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ABSTRACT

Forced cooled systems for underground, oil filled, pipe-type electrical
transmission cable systems are becoming increasingly common in large urban
centers. In systems of this type there exist a number of electrical trans-
mission cables in an oil filled conduit. These cables are wrapped with a
semi-circular, protective skid wire, which increases the turbulence in the flow
and up until now has prevented any accurate or realistic prediction of the
pressure drop. An equation has been used which correlates the friction factor
of the Yough surface which has been developed which combines the effects of
the rough and smooth surface on the flow to obtain a friction factor vs. Reynolds
Number plot for the entire pipe-type cable system. This theory has been written
in the form of a FORTRAN IV computer program which accepts as input the geometrical
dimensions of a system and yields as output the friction factor and corresponding
Reynolds Number for the entire pipe-type cable geometry. The results predicted
from the theory are congistently 15-307 above the experimentally determined

values.
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CHAPTER 1

INTRODUCTION

High pressure, oil filled, underground pipe-type electrical trans-
mission cable systems have been in use for a number of years and are
becoming increasingly widespread in large urban areas (figure 1). Originally,
the oil was not circulatéd through the system, and the heat generated by
the cables was transferred by natural convection currents in the oil from
the cables to the outer pipe wall where it was conducted through the
soil to the atmosphere. As the rate of heat generation by the cables
increases, the rate of heat transfer out of the system also increases
along with a rise in the temperature of the cables, until, ultimate failure.

Since the maximum current carrying capacity of the cables is a function
of the heat transfer rate out of the system, and this in turn is a function
of the temperature gradient, it is evident that this design has a very
undesirabple limitation which is the conductive resistance of the soil.

To circumvent this problem chilled oil is pumped through the system.
Now most of the heat generated by the cables is transferred to the oil
and then to the atmosphere at refrigeration stations. However, this new
design introduced crucial design problems.

Since this new system requires more capital to build than the static
one, it is important to know how to predict the optimum overall design
given certain input information. Of paramount importance is the ability
to accurately predict the pressure drop of any pipe—~type cable system.

This is complicated by the fact that the cables have semi-circular, helically
wound skid wires wrapped around them which protect the cables as they are

being inserted into the pipe.
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This thesis is concerned with predicting the pressure drop for a
specified pipe-type cable geometry sizetin terms of a friction factor
vs. Reynolds number curve for the turbulent flow regime.

The only work to date in this area has been ‘the experimental tests
performed at M.I.T.'s Heat Transfer Laboratory [1l]. Results showed that
due to the increased turbulence created by the skid wires, turbulent flow
exists for a Reygolds number as low as SOO, based on the hydraulic diameter.
This value is approximately in the operating range of interest.

At the present time, there exists no general theory or correlation
for the friction fa;tor for the type of rough surface created by the skid
wire. There has, however, been a great deal of research carried ogt
especially during the last 15 years on roughness geometries of this type
which have been advocated for use on nuclear fuel rods in advanced gas
cooled reactors as a means of creating turbulence and increasing the heat
transfer rate [2 - 12]. The major results of these e#perimental investi~
gations have been used, along with a general theory to predict the friction
factor for the present case. Four different geometrical arrangemenfs of
cable have been modelled. The model for each type of arrangement is
described and results are compared with experimental data.

A model which theorizes that the flow at points of contact between
two cables behaves like the flow in a narrow, triangular, open ended duct
is explained and developed.

Chapter II reviews the important work previously carried out on
roughness geometries of the type considered here. Chapter III derives
the basic method for a simple annular type geometry, and Chapter IV compares

the predictions with experimental data. Chapter V extends the method from



16

the annular case to the pipe-type case and Chapter VI compares these
predictions with experiment. Chapter VII develops a model which theorizes
that the points of contact between two cables behaves like the flow in

a narrow, triangular, open ended duct. Chapter VIII presents a parametric
study of the method developed in Chapter V. Results and conclusions are
presented in Chapter IX, and recommendations are suggested in Chapter X.

Those only interested in the results may turn directly to Chapter VIII.
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PREVIOUS WORK

One of the pioneers in the investigation of discrete roughnesses
was W.F. Cope [13], who, in 1941 investigated the effects of small pyramid
type proturbances machined in the wall of a pipe. Most of the other work
since then has been concerned with improving the performance of nuclear
fuel rods in advanced gas cooled reactors by the use of these turbulence
promotors. E.W. Sams was probably the first to experiment transverse
square ribs and helical coiled wires on the inside surfaces of tubes
(1952, 1957)[14, 15] (Fig. 2 & 3).

The difficulty in manufacturing roughness geometries in tubes of
this type plus the fact that the turbulence promotors would have to be
placed on the outside surface of the fuel elements which in turn are placed
in the center of a smooth channel, necessitated a method which could
isolate the effects of a rough surface from a smooth surface when they
are place opposite one another. In 1958, W.B. Hall [2] proposed such a
theory now known as the Hall Transformation. Since this date, most of
the research that has been performed on roughened surfaces has been carried
out on annular passages with the inner surface roughened, the outer surface
smooth, (Fig. 4 & 5), and have used a modified form of the Hall Transform—
ation to correlate the results. Most of the work has been carried out
by the United Kingdom Atomic Energy Authority (UKAEA) in England for use
on their advanced gas cooled reactor fuel elements.

Hall Transformation

Given a channel which is composed of a rough surface opposite a
smooth surface, the idea is to isolate the effects that each one has on

the flow. For an annular channel (similar to the one shown schematically

LN
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in Fig. 6) the basic idea proposed by Hall is the following: velocity

distributions can be experimentally determined, and from this the point
of maximum velocity can be obtained. At this point the velocity gradient,
du/dr, equals zero. This is assumed to coincide with the point of zero
shear stress, which is true for laminar flow, but not quite true for
turbulent flow. 1In turbulent flow the transport of momentum over short
distances via eddies may displace these points by a small amount. This
surface of zero shear divides the annulus into two separate flow zones
which may be analyzed separately. By applying a force balance on each
zone, the drag associated with each surface may be calculated and hence

the corresponding friction factor.

ROUGH PIPE
SMOOQOTH PIPE

zone 1, zone?2

_ i
|
| |
Umax l
[
U :
|
|
- r ]

- - N T =0
max 3

d.H:o

dar

Figure 6. Schematic of Velocity Distribution in an Annular
Type Geometry with Inner Surface Rough and Outer
Surface Smooth
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The assumption of the coincidence of the point of zero shear and the

point of zero velocity gradient has been the subject of much experimental
investigation [3, 4, 5, 6, 7, 8]. It is now generally accepted that the
error introduced by this assumption is small, being less than 10%. An
assumption which is made to simplify the calculations is that the density
and viscosity of each zone are equal. This is strictly true for an iso-
thermal case. In the present pipe-type case, the temperature gradient
between the outside of the cable and the bulk temperature of the fluid

is not great enough to cause an appreciable difference between these
variables [3]. Another important assumption is that the pressure drop,
dp/dx, at any given cross section of pipe is a constant, i.e.,(dp/dx)1 =
(dp/dx)2 = e (dp/dx)T. This implies that we have one-dimensional flow
throughout the pipe. One of the big disadvantages of the Hall Transformation
is that the velocity distributions have to be known to determine the point
of maximum velocity. This problem may be circumvented by assuming that
the average bulk velocity of the fluid in each adjoining zone are equal.
This assumption is not exactly true. However, it has been shown by Wilkie
[4, 6] that the average velocity of the outer smooth zone is at most 2%
higher than the inner rough zone. For simplicity we shall assume that

they are equal.
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CHAPTER III

DERIVATION OF METHOD FOR A SIMPLE ANNULUS

The method which will be used to predict the friction factor for
pipe-type case will first be developed for a simple annulus. The reason
for this is that most of the experimental results in the literature has
been performed on annuli, so we have a means to check our theory. The
basic concept used here is the same as that for a pipe-type case but may
be easier to understand and more accurately grasped.

