MANEUVERABLE PENETRATION SYSTEM
FOR HORIZONTAL EXPLORATION IN SOFT GROUND

by

ALAN WILLIAM KATZ
SB, United States Naval Academy
(1970)

Submitted in partial fulfillment
of the requirements for the degree of
Master of Science in Civil Engineering

at the

Massachusetts Institute of Technology
June 1975

Signature of Author

Department of Civil Engineering

May 9, 1975

Certified by.

Thesis Supervisor

Accepted by.

Chairman, Departmental Committee on
Graduate Students of the Department
of Civil Engineering
ABSTRACT

MANEUVERABLE PENETRATION SYSTEM
FOR HORIZONTAL EXPLORATION IN SOFT GROUND

by

ALAN WILLIAM KATZ

Submitted to the Department of Civil Engineering on May 9, 1975, in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering.

Horizontal directionally controlled drilling in soft ground is a relatively unexplored frontier in the realm of earth drilling. Therefore, the information source force for this subject is a select group of men, who are associated with the petroleum, coal and pipeline industries.

The first step in the investigation was to establish the state of the art for horizontal directionally controlled drilling in soft ground. Then several companies, who are developing directional drilling equipment, were contacted. Four basic maneuverable penetration systems (MPS) were then preliminarily designed from available components. The penetration devices differ principally in the manner in which the normal force at the drill bit is developed. In the mandrel system, normal force is developed by pushing a non-rotating steel drill pipe from the surface, whereas in the thrust applicator system the normal force is developed by thrusting against side-wall anchor pads.
These two basic MPS's were then related to the following four general geological conditions which might be found in an urban area within the United States: (1) loose sand or soft clay; (2) dense sand or stiff clay; (3) residual soil; and (4) any one of these conditions in combination with subsurface utility lines. The four MPS models (2 mandrel and 2 thrust applicator) were then analyzed with dimensionless parameters to determine the suitability of each system to a specified geological environment.

Finally, several factors, some unique to horizontal directionally controlled drilling, were considered in detail in the design of the four soft ground maneuverable penetration systems. These include: the anchor pad and deflection shoe bearing capacity; required soil strength for thruster operation; frictional force effects on the drill pipe and thruster cable; drill path and exit angle limitations; drilling fluid characteristics; and the radius of curvature of the drill bit.

Thesis Supervisor: Charles H. Dowding
Title: Assistant Professor in Civil Engineering
ACKNOWLEDGMENT

I would like to express my deepest appreciation to Professor Charles H. Dowding, my thesis advisor, for the many hours of precious time he willingly contributed to provide guidance, insight, and encouragement toward the formulation of this thesis. The successful completion of this thesis is a testimony of his dedication to helping his students gain the utmost from their time at MIT.

I would also like to express my sincere thanks to Mr. Myron Emery, formerly of Titan Contractors, whose willingness to share with me his vast wealth of knowledge and experience in directional drilling has been the keynote in developing this topic, while his patience in answering my questions is truly a valuable gift he retains. I am also deeply indebted to Mr. Emery for the guidance he provided in contacting various individuals associated with the oilwell drilling industry.

I want to thank the following men who were kind enough to freely and extensively contribute their time, knowledge, and experience, in their specialty
areas: Mr. Jack Kellner, DRILCO; Mr. Doug Dahl, Continental Oil Company; and Mr. John Tschirky, Dyna-Drill. Additional thanks are sincerely extended to all those names which appear on the List of Contributors.

The joyful spirit and diligence of Karen Tseardy, the typist, are much appreciated while the dear friendship and professional attitude of Dave Simmons, the illustrator, will long be remembered with gratitude.

Without question, the most important and supportive individual associated with this thesis is my wife, Linda, to whom this thesis is dedicated. Words are not enough to express my deepest appreciation for her steadfastness, and endurance during many late nights, and patience with several late suppers.

My sincere thanks are also extended to the Department of Transportation for the financial support they provided in order to conduct the related research under Contract Number FH-11-8526.

"Commit your work to the LORD, and your plans will be established. Proverbs 16:3"
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
<td>1</td>
</tr>
<tr>
<td>Abstract</td>
<td>2</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>4</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>6</td>
</tr>
<tr>
<td>List of Figures</td>
<td>9</td>
</tr>
<tr>
<td>List of Tables</td>
<td>12</td>
</tr>
<tr>
<td>Chapter 1</td>
<td>14</td>
</tr>
<tr>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>Chapter 2</td>
<td>21</td>
</tr>
<tr>
<td>State of the Art for Horizontal Drilling Equipment</td>
<td></td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>21</td>
</tr>
<tr>
<td>2.2 Downhole Motors</td>
<td>22</td>
</tr>
<tr>
<td>2.3 Downhole Thrust Applicators</td>
<td>31</td>
</tr>
<tr>
<td>2.4 Direction Control Equipment and Techniques</td>
<td>44</td>
</tr>
<tr>
<td>2.5 Drill Bits</td>
<td>56</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>60</td>
</tr>
<tr>
<td>Important Considerations for Horizontal Directionally Controlled Drilling</td>
<td></td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>60</td>
</tr>
<tr>
<td>3.2 Techniques in Horizontal Directionally Controlled Drilling</td>
<td></td>
</tr>
<tr>
<td>3.3 Influence of Geology</td>
<td>61</td>
</tr>
<tr>
<td>3.4 Required Soil Strength for Thrust Application MPS Operation</td>
<td>71</td>
</tr>
</tbody>
</table>

6
3.5 Bearing Capacity for the Thruster Pads and Deflection Shoe
3.6 Frictional Effects of Soil on the Mandrel MPS
3.7 Effects of Soil Resistance on the Thruster Applicator
3.8 Drill Path and Exit Angle Limitations
3.9 Drilling Fluid Flow Characteristics
3.10 Drilling Fluid Recirculation Methods
3.11 Drill Hole Radius of Curvature

Chapter 4 Design of a Feasible Maneuverable Penetration System
4.1 Introduction
4.2 Feasible Equipment for Horizontal Drilling
4.3 Selection Process
4.4 Final Design Selections
4.5 Dimensionless Analysis
4.6 Design Compatibility Drawing

Chapter 5 Conclusion

Chapter 6 Recommended Future Research

References

Bibliography

List of Contributors
Appendices

A Terms, Definitions, and Symbols 184
B Calculations for Important Considerations in Horizontal Directionally Controlled Drilling 191
C Specifications of Downhole Motors 215
D Specifications on Downhole Thrust Applicators 234
E Dimensionless Analysis Calculations 255
LIST OF FIGURES

