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Abstract
This paper examines the problem of optimally procuring components in a single-item stochastic assem-

bly system that operates in a make-to-stock fashion. The suppliers are uncapacitated and the components
have independent but non-identically distributed stochastic procurement lead times. Assembly is instan-
taneous, product demand follows a Poisson process and unsatisfied demand is backordered. The following
class of policies is considered: the finished goods inventory is initially filled to its base stock level, and each
customer order triggers a replenishment order for all components after a component-dependent postpone-
ment lead time. The objective is to minimize the sum of steady-state holding and backorder costs over this
class of replenishment policies. To keep the analysis tractable, we impose a synchronization assumption that
no mixing occurs between sets of component orders. Combining existing results from queueing theory with
original results concerning probability distributions that are closed under maximization and translation, we
derive a simple approximate solution to the problem when lead time variances are identical. In a simulation
study that uses data from a Hewlett-Packard facility, our derived policy is within 2% of optimal and signifi-
cantly outperforms policies that ignore either component dependence or the stochasticity in the lead times.
In addition, we show that the policy is quite robust with respect to various model assumptions, except the
synchronization one.

1. Introduction

In some industries (e.g., consumer electronics), over half the total manufacturing cost of

products is attributed to the cost of procuring components. Moreover, because of the in-

creased use of foreign suppliers, most of the manufacturing lead time is typically due to
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the procurement lead time. In these settings, the component procurement policy can be an

important source of competitive advantage. Unfortunately, the assembly process induces de-

pendencies across components that make the component procurement problem very difficult

to analyze, particularly in the presence of both demand and procurement variability.

We consider a make-to-stock environment where a manufacturer of a single item pro-

cures a variety of components from different suppliers, and instantaneously assembles these

components into finished units, which are then placed into a finished goods inventory that

services a Poisson demand process. Suppliers are uncapacitated, and each supplier has an

associated procurement lead time distribution. We do not attempt to find the optimal policy

for this system (the structure of which is not even known), but rather restrict our atten-

tion to the pre-specified class of product base stock policies with component postponement

lead times. Under this class of policies, a customer order simultaneously triggers an order

for each component after a component-dependent postponement lead time. This particular

policy structure allows us to develop an analytically tractable approximation based on a

synchronization assumption. We say that the system is synchronized if there is no mixing

of orders; that is, if components replenishing the same customer order also end up being

assembled into the same unit. This assumption is discussed in detail in §2.3, and in our

computational study we investigate how our policy performs in an asynchronized system,

where mixing of orders is allowed.

Given the prevalence of stochastic assembly systems in practice, it is not surprising that

much has been written on this problem in the operations management literature. In reviewing

the literature, we restrict ourselves to systems that are pure make-to-stock or hybrid make-

to-stock/assemble-to-order, and focus on one important dimension of the models: whether
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the suppliers are capacitated (i.e., modeled as single-server queues) or uncapacitated (mod-

eled as infinite-server queues). Although capacitated models are more difficult to analyze

and are in some sense more realistic, these two classes of models are complementary in our

view: the former case is appropriate when the component orders generated by the assembly

system comprise the bulk of the supplier's business (e.g., in a vertically integrated firm, or

a devoted supplier to a large manufacturer), and the latter case is appropriate when these

orders represent only a small portion of the supplier's workload. In the latter case, the timing

of component orders from the assembly facility has a minor impact on the congestion at the

supplier's manufacturing facility, and the procurement lead times for the components are

reasonably modeled as iid random variables from the assembler's viewpoint. Another case

where the suppliers are appropriately modeled by infinite-server queues is when transporta-

tion delays account for most of the replenishment lead times; this is common when suppliers

are located overseas.

Most of the work in stochastic assembly systems with capacitated suppliers is algorith-

mic, and is aimed at either the performance analysis of a given policy (e.g., Song et al. 1996,

Zhang 1996, Wilhelm and Som 1996, Schraner 1996) or the optimization of a procurement

or production policy (Anupindi and Tayur 1998, Kushner and Tetzlaff 1998). Glasserman

and Wang (1997), and to a lesser extent Nemec (1998), are able to use asymptotic meth-

ods to obtain explicit expressions for performance measures. In addition, Glasserman and

Wang (1999) use their earlier results to derive simple and effective base stock policies for

multi-item systems.

Most of the analysis of assembly systems with uncapacitated suppliers assumes deter-

ministic component lead times (Srinivasan et al. 1992, Hausman et al. 1995, Tayur 1995,
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Zhang 1997, Song 1997, Song 1998, Abhyankar 1998 and references therein). This assump-

tion allows some structural results to be derived (Schmidt and Nahmias 1985, Rosling 1989)

and simplifies the analysis considerably. Nonetheless, these studies provide computational

procedures - rather than explicit formulas - for procurement policies. Analyses of the stochas-

tic procurement lead time case include Hopp and Spearman (1993), who consider each as-

sembled unit independently and hence do not track the dynamics of the inventory process,

and Cheung and Hausman (1995), who derive an exact but computationally intensive expres-

sion for the distribution of backorders in a multi-item system with complete cannibalization,

which corresponds to an asynchronized system in our terminology.

In summary, the only simple and effective control policy for stochastic assembly systems

(to our knowledge) is due to Glasserman and Wang (1999), who consider a multi-item system

with capacitated suppliers. Our main goal is to develop an analogous result for single-item

systems with uncapacitated suppliers; this goal is achieved in equation (19).

In §2 we describe the model and the class of policies under consideration. Our simple

suboptimal solution to the component procurement problem is derived in §3 using known

results from queueing theory and some new results on probability distributions that are

closed under maximization and translation. The effectiveness and robustness of our policy

are addressed in §4, where a simulation study is undertaken using industrial data from a

Hewlett-Packard facility. Concluding remarks are provided in §5.

2. The Model

2.1. Assumptions. We consider a continuous review inventory system where n compo-

nents are assembled into a single item. Demand for the end item follows a Poisson process

with rate A. Demand is met whenever possible from on-hand finished goods inventory, while

4

III



unsatisfied demand is fully backordered.

The replenishment process of each component is uncapacitated, so that each supplier can

be viewed as an infinite-server queue, or a "delay box". Each component i has a random

replenishment lead time denoted by Xi, i = 1,..., n. We assume that (X 1,. .. , X) are mu-

tually independent random variables, but not necessarily identically distributed. Although

the distribution of (X 1,..., X,) is unspecified at this point, assumptions that the lead times

are deterministic, follow Gumbel distributions, and follow a generalization of Gumbel distri-

butions are made in §3.3, §3.5 and §3.6, respectively.