Definition of the Problem

As was stated previously, the difficulty which exists in the cal-
culation of the pressure drop is from the helically wound semicircular
wrappings on the cables. To better understand the problems at hand, one
should now refer to figure 7 which was obtained from experimental results
on a scale model of a pipe-type cable system for various different cable
configurations in the Heat Transfer Laboratory of M.I.T. >0ne of the most
striking observations is that turbulent flow seems to exist for a Reynolds
number as low as 500. Furthermore, there is no discontinuity which sep-
arates laminar from turbulent flow. This is attributed to the fact that
the semi-circular wrappings on the cables introduce instabilities into
the boundary layer [16]. Also noteworthy is that the friction factor is
essentially independent of cable configuration for Reynolds numbers above
2000. Our problem of friction factor prediction may now be divided up
into three parts:

1. To find a friction correlation for a surface containing semi-

circular, helically wound wrappings.

2. From our knowledge of smooth pipe friction factors to obtain a
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correlation which we could use for turbulent flow for a Reynolds
number as low as 500.

3. To obtain a method that combines the correlations obtained from
parts 1 and 2 in order to obtain a friction factor vs. Reynolds
number curve for the entire pipe-type cable geometry.

Each part will be dealt with separately in the following sections.

Friction Factor Correlation for the Rough Surface (Cables)

Unfortunately there does not currently exist a correlation which
will predict the friction factor for a rod with semi-circular helically
would cable around it. We must therefore compromise. Eckert et al. [17]
has obtained a correlation which will predict the friction factor for flow
in a tube with rectangular, transverse ribs machined on the inside wall,

similar to the schematic shown in figure 2, as a function of e/DH and p/e

1
and has verified it for the following ranges:

0.01<e/DH1< 0.04, 0.71<Pr<37.6

10<p/e<40 e+=-§—-RQ!—§'>35
c

2
Y T a(@ars o (] g

If we could modify this to account for the rounding of the ribs and the
varying helix angle, we would have a useful correlation. One of the
results obtained from the vast amount of research conducted and collected
by D. Wilkie [3] is that chamfering the corners of very sharp rectangular
ribs will decrease the friction factor by as much as 8%. It was also

found that continued chamfering (such as to obtain a semi-circular shape)
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will not have any more of aﬂ effect on the friction factor beyond this
8% reduction.

It should be mentioned that these results were obtained for high
turbulent Reynolds numbers (>104). In this regime the boundary layer
is quite small relative to the skid wire height. At lower turbulent
Reynolds numbers the boundary later is larger,. and the effect of rib
profile may have more of an influence on the flow. However, due to lack
of any more existing information, we will assume these results to hold
equally well at low turbulent Reynolds numbers.

Other experimental results found by Wilkie [3,4] have shown that
varying the helix angle of helically wound square rigs will effect the
friction factor as shown in figure 8 for pitch to height ratios, p/e,of
8 and 16. These results were also obtained for high turbulent Reynolds
numbers which will assume to be valid at low turbulent Reynolds numbers.
The effect of rib rounding and varying helix angle are combined and shown
as an overall correlation to equation (1) in figure 9. The final correlation
to be used in the prediction of the friction factor for the rough surface

is,

2 K(=) 62)

)[, = [:2.5 /h(%)_375 + 0.95(9@5?'2_

where K is a function of the helix angle alpha <X, obtained from figure 9.
It is now obvious that we have reached a point where we have a lack of
information for accurate design purposes. We know that our correction
coefficient K is a function of the helix angle (<) and that we should

have a family of curves for various p/e ratios. Since only two curves
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Figure 8. Ratio of Friction Factor for a Helically Wound Square Wire to
Friction Factor for a Transverse Square Rib vs. Helix Angle o,
from Wilkie[4]
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Figﬁre 9. Ratio of Friction Factor for a Helically Wound Circular Wire

to Friction Factor for a Transverse Square Rib vs. Helix
Angle o<, from Wilkie[3,4]
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are available (p/e = 8, p/e = 16), any attempt to design outside of this

range is an "engineering approximation", and the results obtained

should be weighted accordingly. It should be noted that the variation
between these two curves below helix angles of 25° is v;ry small (less
than 3%) and that the largest deviation is only 5%, so that one would not
expect to introduce much appreciable error by carefully extrapolating

outside this range.

Eckert states that his correlation equ. (1) is valid for a roughness

e

D
c

value, he states that it oculd be modified to yield a slightly more

Reynolds number e+(e+ = Re \E7§)which is greater than 35. Below this
complex equation. This was initially done, but the results did not agree
well with experimentj the predicted values being much too low at low
Reynolds numbers. It is questionable whether this equation has to be
modified at all for low e+ values, since the data Eckert obtained below
this value was sparse and scattered. Equation (1) was used at all e+
values and yielded good results.

Friction Factor Correlation for the Smooth Surface (Pipe)

The friction factor for a smooth pipe is a well known function of
ReynoldS number shown on the Moody Diagram of figure 10 [18]. 1In the
laminar range, the relationship between friction factor and Reynolds
number may be found analytically as,

£, = 16/Re, 3)
The curve in the turbulent range may be approximated by the following
two well accepted correlations [24],

0.25
£ = 0.0791/Re, (%)

2

_ 0.
£, = 0.046/Re2 (5)
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The Reynolds number range in which each applies must be specified. This
is discussed below.

