The Transition Problem in Product Development

Nelson P. Repenning

#4036-98-MSA October, 1998
The Transition Problem in Product Development

Nelson P. Repenning

Department of Operations Management/System Dynamics Group
Sloan School of Management
Massachusetts Institute of Technology
E53-339, 30 Wadsworth St.
Cambridge, MA USA 02142

Phone 617-258-6889; Fax: 617-258-7579; E-Mail: <nelsonr@mit.edu>

October 1998

version 1.0

DRAFT FOR COMMENT ONLY - NOT FOR QUOTATION OR CITATION

Work reported here was supported by the MIT Center for Innovation in Product Development under NSF Cooperative Agreement Number EEC-9529140, the Harley-Davidson Motor Company and the Ford Motor Company. Extremely valuable comments have been provided by Andrew Jones, John Sterman, Scott Rockart, Rogelio Oliva and Steven Eppinger. Minsoo Cho developed the web site that accompanies this paper. Special thanks to Don Kieffer of Harley-Davidson for providing the catalyst for this study.

Complete documentation of the model as well as more information on the research program that generated this paper can be found at <http://web.mit.edu/nelsonr/www/>.
Abstract

Managers and scholars have increasingly come to recognize the central role that design and engineering play in the process of delivering products to the final customer. Given their critical role, it is not surprising that such processes have increasingly become the focus of improvement and redesign efforts. Unfortunately, these efforts often do not succeed. In this paper one hypothesis for the difficulty of making the transition between existing and new development processes is developed. The starting point for the analysis is the observation that in an organization in which multiple products are being developed, scarce resources must be allocated between competing projects in different phases of the development process. The scarcity of resources creates interdependence; the performance of a given project is not independent of the outcomes of other projects. Resource dependence among projects leads to the two main ideas presented in the paper. First, the existence of resource dependence between projects, coupled with locally rational decision making, leads to an undesirable allocation of resources between competing activities. Second, this error is self-reinforcing. Strategies for mitigating these undesirable dynamics are considered.
1. Introduction

1.1 The Transition Problem in Product Development

Managers and scholars have increasingly come to recognize the central role that design and engineering play in the process of delivering products to the final customer (Zangwill 1993; Wheelwright and Clark 1992; Clark and Fujimoto 1991; Dertouszos, Lester and Solow 1989). Given this critical role, it is not surprising that product development processes are often the focus of redesign and improvement efforts. There is a growing literature, targeted at a wide range of audiences, that details the elements of effective design and engineering processes (Ulrich and Eppinger 1995, Zangwill 1993, Wheelwright and Clark 1992). Managers are also showing a strong interest in improving their design and engineering functions. Many companies have, at one time or another, undertaken serious efforts to redesign and improve their product development processes (Repenning 1996, Krahmer and Oliva 1996, and Jones and Repenning 1997 document a few such efforts), and the frequency and scope of such efforts continues to increase.

Unfortunately, it appears that, for all the time and energy invested in designing new development processes, many efforts to implement those processes fail. Wheelwright and Clark (1995) discuss this paradox and Repenning and Sterman (1997), Jones and Repenning (1997), and Repenning (1996) all document cases in which firms invested substantial time, money and energy in developing new product development processes yet saw little benefit from their efforts. Surprisingly, the efficacy of the new process is rarely contested. In the studies just cited, all report that most people interviewed within the organization agreed that the new process constituted a better way to develop products, yet the usage of the new process was sporadic at best. One engineer summed up his experience in a process redesign effort by saying “The [new process] is a good one. Some day I’d like to work on a project that actually uses it.”

Existing theory has little to offer in answering the question of why a new design process does not get used even when participants agree that it would outperform the process currently in place. A
large literature has developed on the subject of organizational change (for overviews see Van de Ven and Poole 1995; Huber and Glick 1993; Kanter, Jick and Stein 1992), but unfortunately, whereas product development scholars have focused almost exclusively on process design, organizational scholars have focused on generic change processes. Less attention has been paid to how change efforts in product development might differ from those in other functions, and little theory exists to understand how the structure of a product development system and the behaviors displayed by those within that system might interact to facilitate or impede change.

To take full advantage of the substantial progress made in process design, a better theory of process implementation is needed. To that end, this study is focused on the transition problem in product development: why is it so difficult to implement a new process and what actions are required to move an organization from its current process to that which it desires?

1.2 Resource Dependence and the Tilting Hypothesis
The starting point for the theory developed here is the observation that, in organizations in which multiple products are being developed, scarce resources must often be allocated between competing projects in different phases of the development process. The scarcity of resources creates interdependence; the performance of a given project is not independent of the outcomes of other projects. Instead, a decision to allocate more resources to a given project influences every other project currently underway and, potentially, every project to come. The need to allocate resources among projects in different phases adds a fundamentally dynamic character to the problem.

Resource dependence among projects leads to the two main ideas presented in the paper. First, the existence of resource dependence between projects, coupled with locally rational decision making, can lead to an undesirable allocation of resources between competing activities. Second, the structure of the product development system, rather than correcting any initial error in resource allocation, amplifies it, creating a vicious cycle that drives the system to a low level of
performance. The phenomenon is termed the ‘tilting’ hypothesis to capture the idea that once the distribution of resources begins to ‘tilt’ towards those projects closer to their introduction into the market, the imbalance is progressively amplified to the point where much of the organization’s resources are focused on ‘fire fighting’ and little time is invested in future projects.