Because our focus is on the procurement process, we assume that assembly is instanta-

neous; a detailed specification of the assembly rule is deferred until §2.3. In this context,

complete sets of components are equivalent to finished goods. As a result, this model can

also be viewed as an assemble-to-order system where assembly is exclusively triggered by

customer demand.

Let Z represent the steady-state net inventory of finished goods, so that Z + = max(Z, 0)

is the steady-state inventory of finished goods while Z- = max(-Z, 0) is the steady-state

order backlog. Let Zi denote the steady-state inventory of component i that is available for

assembly.

Finally, we assume a linear cost structure, where the finished goods inventory holding cost

rate is h, the component i inventory holding cost rate is hi, and the backorder cost rate is b.

We assume h = Ei hi, so that assembling a complete set of components into a product does

not add value. The objective for the optimization problem studied in §3 is to minimize the
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long run expected average cost, which is given by

C = hE[Z+] + hiE[Z] + bE[Z-] (1)
i=l

2.2. Policies. Finding the optimal procurement policy for the model described in §2.1 is

an open problem beyond the scope of this paper. Our approach is to restrict attention to a

class of policies with a pre-specified structure, and find the optimal policy parameters within

that class. This method is widely adopted in the literature, although usually a component

base stock policy is investigated, whereas we study a finished goods base stock policy with

component postponement lead times. More specifically, we assume that the finished goods

inventory is initially filled to its base stock level S, and each customer order triggers a

replenishment order for all components after a component-dependent postponement lead

time ei > 0. Figure 1 offers a schematic representation of both the model and the policy

parameters ei.
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postponement procurement
lead times lead times

demand triggers orders

Figure 1: The Assembly System.

In the rest of the paper, we refer to the policy just described as [S, ,..., e,] or [S, fj. This

class of policies is closely related to the more traditional class of component base stock policies

[S, S2, ... , sn] (or [), where each component inventory is initially filled to a component-

dependent base stock level si, and each customer order triggers a replenishment order for all

the components. More specifically, if we impose the equivalence relation si = S - Xi to hold

for each i, then numerical experiments (see Gallien 1999) show that the [S, £1 policy and its

corresponding [s policy achieve nearly identical performance. In general, [S, ] is slightly

more refined than [ because the base stock levels S and are restricted to be integer-

valued, whereas the lead times e are allowed to be continuous. Note that both policies have

essentially n parameters, because (see §3) we can take the optimal value of the smallest i

to equal zero.

2.3. The Synchronization Assumption. Under [S, 'J, every customer order triggers a
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complete set of component replenishment orders, but the transmissions of these component

orders to the suppliers are delayed from that point by the postponement lead times. We

assume that the assembly is synchronized: each assembly is only performed with components

belonging to the same set of replenishment orders. Equivalently, no mixing occurs at the

assembly stage between sets of component orders.

If procurement lead times are stochastic, the synchronized system will typically not per-

form as well as an asynchronized system that employs a first-come first-served (FCFS)

assembly rule; i.e., a product is assembled whenever there exists at least one unit of in-

ventory for each component. Note that the synchronized assumption automatically holds

under [S, t1 for systems with deterministic lead times and for single-item systems with ca-

pacitated suppliers, where the suppliers are modeled as single-server queues that employ a

FCFS discipline; in both cases, overtaking of component orders is not possible. In fact, the

synchronization assumption is closely related to the assumption of uncapacitated vs. capac-

itated suppliers: while one could argue that suppliers typically satisfy component orders in

a first-in-first-out fashion in practice, the reason for this is that suppliers are capacitated,

even if these components make up a small part of their business. Although we are unable

to provide a compelling justification for the synchronization assumption, we are aware of at

least one Japanese company that employs a synchronized system (Sridhar Tayur, personal

communication). It may be that, depending upon the details of the information processing

system and logistical infrastructure, synchronized systems are sometimes easier to manage

than asynchronized systems. As noted earlier, our computational study in §4 compares the

performance of a synchronized system with that of an asynchronized system.
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3. Analysis

3.1. Formulation of the Optimization Problem. For a synchronized assembly system

using [S, f], the time needed to replenish a complete set of components is maxi (Xi + -i) .

As a result, the assembly system can be interpreted as an M/G/oo queue with arrival

rate A and service times maxi (Xi + i) . The departures from this queue enter a finished

goods net inventory with steady-state level Z and initial value S, which is depleted by the

Poisson demand process. Note that the items populating this queueing system (see Figure

2) represent complete sets of components, either assembled or unassembled.

service times: max(Xi + Q)

Q F.G.Q Z ~ inventory

M/G/oo 

L___-_________ -- ____--- -- _-- --

demand triggers orders

Figure 2: Flow of Complete Sets of Components.

This queueing interpretation allows us to express the objective function (1) in terms of

the decision variables (S, L). Let Q be the steady-state number of replenishment orders for

complete sets of components for which at least one of the n individual component orders

has not yet been satisfied. Then Q is exactly the steady-state queue length of the M/G/oo

queue with service times maxi (Xi + fi) introduced earlier. It is well known that

Q Poisson(p) where p = AE[maxi (Xi + Li)]. (2)

Since the total number of complete sets of components remains constant over time under the

(S, f) policy, we have Z + Q = S. Therefore, the mean finished goods inventory in steady
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state is given by
S

E[Z+] = e-P E(S - j) (3)
j=o

Taking expected values in the identities Z = Z + - Z- and Z + Q = S yields the mean

steady-state backorder level

E[Z-] = E[Z +] - S + p. (4)

The only remaining term in (1) to study is the mean inventory of unassembled component

i, E[Zi]. Because we assume that assembly occurs as soon as possible, another consequence

of synchronization is that the time each component of type i spends in the component

inventory before being assembled is maxj (Xj + £j) - (Xi + i). Hence, the circulation of

the components of type i can be interpreted as the tandem queueing network depicted in

Figure 3, where each component arrives according to a Poisson process with rate A, is first

serviced by a M/G/oo queue with service times Xi + £i and steady-state queue length Qi,

and then by a second infinite-server queue with service times maxj (Xj + £j) - (Xi + £i) and

steady-state queue length Zi. The output of the second queue is placed into the finished

goods net inventory, which services the customer demand. Little's formula applied to the

second queue in Figure 3 gives

E[Z] = A (E[max(Xj + j)] - E[X] -,i). (5)

Using (1)-(5), rearranging terms and omitting those independent of the decision variables,

we can formulate our optimization problem as

(6)

10

S n

MIN C(S, ) = (h + b) (p + eP (S-j ) - E hi=i-bS
~S~1,...,£ j=0 i=l

subject to: p = AE[max(Xi + fi)],

i > 0 i,
S integer.