In the transition region (2000< Re <4000) the curve is indeterminant
and discontinous. The flow could either be laminar or turbulent depending
on the nature of the flow situation. Laminar flow has been achieved for
Reynolds numbers as high as 40,000 [19] by being very careful not to
create any outside disturbances in the flow. For a smooth empty pipe,
there is a well accepted lower limit of Reynolds number (2000) for
turbulent flow, below which the flow will be laminar regardless of any
outside disturbances which may be introduced. It should be emphasized
that the previous limits on Reynolds numbers have been subject to "external
constraints. We should now remember that we do not have a fully empty
smooth pipe. There exist cables in the pipe with turbulence promotors
(skid wires). It has been found that turbulence promotors similar to
the type considered here are able to reduce the lower limit of Reynolds
number (based on the height of the roughness element) at which turbulent
flow may exist to approximately 600 [16]. For our pipe-type case, the
lower limit of Reynolds number based on the hydraulic diameter has been
found experimentally to be approximately 500 (figure 7). We also do not
have any discontinuity at the transition point. It would therefore seem
reasonable to modify our smooth pipe friction correlations so that there
does not exist any discontinuities. This is what was done. Equation (3)
was found to intersect equation (4) at a Reynolds number of 1187 for the
same friction factor. Similarly, equation (4) intersects equation (5)
at a Reynolds number of 51,094. Our final continuous correlation for

the smooth pipe friction factor is as follows:
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16/Re2 Re <1187 (6a)
0.25
£, =90.0791/Re, 1187< Re <51094 (6b)
0.2
0.046/Re2 Re > 51094 (6¢)

It should be noticed that we will be using a value of friction factor
obtained from laminar flow theory when we actually do not have laminar
flow, However, if equation (6b) was used below a Reynold8 number of
1187, the friction factor would be less than the laminar value predicted
by equation (6a). If the flow is turbulent, it should be expected that
the friction factor is at least as large as the laminar value. For lack
of any better information, equation (6a) is used for the range indicated.
The author initially assumed equation (4) to hold for low value of
Re, with the idea that using a value predicted for £

2 2

in turbulent flow would not be acceptable. The predicted values obtained

from laminar theory

from using this equation did not possess the slope characteristic of the
experimental values in figure 7 in the Reynolds number range 500 - 2000.
It was then thought to use equation (3) for low valqes of Re2, purely in
for a given Re, without

2 2

any connotations of being either laminar or turbulent. The results obtained

the mathematical sense as yielding a value of f

by doing this yields the desired slope.

Combination of Smooth and Rough Surface Friction Correlations to Obtain

an Overall Friction Factor vs. Reynolds Number

The basic method used to combine the effects of the rough and smooth
surfaces is the Hall Transformation mentioned previously. This assumes
that we have a position of zero shear which separates the effects of the

rough surface from the smooth. We further assume that in each zone, the
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pressure gradient, mean velocity, density, and viscosity are equal. The
assumption of equal mean velocities considerably simplifies the analysis
and for the test cases does not introduce significant errors.

We begin the development of the method by defining the following
variables:

Hydraulic Diameter:

This is defined as being equal to four times the cross sectional area
of the flow divided by the wetted perimeter. In an annulus shown schematically
in figure 11, the hydraulic diameter of zone 1, DHl’ is equal to four times
the cross sectional area between the inner rough surfaces and the radius
of zero shear (7 = 0) divided by the perimeter of the inner rough surface,
i.e.,

4A1

D.. = 7=
H1 C1

It should be noted that the perimeter along the zero shear boundary is
not included in the wetted perimeter.

Similarly, 4A2/02, where A_ is the area between the radius

Dy = 2
of zero shear and the smooth surface and C2 is the circumference of the

outer smooth pipe.

Following the same reasoning, 2° the hydraulic diameter of the

Dy

entire annuli is defined as follows:

G(A; +A) | 4A

(c1 + C2) (c1 + Cz)

Dy1p =

Friction Factor:

D.
¢ = @Ry B _

) oy2

Reynold s Number:
=VDH

v

Re



SMOOTH SURFACE

ROUGH SURFACE
T:=0

Figure 11. Cross Section of Annular Type Geometry
From the assumption that the pressure gradient in each sub-channel are

equal, we may write,

dpy _ dp 8
D, = @D, - ®
or
2 2
282071 _25P0
D © D (9)

H1 H1

35
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Since

/91 =/92, V1 = V2’ we have,

f f
1 2
. (10)
H1 H2
To find a relationship between DHl and DHZ’ we make use of the following
identity:
+ 4A +
4A1 b 2 4(Al AZ)
G T = c (11)
1 1 1

Now, recalling the definition of hydraulic diameter as four times the
cross sectional area divided by the wetted perimeter (D = %%5, this

reduces to

D = =2 (12)

It should be realized that the following relation holds since it was
assumed that the mean velocities, densities, and viscosities are equal

on both sides of the zero shear plane.

D
- _H2
= —— Re (13)
2 Dle 12

Re

where Re, is the Reynolds number for zone 2 and Re,, is the Reynolds

2

number for the combined zones 1 and 2 (in this case, Re

12

12 = ReT, where

ReT is the Reynold s number of the entire geometry).

We now have five equations (2,6,10,12,13) and six unknowns (fl’fz’

D.., D

u1 Relz). We could pick a value for one of them and solve

n2® Reyo



37

for the rest, which is what the computer program does. It picks a value

DHl and solves for Relz. DHl was chosen as the independent variable since

it has definite limits which are easily found. The lower limit on DHl

is zero, which occurs at low ReynoldS . numbers when most of the flow is
influenced by the smooth pipe friction correlation. The upper limit

on DHl occurs at very large Reynolds numbers when the flow is completely

turbulent and influenced chiefly by the rough surface. This upper limit

DHl(ul) = 4A,,/C,.

To obtain the corresponding overall friction factor, f

is:

12° (in this

case, f ) the same procedure is followed as before, only this time

- T
requiring that the pressure drop of the total passage to be the same as

each sub-channel.
dpy  _ 4P
@12 = &1 (14)

which reduces to,

£ £
2 _

12

—

(15)

|

[w)
5,

1 that was used to obtain Re12’

we can solve equations (2) and (15) simultaneously to obtain the friction

By using the same independent value of DH

factor £ for the corresponding Reynolds number Re

12 12°
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CHAPTER 1V

COMPARISON OF THEORY WITH EXPERIMENT FOR FLOW IN

TUBES AND ANNULAR TYPE GEOMETRIES

There have been numerous experiments performed which enable us to
test our theory at various stages of its development. We first test it
against a tube containing helically wound coils and then with data
obtained from experiments performed on concentric annuli type geometries.

Test of Rough Friction Correlation - Equation (2)

Equation (2) should be able to predict the friction factor for a
tube with round, helically wound coils pressed ;ightly against its walls
as shown in figure 3. Since the hydradlic diameter in this case is
constant and equal to the diameter of the pipe, this equation will pre-
dict a constant value of friction factor, independent of Reynolds Num-
ber. E.W. Sams [15] in 1957 determined the friction factors for various
size coil diameters and pitches for a similar type geometry. Figure 12
shows his experimentally determined values and the value of f as bre-
dicted from equation (2). The agreement is quite good.

Test of Modified Hall Transformation

An annuli, unlike the tube just described, will not have a constant
hydraulic diameter associated with each sub-channel on each side of the
line of zero shear stress. Only the hydraulic diameter of the entire
annuli will be a constant. The sub-channel hydraulic diameters will be
a function of Reynolds Number. At low Reynolds Numbers, one would expect
the line of zero shear to be closer to the inner rough surface. This will

increase the area associated with the smooth surface friction factor and



$/2

FRICTION FACTOR/2,

.00° F
008 |
.007 F

.005

O3

.02 F

o |

1 i 1 1

10

Figure 12.

| I W SN B 1
2 3 4 5 6 7 89 __5

10

REYNOLDS NUMBER, Re

Comparison of Experimental Data Obtained
From a Roughened Tube Similar to the One
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increase its influence in the friction factor for the entire annuli.