The tilting hypothesis has an important implication for the implementation of new tools and processes. Up-front activities such as documenting customer requirements and establishing technical feasibility play a critical role in many suggested process designs (Ulrich and Eppinger 1995, Zangwill 1993, Wheelwright and Clark 1992). Organizations that suffer from the tilting dynamic are stuck in the ‘fire fighting’ mode and allocate most of their resources to fixing problems in products late in their development cycle. Thus, prior to taking full advantage of innovations that focus on the early phases of the development process, the allocation of resources between current and advanced projects must be redressed. In fact, the naive introduction of new tools and processes may actually worsen the resource imbalance rather than improve it.

1.3 Connections with Existing Literature
Mathematical models have become increasingly popular tools for understanding and optimizing design and engineering processes (Eppinger et al. 1997). Although this is a rapidly growing literature, the model presented here differs from existing work in three significant ways. First, the analysis focuses on the transition between an old process and a new one. Existing models typically focus on either performance analysis or optimization (Eppinger et al. 1997), and in both cases, the structure of the process is taken as given. The dynamics around the transition between old and new structures have received scant discussion in the scholarly literature and have not been the focus of any formal modeling efforts with which the author is aware.

Second, as Adler et al. (1995) point out, most existing models focus on single development projects. The key insights in this analysis stem from the existence of multiple projects underway
within a single development organization. In this sense, the model displays emergent properties, those which could not be identified in a model that focused on a single project.

Third, of those authors who do focus on processes in which multiple products are in progress, the predominant modeling approach is to analyze such systems as queuing networks. Adler et al. (1995) use a queuing formulation in which product design and engineering are modeled as a stochastic processing network in which “...engineering resources are workstations and projects are jobs that flow between workstations.” A core assumption of this approach is that work moves but resources do not. Such an approach is appropriate in manufacturing when machines are typically attached to the shop floor and in engineering processes, like testing operations, that rely on dedicated people and machinery. Other resources like engineers, however, are more mobile and fungible. In some cases engineers follow the project they are working on through multiple phases, while in others engineers may work on different projects while those projects are in different phases. The model presented here takes a first step towards understanding how the mobility and fungibility of resources may influence system performance.

1.4 Organization of the Paper
The paper is organized as follows. In section two the model is presented and the main insight developed. In section three the intuition is extended to understand the dynamics of introducing a new process and why such efforts may fail. In section four policies for improving the system’s performance are analyzed and section five contains discussion and concluding thoughts.

2. The Model
2.1 Model Structure
Overview
An overview of the model’s structure is shown in Figure 1. The model represents a development system that introduces a new product into the market at a fixed time interval called the model year. Two model years are required to develop a product, so at any moment in time two development
projects are under way. New projects are introduced into the system at fixed intervals coinciding with the product introduction date. The development cycle is divided into two phases. The first is the up-front or advanced phase while the second is the current phase.

![Figure 1](image)

Within each phase there is a set of tasks to be completed. Although developing a real product requires a variety of different activities, in the model these are aggregated into two types of tasks, advanced and current. Current tasks represent those activities required to physically create the product, mainly detailed design and engineering. Advanced tasks are those activities which make the subsequent current work more effective, including documenting customer requirements and establishing the feasibility of the technologies planned for the product. Only one type of resource, engineering hours, is needed to accomplish both types of tasks.

When a project reaches the current phase, there is some probability, P_D, that each task is done incorrectly, must be reworked and, thus, requires additional resources. Critically, P_D is a function of the number of tasks completed when the project was in its advanced phase. This structure creates dependence between projects since the decision to allocate resources to a project in the current phase affects not only that project, but also the project in the advanced phase.

Detailed Structure

The model year transitions are discrete and indexed by s. Within a given model year the model is formulated in continuous time indexed by t. Each model year is T time periods long. A product launched at the end of year s is composed of two sets of tasks, $A(s-1)$, the advanced tasks, and
\(C(s) \), the current tasks. The model year index \(s \) will be suppressed unless it is needed to avoid confusion.

At any time \(t \) in model year \(s \), the system is characterized by seven states or stocks. Within the advanced phase tasks have either been completed and reside in the stock \(A'(t) \), or remain to be completed and reside in \(A'(t) \). In the current phase tasks can either remain to be completed, \(C'(t) \), have been completed but require testing, \(V(t) \), have been found to be defective and require rework, \(R(t) \), or have successfully passed testing and are completed, \(C'(t) \). The final state, \(f(s) \), represents the fraction of advanced tasks that were completed in model year \(s \). At the model year transition, all states are reset to their initial values except for \(f(s) \). Figure 2 shows the states and how they are interrelated in the form of a stock, flow, and information feedback diagram.

Given these states, resources are allocated in the following order: first priority is given to current tasks that have yet to be completed, second priority is given to current tasks that have been completed but are found to be defective, and any resources that remain are allocated to advanced work. This ordering represents the common practice of focusing attention on the project nearest its introduction date. Although this policy will be shown to be sub-optimal in some cases, there are a number of reasons why it might be used. First, projects closer to their introduction date tend to be more salient and tangible and thus people will be biased towards working on them (Repenning and Sterman 1997 and Plous 1993). Second, in organizations focused on short term profit and cash flow, projects closer to introduction represent a more immediate return on investment. Third, as projects reach their introduction date, other investments are predicated on that date such as production tools and dedicated production lines. One engineer at a major automobile manufacturer studied in Repenning and Sterman (1997) described the incentive structure facing engineers who had to allocate their time between competing projects as, “The only thing they shoot you for is missing product launch. Everything else is negotiable.”
Figure 2