III



service times: Xi + Qi maxj(Xj + ij)-(Xi + i)

F.G.
~] i I ' \ ~ inventory

M/G/o o ./G/co

demand triggers orders

Figure 3: Flow of Components.

3.2. Solving for S in terms of (11,..., ,). Solving this constrained mixed nonlinear

program analytically is difficult because expressing p in terms of (l,., . , ) in closed form is

very cumbersome for general lead time distributions. However, we can reduce the complexity

of (6) somewhat by observing that the distribution of Q in equation (2) is independent of

the base stock level S.

Proposition 1 Let (1,.. ., En) be a given set of values for the decision variables in (6), and
let S.* = arg min C(S, 4.. .,n) be the optimal value of S for the objective function C

given (,.. .,). Then Ste is the smallest integer that satisfies P(Q < Se *) > b+h

Proof. Given the values of (1, ... , ,), the queueing system described in Figure 2 is just a

single-product version, where the WIP distribution is fully specified by equation (2), of the

CONWIP model studied in Rubio and Wein (1996). Applying Proposition 1 of that paper

gives the desired result. 

In §3.3 we use Proposition 1 to find the optimal solution to (6) in the deterministic lead

time case, by first optimizing over (,... ., e,) and then optimizing over S for given values

of (,.. . , n). Section 3.4 presents a more general approximate decomposition technique

that exploits this idea, which we subsequently apply in sections §3.5 and §3.6 to analyze our

optimization problem in cases where the lead times are stochastic.

3.3. Deterministic Lead Times. When the component lead times (X 1, ... X,) are
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deterministic, the exact delivery dates of all the components are known as soon as the

replenishment orders are sent. Because of synchronization, it makes no economic sense to

have components from the same set of replenishment orders delivered at different dates: any

component delivered in advance would incur unnecessary holding costs because assembly can

only occur when the last component is delivered. Therefore, the optimal postponement lead

times must satisfy X1 + £T = ... = X + E. The decision variables (, ... , en) can thus be

reduced to the single variable p = Amaxi(Xi + fi), using the transformation

= - xi vi. (7)

By (7), the n nonnegativity constraints i > 0 Vi now correspond to the single constraint

p > Amaxi(Xi). Hence, for the deterministic lead times case, problem (6) can be expressed

GA

(8)

This optimization problem can be solved analytically, as is shown by the following propo-

sition, which (as with all remaining propositions) is proved in the Appendix.

Proposition 2 The optimal value of p in problem (8) is p* = Amax(Xi).

By (7) and Proposition 2, the optimal solution to (8) is

e ? = max(Xj) - Xi i, (a)

p* = X m.x(Xi), (b)
'* (9)

S* is the smallest integer that satisfies e-p* (p* > bh (c)

In words, the solution to the deterministic lead times system sets the postponement lead

times so that all components are delivered simultaneously and the component with the

longest procurement delay has no postponement lead time. Note that the optimal policy

12
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[S*, g*] depends on the component holding costs (hi,. .. , hn) only through their sum h; the

need to consider these costs individually arises in our model only because of procurement

stochasticity.

The structure of this policy is much simpler than that of Rosling, who derived the optimal

policy structure for an assembly model with linear cost structure and deterministic procure-

ment lead times in a discrete time setting. In contrast to (9), there is to our knowledge

no simple method to calculate the optimal parameters of Rosling's policy. While it may be

interesting to compare (9) with Rosling's policy in various situations, we have chosen not to

investigate this issue because the deterministic lead times case only constitutes a building

block in our stochastic analysis.

3.4. Approximate Component/Product Decomposition. The analysis in §3.3 breaks

down when the lead times are stochastic. In this subsection we develop an approximate

decomposition technique that exploits the relationship between S and (1,... ,in) revealed

in Proposition 1.

The partial derivative with respect to i of the objective function in (6) is

s, (h + b)1- e-P Z -") a hi. (10)

This expression can be interpreted in terms of the distribution of Q as

aC(S, ,..,) = (h + b) (1 - P(Q < S - 1)) a - hi. (11)

Let now Se*,...,e, = arg minC(S, ,, .. , ,). Proposition 1 implies that P(Q < S*,...,,- 1) <

h+b < P(Q S,...,e), which suggests the approximation

b
P(Q <S*,.,-1- h+ 5 (12)

13



III1

Maintaining the optimality of S given (,... , £) and substituting (12) into (11) yields

C(SW*¢,.. .,) *,h - .hi. (13)

Because the right side of (13) does not depend on S, we decompose the analysis of (6) in the

following way.

Approximate Component/Product Decomposition

1. Solve for (,..., en) in

MIN Comp(l,.. , ) = E[max(Xi + 4)- hi1i)
el.."i i=l (14)

subject to ii > 0 Vi.

2. Let (T.... ,) be the solution obtained in step 1, and let p* = AE[max(Xi + £*)]. Set

S* to be the smallest integer that satisfies

e> (p*) b (15)

j=o j! +

The idea behind the first step above is to minimize a function with partial derivatives

given by the right side of (13): the objective function Com,, in subproblem (14) has been

constructed by integrating (13) using equation (2), dividing by Ah and introducing the

notation hi = hi/h. The second step of the decomposition is a straightforward application

of Proposition 1.

In the rest of the paper, we refer to (14) as the component subproblem, since the variables

(1,... , 4e) in the [S, £] policy are the levers used to differentiate components according to

their individual lead times (X 1 ... , Xn) and relative holding costs (h 1,... , h,). The values

of (4X,..., 4,) are only specified by (14) up to a common additive constant. To see this,

note that maxi(Xi + £i + x) = maxi(Xi + i) + x Vx E R and JZi hi = 1, and therefore

Ccomp (l + X,... , n + X) = Ccomp ( ,.., ., ) Vx E R. Consequently, we can without loss
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of generality set mini e = 0, which is consistent with the deterministic lead time case and

allows us to ignore the nonnegativity constraint on e. Lastly, it is not difficult to see that

the component subproblem (14) is a convex program, which allows us to consider only its

first-order conditions when seeking its optimal solution in §3.5.2.

In contrast to the component subproblem, the second step of the decomposition (15) only

requires end-item information: the demand rate A, the finished goods holding and backorder

cost rates h and b, and the expected total replenishment lead time E[maxi(Xi + f£ )]. This

observation leads us to refer to (14)-(15) as a component/product decomposition.