Conversely, at high Reynolds numbers, one would expect the flow to be
influenced chiefly by the effects of the rough surfaces. This means that
the zero shear line will move closer to the outer smooth surface thereby
increasing the hydraulic diameter of the rough surface. The important

point is to realize the important effect the Reynolds number has on the
hydraulic diameters of the sub-channels, the entire annuli, and consequently
the appropriate friction factor.

Sherriff & Gumley [9] in 1966 performed an experiment to determine
the friction factor for the rough surface on a concentric annuli with the
inner surface roughened with helically wound circular wires at a negligible
helix angle and the outer surface smooth (fig. 4). They experimentally
determined the velocity profiles and hence the position of zero shear,
and were thus able to calculate the friction factor for the rough surface
as a function of Reynolds number. Their results are shown in figure 13
along with the values predicted from our theory.

Kjellstrom & Hedberg [8] in 1966 performed an experiment to determine
the friction factor for a concentric annuli with the innér surface composed
of rectangular transverse ribs and the outer surface smooth (figure 5).
Since the rough surface is composed of rectangular, transverse ribs, there
is not only any need to modify Eckerts correlation and we should use equ. (1)
instead of (2) in our theory. Remember, the distinction between these two
equations is that equ. (1) is for a rough surface composed of rectangular,
transverse ribs and that equ. (2) is for a rough surface composed of helically
wound cables,which may be either of a square type or round cross section.

If it is square, figure 8 should be used to obtain K (cxx and if it is

round, figure 9 should be used to obtain K (e<). The comparison
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between the experimental results and our theory is shown in figure 14.
It should be noticed that the p/e ratio of the rough surface is 8.62.
This is outside of the range of p/e values for which Eckert's correlation
has been tested for and could help to explain éhe 20% error in the pre-
diction.

The last test of our theory is from data obtained from Feurstein
& Rampf [20] in 1969 on a concentric annuli similar to the one just men-
tioned, (fig. 8). In these experiments, the p/e ratios ranged from 10-30;
therefore, we should expect better results. The experimental results and
theoretically predicted values are shown plotted in figures 15 and 16.
The comparison is quite good.

The comparisons of the predictions of Eckert's modified correlatioms,
equation (2), with experimental data (figures 12 & 13) is very good. The
predictions of the total friction factor for an annuli are consistently
below the experimentally determined values (figures 14, 15, & 16). Therefore,
there seems to be some error introduced by the use of our modified Hall
Transformation the exact cause of which is unknown by the author. More

will be said about this at the end of Chapter VI.
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_CHAPTER V

EXTENSION OF METHOD FROM ANNULAR TO PIPE-TYPE CASE

The extension of the theory from the annular case to the pipe-type
case in which there exist three cables in a smooth conduit is simple and
straighforward. Four cable configurations were chosen to be modelled.
(figure 17). 1In each case, the flow area is broken up into separate flow
zones, the boundaries being the assumed ones of zero shear.

Configuration a is the easiest to analyze. In this configuration,
all three cables are assumed to be touching one another grouped in the
center of the conduit. The flow area between the cables is 'small and is
neglected, as is the circumference of the cables bordering this area. We
are left with a modified annular type geometry. The flow area is equal
to the area of the pipe minus the combined areas of the cables plus the
neglected trapped area. The wetted perimeter of zone 1 is equal to the
combined circumference of the cables minus the portion that borders the
trapped center region. By making these simple assumptions with regard
to areas and circumferences, the pipe-type cable case is transformed into
an annular type case, and the equations of Chapter III apply directly.

We now move to the cable configuration in which there exist three
flow zones (configuration b). 1In this case, the center region (3) between
the three cables is not neglected and is considered in the analysis. It
is assumed that the flow in this region is influenced solely by the three
cables. Its area and circumference are constant; therefore, its hydraulic
diameter is constant. With a constant hydraulic diameter equation ),

which predicts the friction factor for the rough geometry, will yield a



Figure 17. Various Pipe~-Type Configurations Modelled Shown
Divided into Theoretical Flow Zones{(dashed lines).
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constant value for f3. Zones 1 and 2 are assumed to interact and are
treated just like the annular case in Chapter III. We now have a friction
factor relationship for the combined zone 12 and a constant value of

friction factor, £ for zone 3. Since we want the total friction factor,

3’
fT’ we apply our assumption that the pressure drop at any given cross

section of pipe is constant. Stated mathematically, this is,

[2); (),

which says that the pressure drop of the total pipe-type system is the
same as the pressure drop in the combined zone 12. This may also be
expressed as,

2 2

e ST P
Dyr D1y (17)
which reduces to,
2
D v
e = [HO T \¢ (18)
T D12 VZ 12
12

It should be noted that in this case, we are not assuming that the
mean velocity of zone 3 is equal to zone 12. We are separating zone 3
from zone 1 by an imaginary boundary. The flow in zone 3 is not assumed
to be influenced by zone 1, therefore the mean velocity of zone 3, v s

is not equal to the mean velocity of zone 1, ﬁi. Consequently, Vé # V&

and ﬁiz # V&. We must somehow find a relation between the mean velocities

V12 and V&. This is accomplished by making use of the fact that the mass

flow at any given cross section is a constant.
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; (19)

which may be expressed as,

v = v + i} (20)
AV = PRV 10 TP 3R,

Since the density is assumed constant, this reduces to

T o= T T (21)
= +
ApVp T AoV T AV,
Upon rearranging, we have,
v, cRes Dao o,
7 AT 12 Re12 DH3 3 (22)

We have now found our desired relation, but in doing so, have
introduced another unknown, the Reynolds number for zone 3, Re3. This
is taken care of by applying our assumption of constant pressure drop at

any cross section of pipe. This time, we consider the combined region 12

and region 3.

dp’ = [dp
o -
12 3
or equivalently,
=2 =2
f12V1,  E4Y5
D - (24)
H12 H3

which may be expressed as:
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0.5 0.5
£, Rej, _ £3°7 Reg
1.5 - 1.5 (25)
Dy12 Dys3

Solving for Re,, we have:

3

12 (26)

The overall Reynolds number, ReT, is obtained by making use of the

following identity:

D \/
Re, = =% = Re (27)
T D v 12

H12 ‘12

Summarizing, for a cable configuration which we divide into three
zones, the third of which 1is considered independent of the other two,
we proceed as follows:

1. Solve for the friction factor-Reynolds number relationship for
zone 12 as outlined in Chapter III.

2. Calculate the constant friction factor for zone 3.

3. Solve for the overall friction factor-Reynolds number relationship
by using equations (18), (22), (26), and (27).

It should now be obvious that we could handle configurations c & d
in the same manner that we treated configuration b, simply be replacing
zone 3 by the combined zone 34.