The rate at which current tasks are completed \(c(t) \) is determined by the minimum of development capacity, \(K \), and the desired task completion rate, \(c^*(t) \).

\[
c(t) = \text{Min}(K, c^*(t))
\]

(1)

Tasks completed accumulate in the stock of tasks awaiting testing, \(V(t) \). Testing is represented by a simple exponential delay so the stock of tasks awaiting testing drains at a rate of \(V(t)/\tau_v \), where \(\tau_v \) represents the average time to complete a test. Tasks either pass the test, in which case they accumulate in the stock of tasks completed, \(C'(t) \), or fail and flow to the stock of tasks awaiting rework, \(R(t) \). The rate at which tasks fail during model year \(s \) is \(P_D(s) \).
The stock of outstanding rework, \(R(t) \), is drained by the rework completion rate, \(r(t) \). The rate of rework completion is equal to the minimum of available capacity to do rework, \(K-c(t) \), and the desired rework completion rate, \(r^*(t) \):

\[
 r(t) = \text{Min}(K-c(t), r^*(t)) \tag{2}
\]

The rate of advanced task completion, \(a(t) \), is equal to the minimum of the desired advanced task completion rate, \(a^*(t) \), and the remaining development capacity, \(K-c(t)-r(t) \). Thus:

\[
 a(t) = \text{Min}(K-c(t)-r(t), a^*(t)) \tag{3}
\]

Advanced tasks are always done correctly (for a more complete model see Repenning 1997a).

The desired completion rates, \(c^*(t), r^*(t), \) and \(a^*(t) \) are each computed in a similar fashion. In anticipation of future rework, engineers are assumed to try to complete each of these tasks as quickly as possible, so:

\[
 c^* = C/\tau_c \tag{4} \\
 r^* = R/\tau_c \tag{5} \\
 a^* = A/\tau_c \tag{6}
\]

where \(\tau_c \) represents the average time required to complete a task.

The only dependence between model years is captured in \(P_d(s) \), the probability of doing a current task incorrectly. \(P_d(s) \), is a function of \(A^*(s-1) \), the number of advanced tasks completed when the product was in its advanced phase:

\[
P_d(s) = P_a + P_d(1 - f(s-1)) \tag{7}
\]

\(P_a \) represents the portion of the defect fraction that cannot be eliminated by doing advanced work, while \(P_d \) represents the portion of the defect fraction that can. The term \(f(s-1) \) is the fraction of the total advanced tasks completed in the previous phase.
The measure of system performance used in this study is, $\pi(s)$, the quality of the product at its introduction date measured as the fraction of its constituent tasks that are defective.

$$\pi(s) = \frac{R(s,T) + P_D(s) * V(s,T)}{C(s)}$$

With this structure and resource allocation policy, the system contains three important feedback loops (also shown in Figure 2). The first two, B1 and B2, are negative feedback loops that control the rates of current task and current rework completion. In both cases as the stock of outstanding work increases, more resources are allocated to increase the respective completion rates, thus reducing the stock of outstanding work. The third is a positive feedback loop. If the resources dedicated to current work increase, then fewer resources are dedicated to advanced work, reducing the advanced task completion rate and, ultimately, the completion fraction. If the completion fraction declines, in the next model year the defect rate is higher, more rework is generated, more resources are required for current work, and even fewer advanced tasks are completed. The loop can also operate in the opposite direction. If resources dedicated to current work decrease, then more advanced tasks are completed, and the completion fraction rises. In the next model year fewer tasks are done incorrectly, and the required resource level decreases further. This positive loop can play a critical role in determining the dynamics of this system.

2.2 Analysis
While much of the analysis will be conducted via simulation, the core insight is first developed analytically. Within any given model year, the system’s dynamics can be complicated due to its higher order structure, but only one variable carries over between model years. Thus, with suitable approximations to the within-year dynamics, the model can be reduced to a one-dimensional map in $f(s)$. The details of this reduction are discussed in the appendix. The critical
step is to eliminate the delay in testing by assuming all defects are discovered immediately and make corresponding changes in the desired completion rates. The resulting equation for $f(s)$ is:

$$f(s) = \min \left(1, \frac{1}{A} \cdot \max \left(K \cdot T - \frac{C}{1 - \left(P_{\alpha} + P_{\beta} \cdot (1 - f(s - 1)) \right)}, 0 \right) \right)$$

(10)

There are two methods for determining the conditions under which the system will be in equilibrium. The direct approach requires setting $f(s) = f(s-1)$ and solving the resulting quadratic for the equilibrium condition. Unfortunately, the resulting condition yields little intuition. A second approach, however, yields more insight.

An equilibrium will exist at $f^*(s) = 1$ when the second term inside the minimum function of (10) is greater than or equal to 1. Thus, to get such an equilibrium:

$$K \cdot T \geq A + C/(1 - P_{\alpha})$$

(11)

The quantity on the right-hand side of the inequality represents the total number of tasks required to develop a product when all the advanced tasks are completed, and, as a result, the defect rate is at its minimum. Equation (11) indicates that for the system to have the potential to operate at $f(s) = 1$, annual capacity, $K \cdot T$, must be greater than or equal to that number of tasks.

