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A primary task of the police administrator is to make
the most efficient and effective use of his manpower. In
addition because police provide a public service, an important
issue in the deployment of police personnel is that each
segment of the community be allocated an equitable share.
Models are presented that focus on the spatial component of
these deployment goals.

Interactive computer models are formulated to aid a
police planner design patrol sectors which represent a good
balance among often conflicting objectives (e.g. response
times, workloads). The models guide the decision maker
iteratively through a series of alternative sector designs
while providing him ,with information about a spectrum of
performance measures. An integral part of the system is a
set of algorithms that can modify an initial sector design to
greatly improve imbalances in either workload, preventive
patrol coverage or response time. Computational experience
is presented.

A second set of models is presented which focuses on the
more effective deployment of randomly patrolling police units
as measured by the probability of intercepting a crime in
progress. The discussion begins with a presentation of a
basic search theoretic model of police patrol which is used
to calculate the probability of intercepting a crime. As part
of the analysis of the model's input parameters, we discuss
the critical need for a police patrol related data base and
outline some of its salient features (e.g. duration and
observability of various crime types). Then, using the
model we explore the differences between overlapping and
non-overlapping patrol sectors.

The development of methodologies for deploying patrol
units proceeds in several stages. First, we analyze the
impact on the classical search theory allocation problem of
various characteristics of crimes (e.g. random arrival,
short duration, mUltiple independent targets). A continuous
time differential equation model of search and detection
provides the vehicle for carrying out "much of this analysis.
Optimal solutions for a number of classical search problems
are presented including simple closed form expressions for
determining if a region should be excluded frem' -the



search. The main result of this analysis, however, is the
generation of a number of important insights which simplify
the development of algorithms for deploying police.

An algorithm for deploying a tactical patrol force
(i.e. limited or no responsibility for calls for service) is
presented. The measure of effectiveness that is used is the
weighted (a user specified index that weights the various
crime types) probability of intercepting a crime. An
essential component of the algorithm is its ability to
perform sensitivity analysis on the various input parameters.

Lastly we outline the development of an algorithm for
effectively allocating the patrol time of standard patrol
units. Once again the measure used is the weighted probability
of intercepting a crime. The discussion closes with a
description of what questions need to be answered before a
total model of police patrol can be developed.

Thesis Supervisor: Richard C. Larson

Title: Associate Professor of Urban Studies and
Electrical Engineering
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CI-IAPTER 1

INTRODUCTION

1.0 Background

1.0.1 Role Definition

"There's a holdup in the Bronx,
Brooklyn's breaking out in fights.
There's a traffic jam in Harlem
That's backed up to Jackson Heights.
There's a scout troup short a child;
Khruschev's due at Idlewild.
Car 54 where are you?"

The above excerpt from the lead song of a popular 1960's

television series offers a sprinkling of the manifold

activities of its heroes, two New York City patrolmen.

Despite changes in the Kremlin and in New York's international

airport during the past decade, the policeman of the seven­

ties is still confronted daily with a kalerdoscope of

responsibilities. Given the multiplicity of roles the police

officer, and more specifically the patrolman, must assume,

it is not hard to recognize the complex problem a decision

maker faces in attempting to maximize the efficiency ~d

equity with which the patrol force operates.

On the most basic level decisions need to be made as to

which tasks fall within the proper purview of a policeman's

role. Which tasks can be handled by civilians within the

department and which responsibilities could be delegated

entirely to other public agencies? Should police be the

prime providers of emergency medical transport'? ShOl11d a

patrol officer be summoned if a cat is caught in a tree, an
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individual locked out of his home, or even a child lost?

Should traffic control be the responsibility of police?

These same role identification questions can be asked

both on a macroscopic level, police in general, and on a

microscopic level, the patrol officer. Should time be taken

from preventive patrol activities in order to respond to a

two day late complaint of stolen property for the sole

purpose of filing a perfunctory report on the incident~ Should

a city tie down more than half of its force two or three times

a day to guard school crossings? There are no simple answers

to these questions 0 And as the recent commission on standards

and Goals [ 8J suggested, the answers will and should be

community dependentG The response should reflect an amalgama­

tion of community expectations, needs and priorities, while

cognizant of the limitations on police resources. An attempt

at expanding the duties of a patrol officer will of necessity

encroach on already existent responsibilities. All too often,

the task most easily encroached upon is preventive patrol, a

task which many police feel prevents crimes by posing a threat

of apprehension. Since the amount of preventive patrol time

is usually determined by how much time is 'left' over from

other activities [ 4J. this activity is very easily nibbled

away by expanding the patrolman's role. More importantly,

in the current situation, with our cities suffering from

financial crises along with the rising crime rates, the

questions posed here concerning role delineation have been
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transformed into pragmatic budgetary issues. Can the cities af­

ford to have police provide all the s~rvices they presently do?

1.0.2 Performance Measures

Defining clearly the policeman's role in the community is,

however, only one of a series of steps that should precede the

process of allocating available resources e An obvious second

issue to resolve is the specification of measures to be used in

assessing the effectiveness of the police in performing their

assigned functions. Ideally these should measure output. How

have specific crime levels changed as a result of fielding

more patrol units? Are the various segments of the co~~unity

satisfies with the delivery of police services? Unfortunately

it is often extremely difficult to measure directly police

effectiveness. Instead a surrogate is often adopted; in some

inst~1ces it will be a process measure which describes how the

system performs (e.g. response time) rather than what its im­

pact is. The measure of response time is purported to reflect

citizen satisfaction and patrol coverage or arrests to reflect

the efficiency with which police deal with crime. In other

instances the surrogate may be an input measure describing,

for example, the number of patrol units on duty at anyone time.

An alternative approach to measuring police performance is to

measure the efficiency of the systeme Can the same level of

services be provided at a lower cost (e.g. introduce civilian

dispatchers) or can more services be provided without increas-

ing the cost?
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Because police provide a pUblic service, measuring of

performance can not be limited just to issues of overall

effectiveness and efficeincy. Each section of 'a community

has a right to receive its equitable share of police services.

In a recent court case [1 ], one segment of the Washington,

D.C. community sued the city and required it to prove that

police services had been distributed equitably. Equity,

however, is not always easily defined or measured. What

constitutes an equitable distribution of patrol coverage':

the same number of patrol hours per street mile, per part I

crime, per what?

Problems of performance measurement are not however

limited to systemic issues. The performance of an individual

police officer is, in many ways, even more difficult to assess

[ 2,7]. Does a particular officer use too much force when

making an arrest? Is he efficient in his preventive patrol

activities?

Even with the development of perceptive measures of

performance, the multiplicity of goals and measures com­

plicates the decision-making task. Individual goals and

performance measures do not stand isolated§ Decisions must

be made as to what to emphasize and tradeoffs must be analyzed

either because of limited resources or because of conflicting

goals or both. Equity criteria may suggest one form of

deployment (e.g. dispersal) while efficiency criteria warrant

another (e.g. crime concentrated).
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1.0.3 Relationship Between Input and Output

Having determined an appropriate multifaceted role for

the police and patrol officer, and developed measures to

evaluate the degree to which the goals are achieved, the

decision maker can now begin the task of allocating his

limited resources to achieve specified goals. He must, of

course, have the capability of determining how many patrol­

men are needed to achieve a specified response time and how

that response time impacts on crime levels (in terms of

crime prevention and crime solution after the fact). He

also needs to determine the level of preventive patrol

coverage needed to produce a 5, 10 or 20% reduction in the

street crime level. Determining the link between various

input and output measures would at least allow the decision

maker to begin analyzing alternatives as to their relative

effectiveness.

The difficulties involved in uncovering the relation­

ship between input and output in the area of crime are in

part reflections of the fact that the problems the police

attack are not only police problems but, on a larger scope,

societal problems~ Just as the health of an individual does

not necessarily depend on the type of hospital closest to him,

the level of crime in an area is not a direct function of

only the efficiency of local police patrol. The causes of

crime are complex, the police being but one component of a

criminal justic system designed to control and react to
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incidences of crime. For some crimes the police can pose

almost no deterrent effect. Even for such crime categories

as street crime where patrol has potential impact, the effec­

tiveness of patrol is inseparable from the courts and correc­

tions. Doubling the interception probability and solution

rate of crimes can not take criminals off the street or pose

a deterrent threat if criminals are not prosecuted and

imprisoned. On the other hand, a relatively small increase

in interception orsolution could have a long term impact if

all convicted criminals were sentenced to life imprisonment

or successfully rehabilitated while in prison. (Obviously,

we are not suggesting the former nor realistically expecting

the latter).

1.0.4 Interactions

We have outlined above three separate steps: (l)defini­

tion of role; (2)specification of performance measures;

())determination of relationship between input and output;

that a rational decision maker should take in allocating

resources. However, we also recognize the interaction

between these steps. The specification of performance

measures requires a realistic appraisal of how police can

affect a specific situation. For example, in measuring

the impact of various patrol strategies, the performance

measures used should relate to only a delineated fraction of

all part I crimes, those observable by a passing patrol car.
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Another decision to expand the role of police to include, for

example, responding to emergency medical situations, should

be sensitive to the implications of this decision. What

amount of expenditure in police resources will be required?

How will taking on these added responsibilities detract from

police performance in their other duties?

If the above discussion has conveyed a feeling for the

tremendous array and spectrum of multifaceted problems facing

the police decision maker, then it has achieved its goal. The

reader should therefore not expect the following pages to

contain a single all encompassing model of police patrol which

can be used to deploy patrol units to optimize whatever goal

is specified. The perceptive reader can not realistically

expect a methodology for deploying patrol units to eliminate

or even reduce signiricantly serious observable crimes. What

will follow is a series of models that examine different

aspects (performance measures) of patrol and Which facilitate

the exploration for more equitable and efficient deployment

strategies.

1.0.5 The Cost of Police

Two and one half billion dollars a year was the estimate

of the cost of police given by the President's Crime Commission

in 1967 [10J. A lion's share of this total went to pay some

420,000 people working for approximately 40,000 separate

agencies. With spiraling inflation since theQ, the cost is no
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doubt significantly highero Since 1959 the cost of police in

12 of the nation's largest cities has more than tripled [9].

Presently the cost of police in those cities is running at

approximately $65 per capita. Of the total departmental bud­

get police patrol consumes by far the largest share. In many

cities patrol costs represent 40 to 50 percent (sometimes even

more) [4J of the budget. With the average starting salary

for a policeman (in those 12 cities) now at over$lO,lOO, the

annual direct cost (excluding pension) of fielding round-the­

clock one two-man patrol car is over $100,000.

In the light of the budget crunch faced by many cities

in recent years, the rising cost of police is forcing city

administrators into some very difficult decisions. In New

York City more than one thousand patrolmen were recently

laid off as part of a massive economy drive [3J. With the

above discussion and figures as background, it is all too

obvious that there is a critical need to deploy police in the

most effiecient way possible. It is this particular issue

(efficient allocatiDnof patrol) that many of the models that

will be presented here were designed to address.
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1.1 Objectives

Despite the complexity of the police role, two rather

simple assertions can be made: (l)The police provide a pub­

lic service; (2)A primary goal of police patrol is to suppress

crime. The first assertion suggests that equity is an impor­

tant criterion for deploying police. Thus the first set of

models that we will present focuses on developing equitable

precinct level deployment strategies through the modification

of sector boundaries. The second class of models, based on

search theory; focuses on observable street crimes and is

used to deploy police so as to maximize the weighted (by crime

,type) probability of intercepting a crime. One underlying

theme common to the development of both models is that they

have the flexibility to incorporate local considerations and

priorities when applied to a particular situation.

The sector redesign models are part of an overall inter­

active system geared towards generating an equitable sector

configuration. However, rather than using some one absolute

measure of equity, the system allows the user to decide what,

for his environment, is most equitable. He can measure equity

in terms of only one performance measure (e.g. workload,

preventive patrol coverage, or travel time) or he can explore

tradeoffs between these particular measures to achieve an

intermediate range of imbalances in each of the parameters.

A key component of the above system is the hypercube

queuing model developed by Larson [ 5. 6 ]. It is a
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probabilistic model which is used to estimate the operating

characteristics of a particular sector configuration,

generating such statistics as each unit's workload. precinct

wide average travel time, sector travel times, and frequency

of intersector dispatches. An interactive system iteratively

guides the user by offering' several alternative modifications

to the present configuration, which by hypercube estimates,

will reduce present inequities in certain performance

measures.

The development of the search theoretic models of police

(interceptive) patrol starts with the introduction of several

modifications of the earliest models of search and detection

developed by Koopman. Using the descriptive search model as

a basis, we carry out in two stages an extensive analysis to

develop methodologies for efficiently allocating police

patrol effort. The first stage determines characteristics of

optimal search strategies for the general class of targets

that arrive and depart randomly. Using the results of this

stage, the range of alternatives that need be analyzed in

order to find an efficient allocation is narrowed significant~

lyo The major consequence of these insights is that the

allocation, for example, of a tactical patrol force or the

free time of an individual patrol unit can be reformulated

so that straightforward heuristic techniques can be applied to

develop a good allocation of patrol effort.

Although the search theory models;_consider only one
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measure, the weighted probability of interception. local

conditions can still be incorporated. The weights can be used

to capture the sUbjective importance pla~ed on each crime

type, which may vary from locale to locale.
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1.2 Outline of th~ Chapters

Chapter II contains a review of the relevant literature

and is divided into four sections. The first section reviews

other models presently used by police in constructing sectors

as well as presenting a brief description of the development

of the hypercube model. Next the general search theory

literature is reviewed as to its applicability to problems in

which targets arrive and depart randomly. Then the literature

applying search theory to police patrol is analyzed in detail.

Lastly since an obvious implicit assumption of all of the

search theory models is that patrol can impact on crime,

relevant data from a number of experiments will be presented

and discussed.

The third chapter describes an interactive system for

sector redesign. Because the decision to make the system

interactive greatly influ~nced many aspects of the ~~em's

development, the motivation for choosing that orientation is

discussed e Following that, the superstructure of the system

is described, outlining how the system functions in guiding

the decision maker to an equitable configuration. The

workhorse of the system, however, is a set of ind~vidual

programs which can focus on a particular performance measure

(e.g. workload, preventive patrol coverage or travel time).

By alteDimg \iteratively the sector configuration, they attempt

to improve on an imbalance in that measure. These programs

are analyzed in detail both in terms of the algorithms used,

as well as in~terms of the underlyingproperties each program
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attempts to exploit. A number of applications are also

included.

In the course of presenting this system one tangential

issue that is discussed is the non-equivalence of balanced

workload.s and balanced preventi.ve patrol coverage. F'inally

we introduce a method for attacking another related sector

design problem. This involves taking an existing n sector

configuration and assigning the n sectors to less than n

patrol units in a way that minimizes the workload imbalance.

All of the succeeding chapters (four through eight)

discuss the search theoretic models of police patrol.

Chapter IV begins with a discussion of the basic model, in­

cluding a comparison of overlapping and non-overlapping

patrol sectors. Following the initial presentation we

proceed to analyze in qualitative terms how randomness in

the arrival and departures of the targets (i. e. crinles)

impacts on optimal patrol strategies. This analysis is

carried out in terms of classical search theory by focusing

on the phenomenon of diminishing return. We show how random­

ness slows the process of diminishing return and when combined

with the short duration of crimes tends to generate optimal

strategies which limit patrol to only a small section of an

entire region.

Chapter V continues the discussion of the impact of

randomness in the arrival and departure of targets on optimal
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search strategies but with a quantitative focus rather than a
.

qualitative one. Using a differential equation model of

search, we analyze for a number of situations cyclical

sea~ch strategies involving two regions. As part of our

analysis·we present simple analytic expressions that specify

when to search only one of the two regions.

The first example that is analyzed involves a patrol

dividing its search efforts equally between two identical

regions (i.e. same crime rate and detection rate). The

question that we resolve is "How frequently should the searcher

change regions?"o The finding was that the average expected

number of crimes in progress increases as the length of stay

in a region increases; the magnitude of this is also

measured. The sec~nd example more realistically models

police patrol as it assumes that time is lost (because of

travel) from the search process when switching between regions.

Again a method is presented for finding how long each region

should be searched before traveling to the other region. We

show that because crimes are of short duration even small

travel times between regions make switching back and forth

between regions an inefficient policy. The ramifications of

this is that in allocating search effort among regions in a

realistic patrol environment, solutions which require a

patrol unit to travel between two even relatively high crime

regions should be avoided. This conclusion played a key role

in the development of the algorithms presented in Chapters
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VI and VII.

The last problem analyzed with the differential equation

model involves two regions of equal size but with differing

crime rates. Two sets of conditions are determined under

which it is preferable to search only one region. One con­

dition describes when to search only one region if no

minimum duration of a search of each each region has been

speciried. The second condition also specifies when to limit

search to the high crime region but this time as a function

of the minimum duration imposed on a visit to each region.

Chapters VI and VII build on the results of the two

previous chapters to develop algorithms for (l)deploying a

tactical patrol force and (2)finding the best region in

which a standard patrol unit should concentrate its patrol.

The two algorithms, besides addressing specific problems,

are also meant to be representative of the potential applica­

tion of search theory to a broad spectrum of crime related

patrol allocation issues.

The tactical patrol force algorithm of Chapter VI allo­

cates a specified number of patrol units among a set of high

crime regions. In the process of finding the optimal strategy

only solutions which allocate an integer number (or zero) of

patrol units to each region are considered because, as was

noted earlier, the time lost in travel between regions will,

in general, more than outweigh any benefits that might be

derived from switching regions.
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The application of the algorithm to a number of examples

is presented and is partially intended to point out some of

the data that is critical to developing effective patrol

strategies. For one thing, it is not sufficient to know

just the total observable crime rate of a region but it is

also necessary to knew the breakdown by crime type. However,

an equally important, but less recognized, data need is the

observalbe duration of each crime type (either an average or

preferably a probability distribution) and an estimate for

the probabDity that a passing patrol car will detect the

crime when it is potentially observalbe.

The tactical patrol force algorithm is flexible in that

it is not limited by the specific form of the probability

distribution function chosen to describe the duration of a

crime. In addition the objective function which is optimized

allows for different weights to be assigned to each crime

type to reflect the importance associated with intercepting

that type of crime. Lastly an integral part of the algorithm

is its capability of performing sensitivity analysis on each

of it input parameters.

Chapter VII is intended to be exploratory and offers one

approach to finding the optimal patrol region for a standard

patrol car (i.e. a patrol unit'that has responsibility for

answering calls for service). The objective jUnction to be

maximized is the same as in~the previous algorithm,the

weighted probability of intercepting a crime. In addition
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some of the issues relating to combining two patrol sectors

into a single larger sector enabling overlapping patrol are

also discussed.

The last chapter presents a summary of the most signifi­

cant results of our search theoretic modeling. Chapter VIII

also introduces some specific conclusions implied by our

analysis about the potential for developing more effective

patrol strategies. However the major focus of the chapter is

to outline a numbrwof important issues that need to be

resolved in order to implement models such as ours. It has

already been noted that there is a need for developing a data

base more relevant to patrol. One other specific issue dis­

cussed is the need to design carefully experiments whose

major purpose is to determine how saturation patrols disperse

crime in terms of both the magnitude of the effect and how it

varies over time. Experiments of this type, because of focus,

are really distinct from those that attempt to measure the

reduction in crime in the saturated region while monitoring

some of the side effects (dispersion phenomena) which reduce

the actual impact of the saturation patrol effort.
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CHAPTER 2

LITERATURE REVIEW

2.0 Introduction

Before proceeding with the actual review of the relevant

literature, it is important to understand first its intended

purpose. The literature review does not purport to describe

the state of the art in police patrol deployment. For a dis­

cussion of this scope, the reader is referred to Urban Police

Patrol Analysis [25J by Larson and to a critical review of

policy related research written by Gass and Dawson [16J. The

focus here will be instead on models and methodologies which

relate either to sector design or to the allocation of patrol

effort to intercept crimes. However, even for this more

limited set of models, this presentation will have as its only

goal to place in perspective the research presented in later

chapters with that of earlier work in the area. This issue

will be of special importance when we discuss search theory

since an initial question we had to resolve was "Is the

existing general search theory literature directly applicable

to police patrol issues?". Unfortunately, except for some of

the more basic results, the answer was negative. It is a point

we will explore initially here and will expand upon later in

Chapters IV and V. With the above disclaimer and'statement of

purpose in mind we proceed with the review.

The literature to be discussed falls into four categories:
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1. Sector Design--Proscriptive and Descriptive fuodels
2. Search Theory--General
3. Search Theory--Applied to Police Patrol
4. Patrol's Impact on Crime
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2.1 Sector Design--Proscriptive and Descriptive Models

The redesign of a precinct's outdated sector configura­

tion is a problem police administrators must tangle with

periodically: The methods used range from an experienced

patrol officer attempting to eyeball an acceptable configura­

tion to the more sophisticated techniques involving computer­

ized data analysis of calls for service and crime data. This

data analysis is then used as input into a second set of

programs to generate a sector design which optimizes one par­

ticular performance measure. Our interest is naturally in

methods of the latter type. Gass [is], Heller et al [19J and

Dean [ 9J, to cite a few examples, have used techniques devel­

oped for political redistricting (set covering and transpor­

tation/heuristic) to produce workload balanced sector configu­

rations. Incorporated in their approach, typically are con­

straints that force the sectors to be contiguous and compact

rather than elongated. In Detroit [10J a different approach

was taken to produce balanced workloads which in ways is

analogous to some of the models described in Chapter III. For

the existing configuration the individual workloads were

estimated by summing up the work generated by each census

block within a sector. Then the configuration was iteratively

modified by switching groups of census blocks between over and

underutilized units.

Common to these static models of workloads is the assump­

tion that the workload of a patrol unit and the workload
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generated by its ~ssociated sector are equivalent. Larson

[28J, however, has shown this not to be true and in a recent

study in New Haven [8 J. the internally generated workload

underestimated a patrol unit's workload by as much as 60%.

Bammi [3 ] and a study in San Jose [1 ] both focus on

response time as the performance measure of major concern in

designing beats. Although each presents a different method

for minimizing precinct wide response time, neither method

is based on a solid theoretical foundation. In Bammi's

analytic model a number of independence assumptions are made

about the operation of each of the patrol units. It, however,

has been shown [27J that in a queuing system (a group of

patrol units deployed to answer calls for service can be

viewed as a queuing system), the state (answering a call for

service or on patrol) of a particular server is not indepen­

dent of the rest of the system. The San Jose study, on the

other hand, claimed that by minimizing the frequency of inter­

sector dispatches the precinct wide response time is minimized.

Although a justification for this assumption is given, no

proof is offered nor is it clear that the method they used

guarantees that even the frequency of intersector dispatches

is minimized.

Besides the questions of internal validity that we have

raised there is a fundamental difference in orientation of the

above models and the system we describe in Chapter III. Each

of the above models focuses essentially on only one parameter,
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with the user having at most limited control, through the use

of constraints, over what the program will generate as its

suggested configuration. Police patrol, though, is a multi­

faceted activity with multiple and often conflicting objec­

tives. As such, an approach to sector design should be

oriented more towards tradeoffs between performance measures

than optimizing a single performance measure without regard to

the impact on any of the others. The approach described in

Chapter III contrasts sharply with this as the goal of the

system is to guide the user towards what he judges to be an

equitable configuration, while explicitly taking into account

tradeoffs between balanced workloads, preventive patrol

coverage, response time, etc.

An obvious prerequisite for the developmen~ of a system

similar to that of Chapter III is the existence of a methodo­

logy (descriptive model) for calculating the various perfo~­

ance measures. Two methods presently available for evaluating

a particular sector configuration are Larson's hypercube

queuing model, which we use 1 [27 J, and a simulation, the

prototype of which was also developed by Larson C25J. Although,

conceptually the interactive approach described later could

have been structured about a more flexible simulation, the

speed of calculation was too critical a parameter since the

system iterates through a series of alternative designs.

Thus, the more rapid hypercube model was chosen, instead, as

the foundation for the system's development.
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The essential difference between using just the hypercube

or simulation model and the structured system of Chapter III

is that the former are purely descriptive models. They can,

therefore, provide no guidance on how to improve on the

present configuration other than by pointing out inequities.

Instead the user must develop on his own a series of potential

alternatives which he then evaluates individually with one of

the models. With a structure superimposed on these models, it

is possible for the computer to generate alternatives which

modify the sector configuration in the direction the user has

specified.

To summarize, the methodology to be presented here has

the flexibility of focusing on anyone of a series of perform­

ance measures, while encouraging the user to consider tradeoffs

between measures. In addition the decision making process is

left in the hands of the user. This is an advantage which

should not be underestimated as it significantly enhances the

system's implementability, a point which we elaborate on later.
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2.2 Search Theory: General

As was stated in the introduction to this chapter, the

literature reviewed will include only those papers directly

related to the problem of maximizing the probability of inter­

cepting randomly arriving and departing targets. Specifically

we will review the foundations of search theory developed by

Koopman ~~'4 ] as well as the companion work of Charnes and

Cooper [?]. Following that we will focus on the search

literature that looks at periodic cyclical search strategies

since the random arrival and departure of multiple independent

targets often necessitates optimal strategies of this type.

For a more comprehensive discussion of the literature the

reader is referred instead to Morse [32J and Moore [30J.

No discussion of search theory can be really complete

without some introductory remarks about Koopman's pioneering

work in the field. In a series of three articles [22, 23, 24J

Koopman looked at several aspects of the search and detection

problem and outlined, first, the basic negative exponential

model with its fundamental characteristic of diminishing return.

"As the available search effort increases the probability
of interception increases less than linearly."

{It is this simple~onentialmodal, coupled with a heuristic

procedure to find a more efficient allocation of police patrol,

that forms the backbone of the algorithms developed in

Chapters VI and VII.) Building on this model, he then pro­

ceeded to develop a methodology for find~ng the optimal
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allocation of search effort over a region. In his example

the target is assumed stationary and is located somewhere in

a region A with a known probability density function con­

tinuous in the region. Charnes and Cooper [ 7J later

developed an algorithm for the discrete analog to Koopman's

problem.

One obvious difficulty in applying either Koopman's or

Charnes and Cooper's methodology to police patrol is that

theirmetto,dologies do not include travel time between points

or regions and could, therefore, generate unimplementable

solutions. Secondly their approaches do not lend themselves

to the incorporation of classes of targets (crimes) each

with a different mean duration. However, of greater sig­

nificance is that the randomness in a crime's arrival and

departure and the independent arrival of crimes limit the

potential usefulness of their methods. Using the concept of.
diminishing return we explore in Chapter IV exactly why this

is so. For the moment, though, it should be noted that ran­

domness and multiple independent crimes require that the

optimal solution specify not only how much effort to allocate

to each poin~ or region (which is all the above methods can

determine) but also how should that effort be sequenced. This

leads us to our next area of discussion, the literature in­

volving sequential search strategies.
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2.2.1 Sequencing Search Effort

Blachman and Proschan [5 ] analyzed the optimal sequen­

cing of search effort among a series of regions into which

targets arrive randomly atvarying rates. However, in con­

trast to our problem, once the target has arrived it never

departs. The objective function to be maximized is a gain

function which is a non-increasing function of the delay

between a target's arrival and the beginning of the detecting

look. Only cyclic searches are considered. Although a

method for determining almost optimal strategies is presented,

Barnett [4J points out that the theorem for determining

which regions should not be searched is meaningless when tar­

gets are allowed also to depart. Thus this approach provides

no insight in the police context into the characterization of

when not to search a region. It is this specific question

which the differential equation model of Chapter V success­

fully addresses, by generating very simple analytic expressions

to determine when to exclude a region.

Gilbert [17J and later Kisi [21J analyzed a two-box

search problem in which the objective is to minimize the

expected length of time until detection. The first result

Gilbert obtains is that if the target is equally likely to

be in either box, the optimal policy is a limit strategy which

involves switching instantaneously from one box to the other.

We obtain, in Chapter V, an analogous result for randomly

arriving and departing multiple targets using the differential
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equation model. Gilbert then proceeds to find an optimal

strategy when non-zero switching times are included. However,

because there is only a single target (and thus continuous

unbounded diminishing return) no matter how much time is lost

in switching regions, diminishing return eventually makes

switching regions profitable. In Chapter IV we show that as

a result of the arrival and departure of multiple targets

diminiShing return in the police context has a lower limit,

and as a result it may pay to stay in only one region. Using

the differential equation model this fact is confirmed and we

are able to quantify the limited range of switching times for

which cycling between regions is advantageous.

Two papers which more directly relate to the work presen­

ted here are by Moore [31J and Barnett [4]. Moore analyzed

the impact on optimal search strategies of random visibility

of a target both in terms of duration and initiation. An

interesting aspect of his presentation is that it compares

optimal strategies wh~ take account of these factors with a

blind application of Koopman's model disregarding all of

these characteristics of the target visibility. In general for

small amounts of search effort (crimes are relatively short)

the two strategies often provided significantly different

results. Although Moore suggests the possible analog between

police patrol and some of his examples, the police patrol

situation is really not compa~able. One obvious reason is

that his examples involve one target arriving somewhere in
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one of n regions. However, in the police context, each region

is generati11g crimes independently of the other, which as we

discuss in Chapter IV, tends to increase the likelihood that

search should be limited to a single region. In addition we

have noted that optimal strategies for targets arriving and

departing in different regions require the specification not

only of how ! ,much effort to allocate to each region but also

of the sequence of that effort. Moore's paper does not dis­

cuss sequencing because the problem he analyzes involves only

a single target.

There is, however, a more subtle, and in many ways, more

significant limitatiOtl in applying Moore q s results to police

patrol. He considers the problem in which the target's

visibility begins at a random instant (equivalent to a crime

beginning) by introducing a probability distribution function

for the target's appearance. However, this distribution

function is not calculated relative to the start of the entire

search process but relative rather to the search of each par­

ticular region. Thus his distribution function defines the

probability of the target appearing in region i five minutes

after the ~earcher has begun searching region i or appearing

in region j-three minutes after the searcher has begun

searching region j, independent of how much time has elapsed

before entering region i or region j. Thus conditioned on the

target appearing in region if Moore's example assumes that the

tcr~t's time of arrival depends of the time at which search
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is begun in region i. However, the time at which a crime

would occur in region i is more likely to be dependent on the

searcher leaving region i and beginning search in region j

than the time at which the searcher enters region i. We have

djscussed this point in somewhat greater detail because in

stating the problem to be solved, Moore does not seem to make

the above assumption; however, in the equations used to find

the optimal strategy he, in fact, does.

Barnett [4 ] considers the situation in which targets are

arriving in a Poisson manner with the rate varying by region.

In addition a probability distribution is assigned to the

duration of the target. One restrictive (in terms of general

applicability) assumption of the problem he models is that a

search of any region discovers, with probability one, all tar­

gets still present in that region. Barnett first proves that

the optimal strategies are cyclical, a fact we use in applying

the differential equation model. Then for the two region exam­

ple he finds analytically the optimal sequence of searcIl. 'Vith

this analysis he then generates a sufficient condition for ex­

cluding regions from the search in the N region allocation prob­

lem. Although the model incorporates some of the characteris­

tics of a search for crimes, it can not,at present, be directly

applied to finding optimal deployment strategies in a realistic

police environment.

The above discussion is by no means meant as an exhaustive

survey of the literature that relates to the search problem we

consider. We have chosen, for our discussion, papers that are
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representative of previous analyses of some of the different

individual characteristics of the search process involved in

police patrol. However, none of these models captures all of

the characteristics

1. multiple independent targets
2. random arrival of targets
3. departure of targets
4. different target types (mean duration)
5. time lost in travel between non-contiguous regions

In our review we have attempted to show how in each model or

methodology the elimination of one of the above characteristics

makes it difficult to generalize its results to police patrol.

In Chapter IV we begin by first developing a qualitative

understanding of how each of the above characteristics affects

the optimal solution. Then Chapter V introduces a differen­

tial equation model which can incorpo~ate all of them. Howeve~

even in our development of the differential equation model, the

model is not offered as part of an algorithm for deploying

police·patrol because of the present computational difficulty

in analyzing more than two regions 9 Instead it is used to pro­

viQ8 a number of generalizable insights specific to the police

environment (crimes of short duration, rapid rate of comple­

tion relative to rate of detection). These insights form the

basis of a number of simplifications essential to the develop-

ment of the patrol allocation algorithms of Chapters VI and

VII. Thus, in effect, we have come full circle. We started

with Koopman's most basic search model of random patrol, which

calculates the probability of intercepting a target. Then we

proceeded to show that a number of existing optimal allocation

methodologies can not be applied to the police patrol.

This motivated the development of the differential equation
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model, which then allowed us to develop patrol allocation al­

gorithms using essentially the basic Koopman ( not his

allocation model) model for calculating the probability of

interception when patrol is random.
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2.1 Search Theory: Applied to Police Patrol

A number of earlier works have suggested and discussed

the applicability of search theory to police patrol. A

natural q'tEstion is "How does the present work build on the

earlier research and in what areas does it differ?".Before

proceeding with the discussion there is an issue of defini-

tion that should be clarified. All search theoretic models

of patrol, to date, are models of interception patrol and not

of preventive patrol. They do not purport to predict the

probability of preventing a crime only the probabilit¥of

intercepting it. Whether or not optimal patrol interception

strategies are also optimal preventive patrol strategies is

subject to debate. One would hope that increases in the inter­

ception probability could serve as a crime deterrent; yet the

perceived threat of interception may be a more significant

factor. strategies which optimize one measure need not opti-.
mize the other. Therefore, one of the major limitations of

any of the existing search models of patrol is that they do

not also capture the preventive aspect of patrol (assuming that

crimes can be prevented) nor do they include the interception

probabilities due to rapid response' to a report of a crime in

progress. In a study by the New York City-Rand Institute [ISJ

it was found that of the criminals arrested at the scene of the

crime by a patrol unit, approximately 50% were the result of

a response to a call and 50% were the result of patrol ini­

tiated action. Thus, ideally a patrol model should incorporate
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at least both possibilities for intercepting a crime when

attempting to determine the most effective patrol strategy.

The first set of works to be reviewed are those by

Elliott [11, 12, 13J. Applying the Koopman exponential model

for random patrol, Elliott calculates the probability of

intercepting crimes of various duration as a function of the

total time it takes to cover as many street miles as there

are in the region patrolled. More importantly using data from

Syracuse, he attempted to validate the model using as he

admits relatively meager data. The result was that the esti­

mate was within an order of magnitude of the observed

frequency of interception. If in fact thee~imate is within

an order of magnitude of the actual frequency of interception

it is probably coincidental. For one thing only reported type

I crimes were considered which typically significantly under­

estimate the actual number of type I crimes, thereby decreasing

the actual fraction of crimes intercepted. Secondly, his

search theoretic estimates assume patrol was uniformly distrib­

uted across the city. However patrol is likely to be concen­

trated in higher crime areas which would also throw the

estimates off significantly.

One last point about the model validation requires comment

as there is a basic flaw in his application of Koopman's model

to police patrol It To calculate the·.. average speed of patrol

Elliott determined the average number of miles patrolled

during a tour and divided by eight yielding an average patrol
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speed of 4.4 miles per hour. An implicit assumption is

therefore that there is no distinction between a patrol unit

busy 60% of its time responding to calls for service but

averaging 11 m.p.h. when on patrol and anotheT patrol unit

whtch does not respond to calls for service and averages 4.4

m.p.h. while on patrol. In Chapter IV we show the two are not

equivalent. For the range of values Elliott considered the

two alternatives do not yield very different estimates.

However, if this distinction were not made when saturation

patrols were considered, the result would be a serious over­

estimate of the probability of interception.

One last point to be discussed involves the e~imation of

the observable duration and conditionalprobabiity of detection

of a crime. In Chapter VI we discuss the problem of obtaining

estimates by interviewing patrol officers. Elliott has an

interesting alternative suggestion. Once the Koopman model

has been validated for police patrol, it would be possible

to estimate the product of the duration and observability by

allocatingp~rol uniformly in a region and finding the frac­

tion of crimes of each type that are intercepted o In

summary Elliott touched on many of the basic issues of

applying the Koopman model to calculating the probability of

interception; however no analysis is presented of, perhaps,

the mQre important problem: how to improve on present deploy­

ment strategies involving random[y patrolling cars.
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Olson [34J. on the other hand, focuses more,'on the

optimal allocation problem and develops a method for deploying

a tactical (does not respond to calls for service) patrol

force. His algorithm uses the Charnes and Cooper method to

allocate a patrol force of n cars to a region which is sub­

divided into smaller groups of blocks. Since the resultant

allocation to each region is not constrained to be integer,

all fractional allocations are rounded off to produce only

integer allocations of search effort to each group of blocks.

Recognizing also that the specific solution may vary with

the size of the subdivisions, the algorithm is repeated a

number of times for different sized groupingsof blocks and

the results compared to obtain a more global optimal solution.

Chapter VI presents an analogous model which also gener­

ates integer allocations of manpower to each region. However

the approach is not based on the Charnes and Cooper algorithm.

The reason for not following this approach is, as Olson noted,

because the resulting optimal allocation is not constrained

to benteger. Consequently rather than round off to a

solution that mayor may not be optimal p it seemed more

appropriate to start out by constraining the allocation to be

integer by following a steepest ascent algorithm which

seI'ially allocated the patrol fome unit by unit. Also with

the latter approach multiple crime types (different durations)

are no complication at all and sensitivity analysis is an

immediate consequence of the optimality condition as described
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at the end of Chapter VI.

Olson and Wright [33J used a Markovian decision model to

make an optilnal allocation of effort (for a standard patrol

car) in a manner that yields a random patrol schedule a The

motivation for developing this model is that Koopman type

allocation models may generate specified coverage levels that

are infeasible. In developing their model, because of a lack

of data on detection probabilities, they assume that the

strategy which maximizes space time-coincidence maximizes also

the probability of detection. This is not true, but the

model's development is not really affected by this assumption.

The model presents an alternative approach to the problem we

discuss in Chapter VII. A discussion of the different orien­

tation of the two methodologies will be presented later in

this section.

Rosenshine D.5 ] models an urban street grid as, a flow

network with the flows corresponding to the patrol coverage.

He then develops a.n algori thm for determining the mininlum

total effort necessary to generate a set of flows that

satisfy a given constraint on the minimum patrol effort

allocated to each arc. The algorithm is designed to assure

that patrol is ~s random as possible'. However as Gass and,

Dawson [15] point out, the degree of randomness required

to thwart prediction of patrol routing is not likely to

require the rather cumbersome and complicated approach out­

lined by Rosenshine. However, an equally important limitation
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[36J on the algori thm is that it dces notadtress the allocation

problem, since the minimum constraint on the patrol coverage

of each street (·i.e. arc) is assumed to be given.