However, the friction factor for zone 3 in configuration b was a
constant. This is not so for zone 34 for configurations ¢ & d. It is

clearly a function of Reynolds number just like region 12. We must therefore
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use some ingenuity in obtaining the overall friction factor, We first

obtain a relationship f12 vs, Re12 and f34 vSs. Re34

in Chapter III. The fact that we do not have anything that resembles an

by the method outlined

annular type geometry does not make any difference, since the hydraulic

diameter effectively accounts for this. We then use the same reasoning
as before to obtain equations (16), (17), & (18). The conservation of

mass equation becomes:

- s 28
h, = + by, (28)

where b is a constant and is equal to 1 for configuration 4 and equal

to 2 for configuration c. This equation reduces to

AT, = a0, + bAT (29)

which, upon rearranging, yields:

v Re D
T 1 34 H12
= =—|A, 4+ p—2 =22 5 (30)
512 AT 12 Rel2 DH34 34

As before, we have found a relationshiop for our velocities, but in

doing so, we have introduced another variable, this time Re If the

34°

constant pressure drop criterion is applied as before, we obtain:

d  _ dp (31)
dx A%y
or, equivalently,
2
£ .V 2
120 _ B4Y5 (32)
D D

H12 H34
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which may be expressed as,

0.5 0.5

f1o” Rejp £y Rey, (33)
L5 L5
12 434

Equation (33) contains two unknowns, Re12 and Re34 (f12 is a function

of Relz and f34 is a function of Re34). With configuration b, £

responding to this £

3 (cor-

34) was a constant and the equation could be solved

explicitly. 1In this case, is not a contstant but is a function of

f34
Reynolds number. The procedure which is used in solving this equation
is as follows:
1. Assume that each side of the equation as it is written is a single
valued function of f12 and f34.

2. Pick a value of f12 and solve the left hand side for a constant.
3. Since the right hand side is equal to the same constant, proceed
to pick various values of f34 until this constant is obtained.
Equation (30) may now be solved with equation (18) to obtain the

total friction factor, f,,. The corresponding total Reynolds number,

T
RT’ may be found by the use of equation (27).

Summarizing, to obtain the overall friction factor vs. Reynolds for
a pipe-cable geometry which is divided into flow zones which are independent
of one another and each having a functional relationship between its
friction factor and Reynolds number (such as configurations c & d), we
proceed as follows:

1. Solve for the friction factor-Reynolds number relationship for the

sub zones 12 and 34 as outlined in Chapter III.



2. Solve equation (33) iteratively as outlined to obtain a

relationship between Re12 and Re34.

3. Use the value obtained in 2 to solve equations (30), (27), and

(18), using the appropriate value for b.

53
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CHAPTER VI

COMPARISON OF THEORY WITH EXPERIMENT

FOR FLOW IN A PIPE-TYPE CABLE SYSTEM

Figure 18 shows the comparison of the values of friction factor
obtained experimentally at M.I.T.'s Heat Transfer Laboratory and the values
predicted by the method described previously. Configurations b & c were
the upper and lower bounds found experimentally, which is also predicted
for the theory.

The asymtotic friction factor for configuration b is 0.0132, for
configuration a is 0.0130, for configuration c¢ is 0.0109, and for config-
uration d is 0.0095.

The results from the most conservative approximation (configuration b)
are consistently 15-30% above the experimentally determined values. It
should be mentioned that the predictions of configuration a or b are
only approximately 157 above the experimentally determined values in the
range 500 <Re <1000, increasing to 257% at a Reynolds number of 2000 and to
30% above 3000. Therefore, in the range of interest (Re = 500), the use
of configurations a or b will predict a value of friction factor approximately
15% too high.

It is recommended that the value of the friction factor to be used
for design purposes be the average value of the friction factor as pre-
dicted from configurations a and c. For the present case, this value
would be just about right at low Reynolds numbers, the error increasing
to only 22% at a Reynolds number of 10,000.

These errors may be attributed to the method used to combine the
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rough and smooth surface effects, i.e., the modified Hall Transformation.
It does not seem to properly weight each effect as they are combined.

In the annular case, where there is only one roughened rod, the theory
seems to weight the effects of the smooth surface too much, leading to

a predicted value of friction factor which is too low. In the pipe-type
case, the rough surface seems to be weighted too much, leading to a pre-
dicted value of friction factor which is too high. The actual cause in
the imbalance of this weighting process is unknown. The only possible
explanation the author has is that the basic assumption of equal pressure
drops in each flow zone is not exactly true,i.e., the flow is not completely
one dimensional. In the annular case, the rough surface was not large
enough to cause sufficient mixing between the two zones whereas in the
pipe-type case, there may be a "surplus" of rough geometry which would

cause a larger degree of mixing and lead to a higher friction factor.
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CHAPTER VIL

CONSIDERATION OF THE EFFECTS ON THE FLOW

WHEN A POINT OF CONTACT OCCURS

A point of contact occurs when two cables or a cable and the pipe
touch one another. When this occurs, it is concievable that the flow
near the areas of contact may be laminar. This was assumed to be the
case, and an attempt was made to model the system including these laminar
zones whenever there is a point of contact. These laminar zones should
vanish in the limit as the Reynolds number approaches infinity when the
flow is 1007 turbulent. As the Reynolds number decreases, these laminar
zones should increase, having more of an effect as the Reynolds number is
continually decreased. When a laminar zone exists at a point of contact,
it is evident by the nature of the geometry that it will contain a relatively
small area and large perimeter (figure 19). The existance of these laminar
zones means that the turbulent flow region is reduced by an amount equal
to the laminar regions. Since the cross sectional area that these laminar
zones occupy is relatively small compared to the total flow; whereas, the
perimeter that borders these regions is not, the major effect that the
laminar zones has on the flow is a decrease in the hydraulic diameter for
the turbulent region. This in turn means a reduction in the friction
factor at low Reynolds numbers.

The model of the laminar zone for a cable to cable contact did lower
the friction factor as predicted but the magnitude of the reduction was
not as large as anticipated.

The model of the laminar zone at a cable-pipe contact lowered the
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Cable-Cable Contact Point Showing Idealized Triangular Duct.
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Figure 21. Co-Ordinate System of Triangular Duct

enmbemaddondodondododkok ok LA 4 4 L L L L s S

w

l

LA A A A Aay A ANy A GuY Ay Ny Gy Suy Sy o 4

Figure 22. Two Infinite Parallel Plates Separated by Distance w.
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friction factor too much, actually changing the slope of the friction
factor vs. Reynolds number curve from negative to positive at low Reynolds
numbers. The reason for this is attributed to the fact that the laminar
zones were modelled as being triagular ducts and the cable—cable contact
was close to this geometry while the cable-pipe constact was not. This
is evident by refering to figures 19 & 20, and will become more evident
as the development of the model progresses. This method will only be
developed for a cable~cable contact since the cable-pipe contact was not
accurate. The development of the method will be shown using configuration a.

The basic assumption of this theory is that the flow at a cable-cable
contact may be approximated as being the same as the flow in a narrow,
triangular, open endéd duct, figure 21. For flow in such a duct, it has
been shown by Eckert & Irvine [21] that laminar and turbulent flow may co-
exist: the laminar flow being located near the apex of the duct, and at
some point z away from the apex it changes to turbulent flow.