Similarly, an equilibrium will exist at $f^*(s) = 0$ when the first term inside the maximum function of (10) is less than or equal to zero. Such an equilibrium requires:

$$K \cdot T \leq C/(1 - \left(P_{\alpha} + P_{\beta} \right))$$

(12)

The right-hand side of this equation represents the number of tasks required to develop a product when no work is done in the advanced phase and, as a consequence, the defect rate is at its maximum. Equation (12) indicates that for an equilibrium to exist at $f(s) = 0$, the capacity level has to be less than this quantity.
Using these two conditions the space of maps relating \(f(s) \) and \(f(s-1) \) can be partitioned as shown in Figure 3. There are four cases to consider.

First, as shown in the upper left quadrant, if neither (11) nor (12) is satisfied then the system has a unique, stable interior equilibrium. Equations (11) and (12) can be combined, so for this case to hold the following must also be true:

\[
C/[1-(P_\alpha + P_\beta)] \leq A + C/(1-P_\alpha)
\]

For a unique, stable, interior equilibrium to exist, the total number of tasks required to develop the product when all the advanced tasks are completed must be greater than the total number of tasks required to develop a product when all the work is left to the current phase. For this to be true,
advanced tasks must require more resources to complete than they save via the reduced defect fraction. This situation occurs only when advanced tasks are not economical. Thus although the model indicates that some advanced work is accomplished, the organization would be better off ignoring it and doing more current tasks.

Second, as shown in the upper right quadrant, if (11) is satisfied and (12) is not, then the system has one stable equilibrium at $f^*(s)=1$. This case indicates that for the system to have a unique equilibrium in which all advanced tasks are completed, total capacity, KT, must be greater than the workload regardless of whether or not advanced tasks are completed. Thus, the only way to eliminate the possibility that the system might settle into a regime in which advanced tasks are not completed is to set resources at such a level that there is no benefit from doing those tasks.

Third, as shown in the lower left corner, if (12) is satisfied and (11) is not then the system has one equilibrium at $f^*(s)=0$. In this case resources are insufficient to support development regardless of whether or not advanced work is completed. This suggests the fairly intuitive result that when resources are over-utilized, performance will always tend towards the lower limit and, absent an additional intervention, it is impossible for the system to operate at the desired equilibrium in steady state. Under these conditions improvement efforts focused on up-front activities are doomed to failure. Thus, a necessary condition for moving to a process with a significant amount of up-front work is that sufficient resources be available to do that work. Empirical data suggests that this case is more likely to occur than the previous one. For example Wheelwright and Clark (1992) report that most of the firms they studied had, on average, twice as many projects in progress as they had resources to complete them.

Fourth, as shown in the lower right quadrant, if both (11) and (12) are satisfied then the system has three equilibria, two are stable and one is unstable. In contrast to the first case, if both (11) and (12) hold then the following must also be true:
Case number four requires that capacity be sufficient to support complete development when all advanced tasks are done, but insufficient when the advanced work is not completed.

Thus, if (1) advanced tasks save more resources than they consume, and (2) resources are not sufficient to support development when advanced work is completely ignored, then only two cases are possible. Either resources are totally insufficient and the system will always tend towards a minimum performance level, or the system has multiple equilibria. The stable equilibria occur at \(f^*(s) = 1 \) and \(f^*(s) = 0 \) while the unstable equilibrium is at an interior point.

The existence of the unstable equilibrium underlies the core insight of this study: when conditions (11), (12), and (13) are satisfied, the positive feedback loop dominates the behavior of this system and drives it to one of the two stable equilibria. The dominance of this loop implies that the system will display one of two behavior modes. The loop can work in the virtuous direction—more advanced tasks completed, a lower defect rate, more resources dedicated to advanced tasks—and drive the system towards the desirable equilibrium at \(f^*(s) = 1 \) and the maximum performance level. Or the loop can work in a vicious direction—fewer advanced tasks completed, a higher defect rate, fewer resources dedicated to advanced tasks—and drive the system towards the undesirable equilibrium at \(f^*(s) = 0 \) and a low performance level.

The location of the unstable equilibrium determines which of these two behaviors will prevail. It represents the point at which the system begins to tilt one way or the other. The unstable equilibrium is a bifurcation point in this system: if the system starts at any point below the unstable equilibrium, then it will moved towards \(f^*(s) = 0 \), and if the system starts from any point above the unstable equilibrium, then it will moved towards \(f^*(s) = 1 \).
2.3 Simulations

Base Case

The full model is now simulated to explicate its dynamics and show the implications of the dominant positive loop and the bifurcation point. Figures 4 and 5 show the behavior of selected variables in the base run. All parametric assumptions are summarized in table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A(s))</td>
<td>180 tasks per year</td>
</tr>
<tr>
<td>(C(s))</td>
<td>1500 tasks per year</td>
</tr>
<tr>
<td>(\tau_v), (\tau_c)</td>
<td>1 month</td>
</tr>
<tr>
<td>(P_\alpha + P_\beta)</td>
<td>.75</td>
</tr>
<tr>
<td>(P_\beta / P_\alpha + P_\beta)</td>
<td>.25</td>
</tr>
<tr>
<td>(K)</td>
<td>300 tasks per month</td>
</tr>
<tr>
<td>(T)</td>
<td>12 months</td>
</tr>
</tbody>
</table>

Table 1

In steady state, in the early portion of the model year all the development resources are dedicated to the current phase and the stock of current tasks remaining declines rapidly (Figure 4b). As current tasks are completed, the stock of rework begins to grow (Figure 4b), and resources are shifted towards completing rework.