2.1 Schematic of Mandrel MPS 23
2.2 Schematic of Thrust Applicator MPS 24
2.3 Dyna-Drill Cross-Section 25
2.4 Turbine Drill Cross-Section 28
2.5 Gerotor 30
2.6 DRILCO Thrust Applicator System 33
2.7 2-3/4 in O.D. DRILCO Thrust Applicator 34
2.8 NURAT Cross-Section 37
2.9 British Government Post Office Ductmotor 39
2.10 U.S. Navy Polytoroidal Tunneling Thruster 41
2.11 WORM(TM) 43
2.12 Leverage Force from Bent Sub 46
2.13 Bent Housing (Dyna-Drill) 46
2.14 Schematic of CONOCO Deflection Shoe 48
2.15 DRILCO Bit Boss 50
2.16 Dyna-Flex(R) 52
2.17 Jet Bit Drilling 54
2.18 Basic Drill Bits for Soft Ground 57
 3.1 Fulcrum Principle 63
 3.2 Pendulum Principle 63
 3.3 Bent Sub as a Pendulum 65
 3.4 Forces Acting on the Drill Bit 68
 3.5 Influence of Geological Layering on Drill Bit 69
 3.6 Shear Strength Formulas 78
 3.7 Frictional Forces on Thruster Hose 80
 3.8 Bearing Capacity Equations and Assumed Failure Mechanism 82
 3.9 Contact Stress vs. Change in Hydraulic Pressure 85
3.10a Case Study Problem
 b Titan Contractors' Drilling Rig 87
3.11 Deflected BQ Rod 88
3.12 Milchem Rheoplot R 90
3.13 Radial Stresses Applied to the Thruster Hose 93
3.14 Proposed Drill Path 96
3.15 Free Body Diagrams of In-Hole MPS 98
3.16 Maximum Exit Angle Relationships in Sand 101
3.17 Drill Pipe Contact Area 105
3.18 Hydraulic Fracture Gradient 118
3.19 Desanding Recirculation System 120
3.20a Mobile Drilling Mud Storage Tanks 122
 b Mobile Drilling Mud Pump and Mixing Truck 122
3.21 Radius of Curvature Terminology 124A
3.22 Radius of Curvature and Horizontal Distance/Vertical Depth Relationships 126
3.23 Radius of Curvature vs. Build Angle 127
3.24 Equipment Radius of Curvature Limitations 128
3.25 Single Spiral Drill Path 132
3.26 Reverse Spiral Drill Path 132
3.27 Radius of Curvature vs. Object Diameter and Avoidance Distance 135
3.28 Horizontal Distance vs. Depth for Various Build Angles 136
3.29 Three Optimum Drilling Paths 137
3.30 Build Angle Comparison 137
3.31 Radius of Curvature vs. Horizontal Distance/Depth for Various Entry Angles 139
4.1 Coring Bit 149
4.2 Horizontal Drilling Decision Tree 153
4.3 Thrust Applicator MPS 165
B.1 Shear Strength Formulas 193
B.2 Friction Forces on Thruster Hose 192
B.3 Milchem Rheoplot R 201
C.1 Dyna-Drill 216
C.2a Dyna-Drill Stator
 b Moyno Pump Cross-Section
C.3 End View of Dyna-Drill Stator
C.4 Dyna-Drill Connecting Rod
C.5 Bit Sub
C.6 Dyna-Drill Bent and Straight Housing Assembly
C.7 Turbine Section of Turbo-Drill
C.8 Replaceable Bearing Section
C.9 Turbine Rotor and Stator
C.10 Turbo-Drill Cross-Section
C.11 Schematic of Century Electric Motor
C.12 Gerotor
C.13 Principle of Operation of Gerotor
D.1 DRILCO Thrust Applicator System
D.2 Schematic of Thrust Applicator
D.3 DRILCO Anchor Pad
D.4 Operational Test of DRILCO Thrust Applicator
D.5 U.S. Navy Polytoroidal Tunneling Thruster
D.6 Operational Sequence of the Polytoroidal Thruster
D.7 WORM™
D.8 Operational Sequence of the WORM™
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Expected Urban Geological Conditions</td>
<td>72</td>
</tr>
<tr>
<td>3.2</td>
<td>Shear Strength of Cohesive Soils</td>
<td>75</td>
</tr>
<tr>
<td>3.3</td>
<td>Minimum Required Shear Strength</td>
<td>80</td>
</tr>
<tr>
<td>3.4</td>
<td>Minimum Required Shear Strength to Pull Thruster Cables</td>
<td>81</td>
</tr>
<tr>
<td>3.5</td>
<td>Bearing Capacities of the Anchor Pads and Deflection Shoe</td>
<td>84</td>
</tr>
<tr>
<td>3.6</td>
<td>Minimum Required Shear Strength to Pull Thruster Cable Through a Collapsed Hole</td>
<td>95</td>
</tr>
<tr>
<td>3.7</td>
<td>Pressure Losses in the Mandrel MPS</td>
<td>112</td>
</tr>
<tr>
<td>3.8</td>
<td>Pressure Losses in the Thruster MPS</td>
<td>114</td>
</tr>
<tr>
<td>3.9</td>
<td>Radius of Curvature for the MPS</td>
<td>131</td>
</tr>
<tr>
<td>4.1</td>
<td>Final Design Selections</td>
<td>155</td>
</tr>
<tr>
<td>4.2</td>
<td>MPS-Geology Compatibility</td>
<td>158</td>
</tr>
<tr>
<td>4.3</td>
<td>MPS Comparison Parameters</td>
<td>161</td>
</tr>
<tr>
<td>5.1</td>
<td>Final Design Selections</td>
<td>168</td>
</tr>
<tr>
<td>5.2</td>
<td>Radius of Curvature for the MPS</td>
<td>169</td>
</tr>
<tr>
<td>B.1</td>
<td>Shear Strengths for Cohesive Soils</td>
<td>191A</td>
</tr>
<tr>
<td>B.2</td>
<td>Annular Pressure for 2-3/8 in O.D. Dyna-Drill MPS</td>
<td>197</td>
</tr>
<tr>
<td>B.3</td>
<td>Forces Acting on the Mandrel MPS in Sand</td>
<td>204</td>
</tr>
<tr>
<td>B.4</td>
<td>Forces Acting on the Thrust Applicator MPS in Sand</td>
<td>207</td>
</tr>
<tr>
<td>B.5</td>
<td>Forces Acting on the Mandrel MPS in Clay</td>
<td>209</td>
</tr>
<tr>
<td>B.6</td>
<td>Forces Acting on the Thrust Applicator in Clay</td>
<td>210</td>
</tr>
<tr>
<td>C.1</td>
<td>Dyna-Drill Specifications</td>
<td>223</td>
</tr>
<tr>
<td>C.2</td>
<td>Turbo-Drill Specifications</td>
<td>226</td>
</tr>
<tr>
<td>C.3</td>
<td>Century Electric Motor Specifications</td>
<td>230</td>
</tr>
</tbody>
</table>
C.4 Hydraulic Motor Specifications 232
D.1 DRILCO Thrust Applicator Specifications 240
D.2 NURAT Specifications 245
E.1 Shearing Parameter 258
E.2 Jetting Parameter 261
E.3 Drill Motor Parameter 264
E.4 Fluid System Parameter 266
CHAPTER 1
INTRODUCTION

1.1 OBJECTIVES

To design a maneuverable boring system for horizontal exploration in a soft ground environment, a few questions must be posed. Is there an available mechanical system (i.e. one that can be assembled from existing and tested components) that can be maneuvered from the surface to explore soil conditions along a proposed tunnel route? Can such a system endure the effects of drilling in a sand-clay environment below the water table? Are there any in-hole thruster systems that can be operated in soft ground and what are their limitations? If a boulder or other subsurface obstacle is sensed ahead of the device, can the excavation system be directionally controlled to avoid this object? These are only a few of the questions which will be addressed in designing a horizontal boring system.

The multi-objectives of this study are to establish the present state of the art in horizontal directional drilling in a soft ground environment.
Some of the unique problems associated with this type of drilling will be discussed in detail. Then, in an attempt to classify each system with its optimal operating conditions, four basic urban geologies which one might encounter while exploring horizontally, will be considered with each potential Maneuverable Penetration System (MPS). Finally, by comparing each system, using a dimensionless analysis technique and individual system compatibility drawings, the various MPS's will be ranked according to each of the four geologies.

1.2 SCOPE OF STUDY

In order to better understand exactly what parameters this study will include, it will be beneficial to define and specify the pertinent equipment terminology, assumptions, and unique vocabulary associated with horizontal directional drilling. A more complete list of the terms and symbols associated with this study can be found in Appendix A. A horizontal, directionally controlled boring in soft ground is one in which an excavation device (motor and bit), propulsion device (drill pipe or thrust applicator), and a directional control device (bent sub, articulated sub or deflection shoe) are combined into one system in order to enter the earth's crust at a predetermined angle; follow a predetermined
directional path to a desired depth; drill horizontally for a particular distance, making necessary course changes, and then maneuvering in such a manner that another inclined path is followed to penetrate upward to the surface. The resulting exit point is at a different location from the entry point.

Soft ground will be defined as a soil condition in which the unconfined compressive strength \(q_u \) ranges from 0.25 tsf(29.96 kN/m\(^2\)) to 4.0 tsf(383.3 kN/m\(^2\)). The former unconfined strength normally is for loose sands and soft clays while the latter is associated with dense sands or heavily overconsolidated clays.

All of the equipment included, as recommended mechanical systems in the conclusion of this study, are "on-shelf" items. On-shelf means the equipment or technical knowledge is readily available, with little or no modification or development, to be combined with existing devices.

Two basic mechanical excavation systems will be examined: the mandrel system and the thrust applicator system. A mandrel system is one which requires the use of drill pipe, and special surface equipment which applies a normal force to the drill pipe and consequently to the drill bit. The thrust applicator
system is one which employs an in-hole thrusting device which anchors against the bore-hole walls, providing the required normal force on the drill bit for penetration. Both the thrust applicator and the mandrel system will include an on-board electronic navigation and geological sensing package.

The size of the bore-hole considered will be in a range from 4-1/2 in (11.4 cm) up to 12 in (30.5 cm) in diameter with a desired horizontal distance of 5000 ft (1525 m), and a desired maximum depth below the ground surface of 500 ft (152.5 m). With these bore-hole limitations in mind, the optimal MPS must be flexible enough to meet the above requirements. In addition, the MPS should be able to maneuver around a 5-10 ft (1.53-3.05 m) diameter object if encountered on the directionally drilled path.

The emphasis of this study is not to review and analyze every possible means of directionally drilling a horizontal hole, but instead, to consider only those devices which are in the on-shelf category. For example, there are numerous thrust applicators, but only one was in the prototype stage and being actively tested in a geological environment.

Another unique aspect of this study is the relative novelty of horizontal directionally controlled boring for small diameter holes. Consequently, there
does not exist an extensive bibliography in order to establish a basis for investigation. Therefore, most of the information gathered for this study is from letter communications, phone calls and personal visits. This naturally limits one's level of information, thereby becoming dependent upon the industry's or researcher's willingness to divulge their personal knowledge or experience. In an attempt to deal with this problem, both practical experience and previously established technical methods of analysis have been combined to evaluate the various design choices.

It is also worthwhile to state that due to a system design approach of the excavation, propulsion, and directional control as one system, the level of detail in any one area within each subsystem has been limited within the main body of the report and is covered in slightly more detail in the appendices. The reader must realize that an in-depth study can be accomplished on almost any one area covered by this report.

