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ABSTRACT

Forced cooled systems for underground, oil filled, pipe-type electrical

transmission cable systems are becoming increasingly common in large urban

centers. In systems of this type there exist a number of electrical trans-

mission cables in an oil filled conduit. These cables are wrapped with a

semi-circular, protective skid wire, which increases the turbulence in the flow

and up until now has prevented any accurate or realistic prediction of the

pressure drop. An equation has been used which correlates the friction factor

of the rough surface which has been developed which combines the effects of

the rough and smooth surface on the flow to obtain a friction factor vs. Reynolds

Number plot for the entire pipe-type cable system. This theory has been written

in the form of a FORTRAN IV computer program which accepts as input the geometrical

dimensions of a system and yields as output the friction factor and corresponding

Reynolds Number for the entire pipe-type cable geometry. The results predicted

from the theory are consistently 15-30% above the experimentally determined

values.
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A - cross sectional flow area

D - diameter of cable - to base of skid wire
c

D - inside diameter of pipe
P

D - hydraulic diameter = 4 A
H P

e - height of roughness element

f - friction factor DH(dp/dx)

2 v2

L - length

P - wetted perimeter

p - distance between repeated ribs

dp/dx - pressure gradient

Re - Reynolds Number VDH

V - average bulk fluid velocity

+ 
e - roughness Reynolds Number = e Rec ff2

Dc

u - velocity of fluid

r - radius from center of annuli

Pr - Prandtl Number = c/k
p

cp - specific heat at constant pressure

k - thermal conductivity

C - wetted circumference

m - mass flow rate

b - constant



7

SUBSCRIPTS:

1 - pertains to flow in zone 1, influenced by rough cable geometry

2 - pertains to flow in zone 2, influenced by smooth pipe geometry

3 - pertains to flow in zone 3, influenced by rough cable geometry

4 - pertains to flow in zone 4, influenced by smooth pipe geometry

12 - pertains to flow in combined zone 1 and 2

34 - pertains to flow in combined zone 3 and 4

T - pertains to flow in total pipe-type cable arrangement

max - maximum value

ul - upper limit

L - pertains to flow in a laminar zone at a point of contact

o - designates reference position
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- density

a- absolute or dynamic viscosity

- kinematic viscosity = .z/l

X - shear stress
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CHAPTER I

INTRODUCTION

High pressure, oil filled, underground pipe-type electrical trans-

mission cable systems have been in use for a number of years and are

becoming increasingly widespread in large urban areas (figure 1). Originally,

the oil was not circulated through the system, and the heat generated by

the cables was transferred by natural convection currents in the oil from

the cables to the outer pipe wall where it was conducted through the

soil to the atmosphere. As the rate of heat generation by the cables

increases, the rate of heat transfer out of the system also increases

along with a rise in the temperature of the cables, until, ultimate failure.

Since the maximum current carrying capacity of the cables is a function

of the heat transfer rate out of the system, and this in turn is a function

of the temperature gradient, it is evident that this design has a very

undesirable limitation which is the conductive resistance of the soil.

To circumvent this problem chilled oil is pumped through the system.

Now most of the heat generated by the cables is transferred to the oil

and then to the atmosphere at refrigeration stations. However, this new

design introduced crucial design problems.

Since this new system requires more capital to build than the static

one, it is important to know how to predict the optimum overall design

given certain input information. Of paramount importance is the ability

to accurately predict the pressure drop of any pipe-type cable system.

This is complicated by the fact that the cables have semi-circular, helically

wound skid wires wrapped around them which protect the cables as they are

being inserted into the pipe.
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This thesis is concerned with predicting the pressure drop for a

specified pipe-type cable geometry size in terms of a friction factor

vs. Reynolds-number curve for the turbulent flow regime.

The only work to date in this area has been the experimental tests

performed at M.I.T.'s Heat Transfer Laboratory [1]. Results showed that

due to the increased turbulence created by the skid wires, turbulent flow

exists for a Reynolds number as low as 500, based on the hydraulic diameter.

This value is approximately in the operating range of interest.

At the present time, there exists no general theory or correlation

for the friction factor for the type of rough surface created by the skid

wire. There has, however, been a great deal of research carried out

especially during the last 15 years on roughness geometries of this type

which have been advocated for use on nuclear fuel rods in advanced gas

cooled reactors as a means of creating turbulence and increasing the heat

transfer rate [2 - 12]. The major results of these experimental investi-

gations have been used, along with a general theory to predict the friction

factor for the present case. Four different geometrical arrangements of

cable have been modelled. The model for each type of arrangement is

described and results are compared with experimental data.

A model which theorizes that the flow at points of contact between

two cables behaves like the flow in a narrow, triangular, open ended duct

is explained and developed.

Chapter II reviews the important work previously carried out on

roughness geometries of the type considered here. Chapter III derives

the basic method for a simple annular type geometryand Chapter IV compares

the predictions with experimental data. Chapter V extends the method from
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the annular case to the pipe-type case and Chapter VI compares these

predictions with experiment. Chapter VII develops a model which theorizes

that the points of contact between two cables behaves like the flow in

a narrow, triangular, open ended duct. Chapter VIII presents a parametric

study of the method developed in Chapter V. Results and conclusions are

presented in Chapter IX, and recommendations are suggested in Chapter X.

Those only interested in the results may turn directly to Chapter VIII.



CHAPTER II 17

PREVIOUS WORK

One of the pioneers in the investigation of discrete roughnesses

was W.F. Cope [13], who, in 1941 investigated the effects of small pyramid

type proturbances machined in the wall of a pipe. Most of the other work

since then has been concerned with improving the performance of nuclear

fuel rods in advanced gas cooled reactors by the use of these turbulence

promotors. E.W. Sams was probably the first to experiment transverse

square ribs and helical coiled wires on the inside surfaces of tubes

(1952, 1957)[14, 15] (Fig. 2 & 3).

The difficulty in manufacturing roughness geometries in tubes of

this type plus the fact that the turbulence promotors would have to be

placed on the outside surface of the fuel elements which in turn are placed

in the center of a smooth channel, necessitated a method which could

isolate the effects of a rough surface from a smooth surface when they

are place opposite one another. In 1958, W.B. Hall [2] proposed such a

theory now known as the Hall Transformation. Since this date, most of

the research that has been performed on roughened surfaces has been carried

out on annular passages with the inner surface roughened, the outer surface

smooth, (Fig. 4 & 5), and have used a modified form of the Hall Transform-

ation to correlate the results. Most of the work has been carried out

by the United Kingdom Atomic Energy Authority (UKAEA) in England for use

on their advanced gas cooled reactor fuel elements.

Hall Transformation

Given a channel which is composed of a rough surface opposite a

smooth surface, the idea is to isolate the effects that each one has on

the flow. For an annular channel (similar to the one shown schematically
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in Fig. 6) the basic idea proposed by Hall is the following: velocity

distributions can be experimentally determined, and from this the point

of maximum velocity can be obtained. At this point the velocity gradient,

du/dr, equals zero. This is assumed to coincide with the point of zero

shear stress, which is true for laminar flow, but not quite true for

turbulent flow. In turbulent flow the transport of momentum over short

distances via eddies may displace these points by a small amount. This

surface of zero shear divides the annulus into two separate flow zones

which may be analyzed separately. By applying a force balance on each

zone, the drag associated with each surface may be calculated and hence

the corresponding friction factor.