To find this point of transition, we first start out by defining
a criteria for transition from laminar to turbulent flow. It is assumed
that the flow which is very close to the transition point looks like the
flow between two infinite parallel plates, as shown in figure 22. The

hydraulic diameter for such a configuration is:

D —ﬁ=4ﬂ_gw
H P 2L (34)

where w is the plate spacing. In laminar flow, the well accepted transition
point from laminar to turbulent flow is 2000. Therefore, our criteria

for transition is:

VO J(zw)
‘?ePH -~ —-—;— =

VY

= 2000 (35)
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—:\__N = 1000
v (36)
We now need to know the average velocity V between the paraliel
plates or across the duct at this position. From Eckert & Irving [21],
the solution for the velocity for a triangular duct as shown in figure 21
for steady-state, laminar flow is:

2 () 2* an’g-9°
2u \dx)i  )-tan’s (37)

I‘)”—'

At any z, the average velocity across the cross section is:
z #an

"z %a,,/s ( by )(a_’f) ( j%a:a ) dy (38)

Performing the integration yields:

S 24 ]
VE 12,4 \dx), |- Fan 28 (39)

To find the pressure drop (dp/dx)L, we make use of our basic assumption

that the pressure drop is constant at any cross section. Therefore,

2f_ .72
GG, = w

”rT

which may be rewritten as

(gf) _ 2kl Dy »? _ 2frp2? (R, )
d

Xl Dwr Dur” »* D, ? (41)
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Substituting (41) into (39) yields

2
2
f.v Repyr w

03 (7-7bn:q>

- |
V= ¢ (42)
Substituting equ. (42) into our equation which gives us our criteria

for transition, equ. (36), and solving for w yields:

2 Y3
1801 Dyy (1= Fan 3)

w = f‘/g Re 2/3
T DHT

(43)

W may now be related to the angle 4 in figure 19 as follows:
w= 2 R (l"' cos (Z/g)) (44)

where R = Rc + e/2
Substituting equation (44) into (43) yields:

|- cos (2ﬂ> 18,171 DHT

(1- hnz/) 5 2R f-,‘-lg Re 2 (45)

DHT

The procedure is to solve equation (45) for/g using as the values
of fT, DHT’ and ReDHT those which would be obtained if one assumed the
flow to be completely turbulent without any laminar zones. Once the
initial value of/9 is obtained, the area and perimeter of the laminar
zones may be calculated. These values are then subtracted from the

original turbulent values of area and wetted perimeter to obtain new values.

This leads to a new value of hydraulic diameter for the turbulent flow
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region. The friction factor and Reynolds number for the turbulent flow
zone is then calculated using this new value of hydraulic diameter. The
next step is to solve for the total friction factor, fT, and Reynolds

number, Re_ which is slightly more involved since the laminar regions

T
must now be accounted for. These equations to obtain fT and ReT are now
developed.

We begin by assuming that the pressure drop in the total pipe-type

cable system is the same as in the turbulent region 12.

i’ﬁ) 3 (2'/5’
(dx T a/X)/z (46)

which may be written as,
_2 -
](T VT 3(12 \/;2

Dyr [%HZ

(47)

It should be realized that the average total velocity, VT’ is not equal

to the average velocity in the turbulent zone, Viz, since the average
velocity in the turbulent zone is evidently not equal to the average

velocity in the laminar zone, V.. Solving for fT’ we have:

L
~ \2
f.= 4 2z) [ (48)’
T 2 \77 DHIZ

We must now find an expression relating v, to(V& which is accomplished

by use of the continuity equation:
h_ = . 49
which may be written as:

HVTgﬁ/zV/z*3gLV e

T
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or, rearranging,

A ; v,
12 T V,z (51)
which is the same as,
— = = FZZ o N ;JL
Fr RCIZ E%L (52)

where DHL is the hydraulic diameter of the laminar zone. The Reynolds

number of the laminar zone, ReL, is obtained as follows:

g
X2 OIX L (53)
which may be written as,

A

Assume:

PRI d]
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L%HZ, L%L (34)
or 2 2
{2 Ee 12 _ {L Eet
3 - 3 (55)
Dyiz D,
rewriting, we have,
2 {l?_ DH/_ p £
Ee = ra ~ e
L )(L Dtz (56)

We obtain fL be beginning with the definition of the friction factor:

)(: (c_/g) Do
Lo Ndx/p o 2pf (57)
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dp/dx is obtained by beginning with the definition of the average

velocity of the laminar zone, VL.

L —ﬁ: (58)

QL-—‘{; ’\F&//ql_ (59)

or 2:2, y= 2. 'I(aﬂ/
Q- ? (2/ AN
Z=o 7 =
Integrating, we have, o,

Ql_ - é/q kﬂ(x /'“ fanz/ (61)
Substituting (61) into (58) we obtain,
_ (3’9) 2’ tfanys
V= o (deie (1= Hans) (62)

from figure 21 it is seen that zotan,@ = w/2, so we have,

) ( (W/z)
v, é/ dx (_fan/;) (63)
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Equation (63) may be combined with equation (57) to eliminate (dp/dx)L

12 (/' 7la/72/;’)

h Re, -

and obtain.

Combining equation (64) and (56) to eliminate fL’ and solving for Re

| | 2
p, - Fa Fep B’E>3
! 12 (1- 7‘an,2€) D2

L
yields:

(65)
Now, combining equation (65) and (52) to eliminate ReL, we have,
v 2
!I = 2 ;%2 + _:ﬁf Fere </£%L ) 57
v, 4(1-4an%s) \ Dy (66)

Substituting equation (66) into equation (48), we now have an expression

for fT.
f 7" D,r
- £, Pe M\ )2
](‘1 12 Dz (le 4(/- '/“:ﬁ QTI:; ’Qz 7

The overall Reynolds number ReT is obtained by realizing that the following

identity holds.

T 2\ Dy, (68)

R = R Dﬂz)//r)
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where V&/Viz is obtained from equation (33). Combining (66) and (68),

we have,

Der\ U 'Jcnz Reiz DHLJZQL

fer™ Feu (5) 7 ¥ 401 anja) (Do =

Equations (67) and (69) are the modified equations for fT and ReT
which account for the laminar zones. It should be noticed that in the

limit as the area of the laminar zone approaches zero (Re_—~ o), equations

T
(67) and (69) reduce to identities. After (67) and (69) are solved for
fT and ReT, then}? is again solved for using equation (45). The areas
and circumferences are then solved for again and from these, the new
hydraulic diameters. Equations (67) and (69) are again solved and the
process is continued until fT and ReT converge to their actual values.
Summarizing this procedure of calculating fT and ReT which includes
the assumed laminar zones:
1. Calculate fT and ReT assuming the flow to be completely turbulent
as outlined in Chapter III.
2, Determine g from equation (45).

3. Solve equations (67) and (69) for the new values of fT and ReT.

4. Return to step 2 until fT and ReT have converged.
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The predictions of this method for configurations a & c are
shown in figure 23. Also included in the figure are the predictions
if the flow were assumed to be completely turbulent. It is seen
that these laminar zones do indeed lower the predicted values;
however, not in the manner that it was anticipated.

For configuration a, the left end of the curve was lowered
too much whereas the right end was not lowered enough. For config-
uration c, the right end was lowered enough to agree perfectly
with the experimental values for a short range and then are too low.