At the onset of this study the thrust applicator MPS was only conceptual in nature. In the preliminary investigation, it was found that a thrust applicator did in fact exist and was being tested. In addition, several other alternative systems are in
the developmental stage as discussed in Chapter 2. As more information was collected, it became obvious that at the present state of the art, some of the equipment was applicable to one type of geology while a completely different geology required a different system. Therefore, four urban subsurface environments were adopted for comparison of the various systems. These are: (1) soft clay (low \(S_u / \sigma_v \)) and poorly graded loose sands (low \(D_r \)); (2) heavily overconsolidated clays (high \(S_u / \sigma_v \)) or uniform dense sand (high \(D_r \)); (3) a residual soil which includes boulders and possible pinnacles; and (4) any of the previous soil conditions in combination with the presence of subsurface man-made objects.

In order to satisfy the on-shelf equipment and technology requirement, the writer had to pursue an industry that was actively involved in drilling directional holes in the earth—the oil well industry. Therefore much of the information in this report is the result of an effort to apply and convert oil well drilling technology and experience into familiar civil engineering, geotechnical terminology. This then presents directionally controlled horizontal drilling from a different perspective than drilling out ahead of a large diameter tunnel boring machine. A few of the differences being the amount
of space available, the location of the directional control panel and the techniques used to control the direction of the drill bit.

This thesis is organized such that Chapter 2 presents the state of the art for mechanical devices as applied to horizontal directionally controlled drilling. Several of the important considerations and unique problems associated with drilling horizontally in soft ground will be addressed in Chapter 3. In Chapter 4, the results of this study are summarized with the aid of a dimensionless analysis scheme. In an attempt to make the chapters more readable, detailed formulas and calculations, and in-depth coverage of the subject matter are contained within the appendices.
CHAPTER 2

STATE OF THE ART
FOR HORIZONTAL DRILLING EQUIPMENT

2.1 INTRODUCTION

Describing the current status of horizontal directionally controlled drilling as an art is very appropriate. The actual drilling is an art in which only a relatively few individuals in the United States know or have had extensive experience with. As a result of the uniqueness of this particular type of earth drilling, much of the information gathered for this section has been done so by telephone conversations, letters, and personal visits. The references at the end of this chapter are given so that the reader can contact the persons related to specific areas of interest.

This state of the art section will deal mainly with the present on-shelf equipment and techniques which are currently being applied or have on-shelf potential for application in soft ground horizontal long hole boring. For an initial listing of all possible current and novel drilling techniques
applicable to both soft ground and hard rock horizontal holes, the reader is encouraged to pursue the report entitled, *Improved Subsurface Investigation for Highway Tunnel Design and Construction*, May, 1974 by Fennix and Scisson, Incorporated. This particular state of the art section will begin where the previously mentioned report concluded.

The purpose of this section is to present an overview of the existing and potential mechanical devices available for horizontal directionally controlled drilling. Detailed drawings, pictures, and specifications of this equipment can be found in Appendices C and D.

Four major areas of the maneuverable penetration system will be discussed: (1) downhole motors, (2) downhole thrust applicators, (3) directional control equipment and techniques, and (4) drill bits. In an attempt to orient the reader, Figures 2.1 and 2.2 are simple schematic drawings of the mandrel and thrust applicator systems, respectively.

2.2 DOWNHOLE MOTORS

Dyna-Drill This is a positive displacement hydraulic motor which operates on the principle of a Moyno pump in reverse as shown in Figure 2.3. The motor has only one external moving part, the bit and bit sub.
CHAPTER 2

STATE OF THE ART

FOR HORIZONTAL DRILLING EQUIPMENT

2.1 INTRODUCTION

Describing the current status of horizontal directionally controlled drilling as an art is very appropriate. The actual drilling is an art in which only a relatively few individuals in the United States know or have had extensive experience with. As a result of the uniqueness of this particular type of earth drilling, much of the information gathered for this section has been done so by telephone conversations, letters, and personal visits. The references at the end of this chapter are given so that the reader can contact the persons related to specific areas of interest.

This state of the art section will deal mainly with the present on-shelf equipment and techniques which are currently being applied or have on-shelf potential for application in soft ground horizontal long hole boring. For an initial listing of all possible current and novel drilling techniques
applicable to both soft ground and hard rock horizontal holes, the reader is encouraged to pursue the report entitled, *Improved Subsurface Investigation for Highway Tunnel Design and Construction*, May, 1974 by Fennix and Scisson, Incorporoated. This particular state of the art section will begin where the previously mentioned report concluded.

The purpose of this section is to present an overview of the existing and potential mechanical devices available for horizontal directionally controlled drilling. Detailed drawings, pictures, and specifications of this equipment can be found in Appendices C and D.

Four major areas of the maneuverable penetration system will be discussed: (1) downhole motors, (2) downhole thrust applicators, (3) directional control equipment and techniques, and (4) drill bits. In an attempt to orient the reader, Figures 2.1 and 2.2 are simple schematic drawings of the mandrel and thrust applicator systems, respectively.

2.2 DOWNHOLE MOTORS

Dyna-Drill This is a positive displacement hydraulic motor which operates on the principle of a Moyno pump in reverse as shown in Figure 2.3. The motor has only one external moving part, the bit and bit sub.
FIGURE 2.1 Schematic of Mandrel MPS
FIGURE 2.3 Dyna-Drill Cross-section (After Dyna-Drill)
25
Since the pumped drilling fluid passes between the stator housing and the rotor which in turn rotates the bit, there does exist the requirement to rotate the drill pipe. Several advantages are gained from a stationary drill pipe, especially in directional drilling, which will be further discussed in Chapter 3. The application of Dyna-Drill most relevant to horizontal penetration has been the 1-3/4 in (4.45 cm) O.D. downhole motor used in drilling pilot holes for underground pipelines beneath rivers. As a result of the experience gained from these river crossings, Dyna-Drill has designed a 2-3/8 in (6.03 cm) O.D. downhole motor which will produce the same torque output, flow rate, and required drop in hydraulic pressure across the motor as the 1-3/4 in (4.45 cm) O.D. motor (Tschirky, 1975). The 2-3/8 in (6.03 cm) model will be approximately 7 ft (2.13 m) long and will have the capability of boring a 4-1/2 in (11.43 cm) hole. This particular Dyna-Drill will be an optimal motor for horizontal drilling because of its relative maneuverability, lightness in weight, and low fluid flow requirements. The 2-3/8 in (6.03 cm) O.D. motor is still in the developmental and testing stage but even from its conception it was thought of and designed for
horizontal drilling applications. Currently Dyna-Drill is the most utilized downhole directional motor in the oil industry today.

Turbo-Drill A turbo-drill is a multi-stage axial, mud turbine, downhole motor illustrated in Figure 2.4 and is used for straight and directional drilling. Each stage of the motor consists of a rotor which is attached to the axial shaft and a fixed stator secured to the housing. A typical 5 in (12.7 cm) turbo-drill will contain 86 of these stages in line (Eastman, 1969). The fluid velocity loss across the turbine will determine the torque and the horsepower output. To date, the shortest length turbo-drill downhole motor is 17.4 ft (5.3 m) with a 5 in (12.7 cm) O.D. and weighs approximately 750 lb (340 kg). This motor has not been used for horizontal directional drilling to date and in fact, does not appear to be suited for this particular type of drilling.

Hydraulic Drill Motor A newly developed downhole motor is an internal gear driven, positive displacement pump operating in reverse as a motor. The particular pump, which has been field tested as a motor, was built by the W. H. Nichols Company in Waltham, Massachusetts as a special order for Continental Oil Company for drilling in soft coal.
FIGURE 2.4 Turbine Drill Cross-section (After Eastman, 1969)
The basic element of this motor is a gerotor as shown in Figure 2.5. The gerotor consists of an eccentric locator-ring, an outer rotor, and an inner rotor which is attached to the shaft. These gerotors are placed in series depending on the desired maximum flow rate. A mud drilling slurry or water, flowing at a rate of 30 gpm (0.114 m³/min) through a 16 stage motor will produce 10 horsepower at 300 RPM (Coffey, 1975). The maximum size hole drilled with this motor has been 6 in (15.24 cm) in diameter. Overall length of this current model is 4 ft (1.22 m) with an outside diameter (O.D.) of 5 in (12.7 cm). Therefore, it is very well suited for directional drilling in soft ground.

Electric Motor An electric drilling motor, available as an on-shelf item from Century Electric Motor Company, has also successfully drilled 6 in (12.7 cm) diameter horizontal holes in soft coal seams for the Continental Oil Company (Dahl, 1975). A standard submergible motor was coupled, through a reduction gear box, to a drill bit. The motor is 3-11/16 in (9.37 cm) O.D. with a length of 32-7/16 in (81.84 cm) requiring 460 volts at 10.0 amps (full load) to produce 5 horsepower output (DeGrand, 1975). The electric motor may improve horizontal drilling capabilities because of its short
FIGURE 2.5 Cerotor (After Nichols)
length, competitive horsepower rating and the low energy requirements. The motor does require cooling, but the minimum requirements of 5 GPM (0.32 l/sec) can be easily satisfied since a higher flow rate will be required for the removal of cuttings. The drilling fluid, which acts also as a cooling fluid, is routed through an annulus between an outer protective casing and the smaller diameter outer casing of the motor.