Blumstein and Larson [6 ] present a basic model for

calculating the probability of interception which is a linear

approximation of the model presented in Chapter IV. They use

the model to obtain upper bounds on how ~requently an individ­

ual patrolman is likely to come across a crime in progress.

Using data for one large U.S. city and assuming, for example,

that burglaries have a duration of twenty minutes, they esti~

mate that an individual patrol officer can expect a maximum

of four burglary-in-progress detection opportunities per yearn

Their discussion closes with a brief description of how the

detection rate can be increased by changing the values of the

model's input parameters. In section 4.1.3 we will elaborate

on their discussion of changing the input parameters.

Larson in his book Urban Police Patrol Analysis [25J

presents a detailed discussion of many of the issues surround­

ing the deployment of preventive patrol. Were we to plagiarize

his six closing questions, entitled "Extensions and Further

Work t' , we could still use the same heading. "To what extent

is the crime distribution modified by patrol strategies?" is

still an open and crucial question as is the question "What

is the conditional probability of detecting a crime in a

particular physical environment?" 6) This last question will

be the subject of extensive discussion in Chapters VI and VIII.
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In discussing patrol models he introduces the Koopman

allocation model as a possible conceptual framework for deter­

mining the optimal allocation of patrol effort. Upon conclud­

ing his presentation of the method, which generated for each

point a patrol frequency, he raises the question of I'To what

extent is an optimal patrol coverage function realizable?".

One obviously unrealizable function arises if a connecting

street between two streets with non-zero patrol coverage is

allocated no patrol. There is,howeve~ a potentially more

substantive barrier which undercuts the feasibility of this

approach. In applying the Koopman model to a three minute

crime the crime's duration plays a dual role. It not only

represents the search effort but also constrains the sequen­

cing of the search. As we elaborate in Chapter IV, an optimal

patrol coverage function which assigns twice the patrol

coverage to point A as to point B requires that the ratio be

maintained not just over the eight hour tour but also over

every possible three minute span and similarly for every pair

of points.

Reviewing the approaches of Olson and Wright [33J. Larson

[25J and Rosenshine [35J, there is a fundamentally different

orientation to the problem of allocating a patrol unit's

preventive patrol time compared to the orientation of the algo­

rithms in Chapter VII. Their focus is on mapping out optimal

routes through the city streets with the concurrent problems

of re~izability. The focus in Chapter VII is instead on the

question of specifying the more gross allocation issues of
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which regions to patrol at all and which not. Along with

this simplification comes the flexibility of incorporating

into the model multiple crime types as well as assigning

weights to the various crimes.
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2.4 Patrol's Impact on Crime

The above section title could just as well havebeen

written with a question mark "Patrol's Impact on Crime?". It

is a question whose answer will have to await further research.

The discussion here, therefore, ,will be brief. merely pointing

out a number of cases which seem to shed some light on the

issue.

The question of patrol's impact on crime has of late been

split into two distinct questions. What is the impact on

crime of highly visible easily avoidable patrol cars randomly

(sometimes it seems aimlessly) patrolling the streets? What

is the impact of other forms of patrol strategies (e.g. plain­

clothe~directedpatrol, saturation patrol, stakeouts, decoys,

etc.)?

Two of the more well known contradictory studies that

relate to the first question are the 20th Precinct study in [35J

New York City and the now well known Kansas City experiment [20J.

The former was not designed as an experiment ro1d represents

a post hoc analysis of some of the affects of an increase in

manpower. This naturally raises some question of the

validity of the claimed cause-effect relationship. Some of

the effects claimed were a 36% decrease in total felonies

visible from the street and a 49% decrease in visible (from

the street) grand larcenYe The Kansas City experiment, in

which attempts were made to maintain controls, on the other

hand, showed no discernible impact from doubling and tripling

the number of units in a sector (Which more than triples the
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potential number of preventive pat!'ol hours). Should the

Kansas City study prove the more generalizable (the results

could conceivably be city dependent), it does not, however,

negate the necessity for development of methodologies for

determining optimal patrol strategies. As the au~t;}i(,rS of

the report repeatedly point out, the experiment showed only

that routine pI-eventive patrol in marked police cars llas

little value in preventing crime or making citizens feel safe.

As an alternative the experiment suggests that perhaps deploy­

ment strategies should be based instead on specific crime

prevention and service goals.

Larson [29J, however, in a detailed review of the Kansas

City experiment raises a number of serious questions about

whether or not the claimed experimental conditions were

maintained. His conclusion is that it is not at all clear

how generalizable the findings in Kansas City really are.

Section 8.3~1 contains a description of some of the highlights

of his analysis of the experiment.

In contrast to the a'bove, two representative examples

which claim to display the effectiveness of crime directed

strategies involve a street crime unit (Seu) in New York City

[)..4 ] and a burglary prevention program in Seaside, California

[ 2 ] G In the first example the street cl"irne unit averaged 8.2

man days per arrest against an average for all uniformed

officers of 167 man days. In the Seaside experiment a

special two man unit was assigned to reduce burglaries. The



-60-

result was that over a two month period they made more

arrests than the entire 54 man force did during the previous

year. In addition there was a 25% reduction in burglaries

and a 50% reduction in average loss,

Although both of there examples support the claimed

effectiveness of crime directed police strategies, neither

was carried out in a controlled experimental setting. And

despite the often almost unanimous support among police for

strategies of these types, their effectiveness remains to

be proven.
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FOOTNOTES 2

There are actually two versions of the hypercube model,
an exact and an approximate one. We use the approximate
version.
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CHAPTER 3

AN INTERACTIVE APPROACH TO POLICE SECTCR DESIGN

3.0 Introduction

A primary task of the police administrator is to make

the most efficient and effective use of his manpower. To

do so he must allocate his force in a way that reflects the

temporal and geographical variations in crime level and other

demands for service. This chapter concerns itself with a

geographical allocation problem, specifically the design

of police beats or sectors.

The computer models described in this chapter are for­

mulated to aid a district (precinct) commander in designing

police patrol sectors which represent, to him, a good

balance of several somewhat conflicting goa.Is. The models

do not focus on optimizing anyone performance measure (e.g.

average response time) and are built cnthe belief that the

judgement of the experienced police manager must be a major

motivating force behind any sector design. Consequently,

their purpose is to guide the decision-maker through a

series of alternative sector designs and at each stage pro­

vide him with the information he considers necessary to

choose between alternatiYe designs.
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~l An Interactive Design
-

The decision to develop computer models which require

user interaction strongly influences all aspects of their

design. A discussion of some of the reasons behind this

decision is certainly warranted and may also provide some

additional insight into the potential uses of the model.

The first question that is raised in designing sectors is

"On what basis do we tiudge good sector design?" 0 One of the

best suggestio~1.s was offered by Vollmer [15J: "construct

beats so that every patrolman carries his share of the bur­

dens and each section of the community receives its share of

police protection".l These equity criteria are important and

the major thrust of the models is to aid the manager in pro-

ducing an equitable configuration. However, they are cer­

tainly not the only important criteria. Superbeat u~J, a

computerized sector design procedure designed at Illinois

Institute of Technologyp attempts to minimize district-wide

average response time. Larson [9], in a more complete list

of objectives than offered here, includes, for example, mini­

mizing the number of cross sector dispatches.

If one sector configuration could be devised that would

satisfy all the various criteria, user interaction might not

be that critical. Unfortunately, these various criteria are

often conflicting. For example, one may cite the two equity

criteria--equal patrolman workloads and equal community pro­

tection ( as measured by average response time, for example).
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the successful implementation of innovations in both the

public and private sectors. Little [11J offers as one reason

for implementation failure of operations research models that

'managers don't understand the models and people tend to

reject what they don't understand'. Colton [ 4J states that

a source of problems in police computer use is the gap that

often exists between technical and sworn personnel. An

interactive system requiring the involvement of the police

manager bridges the gap and provides the manager with a full­

er understanding of the potential uses and limitations of

their particular computer models.

This introduction is intended only as an initiation into

the goals, problems and conflicts that exist in the design of

sectors; it is in no way meant to be an exhaustive analysis

of these aspects of sector design. For more detailed discus­

sions of these issues. the readeris referred to Chapman [ 2J

and Larson [9J. The following sections of this chapter

describe and analyze one particular user-interactive model

for sector design. The model's assumptions and data require­

ments are outlined and a description of the overall system

is provided. Finally, there follows a discussion of five

subsystems whose major purpose is to guide the police manager

in producing a sector design which satisfies various equity

criteria.
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In regions where the density of crime is low if we are to

maintain equal workloads, the size of the sector would have

to be above average. The increased size of the sector would

have a tendency to produce an average response time for a

call for service in that sector above that found for a call

for service in the high-crime small sector. The role of a

police administrator who has intimate knowledge of his

officers and community is crucial here in striking an accept-

able balance between these and other such conflicting goals.

He should be able to determine the effect of various work-

load imbalances on police morale and also, depending upon

the political realities of his community, determine what

represents an acceptable imbalance in average response time.

A second reason for desiring user interaction is that a

number of objectives are not easily quantifiableo Larson [ 9J
mentions as one objective in sector design the maintenance of

neighborhood integrity so that, where possible, sector boun­

daries do not cut traditional neighborhoods in two. Another

example of a non-quantifiable objective is evidenced in a

recent proposal to redesign a sector in Boston. The district

commander asked that the sector boundaries lie along the ma~n

thoroughfareR in order to facilitate police patrol ~3J.

A final reason for developing an interactive system rath­

er than a set of packaged programs is that this will facili­

tate implementation of the models. A number of recent

articles have addressed the problem of what factors influence
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3.2 Model Assumptions

A district or precinct is subdivided into a set of

smaller regions called beats or sectors. Each sector con­

sists of a set of reporting areas (subregions) or atoms. A

reporting area is the smallest geographical unit for which

police data are collected.

In combining a group of atoms to form a sector, only one

major constraint (Cl) is placed on the design of the sector.

(Cl) A sector must consist of a set of contiguous atoms.

There will, however, be one additional constraint that will

be applied in a heuristic manner.

(C2) Every attempt will be made to maintain compactness
in the sector designs.

The dispatch policy (i.e. the procedure by which units

are assigned to answer calls for service) used in this model

(MCM) is as follows. Each sector is assigned a patrol unit

which has primary responsibility for that sector. Primary

responsibility involves two things. 1) The patrol unit per­

forms preventive patrol (time not spent answering calls for

service) in that sector. While £n preventive patrol the time

spent in each atom in the sector is ~ssumed to be in direct

proportion to the number of calls for service emanating from

that atom. 2) Any calls for service that arise in the sector

are assigned to the patrol unit with primary responsibility

for that sector if it is free regardless of its l~cation. If

it is not free, the available unit estimated to be closest is
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dispatched to the call.

The estimated distance of a unit from a call for ser­

vice (for dispatch purposes ) is calculated as follows. The

unit is assumed to be at the weighted (on the basis of calls

for service) center of gravity of its sector. The call for

service is assumed to be at the center of mass of the atom

from which it comes o The distance between the two centers is

the sum of the (absolute) differences of the respective (X,Y)

coordinates.

If when calls arrive no unit is available, the calls are

queued in the order of their arrival and the first unit to

become available is dispatched to the call at the head of the

queue. This completes a description of the only dispatch

policy presently allowed in the model~ However, it is not

difficult to change the model to allow for a wider range of

dispatch policies (Larson [ 8,10J) and it is envisioned that

future versions of this model will contain this added flexi­

bility. The various statistics (e.g. workloads, travel times,

etc.) which describe the functioning of the district's patrol

units are calculated by using Larson's approximation procedure

~OJ. A description of this procedure is not offered here and

the reader is referred to Larson [l~. However, one remark

on this procedure is worth making. The operating statistics

such as workloads and average travel times to a sector or

atom include not only intrasector dispatches but also include

intersector dispatches.
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3.3 Data Requirements

The basic unit for which data must be supplied is the

reporting area or atom. For each atom the following must be

given

(Dl) Location of the center of mass of the atom.

(D2) The call rate for the atom in terms of calls per
year or any other u2it of time as long as the
user is consistent.

(D3) An atom contiguity vector. For each atom a list
of ~ll the atoms contiguous to it must be provid­
ed.

In addition, if the user is interested in tracking and pos­

sibly constaining the size of each sector either in terms

of area or in terms of street miles, then additional data

must be input for each atom.

(D4) Number of street miles in the atom.

(D5) Area of the atom.

Finally, the user must specify for the district as a whole.

(D6) Number of sectors.

(D7) Average workload for the units.

(D8) An initial sector design.
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3.4 System Design

Once the data files have been input, +he t ·'" sys em 18 ready

to operate. The system's initial interaction with the user

will be to request that he choose a major concern from among

five possibilities:

1 0 Equalize workloads.

2. Equalize preventive patrol coverage.

3. Equalize average travel times to a sector (region) •

4. Equalize average travel times to an atom (subregion' ) .
5. Equalize workloads of arnalg~mated sectors.

For each of the five options, a subsystem has been designed

which will guide the user in an iterative manner towards

improving a particular performance measure (workload, preven­

tive patrol coverage, average travel time) imbalance. At the

core of each subsystem is a program that operates in either

one of two modes at the discretion of the user (See Figure

301). In one mode the program generates several alternative

small modifications (transferring an atom from one sector to

another) of the present configuration that improve upon the

imbalance in the performance measure specified by the user.

The user may then choose from among these alternatives,

whereupon the modification is carried out and several new

alternatives are generated. In the other mode, after the

user has specified the imbalance to be corrected, the program

carries out on its own a series of small modifications of
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the present configuration in order to improve on that imbal-

ance.

Before proceeding with the description of the system, we

will discuss briefly the distinction between the goal of sub­

system 1 (equalize workloads) and subsystem 2 (equalize pre­

ventive patrol coverage). In addition we will outline the

basic problem that the last subsystem (equalize workloads

of amalgamated sectors) is designed to address.

3.4.1 Option 2: Equalizing Preventive Patrol Coverage

In calculating the average workload for a precinct and

the individual workload for each patrol unit, we have included

not only calls for service but also time spent for meals.

Consequently, the fraction of time a patrol unit has available

for preventive patrol is simply one minus its workload.

Therefore, if the workloads are balanced, then obviously the

number of patrol hours allocated to each sector are also

balanced. However there are other definitions of an equitable

allocation of patrol effort which do not coincide with

requiring that the total number of patrol hours for each

sector be the same. For example, a decision maker might

question if it is equitable for two sectors, of different

size or with different crime rates, to be allocated the same

number of preventive patrol hours. A decision maker might

feel that a better standard ~f equity is for the number of

patrol hours per street mile to be the same in each sector



-79-

or, alternatively, for the number of patrol hours for each

Part I type street crime to be the same in each sector.

In response to these and other alternative definitions

of equitable preventive patrol coverage the interactive

system was designed (Option 2) with the flexibility to

allow the decision maker to specify his own measure of equity.

Equity can be defined as requiring that patrol hours be allo-

cated in proportion to street mileage or street crimes or in

proportion to any other parameter (e.g. the product of street

mileage and crime rate) that is specified.

3.4.2 Option 5: Amalgamating

Past and present police literature have recognized that

crimes and calls for service are not uniformly distributed

over time a~d space. A number of manpower allocation metho­

dologies (Walton [16J, Ficklin [5 ], McClaren [12J, Larson

[7 J. to cite a few) have been developed in an attempt to

mirror and take advantage of this nonuniformity. Once tempo­

ral and district-by-district allocation Plans have been

decided upon, the next step is to design the beat structure

for each district. Ore option available is to design a

different beat structure for each of the various police

shifts (early morning, day, night, weekend). However, to

avoid the necessity of drawing up a set of extensively

different beat boundaries for each shift and the confusion it
f

might produce, police often settle on a compromise. The
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basic beat design is formulated for thE shift which has the

maximum number of cars. For shifts with lower call rates and

fewer men assigned, they simply combine some of the sectors

(i.e. one man will patrol two or more sectors). The fifth

subsystem will attempt to determine which sectors should be

combined to produce a minimum workload imbalance.

To aid the manager in his decision-making he can request

that additional information be provided at each step. He can

receive data with regard to any or all of the factors listed

below:

1. Car workloads

2. Preventive patrol coverage

3. District wide average travel time

4. Sector travel times

5. Three (user may specify own number) worst atom travel
times

6. Percentage of cross-sector dispatches

7. Number of street miles in each sector

Although the option exists to ask for all of the above

factors, it is advisable that the user be selective and pin­

point the information he feels is critical in choosing bet­

ween alternative designs. The natural tendency, of course,

is to ask for whatever information is available; unfortunate-

ly, trying to work with too many variables at one time may

only serve to confuse and slow the iterative process.

Consequently, the police manager should first analyze what

parameters he considers crucial before attempting to use the
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system. In this way he will avoid the problem of information

becoming misinformation (Ackoff [1 J). An alternative to a

constant flow of information is to set up a series of con-

straints. For example:

(C3) A maximum and/or mln2mum limit is placed on the
size of a sector. Whenever a potential sector
design violates this constraint the user is
notified.

or

(C4) If the user's major concern were sector travel
times, he might set a constraint on the maximum
workload for any particular sector car.
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3.5 SUbsystem Designs

The next section of this chapter will discuss the

methodology used by each of the first four subsystems to

guide in the construction of a satisfactory sector configura­

tion. The fifth subsystem, combining sectors, will, however,

be discussed separately as it entails a fundamentally differ­

ent approach than the others. In each of the four subsys-

terns, the user proceeds iteratively from an initial sector

design until an acceptable design is reached. The general

procedure (GP) for each of the four subsystems is as follows:

(GP1) An initial sector design is specified by the
user.

(GP2) At each iteration the most recent design is
modified by transferring one atom from one
sector to another without violating the sector
contiguity constraint. (Cl)

(GP3) A transfer is specified by the atom transferred,
the sector losing the atom and the sector receiv­
ing the atom. The criteria for determining
these variables will vary with each subsystem,
and even the order in which they are determined
will vary.

(GP4) At each iteration the user will be offered a
choice between two or three atom transfers
which reduce the disparity in the parameter of
major concern (either workload, sector travel
time or atom travel time).

(GP5) Each of the candidate atoms offered the user is
first screened to make sure that its transfer
will not violate the contiguity constraint (Cl).
This involves checking the structure of two
sectors.

a) The sector, R, receiving the atom, At must
presently be contiguous to that atom. This
fact can be determined by checking if any
of the atoms presently in sector Rare
contiguous to atom A.
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b) The sector, L, that loses the atom, A, must
not be left split in two. To determine if
sector L is still contiguous, the sector is
modelled as a network with nodes of the net­
work representing atoms and the arcs between
nodes representing the contiguity of atoms.
The iSS1..le then becomes "Is it possible to
travel from anyone particular node in the
network to every other node in the network?".
To answer this question a node labeling
algorithm is used that is analogous to the
shortest route algorithm of Ford and
Fulkerson [6J. (See Appendix A.)

(GP6) Information will be provided to the user about
the effect of each transfer on the parameter of
major concern and on any other parameters he has
previously specified~

(GP7) The user can also offer another candidate for
transfer, in which case, the effect of the trans­
f~r on the various parameters will be calculated
by the system.

(GP8) The user selects the atom to be transferred and
the transfer is then carried out. Steps GP2 thru
GP8 are repeated until an acceptable sector
design is reached e

There is one additional powerful option available to the

user. Computer programs have been developed that will reduce

the imbalance of anyone particular pa~eter without user

interaction at each iteration. The option is as follows:

(GP9) The user can allow anyone of these programs to
run for n (user defined) iterations or until the
sector or atom witij the worst imbalance is
brought within p% (user defined) of the average.

(GPIO) Upon reaching the user-defined stopping point,
the new sector design is described to the user
and the system returns to step GP2.

3.5.1 Typical Scenario~

These relatively non-interactive programs offered in
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step GP9 have the potential of significantly reducing the

various imbalances unaided and all but eliminating any

imbalances in car workloads and sector travel times (see

computational experience sections). However, it is envi­

sioned that the non-interactive programs will also be used

in a more limited (carry out 5 iterations) fashion without

realizing their full potential. The motive behind

restrained usage of the programs is that full utilization,

for example, of the program to reduce workload imbalances

could result in totally unacoeptable travel time imbalances. 5

These probrams (GP9) might be used instead to speed up one

dimensional searches for an acceptable sector design. For

example a typical scenario might be

1. The user decides that the initial design has too
large a workload imbalance and requests the
program that reduces workload imbalances to run
on its own for five iterations.

2. Reviewing the resultant design, the user now
decides to shift focus and concentrate on travel
time. He requests that the program that balances
sector travel times carry out three iterations.

3. Reviewing the newly generated beat configuration,
he decides to improve once again the workload
imbalance, however, with himself now in complete
control of each iteration.

4. The user requests the generation. of three alterna­
tive atom transfers that reduce the workload
imbalance and that supplementary information be
provided about precinct-wide average travel time
and sector travel ,times. -

5. The user proceeds to choose from among the three,
the atom transfer which has the most beneficial
impact on precinct-wide travel time and which, of
course, improves also the workload imbalance.
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6. The user then may request three more potential trans­
fers and proceed again with the above process.

Having completed our discussion of the general or shared

procedures (GPI-GPIO) that are common to each of the first

four subsystems, we will next focus on the unique character­

istics of each of these subsystems. The discussion of each

of these subsystems will be presented in three parts. The

first part will analyze how an atom transfer affects the

parameter of interest. The hpe is that this analysis will

provide additional insight into the development and procedure

of each of the subsystems. Secondly, the manner of selecting

each of the atoms suitable for transfer will be described in-

eluding a description of the programs that run without direct

user interaction. Finally, some computational results with

the above-mentioned programs will be presented~

Before proceeding with the description of the subsystems,

it should be noted and emphasized that the main focus of

these subsystems is the equitable distribution of workloads

and police services as ~easured by response times. As a

result, no program to reduce precinct-wide average travel

time is presented here. However, the effect of any atom

transfer on district-wide average response time is monitored

at each step and the user can take into account this effect

when choosing between alternative designs. In addition, the

interactive, iterative approach, p~~nted in this paper will

provide the user with a better understanding of the various
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tradeoffs that exist in sector design. District-wide response

time is usually increased in order to reduce imbalances in

the sector and atom travel times. Workload imbalances must

often increase in order to reduce travel time imbalances and

vice versa.
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3.6 Workloads

3.6.1 Effect of Atom Transfer

Shifting an atom out of (into) a sector has two effect~6,

a primary effect (El) which reduces (increases) the sector

car's workload and two complementary effects, (E2) and (EJ),

which counter-balance and reduce the magnitude of the primary

effect.

(El) Shifting an atom out of (into) a sector directly
reduces (increases) the primary responsibility of
the sector car, thereby, decreasing (increasing)
his workload.

(E2) The first secondary effect is that by decreasing
(increasing) the sector car's primary responsi­
blity, the car is now morel (less) frequently
availab~e for intersector dispatches, consequent­
ly, increasing (decreasing) his workload.

(E3) The other secondary effect is that by transferring
an atom out of (into) a sector, S, and into (out
of) an adjoining sector, At the adjoining sector
will have an increased (decreased) workload. This
will in turn necessitate more (less) intersector
dispatches into sector A. The result is that the
sector car for sector S will be called on more
(less) frequently to respond to calls for service
in sector A.

The magnitude of these second order effects (E2) and (E3)

will vary according to the centrality of location of the sec­

tor. The more centrally located the sector, or in other

words, the larger the region for which this sector car is the

2nd and 3rd most preferred car respectively, the greater the

magnitude of this second order effect [10J. Consequently,

an atom transfer in outlying sectors will in general produce

a greater change in workload than an atom transfer in

centrally located sectorso
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3.6.2 Computer Program

The program, if reduced to its essence, can be described

by outlining the steps by which it determines the previously

mentioned (GP3) three variables involved in each atom trans­

fer, (the atom transferred and the two sectors).

(WSl) The first step in equalizing workloads is to
find the sector with the workload furthest from
the mean, either above or below it.

Unfortunately, this program could not concentrate solely on

reducing high workloads without simultaneously increasing

the workloads of underworked cars. This is true because the

average workload is a constant which depends only on the

total call rate for the district and the number of sectors

and not upon the particular sector configuration.

If the workload for sector car A is the one furthest

from the average and it is above average, then procedures

(WS2) and (WS3) are followed.

(WS2) A search is made of the sectors contiguous to
sector A to determine which of the contiguous
sectors has the sector car B with the lowest
workload.

(WS3) The atom transferred from A to B is the atom in
sector A, that is contiguous with B, and whose
center of mass~ is closest to the center of
gravity (weighted call rates) of sector B. This
atom transfer must of course not violate any
cpntiguity constraint (Cl)7 (See also GP5). If
it does violate (Cl), the second closest atom
is transferred.

Although simple calculations could have been carried

out to determine which atom transfer from A to B would have
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had the most dramatic effect on the workload imbalance, this

simpler criterion (WS3) was used for one basic reason. This

criterion proved to be a good heuristic method for maintain­

ing a degree of compactness (C2) in the sector receiving the

atom. To summarize (WS2) and (WS3), the procedure is to first

determine the two sectors which were to be involved in a trans-

fer and then to select an atom on the basis of compactness.

If the worst imbalance occurs in an under-utilized sector

car, A, then procedures (WS4) and (WS5) are followed.

(WS4) A search is made for the closest (as defined in
WS2) contiguous atom, C, to sector A rather than
first searching for the sector B that is contig­
uous to A and whose sector car B has the highest
workload.

(WS5) Once the atom, C, that is to be transferred into
A has been found, the sector that will lose the
atom is implicitly determined.

In short, the atom to be transferred was chosen without

first selecting the 2nd sector to be involved in the transfer.

The reason for not paralleling the procedure outlined in

(WS2) and (WS3) is that this method proved to be more effi-

cient at maintaining compactness in the sector receiving the

atom.

In the mode (GP2-GP8) in which the user decides at each

i ter·ation which atom will be transferred, "the procedures, (WSl)

through (WSS), are repeated to produce the two best (compact­

ness criteria) candidates to reduce the worst workload

imbalance. A third atom transfer is offered which involves

the sector car with the second worst workload imbalance.
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In the non-interactive mode, (GP9). the computer program

iteratively carries out the above steps, (WSI-WS5), until

the user defined stopping point is reached.

3.6.3 Computational Experience

The non-interactive program was run on data from

District 4 in Boston. Seventy reporting areas were to be

combined into 6 sectors. If the number of reporting areas

is too large (a number as yet undetermined), it may prove

necessary to group the reporting areas into slightly larger

regions before using the models. The average workload for

the 6 cars was 50%. The measure of imbalance that was used

in this program was the ratio of the highest workload to the

lowest workload. Minimizing the imbalance is equivalent to

bringing the ratio closer to one G In the initial design, the

car with the lowest workload was in sector 5 and was busy 42%

of the time. The highest workload was for sector car 2 with

a workload of 56%. The ratio of highest to lowest was 1.33.

In other words, sector car 2 was busy 33% more of the time

than sector car 5 was. After 14 iterations, ~e sector car

with the lowest workload was sector car 6 (49.5%) and the

sector car with the highe~workload was car 5 (50.5%). The

ratio of highest to lowest workloads was 1.02, a significant

improvement.

The program was run for 20 iterations; however, no im-

provement occurred after the 14th iteration. Tab~3.1 contains
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the workloads of the cars for the 14 iterations. In general,

once the ratio of highest to lowest workload was less than

1.05, it was difficult to find an atom transfer that could

reduce further the imbalance.

The 20 iterations required 17 c.P.u. 8 seconds or an

average .85 seconds per iteration. The core storage required

was 200K. The limited number of iterations required to elim­

inate a significant workload imbalance and the rapidity of

the iterations would serve to validate the feasibility of an

iterative approach.
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Table' 3.• 1 Balancing Workloads:District 4.Boston

CARS
Iteration. 1 2 3'-4 5 6 Ratio=High/Low

~~ ~~i~

Initial .498 .559 .502 .494 .421 .526 1.33

1 .~98 :-559 .500 .493 ~n24 .526 1.32
,,~

2 .494 ~5_58 .499 .492 -:431 .525 1.30
·n· {~*

3 .483 .558 .499 .491 .41+3 .527 1.26
i} " ~,

")~.,~

l+ .496 .549 .498 .488 .442 .527 1.24
~} ~~~}

5 .497 .543 .496 .486 .458 .520 1.18
)t, -:458 .5186 .497 :534 .497 .497 1.17

7 .494 ~-533 .496 .497 -:-463 .517 1.15

~5J4
{:...:~

8 .492 .49_2 .494 .478 .510 1.12

9 .496 {;.514 .510 .495 -~~76 .509 1.08

10 .484 -:515 ~ .510 .496 ·:~86 .509 1.06

i;- 510
{}~-

.506 .11 .497 .507 I •494 , .485 ' 1.05
;(.

·:~89 .50512 .498 ._507 ~50f .494 1.04

13 .497 -:511 .502 ~492 .505 .493 1.04

14 .497 .505 .502 .496 -:505 ~t95 1.02

~} Highest vVorkload

** Lowest Workload
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3.7 Preventive Patrol Coverage

Earlier in this chapter we discussed the distinction

between balancing workloads and balancing preventive patrol

coverage. However, despite the differences between the two,

it was not necessary to develop an entirely separate subsys­

tem in order to provide a capability for balancing preventive

patrol coverage. Instead this capability was easily provided

by making several minor modifications of the workload balanc­

ing subsystem. In essence the function of these changes was

so that when the user specifies preventive patrol coverage

as the major concern, the program uses, for example, one

minus the workload divided by the sector's street mileage in

determining which sector has a patrol allocation that is fur­

thest from the mean instead of looking at the workloads.

Once that sector has been located then if its patrol allcca­

tion is above average, the sector is enlarged by adding an

atom and if its allocation is below average the sector is

modified by removing an atom. Before proceeding with the

description of the other changes, it is important to stop

and realize one consequence of the above substitution for

workloads. If the street mileage or crime rate is not ap­

proximately the same for each sector then not only are bal­

ancing workloads and preventive patrol coverage not equivalent

but also the two goals of necessity conflict.

In addition to the above substitution, the only other

changes involve the obvious need to input data either about
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the street mileage or crime rate of each atom and calculate

and update (after each atom transfer) the total street mile­

age or crime rate of each sector. Except for the modifica­

tions described above, no additional effort was required in

adapting the workload balancing subsystem to be used alter-

-natively to balance preventive patrol coverage. Thus, for

example, the selection of the atom to be transferred between

sectors follows the same procedures as described in the pre­

vious section (steps WS2 through WS5).



~95-

3.8 Se~tor Travel Times

3.8.1 Effect of Atom !ransfer

Transferring an atom, C, out of a sector affects the

average travel time to a call in that sector in three ways.9

(E4) First, if the average travel time to that partic­
ular atom C, is above (below) the average for that
sector, removing the atom will lower (raise) the
average travel time for the sector.

(E5) By decreasing the workload of the sector car, it
reduces the need for intersector dispatches into
this sector. Since in general, intersector dis­
patches have larger travel times than iPtrasector
dispatches, it will reduce the average travel times
to calls in that sector. 10

(E6) Since the atom removed from the sector will usually
be relatively far from the center of gravity of the
sector, the average distance from the center of
gravity to the atoms in the sector will decrease.

3.8.2 Computer Program

A di3cussion of the computer program that aides the

user in reducing sector travel time imbalances will also

center on how the three variables (atom transferred and the

sectors between which the atom is transferred) are deter-

mined.

(881) First, the sect~A, with the worst average
travel time is located.

(382) The sectors contiguous to sector A are compared
to determine which sector, B, has the lowest
average travel time.

(883) Of the atoms in A contiguous to sector B, the
atom farthest away from the center of gravity of
A is transferred. (E6)
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In steps (851-553), no explicit attention is paid to the

first effect (E4) in choosing the transferable atom as it is

assumed that there is a strong correlation between the dis­

tance from the center of a sector to an atom in that sector

and the average travel time for the atom~ The farther away

from the center of gravity the atom is, the larger the aver­

age travel time to the atom. In addition, even if the travel

time for the atom transferred were below the average for the

sector, the second and third effects (ES) and (E6) could out­

weigh the first effect~ In the sample runs, this, in fact,

happened a couple of times. Also by disregarding (E4) and

concentrating on the distance (E6) in choosing an atom, a

greater degree of compactness is maintained in the sector

losing the atom.

(SS4) If, however, i~ is found that the removal of a
particular atom under step (55)) increases the
average travel time for the sector A, then step
(553) is repeated to find the second farthest
atom from the center of gravity.

At first it seemed reasonable to design a slightly

simpler procedure instead of step (552) followed by (S53).

(Alt) From the sector with the highest average travel
time, transfer the atom farthest from its center
of gravity and COlltiguous to some other sector.

However, this procedure often eventually led to the following

sce~ariot a scenario which was repeated by all of the first

three subsystems whenever the imbalance was reduced below 5%.

Atoms were transferred out of an outlying sector A, which
had a high average travel time.. into a neighboring
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sector B until the average travel times in both
sectors were equally above average. At this point
the situation was ripe for a "ping-pong" effect,
e.g. transference of the same atom back and
forth between the two sectors (A and B).

By using the criteria of lowest travel time to first choose

among neighboring sectors (832), the above scenario was all

but eliminated. Sector B would not transfer its atoms to

sector A but rather to some more centrally located sector,

C, which had an even lower travel time than either A or B.•

The above procedures (SSl-SS4) are used to find two

atoms in the sector with the worst travel time and one in

the sector with the second worst travel time whose removal

will reduce the average travel time for their respective

sectors. The user must then choose among these three pos­

sible atom shifts e In the non-interactive mode (GP9), the

above procedures (SSl-SS4) are repeated until a user defined

stopping point is reached.

The procedure designed to equalize sector travel times

differs in one fundamental way from the one designed to

equalize workloads. With regard to sector travel times, the

programs try to reduce high average travel times and not

increase low travel times, although, of course, the two are

not independent. The reason for this is that unlike the

average workload, the average district-wide travel time is

not a constant and will vary with the particular sector

configuration. It is hoped that by concentrating solely on

reducing high travel times, it may be possible simultaneously
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to reduce the district-wide average travel time (which did

not happen in the test runsll ) or at least hold any increases

to a minimum.

3.8.3 Computation Experience: District 4, Boston

The non-interactive program was run on data from District

4 in Boston. In the initial sector design (6 sectors) the

average travel distance for the district was .543 miles12•

Sector 5 had the worst average travel distance .696 miles

(28% above average) and sector 2 had the best average travel

distance .483 miles (11% below average). The ratio of the

worst to best travel distances was 1.44 or in other words, on

the average it took 44% longer to respond to a call in sector

5 than it ~d to a call in sector 2. After 13 iterations, the

sector with the highest average travel distances was sector

5 (.591) and the sector with the lowest average travel dis­

tance was sector 2 (.559). The ratb of highest to lowest was

now 1.06. Unfortunately, some of this reduced imbalance was

paid for by a 6% increase in the district-wide average travel

distance which now was .577 miles.

No improvement was made after the 13th iteration and

each iteration required on the average 1.5 csp.u. seconds.

The reader1tll note that iterations in this subsystem are

significantly longer than for the first subsystem. One

reason for this is that the calculation of the average

travel times is much more time consuming than the calculation
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Table 3.2 Balancing Sector Travel Distances:District 4.Bost£n

Iteration

Initial

1

2

6

8

10

11

12

1

SECTORS iTRAVEL DISTANCES)
1 2 4 6 Ratio=Hi h Low

1.44

1.40

lit

1. 2

1.2

1.2

1.22

1.16

1.16

1.11

1.06

1.06

{~ Largest Sector Travel Distance (in '~Miles)

i~~~ Smallest Sector Travel Dis;tance (in Miles)
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of th~·workloads. However, the results still validate the

feasibility of an iterative procedure. Table 2 contains the

sector travel times for the 13 iterations.

It is worth noting that in the final design sector car

5 had a workload of 35% and sector car 2 had a workload of

56%, or 60% higher than that of sector car 5. This result

highlights the previously mentioned tradeoffs that exist in

sector design and underscores the necessity for police

manager involvement in making these tradeoffs.

3.8.4 Computational Experience: New Haven

In a recent technology transfer project involving the

New Haven Department of Police Services [ 3J, the non­

interactive program was used to explore how one particular

precinct's 13 configuration could be modified to improve on

imbalances in travel distances. In the succeeding para­

graphs we will describe how the program improved imbalances

in sector travel distances as well as its impact on the

other performance measures. The results display even more

clearly the potential of this sector redesign program since

the initial imbalance in sector travel distances as esti­

mated by the hypercube model was a factor of 2 as compared

to 1.44 in the previous example.

The iteration by iteration changes in the sector travel

distance and precinct wide average travel distance are

summarized in Table 3.3. Initially the minimum average
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sector distance was .46 miles, in sector 3. while the maxi­

mum was .92 miles, in secto~ 7. After fifteen iterations of

the program (22 c.p.u. seconds using 250K of core storage),

the imbalance was reduced to 1~29 with the maximum average

sector travel distance now .74 miles, 20% less than it was

before. However, once again, we find that this improvement

was at the expense of the precinct wide average travel dis­

tance which increased by 6% from .63 miles to g67 miles. In

addition there was a deterioration in the workload imbalance,

which changed from 1.29 to 1.59 (see Table 3.4). Interesting­

ly, during the first seven iterations, there was an improve­

ment in imbalances in both travel distances (from 2 to 1.78)

and workloads (1.29 to 1.19)~which suggests that within an

intermediate range of imbalances an improvement in one

imbalance (e.g. sector travel distance) need not be made

always at the expense of the other (e.g. workload).

Although this subsystem in general and its interactive

program in particular do not focus on imbalances in atom

travel distances, an attempt at reducing high sector travel

distances will naturally also impact on atom travel distances.

Table 3.5 describes how the distribution of response dis­

tances in the New Haven precinct changed as a result of

modifications in the sector design. Prior to the redesign,

five atoms had average travel distances greater than one mile,

with a high of 1.4 milese Four more had average response

distances between one mile and .9 miles. In the new design



Table-3.3 Balancing Sector Travel Distances:New Haven

I
l-'
o
N
I

AverageSECTORS ('rJ{AVEL ~D_ISTANCES)-. ... _... _v __.... -- 2 3 4 5 6 ...---- .... -F"!I .. ·I--··
___ .. ______ v ............__

.559 .513 :463 .689 .521
-n·

Initial .475 --~. 923 1.993 .6)4
~t-~} ·u·

1 .559 .513 .464 .688 .529 .510 .916 1.976 .634
J~~~ ~t.