In view of the increased complexity to model the system with
the assumption of the existence of laminar zones at points of con-
tact, compared to the small improvement in the resulting predictionms,

it was decided not to use this as the final model.
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CHAPTER VIII

PARAMETRIC STUDY

In our theory, the friction factor f has been found to be a
function of the following parameters: p/e, Dc/Dp’ e/DC, and &< . By
inspecting the friction correlation for the rough surface (equ. (2))
the following should be evident:

1. Increasing p/e and o should decrease fl.

2. Decreasing DC/Dp and e/Dc should decrease fl.
These effects will also be felt on the total friction factor fT. The
important aspects from a design standpoint is the degree to which
these variations affect fT' Probably the most practical question is
what happens to fT if one varies p, e, DC, or &X. The ultimate aim is
to obtain a relation which predicts the variation of fT relative to
some reference position as a function of p, e, Dc, and <. The

following system was chosen for study with Dp always being constant.

This system corresponds to the standard 345 KV system.

D = 10.25"
P

D = 4.135"
Cc

p = 1-5"

e = 0.1"

X = tan—l( 2k > s where n = # of skid wire starts = 2
c
Varying DC:

Varying D, will vary DC/Dp and e/DC. Considering Dp to be a con-

stant, the present practical range of interest would be to vary DC/D

from 0.35 to 0.40. The results are shown in figure 24. The effect of
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decreasing Dc/Dp and Dc/e on fT is as expected. A lower value of
Dc/Dp means that there exists less rough surface to influence the
flow, therefore, the friction factor should drop, as it indeed does.
However, the extent of the reduction is not significant from a design
viewpoint, especially since Dc is usually a constant specified by
other criteria such as current capacity.

Varying the Helix Angle,®¢, by Increasing the Number of Skid Wire

Starts:
The helix angle, &, is defined as follows:

A = tan_1<;§% ;s where n = # of skid wire starts.
For a fixed cable diameter, the helix angle may be varied by either
changing the pitch or increasing the number of skid wire starts.
Increasing the number of skid wire starts will only vary the helix
angle, &, not affecting any of the other important dimensionless
parameters. By using the values of our chosen system, one could
construct the following table relating the number of skid wire
starts to the equivalent helix angle.

TABLE 1

NUMBER OF SKID WIRE STARTS AND CORRESPONDING HELIX ANGLE

# of starts| « (deg)| K() (from figure 9)
1 6.6 0.91
2 13.0 0.89
4 24.8 0.82
8 42.7 0.62
16 61.0 0.37
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The effect of increasing the helix angle,® by increasing the

number of skid wire starts is shown in figure 25. It is observed that
the number of starts has to be greatly increased to yield a significant
reduction in friction from the helix angle effect alone. Figure 25 was
cross plotted to obtain the ratio of the friction factor fT at any
desired helix angle to the friction factor at a helix angle of zero

degrees as a function of the helix angle X, for X>15°,

f
L - (-.00875) & + 1.135 (70)

f‘1‘o

where o« is in degrees. Evident from figure 25 is the fact that the
effect on fT of helix angle variations less than 15o is practically
negligible.

Varying the pitch, p:

Varying p will vary p/e and ©X. The following table may be
made for our system.
TABLE 2

VARYING THE PITCH, p

p(inches) | p/e | oc(deg) | K(x) (from fig. 9)
1.0 10 8.8 0.9
1.5 15 13.0 0.89
3.0 30 24.8 | 0.82
4.0 40 31.6 0.75

It should be pointed out that the maximum helix angle is 31.6°. From
figure 25, which shows the helix angle effect on fT’ it is evident that

we should not expect a large variation in fT to be caused by the helix
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angle variation. Any significant variation in fT should be attributed

to the p/e variation.

The predictions for the variations in Table 2 are shown in figure
26. There is indeed quite an effect on fT by varying the pitch,p, and
as stated previously, this is attributed principally to the p/e var-
iation, the helix angle variation being of secondary importance.
Varying e:

Varying e will vary p/e and e/Dc. The effect on fT is severe and
is shown in figure 27. For the present design, decreasing e by 507,
from 0.1 to 0.05 inches, will yield a 397 reduction in friction factor
which is essentially independent of Reynolds Number.

In order to obtain a correlation relating the variation of
fT/fTo as a function of p/e and e/DC, it is necessary to isolate the
effect each has on fT/fTO. This is accomplished by varying e and p
simultaneously to keep the ratio p/e constant and observing the effect
of the variation of e/DC on fT. The results are shown plotted in

figure 28. By cross plotting these results, the following equation

may be obtained:

£ 0.387
L - 4337 (5\ (71)
£ D

To c

where fTo corresponds to the value of friction factor for our
standard 345 KV system. This equation may now be used to account
for the contribution of the e/Dcvariation in figure 27 and determine
the effect of the p/e contribution. The resulting correlation for

the variation of fT/fTo due to a variation in e at constant o( is:
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ch /o .387 p -03753
— = 12273 (5’) (g>

f e
To (72)

Final Correlation:

The most important design parameters have been found to be p,e,
and o . These have been found to be of importance in the following
forms: p/e, e/DC, (. Equation (72) contains p/e and e/DC as indepen-
dent variables and is independent of & . Equation (70) accounts for
the variation in o and is independent of p/e and e/Dc. These two
equations may be combined to yield an equation which will predict the

variation fT/fTo as a function of p/e, e/Dc, and o which is:

7(7 e .387 _P_ -,37%3
r =/2273 (“DZ e for ¢ < 15°
To

(73a)

~F \'387 F —-,373
e /\ (5) (.0075) ot 1135 (73b)

1(;r 0§>‘5°

where ¢{ is in degrees.
It should be noticed that equation (73) does not include any variation
for helix angle variations below 15o since they were found to be negli-
gible. To include the correction for variations in Dc/Dp the value
used for fTo should be the appropriate one taken from figure 24.

With regard to the accuracy of the aboce equation, it should be
remembered that this parametric study was performed using configuration
b which predicts values which are approximately 15% too high in the
range of interest (Re ¥500). The author believes that equation (73) is

+
accurate to within ~5% of the actual predicted value. Therefore, the



80
predictions range from 10% - 20% too high in the Reynolds Number

range of interest to 25% - 357 too high at high Reynolds Numbers
(Re >3000).

Also deserving some discussion is the fact that the theory predicts
a uniform variation essentially independent of Reynolds number as one
or more parameters are varied. This is reasonable at high Reynolds
numbers, but at low Reynolds numbers, there is a question as to
whether this is actually the case. It would seem more reasonable
that as one approached the transition region (Re = 500) that all of the
predictions from the theory should merge since in the laminar region
the skid wire geometry is unimportant in determining the friction
factor. This assumption may be checked by further experimental tests

varying the parameters as shown in figure 27.
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CHAPTER IX
RESULTS AND CONCLUSIONS

A method has been developed which will predict the friction factor
for turbulent flow in a pipe-type cable system. Four different
configurations were modelled and the predicted values are dependent
upon which one of the four is used. Using the most conservative
model, the predictions are consistently 15% - 30% too high.

In the laminar flow regime, viscous forces predominate and any
disturbances introduced in the flow are completely damped out, which
means that the skid wires do not have any influence in this regime.