3.5. Gumbel (CMT1) Lead Times

3.5.1. Motivation. The main difficulty in solving the component subproblem (14) an-

alytically is to express E[maxi(Xi + i)] in terms of the decision variables (e,... , ) in

closed form. Our approach is to look for families of distributions such that when the com-

ponent lead times (X1,... ,X,) follow distributions belonging to these families, calculating

E[maxi(Xi + i)] becomes an easy problem. More specifically, we would like to identify

families D of distributions that are closed under maximization and translation (CMT): D

is said to be CMT if for any independent distributions' (X 1,... ,X) belonging to D, the

distribution of max(Xi + ei) also belongs to D for any (l, ... , ) E R n . The bottom line

here is that working with a CMT family of distributions makes it no harder to calculate

E[maxi(Xi + i)] than to calculate the expected value of any simple distribution belonging

to that family.

In this subsection, we restrict ourselves to the case of continuous uniparametric families

of distributions. The next proposition is a characterization result that provides a theoretical

1 For ease of exposition, we use the concepts of distribution and random variable interchangeably, as no ambiguity
arises from the present context.
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background to our interest in the Gumbel distribution; a short discussion of the relevant

literature follows.

Proposition 3 The only continuous uniparametric CMTfamilies of distributions with sup-
port unbounded from above are the families of Gumbel distributions with the same variance.

Even though a truncated version of it was presented by Gompertz in his study of human

mortality as early as 1825, the Gumbel (or double-exponential) distribution is best known as

one of the three possible asymptotes in extreme value theory. Interestingly, this distribution

is also derived in that setting as the solution to a functional equation, called the Stability

Postulate, which is linked to the one we study in the proof of Proposition 3. However, we

are concerned here with the exact distribution of the maximum of independent but non-

identically distributed random variables, whereas classical extreme value theory primarily

investigates the limiting distribution of the maximum of i.i.d. random variables. For back-

ground and a literature survey on extreme value theory and the Gumbel distribution, see

Gumbel (1958) and Galambos (1987).

The CMT property of the Gumbel distribution has already been exploited in the literature,

and is key to the analytical tractability of the classical multinomial logit (MNL) model for

consumer preferences. Moreover, a characterization of the relation between the Gumbel

distribution and the MNL has already been obtained by Yellott (1977), but his framework

(Luce's Choice Axiom and Thurstone's model) is more contextual and less general than

the CMT property. For a monograph on the theory behind the MNL, see Anderson et al.

(1992). Recently, the MNL has also been used in the operations literature by Mahajan and

Van Ryzin (1999), who investigate the links between consumer choices and retail inventories.

In the rest of this paper we use the notation CMT1m (a) for the Gumbel distribution with

16



cdf Fm(x, a) = exp(-ae-mX), m > 0. The mean and variance of CMTlm(a) are

Eand [X] and 2 [X]= (16)
m 6m2 (

where y 0.5772 is Euler's constant.

3.5.2. Solution of the Component/Product Decomposition. We now assume that

there are positive parameters (l,., , an) such that the component lead times (X 1,. ... , Xn)

satisfy Xi CMTlm(ai) Vi. From a modeling standpoint, the asymmetric shape of the

Gumbel distribution seems well adapted to represent replenishment lead times: it is uni-

modal, has a very sudden start (typically, replenishment lead times are bounded from

below by a physical limit), and a tail decaying more slowly (which accounts for all the

problems that can occur during the replenishment process). The fact that the support of

CMTlm(ai) includes negative numbers is not a major concern here, because P(Xi < 0)

is typically negligible for parameter values estimated from industrial data. However, a

key restriction of CMTlm (ai) is that the standard deviations a[X], ... ,cr[X7] must all

be equal to the same value a[X], which is dictated by the choice of m via (16). This is

the price to pay in order to use the CMT property of the family CMTlm : max(X i + fi)
z

CMTl m ( oeiemai) V(,.. ., n). Taking expected values yields
i=1

a + (I cieei)

E[max(Xi + Ai)] = i V( 1,... ,e), (17)

which is crucial to the solution of the components subproblem (14). The first-order optimality

conditions for the unconstrained version of (14) are

aie i 
cn eme = hi i, (18)

j=1

17



which yields the solution fe = n h Vi. By expressing ef in terms of the means E[Xi] and

common standard deviation [X] rather than cai and m, setting mini £$ = 0 as described

at the end of §3.4, and applying (15), we obtain the policy [S*, f-] solving the compo-

nent/product decomposition:

= max (E[Xj] - 6[X] n hj) - (E[Xi]- [X] In hi) Vi; (a)

p* _ Av[] In exp([[Xi]+t])]; (b) (19)

S* is the smallest integer that satisfies e -P* Z P) > b+ h (c)
j=O

Taking the limit [jX] -+ 0 in (19) yields the solution (9) of the deterministic system,

which lends support to the robustness of our approximate component/product decomposition

method. In fact, the structure of e* in (19a) is similar to that obtained in the deterministic

case (9a). However, instead of considering each distribution Xi only through its mean E[Xi],

as in (9a), a correction factor Vo[X] In hi is used to take into account both the holding cost

rate hi of each component and the common lead time standard deviation A[X]. As expected,

components with larger relative holding costs have longer postponement lead times and

smaller component inventories. Also, the larger the common lead time standard deviation,

the greater the impact of the component holding costs.

Note that the solution £* depends on the lead time distributions (X 1,..., X,) only through

their first two moments. In the simulation study in §4, we implement and test the policy

given by (19) even when the replenishment lead times follow different distributions than

assumed in this section.

Finally, recall that the CMTlm (a) distributions assumed in this subsection require that

all the lead time variances be identical. In §3.6 we analyze CMT distributions with more

than one parameter in order to enhance the modeling flexibility allowed for the lead time
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structure. In §4 we also investigate numerically several straightforward ways of adapting (19)

to the heterogeneous lead time variance case.

3.6. CMT2 Lead Times. By studying CMT families of distributions with two parameters

instead of just one, we hope to derive better procurement policies for situations where the

lead time variances are very heterogeneous. This analysis also provides the basis for assessing

the robustness of policy (19) in the heterogeneous lead time variance case. The particular

family under investigation is defined as follows: consider two independent random variables

Y - CMTlm (a), m > 0, and W - CMTlk(,3), k > 0. Let CMT2m,k be the set of all

distributions generated by max(Y, W) when (a,/3) varies in ZR+ x 7Z+ \ (0, 0) and m and k

are fixed. The distribution in CMT2" ,k obtained for a particular choice of (, ) is denoted

CMT2mk(a, /3), and its cdf is F(x, a, 3i) = exp(-cre- -x - 3e-kx). It is easy to check that

CMT2m,k indeed satisfies the CMT property, which for n mutually independent random

variables (X, . . ., Xn) takes the form

= max(Xi +±i) CMT2mk(Zaiemiie kei). (20)

The following proposition shows that the restriction noted earlier on the lead time stan-

dard deviations in the CMT1 case completely disappears when using CMT2 distributions.