2, - .561 .514 :465 .684 • 54'5 .566 :887 1.906 .630

3 .561 .515 ~1i65 G684 .547 *.572 .886 1.903 .630

.561 .516 ~it67
.)(,

4 .682 .561 .627 :869 1.863 .632

5 .561 .516 ~1f,67 .680 .574 .669 ~·848 le817 .632

-:467 ~}

6 .561 .516 .679 .581 .685 .842 1.803 .633

'1 .565 .516 :a68 .691 • _S80 .685 :835 1.783 8634
~t-* ~}

8 .564 .518 .469 .683 .653 .787 .799 1~702 .649
it-~} ~I-

9 .574 .521 .473_ .708 8655 .785 .760 1.659 .652
-l~i~ {~

10 .576 .523 .485 .709 .654 .783 .759 1.615 .652
~~·u·

-:76111 .597 .547 .580 .711 .649 .754 1.392 .658
i~~~ it-

12 .616 .565 .635 .719 .646 .755 .749 1.336 .666
-!!-~~ *13 .622 .577 .656 .728 .644 .740 .755 1.309 .669

.623
*{~ *14 .577 .657 .731 .644 .740 .751 1.302 .670

15 .627 {:~77 .657 .735 .645 * &737 1.286 .671.742



Table 3.4 The Impact On Workloads Of Balancing Travel Distances:New Haven

CAR vlORKLOADS
3 4 l

- - - - ~- - - - - - - - - - - r-»- ~"' - - ~ ~ -- - --- - --I -- ~--

Initial .43 .,38 (140 ·~45 038 ·:35 .42 1.286 .778

1 .43 ~~38 .40 ~44 .38 ~36 .41 1.222 .818
~!- ~}-i:-

~ .43 .38 .40 .44 .38 .37 .40 1.189 .841
~!- ~:-*

3 e43 ~.. 38 ~ .40~ . . 044 - .38- .37 .40 1.189 .841
~;. ~}~!-

4 .. 43 .38 .40 .44 .38 .'37 .19 10189 .841
~~ .;<-~~ ~~~!-

5 .43 .'38 .40 .44 .38 • '38 .38 1.158 8864
~~ **6 .43 c '~~8 .40 .44 .39 .38 .38 1.158 .864
* i~;t-

7 .43 .38 .40 .44 .38 .39 .37 1.189 .841

.43 .38 .40
;~

e43
·:t-i~

1.3758 .44 .40 .32 .727
~t- i~·U·

9 843 .38 .40 .45 .40 .43 ,31 1.452 ."689
;~ *i}

10 .43 .38 .40 .45 .40 .43 .31 1.452 .689
·n· ~r*

.66711 .43 .39 .41 .45 .40 .42 .30 1.500
.:t- *i!-

.66712 .44 .39 .41 .45 .40 .41 .30 1.500
~fo *~}

13 •44 .40 .41 .46 .40· ,. .- .41 .30 1.533 .652
it- if-*

14 .44 .40 .41 .46 .40 .41 .30 1.533 .652
-'t. ~~·u·

15 .44 .40 .41 :46 .40 .41 .29 1.586 .630

I
......
o

\.JJ
I

* Highes~ Workload *~~ Lowest Workload
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no response distance was greater than one mile and only two

were greater than .9 miles. Much of this improvement,

however, was obtained at the expense cf atoms with short

response distances as the number wi th response, 'distahces "of

less than .6 miles decreased from 33 to 12.

Table 3.5: Distribution of Atom Travel Distances:

New I-Iaven

Over 1
Mile .9-1 .8-.9 .7-.8 .6-.7 .5-.6 .4-.5 .3-.4

Initial 5 atoms 4 14 9 13 20 12 1

Final 0 2 13 21 30 10 2 0
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3.9 Atom Travel Time

3.9.1 Effect of Atom Transfer

In discussing the effect of an atom transfer on the

various atom travel times, two classes of atoms must be

considered: 1) the atom transferred and 2) the remaining

atoms in the sector, A, from which the atom was removed.

(E7) If the atom transferred, T, is closer (further)
to the center of gravity of its new receiving
sector than it was to the center of gravity of
its old sector, there will tend to be a decrease
(increar4 ) in the average travel time for that
atom T.

(E8) The remaining atoms will be affected in two ways.
For one, since there will be a reduction in the
sector car's workload, there will be a decrease
in the number of intersector (relatively far)
dispatches into the sector. This will tend to
reduce the atom travel times of all the remaining
atoms. '

(E9) Secondly, removing an atom, T, shifts the center
of gravity of the old sector in a direction away
from that atom, T. Consequently, atoms in the
direction opposite from atom T will now be closer
to the center of gravity of the seCtEr which
tends to reduce their travel times.

3.9.2 Computer Program

(ASl)

(AS2)

(AS3)

The program procedes to identify the atom with
the worst travel time, T.

A check is made to determine whether or not atom
T is closer ( and contiguous) to the center of
gravity of a sector other than the one to which
it is presently assigned. If the closest center
of gravity is a sector~C, other than its own, the
preferred option offered the user is to transfer
atom T to sector C. (E7)

The one (or two) atom(s), F, farthest away from
atom T that is in the same sector and also
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contiguous to another sector is offered as a
possible atom transfer. If that atom, F, is
contiguous to more than one sector, it is to be
transferred to the sector whose center of
gravity is closest (maintain compactness, C2).
(E9)

In most cases, step (AS2) will prove fruitless and only

(AS3) will yield any potential atom transfers. Unfortunately,

the last step (AS3) utilizes effects (E8) and (E9) which are

rather indirect as compared to (E7) and as compared to those

effects available in subsystems 1 and 2.

3.9.3 Computational Experience

In the initial sector design the district-wide average

travel distance was .543 miles. Atom 70 (worst) had an

average response distance of .965 while atom 23 (best) had an

average response distance of .446. It required, on the

average, more than twice as long (2.16) to respond to a call

in atom 70 as in atom 23.

The optimal design produced by the non-interactive pro­

gram was reached in 9 iterations. At that point, the worst

atom was atom 60 which had an average response distance of

.76, a reduction of 21% in the maximum average response

distance for the atoms. Atom 23 still had the lowest

average travel distance .477. The imbalance ratio (worst/

best) was now 1.59. still significant, but a major improve­

ment over the previous imbalance. Once again, part of the

decrease paid for by increasing the district-wide travel
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distance .584 (an 8% increase) and by increasing travel dis-

tances for atoms with a low average travel distance. Because

of this increase, the more appropriate measure of the program's

worth would seem to be the previously mentioned maximum average

response distance~for the atoms. By either measure, the

program significantly reduced the districts' imbalance.

However, there is still a great deal of room for improvement

and various modifications of the present program are being

explored to see if the imbalance can be reduced further.

Each iteration required, on the average, 1.55 cep.U.

seconds, about the same as for the sector travel time pro­

grame Table 3 contains a list of the initial and final atom

travel times.

To summarize, the computational results of the three non­

interactive programs indicate that an iterative procedure is

certainly feasible (time-wise). Each iteration requires a

maximum of 1~55 c.p.u. seconds and the number of iterations

needed to significantly reduce imbalances is not large.
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Table 3.6 Balancing Atom Travel Distances-:District 4,Boston

AVERAGE TRAVEL DISTANCE AVERAGE TRAVEL DISTANCE
ATOM ATOM

NUMBER INITIAL FINAL 1'1UMBER INITIAL FINAL
1 .494 .;42 36 .510 .500
2 .512 .583 37 .539 .581
3 .458 .522 38 .6)4 .678
4 .592 .690 39 .482 .522
5 .~40 .644 40 .507 .543
6 .512 .624 41 .580 .622
7 .501 .615 42 .611 .650
8 .534 .613 43 .537 .576
9 .484 .570 44 .651 .688

10 .458 .549 45 .710 .751
11 .448 .540 46 .623 .665
12 .575 .613 47 .547 .583
13 .529 .577 48 .539 .581
14 .508 .562 49 •.537 .605
15 • 5(}'t~ .560 50 .672 .733
16 e486 .567 51 8656 .675
17 .461 8539 52 .557 .606
18~ .463 .549 53 .485 .551
19 .463 • .521 54 .782 .584
20 .589 .629 55 .715 .695
21 .517 .563 56 .551 .625
22 .457 .488 57 .507 0568
23 {~~~ .446 -:}-:!- .477 58 .511 .556
2J~ .467 .509 59 .606 .672
25 i}~-. 446 .483 60 .640 ~~. 760
26 .484 ,,51.5 61 .604 .744
27 .485 .519 62 .591 .682
28 .506 .483 63 .640 .663
29 0499 .515 64 e709 .706
30 .462 .519 65 t)668 .720
31 .465 .54.5 66 .703 .533
32 .447 .538 67 .781 .542
33 tP460 .496 68 .819 .549
34 .536 .500 69 .757 .527
35 .662 .581 70 {~. 965 .688

{} Largest Travel Distance (in Miles)

*~r Smallest Travel Distance (in Miles)
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3.10 Amalgamate Sectors

The ~ifth subsystem will attempt to address the problem

of which sectors should be combined to form larger sectors

with a minimum imbalance in workloads. Because of the rela-

tively limited flexibility of design, allowing only for gross

modifications, (adding one sector to another rather than just

one reporting area), it may be impossible to come up with a

design that does not have significant workload imbalances.

In addition, as a result of this limited flexibility, it is

not possible to design an iterative procedure that parallels

the previous subsystems. In an iterative procedure that

would modify an initial beat configuration by transferring

areas the size of sectors, the changes in workloads would be

highly unpredictable because of the gross effects resulting

from each modification. In a sense it would be no better

than a poor unordered method of carrying out a total enumer­

ation of all possible combinations.

3.10.1 A Slowest ~scent Algorithm

At present, no model~r this subsystem has been devel­

oped but a number of directions are being explored. One

approach is analogous to a steepest descent algorithm. J For

example, given a police district divided into b beats where

there are only m cars to man, at least b - m + 1 and at most

2(b - m) sectors would be amalgamated into larger sectors.15

The algorithm looks at all possible ways of combining only
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two sectors and then chooses the one with the smallest im-

balance. The resulting design~has only b - 1 sectors pro­

ducing a sector design with only b - 2 sectors. The

algorithm stops when there are only m sectors left.

The upper bound for the number of combinations that

will have to be compared in the first iteration is

c~ = [b(b - 1)J/2. For b = 6 this is 15. However, it is

important to remember that because of a contiguity con­

straint, we combine only contiguous sectors so that this is

only an upper bound. In the initial design for District 4,

of the 15 possible combinations of the 6 sectors, only 8

satisfied this constraint. Although the number of combina­

tions increases as b increases, it is also likely that the

fraction of permissible combinations will decrease because

there will, in general, be only a very limited number of

sectors to which each sector will be contiguous. An

example of this are the 48 continental states. Of the 1128

combinations of two, only 105 combinations, less than 10%

would satisfy a contiguity constraint.

The slowest ascent algorithm, as described above, is

complete as is; however, it is envisioned that it will be

combined with a heuristic to reduce the number of combina­

tions considered each time. The heuristic would be a simple

procedure for characterizing which sectors are unlikely

candidates for doubling up.

As with the previous systems, this methodology would
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also allow for user interaction. After considering the

various alternatives for reducing the number of sectors

from b to b - 1 to b - 2, etc., the user would then be

provided at each step with information concerning the n

(user defined) best options for reducing the number of

sectors by one e
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3.11 Present stage of Developmen~

For eac~ of the first four subsystems, programs which

independently equalize either workloads, preventive patrol

coverage, sector travel times, or atom travel times have

been written, debugged and run for data of District 4 in

Boston. klthough the nature of user interaction for each of

these subsystems has been outlined, the structure of the

user interaction has not yet been translated into computer

programs. There are some questions that still have to be

resolved with regard to the form of user interactive programs

so as to make interaction as simple as possible. The ease of

interaction is critical since the computer models are intended

for the use of police managers with, at best, limited com­

puter experience. Before a final version of the model is

developed, it is hoped that feedback from various police

managers will provide ideas for improving the interactive

design but the basic format wil follow that of the inter­

active version of the hypercube model that was developed by

Weisberg [17J. The last subsystem, doubling up on sectors,

is still in the development stage and no computer programs

have been written yet.
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3.12 Summary

The models described in this paper -represent an itera­

tive approach to sector design. At each iteration a choice

is made between alternative sector designs and the choice

will depend upon the variables of primary and secondary

concern to the police managers. Experience with the indivi­

dual non-interactive programs has shown this approach to be

rapid enough to be feasible. The usefulness of these models,

however, will depend strongly on the individual police mana­

ger's ability to integrate quantitative and non-quantitative

variables in choosing between sector designs.
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FCOTNOTES J.

Determining what is a community's fair share of police
protection is a difficult task and is a problem not really
addressed in this chapter. It is hoped, however, that the
use of quantitative measures will at least facilitate the
evaluation of the level of police protection afforded each
segment of the community.

The ca.11 rates are deterlnille<l by 1J.~ir)G clEl.ta agg!~ega.lced for
for the time period (patrol shift) for which this sector
design is intended.

If two atoms are contiguous but there is a barrier between
them (e.g. a river), they are treated as if they were non­
contiguous.

Computational experience has shown that p should not be set
less than 5.

This problem can be avoided, to some extent , by constraints
similar to C4.

To simplify the analysis, each effect is treated as if it
were independent of every other effect though in fact the
effects are obviously related.

From now on it is to be understood that all atom transfers
have been first checked by procedure (GP5) to see if they
do not violate the contiguity constraint (Cl).

All computational results were obtained on an IBM 370/165
computer at the M.I.T. Information Processing Center.

Each effect is treated separately even though the effects
are interrelated.

However, one ripple effect is that by transfering the atom
to an adjoining sector and increasing its workload, the
average distance travelled on an intersector sector dis­
patch will tend to increase.

Computational results obtained by various modifications of
the initial sector design used here seem to indicate that
the district-wide average response time for this design
was close to the minimum possible.

Because travel speeds were set to be I, this number
represents the average distance travelled in miles.
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For consistency we continue our use of l the words precinct
to describe a collection of sectors and sector to describe
a single patrol unit's area of responsibility even though
in New Haven the respective terms are sector and beat.

The relationship between the distance to the center of
gravity of a sector and the atom travel times is not as
direct as it would seem. The reason is that the travel
time for sector car At to atom C is not calculated by
using the distance from the center of gravity of sector
A to the center of gravity of atom Co Instead it is
calculated by finding the expected distance sector car
A' must travel in order to reach the center of gravity of
atom C. The two are not equivalent. Larson [ ].

It is not always 2(b - m) because a larger amalgamated
sector car can be formed out of more than two smaller
sectors.
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CHAPTER 4

THE BASICS OF SEARCH THEORY APPLIED TO POLICE PATROL

4.0 Introduction

Classical search theory addresses two classes of prob­

blems. The first class centers about calculating the

probability of intercepting a target which exhibits certain

characteristics (e.g. stationary, non-stationary, evasive,

etc.) under a specific search pattern (e.g. random, parallel

sweeps, cross over barrier patrol, etc.) [18J. Included in

this class is the analysis of the operating characteristics

of the detection instrument, be it radar, sonar or simply

the human eye. The second class of problems involves the

determination of an optimal search strategy •

. In this chapter, we will begin our analysis of the

application of search theory to problems of police patrol.

The first sections of this chapter will focus on a basic

search theoretic model of police patrol which is used to

calculate the probability of intercepting a crime. The

presentation will include an analysis of each of the model's

input parameters as well as a discussion of the model's

implicit assumptions. However, the discussion of how to

obtain estimates of the various parameters and the inherent

difficulties in the task will be postponed until our presen­

tation of algorithms and examples in Chapter 6. Next, using

the basic model, we will explore the differences between

overlapping and non-overlapping patrol sectors.

\
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The second half of this chapter will focus on issues

relating to the optimal allocation of patrol effort. The

major part of this section will involve a fundamental analy­

sis of the characteristics of optimal search strategies when

targets (i.e. crimes) arrive randomly and independent of each

other and then depart after a rather limited duration. This

analysis will use Koopman's pioneering work L13J in search

theory as a background and show the limited applicability of

his results to the situation in which t~e targets exhibit the
,

above characteristics. The goal of this discussion will be

to develop a qualitative understanding of the search process

while pinpointing some misconceptions that have arisen in the

application of earlier search theory results to police patrol.

These qualitative concepts will be quantified later in Chapter

5 with the use of a differential equation model of search and

detection. Finally Chapters 6 and 7 build on the insights

developed here to create algorithms for deploying both tacti­

cal and standard patrol units.
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4.1 A Search Theoretic Model of Police Patrol

A number of recent papers [7, 8, 9 p 14 ,19 ,20 ] have

applied the work of Koopman [12J to the problem of calculat­

ing the probability of a randomly patrolling police car

i~rcepting a crime. The general model they follow, with

perhaps one or two minor modifications, is as follows:

t = the observable duration of a crime,

d = probability of detecting the crime conditioned upon
passing it in progress,

m = the total number of street miles in the area patrolled,

s = the speed of patrol,

Pi = probability of interception

where Pi = 1 - exp(-s • t · dim) (4.1)

The exponential form of this equation stems from the use of

the expofiential distribution as an approximation to the

binomial distribution. The actual underlying model of patrol

(the justifiction for equation (4.1)) treats the patrol path

of s • t miles as a series of very small independent paths

of length Ie. On each path of length Ie, the probability of

finding the target is (1 - d • le/m). Consequently a path

of length sot miles has a probability of (1 - d • 1e/m)st/1e

of not finding the target and [1 - (1 - d • 1e/m)st/leJ of

finding it. Applying the exponential approximation to this

binomial distribution yields equation (4.1).

In introducing this first basic model of patrol a num­

ber of assumptions were made. Some were made so as not to
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complicate our initial discussion of the model and will be

relaxed later with only minor modifications of the model.

While some others can not be eliminated without necessita­

ting an almost entirely different approach to modeling

police patrol. In the first category falls the assumption

that at the time the crime is committed the patrol unit is

on patrol and not responding to a call for service. Con­

sequently this initial model is more relevant to a tactical

patrol force or to the patrol units in a split patrol force

that do not generally respond to calls for service. Later in

section 4.1.2, we modify the model to make it applicable to

standard patrol units which spend a good percentage (often

more than 50%) of their time on tasks other than patrol.

Secondly equation (4.1) calculates the probability of

intercepting a crime of a fixed observable duration of t

minutes. However of at least equal importance is the ability

to carry out similar calculations for crimes of a specific

class (e.g. street robberies) whieh may have a common mean

but whose observable duration is a random variable. In

Chapter 6 we discuss calculating the probability of inter­

ception when a probability distribution is given for the

observable duration.

One assumption that can not be modified without immedi­

ately getting enmeshed in complex game theoretic modeling is

that crimes occur independent of the location of the pat­

rolling vehicle. One justification for making this
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assumption is that we are considering only randomized non­

predictable patrol strategies. This unpredictability limits,

but by no means eliminates, the potential usefulness to a

criminal of knowing the location of the patrol unit when

committing a crime. For example, a criminal might wait

to commit a crime until he knows that the patrol unit is at

the other end of the sector. This would provide him with a

minimum time span in which he need not be concerned about

being intercepted by a passing patrol unit. \Vith a standard

patrol unit there is an additional potential violation of

the independence assumption. Criminals may monitor the

police radio in order to initiate their crimes when the local

sector car is busy responding to a call for service [14J.

Should it be found that criminals frequently use information

about the location and status of patrol units when committing

crimes, then the potential applicability of equation (4.1)

and var~tions on it would be limited. One would expect though

that at least for unmarked patrol units (e.g. taxicabs) with

police officers in civilian clothes the validity of the

independence assumption would not be a significant problem.

In addition Larson [14J suggests a number of strategies

(e.g. overlapping patrol sectors) which can be used to

reduce the gain to a criminal of monitoring an individual

patrol unit's activity. These strategies would thereby

restore the independence between the time and location of a

crime and the status of a patrol unit.
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Although the above equation will be discussed throughout

this and succeeding chapters, for now we would like to comment

briefly on just one of i~~components. The observable dura-

tion of a crime, t, is perhaps, the most critical parameter

of the equation. It represents the amount of time (in search

theory terminology: the total search effort) available to a

single patrol unit to detect a random crime even though that

patrol unit may have four or eight hours to spend on preven­

tive patrol. Its small magnitude, often two minutes or less,

is a major reason why even very few potentially observable

crimes are ever intercepted by patrolling police units. The

only way to increase the amount of search effort available is

by adding patrol units. Doubling the number of patrol units

doubles the available search effort, but unfortunately does

not double Pi' the probability of interception, because of

the exponential nature of equation (4.1). When additional

units are added, the model becomes

n = the number of patrol units,

p. = 1 - exp(-n • s ~ d • tim)
~

This equation applies if each unit patrols its own separate

sector of min miles. Also, by making a number of minor

assumptions (to be discussed in the next section), it can be

shown to apply as well to n units patrolling randomly the

entire m miles.
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4.1.1 Manpower Requirements

Equation (4.2) does not represent a manpower allocation

formula. However, by looking at the inverse (i.e. solving

for n), it is possible to determine the number of patrol

units needed to obtain a specified level of interception, Pi

(see Elliott [9 J) .

n = (-m/s • t • d) In(l - Pi) (4.3)

In using this equation, it is once again important to under­

stand the impact of t, the observable duration of a crime.

To obtain the same specified level of interception, signifi­

cantly different manpower levels will be required for the

crimes of purse snatching and commerical burglary because

their durations vary so tremendously. Consequently careful

consideration of the duration of various crime types should

be given before developing crime specific desployment strate­

gies. This awareness, in fact, may be the critical factor

in choosing between totally different strategies--whether

to increase patrol strength or set up decoys. In pursuing

this approach, an obvious prerequisite is the estimation of

the duration of the various crimes. (This issue will be

discussed later in Chapter ~)

4.1~2 Standard Patrol Car

The previous discussion and equations more accurately

model a patrol unit W}lose sole responsibility is to search for
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crimes (e.g. a tactical patrol unit) rather than the typical

patrol car which spends a significant fraction of its time

responding to calls for service or handling matters totally

unrelated to crime. To model the latter case the equations

must be modified to allow for the fact that at the time the

crime is being committed the patrol car may be responding to

a call for service elsewhere or may be otherwise occupied.

Let b = the average fraction of time a patrol unit is
busy and therefore not on patrol.

If t is small in the sense that during the entire duration

of the crime a unit is likely to be either busy or free,

then equation (4.1) becomes

p. = [1 - b] · [1 - exp(-s • t • dim)] (4.4)
1

If, however, t is large such that during any time period a

patrol car will be busy about (b • t) minutes, then a good

approximation could be

Pi = 1 - exp[-(l - b) • s • t · dim)]

For an intermediate range of t the equation becomes more

complicated.

f(a) = the probability density fUnction-of the fraction of
time available for" patrol during the period of
t minutes.

1
p. = !

1 a
f(a) • [1 - exp (a • s • t • d/m)Jda

(4.6)
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In this last expression the average available fraction of

free time, (1 - b), is replaced with a probability distri­

bution, f(a). This distribution, though, is not easy to

determine because each unit's time available for patrol is

a complex function of its interactions with the other patrol

units in its precinct. (It will often respond to calls in

other sectors as well as vice vers~) Its calculation

requires a not at all obvious extension of the hypercube

model. This is because the points in time at which an in­

dividual patrol unit becomes available for patrol do not

constitute a renewal process [11J.

Naturally, of the above three equations, the last is the

most accurate. However, given the complexity of determining

f(a) and the relatively short observable duration of crimes

as compared to the time spent on a call for service, we

suggest using expression ~.4) as a good approximation,

albeit overestimation, for the probability of interception.

In Chapter 7 we use this approximation in developing

algorithms for finding the portion of a sector, in which a

standard patrol should concentrate its efforts.

4 8 1.3 Parameter Control

At this point it may prove useful to review the various

parameters to see what control can be exercised to increase

the probability of interception [4 J. Obviously n, the

number of patrol cars, can be increased. Also, b, the

fraction of time busy, can be decreased by changing the
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dispatch policy to eliminate service calls that could be

handled, just as well, by someone other than a patrol

officer. This will result in an increased probability of

intercepting a random crime. For example decreasing b from

.6 to .4 by definition increases the patrol units availabi­

lity, (1 - b), from .4 to .6. The result is a 50 percent

increase in the probability of interception as calculated

using the approximation (equation 4.3). However, this

increased interception rate will not necessarily generate

an equivalent increase in the actual number of arrests

since criminals may react to the increased patrol by shift­

ing their activities elsewhere. This issue of the impact

on crime patterns of increased or concentrated patrol will

be addressed in greater detail in Chapters 6 and 8.

The speed at which officers patrol, s, can also be

increased; however, there is an inverse relationship bet~

ween s and d since increasing the speed reduces the probabi­

lity of observing a crime in progress [8J. On the other

hand, there are alternatives for increasing d without

reducing the speed of patrol. Better street lighting would

increase the observability of street crimes. Instituting a

concerted effort to have homeowners leaving for extended

vacations notify the police would also increase the probabi­

lity of a passing patrol car noticing a burglary in progress.

Any activity around the vacated house would immediately be

suspicious. Similarly a blinking light attached to the
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front of a store that a storeowner triggers to signal a

robbery in progress would have a similar effect. To some

extent m, the number of street miles, can also be con­

trolled by concentrating patrol in the highest crime areas.

Lastly, one pessimistic note of interest can be sounded with

regard to t, observable duration of a crime. Increasing the

frequency of patrols may cause criminals to work faster

thereby reducing t.
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4.2 Comparison of Overlapping and Non-Overlapping Patrol

Earlier we had stated that for an n man tactical patrol

force, totally overlapping and non-overlapping patrols have

the same probabiity of intercepting a random crime assuming

that crimes arise in a geographically homogeneous manner. In

this section we will outline a proof of this as well as

specify the underlying assumptions. In addition we will

show that for a standard patrol force (often busy responding

to calls for service) the two policies are not equivalent

and th~for a specific set of assumptions overlapping pat­

rols have a higher probability of interception. Lastly at

the close of this section we will digress from the search

theoretic models in order to apply the hypercube queuing

model [15J to measure how overlapping and non-overlapping

patrols compare with regard to travel time.

4.2.1_ Probability of Interception

The first problem to be addressed is the calculation of

the probability of interception for non-overlapping and

overlapping patrol when carried out by a tactical patrol

force. If the region (m street miles) is divided into n

separate sectors then each patrol unit is patrolling min
street miles. In addition, since crimes are assumed to arise

uniformly over the entire region, the probability of a

random crime occurring in any particular sector is lin.
Thus the probability of intercepting a random crime with
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non-overlapping sectors is just the sum (over all sectors)

of the probability of a crime occurring in sector j and

patrol unit j discovering it.

n

Pi = l
j=l

= 1 - exp ( -s • t · d • n/m) (4.7)

If on the other hand all n patrol units independently

patrol the m street miles then the probability of a particular

patrol unit, j, not detecting the crime is exp(-s • t · dim).

(This is an approximation in that we have not included a

second order effect, which involves unit j not intercepting

the crime because mother tnithas already intercepted it.)

Since each unit patrols independently of all the other units,

the probability of none of the n units intercepting the crime

is

[exp(-s • t · d/m)Jn = exp(-s • ted • n/m)

and

p. =1 - exp(-s • t · d • n/m), J.

tt16 same as before.

The above analysis could have been performed similarly

for geographically non-homogeneous crime rates and the result

would have been the same. The only change in the analysis

would have been that the lin term in equation (4.7) would
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have to be replaced by Pjc' the probability of a crime

occurring in sector j given that it occurs somewhere in the

entire region. However, since the sectors are still of

equal size and the Pjc sum to one; Pi' the probability of

interception, does not change~

Although we have shown that for equal sized s~ctors the

search theoretic model produces the same probability of inter­

ception for totally overlapping and non-overlapping patrol,

it would be incorrect to infer that the two strategies are

totally equivalent. As we have noted earlier, the search

model assumes that the criminal selects his victim indepen­

dent of the location of the patrol unit. This, in fact,

may not always be the case. Larson [14J points out that one

advantage of overlapping patrol is that a criminal would

have to keep track of all n patrol units in order to be sure

that no patrol unit were nearby; while for non-overlapping

patrols, he would only have to keep track of the local sec­

tor car. Thus from this perspective overlapping patrol might

have a greater chance of catching(or perhaps deterring) a

criminal. Conversely, non-overlapphing sectors allow a pat­

rol unit to become better acquainted with its sector,

therefore enabling it to notice more easily things which are

out of the ordinary. The above two examples represent but a

few of the issues that need to be considered when comparing

overlapping and non-overlapping patrol but which are not

incorporated into the search model. Throughout this section,



-133-
though, we will be focusing on either one or two performance

measures with our models. In the process we will be making

a number of assumptions as well as leaving out numerous other

issues (in general those that are not easily quantifiable)

which should be kept in mind when translating our results

to a specific application.

4.2.2 Standard Patrol Unit

In contrast to the previous discussion, the probability

of interception by a standard patrol unit will be different

for overlapping and non-overlapping patrols. Using equation

(4.4) which assumes crimes of relatively short duration, we

will compare non-overlapping and overlapping patrol strategies

for standard patrol units. Three characteristics of the

specific problem to be discussed are

1. Crimes arise uniformly in space.

2. The fractio!l of time each unit is busy is b and is
independent of the particular policy.

3. Each sector is the same size.

For two patrol cars each patrolling its own sector and

for small t, the equation for the probabi~ty of interception

is

2

Pin = 2:
j=l

t · [1 - b] • [1 - exp (-2 • s • t • dim]

= [1 - b] • [1 - exp (-2 • s • t • dim)] (4.8)
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In this expression the 1/2 is the probability of the

committed crime occurring in sector j and (1 - b) is the

probability that the patrol unit in sector j is free and on

patrol. With a totally overlapping patrol pOlicy the proba­

bility of interception, Pic' is

P. = [(1 - b)/ (1 + b)] • [1 - exp(-2 • s • t • dim)]
~o

+ [2b· (1 - b)/(l + b)] • [1 - exp(-s • t • dim)]

The terms [(1 - b)/(l + b)J and L2b • (1 - b)/(l + b)]

represent the probability that two or one server respectively

is not busy. (See Appendix B.) Thus the first term in

expression (4.9) is the probability of~ntercepting a crime

and both units are on patron and the second term the proba­

bilty of (intercepting a crime and only one unit is on

patrol).

In Appendix C it is proven that for the above example

the probability of interception with an overlapping patrol,

p. , is higher than that for a non-overlapping patrol, p .•
10 1n

The magnitude of this improvement is

Pic - Pin = [b 0 (1 - b)/ (1 + b)J 0 [2(1 - exp(-sot.d/m))

(1 - exp(-2 • s • t · dim)]
(4.10)
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An analysis of this gain shows that it is directly propor­

tional to the probabili~of only one server being busy. In

addition it monotonically increases as s or t increases.

However the difference will be very small since the expression

[2(1 - exp(-s • t • dim)) - (1 - exp(-2 • s • t • dim))] is

close to zero. If the product, s • t • dim were .01

(approximately one percent chance of intercepting a crime)

then the expression is equal to approximately .0001. In

general these results seem to be analogous to the improve­

ment produced when two one-server queuing systems merge into

a one-queue, two-server system.

The above small improvement should not, however, be used

as the real measure of the potential improvement that can be

generated from overlapping patrol. Up to now we have con­

sidered only uniformly distributed crimes•.Although it is

easy for a police decision maker to allocate his resources

when crimes are distributed uniformly, non-uniform crime

rates allow for the concentration of patrol in the areas of

high crime which would result in an overall higher probabili­

ty of intercepting a random crime. In our concluding remarks

on interception probabilities for both patrol strategies, we

will outline some of the differences between the two strate­

gies when calls are not distributed uniformly and the work­

loads are not the same.

Assume sector A has high crime and call for service rates

and sector B, low crime and call rates. Consequently, if each
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sector is assigned a single patrol unit, we would expect for

~he unit in sector A to have the higher workload (even though

we are allowing intersector dispatches). The result is that

the area with the higher crime rate has fewer hours of pre­

ventive patrol and consequently a smaller probability of

intercepting a crime there given the sectors are the same

size. If instead, the two units jointly patrol the two

sectors ahd call assignments are alternated, then,first of

all, both units will have equal workloads which is an

advantage in itself. Secondly, the higher crime rate sector

will receive at least an equal share of patrol coverage.

Perhaps more importantly the overlapping patrol policy pro­

vides the added flexibility to allocate an even larger pro­

portion of the patrol effort in the higher crime area which

is not possible when each patrol unit is assigned to its

own sector. (It should be noted that the same type of

flexible patrol allocation can be accomplished also with a

split patrol force in which the responding cars are assigned

separate sectors and the remainder of the patrol force is

assigned to the highest crime areas.)

The potential payoff from being able to allocate a

greater proportion of the patrol effort to the area where

it is needed most will be significantly greater than the

queuing type improvement discussed earlier in this section.

Tne magnitude of the improvement will be directly related

to the degree of nonuniformity in the crime rate and the

amount of imbalance in workloads. For example assume sector
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A generates 60% of the crimes and that its patrol unit's

workload is .60 while sector B generates only 40% of the

crimes and its unit's workload is .40. Secondly assume

that the product, s • t · dim, is .01. Thenby changing

from non-overlapping to overlapping sectors and even allo­

cating patrol effort in proportion to the crime rate

(which is not the optimal strategy) there would be approxi­

mately an 8% increase in the probability of interception.

With an optimal allocation it would improve by 10% or more.

However, before rushing off to recommend a change from

non-overlapping to overlapping sectors, the impact of this

type of change on other performance measures must be evalua­

ted. In the following section the focus will be on average

travel time (which is also related to catching a criminal at

the scene of the crime [21J) which in contrast to intercep­

tion probability generally improves under non-overlapping

patrol.

4~2.3 Overlapping Sectors: Impact on Travel Times

Larson in his book, Urban Police Patrol Analysis ~4],

discusses overlapping sectors as a potentially more flexible

alternative to the more widely used non-overlapping sectors.

The major advantages of overlapping sectors are that it

decreases the probability of patrol coverage being reduced to

zero and, in general, increases the difficulty for a criminal

to monitor the activity of patrol units and plan his crimes
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accordingly. One issue Larson addressed in depth, as part

of an evaluation of car locator systems, was a comparison of

travel times in a system with over lapping sectors and per­

fect car location information and travel times in current

systems with non-overlapping sectors and no explicit car

location information.

The general conclusion was that:

"If sectors were eliminated and each car were to patrol
uniformly one large area, independently of other cars, and if
perfect resolution car location information were used to
dispatch the closest available car, then the travel time
characteristics of this overlapping sector system are nearly
identical to those of SCM (strict center of mass dispatching;
see Glossary for definition) system with nonoverlapping
sectors."

Since his discussion of overlapping sectors was presen­

ted in the context of evaluating an automatic car locator

system (which makes it feasible for even all of a precinct's

units to patrol the entire precinct), the focus- was on

comparing overlapping patrol with perfect car location infor­

mation to non-overlapping patrol under SCM or MCM (modified

center of mass; see Glossary for definition), In this sec­

tion, we will present a much more limited discussion than

that of Larson of the impact on travel times of overlapping

patrol but with no car location information. The tool to be

used in this analysis is the hypercube model which has the

capability of modeling various levels of overlapping patrol

[15 J. Our focus will be on combining only two sectors. It

is a policy that can be implemented without an automatic car

locator system and is presently used in varying degrees by
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many police departments in the United states o We will assume

that a patrol unit's available time is divided among the

sector's atoms in proportion to each atom's call rate. The

dispatch policy will be MCM with one modification needed to

describe the dispatching of patrol units within overlapping

sectors. In our examples one of the pair of patrol units in

the overlapping sectors was designated the primary responding

car. When a call for service arises in the overlapping

sectors, the primary car is always sent if it is available

and only when it is not available is the other patrol unit

dispatched. In general, though, the impact of overlapping

patrol on travel times would be essentially the same if,

instead, calls were shared equally by the two patrol units.

For a range of average workloads (from a low of .1 to a

high of .9) we ran the hypercube model twice, using data from

District 4 in Boston [16J. In one set of runs, sectors 5 and

6 were separate; in another they were combined to form one

larger overlapping sector. (Calls for service were allowed

to be queued.) For low utilization there was a significant

degradation of travel times (See Figure 4.1). When the

average workload was .1, combining the two sectors increased

the average travel time to the combined region by 53%; for an

average workload of .30 the . increase, although smaller, was

still 30%. As the average workload increased further to .50,

the difference in travel times was reduced to 15%. Thus as

the average workload increased the deleterious impact on
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travel times continues to decrease and as the system nears

saturation (average workload .9) the differences between

overlapping and non-overlapping are almost eliminated (1%

difference).

The explanation of this phenomenon is as follows. With

low average workloads and non-overlapping sectors, almost all

calls for service in sector 5 will be answered by the patrol

unit located in the same sector; the srone is true for sector

6. However, when the two sectors are combined, the car that

is dispatched to a call in sector 5 will often be (approxi­

mately 50% of the time) on patrol in sector 6 and have to

travel much farther to the call. (Remember we do not use or

have car location information.) However, when the average

workload increases, even with non-overlapping sectors the

• patrol car in sector 6 will be sent frequently to calls in

sector 5 because the local sector car will often be busy

answering another call. In addition as the average workload

rises significantly, larger and larger proportion of calls in

sector 5 will be answered by sector cars that are even

further away than car 6. As the proport}on of these overly

long travel times increases, they will tend to dominate a

statistic such as the average travel time thereby reducing

further the impact of overlapping pairs of sectors.

An interesting footnote to the comparision of the two

policies is that the imbalance in response times between

sectors 5 and 6 was not very different for the tw~ policies.
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Ratio of Travel Times

OVERLAPPING SECTORS
NON-OVERLAPPING SECTORS

/.'7

/.5

1.1/

1.2.

1.1

. I .3 .7

AVERAGE WORKLOAD

Figure 4.1: A Comparison of Travel Times for
Overlapping and Non-overlapping Sectors
for a Range of Workloads
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For a .30 average workload, sector 5 had a 23% higher travel

time than sector 6 with overlapping sectors and a 30% higher

travel time with non-overlapping sectors. With a .50 av~rage

workload, sector 5's travel times were 34% and 36% higher

with overlapping and non-overlapping patrol respectively.

4.2.4 Conclusions: Overlapping vs. Non:Overlapping Sectors

The only clear cut conclusion about the preferred strat­

egy that can be stated with any certainty is that it will

depend upon the particular circumstances. With this in mind

we will present our conclusions for a number of situations;

at times, however, our cmclusions will be merely a clearer

statement of the tradeoffs that the decision maker should

c~nsider. Our presentation will first focus on situations

in which a car locator system is not available and later

discuss how the recommendations would change if a car

locator system were available.