As the Reynolds Number is continually increased, the inertia forces
begin to increase as the viscous forces decrease. When the viscous
forces are no longer strong enough to damp out any instabilities which
occur due to the presense of the skid wires, the laminar flow

becomes turbulent and the skid wires must now be considered in the
analysis of determining the flow characteristics.

In the turbulent flow regime, the friction factor fT has been
found to be a function of the following parameters: p/e, Dc/Dp’ e/DC,
and & . If one assumes that for a given system, specifications fix the
values of Dc and DP, then we have three parameters tc vary in order
to try and reduce fT. These are the skid wire pitch, p, the height of
the skid wire, e, and the helix angle of the skid wire on the cable, X,
where & = tan_lﬁgg : where n = # of skid wire starts. From the
parametric study peiformed in the last chapter, the following are
evident:

1. Varying e will produce the greatest effect of any other param-
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eter on fT, as shown in figure 27. For the present case,

decreasing e by one half, from 0.1 inches to 0.05 inches will
yield a 397 reduction in friction factor which is essentially
independent of Reynolds number.

2. TIncreasing the skid wire pitch, p, will reduce fT' For the
present case, a doubling of the pitch from 1.5 to 3.0 inches
will reduce fT by 30% which is essentially independent of
Reynolds Number.

3. 'The aumber of skid wire starts must be increased considerably
to substantially reduce fT. Increasing the number of skid
wire starts from 2 in the present case to 16 would yield a
40% reduction in fT which is essentially independent of
Reynolds number. This would not be a realistic way of
reducing fT.

fT is related to the parameters p, e, and o< by the relationship

387 —373
o (2 (~> .
£ 2 /D) e for <15 (73a)

387 =373

<g)\ [E—O'OO 875) oL + /_/357 (73b)

7Cor ol > LSO

.

= 2273 (5
- (Dc)

&

f
The previous equations are believed to predict values of fT

which are from 107 - 207% above the actual values for Reynolds numbers

below 3000 and from 25% - 35% above the actual values for Reynolds

numbers above 3000.



CHAPTER XI

RECOMMENDATIONS

It is reccommended to perform further experiments with the
parameter variations similar to the variations in figure 27 to find
what actually happens at low Reynolds Numbers to the friction factor
curve. The user may also want to modify the program to output the
average of the predictions for configurations b & c as suggested at

the end of Chapter VI
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FLOW CHART OF COMPUTER PROGRAM
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[READ & WRITE INPUT]
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[INITIALIZE
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MARNGE (II) YES

Y

o
NO

\
ICALL AREA]1 OR AREAZ]

|
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APPENDIX B

DEFINITION OF VARIABLES USED IN THE COMPUTER PROGRAM

ARRAYS:

MARNGE ( ) - designates which configuration the program is going

to model

MARNGE (1) = configuration a
MARNGE (2) = configuration b
MARNGE (3) = configuration c¢

MARNGE (4) = configuration d

The values in the array (either a zero or a one) are

read as input into the program. If MARNGE (I) = 0 (where

I=1,2,3, or 4), then the program will not model the

configuration corresponding to MARNGE(I). If MARNGE(I) = 1,

then the program will model the appropriate configuration.
X12( , ) - storage array for region 12 when either configuration c

or d is to be modelled.

0.5 1.5 .
X12(1,I) = f12 Relle12 (left hand side of equ. (33))
Xlw(2,I) = Re12
X12(3,I) = f12

X34( , ) - storage array for region 34 when either configuration

c or d is to be modelled.

0.5 1.5 .
X34(1,I) = 394 Re34/D34 (right hand side of equ. (33))
X34(2,I) = Re34
X34(3,I) = £

34
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SUBROUTINES:

AREA]l - computes the circumferences, areas, and hydraulic diameters
for configurations a & b.
AREA2 -~ computes the circumferences, areas, and hydraulic diameters

for configurations c¢ & d.
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INPUT PARAMETERS:

The following parameters are read in as input to the program from

data cards.
MARNGE( )

NW

bP

DC

ADJUST

array which is described in section ARRAYS

specifies the number of different geometrically

different configurations to be modelled.

diameter of the pipe

diameter of the cable taken from the base of the skid
wires

pitch of skid wire lay

height of skid wire

the value of K(o<) taken from figure 7. (= tan-l(Eg—);

"Dc

where n = number of skid wire starts).



92

COMPUTATION PARAMETERS:

The following are the most important parameters which are used in

the program
PI
RP
RC

DASYM1

DASYM3

RE12
RE34
F12
F34
F3
D12
D34

D1

D3

for computation purposes.

3.141593

radius of the pipe

radius of the cable

asymtotic value of hydraulic diameter as Reynolds number
approaches infinity for region 12 for all configurations.
asymtotic value of hydraulic diameter as Reynolds number
approaches infinity for region 34 for configurations c¢ & d.
hydraulic diameter of region 3 for configuration b.
(constant for all Reynolds numbers).

Reynolds number for region 12

Reynolds number for region 34

friction factor for region 12

friction factor for region 34

friction factor for region 3

hydraulic diameter of region 12 (constant)

hydraulic diameter of region 34 (constant)

initially the asymtotic value of hydraulic diameter for.
region 12 as Reynolds number approaches infinity - DASYM1

(from equ (12) with D_, = 0). Decreases by amount DINCR

H2

after each f._, and corresponding Re,, are computed. D1 is

12 12
the independent variable described in the computation pro-
cedure of Chapter III.

the same as D1 except for region 34.
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DINCR -~ the increment that is to be subtracted from D1 or D3

after either f12 and Re12 or f34 and Re34 are calculated.



OUTPUT PARAMETERS:

The following are the computed output parameters.
RET - Reynolds number for the entire pipe-type geometry.
FT - Corresponding friction factor for the entire pipe-type

geometry.
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APPENDIX C

USERS INSTRUCTIONS FOR COMPUTER PROGRAM

For any pipe-type cable system, only fivé parameters must be specified
as input to the program, which are listed below.
1. Dp - diameter of the pipe
2. Dc - diameter of the cable
3. P - skid wire pitch
4, e - skid wire height
5. K(¢) - correction coefficient to equation (2) obtained from
figure 9.
o 1is defined from the following equation: o¢t= aﬁ‘(ﬂJP>
where n = number of skid wire starts.
The units of Dp, Dc, P, and e are arbitrary; however, they must be
consistent. Each pipe-type geometry, specified by a unique combination
of the five input parameters described above, require three data cards.
In addition, the first data card for every computer run specifies the
number of different pipe-type arrangements to be modelled (i.e.,the number
of groups of data cards; each group containing three cards as described
above). The variable read in from this first data card is read in under
INTEGER FORMAT and must be right justified. Table 3 describes these input

data cards in more detail:



TABLE 3

DATA CARD ASSEMBLY

Card Column (s) Variable Format
1 1-2 NW I
2 1 -7 D F
p
2 8 - 14 D F
c
2 15 - 21 P F
2 22 - 28 e F
NW TOTAL 3 1 MARNGE (1) I
G —_—
ROUPS 3 2 MARNGE(2) 1
3 3 MARNGE (3) I
3 4 MARNGE (4) I
4 1 -7 K F

96

Total Number of Data Cards = 1 + 3(NW); therefore, there
must exist at least four (4) data cards.
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