There are a few problems associated with the use of this motor. First, there always exist the possibility of a failure by electrical shorting below the water table and by an overload failure as a result of the bit jamming in a hard formation. Another unique problem associated with the electrical motor is the reduction gear box which is necessary to reduce the high motor RPM's to the low bit RPM requirement. This reduction gear box has a tendency to have a relatively short service life.

In the overall viewpoint, the motor is smooth running, efficient, and is compatible with systems in use for horizontal drilling in soft ground.

2.3 DOWNHOLE THRUST APPLICATORS

[Drilco Thrust Applicators] DRILCO, Division of Smith International, Incorporated in Midland, Texas has
built and supplied to the Continental Oil Company, a hole-wall anchored thrust applicator. This thrust applicator supplies an in-hole bit normal force and has the ability to move the motor and bit both forward and reverse directions. Figure 2.6 illustrates an artist's conception of the entire system.

To date, several thousand feet of drilling have been accomplished in soft coal with the longest continuous hole being 1000 ft (310 m) long. Continental Oil Company is currently testing and developing this device in order to reach a goal of drilling more than 2000 ft (620 m) horizontally (Dahl, 1975). The force applicator presently has two sizes: 2-3/4 in (7 cm) O.D. by 7.6 ft (2.3 m) long with an 18 in (45.7 cm) stroke for a 3-1/8 in (8 cm) diameter hole which is illustrated in Figure 2.7; and a 5-3/4 in (14.6 cm) by 10.6 ft (3.23 m) long with a 30 in (76.2 cm) stroke for a 6 in (15 cm) diameter hole (Kellner, 1974).

The latter thruster size has been the most successful to date in soft coal formations. The thrust applicator has the capability to load and advance any type of drilling motor in any direction. The unit can also be backed out of the hole under its own power. Directional control is gained through the use of a deflection shoe located near the bit as shown in Figure 2.2. The deflection shoe will be more
POWER-PACKAGE, HOSE TRANSPORTER, AND LAUNCHER

FIGURE 2.6 DRILCO Thrust Applicator System
completely described in Section 2.4 of this chapter. The DRILCO thrust applicator has successfully been coupled with a Dyna-Drill, hydraulic motor, and an electric motor. Other components attached to the thrust applicator are an orientating motor and an electronic package for navigation and sensing. The thruster unit is hydraulically powered with a downhole valving system, developed by Continental Oil Company. This downhole valving system eliminates two cables, thus leaving only one hydraulic cable for powering the thruster, one for the necessary hydraulics for the orientating motor and deflection shoe, and one for the drilling fluid which can contain an electric cable for the electronics equipment (Edmond, 1975). Future developments will bring about the compacting of this system even further by reducing the number of external cables to two—one for the drilling fluid and one for the hydraulics.

Newcastle University Root Analogue Tunneller (NURAT)

NURAT is a combination penetrator and thrust applicator which was originally invented by Dr. Daniel Hettiaratchi at the University of Newcastle upon Tyne at Newcastle upon Tyne, England under the auspices of the British Gas Corporation (Hettiaratchi, 1974). Since conception, the British Gas Corporation has taken over the development and
testing of this device (Spearman, 1974).

The author has communicated at length with both Dr. Hettiaratchi and Mr. Spearman from British Gas Corporation and because of their desire to protect pending patent applications on NURAT, they have released only limited information about the device. A schematic drawing from the University of Newcastle is shown in Figure 2.8.

NURAT was the result on several years of study by Dr. Hettiaratchi involving the mechanism by which roots grow in soil. When the pressure at the top of the root prohibits extension, the root expands radially outward hence stress relieving the area directly in front of the root tip which then allows the root to grow. This then is the reason for the device acquiring the name of "root analogue" tunneller.

The NURAT presently being developed by British Gas Corporation will be approximately 6 in (15.2 cm) in diameter with a length not exceeding 5 ft (1.5 m). The complete device should be light enough to be handled by two people. The power source will be a mobile hydraulic power pack which will provide the capability of reversing directions. The estimated penetration rate will be 60 ft/hr (18.3 m/hr) through clay or sand. No additional motor is required for this thruster because of its basic principle
of penetration. One major problem area which must be resolved during the preliminary design phase is a suitable means to control the direction of NURAT. More information on this device should become available in the latter half of 1975.

British Government Post Office Ductmotor As a result of being unable to locate a device which would crawl down a pipe, the British Post Office designed their own ductmotor as shown in Figure 2.9. For this ductmotor, the following design criteria were imposed: the ductmotor had to be able to pass through water, mud, and silts, around bends and maneuver up and down inclines. In addition, it had to be able to operate over a distance of 1800 ft (549 m), pulling a coaxial cable without cable damage (Deadman and Slight, 1965).

The ductmotor has two air bags, one forward and one aft, connected by an extension arm as shown in Figure 2.9. The device has an inchworm motion such that, when the after air bag is inflated, securing the after section, the arm extends forward the distance of its stroke, then the forward bag inflates and secures itself to the tunnel wall while the after bag deflates and the arm contracts. This process is then repeated.

To date this ductmotor has only been used in cable and utility ducts. However, the principle
of operation is similar to the previously described DRILCO thrust applicator. The use of air bags for an anchoring mechanism is a valuable concept while penetrating soft ground, since tunnel wall disturbance would be greatly reduced. However, a provision will have to incorporate a provision which would enable the drilling fluid to return to the surface. With some modifications, the ductmotor could have the potential of being adapted as a thruster for soft ground horizontal penetration.

U.S. Navy Polytoroidal Tunneling Thruster The Civil Engineering Laboratory at the Naval Construction Battalion Center, Port Hueneme, California has conducted a feasibility study on the application of a vermiculating tunneling thruster to horizontal drilling (Williams and Gaberson, 1973). A vermiculating or earthworm-like motion traverses a contacting surface with a longitudinal wave in the direction of motion by cyclically expanding and contracting a set of toroids as shown in Figure 2.10. The vermiculating motion is controlled by a system of cyclic timers in combination with a solenoid valving system. This device was designed to penetrate in a rock, clay, or sand medium using a cutting or boring device while providing a firm base for high thrust as a result of using a large contact surface.
FIGURE 2.10 U.S. Navy Polytoroidal Tunneling Thruster (After U.S. Navy, 1973)
Because of insufficient funding, this particular project concluded at the feasibility stage. Recently, interest has been renewed in applying this principle to horizontal drilling, however it is being considered for large diameter tunnel boring machines and not for a small diameter exploration hole.

If a method were developed to bypass the circumferential, flexible anchoring tubes, this type of thrust applicator would be very successful because of its high contact area and its inherent ability to limit side wall damage due to anchoring.

WORM The WORM® (Rubin, 1974) is an acronym for Wheel-less Orthogonal Reaction Motor, which was invented by W. L. Still from Aerospace Industrial Associates, Incorporated. This device, shown in Figure 2.11 also operates on the principle of vermiculation or earthworm-like motion as described in the previous subsection. Within the WORM, this vermiculating motion is produced by "vector force cells" (Still, 1975), two radially and two axially located. These units are composed of a catalitic-cured elastomer to create a material whose properties

* The name WORM is the trade mark which the inventor intends to apply to this system. It is so identified to preclude its assuming a generic connotation (Still, 1975).
FIGURE 2.11 WORM™ (After Still, 1975)
would sustain the abrasive environment of a bore hole. Presently, this invention is in a model form and has not been built or tested in a full scale version. Mr. Still has informed the author that if the WORM were built to full scale it would have a diameter from 6-8 in (15-20 cm) and a length of 15-17 ft (4.6-5.2 m). The WORM is also intended to be used with an electric motor or a Dyna-Drill.

2.4 DIRECTIONAL CONTROL EQUIPMENT AND TECHNIQUES

Bent Deflecting Orienting Sub A "sub" in oil well terminology is a connecting joint. A bent sub is a short connecting joint with the upper threads cut concentric with the axis of the sub body while the lower threads are cut concentric to an axis inclined from 1° to 3° at 1/2° increments from the sub axis as shown in Figures 2.1 and 2.3. The face of the downhole motor is the direction in which the sub is bent. By attaching a bent sub to a downhole motor, a smooth arc of curvature can be drilled as compared to the series of abrupt "dog-legs" which are associated with the familiar whipstocking techniques. The radius of this smooth arc is established by the selection of the degree of bend in the bent sub. When a normal force is applied to the drill string, a bending moment is induced at the bent sub which results in
reactive side force being applied at the drill bit which in turn causes the bit to deviate in the direction of the motor face as shown in Figure 2.12. Therefore, the bent sub orients the drill bit in the desired direction of deviation. The drill pipe must be twisted in order to orient the face of the bit in a direction which not only takes into account the desired direction of deviation but also includes a compensating factor for the reactive torque of the motor.