Two nonquantifiable issues that will be relevant to each

of the situations discussed are l)Overlapping,patrols reduce

the criminal's abilbity to choose his place and time in such

a way that he is assured of not being spotted by a passi.ng

patrol car; 2)Non-overlapping patrol enables the ratrol

officer to obtain a better knowledge of his particular sec­

tor. Each decision maker must assess the relative importance

of each of these issues in his locality. Do criminals
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frequently plan their activities by monitoring patrol move­

ments? How critical is it for the patrol officer to develop

an extensive knowledge of the~mmunity he patrols?

With these issues as background, we proceed with a

presentation of our conclusions for five different situations:

1) No Car Locator Information: Relatively Homogeneous
Call Rates and Crime Rates

If the crime rate in a region were relatively homogeneous

and no serious workload im0alances existed, then essentially

the only advantage to overlapping patrol is the above mentioned

difficulty of tracking. However, in the range of workloads

within which most police departments operate overlapping

sectors would significantly increase travel times, anywhere

from 15 to 50 percent. Thus unless there were hard evidenceJ

to show that many crimes were planned and committed so as to

coincide with the sector car being either unavailable or far

away, non-overlapping sectors are preferable.

2) No Car Information: Low Utilization and Non-Homoge­
neous Call Rates and Crime Rates

Given the tremendous increas~ in travel time (on the

order of 50%)lthat would result from changing to overlapping

sectors it would require extremely large disparities in crime

rates to justify the change. It is important to remember

that even for large disparities in crime rates the tradeoff

under consideration is not just between higher police initia­

ted interceptions and higher citizen -initiated (police

responding) on site apprehensions. The average
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travel time has wider significance since police also respond

to a large number of non-criminal emergencies. In addition

citizen perception of the quality of police services may be

directly related to the rapidity with which police respond

to a call for service. In short it would be necessary in

this situation to etimate accurately both the impact on

travel time and the potential increase in interception proba­

bilities resulting from a better matching of patrol to crime.

However we would expect the significant increase in travel

time to outweigh the other benefits.

3) No Car Location Information: High Utilization and
Non-Homogeneous Call Rates and Crime Rates

Once the utilization approaches .50, the increase in

travel times resulting from overlapping sectors would seem

to be in an acceptable range (15%) given other benefits that

may accrue. With the variations in call rates, we would ex­

pect imbalances in workloads and an even more serious mis-

allocation of patrol effort. With the potential for increas­

ing interception probabilities by more than 10%, overlapping

sectors are an attractive option to seriously consider.

Under these circumstances it may be that the other issues we

have mentioned will decide the issue in favor of one policy

or the other.

4) Car Location Information: Homogeneous Call Rates
and Crime Rates

With the introduction of a car locator system, travel time
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is no longer a serious consideration. However because call

rates are geographically homogeneous, there is no real pros­

pect of directly improving interception probabilities through

the better allocation of patrol effort. The choice thus

evolves into an analysis by the decision maker of the two

issues with which we began this discussion, monitoring diffi­

culty vs. neighborhood familiarity.

5) Car Location Information: Non-Homogeneous Call
Rates and Crime Rates

The preference for overlapping sectors seems to be the

most clear cut in this situation. Overlapping sectors would

allow a better allocation of patrol without significantly

degrading travel times. The only drawback would therefore

be that with the larger regions topatrol, patrol officers

may lack the intimate knowledge of their area that they

might otherwise have.
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4.3 Problems in Applying Search Theory to Patrol Allocation

The second question that hasbeen approached from a

search theoretic viewpoint is the allocation of police pat­

rol effort in a region where the spatial distribution of

crimes is non-uniform. On this problem Larson [14J has

brought to bear graphical techniques of Koopman [13J

while Olson ~9 ] has made use of the equivalent but more

easily computerized analytical techniques developed by

Charnes and Cooper [5 J. In applying these techniques to

the allocation of patrol both authors have constrained the

patrol car to patrol in a random2 manner with a resultant

reduction in the theoretical efficiency [14J. The motivation

behind this type of patrol, as was mentioned earlier, is that

it reduces the possibility of evasive action (a difficult

thing to model) on the part of the criminal. Elliott [9 ],

on the other hand, in allocating police resources has used

a linear approximation to the exponential distribution to

calculate the probabil~ of interception. He then proceeded

to develop a method for finding a totally deterministic

patrol route which would optimize the probability of inter­

ception of a crime.

4 e 3.1 Classical Search Theory: The Allocation Problem

Before proceeding to analyze the allocation problem in

the police context, it is necessary to provide first a brief

introduction to the classical search theory problem. For
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simplicity, assume there are three regions, A, B, and C, of

equal size but with different probabilities (which sum to 1)

o'f a target being locatad in each and a total available

search effort of 1 hour. Assume further that A has the

highest probabilitiy of the target's being in it, B the second

highest, and C the lowest. The optimal search strategy might

be to search A for 40 minutes, B for 20 minutes and C not at

all. This optimal solution would satisfy the following

equilibrium characteristic.

A differential increase in the search allocation to A,

dta , and a differential increase in the search of B, dtb , will

increase equally the probability of interception, p. or
1.

dPi dPi
dt

a
- dt

b
• In addition, both differential increases, dta

and dtb • have higher payoffs than an initial allocation of

search to region C. However, as more than 1 hour becomes
dPi

available, because there is diminishing return (dt is
a

decreasing as t a increases), the region C will eventually

be allocated some search effort. Conversely, if less than

one hour of search were available, for example only 5

minutes, it is conceivable that the optimal solution would

direct all search efforts to region A. In short, the less

effort available, the smaller the region to be allocated

search.
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4.3.2 Applyin6 Classical Sea£9h.Theory

In applying the Koopman and Charnes and Cooper tech­

niques to police, the time t, the observable duration of a

crime, once again plays an important and unfortunately dual

role. For one thing t, or a multiple of t for several pat­

rol units, repr~sents the total search effort available for

allocation and not the eight hours of patrol. Because t is

typically very small, often less than five minutes, the

likelihood that the~timal solution will be to patrol only a

very small high crime area is great. Secondly, an optimal

allocation (using classical search theory) for a 5 minute

crime, of three minutes in region A and two minutes in B,

does not directly address the problem of how to allocate

the 4 hours or more available for patrol. An initial res­

ponse L 14.] might be to spend three fifths of the time (2.4

hours) patrolling A and two fifths of the time (1.6 hours)

patrolling region B. However, there is a fundamental dis­

tinction between patrolling A for 2.4 hours and thmpatrolling

B for 1.6 hours andpatrolling B for 2 minutes, A for 3

minutes, etc. Under the former strategy after the first

three minutes in A and later after the first two minutes in

B, the search is incurring a diminishing return that was not

accounted for in the original solution (i.e. In the original

solution no search effort and consequently no diminishing

return occurred beyond the basic 3 minutes in A and 2 minutes

in B.) This second constraint seems to place infeasible
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limitations on implementing the optimal strategy, especially

when one uses numbers like 45 seconds for a street robbery

[~qJ. This fact alone raises serious questions about the

straightforward applicability of search theory to finding

optimal strategies for looking for crimes of a short duration.

4.3.3 Implicit Assumptions

All even more fundamental objection must be raised,

however, to the earlier applications of search theory to this

problem. The equations used for calculating the probability

of interception were similar to equation (4.1), which is of

the form amenable to the classical search theory approach.

This equation, however, as previously mentioned calculates

only the probability of interception 90nditional on a crime

occurring. In allocating search effort, though, at the time

the search begins, a crime mayor may not be in progress and,

. even if it is in progress, its observable duration over the

time period of the search may no longer be t. In essence no

adjustment was made for the fact that crimes are starting and

ending at random points relative to the start of the search

effort. In effect a straightforward application of search

theory makes the following unacceptable implicit assumptions:

1. Crimes occur every t minutes.

2. Crimes last t minutes.

3. Patrol has started at the beginning of a cycle.



-150-

In the following sections we will do two thin@& Firstly,

equations will be presented for calculating the probability

of intercepting a crime during a search of fixed duration.

These equations will not be conditioned on the presence of a

target and will allow for the random arrival of a target.

They represent the more appropriate equations to be used in

allocating patrol effort if a classical search theory approach

is to be used. Following that, we will discuss in qualitative

terms, using basic search theory concepts (e.g. diminishing

return) how random independent arrival and short finite

duration of targets (e.g. crimes) impact on optimal search

strategies. The results of this discussion will be to lead

us in the direction of developing simple but potentially

robust heuristic patrol allocation algorithms (Chapters 6

and 7) which do not make use of the allocation methodologies

of Koopman [13] and Charnes and Cooper [5]e Instead they

will be designed to take advantage of some of the insights

we will develop here.

4.3.4 A Search of Fixed Duration

In order to avoid making the above three implicit

assumptions in attacking the allocation problem, the first

problem that must be resolved is the calculation of the pro­

bability of intercepting a crime of duration to minutes

during a search of tl minutes. However to simplify the

analysis we will consider only the situation in which, at
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most, only one crinle is present during the search. In addi-

tion crimes are assumed to arrive in a Poisson process.

Let A(t)= the probability that only one crime will
arrive during a time period of t minutes e

[1 - exp(-set.d/m]dt2

1) The simplest case to solve is for tl=tO'

to
Pi = A(t1 + to) · !

o

to
· rl -::: A( 2tO) e J 1 exp(-s.ted/m]dt (4.11)

to ..
0

'I'he first term, A(tl + to) • is the probability of one crime

occurring that could be detected during the search. It

includes the possibility of a crime beginning before the

search begins but which is ~il1 present (because of its

finite duration) when the search gets underway as well as a

crime which begins after the search has begun but before the

search has ended. Because of the Poisson assumption, if an

observable crime occurs, the probability distribution for the

point at which the crime begins is uniformly distributed over

the t 1 + to minutes. This fact explains the presence of the

second term 1 The factor, 2, is introduced beacuse
tl+to •

there are two equally likely possibilities for a crime to be

present for t minutes during the search. Either it arrived

after the s€arch began and there are only t minutes left in

the search effort or it began before the search commenced

(to be exact to - t minutes before) and will end t minutes

into the search. The last term is j~st the probability of
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intercepting a crime that is detectable for only a span of

t minutes.

2) For the case in which t1<to (i.e. the search is

shorter than the duration of the crime),

2 [1 - exp(-s.t.d/m)] dt

(4.12)

The explanation of the first half of this expression (the

integral) is analogous to that of the previous equation. The

crime may be observable for only part of the search in one of

two ways. Either it began during the search or it began at a

point more than to - t 1 minutes before the search did and

therefore will end before the search itself is completed.

The additional term is necessary to include all crimes that

began within to - t 1 minutes prior to the start of the search

(with conditional probability of to-tl) and were therefore
to+tl

detectable throughout the entire search.

3) The last possibility is tl > to (i.e. the search is

longer than the duration of the crime)

[JO 2 • [1 _ exp (-sotod/m)]
o to+t1

o [1 - exp(-sotood/ID)]] (4 0 13)
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The first component looks at the search for a crime which is

present less than to minutes. The second component accounts

for crimes for which the search effort of t 1 minutes totally

overlaps the duration of the crime.

None of the above equations represent exponential dis­

tributions and consequently existing search theory is not

easily applied to the optimal allocation problem. In addition

the three equations only consider one crime type of duration

to minutes. However, it is relatively easy to expand the

equations to allow for crime types of varying durations t 1 ,

t 2 , etc. This would be accomplished by introducing a summa­

tion of the various crime types weighted by their relative

frequency. Unfortunately, it will not be as easy to trans­

late optimal search strategies for single type crimes to

several types of crimes.



-154-

4 e 4 How Certain Charac~eristics of primes Impact on the

Optimal Allocation Problenl

The introduction of randomness in the arrival and/or

departure of a target is not a new problem. Blac tman [2 ]

and Blach.man and Proschan [3 ] have developed search strate­

gies that minimize the expected delay between the appearance

and detection of targets with unknown arrival times; however,

once the target arrives, i t never departs. Barnett [1 ] in a

more recent article developed some very interesting theorems

about optimum search strategies for targets with unknown

arrival times and finite departure times. Gilbert D-o ]
carried out a detailed analysis of the impact of random inter­

vals of target visibility on optimal search strategies and

compared the results to a blind application (making no correc­

tion for random visibility) of Koopman's allocation methodolo­

gy. Although Gilbert's results provide some important in­

sights into the crime detection problem, the problem we are

analyzing is sufficiently distinct from his (a point discussed

earlier in the literature review) to require a separate

analysis. Hopefully this analysis will complement the earlier

work and add yet another perspective to understanding the

impact of randomness and finite duration. This presentation

will, on the whole, be on a more elementary and fundamental

level than the earlier works. In the course of the analysis,

we will construct abstract examples in order to analyze indi­

vidually how the various characteristics of crimes (e.g.
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unknown arrival times) impact on optimal patrol strategies.

These examples are not, however, meant to be models of how

police patrol is carried out. The goal of this analysis will

be to develop a qualitative understanding of the' impact of

various factors within the context of the classical search

theory results of Koopman rather than to generate optimal

search strategi~s.

The analysis will address the following issues:

1) The nature of diminishing return from two perspec­

tives:

a. The ~ priori diminishing return that accompa­

nies the allocation of additional search effort.

b. Sequential (or marginal) diminishing return

occurs when conditional on not finding the tar­

get, the probability of locating the target

;during the next period of search is less than in

the previous period.

2) The impact on diminishing return of

a. unknown arrival times

b. finite duration

c. targets arriving independently of one another

3) In classical search theory when effort is allocated

between two regions A and ~, the order in which the

areas are searched is irrelevant.

a. Analyze the impact on this of random arrivals,

finite duration and independent targets.
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4.4.1 Diminishing Return

a) Assume a target is located somewhere in a region A

and the observer has a probability p of locating the target

with a single glance. If an observer makes two random glances

in the region he has a probability, Pa

(4.14)

of detecting the target. The increase'~Pa' in the total

probability of detection as a result of the second glance

is not the same as for the first glance (which was p) but

rather

2
AP = P - Pa

This example portrays the most fundamental form of dimini­

shing return which relates to the a Rriori allocation of

search effort. It should be noted, however, that from a

sequential point of view, the probability of finding the tar­

get on the second glance given that it was not found on the

first glance is still p.

b) Suppose a target is located with certainty somewhere

in either region A or region B and each region is broken into

four equal areas (Figure 4.2). In addition, the target is

twice as likely to be in anyone of the A boxes as in anyone

of the B boxes. Assume also that a single scan can survey an

entire box and determine with certainty if there is a target
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in that box. Consequently the probability of finding the

target with a single glance in region A is

Pa= 2/12 = .167

and in region B is

If two independent glances were cast in region A, the ~ priori

probability of locating the target is

and the increase in the probability of interception is

~Paa= Paa - Pa = 7/24 - 4/24 = .125

Again there is a diminishing return but now with one

distinction, that even when the search is viewed sequentially

there is diminishing return. Given that the target was not

found on the first glance, the probability of finding it on

the second glance is only

as compared to .167 for the first glance. This second form of

diminishing return results from the target not being constrained

to be in region A. Also if we look at the effect on B of the

first unfruitful glance in A, we find that the probability of

finding the target in B on the second glance has increased to
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as compared to .083 previously. In effect the conditional

probabilities of finding the target in A or B in the succeed­

ing glances have begun to change in opposite directions. From

this simple example it begins to become apparent why as the

available search effort increases there is a greater likeli­

hood that the optimal search pOlicy will include searching

region Be The two opposing effects that generate the above

property are very closely related but, as will be seen later,

they can be separated.

As the search of region A continues beyond the second

glance to a third and fourth glance, diminishing return con­

tinues. The result is that by the fourth glance the optimal

strategy would allocate that look to region B rather than

region A.

4.4.2 Unknown Arrival Times

To introduce randomness and yet analyze an almost

equivalent problem, the following case is constructed.

A target is always present in either region A or region

B with the relative likelihoods as displayed in Figure 4.2.

The one modification is that the target can remain in its

place for only the time span of two glances at which point

another target replaces it. The second target selects its

position independently of the first target's position but

with the same relative likelihoods as before. At the time
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the search begins the target is equally likely to have just

arrived as to have been present for the time period of one

glance. A first glance in A has a payoff of

p = 2/12 = .167a

the same as before. However, during the second glance we may

no longer be looking for the same target since the first one

may have disappeared. The probability of finding the target

on the second glance is now

Paa= 1/2 [3/4 • 2/10 + 2/12J = .1583

which is greater than the .15 obtained by the nonrandom case.

If the process is viewed ~ priori, then the probability of

finding the target with two glances in A is

Paa= 1/6 + 5/6 • (.1583) = .299

and

~p = .299 - G167 = .132aa

which is greater than the .125 for the nonrandom case. From

either vantage point, it is apparent that the introduction of

randomness in the target's arrival and departure slows the

process of diminiShing return because probabilistically we may

not be duplicating our earlier effort. The implication of

this is that under an optimal search strategy more effort

would have to be available in the random case than in the non-
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PROBABILITY OF INTERCEPTING A TARGET

Nonrandom Arrivals Random Arrivals
1st Look in A .167 .167

2nd Look in A .150 .1583

2 Looks in A .291 .299

3rd Look in A .1323 .1584

1st Look in B .088 .088

2nd Look in B after
1st Look was in A .100 .092

Figure 4.2: The Impact of Random Arrival and Departure

of Targets on the Probability of Interception and on

Diminishing Return
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random case before the equilibrium criterion suggests searching

B.

The above example can be easily extended to include con­

tinuous search. It is also apparent that as the lifecycle of

the target increases beyond two glances the rate of diminishing

return increases and in the limit approaches the non-random

arrival case.

4.4.3 Finite Duration

The next component of the random case to be evaluated is

the impact of the finite duration of a target. To do so we

will allow the search to continue beyond the second glance.

The third glance will again have diminishing return, increas­

ing the ~ priori probability of interception less than the

second. However, if we look at it from a sequential perspec­

tive, the probability offinding the target on the third

glance in A conditional on not finding it during the first

two is .1584. Thus diminishing return continued only as long

as the life (in this example two glances) of an individual

target. As a result, if it is not advisable to search B during

the first two glances, it is never advisable to do so. The

same will be true for the generalized continuous problem. For

targets (e.g. crimes) that last for a finite time period, t,

the conditional probability of finding the target in an in­

crement~ time period will approach and attain a steady state

value when the search is carried on for longer than t minutes.

,
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(The reason why in the above example there was an increase

from .1583 to .1584 is explained by the following, As a

result of not finding the target in the first two looks in

A, there is now a slightly greater than .50 probability (in

fact .505) that the target has just departed and that a new

target is arriving at the beginning of the third glance.

However, in the police context, with assumed Poisson arrival

of crimes, this phenomenon will not occur and a steady state

value will be reached.)

A somewhat intuitive explanation of this bound on

sequential diminishing return is as follows. Since a target

survives only t minute~ the fact that the target was not

fOUIld t + 1 minutes ago in a particular region can yield no

infornlation about whether the target is now present in that

region. Thus as a search is carried on longer than t minutes,

the searcher is continually gaining new information about the

likelihood of a target being present now but at the S~le time

the information that was obtained more than t minutes ago is

becoming outdated at the same rate. The system, in a sense,

is in a state of dynamic equilibrium as long as search is

continued.

4.4.~ Independently Arriving Targets

There is one final complication that has to be analyzed

before closing the door on diminishing return. For this

discussion there will no longer be a constraint on the number
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of targets present and in addition the two regions will

generate targets independent of each other although in the

same proportion as before (A generates twice as many as B).

In this case not finding a target in region A no longer

yields any information about the possible presence of a tar­

get in B. So that when diminishing return occurs in region A

there is no accompanying increase in the probability of

finding the target in B.

The above description of the impact of randomness on

diminishing return can be stmwarized as follows:

1. Randomness slows diminishing return.

2. Sequential diminishing return lasts for a period

equal to the duration of a crime. 5

3. Searching region A does not increase the potential

return from search in region B because of the in­

dependence of the two regions.

These three results compounded by the short duration

of crimes unite to increase the likelihood that the optimal

allocation of patrol (search) effort over several nonuniform

crime regions would be to concentrate on only the highest

crime region within the patrol sector.

4.4.5 Sequencing Search Effort

It was mentioned earlier that even with the straight­

forward application of search theory to the allocation prob­

lem there are serious constraints on implementing the
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optimal solution. For example, an optimal solution (for crimes

of 5 minute duration) of searching region A for 3 minutes and

B for 2 minutes can not be interpreted as equivalent to

allocating 60% of your effort to region A and 40% to B without

simultaneously constraining the search to be cyclical with

frequent shifting between regions. However, we will soon show

that randomness may require that the optimal strategy include

even more frequent shifts between A and B than are implied by

the finite observable duration of the target.

In allocation problems of the type that Koopman analyzed,

the optimal solutions are one dimensional in that they specify

'only the amount of effort to allocate to each region. The

manner in which this effort is carried out is irrelevant.

The probability of intercepting a target is the same whether

you search A for 3 minutes and B for 2 minutes or you search

A for 1.5 minutes, B for 1 minute, A for 1.5 minutes·and,

again B for 1 minute. In essence, for nonrandomly arriving

targets the only important aspect of the search is how much

territory was covered in each region 8 This fact is more a

consequence of the lack of time dimension or dependence in

the search rather than a result of the exponential form of

the equation (4.1) [6 J.
This concept of time independence is illustrated in Figure

4.3 which represents the sequential rate of return of a search

in one of two regions. As the search is carried out sequen­

tial diminishing return occurs. However, if the search effort
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is interrupted, put in abeyance, and resumed several minutes

later, the rates immediately prior to the interruption and

immediately after the resumption of search are the same, and

during the interruption the potential rate of return is con­

stant. In contrast to this, randomness introduces a time

dependence into the rate of return, Figure 4.4. When the

search is interrupted and later resumed, the rate of return

after the interruption is higher than before the interruption

because of new arrivals and throughout the interruption the

potential rate of return is increasing. Under these circum­

stances, it is fairly obvious that there is now a difference

between searching A for 3 minutes, B for 2 minutes and

searching A for 1.5 minutes, B for 1 minute, A for 1.5 minutes

and B for 1 minut~ with the latter strategy having a higher

payoff (but also being more difficult t~ implement by a patrol

unit). As a result of this phenomenon of time dependence, the

optimal search strategy must include both the quantity of

search allocated to each region and the sequencing of search~

In determining this optimal strategy, it is also necessary to­

realize that the two components are not independent.

It would now be useful to present a basic but interesting

case that displays the impact of time dependence on even the

quantity of searmallocated to each region. The easiest type

of optimal solution to implement is, of course, one that in­

volves a search in only one region, A. A necessary condition

for this type of solution is that the marginal rate of return
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SEQUENTIAL

RATE OF

RETURN

search no search search

Figure 4.3:The Sequential Rate of Return as a Function

of Time for Nonrandom Targets:Time Independent Search

SEQUENTIAL

RATE OF

RETURN

search

,
I
I
I

no search search TIME

Figure 4.4:The Sequential Rate of Return as a Function

of Time for Random Targets:Time Dependent Search
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at the end of t (the total available search effort) minutes in

A be greater than the initial return from search in B; however,

because of the time dependence factor, this is no longer a

sufficient condition. 6 The above condition means that 't'

minutes in A is preferred to- 't - dt' minutes in A followed by

'dt' minutes in B; it does not imply that ft' minutes in A is

preferred to 't/2 - dt' minutes in A, followed by 'dt' minutes

in B followed by tt/2' in A. In the latter case we are

balancing search effort in A against search effort in Band

an increased rate of return from the second half of the search

effort in A. An obvious question to be resolved is what are

necessary and sufficient conditions for allocating all your

effort to only one region?

A second interesting consequence of time dependence of

the search is as follows. Assume a target is present for 30

minutes. Then for nonrandom arrivals there is no distinction

between one unit searching for 30 minutes and two units search­

ing simultaneously for 15 minutes. However, with random

arrivals there will be a distinction between sequential and

simultaneous search with sequential search preferred. Similar­

iy increasing the nl~ber of hours of patrol in a sector by

reducing the length or number of busy periods of the sector

car has a higher payoff than an equivalent increase in the

number of patrol hours produced by adding manpower. In the

latter case, part of the additional patrol will be carried

out simultaneously with the already allocated patrol effort,

while in the former case the additional patrol will always
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be performed at points in time when there would otherwise

not have been any patrol in that sector.

4.4.6 Summary and A Differe~Approach to Patrol Allocation

In the preceding sections a number of general proper­

ties of a search for randomly arriving and departing targets

were discussedo Three factors were described: l)random

arrival, 2)finite short duration, and 3)independent targets,

which all tend to increase the likelihood (for nonhomogeneous

regions) that the optimal strategy will be to search only the

high crime area. A fourth facto~ which has a similar impact

and which will be duscussed in detail in Chapter 5, is the time

lost in travel between regions that are allocated patrol

effort. In addition we have described the difficulties

(because of time dependence) of implementing solutions that

would result from applying classical search theory to the prob­

lem. In order to exploit the realization that optimal strate­

gies will require the concentration of patrol to very limited

portions of a sector as well as to avoid generating unimplemen­

table theoretical optimums, we suggest approaching the optimal

allocation problem form a different perspective.

In classical search theory the allocation problem is posed

as follows:

o There exist several predetermined regions with varying
target probabilities. How should the available search
effort be allocated (and sequenced) among these regions?

An alternative to the above formulation which reverses the
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process is:

Assume that one and only one contiguous area will be
searched. What is the optimal size and location of
this area?

Chapter 7 presents an algorithm for constructing from a

collection of atoms (each several square blocks in size), the

single region in which to concentrate the sector car's patrol.

However, any plan that would implement a strategy of this

type must weigh carefully the implications of leaving a

por~ion of a sector 'without regular police patrol. It may be

necessary to moderate the 'theoretical' optimum by making

random widely (timewise) dispersed, highly visible, high

speed passes through the low crime areas with the purpose

being to create an impression of presence. It is possible,

though that this impression of presence ~7J may be created

without any special effort since the sector car will still

be responding to calls for service arising throughout the

sector. An equally important problem that is not necessarily

easy to solve is the reaction of local community groups to

their sections of the sector receiving no patrol. Lastly, a

patrol plan of this nature would have to be continually

reevaluated as the spatial distribution of crimes may vary in

response to police presence. This type of reevaluation would

have to be on a fr~quent basis, probably at least every week,

in order to keep on top of changing patterns of crime. The

obvious critical question in this regard is "How quickly and

in what way do criminals respond to changes in patrol strate~

gies?' Unfortunately, it is a question about which we know
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little especially in a quantitative sense, In Chapter' 8

we will describe an experiment which focuses on obtaining at

least a partial answer to this question.

The approach suggested above has one additional benefit.

Thus far all discussion of patrol allocation has been limited

to a search for crimes of a single class (same observable

duration), However, the standard patrol does not usually

focus on one single class of crrmes. This complication does

not present any significant problems in calculating the pro­

bability of interception or space-time coincidence. All that

would be required to account for the mUltiplicity of crime

types is to take the basic equation (4.1) and sum or inte­

grate it over the various crime types weighted by their rela­

tive frequencies. The introduction of mUltiple crime types

would, however, seem to seriously complicate the classical

allocation approach as even the amount of search effort

available to allocate will depend on the crime type. In the

reversed allocation methodology the impact of multiple crime

types would be basically the same as on calculating the

probability of interception since equation (4.1) forms the

basis of the procedure.

Before proceeding with the development of algorithms that

build on the work of this chapter, we will attempt to quantify

a number of concepts we have discussed here qualitatively. In

the next chapter a differential equation model will be used to

determine under what conditions should a region be excluded
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from search e In addition we will quantifythe impact of

travel time on optimal allocations of search.
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FOOTNOTES 4

A decision maker, however may be more willing to accept a
50% increase if the change in travel time is from 1 minute
to 1.5 minutes than he would be if the change were from
4 to 6 minutes.

Throughout the paper the term random when applied to pat­
rol will describe the unpredictable non-patterned search
effort. When applied to the target, it is describing its
time of arrival and departure.

The first subscript will refer to where the first glance
was, the second subscript to the second glance and so on.

A line under the last subscript will mean that we are
focusing sequentially on that glance. For example, Pab'
means the probability of finding the target on the -
second glance in b given the first glance was unfruitful
in a.

The duration of a crime is assumed fixed. If a probability
distribution for the duration of the crime is inserted
(with a finite mean), sequential diminishing return will
approach a non-zero bound. See also Barnett [ 1J.

See Barnett [1 ] for a discussion of a similar necessary
but not sufficient condition.
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CHAPTER 5

A DIFFERENTIAL EQUATION MODEL OF SEARCH AND DETECTION

2.0 Introduction

Thus far the description and analysis of the dynamics

of a search for randomly arriving and departing targets has

emphasized the development of a qualitative understanding of

this process r A recurring theme of this analysis has been

that in allocating search effort among competing regions the

optimal solution is likely to concentrate all the search in

one region. In this chapter we will introduce a model that

will be used to quantify the conditions under which the op­

timal strategy is to search only a single regions. The model

(which was suggested by Philip M. Morse) is a set of differen­

tial equations which characterize the continuously changing

state of the system in terms of the number of crimes in

progress. The model will then be applied in three cases to

determine the optimal sequence of, search between two regions

for crimes of a single type. The three cases are

1. Two regions with equal crime rates and no time lost

in switching between regions;

: 2. Two regions with equal crime rates and time lost in

switching between regions;

3. Two regions with differing crime rates and no time

lost in switching between regions.

This chapter will close with a discussion of extensions of

the above examples to allow for mUltiple crime types and
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5.1 The Differential Equation Model

The model consists of two differential equations for

each region, one to describe the system (city, precinct,

sector, or reporting area) when no search is in progress in

that region, the other to describe the system when a search

is in progress.

Let s= the ~tate of theqystem (expected value of the
number of crimes in progress).

A= the rate at which crimes arrive (assumed indepen-
dent of the state of the system).

Crimes depart from the system in either one of two ways.

Either crimes leave because they have finished or because

they have been interrupted during a period of search.

F= the constant of proportionality for the rate at
which crimes finish. (This will depend upon the
duration of a crime.)

1= the constant of proportionality for thecrime
interception rate. (This will depend on the
street mileage in the region and the observability
of the crime.)

Both of these rates are proportional to the number of crimes

in progress.

Using the above parameters (S, A, F, I), a set of dif­

ferential equa~ns to describe the changing system can be

written as follows. During a period of no search the

system is described by

ds - Sf = A F.Sdt- -

The equation states simply that the system is changing
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because targets are arriving at a rate A and are departing,

as a result of finishing at a rate, F· S, proportional to the

state of the system. The solution of the differential equa­

tion is

s= C1 exp(-F • t) + Alp

C1 is a constant that depends on the boundary conditions and

Alp represents the steady state number of crimes in progress

if no search were ever carried out. During a period of search

the equation becomes

ds = Sf = A - (F + I) • S
dt

whose solution is

s= C2 exp (-(F + I) • t) + A/{F + I)

(5.3)

Cz is also a constant that depends on boundary conditions with

A/(F + I) the steady state number of crimes in progress during

an unending period of search.

5.1 0 1 Model Assumptions

These equations assume that the arrival process of crimes

is Poisson (i.e.random) and that the duration of a crime is

exponentially distributed. S is therefore the expected value

of the number of crimes. This can be shown by setting up

queuing type equations for the probabilities Pn , where n is

the number of crimes in progress at- anyone time. The general
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equation would be of the form

dPn =
dt

A · Pn- 1 + F · (n + 1) • Pn+1 - (A+n· F) • p
n

with the equation for Po just

(5.6)

By setting s= ~nPn ' we arrive at equation (5.1), which

describes the system during a period of no search.
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5. 2 Two Regions--Egual Crime Rates - No ~ime Lost in Trans-

fer

The first problem considered with the differential equa­

tion model i~ finding the optimal strategy for sequencing the

search effort of a single patrol unit between two regions, HI

and R2, of equal size. The objective is to minimize the

steady state average expected number of crimes in progress.

In our analysis two assumptions will be made about the optimal

solutions.

1. The optimal allocation of search effort divides the

available effort equally between the two regions.

2. The optimal strategy will be cyclic of the form X

minutes ~pent in Rl, followed by X minutes in R2, and then

back to RI for X minutes and so on.

The first assumption is intuitively appealing because of

symmetry arguments and will be proven later in this chapter.

The second assumption is motivated by a number of earlier

search theory papers [2, 3, 5 J in which the optimal search

strategies were cyclical. In the situation most analogous

to ours, Barnett [1 J proved that for n regions in which tar­

gets arrive and depart randomly, the strategy which maximizes

the probability of intercepting a random crime must be cyclic.

Given the above assumptions, the problem that remains to be

resolved is "~'lhat is the optimal cycle length or equivalently

the optimal value of X?".

Although the objective is to minimize the total (in both
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regions) average expected number of crimes in progress, it is

more convenient to analyze first the search process from the

separate perspectives of the two regions: Each region will be

viewed independently as experiencing alternating periods of

search and no search. This split can be made because the re-

gions are generating arrivals and departures independent of

each other; consequently searching R2 can yield no informa­

tion about the likeli~ood of a crime being in progress in hI.

This split also makes it clear that the solution to the first

two region problem will in addition answer the following

question.

Given that only 50% of a patrol car's time is available
for patrol, what is the distinction between short
numerous intervals of search and a few long intervals of
search?

Before proceeding with the analysis, it might clarify the

discussion to first outline three steps common to each of the

examples presented in the chapter:

1. Two differential equations are defined for each

region. Cne to describe the dynamics of the region while it

is being searched, the other to describe the region while no

search is going on.

2. For each region two boundary conditions of the

following form are established:

Under steady state conditions, the level of crime in
each region at the end of a period of search must equal the
level of crime at the beginning of a period of no search and
vice versa.

These conditions are simply a continuity constraint on S, the
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number of crimes in progress, not allowing discrete shifts in

the values of S as a result of the patrol unit entering or

departing a region. Cnce thetoundary conditions are defined,

each of the constants in the differential equati~is deter-

mined.

3. The average level of crime, S, in the total area is

calculated by integrating each of the four equations over its

respective period of searcll or no searclL, sllnln~ing the :fcux'

values and dividing by the cycle length. The resultant

expression for S is a function of the parameters of interest

in each of the particular examples and is sUbsequently analyzed

to determine an optimal strategy.

Turning back to the original problem, we will focus the

analysis on only one of the regions, Rl, with all discussions

applying similarly for R2 because of the symmetry of the

search. In Rl the two equations describing the periods of

search and no search are just the previously defined equations

(5.1) and (5.3) and whose ~olution equations, (5.2) and(S.4),

are rewritten here:

s= C1 exp(-F • t) + Alp

S= Cz exp(-(P + I) • T) + A/(p + I)

The continuity constraint on S is used to generate the

following equations:

Cz exp (-(F + I) • X) + A/(p + I) = C1 + Alp
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The left hand side represents the end of a search period of

duration X minutes and the right handside the beginning of a

no search period. Conversely,

C1exp (-F · X) + Alp = Cz + A/(F + I)

Solving for C1 and Cz as functions of X yields:

C = [-A · I/(F • (F + I))] · [1 - exp(-(F + I) · X)]I1

Ll-exp(-(2F + I) • X)J (5.9)

C2= [+A • I/(F • (F + I))J • [1 - exp(-F · X)]!

[1-exp(-(2F + I) • X)]

The expected level of crime in each of the regions at any

instant in time can now be written as a function of only one

parameter, X,the half cycle length. To compare various cycle

lengths, equations (5.2) and (5.4) are combined into a single

equation representing the average expected level of crime in

Rl or R2 during a cycle.

X
AVE. 81 = 81 = _1_ J'

2X 0

1
+ 2T

C1 exp (-F • t) + A/F dt

X
J Cz exp (-(F + I) · t) + AAF + I)dt
o

•
with C1 and Cz as defined in equations (5.9) and (5.10)

respectively. Integrating equation (5.11) yields
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Sl= -(C1/(2F' X)) • (1 - exp(-F • X)) + A/2F

- (c2/(2(F + I) • X)) • (1 - exp (- (F + I) · X)

+ A/Z(F + I) (5.12)

The average for the entire region, S, is merely twice that of

any individual region.

s= 31 + 32 = 2 • 31

In Appendix D it is then shown that S (or equivalently

81) monotonically increases as X increases. In other words,

the average expected level of crime in each region decreases

as the frequency of transfers between the two regions in­

creases. To use the terminology of Chapter 4, by spacing

out the available search effort as much as possible the

amount of diminishing return is reduced to its absolute

minimum. This result is directly comparable to that of

Gilbert [3], who showed (using a probabilistic search model)

that it is optimal to switch from one region to another when-

ever the region being searched has received a longer time of

search than the other region. He also defined a limit strate­

gy which approaches the theoretical optimum strategy as

switching becomes instantaneous.

Earlier we had noted an equivalence between sequencing

search between regions and scheduling the patrol time of a

single unit that spends 50% of its time answering calls for

service. Thus from one perspective if somehow preventive



-187-

patrol activities Vlere scheduled in long blocks of time (i.e.

increase X), the model predicts a decrease in the probability

of interception. l However, this decrease will be very small

since even the two extremes, infinitely long cycles and in­

finitesimally small cycles, typically differ by less than 2%.

(See Table 5.1 for a ratio greater than 30) Therefore other

aspects of the problem, not presently captured by the model,

are likely to be more crucial. From a psychological per­

spective, scheduling patrol could modify the attitude of

patrolling officers towards this activity. At present,

patrol is often viewed as time left over from their main

activity of responding to calls for service. Scheduling

patrol in long blocks of time might then increase the value of

patrol in the eyes of the officer. This change would manifest

itself quantitatively by increasing I, the rate of detection.

If it were possible to actually specify I as a function of the

cycle length then also this issued could be easily included

into the model. The optimal cycle length then would not be

infinitesimally small.

5.2.1 Magnitude of Impact of Short Cycles

Having shown that shorter cycles increase the probabi­

lity of) interception, the obvious next step is to determine

~the magnitude of the improvement produced by the shorter

cycles. Because S, 81 and 82 are monotonically increasing

functions of X, their highest values occur as the cycle
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length approaches infinity. For example the limit of 31 as

the cycle length increases is

lim
2X~

81 = (1/2)· (A/F) + (1/2)e(A/F +1)) = A • (2F + 1~
2F · (F + I

(5.14)

The first term, A/F, is the steady state level of crime for

the region not being searched and A/(F + I) is the steady

state level of crime for a region being searched.