Proposition 4 Let {(,u,l ), .. , (, on )} be any finite set of n points with ai > 0 Vi.
Then there exist m > O,k > and {(al,3 1), ... ,(an,,jn)} defining n random variables
{X1,... , Xn} belonging to the same CMT2m,k family such that E[Xi] = li, j-[Xi] = vi and
Xi CMT2mk(ai,/3i) Vi.

Unfortunately, the exact calculation of the first two moments of the CMT2 distribu-

tions has so far eluded us. However, we propose the following approximations, where

X - CMT2mk(r ,/3) and (, q) denote the cdf and pdf of a standard normal random
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variable:

E[X] n [exp (V y+ ) + exp( V2m(y+l))]. (a)

[ 2k+ l e (Vr> +k2 (a)

E[X 2] 7i6yn r
2 +6(y+ln.,)

2)2 A)( ,616(n + ) (21)

I _2± Vn l() n (m(_ n

t n(m2kT2s ( am2a2) (b)

Both equations in (21) are used to estimate parameters in §4.4 For a justification of these

approximations, as well as a discussion of their associated errors, the reader is referred to

§A.4 of the Appendix.

Assuming now that the component lead times follow CMT2 distributions belonging to

the same family (i.e., Xi CMT2'k(oi, i) Vi), we can use both (20) and (21a) to specify

the component/product subproblem

(22)

In contrast to the CMT1 case, we have only succeeded in solving (22) numerically.

4. Simulation Study

Our simulation study revolves around four main research questions: how well does the theory

developed in §3 work? What is the impact of heterogeneity in the variance of the lead times?

How robust are the derived policies with respect to the distributional shapes? What happens

when the synchronization assumption is relaxed?

We wrote a program in C++ to simulate the assembly system described in §2 using

standard Monte Carlo techniques, and then designed numerical experiments to answer these
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four questions. The data is described in §4.1, the policies under consideration are specified in

§4.2 and the results of the four experiments are contained in §4.3-§4.6. The 95% confidence

intervals in our graphs are not depicted, because our program was designed to reiterate

simulation runs (each run was 200,000 days, and the first half of each run was discarded)

until the lengths of these intervals were below 1% of the corresponding average simulation

value.

4.1. Data. The base case for our numerical experiments uses industrial data pertaining

to the Hewlett-Packard Apollo 260 workstation that used to be manufactured in Exeter,

NH. The information concerning its 11 main components is displayed in Table 1, where

the holding cost rates are calculated by multiplying the purchase cost of each component

(the costs are disguised for confidentiality purposes) by a 33% per year interest rate. In

addition, the end-product demand rate is A= 1 unit per day, and the backorder cost rate is

b 5 Zi hi = $54.35 per unit per day. The lead time standard deviations in Table 1 are only

used in §4.4, but all the other parameters (costs, demand rates, first moments) are employed

throughout our study.

# Type E[Xi] (days) [Xil] (days) Cost ($) h ($/day)
1 CPU 38 9 2070 1.89
2 Monitor 32 7 1436 1.31
3 Hard Drive 17 6.5 565 .51
4 Data Drive 17 8.5 750 .68
5 Floppy Drive 31 6 150 .13
6 CD ROM 31 8 450 .41
7 Power Supply 61 10 478 .43
8 Graphics AX 59 12 1876 1.71
9 I/O 35 4 150 .13
10 Memory 57 5 1002 .91
11 Chassis 49 14 3024 2.76

Table 1: Component Data.

4.2. Policies. Five policies are investigated in this section. The first three policies are
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derived from the analysis in §3. Because there are no simple heuristics for this problem in the

literature, we derived the last two policies for comparison purposes by assuming deterministic

lead times and component independence, respectively.

Proposed: This is the S, ] policy described in (19), which is applied in a straightforward

fashion when the variances of the component lead times are all the same. In cases with

heterogeneous lead time variances, we set F[X] in (19) equal to u[Xj], where component

j achieves the largest value of E[Xi] - vi[Xi]lnhi; this is the component with = 0 in

the common lead time variance case, and so can be loosely thought of as the bottleneck

component. Numerical experiments on a variety of cases (see Gallien) show that this

policy outperformed by about 3% the policy that set [X] in (19b) equal to the quantity

in the previous sentence, and replaced a[X] n hi in (19a) with a[Xi] n hi Vi.

Numerical-i: When the lead times follow CMT1 distributions belonging to the same

family, this is the [S, £] policy obtained by solving numerically the constrained mixed

nonlinear program (6), where the expression for E[maxi(Xi + fi)] is given by (17). This

policy is the optimal [S, f policy under these distributional assumptions.

Numerical-2: This is the [S, policy obtained when solving numerically the compo-

nent/product decomposition (that is, solving (22) and applying Proposition 1) in situ-

ations where the lead times follow CMT2 distributions belonging to the same family.

Note that the computations involved here are far less intensive than those necessary to

derive numerical-l, because (22) is a convex nonlinear program with continuous decision

variables and unrestrictive nonnegativity constraints.

Deterministic: This is the [S, t policy obtained by applying (9) with E[Xi] substituted

in for Xi. This is the optimal [S, ] policy when the lead times are deterministic.
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Independent: This is the optimal component base-stock policy [sl when assuming that

the various component demands are independent (i.e., not linked through the assembly

process). Under this simplifying assumption, each component has an M/GI/oo queue

with service times Xi and arrival rate A that serves its own component inventory Ri,

which is initially set to si and subsequently depleted by one unit at each arrival to the

queue. For each component inventory Ri, the unit holding cost rate is hi and the unit

backorder cost rate is bi = bhi/h; the contribution of each component to the total cost

is Ci = hiE[Rt+] + biE[R-]. By the independence assumption, the optimization over si

can be carried out separately for each queue. An application of Proposition 1 of Rubio

and Wein shows that s is the smallest integer that satisfies e - P f i > bi, where
j- bi+hi

Pi= AE[X].

4.3. Validation of the Theory. The main purpose of the first set of experiments

was to assess the suboptimality of the proposed policy (in this section, optimality is with

respect to the class of [S, ] policies). We simulated proposed and numerical-I, along with

deterministic and independent, in situations with a synchronized assembly rule and CMT1

lead times belonging to the same family. More precisely, we considered CMT1 lead times

with the same expected values as in Table 1, but with a common standard deviation across

components. The simulated steady-state cost rate for each policy is plotted in Figure 4

against the common standard deviation, which ranges from 0 (deterministic lead times) to

12 days; increasing this quantity beyond 12 days generates some negative lead times.