L

r,,i- Idu
dr

Figure 6. Schematic of Velocity Distribution in an Annular
Type Geometry with Inner Surface Rough and Outer
Surface Smooth
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The assumption of the coincidence of the point of zero shear and the

point of zero velocity gradient has been the subject of much experimental

investigation [3, 4, 5, 6, 7, 8]. It is now generally accepted that the

error introduced by this assumption is small, being less than 10%. An

assumption which is made to simplify the calculations is that the density

and viscosity of each zone are equal. This is strictly true for an iso-

thermal case. In the present pipe-type case, the temperature gradient

between the outside of the cable and the bulk temperature of the fluid

is not great enough to cause an appreciable difference between these

variables [3]. Another important assumption is that the pressure drop,

dp/dx, at any given cross section of pipe is a constant, i.e.,(dp/dx)1 =

(dp/dx)2 = ... (dp/dx)T. This implies that we have one-dimensional flow

throughout the pipe. One of the big disadvantages of the Hall Transformation

is that the velocity distributions have to be known to determine the point

of maximum velocity. This problem may be circumvented by assuming that

the average bulk velocity of the fluid in each adjoining zone are equal.

This assumption is not exactly true. However, it has been shown by Wilkie

[4, 6] that the average velocity of the outer smooth zone is at most 2%

higher than the inner rough zone. For simplicity we shall assume that

they are equal.
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CHAPTER III

DERIVATION OF METHOD FOR A SIMPLE ANNULUS

The method which will be used to predict the friction factor for

pipe-type case will first be developed for a simple annulus. The reason

for this is that most of the experimental results in the literature has

been performed on annuli, so we have a means to check our theory. The

basic concept used here is the same as that for a pipe-type case but may

be easier to understand and more accurately grasped.

Definition of the Problem

As was stated previously, the difficulty which exists in the cal-

culation of the pressure drop is from the helically wound semicircular

wrappings on the cables. To better understand the problems at hand, one

should now refer to figure 7 which was obtained from experimental results

on a scale model of a pipe-type cable system for various different cable

configurations in the Heat Transfer Laboratory of M.I.T. One of the most

striking observations is that turbulent flow seems to exist for a Reynolds

number as low as 500. Furthermore, there is no discontinuity which sep-

arates laminar from turbulent flow. This is attributed to the fact that

the semi-circular wrappings on the cables introduce instabilities into

the boundary layer [16]. Also noteworthy is that the friction factor is

essentially independent of cable configuration for Reynolds numbers above

2000. Our problem of friction factor prediction may now be divided up

into three parts:

1. To find a friction correlation for a surface containing semi-

circular, helically wound wrappings.

2. From our knowledge of smooth pipe friction factors to obtain a
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correlation which we could use for turbulent flow for a Reynolds

number as low as 500.

3. To obtain a method that combines the correlations obtained from

parts 1 and 2 in order to obtain a friction factor vs. Reynolds

number curve for the entire pipe-type cable geometry.

Each part will be dealt with separately in the following sections.

Friction Factor Correlation for the Rough Surface (Cables)

Unfortunately there does not currently exist a correlation which

will predict the friction factor for a rod with semi-circular helically

would cable around it. We must therefore compromise. Eckert et al. [17]

has obtained a correlation which will predict the friction factor for flow

in a tube with rectangular, transverse ribs machined on the inside wall,

similar to the schematic shown in figure 2, as a function of e/DHl and p/e

and has verified it for the following ranges:

0.01 <e/DHl <0.04, 0.71<Pr<37.6

10<p/e<40 e = R j35

c

~~~~.? - D

.75' * o./£e I~~~~

If we could modify this to account for the rounding of the ribs and the

varying helix angle, we would have a useful correlation. One of the

results obtained from the vast amount of research conducted and collected

by D. Wilkie [3] is that chamfering the corners of very sharp rectangular

ribs will decrease the friction factor by as much as 8%. It was also

found that continued chamfering (such as to obtain a semi-circular shape)
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will not have any more of an effect on the friction factor beyond this

8% reduction.

It should be mentioned that these results were obtained for high

turbulent Reynolds numbers (>104). In this regime the boundary layer

is quite small relative to the skid wire height. At lower turbulent

Reynolds numbers the boundary later is larger,. and the effect of rib

profile may have more of an influence on the flow. However, due to lack

of any more existing information, we will assume these results to hold

equally well at low turbulent Reynolds numbers.

Other experimental results found by Wilkie [3,4] have shown that

varying the helix angle of helically wound square rigs will effect the

friction factor as shown in figure 8 for pitch to height ratios, p/eof

8 and 16. These results were also obtained for high turbulent Reynolds

numbers which will assume to be valid at low turbulent Reynolds numbers.

The effect of rib rounding and varying helix angle are combined and shown

as an overall correlation to equation (1) in figure 9. The final correlation

to be used in the prediction of the friction factor for the rough surface

is,

2 K(~ 
.5 /()_ 375 + .?5(0 p j3

where K is a function of the helix angle alpha c<, obtained from figure 9.

It is now obvious that we have reached a point where we have a lack of

information for accurate design purposes. We know that our correction

coefficient K is a function of the helix angle (<) and that we should

have a family of curves for various p/e ratios. Since only two curves
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are available (p/e = 8, p/e = 16), any attempt to design outside of this

range is an "engineering approximation", and the results obtained

should be weighted accordingly. It should be noted that the variation

between these two curves below helix angles of 25° is very small (less

than 3%) and that the largest deviation is only 5%, so that one would not

expect to introduce much appreciable error by carefully extrapolating

outside this range.

Eckert states that his correlation equ. (1) is valid for a roughness

Reynolds number e (e = e Re V-2)which is greater than 35. Below this
D
c

value, he states that it oculd be modified to yield a slightly more

complex equation. This was initially done, but the results did not agree

well with experiment; the predicted values being much too low at low

Reynolds numbers. It is questionable whether this equation has to be

+
modified at all for low e values, since the data Eckert obtained below

+
this value was sparse and scattered. Equation (1) was used at all e

values and yielded good results.

Friction Factor Correlation for the Smooth Surface (Pipe)

The friction factor for a smooth pipe is a well known function of

Reynolds number shown on the Moody Diagram of figure 10 [18]. In the

laminar range, the relationship between friction factor and Reynolds

number may be found analytically as,

f2 = 16/Re2 (3)

The curve in the turbulent range may be approximated by the following

two well accepted correlations [24],
0.25

f = 0.0791/Re 2 (4)

f2 = 0.046/Re 2 (5)
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The Reynolds number range in which each applies must be specified. This

is discussed below.

In the transition region (2000<Re <4000) the curve is indeterminant

and discontinous. The flow could either be laminar or turbulent depending

on the nature of the flow situation. Laminar flow has been achieved for

Reynolds numbers as high as 40,000 [19] by being very careful not to

create any outside disturbances in the flow. For a smooth empty pipe,

there is a well accepted lower limit of Reynolds number (2000) for

turbulent flow, below which the flow will be laminar regardless of any

outside disturbances which may be introduced. It should be emphasized

that the previous limits on Reynolds numbers have been subject to "external"

constraints. We should now remember that we do not have a fully empty

smooth pipe. There exist cables in the pipe with turbulence promotors

(skid wires). It has been found that turbulence promotors similar to

the type considered here are able to reduce the lower limit of Reynolds

number (based on the height of the roughness element) at which turbulent

flow may exist to approximately 600 [16]. For our pipe-type case, the

lower limit of Reynolds number based on the hydraulic diameter has been

found experimentally to be approximately 500 (figure 7). We also do not

have any discontinuity at the transition point. It would therefore seem

reasonable to modify our smooth pipe friction correlations so that there

does not exist any discontinuities. This is what was done. Equation (3)

was found to intersect equation (4) at a Reynolds number of 1187 for the

same friction factor. Similarly, equation (4) intersects equation (5)

at a Reynolds number of 51,094. Our final continuous correlation for

the smooth pipe friction factor is as follows:
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16/Re 2 Re <1187 (6a)

f =0.0791/Re 0.25 1187< Re <51094 (6b)
f2 -- 0'71R202

046/Re0.2 Re>51094 (6c)

It should be noticed that we will be using a value of friction factor

obtained from laminar flow theory when we actually do not have laminar

flow. However, if equation (6b) was used below a Reynolds number of

1187, the friction factor would be less than the laminar value predicted

by equation (6a). If the flow is turbulent,it should be expected that

the friction factor is at least as large as the laminar value. For lack

of any better information, equation (6a) is used for the range indicated.

The author initially assumed equation (4) to hold for low value of

Re2 with the idea that using a value predicted for f2 from laminar theory

in turbulent flow would not be acceptable. The predicted values obtained

from using this equation did not possess the slope characteristic of the

experimental values n figure 7 in the ReynoldS number range 500 - 2000.

It was then thought to use equation (3) for low values of Re2, purely in

the mathematical sense as yielding a value of f2 for a given Re2 without

any connotations of being either laminar or turbulent. The results obtained

by doing this yields the desired slope.

Combination of Smooth and Rough Surface Friction Correlations to Obtain

an Overall Friction Factor vs. Reynolds Number

The basic method used to combine the effects of the rough and smooth

surfaces is the Hall Transformation mentioned previously. This assumes

that we have a position of zero shear which separates the effects of the

rough surface from the smooth. We further assume that in each zone, the



34

pressure gradient, mean velocity, density, and viscosity are equal. The

assumption of equal mean velocities considerably simplifies the analysis

and for the test cases does not introduce significant errors.

We begin the development of the method by defining the following

variables:

Hydraulic Diameter:

This is defined as being equal to four times the cross sectional area

of the flow divided by the wetted perimeter. In an annulus shown schematically

in figure 11, the hydraulic diameter of zone 1, DH1, is equal to four times

the cross sectional area between the inner rough surfaces and the radius

of zero shear (Z = 0) divided by the perimeter of the inner rough surface,

i.e.,
4A1

DH1l C

It should be noted that the perimeter along the zero shear boundary is

not included in the wetted perimeter.

Similarly, DH2 = 4A2/C2, where A2 is the area between the radius

of zero shear and the smooth surface and C2 is the circumference of the

outer smooth pipe.

Following the same reasoning, DH12, the hydraulic diameter of the

entire annuli is defined as follows:

D l2 4(A1 + A2) 4A1 2
(C1 + C2 ) (C1 + C2 )

Friction Factor:

dp DH
f (dx) 2

2FV 2

Reynolds Number:

Re V DH

V
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SURFACE

GH SURFACE

.E = O

Figure 11. Cross Section of Annular Type Geometry

From the assumption that the pressure gradient in each sub-channel are

equal, we may write,

(or) =d (8)
dx 1 dx 2

or

2fl? lV21 2f2 222
DHl DH1

(9)