For short cycles the average level of crime in Rl is

calculated by applying L'h~pital's Rule twice to equation

(5.12) (see Appendix E) to yield

lim 81 = 2A/(2F + I)
2X~O

The ratio then of the average crime level, SI, (similarly for

S) for short cycles as compared to long cycles is

Ratio = short/long = L2AA2F + I)Jj[A(2F + I)/2F • (F + 1)1

(5.16)

which reduces to

1 - (1/(2F + 1))2

which not surprisingly is independent of the arrival rate, A,

of crimes. Thus if crimes were discovered at a rate equal to

the rate at which they are completed then

F = I
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and

Ratio = 1 - 12/912 = 1 - 1/9

Under these circumstances optimally' sequencing the same total

amount of search effort in each region reduces the average

level of crime by 1/9. If, however, the two policies are

compared with regard to their relative impacts on the crime

level, then the reduction resulting from shorter cycles seems

more significant~ For example, consider the reduction in the

average crime level produced by long cycles. If no search

were carried out the average number of crimes in progress

would be A/F. The ratio of the average number of crimes in

progress in long cycles over the average number when no

search is carried out is

Ratio' = Long cycles = fA· (2F + I P/[A/F]
No search L2F • (F + I J

= 1 - r/< 2 • (F + I))

which for I=F is 1 - 1/4. For short cycles the ratio is

Ratio = Short cycles = [ 2A J / [ ]
No search 2F + I A/F

= 1 - I/{2F + I)

(5.20)

which for I=F is 1 - 1/3. As a result long cycles reduce the

level of crime by 25~~ wI-tile short cycles by 33 1/3%. In

relative terms this means that short cycles reduced the crime

level one-third more ((1/3)/(1/4) = 1 1/3) than long cycles.
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The measure of effectiveness that was just introduced,

namely the ratio of a policy's cr~ level to the crime level

when no search is carried out has a deeper significance than

may be apparent at first. As we shall show, there is a

simple relationship between this measure and the probability

of intercepting a crime.

Under the two limiting policies (i.e. infinite and in­

finitesimal cycles), it is possible to calculate directly the

probability of intercepting a random crime. (We are assuming,

still, that crimes arrive in a Poisson process (rate A), have

an exponential lifetime (mean I/F) and are discovered at an

exponential rate (mean 1/1).) For long cycles the fraction

of crimes that are intsrcepted during a period of search is

simply II (F + I). Since half of all the crimes occur

during the period of search, the fraction of all crimes that

will be intercepted is

I
2(F + I;

Calculating the probability of interception for infini­

tesimally short cycles is also relatively straightforward

and is based on the following argument. No matter how long

a crime lasts, during half the lifetime of the crime, the

patrol unit will be searching the same region as the crime is

in because the cycles are infinitesimally small. Consequently

the probability of intercpeting a random crime is
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00

J F exp(-F · t) · (1 - exp(-I • t/2}dt
o

where F exp(-F • t)dt is the probability that a crime has a

lifetime of fnear' t minutes and (1 - exp(-I · t/Z) is the

probability of intercepting a crime of that duration. Equa­

tion (5.23) reduces to

00

= 1 - (F/(F + 1/2)) · ! (F + 1/2) · (1 - exp(-(F + r/Z),t)dt
o

= 1 - 2F
2F+I = I

2F+I

Not surprisingly the probability of intercepting a crime under

each of the two policies is exactly the same as the reduction

in the average crime level (Equations (5.21) and (5.22)) as

calculated with the differential equation model.

Table 5.1 contains a comparison of the two limiting

policies for a range of F and I. When crimes are discovered

at a rate equal to their competion rate, short cycles as com­

pared to long cycles reduce the average number of crimes in

progress by 11% while they increase the probability of inter­

cepting a crime by 33%. As the rate at which crimes are com­

pleted increases relative to the discovery rate to a factor of

5, the improvement produced by short cycles is less than 1%

, for the average number of crimes, but 9% for the probability

of interception. Increasing the relative discovery rate still

further to a factor of 50, which brings it closer to the level
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/RATIO=F I AVERAGE EXPECTED PROBABILITY of INTERCEPTION
NUMBER of CRIMES

Short/Long Short Long (Short!Lone>:l---
I .111 .333 .250 .333_

2 .040 .200 .167 .20

3 .020 .143 .125 .143

4 .0123 .111 0100 .111

5 .0083 .091 .083 .091

10 .0023 .0476 .0455 .0476

20 .000'59 .0244 .0238 .0244

30 .00027 .0164 .0161 .0164

40 .00015 .0123 .0122 .0123

50 .000098 .0099 ,,0098 .0099

Table 5.1: A Comparison of Short and Long Cycles with
Regard to Interception Probabilities and the
Average Expected Number of Crimes in Progress
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at which police typically function, reduces the impact of

short cycles to a .01% improvement in crime levels and a 1%

improvement in the probability of interception.

It should be obvious already from our presentation that

only the ratio of F to I is needed in comparing the relative

impact of the two extreme policies. This can be seen

clearly by rewriting equation (5.17) as

Ratio= short/long = 1 - 1
(2 · (FIr) + 1)2

Perhaps more significantly, the probability of intercepting a

crime under either of the two policies is also dependent upon

only the ratio Fir. Reformulating equations (5.22) and(5.25)

for long and short cycles respectively yields

Frob. of Interception (Long Cycles) =

Probe of Interception (Short Cycles) =

1
2(F!I + 1)

1
2F!r + 1

A similar reduction in the number of significant input para­

meters also arises later in the chapter when we consider a

broader range of search strategies.
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5.~ Two Regions - Equal Crime Rates- Time Lost in Transfer

In ,Ohapter Four's analysis of the search process in

classical search theoretic terms, it was noted that because

of the short duration of'crimes and their randomness that an

optimal solution is likely to be to search only the highest

crime region. In that analysis, though, one component of the

actual search process was not included, namely, the time to

travel be-CYieen two regions. This time is either lost totally

from the search or is, at best, a period in which the detec­

tion rate is significantly reduced. This added motivation for

limiting search to one region will be analyzed through a

modification of the previous example. A parameter L will be

introduced that will represent the time lost every time a

transfer between the two regions occurs. Then, using the

differential equation model, two questions will be addressed.

18 What is the optimal value of X, the time spent in HI
before switching to R2? The optimal value is
obviously no longer infinitesimal.

2. Is there a simple analytic expression which specifies
for which values of L it does not even pay to switch
regions?

Al though papers by Gilbert [l ] and Kisi [4 ) have

addressed problems in which time losses for switching were in~

eluded, those problems, however, did not allow for arriving

and departing targets. Since the optimal strategy for static

targets requires that eventually each region be searched, no

method was, therefore, presented which can be used in prob­

lems similar to ours to determine when a region ought to be
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excluded from the search. This will be a principal question
\

addressed here. In tackling the problem with the differen­

tial equation model, we will again make the assumptions that

the optimal solutionis cyclic (both Kisi and Gilbert have

cyclic strategi~s) and that the search effort will be divided

equally between the two regions. Optimal solutions which

limit the search to only one region will appear in the analy­

sis as solutions in which the optimal value of X is infinite e

5.3.1 Applying the Model

In the application of this model to this second problem,

which ascribes a penalty for switching regions, the basic

equations which describe the periods of search and no search

do not vary from those of the previous example. The solutions

to these equations for one of the regions are rewritten here

for convenience.

s= C1 exp (-F • t) + A/F

describes a period of no search and

s= Cz exp(-(F + I) • t) + A/(F + I) (5.30)

describes a period of search. However, the introduction of

the switching time, L, does affect the continuity boundary

conditions since a no search period in each region has a

duration of' 'X + 2L' minutes. (The L is multiplied by 2

because two switches must occur, one leaving region HI and
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and a second upon returning to Rl, during any single cycle.)

The result is that although equation (5.7), which states that

the level of crime at the end of a period of search is equal

to that at the beginning of a period of no search, remains

the same,

Cz exp(-(F + I) i X) + A/(l + F) = C1 + A/F

equation (5.8) is modified to be

C1 exp{-B • (X + 21» + A/F = Cz + A/{F + I)

Solving the equations for C1 and C2 yields

C1 = -[A • l/{F • (F + I»].[exp{-(F + I) • X) - IJ/
[exp(-«(2F + I) • X)+(2F • L)) - 1J (5,33)

C2 = +[A • l/(F · (F + l»J Lexp{-(F • X)+{2F • 1» --1/
[exp (-((2F + I) ·X)+(2F • L)) - 1J (5.34)

We now have equations for the expected number of crimes in a

region at any point in time as well as solutions for the con­

stants C1 and C2 • The next step is to define a single equa­

tion that specifies the average expected number of crimes,

81, in a region for a complete cycle of length 2X + 21. That

equation i$ generated by integrating equation (5.29) (a period

of search) over a time period of X minutes and equation (5.30)

(a period of no search) over a time period of X + 21 minutes.

The resultant equation divided by the length of a cycle is

just
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1
......r
L\..

! Cz exp (-(I + F) · t) + A/{I + F)dt
o

C1 exp (-F et) + A/F dt
)~+2L

J
o

1
+ 2(X+L)

Integrating out, sUbstitutung for C1 and Cz and combining the

terms produces the following equation for SI, as a function of

the variable X and the parameters L, I and F.

S1= Alp - [(p. · I • X) / ( 2 (X + L) + F • (F + I» ]

(5.)6)

Al though equation (-5.36) is a relatively complicated

expression for the average expected number of crimes in

progress, once values have been assigned to P, I and L, it

is a function of only one variable, X. Therefore, it is a

straightforward task to carry out a one dimensional search

for the optimum value of X for the given parameters. In

Figure 5.1 the optimum value of X is shown for a range of L,

F and R, where R is the ratio of F, the finishing rate, and

I, the interception rate. There are graphs for twovalues of

F, one for F equals 20, in which case crimes last an average

of three minutes, and one for F equals 10, in which case



-198-

crimes average 6 minutes. For each F a range of ratios is

presented with R as high as 20 (Crimes are completed twenty

times as fast as they can be detected.) and as unrealistically

low as .01 which means that crimes are intercepted at a rate

one hundred times as fast as they finish on their own. The

lower values for R were included less for realism than to dis-

play how the curves behave as R approaches the limit of zero.

Looking at the series of curves in Figure 5.1 a number of

points stand out, but perhaps themost striking characteristic

is the asymptotic nature of each curve. For each value of R

as L approaches some limiting value (different for each ~),

the optimal value of X goes off to infinity. lIowever, an

infinite value for X is the equivalent of searching only one

region. This means that for given values of F and R, as L

increases above some point the optimal solution is always to

search one region. For example for crimes of a three minute

duration (F=20) when R equals 10, as L increases above

(approximately) .3 minutes it no longer pays to switch regions;

the same is true for crimes of 6 minutes, R equal to five and

as L increases above 1 minute. Another interesting general

observation is that the asymptote for each curve is less than

the mean duration of the crime and in the limit as R

approaches zero the asymptote approaches the mean duration of

a crime. In other words, if the travel time between regions

is rrreater than the mean duration of a crime, then, no mattero

what the detection capabilities, switching regions is cQunter-
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productive. The higher payoff that would accrue initially

from switching to the other region is outweighed by the

time lost in travelling there.

Two additional remarks about the curves, which are

corollaries of the above points, are

l)For a given value of L as the ratio, R, decreases, the

optimum X also decreases,and

2)As F decreases (from 20 to 10) the value of the asymp-

tote for a given R increases.

All of the above issues will be addressed more formally in

the succeeding sectioh in which an analytic expression for the

asymptote as a function of F and P is derived.

5.3.2 When to Search Only Qne Region

The development of an analytic expression to search only

one of the regions builds on the realization that the curve

for the average expected level of crime (Sl) as a function of

X (i.e. the length of a visit to a region) can take on only

one of two forms. (See curves B and C in Figure 5.2) For

both forms as X approaches zero, the average number of crimes

in progress increases fu~d approaches A/F, the steady state

value when no search is carried out. As X increases, however,

the curves behave differently. In the first curve (B), 81

monotonically decreases asymptotically to a limiting value.

Consequently the optimal value for X is infinite (i.e. search

only one region). In the second curve (C) as X increases, the
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level of crime again decreases until a minimum value is ob-

tained for a finite value of X. Then as X continues to in­

crease, 81 increases asymptotically to a limiting value. In

both instances the limiting value is A • (2F + I)/(2P'(F+I))

(See equation (5.14).)

The key, then, to our problem lies in analyzing the

derivative of SI, dSl/dX, (or equivalently dS/dX) as X

approaches infinity to determine not whether the derivative

approaches zero,· since it always will, but rather the direc-

tion from which it approaches zero. If the derivative ap­

proaches zero from the positive direction then some finite

X is optimal, otherwise infinite X is optimal.

The derivative of Sl is 'simply'

~+-A • I
2F· ( I +F) • (X+L ) 2

dSl­
dX-

+ 2(X+L) .F2. (I+F)2 [
-1
X+L

+

+

However, with regard to the limiting behavior of this equation

some of the components can be immediately disregarded since

some approach zero faster than others. The slower components,
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of course, dominate in the limit, which allov/s us to eliminate

all expressions that approach zero faster than l/(X' + 1)2.

Therefore the problem reduces to analyzing

lim dSl = -AeI
X"'oo dX -r'"(X-\.+-r.....-r

J
)~2-.......21"....-1.~("""I"-+-F) [

L + I + I
F' ( 1+F ) -F-.(~I-+-F')

(In Appendix F we prove that all other expressiuns in equa­

tion (5.37) approach zero faster than 1/(X+L)2.) The focus

though is on the direction from which the derivative

approaches zero which reduces the expression of interest

still further to

lim
x-tJoO - [L + F' (F~I )+ F. fF+I )

12-eXP~-(I+Fi .X~ - exp~-Fo (2L+X) i)]
\ exp -2Fo(X+L - I'X - I

The limit of this expression is

+ I
F·(I+F) + I

Fe(I+F) . 6.]-1

or equivalently

I L = 1F'(F+I) - -F·~(F~/~I-+~l~) - L (5.40)

This will be negative and the optimal value of X is infinite
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whenever

L > 1
F· (Fir + 1)

This ineql.lali ty states that if the travel time is greater than

the mean lifetime of a crime (1/F) divided by one plus the

ratio of the competion rate to the interception rate (Fir),

then is is not worthwhile to switch regions. This inequality

consequently confirms the graphical analysis (Figure ScI)

that was presented earlier. For example, since l/{F/I + 1)

is always less than one if L, the travel time is greater than I/F

(the mean duration of a crime), it must also be greater than

the previous expression.

L > 1
F

> 1 1
F · -'-(F-l"-r~)+-1

This means that if it takes longer to travel between regions

than the average duration of a crime, then no matter what the

detection rate is, the optimal strategy will be to search a

single region. Perhaps more significantly if the completion
~

rate of crimes were, for example, ten times the interception

rate (by no means an unreasonable figure) and the travel

time were longer than one-eleventh the duration of a crime

(e.g. 11 seconds for two minute crimes; 16 seconds for three

minute ones, etc.), it does not pay to switch regions.

In light of the above inequality, the short duration of

crimes, and high rate of completion relative to interception,
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the propensity will be to search one region even when the two

regiens generate crimes at the same rate. Once the crime ­

rates vary this tendency is further compounded. Unequal call

rates alone, even without penalties for transferring between

regions, may also produce optimal strategies which limit the

search to a single region. It is this last phenomenon that

is explored in the next section. However, in order to

isolate the effects of just unequal crime rates we will not in­

clude in the example time lost in travel between regions.
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5.4 Two Regions - Differing Crim~ Rates - No Time Lost

5. J}.l Introduction

The final example to be analyzed involves two regions with

differing crime rates. RL, -the low crime region, has crimes

arriving at a rate of A, while RH, the high crime region, has

crimes arriving at a rate of M • A where M is greater than one.

In both regions all crimes have the same completion and inter­

ception rates, F and I respectively. Once again our analysis

will revolve about cyclic policies, this time of the form ,

X minutes in RL followed by K • X minutes in RH.

Although one problem of interest is, of course, the

finding of the (K,X) pair which minimizes the average ex­

pected number of crimes in progress, the discussion will not be

limited to that, since in all instances the optimum is ap­

proached as X tends towards zero, an unimplementable optimum.

Therefore the development will also address the issue of the

optimum value of K for a given value of X. Setting)C to be a

specified value is interpretable as establishing a feasibility

constraint on the search process. The constraint states that

whenever a patrol unit enters the low crime region, RL, it

must patrol there for at least X minutes. Completing the dis­

cussion of this section and more in line with the thrust of

the rest of the chapter is the description of conditions under

which patrolling only the high crime region is optimal. In

the analysis solutions of that form will appear as the optimal

value of K being infinite.
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The discussion that will follow, then, can be categorized

briefly as:

1. A single expression is developed to be used in

searching for the optimal value of K for a given X.

2. An analytic expression is found for K optimal as X

approaches zero.

3. Evolving directly from 2 is an expression, in terms of

F and I, for determining, for which values of Bare

the optimal K infinite for all values of X.

4. Lastly an expression is found which specifies the

values of X, as a function of t'1, F, and I, for which...
the optimal K is again infinite.

5.4.2 Applying the Model

Unlike the previous two examples in which it was possible

to focus on only one region because of symmetry, it is now

necessary to define a different set of differential equations

for each region. In the low crime region the equations

remain as before with the solutions just

SL = C1 exp(-F t) + A/F (5.42)

during a period of no search and

SL = C2 exp(-(F + I) • t) + A/(F + I)

during a period of search. However, the continuity boundary

conditions have changed since a cycle as viewed from the
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perspective of the low crime region is now X minutes of search

followed by I"~.J( minutes of no search. The simultaneous

equations that are generated by the constraint to be used to

solve for C1 and Cz are

Cz exp(-(F+I) oX) + A/(F+I) = C1 +A/F (5.44)

which equates the level of crime at the end of a period of

search to the level at the beginning of no search, and

C1 exp(-FoKoX) + A/F = Cz + A/(F+I)

which equates the levels at the end of a period of no search

ancl the beginning of a period of search . Solving for C1 and

Cz yields

and

Cz =

-A·I
F-(I+F)

A-I
p. (I+F)

r~-exp~-F+I) oX ]
~-exp -(poK + F + I)oX

~-exE~ -poKoX) J
~-exp -(FoK + F + I)otJ

(5.46)

In the high crime region, RH, the differential equations

are slightly different from before because crimes are arriving

at a rate of ~1~. The equations therefore are

dSH = SH': MeA - F-SH
dt

during no search and

(5_48)
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SlI t = I'\~. A - (F+ I ) · Sir

during search. The solutions are similar to equations (5.42) and

(5.43) only with M • A instead of just A.

SH ::: C
J

exp(-Fot) + r.~oA/F

SH = C4 exp(-(F+I)·t) + M • A/(I+F)

To solve for C3 and C4, we use these simultaneous equations,

which are almost the mirror image of equations (5.41) and (5.45),

and prod~ce the following solutions:

C = (:-M °A° I )
3 \Fo (F+I)

C4= (IVI' A• I )F' ( F+I) (
l-exPt-FoX) \
l-exp'-(F+I)oKoX - FoXy

Now that the preliminary groundwork has been laid out, the

next step is to develop a single expression for the average

expected number of crimes in progress, S, in the two regions

combined. This expression is generated by integrating each

of the four equations «(5.42). (5.43), (5.50) and(S.51)) over

their associated portions of the cycle and dividing their sum

by the length of a cycle, (K + I)·X. Carrying out the above,

results in
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s= 1
(K+l)'X

K'X
!
o

C1 exp(-F·t) + A/F dt

Cz exp(-(F+I)·t) + A/(I+F) dt1
+ (K+l)'X

1
+ (K+l)"X C3 exp(-P"t) + M"A/P dt

+ 1
(K+l)'X

K'X
! C4 exp(-{F+I)·t) + ffi'A/(I+F) dt
o

The first two components represent the average number'of

crimes in progress in the low crime region, SL, and the

last two, the average in the high crime region SHe After

integrating out, sUbstituting where necessary, and com­

bining terms wherever possible, the resu~ is (and by no

means simply)

s=

(.5.55)

As complicated as this expression looks , finding the

optimal value of K for a given set of N, F, I, and X still

requires only a one dimensional search that is easily carried

out by computer. (A patient individual could find the optimum

with a calculator.) Before displaying graphically the opti-

mal value of K for a range of M, F, I and X, we will note one
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facet of the equation that should be stored for later reference.

The first two components, ~l·A/(F+I) and A/F, do not vary with

either K or X. The third decreases as ~ increases, is posi­

tive (tI is greater than 1) and is also independent of X. The

last component is unique both in that it is negative and also

in that it is a function of both K and X. This information

will later be used to determine for which values of X is the

optimal value of K infinite (Section 5g 4.5).

Figures 5.3 through 5.6 graph the optimal value of K for

different values of X. In all four figures crimes are of a

five minute duration (F=12), but both I and M are allowed to

vary. A common characteristic of all curves, except for the

M equal to one curve, is that as X (the minimum duration of a

visit to the low crime region) grows larger, the optimal K

eventually becomes infinite. (In the next section an ana­

lytic expression will be presented for determining that value

of X.) This cutoff value or asymptote decreases both as M

increases and as R (the ratio of F to I) increases. The

latter can be seen, for example, by comparing the curves for

which M is 1.2 in each of the four figures. In the first

figure the cutoff value of X is at approximately .43 hours

and in the succeeding figures the cutoff decreases to.J3, .23

. and .18 hours respectively. Another aspect of these curves

that stands out is that as R increases the initial value (at

X equal to zero) of K optimal increases. Thus it is not

surprising that for large enough R it does not pay to visit
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the low crime region (K optimal is infinite) even though the

minimum duration of a visit to that region is infinitesimally

short (X near zero).

In completing the discussion of these figures, the focus

will be on one behavioral characteristic of the curves that

seems counterintuitive. In each of the curves as X initially

increases from zero, the optimal value of K decreases. This

means that by constraining the search in the low crime area

to be of a minimum continuous duration~the optimal solution

may reduce the total fraction of time (K/K+l) .spent in the

high crime area, even to the point where it is allocated less

than half the search. This is precisely what occurred for

the curve marked ~=1.2 in Figure 5.3.

This phenomenon occurs consistently for the ~1=1 curves.

Even though the two regions generate crimes at the same rate,

if a constraint is placed on the minimum continuous duration

of a search in one of the regions the'optimal solution may

allocate less than half the search to the other region. The

explanation that eventually became apparent was that there

were two conflicting forces at work. The more intuitive one

was that as X increases the searcher is forced to incur in­

creasing diminishing return in any visit to the low crime

region and eventually the cost for visiting the region RL

becomes so prohibitive that it no longer pays to search the

region. This force dominates in the long run. However there

is an advantage in general to having short cycles and as X
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increases there is only one way of restraining the increase

in cycle length and that is by decreasing K. This propensity

for shorter cycles seems to dominate the behavior of the

optimal value of K for small values of X turning K optimal

initially into a decreasing function of X.

Because the differential equation model allows for an

explicit constraint on the continuous duration of a search

in only ~ of the regions, and because the optimal value of

K can be less than one, any desired constraint on the other

region must be made post hoc. For example, suppose that

both the high and low crime regions were to have the same

lower limit on the duration of a visit. The differential

equation model might find the optimal K to be less than one,

which vkiates the high crime region constraint. Under those

circumstances, the optimal feasible solution is to set K

equal to one.

Although in the above discussion we have noted that the

optimal K may decrease with X, this should in no way be con­

fused with the impact that increasing X has on the crime

level. Figure 5.7 shows that the level of crime increases

as X increases even though the searcher consistently uses

the optimal strategy for that X and that the optimal value of

K decreases initially as X increases~ (See the corresponding

curve in Figure 5.6).



-216-

•

.II/~S

A
v
£
R
A
G-
E

L
E ,"3)
V
€ F:. I~
L -r::. 3
0 --.,,1.,

M=J·2F
~

R,
t1 .1'17
E

./'1' 3

., .3 .iI hovr-S

Figure 5.7: Average Crime Level as a )(
Function of the Minimum Duration of a Visit
to the Low Crime Region:Optimal strategies
are Consistently Used



-217-

~4.3 No Constraint on the Minimum Duration of a Visit

In the previous section, an expression for S, the average

number of crimes in progress, was presented and was used to

determine the optimal values of K over a range of values

for X. In this section we will narrow our perspective to

telescope in on the limiting behavior of S as X approaches

zero (i.e. no constraint on the minimum duration of a visit

to a region). Although as X approaches zero the optimal solu­

tions are no longer implementable, the analysis of the limit

properties will prove significant, mostly because the abso­

lute minimum of S is also approached as X goes to zero. (See

Figure 5.3 in the previous section for an illustrative example.)

In addition this analysis will be facilitated tremendously by

the relative tractability of the expression for the limit as

compared to the expression for S itself.

The obvious first step, then, is to determine the limit

of S as X goes to zero. Referringback to the general

equation for IT (equation (5.55)) the only component that is

affected by changing X is

(5.56)

In order to find the limit of that expression, it is not

possible to substitute in X equal to zero because the result

is zero divided by zero. Instead L'h~pital's rule is
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applied twice to the expression and the resultant value for

its limit is

-A·I;} . [ r~ + 1 r] (5.57)F· (F+I) - (K+l) F'(Y~+l) + I'K F'(K+l) +

Combining this with the components of S which are not functions

of X, yields the following for the limit of S

Il-m -S =x-'O
r'~'A + ~..L.
I+F F"

F' ( F+ I ) • ( K+1 )

Simpler than the general expression for S, this expression

can be analyzed to find the optimal K. by the standard pro­

cedure of setting the derivative equal to zero and solving

for K. However, prior to doing just that, we will again (See

section 5.1) display the equivalence between the two statis­

tics, the probability of intercepting a crime and the reduc­

tion in crime as a result of the search process.

Since we are considering cycles that are infinitesimal

in length, it is possible to calculate directly the probabi­

lity of intercepting a random crime for a cycle of K-X

minutes in RH and X minutes in RL. For any crime arising in

RH and lasting for T minutes the patrol unit will be in the

same region on patrol for (K/K+l)-T minutes during the
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commission of the crime. Therefore the probability of inter­

cepting the crime is

co

! Fexp(-Fet)·(l-exp(-I·(K/K+l)et) dt
o

which integrated yields

I· ( K!K+1 ) ( 6)
F + I· (K!K+1 ) 5. 0

The equation can be interpreted as follows. Imagine two

streams of targets leaving a system in two separate Poisson

processes, one at a rate F (completion), the other at a rate

I (interception). In addition targets that wish to leave in

the second stream (rate I) must also face a lottery before

they can leave. This lottery allows them to leave in that

stream with a probability of K/K+l (i.e. the fraction of time

the searcher is in the high crime region). Cf all the targets

that leave the system, the fraction that depart in the second

stream is just the above expression. Similarly for the

low crime region, RL, the probability of intercepting a ran­

dom crime is analogously

1 - F/{F + I·(l!(K+l)) = 1 - [F.(K+l)/((K+l).F + r] (5.61)

Since the proportion of all:crimes that occur in region RH

is (r.1/(I\1+1)) and in region RL, 1/(rv1+1), the probability of
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intercepting a random crime is

r:f /, F 0 ( K+1 2 \
~+l • ~ - Fo(K+l) + 1 0 K)

= 1 -
F· (}(+1 )

Wt+l F'(K+l) + I·K +

With regard to the differential equation model the measure

that will be compared to the interception probability, is

again simply the proportional reduction in the average number

of crimes in progress as a result of the search process.

When no search is carried out in both regions the average

number of crimes in progress is

T!l •A/F + A/F = A· (r~+1 )
F

The reduction in the CriJ1E level is then just one minus the

ratio of, the number of crimes in progress for the particular

search strategy (equation (5.58)) over the average when no

search is carried out. This is abbreviated as

1 - lim
x...a (A' (IV1+1 )/F)

substituting in the relevant expression for the lim of S

and combining the appropriate terms the expression reduces

to not surprisingly
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F' (K+lj r. W!
1 - M+l • ~'(K+l) + I.K +

- F· ( F+ I ) • ( K+1 )a

trie same as the probabili ty of in''terception, proving the

equivalence between the two statistics even in the more

general problem (two regions with unequal call rates).

We return now to our interrupted search for that analytic

expression at the end of the rainbow which will be used to

calculate the optimal value of K for limiting strategies. As

was mentioned earlier, the procedure to be followed requires

first the differentiation with respect to K of the expression

for the limit of S

d lim S
__x_"-..O_ =

dK

F' ]+ (F.(K+l)+I)13

(5 .• 66 )

•Although at first glance the derivative seems toocom~icated

to be easily solvable for K,when the derivative is set to zero,

it can be rewritten in a form more amenable to solution.

By combining all the terms into a single fraction, the ex­

pression can be reformulated as a multiple of a quadratic

expression of the type
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In particular the expression to be set equal to zero is

1\· ( 2 ( I-Til ) •F' (F+ I )

~(F~i-.(~K~-+-1~1+-·-~~)2~.~(-F-.~(I-{+-1~)~+-I-'-K~~)~2 • ~2. 81-M)'F2+~'(2F+I~

+ F2-I','l' (F+ I )~ (5.68)+

0=

Thus any value of K which makes the quadratic component zero

makes the entire expression zero. Therefore by using the

formula for solving a quadratic equation we find K to be

I~ (optimal )=

or equivalently

= -2R' ·vM

where" R=F/I. With the above substitution, it is clear that

the optimal value for K does not depend upon the independent

values of F and I but only on their ratio, thereby reducing,

once again, the number of critical parameters. Table 5.2

displays the optimal K for a range of M and R. ene particular

value of M is of special interest. For M equal to one, which

means that the two regions generate crimes at the same rate,

the optimal value of K does not depend upon R but is always

one (i.e. equal search in both regions), as was assumed

earlier in the chapter. The obvious reason for this is that

for M equal to one, equation (5.70) becomes
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R The Optimal Value of K
M .1 .5 1 2 5 10 20 lQ 40

1 1 1 1 1 1 1 1 1 1

1.1 1.06 1.10 1.15 1.27 1.71 3.00 85.0 00 00

1.2 1.12 1.20 1.32 1859 3.01 45.0 00 00 00

1. ,3 1.17 1.30 1.49 1.97 6.16 00 00 00 00

1.4 1.22 1.40 1.67 2.45 25.0 00 00 ex) 00

1.5 1.28 1.51 1.87 3.04 00 00 00 OQ 00

2 1.52 2.05 3.12 13.1 00 00 00 co 00 .-
2.5 1.74 2.64 5.16 00 00 00 00 00 00

3 1.95 3.31 9c.20 00 00 00 . 00 00 00

3.5 2.15 4.09 21.2 00 00 00 00 00 00

4 2.33 5.00 00 00 00 00 00 00 00

Table 5.2: Optimal Cyclic strategLoo for Regions with
Differing Crime Rates and No Constraint on
the Minimum Duration of a Visit to a Region
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Figure 5.8: A Characterization of when to ~
Search only One Region as a Function of Two
Parameters: M, the Ratio of the Two Crime
Rates, and R, the Ratio of the Completion and
Interception Rates of Crimes
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= 2(2R+l)
2(R+l)2-2R2 = 1

One aspect of the quadratic equation that needs clarifi-

cation is that since there are two solutions it is possible

for both solutions to be positive. As it turns out that

cannot happen. In Appendix-G it is proven that for values

of M for which both values of the numerator in expression

(5.69) are positive~ the corresponding denominator will be

negative. This last result provides, in addition, an almost

too obvious bonus in that it contains the key to findi.ng

under what conditions the optimal solution is infinite.

5.4.4 When to Sear~ .Only One Region

Whenever both solutions to the aforementioned quadratic

equation are negative, it beems intuitively clear that for M

greater than one the optimal solution will be at the upper

bound of the feasible region, namely K optimal will be in­

finite (i.e. search only one region). A direct corollary,

therefore, of the last result is that the optimal solution is

infinite when the denominator is negative or zero. Consequent­

ly if M (the ratio of the crime rates in the high and low crime

areas) is larger than (R+l)2/R2
,

M >

the search should be limited to the high crime area. To be
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riGorous, the ab~proof only showed that in the limit as X

approaches zero tl1at tl'"2.8 inequality specifies vlhether or

not the low crime region should be searched. It, however,

is clear that if it does not pay to ever search HL for an

infinitesimally short duration there will be no incentive to

ever search R1 if the minimum duration of a visit is instead

some number larger than zero.

Now \vould seem the appropriate time to step baclc for a

second to attempt to obtain a more intuitive feeling for the

above inequality. The method to be used, and which in some

~Nays COllld be considered this d~issertation's other theme

song, is to analyze the limits. As R increases, the rieht

side of the inequality approaches one. So that when crimes

are finishing at a fast pace relative to their interception

rate, even small differences in the two regions fcrce the

concentration of search into one region. Cne explanation

is tlla-c the relatively rapid completion I'ate does not allovJ

for much diminishing return in the high crime region; .nor,

unfortunately, can even a total concentration of search

effort in that region impact enough on the crime level to

reduce it below that of the low crime region. Conversely

as R goes to zero, the right hand side approaches infinity.

This means that when the interception rate is relatively

high even for large disparities in the crime rates there is

reason to visit; the lOVI crime region every once in a \vhile.

necause of the relatively high interception rate there will
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be a significant amount of diminishing return from focusing

search in HE. In addition because of the same high inter­

ception rate even infrequent searches in hL can have a high

payoff in terms of reducing that region's crime levee The

tV10 reasons togetl1er therefore conspire to include I~L i11.

the search.

Figure 5.8 displays the convex region in which no search

would be carried out. For example if R (the ratio of com­

pletion to interception) were only 10 then if RH generated 21%

more crimes than RL, only RH would be searched. If~

realistically R~ 20, ]Q, .Q£. 40, t11en if I-~}I generated

respectively 10%, Z2 or ~~ crimes than RL,. again only

the high crime region would be searched. The result is a

second (iile first was based on travel times between regions

strong limitation on the likelihood of searching more than

one region. If there are even small variations in the crime

rate and the two areas are relatively large (i.e. the inter­

ception rate, which is a function of the size of the area, is

large compared to the completion rate), the model suggests

limiting search to the high crime area.

The last parameter to be microscopically examined for

symptoms that may contribute to the tendency to limit the

search to one region is the parameter X, the specified

minimuTh duration of a visit to the low crime region. Tucked

away earlier in the chapter and stored for Ja:ter use was the

key to determining the critical X above which it is no longer
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profitable to search region RL. l-~emerl1ber that in t11e

expression for S (eqllation (5.55)) only tvvo cOluponents, one

positive a11d 01'18 nega·cive, varied vIi th 1~, ,vi t11 only tl1G

negative one a function also of ~{. The two components are

1

and

1
- (I'C+l)'X

+

If for some X the absolute value of the first component

were greater than that of the second COmpOl1.ent for all values

of K, the sunl of the tVIO \''lould, of course, always be positive.

However, since by driving K to infinity both expressions can

be forced to zero, the obvious way to minimize the average

number of crimes when the sum is positive, is to let K be

infinite. The problem therefore reduces to finding under

what conditions the following inequality holds.

> 1 A' 12

X • -11'--2-,-(-F-+-r""'P"')"a (5.73)

The problem is all but solved by the realization that both

f1(X) and fZ(X) are bounded from above by one. This is

easily seem once it is recognized that both flex) and f 2 (X)
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are of t11e form

which is always less than one. As a result the inequality

of interest becomes

> 1
X • (1':1+1 )

Solving for X yields

x > =
(r.~+l) 1
( I'.,I-1) • -'-cF-.......,...(F~7..-I-+-l ) (5.76)

which depends, not only on the ratiD of F to I, but also on

their individual values.

Gne easily identifiable characteristic of this inequality

is that as N approaches on~ the right hand side tends

towards infinity. Interestingly and perhaps not too surprising­

ly this expression, except for the mul tiple (1'Jl+l/rI1-1) p is

identical to the inequality obtained earlier for 1, the time

lost in switchine, equatioh (5.41)

L > 1

As would be expected, the bound on X is strictly greater

than the corresponding bound onL (i.e. (Til+1/r:l-l) is greater

than one) since in the latter case the time is totally lost

while in the former, it merely has a reduced payoff because

of the lower crime rate. In fact, this last expression can



-230-

be considered a special case of equation (5.71). If we treat

the travel ·tin18 as if a11 equivalent tinle v/ere spent in a second

region in vlhich 11.0 crimes occur t11el1. I'vI (t11e rati9 of cl~inle

rates in the high and low crime areas) would be infinite. In

tlle lirnit as Ii approacl1es infinity, tl1e expression I:~+l/l.~-l

approaches one. This reduces equation (5.76) to the inequality

found previously for L.
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~ 5 Sumrnary

In this chapter a differential equation model of a

search process was developed which has the potential for

callturinG tl1e C1JrY18.mics of a sequel1tial cyclic searC}1

strategy. In displayinc the application of the model to a

nUfl1ber of excunples, vie 11ave del"'ived a nun1bex" of il1.dependent

quantifiable constra..ints vl11icll lin1i t the nurnber of regions to

be searched and Wllich are summarized in Table 5.). ':,'ii th

regax"d to the t\\TO time pax"aneters, Land :(, vIe have fou~nd

that the Itey limits resul t first from t11e short mean duration

of a crin1e, (lip), \vhicl1 is then further reduced ( divided by

R+1) by the rate of crirl1e cOTIlple-Giol1 relative to tIle rate of

interception. The last parameter based constrail'1t, vlhitJh

involved r~, l,lnli}~e the other t\VO, vIas infl1...1enced solely by

the ratio of the completion rate to the interception rate.

The develcpment of these constraints strongly affected

and simplified the construction of algorithnls for allocating

police patrol. In Chapter 6 we consider the allocation of a

tactical patrol force among various high crime areas of a

city or precinct. The algorithm we present was made possible

by the travel time constraint. It allowed us to consider only

solutions in which patrol upits do not divide their time (and

hence do not have to travel) between two or more of the regions.

Chapter 7 presents an algorithm for finding the optimal region

for a standard patrol unit to patrol. The algorithm constructs

a single contiguous (again the travel constraint) region from
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Table 5.3: A List of Three Criteria for When
Search Should Be Limited to One Region

1
L > FelF7I + 1)

x >

M >

M+l • 1
M-l F·(F!r + 1)

2

(~
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a series of small regions. For the algorithm to be effective,

the r~gions need to be small so that neither the X, the mini­

mum duration of a visit to the area, not the F/I is too large.

~emember that I depends also on the size of the area.) If,

however, the regions were large in the above sense, there would

be little flexibility in constructing the region to patrol

since the algorithm would be reduced to findingthe atom with

the highest payoff. Before concluding this chapter, we will

briefly discuss extensions of the model to mUltiple crime

types and m~ than two regions.



-234-

5.6 Exten,eions

5.6.1 I~ultiple Crime Types

Of the two extensions to be considered, multiple crime

types vlill be analyzed first because conceptually the exte~­

sian is simple. In order to include the multiple crime types

in the model, it is necessary to add for each crime type

(different I and F) a pair of differential equations for each

region. Then to calculate the state of the system, S, under

a particular search strategy, each of the crimes is initially

treated separately. The total average number of crimes in

progress is then just the sum of all the individual averages.

