [32]]. The perceptron follows the

simple Perceptron Learning Rule

AW = v(D - Y),

where v is the learning rate, D is the desired output, Y is the actual output, i is the

ith node, and Wi is its weight. It is generally a simple proportional controller. The

way that it works is by giving the neural network [or set {W}] a training period,

where the user provides a set of inputs with known desired outputs [or {Di}]. After

as many generations of training that are desired occur, the neural net is considered

'trained,' and those threshold weights remain constant. Then when the net is given

a new input state set, it will spit out an answer.

The benefit to this process is that it has the potential to encode massively com-

plex structures of information, and for this reason it is commonly used in pattern

recognition, as well as similar contexts. However, there is a tradeoff. In this and
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other learning algorithms mentioned below, the user knows nothing about the way

the system works. The user receives no algorithmic solution of any kind, just a black

box that can give answers. This of course causes problems if the system behaves

imperfectly. Thus [and the biggest detraction for using neural nets to solve the prob-

lems at hand] in situations where we do not have very many training samples; neural

networks are not very apt at discerning larger patterns, and since we have a priori

information about the events at hand [i.e. that they are happening by joint systems

in an anthropomorphic robot, etc], we can apply that knowledge in another system to

reach more utilitarian solutions. However, in situations where many training sessions

are available, many neural nets can be brought to near-perfect execution, and in those

cases they remain extremely useful as a technique, although it should be mentioned

that neural networks are not some universal computational solution to the world's

problems, just another technique available.

A.0.5 Bayes Nets

Bayes Nets are another method commonly employed to deal with large amounts

of noisy information, and to deal with uncertainty. With Bayes Nets, each atom

is essentially some piece of information that may or may not be true, with some

probability. Then, between all of these atoms, are drawn [this can be done manually

but the usefulness is in extending the technique to a very large number of atoms]

probabilistic weightings. These weightings are known as conditional probabilities,

and once the agent knows all the individual conditional probabilities in a system,

he can figure out the overall probability of any desired event. Given two random

variables A and B, and assuming that A can take on any of the values vi, Bayes Rule

states that

F(A =vB) nP(B|A = vi)P(A = vi)
E _= P(BIA =Vk)P(A Vk)

where P(xly) is the conditional probability that event x happens, given that y has

happened.

It is an easy matter [but beyond the scope of this paper] to show that knowledge
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of all conditional probabilities leads to knowledge of the entire probabilistic system.

This can be imagined by the summing of all the different possibilities, to give a

generalized, unconditional probability. Building up a large set of joint distributions

is a very computationally intensive task, however, so setting up a large system [for

example where all the atoms represent a robot's joints at different positions and

their probabilities of being there at some time for some action] quickly becomes

exponentially unwieldy. There are several techniques involved in Bayes Nets that can

save time and turn a combinatorially huge problem into a manageable one. The main

technique involves figuring out which probabilities are independent of each other, and

then using the fact that for independent events A and B, P(An(B) = P(A)P(B).

Given the atomic probabilities are much fewer in number, the calculations of these

can greatly simplify the necessary groundwork in setting up a Net. In fact, without

these shortcuts, Bayes Nets querying is NP-complete [24].Bayes Nets are already being

used and have serious applications in the health industry [for example, disease testing

and result probabilities] as well as initial results in the area of robotics and robotic

learning.

A.0.6 Hidden Markov Models

Hidden Markov Models [11] are extremely similar to Bayes Nets. In fact, the main

rule of Bayes Nets [Bayes Rule, of conditional probabilities] is the main principle at

work in Hidden Markov Models. Like a Bayes Net, it is built up of a finite set of

states, here all part of what is known as a finite state automaton.

In this situation, as the name implies, all of the information about the atoms is

hidden in the model. Calculations are made that yield weights to the conditional

probabilities involved, but no explicit use of the atoms is made by the agent using

the model. A good example and common use of HMMs is in voice recognition. When

an utterance is made it can be subdivided into every phoneme, which are then all

compared to see which atoms they resemble most. Then, once those are chosen, a

conditional probability can be made to determine which of the utterances was most

probable, given the input.
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An HMM such as this can be layered on another, or several other, HMMs. One

HMM can decipher phonemes into probable words, which can then form the atoms

of the next HMM in order to find probable sentences. This sort of modeling can save

large amounts of computational time. Training occurs similarly to neural nets, with

probabilistic weights changing to near the distributions toward the proper output

state.
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