Bent Housing This deflection technique is only available on a Dyna-Drill where the design of the interior components of the motor includes a flexible U-joint connecting rod, shown in Figure 2.13, at which point the drill motor housing is bent. The angle of bend is limited by the internal part clearances, therefore the angles are $0^\circ 45'$, 1°, $1^\circ 15'$, $1^\circ 30'$, and $1^\circ 45'$. A few of the advantages to this type of configuration are: (1) the bend is closer to the bit, thus the section between the bend and the bit is more rigid which results in less dissipation of the bending moment and side force effects on the bit, (2) the rate of angle change along the length of the drill hole increases, (3) the amount of hole damage decreases and (4) the ease of tool face orientation increases.
Deflection Shoe This particular deflection device was designed and tested by the Continental Oil Company (CONOCO) as a component for their horizontal directional drilling system (Dahl, 1975). Because CONOCO has a patent application pending on this device, the level of information is restricted so as not to infringe on their proprietary rights.

The deflection shoe is extended by pressurizing an extension piston and then upon release of the pressure is returned to its original position with the help of return springs shown in Figure 2.14. The hydraulic controls are located on the surface and since the deflection shoe is directional with respect to its extension, an orientating device is also required to efficiently position the shoe.

This orientating motor is hydraulically controlled and can rotate the deflection shoe by 40° increments (Edmond, 1975). By using a predetermined reference point, the position of the deflection shoe can easily be determined.

The basic principle behind the deflection shoe is that a bit will drill in the direction in which lateral force is applied. The closer this lateral force applicator is to the bit the more effective it will be.
FIGURE 2.14 Schematic of CONOCO Deflection Shoe (After CONOCO, 1975)
When the deflection shoe is not in use, it is flush with the adjacent drilling equipment and has a maximum travel distance of $3/8$ in (0.95 cm). When the annular space dictates a greater length of extension, an extension pad can be attached. The length of the shoe is approximately 8 in (20.3 cm), while its total contact surface includes an arc of 90° over the borehole wall.

Bit Boss The "Bit Boss" has been developed by DRILCO to provide continuous and positive directional control of the bit along with being able to be used to intentionally deviate directional holes (Garrett and Rollins, 1964). As shown in Figure 2.15, this deflection device slides over the outside of the downhole motor and has anchor shoes orientated to one side. The anchor shoes are pressurized by the drilling fluid which enters the expanding shoes through a port from the interior of the drillpipe. Due to the pressure differential between the inside and outside of the drill collar after the pump is turned on, the anchor shoes expand out against the drill hole wall, thereby applying a lateral load close to the bit.

The "Bit Boss" was developed for vertical oil well drilling, however it has the potential, after a
DRILCO BIT GUIDE

OPERATING PROCEDURE

1. Tool is connected to drill string and run to bottom.
2. Survey instrument is run in a line to determine station-by-station.
3. Setting hooks are set to give hooks set at the bottom of the hole.
4. Sleeve is anchored to hole. As the turning pump is turned, the sleeve and tool are elevated. Hence, sleeve is elevated every 5 feet.
5. Survey instrument is run only at the beginning of run and at intervals thereafter to check for change in borehole angle.

SCHEMATIC DRAWING
APPLICATION OF BIT GUIDE
WHEN USED TO STRAIGHTEN A CROOKED HOLE

FIGURE 2.15 DRILCO Bit Boss (After DRILCO, 1975)
few modifications and additions, to be applied to horizontal directional drilling (Kellner, 1975).

Articulated Sub An articulated sub is a hydraulically activated bent sub with an adjustable angle capability as illustrated in Figure 2.16. Bowen Tool, Incorporated in Houston, Texas manufactures the articulated sub in Figure 2.16 referring to it under the trade name of Dyna-Flex™.

The Dyna-Flex has been developed to operate with any air-operated or hydraulic downhole motor and allows the motor to be selectively operated either as a straight or directional drilling tool. The Dyna-Flex bent sub is located directly above the downhole motor in the same position as a fixed-angle bent sub.

The basic principle of operation is that the knuckle joint shown in Figure 2.16 can be locked into position either for straight or directional drilling by the insertion of the proper size locking probe. The directional angle can be from 0° to 2° at 1/2° increments and is controlled by selecting a probe whose diameter limits the angle in which the tool can be bent. If the angle is to be changed, the probe must be retrieved and a different diameter probe is positioned in the tool. When operating with a drilling mud motor, the probe is pumped down the drill
pipe into position and retrieved with a Wire Line Overshot. When a Mule Shoe Orienting Sub Assembly is used for surveying, a special probe assembly must be acquired (Bowen, 1972).

There are certain advantages in using a Dyna-Flex Bent Sub. The directional angle can be changed in the drill hole without pulling the entire drilling assembly out of the hole which would be the case if a fixed-angle bent sub were used. By changing probe sizes, the downhole assembly can be run into or withdrawn from a drill hole in the straight mode, thereby reducing sidewall damage.

The only limitation on the use of Dyna-Flex is that the smallest diameter size presently available is 5 in (12.7 cm) O.D. However, the Bowen Tool Company has the ability to produce a 3-1/2 in (8.8 cm) O.D. Dyna-Flex if there is a demand for it.

Jet Bit Drilling Another technique used to deviate a drill hole in relatively erodable formations is jet bit drilling. The jet bit, shown in Figure 2.17, is a roller cone drill bit which has one of its fluid nozzles enlarged while the remaining nozzles are either closed or substantially reduced in diameter. The enlarged nozzle is then oriented in the direction of the desired deviation. Then without turning the drill string or bit, drilling fluid is pumped through
FIGURE 2.17 Jet Bit Drilling
(After U. of Texas, 1974)
the bit and the face is eroded unsymmetrically with the greatest erosion occurring nearest the enlarged nozzle. By increasing the normal force on the drill pipe, the pipe will bend in the direction of the washed out area since this is the path of least resistance.

Several problems are associated with jet bit drilling in horizontal, directionally controlled drilling in soft ground. When the subsurface soil is clay or loose sand, jetting may result in washing out too large of a cavity thereby decreasing the controllability of the drill path. Even if the enlarged nozzle is directly up toward the ground surface, the overextended cavity reduces the underside soil resistance, thus resulting in the bit dropping down under the influence of gravity.

A major reason for not being able to adapt this type of drilling to horizontal directional drilling involving the use of downhole motors is that as the drilling pump is started the motor is activated thereby turning the bit. Since the bit cannot be maintained in one position relative to the drill hole, the jet bit drilling technique is not compatible with a hydraulic downhole motor.
2.5 SOFT GROUND DRILLING BITS

The various rotary drilling bits that are presently available for use in soft formation drilling are as numerous as the types of expected formations one expects to encounter. The basic external geometry of the three types of bits currently in use in soft ground drilling are illustrated in Figure 2.18.

Each one of the basic bit types has been developed for a specific type of drilling. The tricone is a very versatile bit with excellent cutting ability and drills a clean, full gage hole using a minimum torque requirement. It also has excellent sidetracking capabilities, because of the contact angle of the widely gapped, deep cut heel teeth, therefore it is well suited for directional drilling. The service life of a tricone bit is not only a function of the wearability of the cutting teeth but also includes the wearability of the bearing assembly within each cone. Therefore, the tricone bit should not be operated at high RPM, usually not any more than 500 RPM (Hughes, 1966). Because of the journal bearing requirements within each cone and that some diameter downhole motors are operated at high RPM's, tricone roller bits are not normally manufactured less than 3-1/2 in (8.9 cm)
FIGURE 2.18 Basic Drill Bits for Soft Ground

(After Hughes, 1975)

(After Varel, 1975)
in diameter.

The drag bit is a good soft ground formation bit because its flat chisel shaped teeth are easily cleaned and provide the necessary tearing and gouging action required for rapid penetration. Because of the flat plate cutting surface, the drag bit requires a larger amount of torque as compared to the roller cone bit. The drag bit is the least expensive of the three types of bits and is available in sizes less than 3-1/2 in (8.9 cm) in diameter. The service life of these bits is solely a function of the cutting plate wear, therefore there is no established equipment limit on the operational RPM load for this bit.

The diamond bit is a long service life bit but also the most expensive drilling bit among the three types. The advantage of a diamond bit for soft ground tunneling is the potential one has of using one bit for the entire drill length of the drill hole. This is, however, a function of the type of formation and the normal load applied to the bit. Another positive point for the diamond bit is that it can be used at high RPM (1000+) for long periods of time while maintaining good sidetracking ability. Presently, the diamond bit is usually produced for drill holes in excess of 5 in (12.7 cm), however small diameter bits can be special ordered.
In order to select the proper drill bit, one must consider each application on its own relative characteristics with regard to normal load, speed of rotation, type of soil formation, expected side cutting loads, duration time of drilling, and the lubricity of the drilling fluid (Allen, 1972).