The resultant expression is, however, still a function of only

X or K and :{, and can be analyzed in the same manner as before.

For example, if n crime types Vlere introd"Llced into the last

example, tIle inequality involving :C cOl.lId easily be general-

ized from equation (5.76) to be

i=l

Lastly in the event that the different crime types are to be

weighted differently, this too can be easily incorporated in

the search for optimal strategies. This is done by intro-

ducing the appropriate weighting factors when adding together

t118 averabe number of crimes in progress to generate the
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overall a-:lerage.

5 0 6.2 I,:ore T11an Tvvo Regions

Introducing more than two regions into the problem,

significantly increases the complexi ty of analysis. 1\.1 tliOl-1C11

any of tl1e earlier th)~ee ineqllali ties can, vii tl10u.t difficl.l]~ty

be applied pairwise to all the regions to exclude as many as

possible, the complications enter when more than two regions

are still left. The heart of the problem lies in the diffi­

culty of defining one si~e cycle type to be analyzed. In

the two region case, in addition to assuming a cyclical

search pattern, we made a second reasonable simplification in

considering only simple cycles of the form, X minutes in one

region followed by X or [.X minutes in the second region and

back to the first region again for X minutes. We did not,

however, allow a sinE~e cycle to contain more than a single

visit to eacl1 rer;ion. Thus cycles of the form, }~ minutes in

RL follovved by I~' J{ minutes in RI,'~ followed by Y minutes in r~L

and bacl\: to I~}{ for J. Y minutes and then finally bac}~ to F~L for

X minutes, were not considered e With three or more regions,

though it is not as easy to justify considerinG only cycles of

the form, visit Rl, trlen ft2, then R3 and baclc to F~l 8.nd dis­

regard cycles of the form TIl, H2, Rl, R3, R2 or some variation

on it. The result is that in order to analyze more than two

regions, the optimal solutions must be determined separately

for each 'reasonable' alternative cycle. In addition as the
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number of regions increase the number of alternative cycles

increases faster than linearly, which only further compounds

this complication. Therefore an important primal step in

expandinG the model in this direction is the development of

a methodoloGY for selectinG 'reasonable' cycles.
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FOOTNOTES-2

Although Appendix D proves only that when allocating 50%
of your search effort to a region the optimal cycle length
is infinitesimally small, an analogous proof can be
derived to show that for any fraction of time spent in a
region the optimal dispersion of that search is also in
infinitesimal cycles.
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CHAPTER 6

AN ALGORITHM FOR DEPLOYING A TACTICAL PATROL FORCE

6.0 Introduction

In the preceding chapters we have developed and expanded

upon-a theoretical foundation of search theory applied to

police patrol. Building on that foundation, we will present

algorithms for both deploying a tactical patrol force (Chapter

6) and for finding the optimal patrol region for an individual

patrol unit (Cha~er 7). In general the impact of the earlier

work was in the form of simplifying assumptions that were

used to determine the structure of the optimal solution.

This structure naturally facilitates the search for optimality

QY reducing the class of solutions that need to be surveyed.

Later, in the discussion of each model's assumptions, we

will describe these simplifying assumptions, their justifica­

tion and their specific relationship to the algorithm.

The first algorithm to be presented provides a methodo­

logy for deploying a tactical patrol force. rhroughout the

chapter we will use the term 'tactical patrol force', in a

broad sense, to describe a patrol force with the following

characteristics: l)Its major focus is on crime with, at

most, very limited responsibility for responding to calls for

service; 2)The deployment of the force can be rather flexible

(not limited to individual patrol units patrolling separate

sectors), Thus,the term is meant to include, for example,

the portion of a split patrol force that has been relieved
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of most of its responsibility for calls for service.

The optimal allocation of a tactical patrol force is

formulated here as the following problem:
...

Allocate l'~ patrol uni ts among r[ high crime regions to
maximize the weighted probability of intercepting a
random crirne ..

The mathematical programming formulation of this problem is
C

T''1A''.f~~
1 .r,.. L..J

i=l

E F(i,j)' F(i,j, I«j))

i=l

F

E T:( j) = r
j=l

N( j) ~ 0 and integer I I" )\0.1

The \;(i) are the (subjective) weights assigned to each of C

crime types which reflect the relative importance of inter­

cepting different types of crimes. F( i, j) is t11e (relative

or absolute) frequency of each crime type i in each region j.

The N(j) are the control variables which represent the number

of patrol units allocated to region j. Lastly, P(i,j, N(j))

is the probability of intercepting crime type i in region j

when N(j) units are patrolling the region. The functional form

of P{i,j, N(j)) will be discussed in later. sectionSa For

now we limit ourselves to noting that it is, in addition, a

function of these input parameters: the street mileage of the

region, the speed of the patrol car, and the duration and
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observability of the individual crime types. In our later

discussion of these parameters, we will pay special attention

to the issues and problems that arise in obtaining estimates

of the last two parameters, duration and observability. Cne

point that will be emphasized is the critical need for

research concerning these aspects of crimes. Good estimates

are essential both in the development of effective patrol

strategies and in obtaining a more accurate picture of the

potential impact of police patrol on street crime.

The presentation of the optimal allocation algorithm

will proceed in the following sequence. First its underlying

assumptions and data re~uirements will be spelled out. Next

the individual steps of the algorithm will be described in

conjunction with a discussion of calculating P(i,j, N(j)).

Finally, closing out the discussion of the basic algorithm

will be an illustrative application of the model to a prob­

lem involving the allocation of ten patrol units to five proto­

type high crime areas. The second half of the chapter will

focus on algorithms for carrying out sensitivity analysis on

each of the input parameters. It will be clear from our dis­

cussions that we consider this sensitivity analysis capability

not an added frill but an essential part of the methodology

for deploying the patrol force. It is not hard to see why we

have developed such an attitude, given the subjectivity of

some of the input parameters,(e.g. weights),chSngeability of

others (e.g. F(i,j), the frequency of different crimes in
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each region), and the difficulty of 'accurately' estimating

the crime type related parameters.
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6.1 r.ode1 9 8 Assumptions

A detailed step by step descripQon of the algorithm will

be presented in section 6.3. }Iowever, in order to place each

of the underlying assumptions in perspective, it will be

necessary at least to sketch the various components of the

algorithm. The most fundamental component of the algorithm

is the expression for calculating P(i,j, l!(j)), the probabili­

ty of intercepting a crime of t,rne i in rep-ion .i if N( .1 )

patrol units are a8Ri~~pn tn +r~+ rp~jon~ ~he expression

used here is essentially the same as the one introduced

earlier in Chapter 4 (equation (4.2)) for calculating the

probabiJ.i ty of interceptint: a crime when n units are on patrol.

Consequently the discussion in Chapter 4 of that equation's

assumptions is equally applicable here. The most crucial

assumption was the independence between the location of a

crime within a region and the location of a patrol unit in the

same region. This assumption is most justifiable if the tac­

tical patrol force consists of plainclothes policemen

traveling in unmarked cars. For a more visible patrol force

(e.g. part of a split patrol force), this assumption may not

be valid. However until information is available about the

magnitude of the dependence, it is impossible to assess how

inaccurate the model's estimates of interception probabilities

are. Of course any implementation of the model should keep

this issue in mind, recognizing that the model may be over­

estimating the interception probabilities.
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A second, related assumption is that the frequency of

crimes in the different regions isnot immediately affected

by the deployment of the patrol force. The key word is

'immediately'. We sould expect criminals to eventually

shift their activities away from regions with a high risk of

interception. However, if this process is not too rapid, the

algorithm can be rerun as the chang~ crime patterns begin to

emerge. As soon as one or two criminals are caught in a

particular region, it may be necessary to rerun the algorithm

(or use sensitivity analysis) to find a new optimal alloca­

tion. The new input data might even anticipate the disappear-

ance of crimes of a particular class from the region in which

the criminals had just been caught. As we shall see the

algorithm ( and its sensitivity analysis ) is simple and fast

enough to allow for even on line usage to update the patrol

allocation. Largely, the speed and frequency with which the

patrol force can be redeployed to react quickly to, or even

anticipate, crime pattern changes is limited more by command

and control issues than by any difficulties in rerunning the

algorithm. If however criminals react so quickly that the

present optimal deployment plan is outdated even before any

criminals are caught, the algorithm to be described may be of

little value. The only alternative under those circumstances

is to take a game theory approach to the problemQ

There is one assumption of the original expression (4.2)

that will be relaxed. The algorithm does allow for the speci­

fication of a probability distribution for the observable
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duration of a crime. On the other hand, one potentially

important aspect of police patrol that is not captured by

the algorithm nor by any of the search theory models is the

possible crime preventive component of patrol.

The second major component of the algorithm maps out the

route followed while approaching the optimal allocation of all

n patrol units. It starts out by determining the best region

in which to place a single patrol unit. Having optimally

allocated the first unit, it then determines the best location

for the second unit. It proceeds iteratively until all n

patrol units are deployed. The key simplification that lies

at the heart of this procedure is that at each step we allo­

cate the patrol time of each additional patrol unit to one and

only one region. We do not consider dividing that time between

one or more regions which would require the unit to travel

back and forth between the regions. The motivation for con­

sidering only integer allocations to each region derives

from our analysis (Chapter 5) of the two region problem in

which time was lost (from search) while travelling between

the regions. Our analysis there showed that even for identi­

cal regions the time lost travelling would usually outweigh

the benefits that might accrue from the transfer. This

assumption immediately reduces the number of possible solu­

tions from a non-countable infinite set to a relatively small

finite set. The algorithm described later in detail, in

essence, is just a procedure for searching the finite set for
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an optimal solution without enumerating all possible solutions.

There is one important assumption that we have not made.

We have not assumed that the best way to deploy a tactical

patrol force is for the units to patrol randomly. It may

well be that stakeouts are more effective against burglaries

and decoys more effective against muggings. The goal of this

chapter is to develop an algorithm to deploy optimally a

randomly patrolling tactical patrol force. Once that is

achieved, it is then possible to compare the relative

effectiveness of two completely different strategies (e.g.

random patrol vers~stakeouts). Without this capabili~,

however, a comparison of the two strategies would be like

comparing for sweetness a ripe Me Intosh apple with an

unripe Delicous apple.
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6.2 )llPut Data

An obvious prerequisite for using a model in a real en­

vironment is that it be possible to generate the model's

input paramet~ from existing data. However, there are in­

stances where the development of a model antecedes the

existence of usable data. Under those circumstances the

creation of a model ma~l prove a catalyst in tIle development

of the needed data by focusing on which data is needed and

why that data is critical. It is hoped that the search

theoretic models presented here provide such a stimulus to

the development of an accurate street crime data base. As

we shall see, the data needs of this model are not really

model specific in that any attempt at increasing the efficien­

cy with which police intercept street crimes requires that

the same data be collected or generated. With this in mind

we proceed with the discussion of the data.

~.2.1 Crime Weights

Early on in the development of the modeljit was recog­

nized that different values may be attached to intercepting

different crimes. This facet of the problem was incorporated

into the model by allowing for different weights to be asso­

ciated with intercepting each of the various types of crimes.

These weights may be city or precinct specific reflecting

the subjective assessment of only the local decision maker.

In that case the decision maker would, of course, be required
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to go through the process of quantifying his subjective

feelings. This process would be aided by techniques in the

field of statistical decision theory, for assessing utility

functions. The source of these weights can also be based on a

broader theoretical and empirical foundation. Maltz, in a

recent article [ 2J, suggests a number of measures of

effectiveness for crime reduction programs which could be

used to determine the weights. One existing measure is the

Crime Seriousness Index (CSI) developed by Sellin and

Wolfgang [5J. Questionnaires were administered to various

groups affiliated with the criminal justice system in order

to determine how the groups assessed the seriousness of each

crime relative to a standard crime. The weights were found

to be fairly consistent from group to group_ Maltz suggests

other measures which are multidimensional extensions of CSI.

The use of these vector measures in the search thoretic frame­

work presented here will require first the application of mul­

tiattribute utility theory to produc,e a single objective

function.

An alternative to the somewhat subjective measures

offered by Sellin and Wolfgang and by Maltz would be measures

based on the existing criminal justice code. The criminal code

has, in a sense, already quantified society's attitudes

towards the various crimes by assessing different penalties

(prison terms) for the commission of different crimes. A

variation on the same theme would be to weight crimes
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according to the actual prison terms handed down by judges as

a measure of the relative seriousness of each crime type.

Another less subjective measure, that can be used alone

or in conjunction with other measures similar to CSI, attempts

to capture the impact on the crime rate of intercepting a

particular criminal. This measure is the relative rate at

which criminals involved in a particular class of crimes

commit crimes of that type. For example if a burglar carries

out 5 burglaries per month and an auto thief steals 10 cars

per month, auto theft would be assigned a weight twice that of

burglary. As was noted earlier this measure need not, however,

be used alone but can also be mUltiplied by the associated

value of the CSI for that class of crimes. With this type of

weightsJthe objective of the allocation model would be to

maximize the longer range weighted impact on crime levels.

The concept of weighted impact suggested here has broader

applications. This concept can be applied to measure any

crime reduction program that focuses on the criminal rather

than on the crime. Thus recently suggested mandatory senten­

ces for ,certain specific types of crimes can easily be

evaluated using the above measure. Another program already

being implemented in different partsar the country is an

emphasis in the courts on bringing to speedy trial criminals

charged with certain types of crimes. This measure can be

used to optimally allocate resources among competing crime

types in order to maximize the program's weighted impact on

crime e
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6.2.2 Crime Frequency

The second parameter to be discussed is the relative

frequency of each crime type in each region. In our example

we used data from the published FBI Unifor~ Crime Reports.

One oft mentioned problem with crime data from this source

or police records is that it seriously underestimates the

actual number of crimes. From our perspective, however,

there is an even more serious problem with available police

data especially since the introduction of victimization

studies have begun to determine levels of unreported crime.

The problem is that the typical data often does not distin­

guish between a personal robbery committed on the street or

in the hallway of the tenth story of a high rise apartment

house. No distinction is made between a rape in which the

initial encounter was on the street and one which occurs

through a rapist gaining entrance to the victim's residence.

Similarly~the data may not distinguish between a burglary

which occurs in a location where a patrol car has access and

a burglary where a patrolman would need telescopic, x-ray

vision in order to notice anything unusual. In short if the

decision maker is choosing between competing patrol strategies

and allocations, he lleeds complete information about what

fraction of crimes in each category can.possibly be affected

(intercepted) through street ,atrols.

The changing nature of this parameter also requires that

the crime data be continuously tracked and updated. The
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algorithms for sensitivity analysis can help this tracking

~rocess. They point out how sensitive the optimal solution

is to changes in the frequency of the various crime types.

This allows the major part of the ongoing data analysis to be

concentrated in a limited number of critical (with regard to

the optimal solution) crime categories.

6.2.3 Duration and Observabilityof Crimes

The last set of data to discuss and the most difficult to

obtain is the crime descriptive data. Police nersonnel are... ,

certainly aware that the chances of apatrol car passing an

auto theft in progress are very slim because the crime is so

short. Similarly they recognize that the likelihood of a

passing patrol officer spotting a burglary in progress is

very small. Yet ask them how long an auto theft takes or how

observable a burglary is and you realize that these questions

~ave never been asked even though their knowledge and informa­

tion gained through experience is sufficient to at least

partially answer these questions. Even departments that have

begun to review their crime data to determ~ what fraction

of crimes are observalbe have not asked to what degree and

for how long can the observable crimes be seen. The succeeding

paragraphs will discuss, in a somewhat anecdotal style, how

we obtained the crime descriptive data used in the examples.

However in the application of the model presented later, we

will suppress all names of crime types. The reason for doing
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this is that the numbers we used do not have a very solid

foundation and are the result of a very limited number of dis­

cussions with police personnel. Our goal in these discussions

was not to generate a good data base (which is a massive under­

taking) but rather to make sure that the hypothetical examples

we constructed do not use absurd values for observability and

duration. Thus to avoid any unjustified inferences being

drawn from our later examples, the names have been changed to

protect the innocent. Instead of the more eye catching terms

such as rape, manslaughter and commerical burglary , we have

generally substituted the innocuous terms Type I, II and III

crimes. However, our discussion here will use some standard

names in order to illustrate one way to approach the data

collection task. In addition we will attempt to generalize

from our limited experience about the possible problems to

be faced in generating the data.

The initial stumbling block, and by no means unique to

police,were the patrolmen's uneasiness with attempting to

define a single number for the average duration. Instead

they often referred to those rare instances when crimes took

an unusually long time (e.g. the rape in which the woman was

held captive for ten hours). This problem of outliers was

easy to overcome mainly because our primary concern was the

observable duration. Therefore, even in the extremely long

crime~typicallYJonlyduring a small fraction of the time

could a passing patrol officer have possibly noticed some-
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thing suspicious. As the discussions continued it seemed that

patrolmen were ·little more co~fortable with assigning a small

range to the average observable duration. One estimate for a

commercial burglary was between 5 and 10 minutes. For our

examples an estimate of 7.5 minutes was used. However, in

future discussions it would be worthwhile to explore the

range in more detail asking if 5 minute crimes were more

frequent than 10 minute ones and if so, how much more, etc.,

in order to derive a functional form for the probability dis­

tribution of the observable duration. An important tool used

in assessing the observable duration and even more so the

observability of a crime, was the constant comparisons bet­

ween crime categories in order to be assured of consistent

estimates.

The determination of the observability of a crime proved

a much more difficult task. The first barrier was the need

for the officers to comprehend and internalize the concept of

conditional probability. The reason for this is that observa­

bility parameters describe the probability of noticing (inter­

cepting) a crime conditioned on passing it while it is in

progress. This problem was compounded by the fact that there

is not much in a policeman's past experience that he can call

on to estimate the average observability. How frequently

does a patrolman pass a crime in progress? The result was

that some of the estimates may be low since the conditional

probability of seeing a crime seemed to be, at times, confused
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with the probability~of passing a crime in progress and seeing

it, a probability which is very smalle The direction that,

however, seemed mnst useful in assessing the observability of

a crime was to try to build a profile of a typical crime from

each category and then analyze each component of the crime

separately. For example a profile of a potentially inter­

ceptible rape might be described as follows:

In the initial encounter between the man and woman there
might be a struggle lasting for approximately a minute
which a passing patrol car would have a better than 50-50
chance of spotting (set at .6). After that the woman
would then be forced to a more secluded location nearby
in which the actual rape occurred. During that time,
about 5 minutes, there is almost no chance for a passing
patrol unit to spot anything e This probability was
assessed at .02. After the completion Of the rape the
rapist might run (20 seconds) which would attract atten­
tion with a probability of .5. Thus the average obser­
vability during the total crime was about .14.

The same was done for other crimes. Another example is

personal burglary:

During the commission of the crime, which includes the
breaking and entering, there is almost no chance of
spotting the burglar (assessed at .01). However, when
leaving the premises with stolen property (last half
minute of a ten minute crime) there is a 50-50 chance of
a passing patrol officer being suspicious.

,These numbers, as the officers pointed out, will often depend

on when the crime was committed. At 2:00 A.M., in the morning,

a man lugging a stereo or television is likely to attract

more attention than at 2:00 P.M., in the afternoon. For our

examples we disregarded all such variations.

In determining the observability of a crime the statistic

that was calculated was the average over the duration of a

crime. The average .~ observability is a sufficient statistic
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because each region is allocated its own group of patrol units

and those patrol units are assumed to be on patrol in their

respective regions throughout the course of the crime. If,

however, patrol units were leaving and entering the region

in which the crime occurs, then it would be important to know

during exactly which stages of the crime it is most observable.

Moore [3J addresses the problem of detecting targets whose

observability changes over time and as can be seen from his

analyses it is a very complicated problem to analyze.

In the above discussions we have attempted to sketch some

of the issues and problems that arose in generating our sample

data. The problems addressed here are certainly crucial in

effectively deploying a patrol force to attack street crimes;

yet no significant research to date has been done in this area.

Although we recognize the inherent problems in determining

these parameters, we also realize that these are the numbers

that are needed.
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6.3 An Algorithm to Allocate a Tactical Patrol Force

The algorithm to allocate a tactical patrol force is

unabashedly simple and involves but two stages. During the

initial stage each region is analyzed separately to determine

the payoff (weighted probability of intercepting a random

crime) resulting from introducing a single patrol unit into

that region. The regions are then ranked in order of their

potential payoff from a single patrol unitiwith the region

ranked highest allocated the first patrol unit.

Once the first unit has been allocated, the next stage,

requiring even fewer calculations than the first p iteratively

allocates the additional (N-l) units. Because it is assumed

that adding a patrol unit to the region, RH, does not affect

the probability of intercepting a crime in any of the other

regions, the payoff from adding a unit to any of the other

regions has not changed. Therefore only in region RH does

the incremental payoff of adding a patrol unit change. As a

result it is necessary to evaluate for that region the

following expression

c

L
i=l

W(i)'F(i,j)~P(i,j,2) - P(i,j,l))

for j=RH (6.2)

Then using the just updated incremental payoff for RH, its

rank relative to the other regions is also updated. The

region now ranked first with regard to the marginal payoff of
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an additional patrol unit is allocated the second patrol unit.

Afterwards the updating process is repeated for that region!

Thus we cycle again through the entire procedure described

above until all N patrol units are allocated. The general

form of expression (6.2) is

c

E
N=l

W(i)·F(i,j){?(i,j,N(j)+l) - P(i,j,N(j»)]

for j=RH (6.))

with N(j) the number of patrol units allocated at present to

the region RH. The second stage is a marginal allocation

procedure which can be briefly summarized a3

1. Allocate the kth patrol unit to the region ranked
first on the incremental payoff list.

2. Update that region's incremental payoff.

3. Update its rank on the incremental payoff list.

4. Return to step 1.

An important feature of the steepest ascent algorithm just

presented is that in the process of determining the optimal

allocation of N patrol unite, it also finds the optimal

allocation of any number of patrol units less than N. In all

instances the solution is a global optimum (See section 6.4

for a discussion.).

In the above algorithm, an obviously central calculation

is tmdetermination of P(hj,N(j), the probability of inter­

cepting a crime of type i in region j with N(j) patrol units
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in that regions The basic formula to be used"in the calcula­

tion was introduced previously in Chapter 4. It assumes that

the units are randomly patrolling their assigned region and

is written

where

1-exp ( - N( j ) • S • T ( i )-0 B( i )1M( j ) ) (6.4)

N.( j)= number of patrol units in region j

S = patrol speed

T(i)= observable duration of crime type i

O~i)= average (over the observable duration of the crime)
observability of crime type i

M(j)= number of street miles in region j.

The above equation, though, calculates only the probability

of intercepting a crime of fixed duration, T(i). However, in

the developement of the algorithm it was recognized that all

crimes of a single type are obviously not clocked by a special

timer with a 24 second buzzer signalling the crime to end.

Cons,equently, the programmed version of the algorithm allows

the 'user to specifY anyone of four distributions t (1) determin­

istilC, (2) exponential , (3)kth ortier Erlang, and (4)uniform,

for ·the duration of anyone or all of the crime types. Even

the above four options~do 'not really reflect the full flexi­

bility of the algorithm. It is easy to include any distribu­

tion for which it is possible to evaluate either
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00

1 - !f(t)-exp(-N-Sat·OB/M)dt
o

for a probability distribution function, f(t) or

~

1 - ~p(t)oexP(-N.SotoOB/M) (606)
t=o

for a probability mass function, p(t). It is even envisioned

that in order to describe accurately the observable duration

of a crime, it may be necessary to divide the total duration

into two or more components, each with its own probability

distribution. For example, from an operational perspective,

the commission of a crime can often be divided into three

stages:

(1) The initial encounter between criminal and victim
(target) including perhaps a struggle (breaking in);

(2) Time during which the criminal actually obtains his
desired goal;

(3) The criminal's hasty departure from the scene of the
crime with the goods.

The degree of variation in the duration of each of these stages

may not be the same, requiring therefore three distributions

(assumed independent) to describe the crime. Expression (6_5)

could then be modified to be

00

1 - [£ f(t1 ) 0 (exp(-NoSot1oOB(1)!M)) dt1
00

• ~ g(tZ) 0 (exp(-NoSotzoOB(Z)!M») dtZ
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Notice that the average observability is also allowed to vary

with each stage. The three integrals in the expression are
-

multiplied together because each calculates separately the

probability of not intercepting the crime during their

respective stages. The probability of not intercepting the

crime at all is therefore just the product o~ the three. It

is assumed for now that the duration of each stage is indepen­

dent of the other two stages a

Prior to programming the present algorithm, with its

flexibility of also handling three non-deterministic distri­

butions, expression (6~5) was first evaluated for each of the

distributions. For the exponential distribution with mean

(l/A) it is

00

1 - j A - exp(-A-t) • exp(-N-S-t-OB/M) dt
o

1 A = N·S·OB
- A+(N-S·OB!M) M-A + N·S·OB

for an Erlang o~ order k it is

00

(6_8)

1 - J'
nv

(Aot)k-l " exp(-A"t) " exp(-S"t"N"OB)M) dt

(6.9)

and lastly for the uniform distribution of [A,e] it is

C
1 - J'

A
1

C-A exp(-S-t-N-OB!M) dt
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M
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[exp(-S-N-OB-A!M) - exp(-S-N-OB-C/M)]

(6.10)

The above discussion of alternative distribution functions

for each crime type leads to an obvious question, "How much

difference does it make whether we use a constant for the

duration time or an exponential distribution (with the same

mean) for it?". In the next section we will present two

examples of applying the algorithm. The first example assumes

constant duration; the other, exponential.
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6.4 Allocating Ten Patrol Units to Five Regions

6.4~1 Equal Total Crime Rates: Different Distribution of

Crime Types

The algorithm requires two sets of data, one to describe

each different crime type, the other to describe each region.

It is necessary to specify for street mileage and the frequen­

cy of each crime type for each region. To simplify the

analyses in our example all regions will contain 15 miles of

streets. In the first example, in order to focus on how even

the distribution of crime types, alone, can affect the optimal

solution, the total crime rates were set so as not to differ

from region to region. However, the distributions of crimes

by type within each region do differ. In order to generate

realistic distributions, we used National-Crime Panel Surveys­

data [4 ] for the five largest cities (Chicago, Detroit, Los

Angeles, New York and Philadelphia). (The appropriateness of

this source of data for the model was discussed earlier in

the chapter.) Focusing on six potentially detectable crime

types (e.g. personal robbery, commercial robbery, auto theft,

personal burglarJ, etc.), we determined for each city the

fraction of crimes that fell within each of the six classes.

Thus. in the summary of the region input data for the first

example that is contained in Table 6.1, the distribution of

crimes by type in each region is the same as that found in

one of the five cities.

For the crime type descriptive data, we first assigned



-263-

a weight of one to each crime so that in effect we were

maximizing the (non-weighted) probability of intercepting a

crime~ The data describing the average duration and average

observability of each crime type is summarized in Table 6.2.

The generation of this dat~ was described in the previous

section. As for the probability distribution of the observ­

able duration of a crime, two separate examples are presented

in order to display how changing the distribution can affect

the optimal solution. One example assumes a deterministic

distribution (i.e. constant duration); the other, an exponen­

tial distribution with the same mean. Our choice of distribu­

tions is not, however, meant to imply that either distribution

duplicates the real world although the exponential is likely

to be closer to reality.

6.4.2 Optimal Solution: Crime Durations Assumed Constant

The most striking aspect of the optimal allocation (des­

cribed in Tables 6.3 and 6.4) is the wide disparity in the

allocation of units, Region A was allocated six and C none,

even though the total crime rates in both regions were the

same. Even more striking,perhapstwas that the first five

units and six of the first seven units were assigned to A

(Table 6.3) with Region B allocated one of the seven. In

order to comprehend why A received the largest number ~f units.

better described as a whale's share, we will first look at

Table 6.4, which displays the probability of intercepting each

of the crimes in each regiono
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REGION DATA

Frequency of Various Crime Types
II III IV V VIIReglons 1. es

A 15 0.022 0.202 0.142 O.46t5 0.136 0.033
p

B 15 0.015 0.161 0.132 0.468 0.174 OG050

C 15 0.016 0.104 0.153 0.530 0.171 0.026

D 15 0.009 0.184 0.105 0.276 0.324 0.102

E 15 0.010 0.194 0.150 0.388 0.199 0.059

Table 6.1: Region Descriptive Data:Frequency
of Various Crime Types in each Region

CRIME DA~eA

MW · htTc ·rlme lype el.g, 18 rl \,1 ~on ean serva 1 1. ;y
J~, "

I 1.0 Deterministic 0.100 0(1140

II 1.0 Deterministic 0.066 0.100

III 1.0 Deterministic 0.037 0.100

IV 1.0 Deterministic 0.167 0.030

V 1.0 Deterministic 0.125 0.040

VI 1.0 Deterministic 0.066 0.060

Table 6.2: Crime Descriptive Data:Weight, Mean~
Distribution, and Average Observability
of each Crime Type

{~ The mean is in hours not minutes.
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The first point that stands out is that crime type I

has the highest probability of interception in the five re­

gions as a whole, .034, and similarly in each individual

region. The region with the highest interception probability,

.081, is region A, as would be expected. A distant second,

but of greater significance because of its higher frequency,

was crime type II. It had an overall interception probabi­

lity of .015 far below that of Type I. This was still more

than one-third higher than its next nearest competitor,

crime type IV which had an interception probability of .011.

The cause of the higher interception probabilities for type

I and type II crimes obviously lies in the original data

describing the duration and observability of the crimes

(Table 6.2).

In the data we used, type I crimes had an observable

duration of six minutes and a patrol car passing during that

time had, on the average, a one in seven chance of noticing

something suspicious. This average observability is signifi­

cantly higher than for any of the other crimes, especially

those crimes of longer observable duration. In addition its

own observable duration is the tnird highest. Both factors

combined generate an interception probability over twice that

for type II crimes.

Comparing types II and IV, we see that although the

latter has a duration two and a half times the former, its

average observability is less than one-third that of type II.
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This explains why the probability of intercepting type II

crimes is 33% higher than that for type IV. Combining the

above. with the fact that Region C, which receives no units,

generates a larger fraction of the type IV crimes than it does

type II crimes, explains why type II crimes have an overall

46% higher (.0148 versus .0102) probability of being inter­

cepted.

Turning back to the region data, Table 6.1, we can now

understand why patrol is concentrated in region A. Both

type I and II crime~ which have the highest interception rates,

~re a larger proportion of the crimes in that region than in

any other region. While in region C (no patrol units)

these crime types, together, make up only 12% of its crimes,

the lowest for any region.

The above discussion explains Why Region A is assigned

the most patrol units and C the least. It does not, however,

fully justify why so many are allocated to the former and

none to the latter and so few to all the other regions. In

order to understand this phenomenon, we must first realize

that the algorithm is not using the following logic: Assign

to Region A proportionata-V more patrol units ,. as it has a

higher proportion of more interceptible crimes, and conse­

quently __ 'a... random crim~ occurring there has a higher chance

of being intercepted by a . patrol unit. Using the con­

cept of diminishirg return presented in Chapter 4, it is
•

possible, though, to explain the lopsided optimal solution.
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SEQUENTIAL ALLOCATION

Patrol Unit Number 1 2 3 4 5 6 7 8 9 10

Allocated to Region A A A A A B A E B D

--

Table 6.3: Sequential Allocation:The Order in Which
Patrol Units areAllocated to the Various
Regions Under the Optimal Policy:
Equal Total Crime Rates-Duration of Crimes
Assumed Constant

RESULTS OF OPTIMAL ALLOCATION

Probability of Interception of Crimes
I II III IV V VI A

Cars
AllRegl0ns oe. verage

A 6 .081 .039 .022 .030 .030 .024 .0314

B 2 .028 .013 .007 .010 .010 .008 .0102

C 0 !OOO .000 .000 .900 .000 .000 .0000

. , D 1 .014 .007 .004 .005 0005 .004 .0051

E 1 .014 .007 .004 .005 .005 .004 .0051
-
Average .034 .015 .007 .010 .008 .007 .0103

Table 6.4: Probability of Interception of each
Crime Type in each Region under the
Optimal Allocation Strategy:
Equal Total Crime Rates-Duration
of Crimes Assumed Constant
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The initial payoff for introducing a single patrol unit into

A was only about 3% higher than that for B. However, as more

units are allocated, none are assigned to region B until the

incremental payoff from adding another unit to region A has

been reduced, by diminishing returns, below that of an,

initial payoff "in the other~ region (B). Because the dimin­

ishing return is occurring so slowly, cutting into the

incremental payoff by only slightly more than one-half of one

percent for each additional unit assigned to At it is not

until the sixth unit is to be allocated that diminishing

return has erased what was initially: only a 3% advantage.

The same analysis, of course, can be used to explain why

region C is not allocated patrol units even though the

initial difference between it and A was only 4%.

6.4.2 Equal Total Crime Rates--Duration Assumed to be

Exponential

In the next example the input data (region and crime

type) to the model is the same as before except that the

observable duration of each crime type is assumed to follow

an exponential probability distribution with the mean the

same as before (Table 6.2). When the algorithm was run

with this slightly modified data, the optimal solution

(Table 6.6) significantly decreased region A's allocation,

reducing it from six to four. The two cars were reallocated,

one each to regions D and E, which were now allocated two cars
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apiece. An analysis of the rate of diminishing return shows

clearly how exponentiality affected the optimal solution.

In both examples the initial difference in payoff bet­

ween a unit assigned to A and one assigned to B was only

2.5%. For the constant duration, it was noted earlier that

adding a patrol unit decreases the incremental payoff by

only slightly more than one-half of one percent. However,

introducing exponential distributions increases the rate of

diminishing return to almost 1.2%. Thus by the time the

fourth unit is allocated here (see Table 6.5), the first in

line to receive that patrol unit is no longer region A; instead

it is region B. . . In the first example, B did not

receive any patrol units until the sixth one was allocated

(Table 6.3). This increased rate of diminishing return also

affects region' C. Sensitivity analysis carried out on the

optimal solution showed that if an additional unit (the

eleventh) became available, it would be allocated to region C

if the crime duration distribution were exponential but to

region A if the distribution were deterministic.

There is one last ancillary effect that should be noted.

Because each-region's crime, when broken down into the six

categories, is different, shifting units between regions

affects the overall probability of intercepting crimes of a

particular type. Region A has a hi~her proportion of type I

crimes while in D and E criminals prefer crime types V and VI.

As a result, shifting the units out of A decreases the
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SEQUENTIAL ALLOCATION

Patrol Unit Number 1 2 3 4 5 6 7 8 9 10

Allocated to Region A A A B E D A B E D

Table 6.5: Sequential Allocation:The Order in Which
Patrol Units are Allocated to the Various
Regions Under the Optimal Policy:
Equal Total Crime Rates-Duration of Crimes
Assumed Exponential

RESULTS OF OPTIMAL ALLOCATION

f C ·fItcars ro all :y 0 n ercep lon 0 r mes
Regions AlIce. I II III~ IV V VI Average

A 1.} .053 ,,026 .01S .020 .020 .016 .0208

B 2 .027 .013 .007 .010 .010 ~OO8 =0102

C 0 .000 .000 .000 .000 .000 .000 .0000

D 2 .027 .013 .007 .010 .010 .008 .0102

E 2 .027 .013 .007 .010 .010 .008 .0102

Average .029 .015 .007 .010 .010 .008 .0103

Table 6.6: Probability of Interception of each Crime
Type in each Region under the Optimal
Allocation strategy:
Equal Total Crime Rates-Duration of Crimes
Assumed Exponential
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probability of intercepting a type I crime by 17% (from .034

to .029) and increases the probability of intercepting a type

V crime by 13% (from .008) to .0096) and a type VI crime by

16% (from .0068 to .008). Results analogous to the above will

appear in the next example when we consider regions with

differing total crime rates.

6.4.4 Differing Total Crime Rate: Duration Assumed Exponential

Previously we analyzed the impact of the differing crime

categories and the functional form of the observable duration.

In this next example we explore how differing overall crime

rates compound the above effects and, more importantly, address

the question of what gains are associated with the optimal

allocation. An obvious prerequisite for measuring the gains

generated by an optimal deployment is the existence of a

standard with which to compare. The straw man to be used is

the linear model which allocates patrol units to each region

in direct proportion to its total crime rate.

The crime type descriptive data used here is the same as

in the previous example including the assumption that the

observab1e duration is exponential (which seems to be more

realistic than a",deterministic distribution). However, the

region data was modified in the following manner. The frequen­

cy of each crime type in regions A and C was tripled so that

both regions had total rates of three crimes per unit time.

Region B's total crime rate was doubled in the same manner
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while the crime rates in regions D and E remained unchanged.

A linear allocation model would allocate three patrol units

each to A and C, two to B and one each to D and E. With this

allocation a random crime would be intercepted witha probabi­

lity of .012) or approximately one chance in 80. The inter­

ception probabilities of the different crime types range from

a low of .008 for type VI crimes to a high of .035 for type I

crimes and are summarized in Table 6.8.

The optimal allocation algorithm was run on this problem

and it suggested that seven patrol units be assigned to region

A, three to B and none to the other three regions~ The im­

balance between A and C which have the same overall crime rate,

was due to region A generating a higher frequency of crimes II

with higher interception rates (crime types I and II).

However, with the optimal allocation, the probability of

intercepting a random crime increased 22% from .0123 to .0152.

The increases in the individual crime categories, though,

varied widely. For crime types V and VI, the increases were

less than 10% and for types I and II, they were greater than

30%. The determining factor in the size of the increase in a

particular crime category was the distribution of that crime

type among the regions. Regions B, D and E (allocated no

patrol units) generate a high proportion of type V and type

VI crimes.