Multiple iterations through the rework cycle reduce the fraction of defective tasks in the current product (Figure 5a). As the stock of outstanding rework declines resources are then moved to the advanced project (Figure 5b), and the stock of advanced tasks begins to decline (Figure 4a). As the end of the model year approaches, some rework remains uncompleted so resources are shifted back towards current work (Figure 5b). Thus, in the base case the organization does a modest

1. The model is simulated using the Euler integration method and runs in months with a time step of .25. In each case, it is run for one hundred and eighty months to eliminate transients. The model is written using the VENSIM software produced by Ventanna Systems Inc. A run-only version of the model can be downloaded from [http://web.mit.edu/nelsonr/www/]. Complete documentation is also available at this site.
amount of 'fire fighting'. In the last month of the model year almost all the resources are focused on improving the quality of the product in the current phase.

<table>
<thead>
<tr>
<th>Fraction of Current Tasks Defective</th>
<th>Fraction of Resources to Current Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Defective</td>
<td>% of Total Resources</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>0.75</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

![Graphs showing fraction of current tasks defective and fraction of resources to current work over model years.]

Figure 5

The base case depicts an organization that uses a relatively small set of up-front tools, but does have a sufficient amount of resources to complete those advanced tasks it undertakes.

Transient Response

An instructive test of the model’s behavior is to introduce a one-time increase in the amount of development work. In the two new simulations shown below, in model year one, the number of tasks required per project is increased by 20% and 25% respectively and then, in subsequent model years, returned to the base level.

<table>
<thead>
<tr>
<th>% of Advanced Work Completed</th>
<th>Quality of Finished Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Completed</td>
<td>% Defective</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>0.25</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

![Graphs showing % of advanced work completed and quality of finished design over model years.]

Figure 6

In the first model year after the increase the additional work reduces the fraction of advanced work completed (Figure 6a). This leads to an increase in the defect rate for current work (Figure 7a) and
additional rework (Figure 7b). The 20% change prevents the advanced task completion fraction from returning to its pre-pulse level, but it does increase over the previous year (Figure 7a).

![Graphs showing % of Current Tasks Defective and Rework to be Completed over Model Year]

Figure 7

The increased completion fraction means the defect rate begins to decline, the resources required for rework in subsequent years decline, and the completion fraction increases further. In this case, the positive loop works in a virtuous direction and drives the system back to the initial equilibrium and performance level (Figure 6b).

In contrast, the 25% increase shows different behavior. Due to the larger pulse, the initial decline in the advanced completion fraction is greater (Figure 6a). The larger decline leads to a higher defect rate for subsequent current work (Figure 7a), and creates additional rework (Figure 7b). Critically, in contrast to the previous case, the growth in the resources required for rework is large enough to cause the completion fraction to decline further in subsequent model years rather than begin to recover as in the previous case (Figure 6a). Here the positive loop works in a vicious direction and drives the system away from the initial, desirable equilibrium, towards the undesirable one and causes a significant deterioration in performance (Figure 6b).

In the second case a temporary change in workload, the pulse, causes a permanent decline in performance. The change only occurs in the second test because only in this case is the pulse large enough to move the system beyond the bifurcation point and cause the dominant feedback loop to work in the opposite direction. Figure 8 gives another view of the bifurcation point.
The figure was generated by running the model for a range of pulse sizes and plotting the response surface. The surface shows how the positive feedback loop creates a system with the potential to operate at multiple equilibria and a system that can show dramatic changes in performance initiated by small changes in inputs. At pulse sizes of less than 20% of the base level the system is robust to perturbation. As the pulse size grows above 20%, however, the system’s ability to recover is lost. The change occurs because at that point, the dominant positive loop begins to work in the opposite direction and drives the system to a different equilibrium.

3. Introducing New Up-front Tools
So far the analysis suggests that, under the conditions outlined above, product development systems can have multiple steady state equilibria and a temporary external shock can cause a permanent change in performance. In this section, the response of the system to the introduction of new development tools is analyzed.
3.1 Model Structure
The model developed so far is based on the assumption that the defect fraction, P_D, is divided into two fixed components, P_a, the fraction of defects that cannot be eliminated by advanced tasks, and, P_p, the fraction that can. The introduction of additional development tools is modeled by making these two parameters variable and assuming that they are determined by the size of the set of tools currently in use. The introduction of a new set of tools means that A, the set of up-front activities, is increased. So in the year of introduction, A is increased from A' to A^2 ($A^2 \geq A'$). The cost of introducing new tools is captured by the fact that A is now larger and thus requires more resources.

The benefit of the new tools is captured by changes in P_a and P_p. Specifically, the sum of P_a and P_p is assumed to be constant, $P_a + P_p = P_{max}$, and the split between the two probabilities is determined by the variable $w(s)$:

$$P_a(s) = P_{max} \cdot (1 - w(s)) \quad (14)$$

$$P_p(s) = P_{max} \cdot w(s) \quad (15)$$

$w(s)$ captures the organization’s current ability to use the tools it has at its disposal and is determined by the following equations:

$$w(s) = \gamma \cdot w(s-1) + (1 - \gamma)z(s), \gamma \in [0,1] \quad (16)$$

$$z(s) = \lambda \cdot z(s-1) + (1 - \lambda) \cdot \left(\frac{A^c(s,T)}{A_{max}} \right), \lambda \in [0,1] \quad (17)$$

$w(s)$, the organization’s current ability, is a moving average of $z(s)$, the organization’s current knowledge of the tools. Equation (16) captures that fact that, once a tool is learned, time is required to develop experience before it can be used effectively. $1/\gamma$ represents the average time required to gain such experience and is assumed to be one and one half model years.
$z(s)$ is determined by $A'(s,T)/A^{\text{max}}$ where A^{max} is the maximum available set of tools and $A'(s,T)/A^{\text{max}}$ represents that fraction of that set used in year s. To capture the delays inherent in learning how to use new tools, $z(s)$ is assumed to be a weighted average of that fraction where $1/\lambda$ represents the average learning delay (assumed to be one and one half model years). Thus, if the feasible set of tools is increased, the organization does not immediately benefit from using them. Instead time is required to learn the new tools and develop the appropriate skill.