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Since

P1 /'2' V1 = V2, we have,

f f1 2

(10)
DH1 DH2

To find a relationship between DH1 and DH2, we make use of the following

identity:

4A1 + 4A2 4(A1 + A 2)
C1 C 1 (11)C C = Cl
1 1

Now, recalling the definition of hydraulic diameter as four times the

4A
cross sectional area divided by the wetted perimeter (D = -), this

C

reduces to

C C + C 2

D1 + C DH2 DH2 (12)Hi 1 H2 C1

It should be realized that the following relation holds since it was

assumed that the mean velocities, densities, and viscosities are equal

on both sides of the zero shear plane.

D
DH2

Re H2Re (13)
2 DH1 12

DH12

where Re2 is the Reynolds number for zone 2 and Re12 is the ReynoldS

number for the combined zones 1 and 2 (in this case, Re12 = ReT, where

ReT is the Reynolds number of the entire geometry).

We now have five equations (2,6,10,12,13) and six unknowns (fl,f2,

DH1, DH2, Re2, Re1 2). We could pick a value for one of them and solve
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for the rest, which is what the computer program does. It picks a value

DH1 and solves for Re 12. DH1 was chosen as the independent variable since

it has definite limits which are easily found. The lower limit on DH1

is zero, which occurs at low ReynoldS numbers when most of the flow is

influenced by the smooth pipe friction correlation. The upper limit

on D 1 occurs at very large Reynolds numbers when the flow is completely

turbulent and influenced chiefly by the rough surface. This upper limit

is: DHl(ul) = 4A12/ 1

To obtain the corresponding overall friction factor, f1 2 ' (in this

case, fT = f1 2) the same procedure is followed as before, only this time

requiring that the pressure drop of the total passage to be the same as

each sub-channel.

dx ) 2 (dx)l (14)(dx 12 1x~

which reduces to,

f f
12 =1 (15)

D12 D1

By using the same independent value of DH1 that was used to obtain Re1 2,

we can solve equations (2) and (15) simultaneously to obtain the friction

factor f12 for the corresponding Reynolds number Re12.
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CHAPTER IV

COMPARISON OF THEORY WITH EXPERIMENT FOR FLOW IN

TUBES AND ANNULAR TYPE GEOMETRIES

There have been numerous experiments performed which enable us to

test our theory at various stages of its development. We first test it

against a tube containing helically wound coils and then with data

obtained from experiments performed on concentric annuli type geometries.

Test of Rough Friction Correlation - Equation (2)

Equation (2) should be able to predict the friction factor for a

tube with round, helically wound coils pressed tightly against its walls

as shown in figure 3. Since the hydraulic diameter in this case is

constant and equal to the diameter of the pipe, this equation will pre-

dict a constant value of friction factor, independent of Reynolds Num-

ber. E.W. Sams 15] in 1957 determined the friction factors for various

size coil diameters and pitches for a similar type geometry. Figure 12

shows his experimentally determined values and the value of f as pre-

dicted from equation (2). The agreement is quite good.

Test of Modified Hall Transformation

An annuli, unlike the tube just described, will not have a constant

hydraulic diameter associated with each sub-channel on each side of the

line of zero shear stress. Only the hydraulic diameter of the entire

annuli will be a constant. The sub-channel hydraulic diameters will be

a function of Reynolds Number. At low Reynolds Numbers, one would expect

the line of zero shear to be closer to the inner rough surface. This will

increase the area associated with the smooth surface friction factor and
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Figure 12. Comparison of Experimental Data Obtained
From a Roughened Tube Similar to the One

Shown in Figure 3 with Theoretically
Predicted Values. Data is from Sams[15].
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increase its influence in the friction factor for the entire annuli.

Conversely, at high Reynolds numbers, one would expect the flow to be

influenced chiefly by the effects of the rough surfaces. This means that

the zero shear line will move closer to the outer smooth surface thereby

increasing the hydraulic diameter of the rough surface. The important

point is to realize the important effect the Reynolds number has on the

hydraulic diameters of the sub-channels, the entire annuli, and consequently

the appropriate friction factor.

Sherriff & Gumley [9] in 1966 performed an experiment to determine

the friction factor for the rough surface on a concentric annuli with the

inner surface roughened with helically wound circular wires at a negligible

helix angle and the outer surface smooth (fig. 4). They experimentally

determined the velocity profiles and hence the position of zero shear,

and were thus able to calculate the friction factor for the rough surface

as a function of Reynolds number. Their results are shown in figure 13

along with the values predicted from our theory.

Kjellstrom & Hedberg [8] in 1966 performed an experiment to determine

the friction factor for a concentric annuli with the inner surface composed

of rectangular transverse ribs and the outer surface smooth (figure 5).

Since the rough surface is composed of rectangular, transverse ribs, there

is not only any need to modify Eckerts correlation and we should use equ. (1)

instead of (2) in our theory. Remember, the distinction between these two

equations is that equ. (1) is for a rough surface composed of rectangular,

transverse ribs and that equ. (2) is for a rough surface composed of helically

wound cables,which may be either of a square type or round cross section.

If it is square, figure 8 should be used to obtain K (), and if it is

round, figure 9 should be used to obtain K (). The comparison
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between the experimental results and our theory is shown in figure 14.

It should be noticed that the p/e ratio of the rough surface is 8.62.

This is outside of the range of p/e values for which Eckert's correlation

has been tested for and could help to explain the 20% error in the pre-

diction.

The last test of our theory is from data obtained from Feurstein

& Rampf [20] in 1969 on a concentric annuli similar to the one just men-

tioned, (fig. 8). In these experiments, the p/e ratios ranged from 10-30;

therefore, we should expect better results. The experimental results and

theoretically predicted values are shown plotted in figures 15 and 16.

The comparison is quite good.

The comparisons of the predictions of Eckert's modified correlations,

equation (2), with experimental data (figures 12 & 13) is very good. The

predictions of the total friction factor for an annuli are consistently

below the experimentally determined values (figures 14, 15, & 16). Therefore,

there seems to be some error introduced by the use of our modified Hall

Transformation; the exact cause of which is unknown by the author. More

will be said about this at the end of Chapter VI.



43

o -pe 8.62
--- predicted from theory

0

a · a · . .· I

3 4 5 6 7 8 91(6

REYNOLDS NUMBER

Figure 14. Comparison of Predicted Values of Total Friction
Factor with Experimental Data for a Concentric

Annuli Similar to the one Shown in Figure 10.

Data is from Kjellstrom & Hedberg[8].
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CHAPTER V

EXTENSION OF METHOD FROM ANNULAR TO PIPE-TYPE CASE

The extension of the theory from the annular case to the pipe-type

case in which there exist three cables in a smooth conduit is simple and

straighforward. Four cable configurations were chosen to be modelled

(figure 17). In each case, the flow area is broken up into separate flow

zones, the boundaries being the assumed ones of zero shear.

Configuration a is the easiest to analyze. In this configuration,

all three cables are assumed to be touching one another grouped in the

center of the conduit. The flow area between the cables is small and is

neglected, as is the circumference of the cables bordering this area. We

are left with a modified annular type geometry. The flow area is equal

to the area of the pipe minus the combined areas of the cables plus the

neglected trapped area. The wetted perimeter of zone 1 is equal to the

combined circumference of the cables minus the portion that borders the

trapped center region. By making these simple assumptions with regard

to areas and circumferences, the pipe-type cable case is transformed into

an annular type case, and the equations of Chapter III apply directly.

We now move to the cable configuration in which there exist three