To add another dimension to the comparison,we have intro-

duced another statistic which is the inverse of the
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SEQUENTIAL ALLOCATION

Patrol Unit Number 1 2 3 4 5 6 7 8 9 10

Allocated to Region A A A A C A C A C A

Table 6.7: Sequential~'Allocation: The Order in Which
Patrol Units are Allocated to the Various
Regions Under the Optimal Policy:
Different Total Crime Rates-Duration of
Crimes Assumed Exponential

RESULTS OF OPTIMAL ALLOCATION

Probability of Interception of Crimes
I II III IV V VI A

Cars
AllRegJ.ons ac. verage

A 7 .089 .045 .026 .O3l} .034 .027 .0355

B 0 .000 • 000 .000 .000 .000 .000 .0000

c 3 .040 .020 .011 9015 .015 .,012 .0151

D 0 0000 .000 .000 .000 .000 .000 .0000

E 0 .000 • 000 .000 s 000 .000 .000 .0000

Average .048 .021 .011 .015 .012 .008 .0152

Linear Model .035 .015 .009 .012 .011 .008 .0123

Table 6.8: Probability of Interception of each Crime
Type in each Region under the Optimal Allocation strategy:
Compared to Linear Allocation Model: Differ~nt Total
Crime Rates-Duration Assumed Exponential
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probability of interception. This statistic is the expected

number of crimes committed until one is intercepted. It can

be interpreted in terms of interdicting a career path of a

criminal. Thus with the linear allocation, a non-discrimina­

ting criminal (commits all types of crimes) would, on the

average, commit 81 crimes (1/.0123) before being intercepted

by a passing patrol unit. Under the optimal allocation this

is reduced to 61 crimes (1/.0152). Similarly a criminal who

specializes in type II crimes would have his expected

career length reduced 36%. These improvements suggest that

for regions with disparate crime rates, the algorithm can

significantly wercentage-wise) increase the probability of

interception. The increases generated in this last example

are perhaps more impressive when compared to the goals of a

one ;million dollar crime reduction proposal submitted to

LEAA [ 1 J. In it Atlanta's police department set a goal of

increasing on-site apprehensions by 5%, with the term on-site

apprehensions including all criminals captured within an

hour of the crime. A better deployment of a tactical patrol

force might by itself generate that level of improvement 0

At this point, however, we would like to reiterate our

earlier remarks. Even with the improvements (over propor·

tional allocation) that the model generates, the resultant

allocation of randomly patrolling units may not be the best

strategy. The probabilities of interception are still only

on the order of .015. other totally different strategies,
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such as stakeouts, may be able to generate higher probabili-

ties especially when the focus is on' only one crime -type

(e.g. burglary).
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6*5 Sensitivity Analysis

The following sections present algorithms which perform

sensitivity analysis on each of the allocation model's input

parameters. The development of each algorithm revolves

around understanding how changes in a particular parameter

affect the following necessary and sufficient condition of

optimality:

"If there exists no region such that adding a patrol
unit to that region increases the weighted probability of
intercepting a crime, more than removing a patrol unit from
some region reduces the same objective function, the solution
is optimal.

This optimalityoondition can be formalized:

C
max 2:j

i=l

C
< min 2:k

i=l

W(i)-F(i,j)·[P(i,j,N(j)+l) - P(i,j,N(j))]

W(li)'F(i,k)-[P(i,k,N(k)) - P(i,k,N(k)-l)]

(6,11)

The left hand side of the inequality represents the increase

produced by adding a patrol unit to region, j, and the right

hand side describes the decrease resulting from removing a

patrol unit from region, k. If the above inequality does not

hold, there must exist a pair of regions, j and k, such that

adding a patrol unit to j has a higher incremental payoff

than the decrease produced by removing a unit from region k.

In which case, the present solution can be improved upon by
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switching one unit from region k to region j. This proves

that the above condition is necessary for optimality. The

sufficiency of this condition is a direct consequence of

diminishing return. If transferring one unit does not im­

prove upon the present solution, transferring more than one

certainly can not. Because of diminishing return the second

patrol unit that is added to a region increases the inter­

ception probabilities there less than the first; while con­

versely, the second unit removed from a region decreases the

probability of interception even more than the first.

6.5.1 Frequency of the Different Crime Types in Each Region

The first algorithm analyzes the optimal allocation with

respect to the frequency of each crime type in each region.

The need for sensitivity analysis on this parameter is a

natural consequence of its changeability. Crime patterns

change over a period of time in regard to both the absolute

and relative frequency of each crime type. In addition since

the allocation model sugge~ concentrating the patrol force

in a limited number of regions, criminal reaction to police

deployment may speed up the process of change significantly.

The goal of sensitivity analysis on this"set of parameters

will be twofold: (l)To determine how much the frequency of a

particular crime type in each region can vary before affecting

the optimality of the present deployment, (2)To pinpoint

the crime type-region pairs to which the optimal solution is
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most sensitive. The decision maker would use this informa­

tion in determining which crime rates to monitor most

closely for chan~~s.

Compared to the other parameters, sensitivity analysis

on the crime type frequencies is easy to carry out because

increasing the frequency of a crime in a particular region,

j, affects the incremental payoff in only that region. The

determination of when the optimal solution changes, there­

fore, requires making only one comparison. That comparison

will be between region j and the region ~ther than j) with

the minimum decrement. As F(il,j), the frequency of crime

type i1 in region j, increases, the incremental payoff of

region j increases linearly. (The slope of the line

W(il).[P(il,j,N(j)+1 - P(il,j,N(j»].) Thus to find the

upper limit, UF(il,j), to which F(il,j) can rise without

altering the optimal solution, it is necessary to deter­

mine the intersection point of two straight lines. One line

is the incremental payoff equation (a function of F(il,j)

of the region j; the other is a constant representing the

minimum decremerE. The intersection point is

UF(il,j)= [(Min
k,klj

c
~ W(i)·F(i,k)·~(i,k,N(k))-P(i,k,N(k)-l))·

i=l

(6.12)

c
- ~ W(i)·F(i,j)\P(i,j,N(j)+l)-P(i,j,N(j)))]

i=1, ilil
-------------------------------------------------------[W(il)·(P(il;j,N(j)+l)-P(i,j,N(j»)]
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If the F(il,j) increases above this limit, UF(il,j), the the

present optimal solution can be improved by transferring a

unit into region j from the region with the present minimum

decrement.

The calculation of the lower limit on F(il,j) is directly

analogous to the above. Instead of Equation (6.7) the

relevant expression for determining the two line intersection

point is

LF(il,j)= Max [0, [Max ~ W(i)oP(i,k) ° (P(i,k,N(k)+l) -)
k,kfj ~ P(i,k,N(k))

i=l

c-L: W(i)oP(i,j)o(P(i,j,N(j»-P(i,j,N(j)-l»]

------Ew(il~~~;~~~:j:~(j)-:-p(il:j:~(j):l)j---------------]
(6.13)

If the frequency of F(:il,j) decreases below its lower limit

then transferring a patrol unit from region j into the region

with the maximum incremental payoff, improves on the present

deployment. There are. however, two distinctions between

searching for the upper and lower limits on F(il, j). First­

ly the lower limit LF(i1,j) can not be less than zero. Sec­

ondly, for regions which presently are not allocated any pat~

rol units, decreasing the frequency of any crime in that

region can not alter the optimal solution.

As an illustration, sensitivity analysis was carried out~
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on the last example in which in the optimal solution, region

A, was ~llocated seven patrol units and region C, three.

Table 6.9 summarized the results of this analysis. Notice,

first of all, that there would have to be significant increases

(at least double) in any of the individual crime rates in the

regions E, D or E before the optimal solution would allocate

any patrol units to these regions. However, the optimal

solution is far more sensitive to changing crime patterns in

regions A and C. In the extreme it is highly sensitive to any

increases or decreases in the rate of crime type III in either

of the two regions. An increase (decrease) of only J% in the

type III crime rate in region A will warrant transferring a

unit from (to) region C to (from) A. The same is true, in

reverse, for changes in region C's rate. There are some

crime types, even in these regions, to whfuhthe optimal

solution is not overly sensitive. Changes of 30% or more in

the type VI crime rate of either of the two regions do not

alter .the optimal solution. Also, for example, a 30% increase

or 14% decrease in the rate of crime type I in region A

would not affect the optimal solution.

The methodology for sensitivity analysis described here

has been of very limited scope. It analyzes the impact of

changing only one of the F(i,j) while all others are assumed

constant. Naturally crime rates are not constrained to

change in this manner. There may be an across the board

increase in the total crime rate of one region, or one
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Table 6.9: Sensitivity Analysis on the Frequency of the
Different Crime Types in the Different Regions

G ·I B d R
REGION A

U B dR· LFrlme requency. oun eglon oses . J oun eglon alns
I .065 .. 084 c .056 C

II .606 .640 c .587 C
III .. 426 .484 c .394 c
IV 1.395 1.439 c 1.370 c

V .408 .452 C 038'3 C
VI .099 .153 c .069 c

c ·

LI B d R
REGION B

U B d R a LFrlme reauency. oun eglon oses J oun eglon oses
I .030 .358 A - -

II .322 1.003 A - -
III .264 1.477 A - -
IV .936 1;845 A - -
V .348 1.259 A - -

VI .100 1.232 A - -

c ·

G •"L B d R
REGION C

U B dR· l' ~Fc ·rlrne requency oun eglon oses oun eglon alns
I .048 .056 A .032 A

II .,J12 .329 .. A .280 A
III .459 .490 A .402 A
IV 1.590 1.613 A 1.547 A

V .513 .536 A .470 A
VI .078 0107 A .025 A

G ·L B d R
REGION D

dBFrlme requency U oun ReglOn Loses oun eglon alns
I .009 .714- A - ..

II .184 1.646 A - -
III ,105 2.711 A - -
IV .276 2.229 A - -

V .324 2.281 A - -
VI .102 2.533 A - -

c ·

G ·L B d R
REG IO!'l E

dR· LU BFc ·rJ.me requency oun eg].. on oses oun egl.on alns
I .010 .714 A - -

II .194 1.655 A - -
III .150 2.752 A - -
IV .388 2,338 A - -

V .199 2.153 A - -
VI .059 2.487 A - -
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particular crime may increase or decrease in all of the

regions 0 or some combination of both may occur.

The sensitivity of the optimal solution to the former

type of change (all crimes in one region) can be analyzed

through a natrual extension of the methodology already pre­

sented. In order to find an upper bound, UB, on the increase

in the total crime rate in region jl (assuming the relative

frequency of the crime types remains the same), it is

necessary to modify equation (6.11) to be

C
UB(ji)= Min ~ W(i)·F(i,j)·(P(i,j,N(j»-P(i,j,N(j)-l»

j. jljlLJ
i=l

--------------------------------------------------c
2:W( i ) · F ( j 1 ) • fp (i, j 1 , N( j 1 )+1 ) - P( i , j 1 , N( j 1 ) )

i=l
(6.14)

In addition it is also possible to relax the assumption that

as the total crime rate in the region increases the relative

frequency of each crime type in that region remains fixed D

This a.dded complication is accounted for by introducing a

vector, V(i), of values into the denominator, which reflects

the expected relative rate of change in each crime category.

Our discussion of analyzing gleb,al changes in a single

crime category will be postponed until we present the algo­

rithm for sensitivity analysis on the weights, W(i),

associated with each crime type. As we shall see, the two

problems are equivalent.
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6.5.2 Crime Weights

In contrast to the crime rates, the development of this

sensitivity analysis capability was not motivated by the

changeability of the crime weights. Instead the motivation

lies in that the crime weights will reflect, at least in part,

a subjective assessment of the relative seriousness of each

crime type. Because of the difficulty in accurately trans­

lating subjective attitudes into quantifiable measures, it is

important to determine the range over which each weight can

vary without affecting the present optimal solution.

As before, the essence of the sensitivity analysis algo­

rithm consists of determining for what values of W(i) does the

optimality condition, maximum increment less than the minimum

decrement, no longer hold. This task is complicated by the

compounq effect produced by changing the weight of a specific

crime category, As the weight of a single crime type increases

not only does the increment associated with adding a unit to

a region change but the ranking of the regions according to

their potential increment also changes. Thus for one value of

W(i), region j might have the highest increment,while for

another value, region k may have the highest increment. Con­

sequently, even though each individual region's incremental

payoff is a linear function of the crime weight, W(i), the

maximum increment is a piecewise linear convex function of

W(i) (See Figure 6.1). Analogously, the minimum decrement

produced by removing a patrol unit from a region is a piece-
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wise linear concave function of W(i).

The sensitivity analysis algorithm we constructed con­

sists of two components. The first component maps the two

piecewise linear functions, for the maximum increment and

minimum decrement over the entire range of positive values

of W(i) (in Figure 6.1, curves A and B respectively). The

second component determines the intersection point of the

two curves thereby determining the upper, UW(i), and lower,

LW(i), limits within which W(i) can vary without affecting

the present optimal solution. As W(i), however, increases

above the upper limit, UW(i), the present allocation can be

improved upon by tranferring a patrol unit. Since each line

segment represents a different region, the two regions

oorresponding to thc-intersecting lines at UW(i) are the ones

between which the patrol unit should be transferred.

The process of mapping a piecewise linear function re­

quires the specification of only the starting point and slope

of each line segment. The algorithm presented here uses the

list which ranks the regions (for the present value of W{'i))

according to their incremental payoffs.as a starting point in

determining these numbers. Analyzing increases and decreases

in Wei) separately, it performs a series of pair wise compari­

sons and calculations with consecutively ranked regions on

that list to generate the maximum increment curve. For example,

in order to determine the effect of increasing W(i) the

following computations are performed.
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As was mentioned earlier, each region's incremental pay­

off is a linear function of W(i) with a slope of F(i,j)'

(P(i,j,N(j)+l) - P(i.j.N(j))). This expression is used to

compare the slopes of the regions ranked R and R+l. If the

region ranked R+1 (lower payoff) has a smaller slope, then

for increases in W(i) its incremental payoff will always be

dominated by that of region R. Therefore, for increases ,in

W(i), it can never represent the maximum increment and can be

eliminated from further consideration. I~ on the other hand,

its slope is greater than R, a second claculation is performed.

The intersection point of the two lines, IP(R), is determined.

Thus for W(i) greater than IP(R) the region ranked R+l dominates

and for W(i) less than IP(R) the region ranked R dominates.

Next IP(R) is compared to the previous intersection point

IP(R-l). If the point IP(R) occurs prior to IP(R-1), relative

to increases in W~i), the region ranked R can be eliminated

from consideration. Using Figure 6.1 as an example the

justification is as follows. The lines marked 1 through 4

represent the regions whose incremental payoffs are respec­

tively ranked 1 through 4 for the present value of W(i).

Although the line marked 3 dominates the line marked 4 up to

the point IP(3), it itself is dominated by the line marked 2.

Between the points IP(3) and IP(2), line 3 is now dominated by

both lines 2 and 4 and above IP(2) it is also dominated by

line 4. Thus over the entire range of increasing W(i) line 3
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Figure 6.1: A Graphic Description of the Method
for Finding the Maximum Increment and the Minimum
Decrement .
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can never represent the maximum increment. Once the line

ranked R (in our example, R is 3) is eliminated, the intersec­

tion point, IP'(R-l), of the lines ranked R-l, (2), and R+l,

(4), is determined and compared to the previous intersection

point, IP(R-2). The final product of all of the above

comparisons of slopes and intersection points is a list which

is a subset of the original incremental payoff list. This

new list is simply an ordering of the line segments in the

seqeunce that they appear in the piecewise linear curve as

W(i) increases. When the last comparison has been completed

the maximum increment has been completely specified since the

startllgpoint of each line segment is the already determined

intersection point of consecutively ranked line segments.

The above series of comparisons are then reversed to find

the maximum increment curve for decreasing values of W(i).

For example if the incremental payoff for the region ranked

R+l has a higher slopethan that of the region raked R, it can

be eliminated from the list. Lastly an analogous set of com­

parisons are performed in order to graph the minimum decrement

curve. The upper and lower limits on Wei) are then found by

locating the intersection points of the two curves.

Table 6 e l0 summarizes the results of sensitivity analy­

sis carried out on the weights. The optimal solution is least

sensitive to a change in the weight on type VI crimes, with

the solution totally insensitive to a decrease in the weight.
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This insensitivity is the result of a combination of two

factors: (l)Type VI crimes make up less than 5% of all the

crimes in these six categories, (2)they have the second

lowest probability of interception with only 'the interception

rate of type III crimes lower. At the other end of the

spectrum, even minor changes in the weights on either type IV

or V crimes affects the optimal solution. If the weight on

type IV crimes were greater than 1.1, instead of the present

value of 1, then shifting a patrol unit from region A to

region C improves upon the present deployment. Conversely if

the weight were less than .840, a patrol unit should be

transferred from region C to region A.

In the above example, and throughout the discussion of sen­

sitivy analysis, the focus has been on determining over what

range of values does the present solution remain optimal.

Changes in the input data which~ just~ above or below the

limits will require the reallocation of only one unit to

achieve the new optimal solution. As a contrast is might be

interesting to illustrate how drastically the optimal solution

can change when far more s~icant changes occur, for example,

in the weights. Consider a situation in which a decision

is made to place an emphasis on catching criminals who

specialize in type IV and type V crimes. To reflect this

emphasis the weights on these crime types are doubled. Using

the same data as in the last example, we find that the optimal

solution is exactly the reverse of before. Region C is now



CRIME TYPE .. WEIGHT
REGIONS

UPPER BOUND LOSES GAINS
REGIONS

LOWER BOUND LOSES GAINS

- I- 1.0 2.6 c A .31 A C

II 1.0 1e12 C A .93 A c

III 1.0 1.74 A C - - -
l"v 1.0 1.10 A C .84 c A

V 1.0 1.2 A C .66 c A

VI 1.0 4.1 C A - - -

Table 6.10: Sensitivity Analysis on the Crime Weights

I
N
OJ
\...0
I



CRIME TYPE
REGION REGION

PARAMETER MEAN _UPPER BOUND LOSES GAINS LOWER BOUND LOSES GAINS
I OBSERVABILITY1 .14 I .65 A c .03 A c

DURATION .1Ohrs .46 A C .02 A C

PRODUCT .014 .065 A c .003 A c
II OBSERVABILITY .10 .12 C A .09 A c

DURATION .066 .08 c A .06 A c

PRODUCT .0066 .008 c A .006 A c
III OBSERVABILITY DID .16 A C - - -

DURATION .037 .06 A c - - -
PRODUCT .0037 .006 A c - - -

IV OBSER'VABILITY .03 .033 A c .025 c A

DURATION .167 .184 A C .142 C A

PRODUCT .005 .0055 A c .0043 C A
V OBSERVABILITY .04- .048 A C .026 C A

DURATION ~125 ~150 A c .081 C A

PRODUCT .005 .006 A c .00]2 C A
VI OBSERVABILITY .06 - - - - - -

DURATION .066 - - - - - -
PRODUCT .004 - - - - - -

Tabel 6.11: Sensitivity Analysis: Crime Descriptive Data

I
N
'-0
o
I
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allocated seven patrol units as compared to three before, with

~he remaining three assigned to region A, which had seven

before. Although changes of the above magnitude can be ex­

plored through sensitivity analysis algorithms, the more

appropriate response it to rerum the original algorithm for

the changed data base.

One final point to be discussed with reference to the

weights is their relationshipto the crime frequencies, F(i,j).

In expression (6.11), which describes the conditions for opti­

mality, the two parameters always appear as the product,

W(i)·F(i,j). Consequently, doubling the weight on a particular

crime type is equivalent to doubling the frequency, in each

region j, of crimes of type i. Therefore, the above sensiti­

vity analysis on the weights can also be applied to changes in

the total frequency of the different crime types (assuming the

distribution among regions remains the same). Therefore by

referring back to Table 6.10, we can determine that type II

crimes would have to increase 74% across the five region area

before the optimal deployment strategy would change; while a

decrease in that crime's total rate would not affect the

optimal solution. On the other h~ld, a 10% increase in the

five region type IV crime rate would necessitate a reassign­

ment of one patrol unit from A to C and a 12% increase in

type II crimes would have the reverse impact.
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6.5.3 The 0bservability and Duration of a Crime

The last set of parameters to be analyzed are the tvo

crime descriptive ones. The need for a sensitivity analysis

capability on these parameters is unfortunately all too ob­

vias. No data exists at present with regard to these para­

meters nor is there research being carried out to determine

these numbers. Consequently early applications of search

theoretic models will have, at best, only very rough esti­

mates to work with and even with extensive research in the

future, it is not clear how good a set of estimates can be

obtained~

Sensitivity analysis will be performed simultaneously on

the observability and duration of each crime type~ This can

be done because the critical input parameter in calculating

the probability of interception (see equations(6.6) through

(6.10)) is the product~of the two numbers, l/A(i) (mean

duration) and OB(i) (observability), and not their individual

values. Of course once the limits on the product have been

calculated, the limits on the individual parameters follow

directly. Aside from this simplification, sensitivity analysis

of' these parameters is far more complex than for the'i'oweights

or cr~me frequencies.

The key problem is that not only is the incremental pay­

off for a region not a linear function of l/A(i) or OB(i), it

is not even a monotonically increasing function of these para­

meters. Assume for example that the duration of a crime is
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exponential. The payoff of adding an additional patrol unit

to region j is:

(6.15)

Notice that as all the OB(i) or l/A(i) approach either

~ or infinity, the incremental payoff approaches zero (if

N(j) is not zero). This phenomenon can be explained as

follows. For large OB(i) there is a hjgh probability of

intercepting the crime even with only one patrol unit; thus

additional patrol units can ~ot have much of an impact. At

the other extreme for small OB(i), since there is only a

small probability of intercepting a crime, adding one more

patrol unit can not significantly increaEe (in absolute terms)

the probability of intercepting a crime. For intermediate

values, though, the incremental payoff is certainly not zero.

The nonlinearity of the incremental payoff expression

complicates the task of sensitivity analysis but the non­

monotonicity has an even more profound effect. It necessitates

a different understanding of the upper and lower limits. For

example, as OB(i) increases above its present value it may

reach a point, Urn"a) , above which the present solution is not

optimal because the maximum increment is greater than the
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minimum decrement. However as OB(i) increases further the

maximum decrement will begin to decrease which may result in

its becoming once again less than the minimum decreme~leaving

the present solution still optimal.

Although cognizant of the above issues, the algorithm to

be presented will focus only on determining the initial bounds

within which the product, OB(i)-l/A(i), can vary without

changing the optimal solution. However, the algorithm will

not, for example, analyze the behavior of the optimal solution

as the product increases significantly above the bound. Even

for this limited problem, sensitivity analysis will be carried

out using a direct brute force approach because of the non­

linearity of the incremental payoff.

Starting from the present value of the product, the pro­

duct is increased by a user specified percentage. The incre­

mental payoff and decrement are compared. If the maximum is

greater than the minimum then the present optimal solution is

not optimal for the new value of the product. If, however,

the maximum increment is still less than the minimum decrement,

then the product is increased again by the same amount and the

comparison is repeated. This procedure is repeated until we

reach a value of product for Which the present solution is not

optimal. or reach a user specified reasonab~ upper bound on the

product. The same methodology is used to determine a lower

bound on the product with an obvious implicit bound of zero

on the product_ The above approach yields only approximations
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of the upper and lower limits; however, these approximations

can be made as accurate as the user desires by specifying

the magnitude of each step, In the example presented below,

the product of OB(i) and ~(i) was first increased by five

percent of its initial value at each step and later the process

was reversed, and the initial value was repeatedly decreased

by five percent.

Table 6.11 summarizes the results of the analysis. Not

surprisingly the results parallel those for the sensitivity

analysis of the crime weights, Table 6.10. Again the optimal

solution is least sensitive to changes in type VI crime data

and rela~ively insensitive to changes in type I and type III

crimes. If the estimates were found to be low by one minute

(.017 hours) or more, then the optimal solution would

reallocatecne patrol unit from region A to region C. The

sensitivity analysis of type I crimes shows an interesting

phenomenon occurring. Whether the actual mean was above .46

hours or below .02 hours, to achieve optimality, the present

solution would have to be modified in~ cases by realloca­

ting a unit from A to C. This phenomenon can not occur in
r

sensitivity analysis of the weights and crime frequencies but

is possible here because of the aforementioned non-monotonicity

of the marginal return.
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6.6 Summary

In the preceding sections of this chapter we presented a

flexible algorithm for optimally deploying a tactical patrol

force among several competing regions. The examples presented

in the chapter were chosen with two purposes in mind. The

first purpose was to display the importance of knowing not only

the total crime rate of each region but also the distribution

of crimes by type for each region. The second was to show the

basic nonlinearity of the optimal allocation. Instead of

allocating patrol in direct proportion to the crime level

the optimal solution tends to focus on just the highest

crime regions. In the example presented this allocation

produced a 22% h~gher probability of interception than a pro­

portional (to t~al crime rates) allocation of patrol. However

of perhaps even greater significance than the above insights

is that througn the perspective of the allocation model we can

see what the critical variables are in developing optimal

patrol strategies. Besides the frequency of observable crimes

of each type, the important parameters are the observability

and duration of each crime type. The need for data of this

type seems almost intuitively obvious and yet no extensive

research has yet been done in this area.

Included in the algorithm are components for performing

sensitivty analysis on each of the input parameters. The

allocation model, we noted, pointed out general data needs

for developing effective patrol strategies. The sensitivity
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analysis algorithms analogously pinpoint, on a more micro­

scopic level, the critical parameters in the particular regions

under consideration (i.e. slight variations can affect the

optimal solution). It will be these parameters that require

the most accurate estimates since small inaccuracies might

change the optimal solution.
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CHAPTER 7

ALLOCATING THE PATROL TIME OF SINGLE AND MULTIPLE PATROL UNITS

7.0 Introduction

The tactical patrol force allocation model that was

presented in Chapter VI is oriented towards deployment issues

on a precin~ or city wide level. In this next chapter we

will present issues more relevant to patrol strategies on a

sector or two sector level, involving a standard patrol car

with responsibility for calls for service. In our search for

and discussion of efficient patrol strategies, we will limit

the class of solutions surveyed to those consisting of patrol

cars concentrating their patrol efforts in a single contiguous

region. This constraint is based on the results of earlier

chapters. In Chapter V we showed that in allocating search

effort between noncontiguous regions, the optimal strategy

will usually be to search only one region rather than incur

the time lost (from search) in travel between the regions.

Thus,the general problem we analyze here involves constructing

from small building blocks, called atoms (2 square blocks in

size), the best contiguous region in which to concentrate

patrol. In applying an algorithm which concentrates patrol

in a limited area to the police environment, it may be

necessary to set aside a minimal amount of patrol time to be

allocated over the entire sector. (~his point will be

elaborated on later in this chapter.) On the whole,

though, the discussion will be exploratory, suggesting one



-300-

approach to the problem and presenting some insights as to the

eventual size of the region.
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7.1 Methodology

The objective function to be maximized is the same as

before, the weighted probability of intercepting a crime. As

a result the data requirements do not change except for the

addition of two sets of data. Since the algorithm constructs

a contiguous region out of a set of individual atoms, infor­

mation is needed to describe which atoms are contiguous to

one another. Secondly, since this analysis involves standard

patrol cars, some estimate must be given for the average work­

load of the unit. The best available method for calculating

this statistic is the hypercube queuing model [1 ].

The basic steps in the algorithm are listed below~

1. Calculate for each atom the payoff (i.e. weighted
probability of intercepting a crime) resulting from
a single patrol unit spending all of its 'free' time
patrolling just that one atom.

2. Rank the atoms in order of their payoff.

3. Incorporate the highest ranked atom into the region
to be patrolled.

4. List all atoms (not yet in the region) that are
contiguous to an atom that is already included in
the heavily patrolled re~ion and rank them according
to their initial payoff (step 1).

5. Determine if adding the highest ranked atom on the
contiguity list increases the total weighted
probability of intercepting a crime. If it increases
the payoff include it into the patrolled region. I~

not, test the next highest ranked atom, etc. If no
atom can increase the payoff go on to step 6 other­
wise return to step 40

Once the point is reached that no further single atom expansions
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of the patrol area increase the payoff, we proceed to check

another alternative.

6. Determine if removing an atom can increase the payoff.
Remove the atom which produces the greatest increase
and return to step 4. (Only those atoms which can be
removed without leaving the region split in two are
considered in this step.) If no improvement can be
generated, the algorithm stops.

Consequently, the stopping point of the algorithm is a local

optimum at which adding or removing a single atom does not

increase the weighted probability of intercepting a crime.

There are, of course, numerous approaches that can be followed

in trying to determine if the present local optimum can be

improved upon. One alternative is to see if adding or

removing pairs of atoms from the present patrol region can im-
1

prove on the present solution. In our programmed version of

the above algorithm the alternative we chose was to rerun the

algorithm a second time. However, this time we forced the

construction of the patrol region to begin with the inclu­

sion of an atom that was not in the original solution. In

all our trials the region constructed in the second pass

through the algorithm was the same as the first;

Before proceeding with a discussion of how the weighted

probability of intercept~acrlma is calculated, we would like

to comment briefly on steps 4 and 5 in the algorithm. In

step 5 it is not sufficient to test only the highest ranked

atom for inclusion. The rankings used here were not generated

by calculating how much the addition of each contiguous atOtil
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would increase the payoff. Instead we used the initial

rankings, which compared each atom's potential payoff from

a single patrol unit patrolling only that atom. The reason

for taking the second approach (which in general is a good

surrogate) is that otherwise it would have been necessary to

recalculate -at each iteration how much every contiguous atom

would change the present payoff. However, even though in

step 4 we use the ordering in the original unchangfuglist to

determine which atom to add (as if to say the marginal and

initial rankings are the same), in step 5, we do not assume

that if the contiguous atom ranked first (in the initial list)

can not increase the payoff that no contiguous atom can.

7.1.1 The Weighted Probability of Interception

The calculation of the weighted probability of intercepting

a crime in this algorithm takes on the same general form as in

Chapter 6 with one modification. An additional parameter is

included to reflect the possibility that during the commission

of the crime the patrol unit may be busy responding to a call

and therefore not on patrolo Using the following parameters:

Let A= set of all atoms contained in the patrol area

B= average fraction of time the patrol unit is busy

F(i,j)= the frequency of crime type i in atom j

F(i)= ~ F(i,j), the total frequency of crime'
j,jCA

type i in the patrol area
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M(j)= the street mileage in atom j

M= ~ M(j), the total street mileage in the patrol area
j~

P(i,M)= probability of intercepting a crime of type i in
the patrolled region (M street miles)

The expression for the weighted probability of intercepting a

random crime is

Payoff= (I-B) L
j,j£A

c

L
i=l

F(i,j)-W(i)-P(i,M(i»)

=(l-B)

c

L
i=l

F(i)·W(i)-P(i,M) (7.1)

There are two underlying assumptions that produce a

number of simplifications used in generating the above

expressiono The first one, which was discussed earlier in

Chapter 4 (section 4.1), assumes that because the duration

of a crime is small relative to the average duration of a

call for service, that a patrol unit will either be busy or

free (on patrol) throughout the entire duration of a crime.

The result is that although the average workload affects the

total payoff, its impact is independent of which atoms are

included in the heavily patrolled area. It therefore can be

ignored when deciding which atom to include in the patrol

area_ However, when the two patrol car example is presented,

it will be apparent that the value of the average workload

will affect the construction of the optimal region to patrol_
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In addition the patrol effort is assumed to be distrib­

uted uniformly over the patrolled area and is not distributed

in proportion to the crime rates of the individual included

atoms. As a consequence only the total street mileage and

total frequency of each crime type in the patrolled region is

used. If, however, each atom were allocated a different

proportion of patrol, then each atom would need be treated

separately. For each atom it would be necessary to calculate

the following:

"Conditioned on a crime of duration to minutes occuring
in atom it what is the probability dlstribution for the
total time t, t less than to, during the commission of
the crime, that the patrol unit is searching the same
atom i."

As was discussed in Chapter IV this is an extremely difficult

thing to calculate. This assumption (i.e. patrol uniformly

distributed) is not as unreasonable as it first might seem

because it is unlikely that the crime rates of the atoms in

the region patrolled will be widely disparate. The second

example will focus on this point.

In terms of equation (7el) the process of searching for

atoms to be included into the patrolled area, involves

balancing two opposite effects. Adding more atoms increases

each F(i) thereby increasing the total payoff. At the same

time adding to the size of the region increases the street

mileage, thereby decreasing the probability of intercepting

a crime in the area patrolled.
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7.2 Single Patrol Car

For the first example we constructed a sector of 15 atoms

(approximately 8 square city blocks) each of which contained

.4 street miles (see Figure 7e1). The distribution of crimes

within each atom was generated from the earlier five region

data. Atoms one through five have the same distribution as

the five regions of the earlier examples. For the other ten

atoms the distributions were generated by averaging the

distribution of pairs of the first five atoms. As a result

the range of distributions is limited and the tot.al crime

rate in each atom is the same. The patrol unit was assumed

busy 50% of the time. The crime descriptive data is the same

as in Chapter 6 (See Table 6.2).

The optimal region to patrol included almost the entire

sector (excluding only atom 3) because of the uniformity of

the crime rates. Overall there was a .0064 chance of inter­

cepting a random crime. In the atoms that were patrolled the

probability of intercepting a crime ranged from a low of

.00677 in atom 13 to a high of .00703, only a difference of

4%, reflecting the small variations in the distributions.

Table 7.1 summarizes these results~

The above example represents one extreme in terms of the

size of the optimal patrol region. However, if the crime rate

were less uniform, then the size of the region in which

patrol is to be concentrated would decrease. In the next

example the total crime rate in atom 1 was chan~ed; it was



ATOM NUIV1BER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
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PROBABILITY OF INTERCEPTING A CRIME THERE

.00703

.00686

.00000

.00681

.0068)

.00694-

.00689

.00692

.00693

.00679

.oo68~

.00685

.00677

.00678

.00683
Average (random crime)

CRIME TYPE

I

II

III

IV

V

VI

.00640

PROBABILITY OF INTERCEPTION

.01673

.00845

.00460

.00607

.00623

.00515

Table 7.1: Probability of intercepting a crime in the heavily
patrolled region of the sector
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increased to 1.2 times that of any of the other atoms. The
~

resultant solution limited patrol to just atom 1. To under-

stan~why this happened, we will analyze the changes that oc­

cur when an atom is added to the patrol region.

When the algorithm is applied in this example, the first

atom included in the patrol area is naturally atom 1. As the

algorithm considers expanding the size of the patrol area, the

underlying issue is whether or not half of the patrol time

now presently allocated to atom 1 should be allocated instead

to some other atom. The question then is, what is the payoff

from this half of the patrol time when it is assigned to atom

1 and what is its payoff when it is allocated to some other

atom?

The first point to realize is that for a typical crime

described in Table 6.2, the product, t·CB (observable duration

and average observability), is on the order of magnitude of

.005. In addition we are assuming that the patrol speed is

15 miles per hour, the patrol unit is busy 50% of the time

and that the observable duration of a crime has an exponential
"

distribution. Thus if half the patrol effort is allocated to

atom 1 (.4 street miles), the probability of intercepting a

crime is approximately

(I-B) .( set 2·0B ) =
s·t 2·0B + M

If however all the effort were allocated to the single atom,

the probability of interception increases to .079. Due to
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diminishing return the yield from the additional search

effort is only about 84% as great as the initial effort. If

instead this additional effort were allocated to another atom,

the interception probabiity there would also be .043; however,

the crime rate there is only 83% (1/1.2) of that in atom 1.

Consequently concentrating all the search in atom 1 has an

overall higher payoff than splitting the search betwen atom 1

and a second atom c Extrapolating from the above, the atoms to

be included in the patrolled area are not likely to have crime

rates that vary, from highest to lowest, by more than about

17% assuming the observability and duration are on the order

of magnitude of the data used in our example.

The algorithm presented in this chapter is intended only

as an outline of one approach to finding an optimal area to

patrol and is not offered as a finished product. For one thing

optimal solutions similar to the last example,~which limit

patrol to a two square block area, will likely prove counter­

productive as criminals move to less well patrolled, more

productive areas. Obviously reactions similar to the above

must be taken into account in developing realistic more

effective patrol strategies. Thus algorithms of the type

described here could for instance be incorporated in a game

theoretic approach that attempts to anticipate possible

criminal reaction to patrols. Alternatively, a proportion

of the pa~rol:effort might be set aside for making relatively

high speed patrols in the lower crime areas. This last alter-
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native could even be handled within the general framework of

an algorithm similar to the one presented in this chapter.

However, the possible repercussions of concentrating patrol

in only a small section of the sector (several atoms) may not

be as large as one might expect. Larson [2 ] in his review of

the Kansas City experiment pointed out that a high level of

visibility was maintained in beats devoid of regular patrol

as a result of cars responding (often with sirens going)

to calls for service in the unpatrolled areas.
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7.3 Extensions to Two Patrol Units

In attempting to develop more flexible effective patrol

strategies, one alter~ative we discussed earlier (Section 4~2)

involves combining an area normally divided between two

patrol units into a single overlapping sector. Calls for

service would be shared equally (automatically balancing

workloads) with each unit 9 s patrol effort concentrated in

only hfugh crim\e areas within the erllar'ged join.t sectorl~ In

searc11ing 1""or the region or regions il1L which to concerltl"'ate

patrol, an algorithm should consider Emd compare these

alternative8:

1. The two patrol units patrol two disjoined sections
of the larger sector, which ~lre sel ected to
maximize the ovel"all we~ighte(i probability of ir.\-cer­
cepting a crime.

2 0 The two patrol units concentrate their efforts in one
single optimal region4

3. The units patrol partially overlapping regions with
the overlap centered on the highest crime areas.

The constru'crtion of" two separate .patrol areas (al terl1a.tive

1) can_pe accomplished by using iteratively an algorithm

analogous to that described in the previous section. However

to Ibcate the optimal region to be patrolled jointly by the

two patrol units, equation (7.1) for calculating the probability

of interception must be modified. The new equation becomes
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c c
~(l)oF(i)OP(i,M,l) + ~ p(2)oF(i)oP(i,M,2)
i=l i=l

where p(l) and p(2) are the respective probabilities that one

and two patrol units are on patrol. P(i,M,l) and P(i,M,2) are

the probability of intercepting a crime of type i in a region

of size M when one and two patrol units respectively are

searching for crimes. If the duration of a crime is assumed

exponential with mean t then

P(i M 2) = 2·S·OB·t
" 2·S·OB e t + M

If the two patrol units respond to calls for service only

within their sector then

p(l)= 2b e (1-b)/(l+b)

and

p(2)= (l-b)/(l+b)

with b representing the average workload of each of the patrol

units. In general, though, the two units will be part of a

larger precinct and will respond to calls for service outside

of their sector. Under those circumstances, it would be neces-

sary to use the hypercube model to calculate these probabilities

as they 2re intertwined with the operation of the rest of the

precinct. We 'discussed earlier (Section 4.2.3) that as a
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result of overlapping sectors travel time would increase.

Consequently, the hypercube eould be used at the same time to

measure also the magnitude of this increase.

An algorithm which would also consider partially over­

lapping patrol (alternative 3) would need to use both

equations. Equation (7.1) would be used to calculate the

probability of intercepting a crime in the non-overlapping

parts of the patrol area and equation (7.2) would be used

for the overlapping regions.
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1.4 Summary

The above discussion is an introduction to some of the

issues and approaches to developing a methodology for better

utilizing the patrol time of a standard patrol car. To the

insightful reader, though, this discussioil may have raised

more questions than it answered. How does one incorporate

response time, a commonly used surrogate for pol~ce effective­

ness, along with the search theoretic model into a single

model of patrol? How quickly do crime patterns change in

response to concentrated patrol efforts? These are just some

of the unanswered questions that immediately come to mind.