3.2 Simulations

Figures 9 and 10 show two simulations in which new tools are introduced. In the base case the firm is assumed to use only 25% of the available tools, but at 100% effectiveness ($A'/A^{\text{max}}=w(s)=.25$). In the first simulation, in model year one, the set of tools is doubled so that $A'/A^{\text{max}}=.5$. In the second, the set of tools is increased to the maximum level so $A'/A^{\text{max}}=1$.

![Graphs showing simulations](image)

In both cases, due to the initial increase in the number of advanced tasks, the fraction of advanced work completed declines (Figure 9a). In the case of a 50% introduction, the initial decrease is small and insufficient to initiate the downward spiral. Further, since the fraction of advanced work stays high, experience with the tools, represented by $w(s)$, begins to increase (figure 9b), and the fraction of defects that can be eliminated by advanced work increases. The increase in P_β makes the dominant positive loop stronger, further speeding the virtuous cycle that drives the system towards...
The steady state performance of the model is improved as the additional tools enable a larger fraction of defects to be eliminated (Figure 10).

In contrast, although the second simulation is identical to the first in every respect except that more tools are introduced, the results are quite different. The more ambitious change in the process causes a larger initial decline in the advanced task completion fraction (Figure 9a), a greater defect probability in current tasks, and a further reduction in the completion fraction. Initially experience with the new tools begins to rise making current work more productive (Figure 9b), but the growth is more than offset by the decline in the advanced task completion rate. As the rate of advanced task completion declines, with a delay, experience with and knowledge about the tools also begins to decline. The downward spiral continues until the model reaches the undesirable equilibrium with little advanced work being accomplished and a substantial decline in steady state performance (Figure 10). The cause of the decline is the introduction of a tool set sufficiently large that the initial cost of learning moves the system past the bifurcation point. Once beyond the bifurcation point, the positive loop progressively reduces the amount of advanced work completed in each subsequent model year, increasing the current work defect fraction and reducing the levels of knowledge and experience. Figure 11 shows the response surface for a range of introduction strategies.

The figure shows how the dominant positive loop creates a highly non-linear response to the introduction of additional up-front activities. As the size of the set of tools introduced increases, steady state performance also improves until the bifurcation point is reached. Beyond an introduction level of 40%, the loop operates in the opposite direction and pushes the system towards the undesirable equilibrium. Thus, although the tools would unequivocally help the
organization if the appropriate knowledge and experience were developed, their introduction has the potential to make the system’s performance worse rather than better.

4. Policies for System Improvement

4.1 Aggregate Resource Planning
In this section policy changes that might improve performance are discussed. The most obvious of these is to closely match the workload with the available resources. This does not constitute a particularly novel insight and this is not the first study to suggest that overloading a development system hurts performance. Wheelwright and Clark (1992) describe the ‘canary cage’ problem: too many birds in a cage reduce the available resources, food, water, and space, and none of the animals thrive. Similarly, in product development, they argue, too many projects leads to a poor allocation of resources and mediocre products. The rule implicit in the ‘canary cage’ metaphor is even allocation across all projects and, as a consequence, the dynamics around projects in different phases of development are not discussed. Thus, they reach the conclusion suggested by case number three in section 2.2: if resources are insufficient, even when the process is executed
correctly, then performance will tend towards the minimum level and ‘fire fighting’ dynamics will ensue. The model presented here extends this argument and yields two additional conclusions.

First, the analysis shows that an organization may have sufficient resources to execute the process correctly for all projects, but could still be stuck at the undesirable equilibrium. Thus, when doing resource planning it is critical to assess the resource requirements for projects given the current state of the development process, not that which would be required were the process operating as desired. To move a system out of the undesirable equilibrium, the number of projects in progress may need to be reduced until the balance between advanced and current work is improved.

This dynamic can be worse when a change effort is underway. A failure mode observed in a large scale product development improvement effort studied in Repenning and Sterman (1997) was the allocation of resources under the assumption that the new process was already in place and operating at full capability. This rule was not inadvertent, but an explicit part of the improvement strategy under the rationale that if the resources were removed participants would have no choice but to follow the process to get their work done. The flaw in this logic is that there were already projects in progress that had not been done using the new process and thus required more resources than the new process dictated. The ensuing scarcity initiated the downward spiral and caused a significant decline in capability and the failure of the initiative.

Second, the analysis highlights the role of variability and unpredictability: even if the system operates at the desired state, variations in the workload, if they push the system beyond the bifurcation point, can initiate the downward spiral and drive the system to a low performance level. It is easy to show that the location of the bifurcation point (the unstable equilibrium) is determined by resource utilization; as the resource level is increased, the bifurcation point moves closer to the equilibrium at $f^*(s)=0$, and a larger shock is required to move the system to the undesirable equilibrium. In fact, if resources are sufficiently increased the undesirable equilibrium disappears.
altogether (case number two from section 2.2). Such a policy, however, requires that the system is only loaded to the point where projects can be completed without advanced work, thus nullifying any savings generated by the introduction of those activities. Thus, there is a direct trade-off between the robustness to tilting and steady state performance. Resource plans need to account for the uncertainty in the estimated requirements.