flow zones (configuration b). In this case, the center region (3) between

the three cables is not neglected and is considered in the analysis. It

is assumed that the flow in this region is influenced solely by the three

cables. Its area and circumference are constant; therefore, its hydraulic

diameter is constant. With a constant hydraulic diameter equation (2),

which predicts the friction factor for the rough geometry, will yield a



47

a. b.

c. d.

Figure 17. Various Pipe-Type Configurations Modelled Shown
Divided into Theoretical Flow Zones(dashed lines).
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constant value for f3' Zones 1 and 2 are assumed to interact and are

treated just like the annular case in Chapter III. We now have a friction

factor relationship for the combined zone 12 and a constant value of

friction factor, f3, for zone 3. Since we want the total friction factor,

fT' we apply our assumption that the pressure drop at any given cross

section of pipe is constant. Stated mathematically, this is,

ARs) d%1 (16)

which says that the pressure drop of the total pipe-type system is the

same as the pressure drop in the combined zone 12. This may also be

expressed as,

2 2f -2
TPTVT 12/1212

DHT D12 (17)

which reduces to,

f f (18)

T 1

It should be noted that in this case, we are not assuming that the

mean velocity of zone 3 is equal to zone 12. We are separating zone 3

from zone 1 by an imaginary boundary. The flow in zone 3 is not assumed

to be influenced by zone 1, therefore the mean velocity of zone 3, V3,

is not equal to the mean velocity of zone 1, V Consequently, V3 VT

and V12 VT. We must somehow find a relation between the mean velocities

V12 and VT . This is accomplished by making use of the fact that the mass

flow at any given cross section is a constant.
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which may be expressed as,

,T VT =

Since the density is assumed

ATVT =

Upon rearranging, we have,

(20)
12A1 2V12 +P 3A3V3

constant, this reduces to

(21)
A12V12+ A3V3

VT 1 Re3 DH12

=AT A12 ReD A
V12 12 H3

(22)

We have now found our desired relation, but in doing so, have

introduced another unknown, the Reynolds number for zone 3, Re3. This

is taken care of by applying our assumption of constant pressure drop at

any cross section of pipe. This time, we consider the combined region 12

and region 3.

(23)
(dl12

or equivalently,

-2

12 12

DH12

f3 V

DH3
(24)

which may be expressed as:

49

(19)

3
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f0 Re f0.5 Re
1 12 f3 3

1.5 1.5 (25)
DH12 DH3

Solving for Re3, we have:

D f
Re M f-12 Re (

RH12 3 1226)

The overall Reynolds number, ReT, is obtained by making use of the

following identity:

DHT VTRe T = Re12 (27)

H12 12

Summarizing, for a cable configuration which we divide into three

zones, the third of which is considered independent of the other two,

we proceed as follows:

1. Solve for the friction factor-Reynolds number relationship for

zone 12 as outlined in Chapter III.

2. Calculate the constant friction factor for zone 3.

3. Solve for the overall friction factor-Reynolds number relationship

by using equations (18), (22), (26), and (27).

It should now be obvious that we could handle configurations c & d

in the same manner that we treated configuration b, simply be replacing

zone 3 by the combined zone 34.

However, the friction factor for zone 3 in configuration b was a

constant. This is not so for zone 34 for configurations c & d. It is

clearly a function of Reynolds number just like region 12. We must therefore
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use some ingenuity in obtaining the overall friction factor, We first

obtain a relationship f2 vs. Re12 and f34 vs. Re34 by the method outlined

in Chapter III. The fact that we do not have anything that resembles an

annular type geometry does not make any difference, since the hydraulic

diameter effectively accounts for this. We then use the same reasoning

as before to obtain equations (16), (17), & (18). The conservation of

mass equation becomes:

T -in 2 bh3 4
(28)

where b is a constant and is equal to 1 for configuration d and equal

to 2 for configuration c. This equation reduces to

ATVT = A12V12 + bA34V34 (29)

which, upon rearranging, yields:

VT l A+ b H12 A (30)

12 T 12 H34 A 3 4

As before, we have found a relationshiop for our velocities, but in

doing so, we have introduced another variable, this time Re34. If the

constant pressure drop criterion is applied as before, we obtain:

dp =_ (31)
dx12 dx34

or, equivalently,

2 -2
f 121 = V (32)

DH12 DH34
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which may be expressed as,

f0.5 Re 1 0.5
12 f34 Re
______ 12__ 34 34 (33)

1.5 D1.5
H12 H34

Equation (33) contains two unknowns, Re12 and Re34 (f12 is a function

of Re12 and f3 4 is a function of Re 3 4). With configuration b, f3 (cor-

responding to this f3 4) was a constant and the equation could be solved

explicitly. In this case, f34 is not a contstant but is a function of

Reynolds number. The procedure which is used in solving this equation

is as follows:

1. Assume that each side of the equation as it is written is a single

valued function of f2 and f34'

2. Pick a value of f12 and solve the left hand side for a constant.

3. Since the right hand side is equal to the same constant, proceed

to pick various values of f34 until this constant is obtained.

Equation (30) may now be solved with equation (18) to obtain the

total friction factor, fT. The corresponding total Reynolds number,

RT, may be found by the use of equation (27).

Summarizing, to obtain the overall friction factor vs. Reynolds for

a pipe-cable geometry which is divided into flow zones which are independent

of one another and each having a functional relationship between its

friction factor and Reynolds number (such as configurations c & d), we

proceed as follows:

1. Solve for the friction factor-Reynolds number relationship for the

sub zones 12 and 34 as outlined in Chapter III.
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2. Solve equation (33) iteratively as outlined to obtain a

relationship between Re12 and Re34.

3. Use the value obtained in 2 to solve equations (30), (27), and

(18), using the appropriate value for b.
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CHAPTER VI

COMPARISON OF THEORY WITH EXPERIMENT

FOR FLOW IN A PIPE-TYPE CABLE SYSTEM

Figure 18 shows the comparison of the values of friction factor

obtained experimentally at M.I.T.'s Heat Transfer Laboratory and the values

predicted by the method described previously. Configurations b & c were

the upper and lower bounds found experimentally, which is also predicted

for the theory.

The asymtotic friction factor for configuration b is 0.0132, for

configuration a is 0.0130, for configuration c is 0.0109, and for config-

uration d is 0.0095.

The results from the most conservative approximation (configuration b)

are consistently 15-30% above the experimentally determined values. It

should be mentioned that the predictions of configuration a or b are

only approximately 15% above the experimentally determined values in the

range 500 <Re < 1000, increasing to 25% at a Reynolds number of 2000 and to

30% above 3000. Therefore, in the range of interest (Re _ 500), the use

of configurations a or b will predict a value of friction factor approximately

15% too high.

It is recommended that the value of the friction factor to be used

for design purposes be the average value of the friction factor as pre-

dicted from configurations a and c. For the present case, this value

would be just about right at low Reynolds numbers, the error increasing

to only 22% at a Reynolds number of 10,000.

These errors may be attributed to the method used to combine the
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rough and smooth surface effects, i.e., the modified Hall Transformation.

It does not seem to properly weight each effect as they are combined.

In the annular case, where there is only one roughened rod, the theory

seems to weight the effects of the smooth surface too much, leading to

a predicted value of friction factor which is too low. In the pipe-type

case, the rough surface seems to be weighted too much, leading to a pre-

dicted value of friction factor which is too high. The actual cause in

the imbalance of this weighting process is unknown. The only possible

explanation the author has is that the basic assumption of equal pressure

drops in each flow zone is not exactly true,i.e., the flow is not completely

one dimensional. In the annular case, the rough surface was not large