Without answers, though, it will be impossible to develop a

tOtal composite picture of the multidimensional interaction

between police patrol and street crime.
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FOOTNOTES 7

This alternative is not likely to help under the following
circumstances: At one end of the sector is an atom i with
the highest crime rate. However, the crime rate drops
sharply in the surrounding atoms. At the other end of the
sector there is a larger high crime area but with no one
atom having a crime rate as high as atom i. Thus the
algorithm would concentrate patrol in i even though it
would be better to patrol the other high crime area a The
second alternative for improving on the local optimum
would avoid this problem.

The fact that the algorithm began with a particular atom
does not necessarily mean that that atom will appear in
the final patrol area. Remember the algorithm allows for
the removal of atoms if their removal will increase the
total payoff.
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CHAPTER 8

-SUMMARY AND CONCLUSIONS

8.0 Introduction

The models that were presented earlier focus on two

distinct but related issues in police patrol deployment. The

first set of models address deployment issues through the

perspective of sector design, with the emphasis on problems

of equity. These models ~ake a relatively broad view of

police in that the crime directed activities of police are

not the sole focus (e~g. travel time is an importw1t consid­

eration for all emergent calls whether or not they are crime

related.). The second set of models, however, focus only on

crime with their goal being to generate increased probabili­

ties of intercepting crimes in progress. One of the models

works within the framework of a sector configuration. Its

function is to determine where in each sector the local pat­

rol unit should concentrate its patrol time. The second

model is, however, not constrained by sector boundaries as it

allocates a tactical patrol force to the high crime areas in

a precinct or city. When all of the above models are used

t~gether, it is possible for a police decision maker to ad­

dress a range of deployment questions from several perspec­

tives.

In the succeeding sections we will review in greater

detail each of these models. In addition we will present a

number of general conclusions that have resulted from our
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continuing work in model developmente Finally, this chapter

will close with a discussion of a number of directions for

future research.
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8.1 Summary

8,1.1 Sector Design

The interactive system for designing sectors that was

presented offers a different approach to the problem of

sector design than has, in general, been followed until now.

With the development of the hypercube queuing model, it has

become possible to focus on multiple criteria. This system is

just a logical superstructure that can be applied to the

hypercube. It attempts to guide the user towards his preferred

goal while utilizing, to the fullest extent possible, the rich

array of performance measures the hypercube model estimates.

The system, in general, focuses on various definitions

of equity. Through a series of examples we have attempted

to explore some of the conflicts and tradeoffs between, for

example, balancing workloads and balancing travel times.

Similarly we have analyzed the distinction between balanced

workloads and balanced preventive patrol coverage. If crime

rates do not mirror general calls for service, the two ob­

jectives will almost certainly conflict. One potentially

important aspect of the system is that the very nature of the

system tends to direct the potential user tawards making'. explicit decisions as to his preferences for tradeoffs

between important performance measures.

Although we have also touched on some of the conflicts

between equity (e.g. balanced travel times) and efficiency

(e.g. minimized precinct-wide travel times), there is much

that requires exploration. One example that comes to mind is
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a consequence of our work in search theory. A strategy that

maximizes the probability of interception will tend to allo­

cate to the higher crime areas a proportion of the patrol

effort that is greater than the fraction of crimes that they

generate. On the other hand, balanced travel times are

achieved by allocating to the regions with the highest call

rate a proportion of the patrol force that is less than the

fraction of calls they generate. How does one choose bet­

ween the two alternatives? As we have emphasized before, only

the local decision maker can decide.

The system as described in Chapter III is complete

conceptually. However, as in the development of the inter­

active interface with the hypercube queuing model [4 J. much

will be learned from user feedback and incorporated into the

final structure of the system. In addition, although the

system was designed with the police in mind, it has poten­

tially broader applications. For example, the issues of

balancing travel times and workloads are also relevant issues

for the deployment of emergency medical vehicles. Perhaps

the most generalizable aspect of the system, though, is simply

its different approach to redistricting. Instead of focusing

on one performance measure, the system guides th~ decision

maker through a process which involves repeated evaluation of

his relative preferences in order to reach a final acceptable

solution.
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8.1.2 Search Theory Applied to Police Patrol

In this section we will discuss the second set of models

which are based on search theory. In Chapters VI and VIr we

presented two sets of algorithms which can be applied to dif­

ferent facets of police patrol deployment. The algorithms

are conceptually simple and therein lies much of their

strength and f~xibilitYe By being able to use only the basic

~ormula for the probabi.lity of interception, it became pos­

sible to build a great deal of flexibility into the algorithms.

Consequently, they are not limited by the form of the

probability distribution for the observable duration of a

crime. In addition a value structure (either the decision

maker's or the community's) is easily incorporated in the

models in order to reflect the relative seriousness of the

various crimes. Similarly, if the relationship between inter­

ception probabilities and crime levels can be discovered (in

terms of both deterrence and removing criminals from the

street), the algorithms can be modified so as to focus in­

stead on the longer range goals of crime reduction.

However, in reviewing the contributions of this work in

applying search theory to the deployment of police, it is not

really the specifics of the algorithms that are of the most

significance. Instead, in many ways, the real significance

lies in the foundation that was laid in Chapters IV and V.

There we discussed the basic character of the search for

crime through the analysis of diminishing return and the
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introduction of a differential equation model. By analyzing

travel time between regions and the various charcteristics of

crimes (e.g. short duration, limited observability, random

arrival), we were able to justify the restructuring of the

deployment problems discussed in the later chapters. Thus in

deploying a tactical patrol force we could ignore solutions

that would require patrol units to travel between regions.

Similarly in developing an algorithm for deploying a standard

patrol car, we could focus on constructing a single contiguous

region to patrol. And, as was noted before, it is in this

restructuring and simplification of the problem that it be­

comes possible to build into applications of search theory to

police patrol, performance measures other than just the

probability of intercepting a random crime.

It may be necessary, however, to modify the solutions

generated by these algorithms. Their tendency is to concen­

trate patrol forces in some areas to the exclusion of others

and this may violate political and equity constraints. In

addition if the disparities in patrol regions become too

obvious to criminals, the best theoretical strategies may be

self defeating. This last issue can be addressed either by

expanding the model to include game theoretic concepts to

anticipate criminal reactions or perhaps by simply applying

some ad hoc modification of the solution that makes direct use

of police familiarity with the local crime problema
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8.2 Conclusions

A major consequence of the relatively short observable

duration of crimes (i.e. small probability of interception) is

that patrol should be heavily concentrated in the highest

crime areas assuming that there are significant geographic

variations (a range o~ 20% or more) in crime levels. Concen­

trating the patrol efforts of a single patrol unit in the

highest crime area of its sector could itself produce a 5%
increase in the probability of interception. However, some

~ly visible patrol should still be allocated to other parts

of the sector for two reasons~ One is because of political

constraints which might make it infeasible to eliminate

regular patrols of the entire sector. (Later in section 8.).

we discuss some aspects of the Kansas City experiment which

involved leaving entire beats without patrol.) Secondly. by

maintaining visible presence in other parts of the sector, the

rate at which crime patterns shift away from the present

intensely patrolled area to other parts of the sector should

be slowed. This would increase the chances of intercepting

a crime before the present area of focus is no longer the

optimal patrol region. This brings us to a necessary component

of any implementation of concentrated patrols. Crime patterns

must be continuously monitored. Concurrently, there must be

a readiness to shift, if necessa~. a patrol unit's area of

concentrated patrol every week (or even more frequently) in
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order to keep pace with a shifting crime rate.

In Chapter VI we disussed an important aspect of moni­

toring crime patterns that Should be kept in mind. We demon­

strated that in allocating patrol effort it is not sufficient

to look at just the to~crime rates of the varioas regions.

The crime rate of each region should be analyzed in order to

breakdown the crime rate into more and less interceptible

crimes, using duration and observability as the criteria.

On a larger scale, such as a precinct, a better alloca­

tion of patrol would have a higher payoff, increasing the

probability of interception by more than 10%. The major

problem is that often if there are differences in workloads

the patrol unit with the least time to patrol is likely to be

responsible for the highest crime area. This, of course, is

a poor matching of patrol to crime levels. One alternative

is to redesign the sectors to balance workloads or patrol

coverage. However there are two alternatives which have a

higher potential for allowing for concentrated allocations of

patrol in the highest (precinct-wide) crime areas. They are

overlapping sectors and a split patrol force. Their key asset

is that they both have larger blocks of patrol effort that

can be flexibly allocated to where it is most needed. However,

both have the disadvantage of increasing the average travel

time to a call for service. This increased travel time could

be reduced with, for example, flexible dispatching algorithms

(closest car dispatched) feasible with an automatic car locator



-326-

system [)]. (See section 4.2.3.)

One last point we would like to make relates also to the

issue of analyzing crimes with regard to their observability

and observable duration. When considering dif~erent tactics

for attacking a specific category of crimes (e.g. burglary),

one component in the analysis should be an attempt at esti­

mating the observable duration of the crime and the degree

of observability. The quantification of these characteristics

may affect the ultimate choice of tactics and will likely

provide, at least, a good idea of how effective any of the

strategies is likely to be.
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8.3 Evaluating a Police Patrol Experiment

8.3.1 Using Models to Monitor Experimental Conditions

Larson in his review [5J of the Kansas City preventive

patrol experiment discussed the need for models to be used

in the design and in the monitoring of the proposed experimen­

tal conditions. He showed that in the reactive beats of the

experiment (i.e. no routine preventive patrol) a significant

visible presence was still provided by units responding to

calls for service in those beats.

This result has important ramifications for the patrol

strategies described in Chapter VII. The algorithm presented

there tended to concentrate patrol in only a small section of

a sector whenever crime rates were not uniformly distributed

over the sector. One- concern of ours in applying the model

was how removing routine patrol from the rest of the sector

would be perceived. The Kansas City experiment seems to

indicate that even in areas not receiving routine patrol, it

is possible for patrol units just responding to calls for

service in those areas to maintain the earlier levels of

visibility (e.g. by increasing the use of sirens).

Larson also demonstrated (using a simple model) that

under the particular experimental design utlized in Kansas City

one should not expect a marked increase in travel distance in

the reactive beats. Of perhaps greater relevance, though, to

this work, were Larson's findings on the levels of patrol in

the various beats.
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"As shown by a simple mathematical model, even doubling
or tripling of patrol effort--as was done in the
proactive beats--does not adequately reflect routine
levels of patrol experienced in other cities."

Consequently, the changes (or lack of change) in crime levels

that occurred in the proactive areas are not necessarily

representative of what would occur if preventive patrol were

concentrated in the highest crime areas at levels suggested

in Chapter VII.

8.;.2 Crime Statistics

The rest of this section will focus on a different

aspect of evaluating a patrol experiment, the collection of

appropriate crime data. The obvious guiding principle is to

determine the relationship between the patrol force and ~ach

piece (or sample) of data. This principle should be applied

to both crime and arrest statistics. It suggests that one

appropriate question to ask a victim is whether or not the

crime could have been observed by a passing patrol unit.

Classifying the occurrence of crimes as inside or outside a

structure (as was done in the Kansas City experiment) may be

a good surrogate but does not directly answer the question.

A drugstore robbery may be spotted by a passing patrol car

(albeit with only a small probability) especially if the

robber or robbers have to flee from the scene of the crime.

On the other hand, a robbery in the middle of a housing

project may occur in the open and still not be observable by

a patrol car cruising the city streets. The standard,

however, needs to be applied to all crime types and not just
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robbery. Was it a burglary of a fourth floor apartment or of

a one family house? Did the commercial burglary occur on the

50th story of a skyscraper or did the criminals break into

a warehouse, drive a ten ton truck up to the door, load it to

capacity and drive away.

A direct corollary of the above suggestion is that the

categorization of crimes go beyond just a yes-no description

of observability. As our examples in Chapters VI and VII

pointed out, it is important to be able to rate the level of

observability. Would a passing c~r have had a clear or ob­

structed view of the crime? How long did the crime last? Was

it at night or in the daytime? Crime patterns might be

shifting in response to the patrol experiment from~ to

less observable crimes but that fact would not be apparent

from the usual crime data that is collected.

An analogous breakdown of arrest data is also necessary.

Was the arrest made by a passing patrol car which spotted the

crime in progress? Or was it the result of a rapid response

to a triggered burglar alarm? If the arrest were made not

at the scene of the crime, was it still in anyway related to

the speed with which the police responded to the origin~l

report of a crime?
J

Many of the issues we have raised here are not related

solely to the problem of evaluating a patrol experiment. In

essence the data we have described (summarized in Table 8.1)

should be routinely gathered in order to assess accurately
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what the potential impact of patrol is. We do not, however,

underestimate the difficulty in obtaining this data. In

many crimes against property there may be no way of determining

even the exact time of the crime, much less whether or not it

was observable c However, even with all the inherent difficul­

ties (and cost) we feel the potential payoff certainly justi­

fies carrying out the collection and analysis of the above

described datao

There is perhaps an even more significant problem in

obtaining 'good' patrol related data than the difficulty and

cost of gathering the potentially available data o Often the

small sample size (~o not many crimes of a p~rticular type)

makes it extremely difficult to obtain good estimates and

establish whether or not any significant changes have

occurredras a result of the experiment. Our suggestion to

break down further the crime categories will, however, tend

to magnify this problem of small sample size.
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8.4 Future ~irections of Rese~

8.4.1 Introduction

Although in this last section we will be discussing exten­

sions of the present work, mRny of the issues that will be

raised are extremely fundamental and in some ways their

resolution may be a prerequisite for applying our models.

Many of the questions were originally asked by the Crime

Commission in 1967[~ In our restatement of some of their

points, we will focus on specific needs and how the resolu­

tion of a particular issue fits into the entire framework of

developing effective police strategies. Perhaps the ability

to be more specific and structure the problems is in part a

measure of the progress that has been made since 1967.

8.4.2 Data Requirements

There is no doubt that significant work needs to be done

in developing a crime data base that is oriented specifically

toward the patrol question. Many departments havebegun to

analyze their crime data in order to determine the actual level

of street crime that is observable and therefore potentially

affected by patrol strategies. Thus a city like Atlanta, in

analyzing its crime patterns, has found that 55% of its

robberies occur on the street, while in contrast, 60% of its

rapes occur in a dwelling [2]. However, as we have pointed

out, a binary system of labeling crimes as observable or not

is insufficient. Crucial questions that need to be answered
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are "For how long was the crime observable? During that time

period how detectable was it?". These questions are not

specific to a search theoretic model of patrol but ra~her

strike at the heart of the question of what kind of an impact

we reasonably expect a patrol force to have on a particular

class of crimes.

Finding answers to these questions, however, will not be

easy. Typically, no one will be standing by during the

commission of a crime with a stopwatch and light meter to

check on visibility. One source of data to answer these

questions is the police themselves. The accumulated years of

patrol experience are a starting point for obtaining estimates

for these parameters which could be supplemented by interview­

ing victims and criminals. (Remember though there is a bias

since the criminals that will be interviewed are the ones

that were caught.) In addition, despite our opening remark,

police departments sometimes do have motion pictures of

specific types of crimes. Laboratory type experiments also

can be performed to replicate different types of crimes in

order to estimate the above parameters as was done in one

experiment in Syracuse by Elliott [1]. No one method is

necessarily going to yield very accurate estimates; however,

by using all of the above approaches, it should be possible

to obtain estimates that are sufficiently accurate to help

answer deployment questions.
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One interesting issue, besides the probability of inter­

ception by a passing patrol car, that the above data can~be

used to address, involves determining the relationship between

response time and apprehending the criminal in the vicinity of

the crime. A model of this phenomenon would seem to require

the following:

1. What is the probability of an individual spotting
the crime and then summoning the police?

2. How long between the observation and the telephone
call is made?

3. At what point during the crime was it observed?

4. How long after the crime was observed will the crime
last and/or the crilliinal be in the immediate vicinity?

Much of the data that we have suggested gathering can also be

applied to answering these questions. This coup~dwith the

more easily obtainable measures of the police response system

can be used to model a major component of the relationship

between apprehension and rapid response.

~.4.3 Expanded Patrol Model

The search theoretic models of patrol we have discussed

have captured only one aspect of patrol, the patrol initiated

probability of intercepting a crime o However, criminals can

also be apprehended by a patrol force rapidly responding to

information about a crime in progress. Thus, a first step

in developing an expanded model of patrol effectiveness is to
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develop a modi of patrol which incorporates both manners of

intercepting a crime. Earlier in our discussion of overlapping

patrol we had seen the need for such a two faceted model.

Overlapping patrol increases the probability of police initia­

ted interceptions but also increases the travel time. A

model which could relate travel time to interception probabi­

lities (citizen initiated) would make possible a detailed

analysis of tradeoffs that arise in choosing between over­

lapping and non-overlapping patrol.

In the second stage this reactive model should be expan­

ded to include a preemptive model which focuses on deterrence

(assuming that some types of patrol can deter criminals), The

model would, of course, require information about the relation­

ship between both visible and plainclothes patrol and deter­

rence. Two other factors, however, that need to be included

are how the probability o~ interception and police response

time may also deter crimes. Thus the expanded model would

include:

A. Probability of Interception
1. Patrol initiated action
2. Rapid response

B. Deterrence (as a function of)
1. Visibility of the patrol force
2. Probability of interception
3. Rapid response

With this model (by no means easily developed) it then is

possible to evaluate alternative strategies and develop

mathematical techniques for finding strategies which are more
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effective overall.

8.4.4 Saturation and Displacement

One effect of major concern in deploying police is the

displacement of crimes. Even if a strategy is effective in

reducing one class of crimes in one particular region, the

crimes may simply be displaced geographically (as in the New

York City 20th precinct study [7 J) or criminals may switch to

different types of crimes. Consequently, experiments involving

new police tactics sometimes contain controls for assessing as

part of the evaluation whether or not there was a displacement

effect. However, what we are suggesting here is that rather

than attempt to measure this phenomenon by tacking on controls

to other experiments this issue should be addressed directly.

The reason for this different emphasis will become clear as

we describe the goals of a possible experiment.

The experiment would have as its basic goal not just the

determination of when displacement occurs or doesn't occur

but also a detailed mapping out of a number of relationships.

1. How much displacement occurs and of what type i~ a
patrol car passes a random point on the average
every hour, half hour, fifteen minutes, etc.?

2. What is the time lag (and time decay) between imple­
mentation of a specific level of saturation patrol
and displacement?

3. How many criminals are caught before and during the
process of displacement until the system stabilizes?
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In order to answer these questions an experiment would obvi-

ously have to be repeated a number of times for differing

levels of saturation. This variability will, in general, be

difficult to carry out if this is only part of a larger

experiment whose major goal is to determine if a particular

strategy is effective. Our discussion here should be inter­

preted as only an outline of the purpose and direction of the

experiment. There are obviously a number of political con­

siderations that will have to be dealt with in designing the

actual experiments. Successful implementation of an experi­

ment of this type would require that personnel at all levels

(including patrolmen) be cognizant of the goals of the experi~

ment and of their importance. Although this is good advice in

any police experiment, it is especially crucial here. The

experiment would have to involve committing a not insignificant

number of patrol units to an experiment whose ultimate payoff

is by no means immediate (or obvious) as its purpose is to

develop a data base necessary for designing effective patrol

strategies. This data base, for example, would be crucial to

applying game theory to the deployment problem.

8.4.5 Concluding Remarks

In our discussion of some issues that need clarification,

our focus has been on only a limited number of s~fic recom~

mendations and almost exclusively on patrol. Our emphasis on

patrol does not mean to suggest that other police tactics are
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ineffectual. However, before it is possible to make a valid

comparison between patrol and stakeouts, decoys or investiga­

tive services, it is necessary to determine how effective

patrol can be and under what circumstances it is most

effective. Lastly, we have not even touched on the inter­

action between police and other components of the crim~nal

justice system. This emission was made even though we

realize that the nature and magnitude of the interaction bet­

ween patrol and courts (or corrections) will sometimes depend

on the type of patrol strategy. Patrol strategies which

maximize deterrence and those which maximize apprehension will

interact differently with courts and their relative impact on

crime levels may well be a function of what the courts do.

However until more is known about how court actions alone and

in conjunction with police actions impact on crime levels, a

more comprehensive approach to police deployment is not

possible. Thus, for now, we have had to limit the discussion

to an isolated analysis of police patrol. Implementation of

models such as ours should, however, at least involve a

qualitative analysis of the impact of the courts and, where

possible, attempt to coordinate the activities of the courts

with the actions of the police.
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FOOTNOTES 8

The fact that the algorithm began with a particular atom
does not necessarily mean that that atom will appear in
in the final patrol area. Remember the algorithm allows
for the removal of atoms if their removal will increase
the total payoff.
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GLOSSARY

Atom
A region or area within the city that is sufficiently small

so that all spatial distributions over the region canre approxi­
mated to be uniform.

Beat
An area or region in which one patrol unit has preventive

patrol responsibility. Same as sector.

Call for service
A communication to police originating from a citizen, an

alarm system, a police officer, or other detector, reporting
the need fo~ on-scene police assistance.

Car locator system
A mthod or device which provides the dispatcher with

improved estimates of the positions of available patrol unitsG
This is to be distinguished from usual manual position estima­
tion methods which usually entail guessing an available unit's
position, using a center-of-mass criterion.

Center-of-mass
The point in a sector or an atom, respectively, which is

the statstically average positon of the patrolling unit or the
reported incidents, respectively.

Dispatch assignment
A directive by the dispatcher to a patrol unit assigning

the unit to respond to the scene of a reported incident, or
call for service.

Dispatch policy
A set of rules regarding the immediate assignment of"pat­

rol units to reported incidents. It specifies the conditions
under which a reported incident of a particular priority from
a particular location is entered into a queue of waiting ,
incident reports or is handled immediately by an assigned
patrol unit~

Dispatcher
An individual who has responsibility for assigning radio­

dispa~chable patrol units to reported incidents~

Dispatching strategy
Usually the component of the dispatch policy pertaining

to distance estimation techniquese

Home sector
The sector in which a patrol unit is assigned to perform

preventive patrol.
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Intercept probability
The likelihood that a patrolling unit will intercept a

crime while in progress

Intersector assignment
A dispatch assignment to a sector other than the unit's

home sector.

MCM (Modified Cemer of Mass Dispatching Strategy)
· If a call for service arises in atom j and the home

sector car is unavailable~ the dispatcher assigns the available
unit with the minimum estimate travel time to atom j.

Overlapping sectors
Sectors that at lee.st partially share common regions or

areas.

Patrol allocation
The entire process of determining the total required num­

ber of patrol units, their spatial and temporal assignments,
and rules governing their operationo Usually used here to
describe just the spatial assignment.

Patrol deployment strategy
A set of rules specifying the spatial distribution of

available patrol units, including sector and command design,
patrol coverages, and repositioning.

Patrol frequency
The number of times per hour that a patrolling unit passes

a particular point.

Patrol status
The condition of a patrol unit, particularly pertaining

tb dispatch availability. In some police departments the
dispatch status of a patrol unit is restricted to one of two
possibilities: available or unavailable; in others, finer
distinctions are made, including such possibilities as meal
break, auto maintenance, patrol initiated action, station~house,

or type of incident currently being serviced.

Patrol uni t ~

A footpatrolman; or an assigned pair of footpatrolment; or
a patrol car, scooter, or wagon and its assigned police officer(s).
Occasionally the term patrol car is used as a substitute for
this more general term.

Precinct
An area or region comprising several sectors that is

administratively distinct, usually having a station-house used
as a base of operations. A patrol officer is usually assigned
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to one precinct for a period of time. Dispatch assignments
are nearly always intra-precinct assignments.

Preventive patrol
An activity undertaken by a patrol unit, in which the unit

tours an area, with the officer(s) checking for crime hazards
(for example, open doors and windows) and attempting to inter­
cept any crimes while in progress.

Probability density function
A nonnegative function for which the probability that the

corresponding rantm variable lies between x and x+_ x (:.x small)
is approximately equal to the function evaluated at x multiplied
by x.

Queue
A waiting line, as of customers before a checkout counter

or incident reports before a dispatcher.

Random patrol
A preventive and interceptive patrol in which the patrolling

unit selects unpredictable patrol paths.

Right-angle distance
The sum of the total east~t and north-south distances

between two points, given that the directions of travel are
oriented east-west and north-south.

Search effort
The amount of time (m~~-hours) available to search for a

target or targets.

Search theory
A body of literature that analyzes the problem of searching

for targets. It includes models for calculating the probability
of intercepting a target under various patrol strategies and for
a range of target behaviors (e.g. stationary, moving). Part of
the literature discusses the optimal allocation of search effort.

Sector
Same as beat.

Sector identity
A term applied to an officer's personal -commitment to main~

tain public order and provide effective police service within
his home sector.

Simulation
A method of replicating the operations of a system with a

computer model that incorporates the same statistical behaviors
as found in the actual system~
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spatial distribution
The relative allotment of some quantity (for example,

reported incidents) to each region of the city.

S~M (Strict Center of Mass IDispatching Strategy Strategy)
If a call for service arises in sector i and the home

sector car is unavailable, the dispatcher assigns the available
unit with the minimum estimated travel time to the center of
mass of sector i.

Temporal distribution
The relative allotment of some quantity (for example,

patrol unit) to each time of day.

Travel time
The time required for the dispatched patrol unit to travel

to the scene of the reported incident.

Utilization factor
The fraction of time a patrol unit is unavailable to

respond to dispatch requests. Sometimes it is assumed that a
unit can only be unavailable because of call-servicing dut'ies.
Sometimes called utilization rate.

Workload
Some measure of the time spent by a patrol unit on a num­

ber of prescribed duties, particularly calls for service.

Most of this glossary appears in a book by Richard C~-Larson

(Urban Police Patrol Analysis, MIT Press, Cambridge, MA, 1972)
and is reprinted with the author's permission.

•



-345-

APPENDIX A

AN ALGORITHM TO CHECK IF A SECTOR IS CONTIGUOUS



-346-

An Algorithm To Check If A Sector Is Contiguous

CONTlG: PROCEDURE OPTIONS(MAIN);
DECLARE DIMEN FLOAT BINARY;
/* DIMEN: THE NUMBER OF ATOMS */
GET LIST (DIMEN) ;
BEGIN;

DECLARE A· A TIG(DIMEN,DIMEN) FIXED BINARY (1,0),
(LABEL(DIMEN), SCAN(DIMEN) FIXED BINARY(4,0),
LISTI FIXED DECIMAL;

1* A A TIG: ATOM CONTIGUITY MATRIX */
I~~ SCAN(K)=l: NODE K IS SCANNED i~1
I~~ LABEL(J)=l: NODE J IS LABELED {~I
l-i~ LISTl: NUMBER OF SCANNED NODES PLUS ONE i:-/
GET LIST(A A TIG);
SCAN=O; - -
SCAN(l)=l; LABEL(l)=l; LISTl=2;
DO K=l TO DIMEN;

IF SCAN(K)=O THEN
DO;
PUT LIST('SECTOR IS NOT CONTIGUOUS');
GO TO FINISH;
END;

I=SCAN(K) ;
DO J=l TO DIl'v1EN;

IF A A TIG(I,J)=l & LABEL(J)~=l THEN
DO; -
SCAN(LIST1)=J;
LIST1=LISTl+1;
IF LISTI ~ DIMEN+.5 THEN GO TO FINE;
LABEL(J)=l;
END;

END; /J,} LOOP ON J it-/

END; /* LOOP ON K */
FINE:PUT LIST ('SECTOR IS CONTIGUOUS');
END; /* BEGIN BLOCK */

FINISH: END CONTIG;



•
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APPEr~DIX B

A TWO SERVER QUEUING SYSTEM
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A TWO SERVER QUEUING SYSTEM

The problem addressed here is to calculate the probability

of zero, (PO)' or one, (PI), server being busy given that each

server is busy an average of lOO·b percent of the time.

Let a- =:. arrival rate of calls for service

u =
p.=
~

average service time for a call

the probability that there are i calls presently
in the system, either being serviced or in queue

The following equations can then be written that describe

the system in steady state.

u·Pl = a~PO

2u·P =2

Equivalently

PI =( a/u) °PO

Pz = (a/Zu)·P1 = (a/u).(a/2u)·Po

Pi :. (a/u) 0 (a/zu)i-l opo

But .L p. = 1
1.=0 1.
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l=po+(a!u).Po+(a/u).(a.Zu).Po+ •••+(a/u).(a!zu)i-l. PO+.t.

l=PO + (a/u)·PO/(l-a/Zu)

l=(PO +(a/Zu)ePo)/(l-a/Zu)

However, the average utilization of each server wil be a/2u

so that b= a/Zu e

Consequently Po= (l-b)/(l+b)

and P1=(a/u)ePo = 2b·PO = 2b-(1-b)/(1+b) •
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APPENDIX C

OVERLAPPING SECTORS vs. NON-OVERLAPPING SECTORS
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OverlaPRing Sectors VB. Non-overlapping Sectors

Overlapping Sectors

Pio = (I-b) .[I-exp(-2S.T.OB!M)] + 2b{l-b) .[l-exp(S.T.OB/M)]
(l+b) l+b

Non-overlapping Sectors

Pin = (l-b).[I-exp(-2S.T.OB/M)]

-(1-b)·[1-exp(-2S-T·OB/M)]

In order to prove that the above equation is always greater

than zero (i.e. Pio is greater than Pin)' it is only necessary

to show that

1 + exp(-2S·T-OB/M) - 2exp(-S·P.OB/M) ~ 0

since b and (I-b) are always greater than zero.

By substituting 'X' for 'S.T~OB/M' in the inequality, we

obtain

f(X) = 1 + exp(-2X) - 2exp(-X) ~ 0



To show that f(X) is always greater than or equal to zero, it

is sufficient to prove that when X=O, f(X)=O and that when X

is greater than zero f(X) is monotonically increasing.

For X = 0

l-exp(-2X)-2exp(-X) = 1 + 1 - 2 = 0

In addition the derivative of f(X) is

f'(X) = -2exp(-2X) + 2exp(-X)

However, for X > 0 the following is always true:

exp(-X) > exp(-2X)

which means that the function monotonically increases.

Consequently, the function, f(x), is always greater than or

equal to zero. Q.E.D.
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APPENDIX D

Average Level of Crime Increases as the

Cycle Length Increases
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Average Level of Crime Increases as the Cycle Length In~~eases

s= (-C1,/2F-X)'.(1-exp(-F·X)) + PI./2F

- (CZ/2(F+I)·X)-(1-exp(-(F+I)·X)) + A/2(F+I)

with

C
= (-AoILPO(F+Jt)O(l-eXr(-(F+I)oX))

1 l-exp -(2F+I)oX

02= (A'I!F'(F+I))O(l-eX}(-FOX))
l-exp(-(2F+I ·X)

Replacing C1 and Cz in the original eqllation yields

s= (A e r/2F(F+I)) \l-exp(-F'X-LL~(l-exp(-~p+I)'X))
X · (1-exp(-(2F+I ·X

[
1 IJ~ + A/2(F+I)) + A/2FF+I - F

Since the expression ~~I -~] is negative, and the expressions

A/ZF·(F+I), A/2(F+I), and A/2~ are constants, then to prove that

S isammotonically increasing function of X~ it is necessary and

sufficient to show that H(X),

H(X)=
(l-exp~-F·X))·(l-exp(-(F+I)·X))

• X• (1-exp (- (2F+I ) •X) I

is a monotonically decreasing function of X.
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Let f(X)= exp(-P·X)

g(X)= exp(-(F+I) ·X)

Then H(X) can be written as

}I (X ) = (l-f)· (l-g)
XtP(l-fg)

H'(X)= X(l-fg)(-f-f+fg'+gf') - (l-f)(l-g)(-Xfg'-Xgf'+(l-fg))
(X(l-fg))Z

Since the denominator is always positive, the problem reduces

to proving that the numerator is negative

Let N(X) equal the numberator of H'(X)

N(X)= X(-f'g'+fg'+gf'+fgf'+fgg'-f2 gg'-fg2 r;+fg'+gf'-f2 g'-gff'

_gfgt_g2f'+f2gg'+fg2f~) - (l-f)(l-g)(l-fg)

N(X)= X(-f'-g'+2fg'+2gf'-f2 g' Qg2f') - (l-f)(l-g)(l-fg)

But I-fg= (I-f) + (I-g) - (l-f)(l-g)

Hence (l-f)(l-g)(l-fg)= (1-f)2(1-g) + (1-g)2(1-f) - (1_f)2(1_g)2

so

N(X)= (-Xf'-(1-f))(1-g)2 + (-Xg'-(1-g))(1-f)2 + (1_f)2(1_g)2
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If each of the two terms is shown to be negative then the proof

is complete.

Let u(X)= -Xf' -(l-f) + (1-f)2
2

Then u'(X)= -Xf" -f' + f' - rt(l-f) = -Xf'-f'+ff'f

Replacing f with the original exp(-F'X) and combining te~s yields

u'(X)= [Fexp(-F'X)]'[-F'X + 1 - exp(-P-X)]

Now let r(X)= (-F·X + 1 - exp(-F·X))

r'(X)= -F + Fexp(-F·X) < 0

But r(O)= 0 + 1 - 1 = 0

which imples that r(X) < 0

Consequently, u'(X) is a product of a positive, Fexp(-FeX), and

a ne~ative function, r(X), which implies that

u'(X) ~ 0

But u(O)= -OF'(O) - (l-F(O)) + (1-F(O))2
2

= a

As a result u(X), which is also a decreasing function of X, must

be less than or equal to zero.

Similarly v(X)= -X·g' - (I-g) + (1_g)2
2 < 0

so H'(X)= u(X) (l_g)2 + v(X) (1-F)2 ~ 0

and H(X) is a decreasing function of X. Q.E.D.



-357-

APPENDIX E

Average Level of Crime for Shortest Cycles
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Average Level 9f Crime for Shortest Cycles

The problem is to find the limit of S as 2X approaches zero.

lim S= -[Cl /2P'X]'[1-exp(-F'X)] + A/2F
2X"'O

- [Cz/Z(F+I)"xJ"[l-exp(-(F+I)"X)]

+ A/2(F+I)

with C1 and Cz as defined in equations (5.9) and(5.10).

Replacing C1 and Cz into the original equation yields:

s= [A'r/2F'(F+I)]' [(l-eXP{-F"X})"(l-eXP~-(F+I}"X}}l
X"(l-exp(-(ZF+I)"X) J

[
l - II + A/2{ F+I) + A/2F

• F+I ~ -F J

The limits of the numerator and denominator for the first term

in the previous expression oath approach 0 as '2X' approaches O.

It turns out that in order to calculate the limit of the first

term, L'H8p ital's rule will have to be applied twice in succession.

Let N= [l-exp(-F·X)] • [l-exp(-(F+I)'X)]

D= X'[1-exp(-(2F+I)'X)]

The derivatives of the numerator, N, and denominator, D. are

N'* [l-exp(-F·X)]·[F+I]·[exp(-(F+I).X)]

+ [l-exp(-(F+I)'X)]'[Fexp(-F'X)]

D'= X'[2F+I]'[exp(-(2F+I)'X)] + [1 - exp(-(2F+I)'X)]
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However,_ once again the limits of n' and D' are zero. Taking

the ~econd derivative of each term generates the following

two expressions.

lim N-= -(F+I)2 + (2F+I) - Fa = 2F(F+I)
2X"'O

D"= (2F+ I ) •Eex:p ( - ( 2F+ I ) •X) ] 0 [ -x e ( 2F+ I )+1]

+ (2F+I)eexp(-(2F+I)eX)

lim D"= 2(2F+I)
2X....O

Therefore lim N/D= F(F+I)!(2F+I)
2X....O

It is now possible to calculate the lim S
2~-ttO

lim s= [A·I/(2F·(F+I))J·LF(F+I)/(2F+I)J~[-I/F(F+I)]
2X-'O

+A/2(F+I) + A/ZF

= 2A/( 2F+I)
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APPENDIX F
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APPENDIX F

This appendix is intended to show that the expressions

that were left out in going from equation (5.37) to (5.38)

all approach zero faster than 1/(X+L)2 when X approaches

infinity. First we write down the eliminated expressions.

They are

R =1 2(X+L) ·Fz • (I+F)Z

-2Fe (X+L - r-X)

R =2

- I-X)]

We will prove that Rl approaches zero faster than 1/(X+L)2 and

analogous proof applies to RZ- To prove this it is necessary

to show that

lim Rl/(1/(X+L)2)=O
X-'oo

which equals

lim K·(X+I.J)2
x...oo (X+L)

Fexp(-F(X+2L) )J.

(K is a constant_) The denominator approaches 1 as X goes to

infinity and the expression [exp(-2F.(X+IJ)-I-X)-1] approaches
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minus 1 and thus both components can be ignored. However as X

goes to infinity the expression (X+L) also goes to infinity

and the expression [(I+F)·exp(-(I+F).X)+Fexp(-F(X+2L))] goes

to zero. Thus the proof that RI goes to zero faster than

1/(X+L)2 goes to zero reduces to proving that

lim (X+L)·[(I+F)·exp«-(I+F)·X)+Fexp(-F(X+2L))] = 0
x... 00

However, if it can be shown that in general

lim (X+IJ)·Kl€xp(-K2eX-K3):: 0
X-+ 00

then the above also is true. This can be rewritten as

The application of 1lHopital's Rule yields

lim L Kl
X-X> K2

o exp(K2-,X+K3)

which obviously approaches zero as X goes to infinity.

Q.E.D.
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APPENDIX G

A Proof that at most One of the Two Solutions

is Positive
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A Proof that at most One of the Two Solutions

is Positive

In order to show that at most one of the two solutions is

positive,we will sketch a proof that

(NI-l)2R(R+l) - 2i~2R+ltJi
2(R+l)2_2MR2

never generates a positive solution. The denominator will

be negative when

WI > (R+ll2
2R

and equal to zero when M equals that expression. However, what

happens to the numerator at the turning point. Substituting

that expression for M into the numerator yields

[(R;lt- IJ .2R(R+l) - 2(2R+l),/(R;1)~

= [(R+l)2 - R2J.ZR(R+l)
R2

2 ( 2R+1 ) • ( R+1 )
R

= 2 ( R+1 ) • ( 2R+1 )
R

2( 2R+l) • (R+l)
R

= 0

Thus at the point the denominator is zero the numerator is

also zero. However as M increases above (R~1)1 (i.e. the

denominator is negative) it is clear the numerator has

become positive. The first term is increasin~ faster (almost

proportional to M) than the second term (which increases

with the square root of M)~ Consequently when the numerator

is positive the denominator is negative and vice versa.
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