As important as is good resource planning, estimating project requirements and quantifying the remaining uncertainty is difficult. The difficulty is further compounded if the effectiveness of the process is changing due to ongoing improvement activity. Thus, although good resource planning is important, the difficulty of doing it precisely suggests that it is valuable to consider other complementary options. In the rest of this section another policy is investigated, one that can make the system more robust to errors in resource planning.

4.2 Limiting Strategies
The policy analyzed here is based on the idea that an organization often has a number of ways to compensate for low process capability including fixing defects as they occur and investing in long run improvements that eliminate those defects in the first place (the classic prevention/correction distinction). Frequently both paths cannot be pursued simultaneously and the organization must allocate scarce resources between fixing current problems and preventing future ones. Repenning and Sterman (1997) discuss in detail why there is a strong bias in many organizations towards correction and away from prevention. To counteract this bias, Repenning (in progress) introduces the concept of limiting strategies. Limiting strategies are based on the idea that effective implementation of new improvement methods focused on prevention requires eliminating the organization’s ability to use short-cut correction methods. The archetypal example of such a strategy is the use of inventory reduction to drive fundamental improvements in machine up-time and yield in manufacturing operations. As the amount of material released to the production system is reduced, operators and supervisors are less able to compensate for low yield and up-time
by running machines longer and holding protective buffer inventories. In such a situation the only way to meet production objectives is through fundamental improvements.

The first step in using a limiting strategy is to identify the key mechanisms through which the organization compensates for low process capability. In product development systems one way to compensate for low capability is to redo existing work to correct defects. In the model, this is represented by multiple iterations through the re-work cycle. To use a limiting strategy the allocation of resources to re-work must be constrained. In the model this is implemented in a simple fashion. During the current phase a design freeze is introduced and, from that date forward, no resources are allocated to re-work.

Workload Variations Under Limitation

Figure 12 shows the response when the system is again subjected to pulses of various sizes. The only difference between these simulations and those used to generate Figure 8 is that a design freeze has been introduced with one month remaining in the model year.
The surface shows that the system’s robustness to pulse inputs is greatly increased under the freeze policy. Larger pulses cause larger increases in the defect fraction, but in all cases the change is temporary. The policy works because it weakens the positive feedback loop responsible for the undesirable behavior. Figure 13 shows the phase plot for the system when the freeze policy is in place. The freeze policy eliminates the equilibrium at $f^*(s)=0$ by insuring that some advanced work gets done each period.

Although the policy is effective in increasing the robustness of the system to variation in workload, it is not free. In the new, freeze-date equilibrium, the fraction of released product that is defective is now higher.

The Introduction of New Tools with Limitation

The freeze policy has a more dramatic impact when coupled with the introduction of additional tools. Recall from section three that if capacity is insufficient and too large a set of tools is introduced, the tilting dynamic can be initiated. Figure 14 shows this simulation along with another experiment in which the freeze policy is in place.
As in the previous case, the introduction of the new tools causes a decline in the fraction of advanced work that is completed. However, with the freeze date in place, the decline is only temporary and, with time, the fraction recovers. Similarly, the defect fraction initially rises and only declines after a number of model years. The length of the transient depends on the learning delay, here assumed to be three model years. The freeze policy eliminates the undesirable equilibrium, but as in the previous case, the policy is not free. The steady state performance of this system prior to the introduction of the new tools is lower with the freeze policy in place. Figure 15 shows the surface plot for the range of tool introductions with the freeze policy in place.

![Figure 15](image)

5. Discussion and Conclusion
5.1 From Robust Product Design to Robust Process Design
It has become an article of faith among business writers that managers should focus on whole systems and processes, not specific pieces and functions (Garvin 1998, Senge 1990, Stata 1989), and many authors have recognized that managers who treat development projects as independent entities do so at their peril (e.g. Wheelwright and Clark 1992, 1995 and Zangwill 1995). The model presented here shows one example of how a system-level perspective leads to insights that
could not be gained if the focus was restricted to an individual project. These insights have a number of implications for both managers and researchers which have already been discussed.

There is, however, a larger message for both the academic and practitioner communities. Decision making processes are the major focus of much of the literature on managing product development. This study has tried to demonstrate that the behavior of product development systems is influenced in important ways by positive feedback loops and time delays, two elements that comprise complex dynamic systems (Sterman 1994). Unfortunately, experimental research on human decision making in such contexts shows that people perform very poorly when trying to manage dynamic systems of even modest complexity (Sterman 1989a, 1989b; Brehmer 1992; Funke 1991), and that very little learning occurs in such environments (Paich and Sterman 1993, Diehl and Sterman 1995). Thus any effort to influence the day-to-day decision processes of managers in complicated, dynamic environments faces a difficult challenge.

As a consequence, an alternative and complementary approach to influencing such systems may be in order. Specifically, this study suggests that changes to the structure of the process may have more leverage than improving the quality of decisions made within that structure. To use an analogy from product engineering, a major insight underlying robust design methods is that it is often more productive to change a product’s design to make it more robust to variability in the dimensions of its constituent components than to reduce the variability of the on-going manufacturing processes that create those components. Similarly, in some cases it may be more effective to create a development process that is robust to variations in the quality of decision making rather than to try to improve that quality.