There are several drill bit companies that make standard size bits as well as specially fabricated ones on special order. The information for this section has been kindly provided by the Smith Tool Company, Security Tool Company, Hughes Tool Company, and Varel, Incorporated. The Security Tool Company produces the small diameter tricone bits for application in directional drilling while Varel produces the diamond bit. Hughes Tool Company not only produces the tricone bit, but also the drag bit while Smith Tool Company manufactures the tricone roller bits.
CHAPTER 3

IMPORTANT CONSIDERATIONS FOR
HORIZONTAL DIRECTIONALLY CONTROLLED DRILLING
IN SOFT GROUND

3.1 INTRODUCTION

Boring a horizontal directionally controlled hole is similar to drilling a vertical hole, but yet involves a number of unique problems. In this chapter as many of these unique problems as can now be foreseen will be identified; however, some may yet be discovered due to the embryonic state of soft ground directionally controlled drilling. As accumulated experience and technical knowledge enlarges case history files, present day problem areas can successfully be eliminated.

In an attempt to address a few of those problem areas in a meaningful manner, several topics of horizontal drilling will be discussed in depth. First, the present day technique of controlling a horizontal drill path will be discussed (Section 3.2), followed by Section 3.3 on the influence of subsurface geology in controlling the direction of drilling.
Sections 3.4 through 3.8 deal with the interaction of the maneuverable penetration system (MPS) and the soft ground environment. Areas of interaction include: (1) the estimation of the required soil strength for the operation of the thrust applicator; (2) the bearing capacity limitations of the thruster anchor pads and deflection shoe; and (3) the effects of soil resistance on both of the MPS models. One of the most critical components of any drilling operation is the drilling fluid or drilling mud. Horizontal drilling is not without exception in this area, therefore two sections are devoted to this problem. Finally the chapter concludes with a section on the expected radius of curvature for the two MPS models and the relationship of this radius of curvature to object avoidance. Detailed calculations for all of these areas appear in Appendix B.

3.2 TECHNIQUES IN HORIZONTAL DIRECTIONAL DRILLING

Since horizontal directional drilling has been conducted in only a few geologic environments, the techniques which are explained in this section might well be out of date in a few years as new techniques are developed and new geologies are penetrated. However, the purpose of this section is to investigate existing techniques and their effect on horizontal directional drilling.
As seen in the state of the art chapter, there is a variety of equipment and methods of application for directional drilling. In order to understand how to use this equipment, one must understand the effects of gravitational force, leverage, and bending moments imposed on the maneuverable penetration system (MPS).

The first principle of directional drilling is the fulcrum principle. This principle can be understood by investigating the operation of increasing the angular rate of curvature of the drill hole in a concave upward direction as shown in Figure 3.1. The fulcrum can be a bent sub, bent housing with blading opposite the face for increased leverage, a bent Dyna-flex, or a deflection shoe. When the normal force is increased beyond that which is required for drilling, the drill pipe will bend just above the fulcrum point toward the low side of the drill hole. This leverage then induces a side force at the bit on the high side of the hole.

The flexibility of the drill pipe immediately above the fulcrum point, the degree at which the fulcrum is prebent, and the effective normal force experienced at the fulcrum, will determine the angle increase per course length of drill hole. Angle change is usually stated with respect to
FIGURE 3.1 Fulcrum Principle

FIGURE 3.2 Pendulum Principle
100 ft (31 m) intervals of course length. The more flexible the drill pipe or collar, the faster will be the rate of angle increase. In addition, the smaller the diameter of the drill pipe with respect to a constant hole size, the larger the applied leverage; hence a faster rate of angular increase can be developed.

The second principle of directional drilling is the pendulum principle, illustrated in Figure 3.2. When it is necessary to drop or decrease the angle of a drill hole, the normal forces are drastically reduced and the gravitational forces acting on the MPS cause the drill path inclination to drop towards the vertical axis similar to a pendulum released from a horizontal position.

When a bent sub is combined with a downhole motor and the face of the motor is turned inward toward the vertical, as shown in Figure 3.3, the resultant effect will be that of a pendulum for two reasons. The bent sub will apply a lateral force on the bit while the clockwise rotation of the drill bit will draw the bit down, thus the pendulum motion of the drill bit is downward and inward toward the vertical. It is important to point out again that the amount of applied normal force and the rotational speed of the bit will influence the rate of angular change.
FIGURE 3.3 Bent Sub as a Pendulum
This pendulum motion is inherent with the in-hole thrust applicator MPS because of the clockwise rotation of the drill bit and because the relatively short cylinder anchor pad section acts as a point of rotation for the drill bit, which can be as far as 10 ft (3.1 m) away. When the deflection shoe is not extended to compensate for the compounded effect of these two influences, the rate of angle change is significantly influenced downward.

Up to this point, increasing and decreasing the rate of angle change has been addressed. Now the technique used to maintain a straight horizontal hole for any significant distance will be treated. First, one has to understand that any hole drilled in the ground is a directional hole because it is necessary to take specific steps in order to maintain a straight hole, similar to those steps taken to intentionally deviate a drill hole (Emery, 1973). The downhole motor, in combination with the bent sub, bent housing or articulated sub, must have the motor face directed upward while maintaining the required bit speed of rotation and penetration rate necessary to compensate for the effects of gravity and the clockwise rotation of the drill bit. These same two effects are also present with the in-hole thrust applicator MPS and are compensated by orientating the
deflection shoe to the downward side of the hole and extending the shoe the necessary distance in order to maintain a horizontal course.

One of the more important considerations in directional drilling is the force acting on the bit. There are two types as shown in Figure 3.4: (1) the normal force applied by the thruster or surface support equipment, and (2) the side force resulting from the bending moment at the fulcrum. The key to controlled directional drilling is the control of the side force. The sources of this side force can be either mechanical or formation related. The mechanical sources have been discussed, therefore let us now consider the formation effects. The formation's strike and dip effect the direction and drift of a bore hole (Wilson, 1975). This formation interface in soft ground can be a clay-sand interface or vice-versa. As shown in Figure 3.5, when an up-dip formation is intersected on a plane perpendicular to the strike, the bit will have a tendency to drill up plane. If the drill path intersected the formation up-dip to the left of the strike line then it would deviate to the right while drilling upward. Then by similar thinking, when a down-dip plane is intersected, the bit will tend to drill downward and to the right or left, depending on the angle at which
FIGURE 3.4 Forces Acting on the Drill Bit
FIGURE 3.5 Influence of Geological Layering on Drill Bit
the dip plane is intersected.

An alternate example in soft ground of formation deflection would be a mandrel MPS in soft clay which intersects a medium dense sand. The tendency of the drill bit will be to deflect and drill parallel to the interface surface. The primary point to remember here is that the bit will take the path of least resistance unless an external force is applied to the bit to compensate for this tendency.

The most effective directional drilling has been accomplished at a high penetration rate. Since the penetration rate is a function of the rotation speed of the bit and the rate of circulation of the drill fluid, these factors must be maintained at the optimum operating rates for the specified equipment. If the penetration rate is slower than the necessary rate for a specific formation, the bit will have a tendency to wander and control becomes minimal (University of Texas, 1974). In addition, if jetting from the drill fluid passing through the bit orifices is eroding the soil at the face of the drill bit, then an enlarged cavity will result. Control of the drill bit will again be minimal unless a high penetration rate is maintained to keep the drill bit as close to the face of the drill hole as possible.
Finally, the type of drilling fluid used is very important to the success of the entire drilling operation involving a horizontal drill hole. The subject area, by itself, is so involved and has so many aspects that it could be a separate thesis. Instead, only a few topics will be discussed later in this chapter. The fluid topics will include fluid drag forces, pressure losses within the equipment and annular space, surface pump pressure requirements to operate a downhole motor out to a distance of 5000 ft (1525 m), and the effect of the fluid pressure at the bit on the hydraulic fracture gradient of the soil.

3.3 INFLUENCE OF GEOLOGY

As with any other subsurface work, the type of geological conditions encountered will affect the choice of equipment. Therefore, in order to more effectively discuss the equipment that is available for horizontal directional drilling, the geological conditions will be defined.

Three typical urban geologies, listed in Table 3.1, have been chosen as representative of the possible subsurface conditions that exist around the major cities in the United States. The soil in Category A would be very difficult to drill in because of its soft consistency, tendency to adhere
Table 3.1 Expected Urban Geological Conditions

<table>
<thead>
<tr>
<th>Soil Category</th>
<th>Soil Parameters</th>
<th>A stars</th>
<th>B stars</th>
<th>C stars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturated Soft Clay</td>
<td>γ_t (pcf)</td>
<td>85-110</td>
<td>85-110</td>
<td>115-140</td>
</tr>
<tr>
<td>Saturated Dense Sand</td>
<td>D_r</td>
<td>20-30</td>
<td>60-65</td>
<td>35-65</td>
</tr>
<tr>
<td>Saturated Overconsolidated Clay</td>
<td>q_f (tsf)</td>
<td>0.10-0.50</td>
<td>0.50-2.0</td>
<td></td>
</tr>
<tr>
<td>Saturated Dense Sand</td>
<td>k (cm/sec)</td>
<td>10^{-6}</td>
<td>15^{-1} to 10^{-4}</td>
<td>10^{-7} to 10^{-8}</td>
</tr>
<tr>
<td>Residual</td>
<td>ϕ</td>
<td>30^0</td>
<td>35^0-40^0</td>
<td></td>
</tr>
</tbody>
</table>
to and clog the drill bit, and its very low shear strength. On the other hand the soil in Category B would be very drillable for the opposite reasons previously mentioned (i.e. stiff consistency and high undrained strength). The soil in Category C is difficult to drill in for reasons other than those in Category A. The residual soil can have a wide grain size distribution which would include boulders and clay size particles. The real problem area here, though, is the pebble size particles ($\approx 1/2$ in (1.3 cm) diameter). These larger sized particles will bind a tricone roller bit and are too small for a drag bit to crush, thus resulting in jamming. In addition, the drilling fluid available for horizontal directional drilling might not suspend this size particle for any great distance. Therefore, in order to drill in residual soil, one must have a bit that will crush these pebbles and a drilling fluid that will keep them in suspension until they have exited the drill hole.