Figure 4 shows that proposed is nearly optimal in these cases: for the seven values of the

standard deviation, the average suboptimality was 1.1%, and the largest was 1.6% (when the

standard deviation was 12 days). In contrast, the performance of deterministic and indepen-
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Figure 4: CMT1 Lead times.

dent relative to numerical-i and proposed rapidly deteriorates as the lead time variability

increases. For example, when the standard deviation is 12 days, which represents an average

coefficient of variation across component lead times of 0.37 and corresponds roughly to the

amount of lead time variability in the Hewlett-Packard data set in Table 1, proposed outper-

forms deterministic and independent by 181% and 215%, respectively. Hence, overlooking

the impact of procurement uncertainty and/or dependencies across components is a costly

mistake in this setting.

To further test the accuracy of proposed, we computed its suboptimality under the worst

case value of the lead time standard deviation (12 days) in several other cases: the subopti-

mality was 0.8% when b/h = 2, and was 2.0% and 0.5%, respectively, when A was reduced

(increased, respectively) by 40%.

4.4. Impact of Lead Time Variance Heterogeneity. Our next goal was to assess the
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performance of proposed in situations where the lead time standard deviations are heteroge-

neous. For this purpose, we designed a set of experiments using a synchronized assembly rule

and CMT2 lead times belonging to the same family (the parameters were derived using Table

1 and (21)); the simulation results in §4.3 and the analysis in §A.4 of the Appendix suggest

that under these conditions, numerical-2, which is derived using the component/product

decomposition, is close to optimal. Figure 5 plots the steady-state cost rates of proposed

and numerical-2 as a function of a procurement variability index. This index is defined as a

common fraction across components of their lead time standard deviations in Table 1. For

example, a procurement variability index of 50% describes a situation where the lead time

standard deviation of each component is equal to half of its corresponding value in Table 1.
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Figure 5: CMT2 Lead times.

Figure 5 shows that proposed performs nearly as well (within 1% for all six values of the

procurement variability index) as numerical-2. While we have not attempted to construct a
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perverse test example where proposed would fare poorly, the example in Table 1 is somewhat

devious in that the two components (#7 and #10) with the largest bottleneck index E[Xi] -

Vf[Xln- 1I have much different lead time variances. Hence, Figure 5 suggests that proposed
7r

should be reasonably robust when lead time variances are heterogeneous.

4.5. Robustness with Respect to the Shape of the Lead Time Distributions. The

distributional assumptions required to derive proposed involve not only the moments of the

lead time distributions, but also their shape. It is therefore appropriate to investigate the

robustness of proposed with respect to the shape of the lead time distributions. We conducted

a third set of simulations on a system almost identical to the one described in §4.3 (common

lead times standard deviation ranging from 0 to 12, synchronized assembly rule), with the

only difference that the component lead times followed uniform distributions. The uniform

distribution was chosen because it is arguably the distribution that has the least "structure",

in that all values of its support are equally likely. The simulated steady-state cost rates of

proposed, deterministic and independent are plotted against the lead time standard deviation

in Figure 6.

The shapes of the curves in Figure 6 are very similar to their analogues in Figure 4,

and proposed still rapidly and substantially outperforms deterministic and independent as

the procurement variability increases. However, the superiority of proposed is slightly less

spectacular here than in the system with CMT1 lead times: when the common standard

deviation is 12 days, for example, the performances of deterministic and independent are

respectively only 108% and 143% worse than that of proposed (versus 181% and 215% with

CMT1 lead times). However, because none of our prior conclusions are qualitatively chal-

lenged by these results, and because the uniform distribution is a fairly radical departure
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from the Gumbel distribution, we conclude that proposed is quite robust with respect to the

distributional shape of the component lead times.

4.6. Robustness with Respect to the Synchronization Assumption. Our final

experiment assesses the impact of relaxing the synchronization assumption. Our approach

was to simulate deterministic, independent and proposed under a set of hypotheses identical

to that of §4.3, with the only exception that the assembly operation followed a First-Come

First-Served (FCFS) rule: any available component can be used to complete an assembly

kit, regardless of what set of replenishment orders the other components in the kit belong

to (see §2.3).

Figure 7 shows that deterministic outperforms the other two policies under the FCFS

assembly rule. Moreover, independent also performs better than proposed for values of the

standard deviation larger than approximatively six days. Our interpretation of these results,
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which is based on the cost breakdowns for each policy (see Gallien), is the following: in

the synchronized assembly case in Figure 4, deterministic and (to a greater extent) inde-

pendent do not hold enough inventory, and hence incur high backorder costs because they

ignore lead time variability and component dependence, respectively. FCFS assembly makes

more efficient use of its component inventory than synchronized assembly, and hence requires

less inventory. Therefore, proposed, which is derived under the assumption of synchronized

assembly, overestimates the amount of inventory that is required. Independent still underes-

timates the amount of inventory required and, of the three policies, deterministic performs

best because its underestimation of inventory due to ignoring variability in the lead times

is roughly offset by its overestimation of inventory due to the policy's synchronization as-

sumption. We also compared these three policies under the FCFS assembly rule using the

distributional assumptions in §4.4 (see Gallien), and the results agreed qualitatively with
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Figure 7. We conclude that the synchronized vs. FCFS assembly assumption has a critical

impact on the relative performance of proposed.

5. Conclusion

We have derived in equation (19) a back-of-the-envelope policy for procuring components

in a single-item assembly system with uncapacitated suppliers and stochastic procurement

lead times. Two elements were key in this analysis. First, we chose to investigate the class

of finished goods base stock policies with component postponement lead times, which is

amenable to analysis under the synchronized assembly rule, where no mixing occurs be-

tween component orders. We could then use results from queueing theory to formulate our

problem as a constrained mixed nonlinear program, solve this program exactly in the case

when the lead times are deterministic, and develop an approximate decomposition method

in the stochastic lead time case. Second, we used functional equations techniques to study a

distributional property called closure under maximization and translation (CMT). Restrict-

ing our attention to the CMT distributions with one parameter (Gumbel distribution), we

derived policy (19) in the case where the component lead times have the same variance. In-

troducing a class of CMT distributions with two parameters, we also used these techniques

to numerically derive policies in cases with lead time variance heterogeneity.

The simplicity of the policy in equation (19) is in stark contrast with the complexity

of the results obtained for similar classes of problems in the literature (with the notable

exception of Glasserman and Wang's elegant asymptotics), and makes these types of results

potentially amenable to implementation. Comparable performance can also be achieved

by transforming policy (19) into a conventional component base stock policy with base

stock levels si = S - i. Our analysis makes transparent the influence on the proposed
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procurement policy of model parameters such as the component holding costs and the lead

time standard deviations, which is much harder to obtain with numerical results alone.