For example, the analysis suggests that improving managers’ ability to estimate resource requirements accurately can enhance the system’s performance. Unfortunately, there are a host of reasons why these estimates are difficult to make. First, as mentioned previously, under any
circumstances estimating the capacity of a product development system can be very difficult and imprecise. Second, absent an accurate estimate, managers are often tempted to overload development systems to insure that resources are fully utilized. Third, the conditions in such systems are very poor for learning (Sterman 1994), and may, in many cases, teach managers exactly the wrong lessons (Repenning and Sterman 1997).

A complementary approach to improvement is to focus not on the decisions, but on the structure of the process itself. In the model presented here, a policy of fixing a portion of the resource allocation, rather than leaving it to the discretion of managers, is a simple solution that greatly increases the robustness of the process to variations in workload. The policy can also dramatically improve the chance that a new tool will be successfully adopted.

Thus, the study suggests that a core idea of robust design is potentially applicable to the design of processes and organizations. There are, however, two very important differences. First, in robust product design the variability is physical in nature and its causes well understood. In designing robust processes, the variability is primarily behavioral. Existing research on decision making in dynamic environments should inform new designs of product development processes, and more research is needed on how people behave in such environments.

Second, it can be prohibitively costly to run the needed experiments in actual organizations and, unlike in product development, prototyping is often not an option. Thus, the development of formal models that accurately capture the dynamics of such processes is critical to understanding which policies are robust to behavioral variation. The methodology used here as well as many others can provide the means to generate useful models of organizations and processes focused on improving their design. Simulation has been used successfully to improve the performance of a wide range of business systems including preventive maintenance programs (Carroll, Markus and Sterman 1997), process improvement programs in manufacturing (Sterman, Repenning and
Kofman 1997, Repenning 1997b), and large-scale project management (Cooper 1980, Abdel-Hamid and Madnick 1991).

5.2 Future Work
The model could be profitably extended in a number of directions. In the interest of simplicity a number of assumptions have been made that could be relaxed. Foremost among these is the fixed product introduction date. This assumption is a good approximation to the actual practice in some industries, such as automotive manufacturing, but not others. In many cases the introduction date can be postponed until the product achieves a desired performance level. Some form of the tilting dynamic could still be present in these situations. Typically a product plan is established that outlines future development projects for an extended period of time. Tilting could occur in this type of system if, when one of these projects is completed after the planned date, the completion dates for subsequent projects are not updated to reflect the change. It seems plausible that in such systems people might try to ‘catch-up’ on subsequent projects, and do so by ignoring up-front activities. If so, then the same results discussed here might apply. Verifying that this is in fact the case, however, remains for future work.

Alternatively, there are also additional insights that might be obtained within the existing model structure but with new modes of analysis, mainly optimization. Two important trade-offs have been identified, but no attempt made to calculate their optimal resolution. First, the analysis shows a trade-off between steady-state performance and robustness to variability. Second, it also shows a trade-off between the size of the set of tools introduced and the resulting worse-before-better behavior (under the freeze policy). Additional insight may result from analyzing this in more detail. More generally, the analysis suggests that the sequence and timing of tool introduction matters. In an expanded framework that captures a more heterogeneous set of tools, optimally calculating the sequence and timing of introduction may yield valuable insight.
6. References

7. Appendix

To reduce the full dynamic system to a first order map begin with the equation for $f(s)$, and substitute in the definition for $a(t)$: This yields:

$$f(s) = \frac{\int_{0}^{T} (\text{Min}(K - c(t) - r(t), a^*(t))))dt}{A}$$

To reduce the model to a one dimensional map requires two additional assumptions. First, some form must be specified for a^* and c^*, the desired completion rates. A mathematically convenient and plausible approach is to assume that these are calculated by allocating the remaining work stocks, A' and C', evenly across the remaining in the model year. Thus:

$$a^* = \frac{A'}{T-t}$$
$$c^* = \frac{C'}{T-t}$$

Second, for simplicity, the rework and testing delays are eliminated. This can be accomplished by making the behavioral assumption that, participants in the process know the defect rate, $P^D(s)$ with certainty, and plan their work accordingly. Specifically the total work that will need to be accomplished on the current project over of the model year t is $C/(1-P^D(s))$, and the desired completion rate, absent a capacity constraint would be constant throughout the model year:

$$c^* = \frac{C}{1-P^D(s)} \cdot \frac{1}{T}$$

Substituting into the equation for $f(s)$ yields:

$$f(t) = \left(\frac{1}{A}\right) \cdot \int_{0}^{T} \text{MIN} \left(\frac{A}{T}, \text{Max} \left(\frac{K - \frac{C}{1-P^D(s)} \cdot \frac{1}{T}}{1-P^D(s)}, 0 \right) \right) dt$$

With this work allocation rule, each of the three elements is constant throughout the model year and, thus, the integration can be conducted separately and the expressions can be evaluated afterwards. Integrating the three separate elements of the Max and Min functions yields:

$$f(t) = \left(\frac{1}{A}\right) \cdot \text{MIN} \left(A, \text{Max} \left(K \cdot T - \frac{C}{1-P^D(s)}, 0 \right) \right)$$

Finally, substituting the definition for $P^D(s)$ again yields the following map for the fraction of advanced work completed each model year, $f(s)$:

$$f(s) = \text{Min} \left(1, \frac{1}{A} \cdot \text{Max} \left(K \cdot T - \frac{C}{1-(P_\alpha + P_\beta \cdot (1-f(s-1)))}, 0 \right) \right)$$