enough to cause sufficient mixing between the two zones whereas in the

pipe-type case, there may be a "surplus" of rough geometry which would

cause a larger degree of mixing and lead to a higher friction factor.
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CHAPTER VII

CONSIDERATION OF THE EFFECTS ON THE FLOW

WHEN A POINT OF CONTACT OCCURS

A point of contact occurs when two cables or a cable and the pipe

touch one another. When this occurs, it is concievable that the flow

near the areas of contact may be laminar. This was assumed to be the

case, and an attempt was made to model the system including these laminar

zones whenever there is a point of contact. These laminar zones should

vanish in the limit as the Reynolds number approaches infinity when the

flow is 100% turbulent. As the Reynolds number decreases, these laminar

zones should increase, having more of an effect as the Reynolds number is

continually decreased. When a laminar zone exists at a point of contact,

it is evident by the nature of the geometry that it will contain a relatively

small area and large perimeter (figure 19). The existance of these laminar

zones means that the turbulent flow region is reduced by an amount equal

to the laminar regions. Since the cross sectional area that these laminar

zones occupy is relatively small compared to the total flow; whereas, the

perimeter that borders these regions is not, the major effect that the

laminar zones has on the flow is a decrease in the hydraulic diameter for

the turbulent region. This in turn means a reduction in the friction

factor at low Reynolds numbers.

The model of the laminar zone for a cable to cable contact did lower

the friction factor as predicted but the magnitude of the reduction was

not as large as anticipated.

The model of the laminar zone at a cable-pipe contact lowered the
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Figure 19. Cable-Cable Contact Point Showing Idealized Triangular Duct.
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Figure 21. Co-Ordinate System of Triangular Duct
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friction factor too much, actually changing the slope of the friction

factor vs. Reynolds number curve from negative to positive at low Reynolds

numbers. The reason for this is attributed to the fact that the laminar

zones were modelled as being triagular ducts and the cable-cable contact

was close to this geometry while the cable-pipe constact was not. This

is evident by refering to figures 19 & 20, and will become more evident

as the development of the model progresses. This method will only be

developed for a cable-cable contact since the cable-pipe contact was not

accurate. The development of the method will be shown using configuration a.

The basic assumption of this theory is that the flow at a cable-cable

contact may be approximated as being the same as the flow in a narrow,

triangular, open ended duct, figure 21. For flow in such a duct, it has

been shown by Eckert & Irvine [21] that laminar and turbulent flow may co-

exist: the laminar flow being located near the apex of the duct, and at

some point z away from the apex it changes to turbulent flow.

To find this point of transition, we first start out by defining

a criteria for transition from laminar to turbulent flow. It is assumed

that the flow which is very close to the transition point looks like the

flow between two infinite parallel plates, as shown in figure 22. The

hydraulic diameter for such a configuration is:

4 A 4-LW
DH = ' = - 2L ( 42Wp - Lj (34)

where w is the plate spacing. In laminar flow, the well accepted transition

point from laminar to turbulent flow is 2000. Therefore, our criteria

for transition is:

D_ -V2000 (35)
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vW- = [000
(36)

We now need to know the average velocity V between the parallel

plates or across the duct at this position. From Eckert & Irving [21],

the solution for the velocity for a triangular duct as shown in figure 21

for steady-state, laminar flow is:

2/4 /61X£ -Lan (37)
At any z, the average velocity across the cross section is:

I I,/-'\ A\ 2
I-I~~~~~~~~~~~~~~~~~~l\/V z~tav6 J k 2 vocx P- IO (38)

o

Performing the integration yields:

1 // / e i- (39)

To find the pressure drop (dp/dx)L, we make use of our basic assumption

that the pressure drop is constant at any cross section. Therefore,

2 T i72 (40)

which may be rewritten as

(2 X2 2 

9 L 9#T DH T V3DS (41)
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Substituting (41) into (39) yields

2 
- I X~ ea. w

V g U / 4 § (42)

Substituting equ. (42) into our equation which gives us our criteria

for transition, equ. (36), and solving for w yields:

1 . 71 DT (l q7nla)
------ ~~~~(43)w f l/3 Re 2/13' 3~~~~~~/

T DHT

W may now be related to the angle in figure 19 as follows:

- 2 R (I- cOS )(44)

where R = Rc + e/2

Substituting equation (44) into (43) yields:

I-cos(21e) /8 .17/ 7-

(I - tan 2z) 1'3 2 R 3 (45)-T DHT

The procedure is to solve equation (45) for " using as the values

of fT' DHT, and ReDHT those which would be obtained if one assumed the

flow to be completely turbulent without any laminar zones. Once the

initial value ofO is obtained, the area and perimeter of the laminar

zones may be calculated. These values are then subtracted from the

original turbulent values of area and wetted perimeter to obtain new values.

This leads to a new value of hydraulic diameter for the turbulent flow
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region. The friction factor and Reynolds number for the turbulent flow

zone is then calculated using this new value of hydraulic diameter. The

next step is to solve for the total friction factor, fT' and Reynolds

number, ReT which is slightly more involved since the laminar regions

must now be accounted for. These equations to obtain fT and ReT are now

developed.

We begin by assuming that the pressure drop in the total pipe-type

cable system is the same as in the turbulent region 12.

(46)

which may be written as,

- Z 

DYJ Dfit,2 (47)

It should be realized that the average total velocity, VT, is not equal

to the average velocity in the turbulent zone, V12, since the average

velocity in the turbulent zone is evidently not equal to the average

velocity in the laminar zone, VL. Solving for fT' we have:

fT T () 2) ) (48)

We must now find an expression relating V1 to VT which is accomplished

by use of the continuity equation:

(49)

which may be written as:

9V Y2V, Z t' 3 f;;7L V(50)
ITVT /V/? L~ 3 
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or, rearranging,

V,2 12 ~V'Z (51)

which is the same as, VI 7- 1,2 )L (52)

where DHL is the hydraulic diameter of the laminar zone.

number of the laminar zone, ReLs is obtained as follows:

Assume:

The Reynolds

J)L (53)

which may be written as,

)2 2

Il &,2
(54)

QvL

or

f 2 e I _- fL Pe L

3 3'012 P;~~121L (55)

rewriting, we have,

2

v'eI :

f 12 HL 2

We obtain fL be beginning with the definition of the friction factor:

9,,'
2f ~j

(56)

fL L

12d) =

(57)
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dp/dx is obtained by beginning with the definition of the average

velocity of the laminar zone, VL.

QL\L= L(58)
where QL is the volume rate of flow, and is obtained as follows:

QL,,F X X dPL (59)

or Z SO?. = Z oan
o

Q em ; ] me G~

Integrating, we have,

LSubstituting (61) into (58)we obtain,

Substituting (61) into (58) we obtain,

J aI 
(60)

2

(61)

2 / Z
!o_ fal
_ _ _

(/~ - ans) (62)
L= /?A' leK/

from figure 21 it is seen that zotan/ = w/2, so we have,

(63)
½V =- /I 4

12 ~l ' _i

- W/12 2 
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Equation (63) may be combined with equation (57) to eliminate (dp/dx)L

and obtain.

/ 2 (/- flat )
ReL

(64)

Combining equation (64) and (56) to eliminate fL, and solving for ReL

yields: 

12 e 2

PL
b12 (65)

Now, combining equation (65) and (52) to eliminate ReL, we have,

41- Pel2

(D1 2 W

Substituting equation (66) into equation (48), we now have an expression

for fT.

T = f,2 4t - (67)

The overall Reynolds number ReT is obtained by realizing that the following

identity holds.

-e P ,eI2WI

VT I
V,2

+
(66)

/
(68)

f4

PT 2 DtT
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where VT/V12 is obtained from equation (33). Combining (66) and (68),

we have,

S R (D~~r) / 0 f~~1 Relz ( ze )2 f(9

Equations (67) and (69) are the modified equations for fT and ReT

which account for the laminar zones. It should be noticed that in the

limit as the area of the laminar zone approaches zero (Re T-- 0), equations