The maximum operating depth for the MPS will be 500 ft (153 m) below the ground surface. Therefore, a large percentage of the drill hole will be below the water table. This deep operational depth will require all of the equipment to be designed for an aquatic environment.
Since the maximum operating horizontal distance is 5000 ft (1525 m), certain effects on the MPS must be considered. At 500 ft (153 m) depths, and at a horizontal distance of 5000 ft (1525 m), the MPS will have to overcome a sizeable amount of friction between the soil and the trailing equipment (e.g., drill steel or cable). The lubricity of the drilling fluid and the neutral buoyancy of the MPS and its trailing equipment will be a major factor in estimating this maximum operational distance. In addition, the head losses experienced along the drill pipe and MPS will limit the maximum distance the MPS can effectively drill. Both of these hydraulic topics will be dealt with in detail later in this chapter, while all related calculations will appear in Appendix B.

The efficiency of an operator of the MPS to control the direction of a horizontal drill hole is dependent upon the undrained strength of the saturated soil. This undrained shear strength \(S_u \) is approximately one-half of the unconfined compressive shear strength, as shown in Table 3.2, for several levels of consistency (Terzaghi and Peck, 1967). These strengths are associated with saturated, silty clays of low permeability, usually found within the depth limits previously mentioned.
Table 3.2 Shear Strength of Cohesive Soils
(Terzaghi and Peck, 1967)

<table>
<thead>
<tr>
<th>$S_u=1/2 \ q_u$ (tsf)</th>
<th>Consistency</th>
<th>Unit Weight (pcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0.125</td>
<td>Very Soft</td>
<td>100-200</td>
</tr>
<tr>
<td>0.125-0.25</td>
<td>Soft</td>
<td></td>
</tr>
<tr>
<td>0.25-0.50</td>
<td>Medium</td>
<td>110-130</td>
</tr>
<tr>
<td>0.50-1.0</td>
<td>Stiff</td>
<td>120-140</td>
</tr>
<tr>
<td>1.0-2.0</td>
<td>Very Stiff</td>
<td></td>
</tr>
<tr>
<td>>2.0</td>
<td>Hard</td>
<td>130+</td>
</tr>
</tbody>
</table>

The undrained shear strength will affect the turning radius of curvature for both of the MPS's and the bearing capacity of the anchor pads for the DRILCO thrust applicator and CONOCO's deflection shoe. The relationship between the undrained shear strength and the required resistance needed to deflect the MPS has not been rigorously analyzed to date. A rigorous solution of the relationship is beyond the scope of this study. However, it is informative to list possible boundary relationships for an MPS drilling in soft ground. Such a list follows.
1) In soft to medium clay ($S_u \approx 0.1-0.5$ tsf) it is hypothesized that the mandrel MPS will tend to crab along its path during turning. Crabbing occurs when the heading of the drill bit differs significantly from the direction of travel of the drilling unit. The MPS will crab until enough resistance from the soil is built up to react against the drill bit and create a side force large enough to change direction.

2) In loose sand this crabbing effect will not be as severe as that experienced in soft clay. During crabbing sand grains will densify or compact until the bearing capacity increases and the soil provides the reactive force to cause turning.

3) An overconsolidated clay or dense sand will have a high enough bearing capacity to provide the necessary resistance to cause turning without the MPS experiencing any crabbing.

4) The MPS's drill path will also be affected by a change of soil conditions. For example, if the MPS is drilling in a medium ($S_u=0.5$ tsf) clay with an upward inclined path and encounters a layer of dense sand, the drill bit will be deflected toward the horizontal.

The above mentioned areas are general statements which are meant to help clarify some of the techniques and principles associated with directional drilling in soft ground. Therefore, as soil conditions and strata change, so will the manner in which the MPS will react. Herein lies the art behind horizontal directional controlled drilling.

3.4 REQUIRED SOIL STRENGTH FOR THRUST APPLICATOR MPS OPERATION

The ability of the thrust applicator to supply thrust or pulling power is a function of the shear force acting on the surface of the anchor pad.
The shear strength of the soil will be the maximum shear stress that can occur across these pads. Therefore, the undrained shear strength for clay soil will equal the amount of thrust or pulling force that can be developed by the system, divided by the total pad surface area, shown in Figure 3.6.

An estimate of S_s for a thrust or pulling force required has been made for two worst-condition situations. The first case considers the maximum thrust required while the pads are anchored in soft ground with the drill bit encountering a boulder or pinnacle. This thrust is assumed to be of the order of 1000 lbf (4450 N). The second case considers the effects of dragging the thrust applicator hoses over sand without significant lubricity (normally provided by the mud cake) or hose buoyancy from any in-hole drilling fluid. In this case it is desireable to develop the full pulling force, 7000 lbf (31150 N) of the thrust applicator. These two conditions were chosen because of the differences in the required normal forces.

For the 1000 lbf (4450 N) developed thrust, the total pad surface area required to operate the thruster in the weakest clay (cohesive soil)
Cohesionless soil:

\[\tau_{tf} = S_s = S_d = \bar{\sigma}_r \tan \beta \]

Cohesive soil:

\[S_s = C = S_u \]
\[S_s \approx S_u = \frac{F_s}{A_t} \]

\[F_s = \text{Shearing Force} \]
\[A_t = \text{Total Pad Area} \]
\[\bar{\sigma}_r = \text{Anchoring stress applied across anchor pad surface area} \]

FIGURE 3.6 Shear Strength Formulas
environment is:

Thrust Requirements (F=1000 lbf)

\[S_u = 0.25 \text{ tsf} = 3.47 \text{ psi}(24 \text{ kN/m}^2) \]

using \(S_u = \frac{F_s}{A_t} \)

\[A_t = \frac{F_s}{S_u} = \frac{1000}{3.47} = 288 \text{ sq in}(1858 \text{ cm}^2) \]

The above calculation implies that 45 pads (pad dimensions 1.06 x 6 in(2.7 x 15.2) cm)) would be required for this soft clay soil with \(S_u = 0.25 \text{ tsf} \) (24 kN/m\(^2\)). For a clay soil with \(S_u = 2.0 \text{ tsf} \) (197 kN/m\(^2\)), the number of pads decreases to 35. However, remember that this is for the worst condition. Because of the complex interaction of the drill bit (jetting and cutting) and the soil, there is no reasonable estimate of what thrust requirements are needed to drill in a total clay environment, therefore the worst condition is analyzed.

A possible redesign was considered using a larger surface area for each anchor pad. The new pad size was estimated using the proportional relationship between two chords at different radii over the same degrees of arc. These calculations appear in Appendix B.

Therefore, assuming a diameter of 8 in(20.3 cm), the pad size might be 1.5 x 8 in(3.8 x 20.3 cm) with a pad area equal to 12 sq in(77.4 cm\(^2\)).
An estimate of the minimum S_s required for various numbers of pads was then calculated for cohesive soils with a bit normal force requirement of $F=1000 \text{ lbf}(445 \text{ N})$ and the relationship,

$$S_s = S_u = \frac{F_s}{A_t}.$$

<table>
<thead>
<tr>
<th>Minimum Required Shear Strength (tsf)</th>
<th>Number of Anchor Pads</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>----</td>
</tr>
<tr>
<td>Minimum Required Shear Strength</td>
<td>1.0</td>
</tr>
</tbody>
</table>

The same calculations were performed to estimate what minimum S_s would be required to pull the three thrust applicator fluid hoses along various hole lengths. As was previously stated, these hoses are assumed to rest on the bottom of the hole in sand (i.e. worst condition possible, short of hole collapse). Therefore, the thruster must overcome the frictional force of the hose resting on sand without buoyancy, as shown in Figure 3.7

Figure 3.7 Friction Forces Acting on Thruster Hose

$$T > F_f = \gamma N$$
The results of these calculations appear in Table 3.4 for a thruster with twelve cylinder pads (1.5 x 8 in).