Simulation results using industrial data from a Hewlett-Packard facility demonstrate that

our approximate decomposition method works extremely well (less than 2% suboptimality

in all cases with a common lead time variance), and allow us to tentatively conclude that

our proposed policy in (19) is reasonably robust with respect to both the distributional

shapes and the heterogeneity in the lead time variances. They also show that in cases where

the synchronization assumption is valid, our policy should outperform very significantly

policies that ignore the stochasticity in the procurement lead times or the dependence among

components caused by the assembly process.

However, the simulation results also reveal the potential danger of taking results derived

for a synchronized assembly rule and applying them to a system that employs a first-come

first-served assembly rule, where mixing of orders is allowed. While this issue does not arise in

systems with uncapacitated suppliers with deterministic lead times or in single-item systems

with capacitated suppliers modeled as single-server queues, for more complex systems some

sort of suboptimal assembly rule, such as the synchronized assembly rule considered here,

is usually assumed for the sake of analytical tractability. To the extent that assembly rules

employed in practice are more sophisticated than those assumed in mathematical models,

great care needs to be taken when attempting to apply the mathematical results to real

systems.

There are at least two extensions of this work that would be worthwhile investigating.

One generalization is to study multi-item systems; under the synchronized assembly rule, the

multi-item system decomposes into independent subsystems (one for each end item), and our
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analysis carries over directly. However, this assembly rule would not take advantage of the

potential benefits of component commonality, and so is not entirely satisfactory in this case.

A second direction is to study a system with more serial stages (e.g., assembling integrated

circuits into boards, and boards into products) and a capacitated (e.g., single-server queue)

assembly process. The analysis in this paper combined with results in Rubio and Wein make

this generalization conceptually - if not computationally - straightforward, if one is willing

to restrict to the class of CONWVIP policies.

Beyond the context of supply chains, the concept of CMT distributions and the functional

equations analysis in §3.5.1 and §3.6 may also prove useful for the performance analysis

and optimization of PERT networks, reliability systems, telecommunication networks, and

other stochastic systems where the maximum of independent but non-identically distributed

random variables plays a crucial role.

Appendix

A.1. Proof of Proposition 2. Differentiating Cdet(S, p) in (8) gives Cdet(S,p) 

S-1
b - (h + b)e-P Z , which can be interpreted in terms of the queue length Q as

i=O

Cdet(S, p) = b - (h + b)P(Q < S - 1). (23)

A consequence of Proposition 1 is that in the optimal solution (S*, p*) of (8), we have

P(Q < S* - 1) < b+h (24)

Combining (23) and (24) gives Cdet(S*, p*) > 0. Since Cdet(S*, ) is a continuously differ-

entiable function, the only way that this last inequality can occur is if p* does not belong

to the interior of the feasible region. Hence, the constraint p > A maxi(Xi) is binding at p*;
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i.e., p* = A maxi(Xi).

A.2. Proof of Proposition 3. We define a continuous uniparametric family of distri-

butions (X(ca)) to be any function F(z, a) : R x D -+ [0, 1], D (interval) C R, such that: (i)

F is continuous and differentiable with respect to both variables, and its partial derivatives

are continuous; (ii) F(., a) is nondecreasing, lim F(z, a) = 1 and lim F(z, c) = 0 Va;
Z +oo Z -OO

and (iii) F is weakly reducible on the right over uncountable sets: F(z, a) = F(z, /) ~ 0

Vz E U (uncountable) =: a = 3. This definition essentially specify the cdf's in the family

through P(X(a) < z) = F(z, a). It is not the most general definition one could employ,

and condition (iii) in particular is quite restrictive, as it will not allow us to find CMT

families containing distributions with support bounded from above. However, our goal here

is to derive simple insights rather than find minimal hypotheses. The CMT property is then

equivalent to the following system of functional equations:

F(z, M(, )) = F(z, )F(z, ) (a)
F(z - , a) = F(z, J(a, )) ve E R (b)

where the functions M and J give the values of the resulting distributional parameters.

Equation (25a) follows from the fact that the product of the cdf's of two independent random

variables is the cdf of their maximum. This equation essentially states that for any two

distributions in the family (characterized by parameters a and ), their maximum also

belongs to it (with a parameter given by M(a, /)). Because of the associativity property

of both the maximum operation and the regular product, it is sufficient to consider only

the case of two distributions. Equation (25b) states that the distribution obtained when

translating by any real number e any distribution in the family (with a parameter ac) still

belongs to the family, and is characterized by the parameter J(a, £).
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The resolution of (25) is as follows. Equation (25a) is known as the Maximum Stability

equation, which is a special case of the Generalized Distributivity equation (example 6.2.3

of Castillo and Ruiz-Cobo, 1992). However, we cannot invoke their results because the

required hypotheses rule out the case of distributions with support unbounded from above.

Instead, notice that every distribution F(-, a) in the family is non-zero over an uncountable

set of values. This and (iii) imply that M is reducible on the right: M(a, 13) = M(a, 6) =>

F(z, a)F(z,3) = F(z,a)F(z,6) Vz 3 U uncountable s.t. F(z,/3) = F(z,6) Vz E U =

, = 6. Reducibility on the left follows from the commutativity of M. Moreover, because of

the associativity of multiplication, (25a) and (iii) imply M(M(c, 3), 6) = M(a, M(/, 6)), so

that M also satisfies the so-called Associativity equation. The hypotheses of the theorem in

§6.2.2 of Acz6l are thus satisfied, and we can therefore claim the existence of a continuous

and strictly monotonic function g such that M(cr, 3) = g [g-1 (ac) + g-1(p)].