(67) and (69) reduce to identities. After (67) and (69) are solved for

fT and ReT, then is again solved for using equation (45). The areas

and circumferences are then solved for again and from these, the new

hydraulic diameters. Equations (67) and (69) are again solved and the

process is continued until fT and ReT converge to their actual values.

Summarizing this procedure of calculating fT and ReT which includes

the assumed laminar zones:

1. Calculate fT and ReT assuming the flow to be completely turbulent

as outlined in Chapter III.

2. Determine,$ from equation (45).

3. Solve equations (67) and (69) for the new values of fT and ReT

4. Return to step 2 until fT and ReT have converged.
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The predictions of this method for configurations a & c are

shown in figure 23. Also included in the figure are the predictions

if the flow were assumed to be completely turbulent. It is seen

that these laminar zones do indeed lower the predicted values;

however, not in the manner that it was anticipated.

For configuration a, the left end of the curve was lowered

too much whereas the right end was not lowered enough. For config-

uration c, the right end was lowered enough to agree perfectly

with the experimental values for a short range and then are too low.

In view of the increased complexity to model the system with

the assumption of the existence of laminar zones at points of con-

tact, compared to the small improvement in the resulting predictions,

it was decided not to use this as the final model.
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CHAPTER VIII

PARAMETRIC STUDY

In our theory, the friction factor f has been found to be a

function of the following parameters: p/e, D /D , e/D , and c. By

inspecting the friction correlation for the rough surface (equ. (2))

the following should be evident:

1. Increasing p/e and ex should decrease f.
1

2. Decreasing D /D and e/D should decrease flc p c1
These effects will also be felt on the total friction factor fT. The

important aspects from a design standpoint is the degree to which

these variations affect fT. Probably the most practical question is

what happens to fT if one varies p, e, D , or <. The ultimate aim is
T ~~~c

to obtain a relation which predicts the variation of fT relative to

some reference position as a function of p, e, D , and c. The
c

following system was chosen for study with D always being constant.
P

This system corresponds to the standard 345 KV system.

D = 10.25"
p

D = 4.135"
c

p = 1.5"

e = 0.1"

°<= tan-liD ) ; where n = # of skid wire starts = 2

Varying D :
c

Varying D will vary D /D and e/D . Considering D to be a con-
c c p c p

stant, the present practical range of interest would be to vary D /D

from 0.35 to 0.40. The results are shown in figure 24. The effect of
from 0.35 to 0.40. The results are shown in figure 24. The effect of
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decreasing D /D and D /e on fT is as expected. A lower value ofc p cT
D /D means that there exists less rough surface to influence thec p
flow, therefore, the friction factor should drop, as it indeed does.

However, the extent of the reduction is not significant from a design

viewpoint, especially since D is usually a constant specified by
c

other criteria such as current capacity.

Varying the Helix Angle,oC<, by Increasing the Number of Skid Wire

Starts:

The helix angle, C, is defined as follows:

co= tan- 1 n ; where n = # of skid wire starts.

For a fixed cable diameter, the helix angle may be varied by either

changing the pitch or increasing the number of skid wire starts.

Increasing the number of skid wire starts will only vary the helix

angle, , not affecting any of the other important dimensionless

parameters. By using the values of our chosen system, one could

construct the following table relating the number of skid wire

starts to the equivalent helix angle.

TABLE 1

NUMBER OF SKID WIRE STARTS AND CORRESPONDING HELIX ANGLE

# of starts

1

2

4

8

16

( (deg)

6.6

13.0

24.8

42.7

61.0

K(o) (from figure 9)

0.91

0.89

0.82

0.62

0.37

. .
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The effect of increasing the helix angleCby increasing the

number of skid wire starts is shown in figure 25. It is observed that

the number of starts has to be greatly increased to yield a significant

reduction in friction from the helix angle effect alone. Figure 25 was

cross plotted to obtain the ratio of the friction factor f at any
T

desired helix angle to the friction factor at a helix angle of zero

degrees as a function of the helix angle , for (>15 °

fT
F- = (-.00875) o< + 1.135 (70)
To

where o( is in degrees. Evident from figure 25 is the fact that the

effect on f of helix angle variations less than 150 is practically
T

negligible.

Varying the pitch, p:

Varying p will vary p/e and c . The following table may be

made for our system.

TABLE 2

VARYING THE PITCH, p

p(inches) p/e c(deg) K(i) (from fig. 9)

1.0 10 8.8 0.9

1.5 15 13.0 0.89

3.0 30 24.8 0.82

4.0 40 31.6 0.75

It should be pointed out that the maximum helix angle is 31.6 . From

figure 25, which shows the helix angle effect on fT' it is evident that

we should not expect a large variation in fT to be caused by the helix
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angle variation. Any significant variation in fT should be attributed

to the p/e variation.

The predictions for the variations in Table 2 are shown in figure

26. There is indeed quite an effect on fT by varying the pitch,p, and

as stated previously, this is attributed principally to the p/e var-

iation, the helix angle variation being of secondary importance.

Varying e:

Varying e will vary p/e and e/Dc. The effect on fT is severe and

is shown in figure 27. For the present design, decreasing e by 50%,

from 0.1 to 0.05 inches, will yield a 39% reduction in friction factor

which is essentially independent of Reynolds Number.

In order to obtain a correlation relating the variation of

fT/fT as a function of p/e and e/D , it is necessary to isolate the
T To ~~~~c

effect each has on fT/fTo. This is accomplished by varying e and p

simultaneously to keep the ratio p/e constant and observing the effect

of the variation of e/D on f . The results are shown plotted in
c T

figure 28. By cross plotting these results, the following equation

may be obtained:

4.337 (71)To(')
where fT corresponds to the value of friction factor for our

standard 345 KV system. This equation may now be used to account

for the contribution of the e/D variation in figure 27 and determine
c

the effect of the p/e contribution. The resulting correlation for

the variation of fT/fTo due to a variation in e at constant a< is:
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fT (j 3 9'? 37
- = 1 273

~FT ~ gZ 3 (Dc) (e) ~~(72)

Final Correlation:

The most important design parameters have been found to be p,e,

and o . These have been found to be of importance in the following

forms: p/e, e/Dc, o(. Equation (72) contains p/e and e/D as indepen-

dent variables and is independent of O(. Equation (70) accounts for

the variation in and is independent of p/e and e/D . These two
C

equations may be combined to yield an equation which will predict the

variation fT/fT as a function of p/e, e/D , and o which is:

Tr (e 387 (pJ_ 373T To ~~~c

XT (e ) 3 7
( -37 -73 oo '75) &o+ .L3

= 2. 273 o>1 73b)

where is in degrees.

It should be noticed that equation (73) does not include any variation

for helix angle variations below 150 since they were found to be negli-

gible. To include the correction for variations in D /D the valuec p
used for fTo should be the appropriate one taken from figure 24.

With regard to the accuracy of the aboce equation, it should be

remembered that this parametric study was performed using configuration

b which predicts values which are approximately 15% too high in the

range of interest(Re 500). The author believes that equation (73) is

accurate to within -5% of the actual predicted value. Therefore, the
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predictions range from 10% - 20% too high in the Reynolds Number

range of interest to 25% - 35% too high at high Reynolds Numbers

(Re >3000).

Also deserving some discussion is the fact that the theory predicts

a uniform variation essentially independent of Reynolds number as one

or more parameters are varied. This is reasonable at high Reynolds

numbers, but at low Reynolds numbers, there is a question as to

whether this is actually the case. It would seem more reasonable

that as one approached the transition region (Re z500) that all of the