Substituting this last expression in (25a) where the right side is evaluated at (g(cO), g(/))

gives F(z, g(a + {)) = F(z, g(c))F(z, g(3)); i.e., the function F(z, g(.)) satisfies the second

Cauchy equation (Acz6l, §2.1.2). The nontrivial general solution to this equation is F(z, o) =

exp [c(z)g-l(c)] . Substituting this into (25b) gives c(z - £)gl(a) = c(z)g- 1 (J( a , )). Dis-

carding the trivial solution g-1 (a) = 0 that implies F(z, c) = 1 Vz, we can write c(z - £) =

c(z)9 g-'(J()) Because c is independent of a, the fraction in this last equation must only

depend on , so that c(z + ) = c(z)d(f) for some function d(.). Thus, if there exists one

value of z such that c(z) = 0, then c 0. Moreover, evaluation at z = 0 gives c(e) = c(O)d(),

so either c O0 or c satisfies c(z + ) = c(0)-lc(z)c(f) and c(z) 0 Vz. The function ()c(O)

is therefore a solution of the second Cauchy equation already encountered above, with non-

trivial general solution (z) = eKZ. Substitution in F gives F(z, c) = exp [c(O)g-l(ca)eKz]trivial eneral olutionc(0)

33

_ _^l___s______l__l~~l__1_1^_111_~·11~1·-11 1- ------ -



Provided that c(O)g -1 (a) < 0 and K < 0, this defines a family of Gumbel distributions with

variance r2/6K 2 , which indeed satisfies (25) and (i)- (iii). Other cases do not correspond

to probability distributions.

A.3. Proof of Proposition 4. Let C = max ai, 6- = min i, m = and k =

Note that gm,k(a, 0) = Jo[CMT2mk(a, P)] is a continuous function from Q = R+ x R+ \ (0, 0)

into R+ (this can be seen by considering the integral expression of gm,k(',')). Moreover,

since the standard deviation of a CMTlm (ea) distribution is m', we have g,k(, 0) = C

and g,k(0, x) = & Vx > 0. By the continuity of gm,k(') and the connectivity of Q, there

exist (y,z 1),.. .,(yn,zn) E such that gm,k(yi,Zi) = i Vi E {1,...,n}. If we define

i = i - E[CMT2mk(yi, zi)], ai = yemi and Oi = zeki, then the closure under translation

property of the CMT2m,k family implies that

E[CMT2m k(ai, pi)] = E[CMT2mk(yi, Zi)] + ei = pi;{ [CMT2m k(ai, /3iJ = [CMT2m k(yi, z)] = i'.

A.4. On Approximations (21).

A.4.1. Mean Approximation. We adopt a three-step procedure to derive (21a): char-

acterize fm,k(a, /3) = E[CMT2mk(a, )] through functional equations as much as possible,

define a class of functions satisfying all these constraints, and perform a simulation-based

optimization within that class. These steps are described below in more detail.

Step 1: A System of Functional Constraints. Using the known expression for the

mean of the CMT1 distribution and the integral expression of fm,k(', '), we can write the

functional system
f(aemek) = f(a,/) +x Vx E 7Z;

f(c, ) = E[CMT1m(a)] - +lna. (26)
f(O, /) = E[CMTlk(/3)] = ky+n

Invoking the homogeneous functional equation theorem (4.3.1 in Castillo, p. 76), there exists
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a real function hm,k(-) independent of (, 3) such that

I (Inc,1/'.
_ 2_ + _") + h,k(~-I) if a > 0,/ > 0;

fm,k(a, +) = iy if a > 0,1 = 0;

I +Tn 0if = O0, > 0;
-oo00 if a = O, = 0.

We now characterize the remaining unknown hm,k(.) in (27).

numbers y and w, we have max(y, w) = y+w+2fy-w Consider

Recall that for any two

two independent random

variables Y CMTl'(a) and W - CMTlk(,3). It follows that

+ y +n +n E[IY _ Wl]
(28)

Comparing (28) with the solution given by (27) yields

O1/m

hm,k( k) 1 k')- (29)

The function hm,k(.) in (29) is symmetric in Y and W, and therefore

hm,k(t) = hk 1 ( )
t (30)

Let Y(O) be the CMT1 random variable obtained by shrinking the expected value and

the standard deviation of Y by 0 > 0, and let W(O) be defined analogously. Because this

transformation just amounts to changing the unit of measure, E[max(Y(O), W(O))] and

E[IY(O) - (0)l] are obtained by dividing their original values by the same quantity 0. We

have Y(0) CMTlm(o), so that

hem,k (t1 / 8 ) = -hm,k(t) V > 0.
0

Because the function fm,k is continuous on (7Z+) 2 \(0, O) (this can be seen from the integral
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ll

expression), equation (27) implies that

i urn [1 (1_2 _kkln~) _]_ /%emkk/kj )-- y+ln .lim a + ) h(°lm` _ ,
3-0+ 2 m ,kk - (32)

c--to+- 4( ) + mk- k 

System (32) is equivalent to

hm,k(t) = lnt + m,k(t) with lim k,k(t) = 0;

21 m t-+0 (33)hm,k(t) = - lnt+ + 4 m,k(t) with lim 'm,k(t) = 0.

Finally, using the closure under maximization property of the CMT1 distribution, we

have that f m, m ((a, p) = -y+ln(a+,) Substituting this into the first equation of (27) yields the

boundary condition

hm,m(t) = (ln t/2 + tm/2) +) (34)

Step 2: A Feasible Solution. Let 4J(m, k) be an arbitrary positive function such

that I(m, m) = m, (m, k) = (k, m) and (0m, Ok) = 0'(m, k). Then the system of

constraints (30), (31), (33) and (34) are satisfied by the class of functions

hm,k(t) = ( k) n ((e /)3(mk) + (e)(mk) ()

More specifically, we have investigated the approximations obtained when using in (35) the

functions

T (I(m, k) w E 7Z, MAX(m, k) = max(m, k) and qTSQRT(m, k) = vi/k.

(36)

Step 3: Numerical Validation. We assessed the performance of the functions in (36)

by comparing their values with the results of Monte Carlo simulations for various choices of

m, k, a, 3. The smallest relative errors were achieved by xP[,] (m, k). We optimized over w by

minimizing the sum of square distances between the simulated values and the approximations

calculated with T[w] (m, k) for every point. Consistently across sets, the optimal value of w
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was very close to -2, resulting in approximation errors of less than 7% for all the points

tested. Substituting {[_2] (m, k) into (35), and substituting the resulting function hm,k() into

the first equation of (27) yields after some algebra the first equation in (21).

A.4.2. Second Moment Approximation. Equation (21b) is obtained by approximat-

ing the two CMT1 parent random variables Y and W with independent normally distributed

random variables YN and WN having the same first and second moments as Y and W, re-

spectively. We then substitute the expressions giving the moments of Y and W as functions

of (m, k, c, 3) into the known formula for the second moment of the maximum of YN and

WN (Clark 1961)

E[(max(YN, WN))2] = (E[YN]2 + 2 [YN])>(6) + (E[WN]2 + o 2[WN])i(-6)
(37)

+(E[YN] + E[WN])Vcr2 [YNI + 2[WN]q(6),

where 6 = E[YNI-E[WN] . The largest approximation error for the second moment of CMT2k(c., ,)
wr2 [YNI+_ 2 [WN]

was 17%.
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