predictions from the theory should merge since in the laminar region

the skid wire geometry is unimportant in determining the friction

factor. This assumption may be checked by further experimental tests

varying the parameters as shown in figure 27.
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CHAPTER IX

RESULTS AND CONCLUSIONS

A method has been developed which will predict the friction factor

for turbulent flow in a pipe-type cable system. Four different

configurations were modelled and the predicted values are dependent

upon which one of the four is used. Using the most conservative

model, the predictions are consistently 15% - 30% too high.

In the laminar flow regime, viscous forces predominate and any

disturbances introduced in the flow are completely damped out, which

means that the skid wires do not have any influence in this regime.

As the Reynolds Number is continually increased, the inertia forces

begin to increase as the viscous forces decrease. When the viscous

forces are no longer strong enough to damp out any instabilities which

occur due to the presense of the skid wires, the laminar flow

becomes turbulent and the skid wires must now be considered in the

analysis of determining the flow characteristics.

In the turbulent flow regime, the friction factor fT has been

found to be a function of the following parameters: p/e, D /D , e/D ,c p c
and c. If one assumes that for a given system, specifications fix the

values of D and D , then we have three parameters tc vary in order
c p

to try and reduce fT' These are the skid wire pitch, p, the height of

the skid wire, e, and the helix angle of the skid wire on the cable, C>,

where = tan 1 np : where n = # of skid wire starts. From the
Y Dc

parametric study performed in the last chapter, the following are

evident:

1. Varying e will produce the greatest effect of any other param-
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eter on f T, as shown in figure 27. For the present case,

decreasing e by one half, from 0.1 inches to 0.05 inches will

yield a 39% reduction in friction factor which is essentially

independent of Reynolds number.

2. Increasing the skid wire pitch, p, will reduce fT. For the

present case, a doubling of the pitch from 1.5 to 3.0 inches

will reduce fT by 30% which is essentially independent of

Reynolds Number.

3. 'the Lumber of skid wire starts must be increased considerably

to substantially reduce fT. Increasing the number of skid

wir- starts from 2 in the present case to 16 would yield a

40% reduction in fT which is essentially independent of

Reynolds number. This would not be a realistic way of

reducing fT

fT is related to the parameters p, e, and ax by the relationship

fr~~~~~~~A 3 , 73aT
-12.273 (, a 15 (73a)

.387 ( 73b)
(T =2, 27 3 (e) ( e75) 3 (73b)

FT Li C

for .+I S

The previous equations are believed to predict values of fT

which are from 10% - 20% above the actual values for Reynolds numbers

below 3000 and from 25% - 35% above the actual values for Reynolds

numbers above 3000.
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CHAPTER XI

RECOMMENDATIONS

It is reccommended to perform further experiments with the

parameter variations similar to the variations in figure 27 to find

what actually happens at low Reynolds Numbers to the friction factor

curve. The user may also want to modify the program to output the

average of the predictions for configurations b & c as suggested at

the end of Chapter VI
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APPENDIX A

FLOW CHART OF COMPUTER PROGRAM
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APPENDIX B

DEFINITION OF VARIABLES USED IN THE COMPUTER PROGRAM

ARRAYS:

MARNGE ( ) - designates which configuration the program is going

to model

MARNGE (1) = configuration a

MARNGE (2) = configuration b

MARNGE (3) = configuration c

MARNGE (4) configuration d

The values in the array (either a zero or a one) are

read as input into the program. If MARNGE (I) = 0 (where

I = 1,2,3, or 4), then the program will not model the

configuration corresponding to MARNGE(I). If MARNGE(I) =

then the program will model the appropriate configuration.

X12( , ) - storage array for region 12 when either configuration c

or d is to be modelled.

X12(1,I) 52 R 2/ 1. (left hand side of equ. (33))
' 12 e12/D12

Xlw(2,I) - Rel2

X12(3,I) = f12

X34( , ) - storage array for region 34 when either configuration

c or d is to be modelled.

X34(1,I) = f0.5 Re /D1 .5 (right hand side of equ. (33))
=(34 R34 34

X34(2,I) = Re3 4

X34(3,I) = f34

1,
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SUBROUTINES:

AREAl - computes the circumferences, areas, and hydraulic diameters

for configurations a & b.

AREA2 - computes the circumferences, areas, and hydraulic diameters

for configurations c & d.
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INPUT PARAMETERS:

The following parameters are read in as input to the program from

data cards.

MARNGE( )

NW

DP

DC

P

E

ADJUST

- array which is described in section ARRAYS

- specifies the number of different geometrically

different configurations to be modelled.

- diameter of the pipe

- diameter of the cable taken from the base of the skid

wires

- pitch of skid wire lay

- height of skid wire

- nP- the value of K(cx) taken from figure 7. (c = tan ();

where n = number of skid wire starts).
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COMPUTATION PARAMETERS:

The following are the most important parameters which are used in

the program for computation purposes.

PI - 3.141593

RP - radius of the pipe

RC - radius of the cable

DASYM1 - asymtotic value of hydraulic diameter as Reynolds number

approaches infinity for region 12 for all configurations.

DASYM3 - asymtotic value of hydraulic diameter as Reynolds number

approaches infinity for region 34 for configurations c & d.

- hydraulic diameter of region 3 for configuration b.

(constant for all Reynolds numbers).

RE12 - Reynolds number for region 12

RE34 - Reynolds number for region 34

F12 - -friction factor for region 12

F34 - friction factor for region 34

F3 - friction factor for region 3

D12 - hydraulic diameter of region 12 (constant)

D34 - hydraulic diameter of region 34 (constant)

D1 - initially the asymtotic value of hydraulic diameter for

region 12 as Reynolds number approaches infinity - DASYM1

(from equ (12) with DH2 = 0). Decreases by amount DINCR

after each f and corresponding Re1 2 are computed. D is

the independent variable described in the computation pro-

cedure of Chapter III.

D3 - the same as D except for region 34.
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DINCR - the increment that is to be subtracted from D or D3

after either f2 and Re12 or f34 and Re34 are calculated.
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OUTPUT PARAMETERS:

The following are the computed output parameters.

RET - Reynolds number for the entire pipe-type geometry.

FT - Corresponding friction factor for the entire pipe-type

geometry.
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APPENDIX C

USERS INSTRUCTIONS FOR COMPUTER PROGRAM

For any pipe-type cable system, only five parameters must be specified

as input to the program, which are listed below.

1. Dp - diameter of the pipe

2. Dc - diameter of the cable

3. P - skid wire pitch

4. e - skid wire height

5. K(a) - correction coefficient to equation (2) obtained from

figure 9.

o is defined from the following equation: D--an Ir-c)

where n - number of skid wire starts.

The units of Dp, Dc, P, and e are arbitrary; however, they must be

consistent. Each pipe-type geometry, specified by a unique combination

of the five input parameters described above, require three data cards.

In addition, the first data card for every computer run specifies the

number of different pipe-type arrangements to be modelled (i.e. the number

of groups of data cards; each group containing three cards as described

above). The variable read in from this first data card is read in under

INTEGER FORMAT and must be right justified. Table 3 describes these input

data cards in more detail:
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TABLE 3

DATA CARD ASSEMBLY

Column(s)

1- 2

Variable

NW

Format

I

2 1-7

2 8- 1

2 15 - 2

2 22 - 2

3 1

3 2

3 3

3 4

4 1- 7

D F
p

4 D F
c

1 p F

8 e F

MARNGE(1)

MARNGE(2)

MARNGE(3)

MARNGE(4)

I

I

I

I

K F

Total Number of Data Cards = 1 + 3(NW); therefore, there
must exist at least four (4) data cards.

Card

1

NW TOT,
GROUPS
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APPENDIX D

SOURCE LISTING
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