<table>
<thead>
<tr>
<th>Tunnel Length (ft)</th>
<th>1000</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friction force component from hose weight (lbf)</td>
<td>360</td>
<td>720</td>
<td>1080</td>
<td>1440</td>
<td>1800</td>
</tr>
<tr>
<td>Minimum Required Shear Strength (tsf)</td>
<td>0.18</td>
<td>0.36</td>
<td>0.54</td>
<td>0.72</td>
<td>0.89</td>
</tr>
</tbody>
</table>

3.5 BEARING CAPACITY REQUIREMENTS FOR THE THRUSTER PADS AND DEFLECTION SHOE

The bearing capacity calculation will take into account two different soil types (cohesionless-sand; cohesive-clay), therefore, two different bearing capacity formulas will be applied with the following assumptions:

1) The DRILCO Thrust Applicator anchor pad or the CONOCO deflection shoe contact surface is assumed to be flat (for ease of calculations) with a minimum dimension equal to the length of the chord over the arc of the original shoe.

2) The bentonite filter cake that is present in the drill hole sides, as a result of using a mud slurry, will be displaced by the anchor pad/deflection shoe upon contact so that the pad/shoe bears directly on the sand.

3) The effect of the drilling fluid pressure in the hole on the soil on either side of the anchor pad (or deflection shoe) will increase the bearing capacity as shown in Figure 3.8.
For clay: \[\Delta q_{ult} = N_c S_u + P_a \]

For sand: \[\Delta q_{ult} = \frac{1}{2} S_y YBN + P_a \]

\(\Delta q \) = Applied Stress
\(P_a \) = Annular Drill Fluid Pressure
\(S_y \) = Shape Factor (Vesic, 1973)
\(N_c \) = Bearing Capacity Factor (Skempton, 1973)
\(N_y \) = Bearing Capacity Factor (Vesic, 1973)
\(B \) = Minimum Base Dimension

FIGURE 3.8 Bearing Capacity Equations and Assumed Failure Mechanism
82
4) The load on the anchor pad is uniform and normal to the drill hole wall.

5) A punching bearing capacity failure will occur when the maximum contact stress exceeds the bearing capacity. The maximum contact stress is that which is available over the anchor pad at maximum hydraulic pressure without causing the anchor pad rubber to rupture.

First, the maximum/minimum contact stress for a 5-3/4 in (14.6 cm) O.D. thrust applicator and for the deflection shoe will be calculated. This thruster is modeled because the exact maximum operating hydraulic pressure without rupturing the membrane is known. For mechanical details see Appendix D. However, a modification would have to be made to the external dimensions of the anchor pad (contact area) for soft ground application. An extension pad, with contact dimensions 1.5 x 8 in (3.8 x 20.3 cm), can be attached to the thrust applicator pad. Then the maximum, normal contact stress would be the ratio of the internal hydraulic piston area to the external pad area, times the hydraulic pressure applied over the internal area.

\[\sigma_{C_{\text{max}}} = \Delta P_H \left(\frac{A_I}{A_C} \right) \]

\(P_H = \) change in hydraulic pressure (psi) necessary to anchor

\(A_I = \) pad area in contact with the hydraulic fluid

\(A_C = \) contact area of anchor pad with drill hole wall
The results of these contact stress calculations are plotted in Figure 3.9.

Next, the deflection shoe and anchor pad bearing capacities for both MPS's operating in soft and stiff clay and loose and dense sand were calculated. The results of the bearing capacity computations are presented in Table 3.5, and details of the calculations appear in Appendix B. By comparing the maximum contact stress with the bearing capacity for each MPS, both the thrust applicator anchor pads and the deflection shoe applied less contact pressure than the bearing capacity of the soil, therefore no bearing capacity failure is anticipated.

Table 3.5 Bearing Capacities for the Anchor Pads and Deflection Shoe

<table>
<thead>
<tr>
<th>Soil</th>
<th>Device</th>
<th>S_u (tsf)</th>
<th>q_{ult} (tsf)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>γ_b (pcf)</td>
<td>Drill Hole Distance (ft)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>5000</td>
</tr>
<tr>
<td>Clay</td>
<td>Thruster</td>
<td>$S_u=0.25$</td>
<td>2.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$=2.0$</td>
<td>12.36</td>
</tr>
<tr>
<td></td>
<td>Deflection</td>
<td>$=0.25$</td>
<td>3.05</td>
</tr>
<tr>
<td></td>
<td>Shoe</td>
<td>$=2.0$</td>
<td>13.32</td>
</tr>
<tr>
<td>Sand</td>
<td>Thruster</td>
<td>$\gamma_b=47.6$</td>
<td>1.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$=72.6$</td>
<td>1.65</td>
</tr>
<tr>
<td></td>
<td>Deflection</td>
<td>$=47.6$</td>
<td>1.68</td>
</tr>
<tr>
<td></td>
<td>Shoe</td>
<td>$=72.6$</td>
<td>1.73</td>
</tr>
</tbody>
</table>
FIGURE 3.9 Contact Stress vs. Change in Hydraulic Pressure
3.6 FRICTIONAL EFFECTS OF SOIL ON THE MANDREL MPS

Case Study—Mandrel MPS The data for this case study on the effects of soil skin resistance on a mandrel MPS were taken from a directional drilling performed by Titan Contractors in Long Beach, California.

A 1-3/4 in (4.5 cm) Dyna-Drill was used with 2-1/8 in (5.4 cm) O.D. BQ drill pipe in 30 ft (9.2 m) sections and a 2-3/4 in (7 cm) diameter drag bit. The initial entry angle and sketch of the drill rig are shown in Figure 3.10a. The one exploratory boring taken showed a soil profile of a layered system of sand and silty-sand down to an approximate depth of 85 ft (26 m) below the original ground surface.

When the drill hole had reached a length of about 300 ft (91.5 m), as shown in Figure 3.10a, the BQ rod buckled on the drill rig as the carriage was applying a normal force. In order to calculate what the approximate applied force was at the time of buckling, the drill pipe will be assumed to be a slender column which is pin connected at the lower drill rig and fixed at the carriage as illustrated in Figure 3.10b. The dotted line in Figure 3.10b shows an exaggerated form of the deflected BQ rig. This deflected shape can also be seen in the picture in Figure 3.11.
Case Study Problem

(b) Titan Contractor's Drilling Rig
FIGURE 3.12
Applying Euler's slender column buckling criteria the critical normal force was calculated as 2.68 Kips (11926 N).

The unit skin resistance of the mandrel MPS is calculated using a relationship similar to the skin resistance along a pile. The total contact area is

\[A_c = \pi dL \]

and the shear resistance is:

\[\tau_{\text{fric}} = P_{\text{crit}} / A_c = 0.112 \text{ psi}(0.773 \text{ kN/m}^2) \]

This is the assumed skin friction on the drill motor and drill pipe in silty sand conditions below the water table.

To calculate the mud slurry in this particular drill hole, the following relationships are applied for the 1-3/4 in (4.5 cm) Dyna-Drill with a 2-3/4 in (7 cm) drill bit on a 2-1/8 in (5.4 cm) BQ drill rod:

Annulus Velocity \[V_a = \frac{Q}{A} \]

\[Q = 22 \text{ gal/min} = 0.049 \text{ ft}^3/\text{sec} \]

\[A = \frac{\pi (D_H^2 - D_p^2)}{4} = 0.0166 \text{ ft}^2 \]

\[V_a = 2.95 \text{ ft/sec}(0.89 \text{ m/sec}) \]

Shear Rate \[\dot{\gamma}_a = \frac{V_a}{D_H - D_p} = 56.64 \text{ 1/sec} \]

\[V_a = \text{annular drill fluid velocity} \]

\[D_H = \text{diameter of the drill hole} \]

\[D_p = \text{outside diameter of the drill pipe} \]

From Figure 3.12, \[\tau_a = 0.098 \text{ lb/ft}^2(0.0047 \text{ kN/m}^2) \].
FIGURE 3.12 Milchem Rheoplot®

90
Then the total normal force required for an assumed neutrally buoyant MPS in mud slurry along 300 ft (91.5 m) of drill hole is,

\[P_B = A_c \gamma_a = 18.23 \text{ lbf (81N)}. \]

Therefore, if the annular space were large enough to provide mud slurry caking, then the maximum required normal force would be approximately 20 lbf (89 N). Instead the force on the BQ rod was very near \(P_{\text{crit}} \) which would result in buckling under the least additional resistance than already accounted for in the calculations.

To estimate what would be the ideal linear footage, one could drill under the two above sized holes (without hole collapse and ideal return flow conditions) the following calculations were made.

Applying the skin resistance per linear foot concept:

for 2-1/8 in (5.4 cm) O.D. BQ

\[A_s = 12\pi d = \frac{\pi (2.125)}{144} = 0.556 \text{ ft}^2/\text{L.F.} \]

\[\gamma_{a_1} = 0.098 \text{ lbf/ft}^2 \text{ (for 2-3/4 in hole)} \]

\[\gamma_{a_2} = 0.052 \text{ lbf/ft}^2 \text{ (for 3-1/2 in hole)} \]

\[P_{B_1} = \gamma_{a_1} A_s = 0.0549 \text{ lbf/L.F.}(0.242 \text{ N/L.F.}) \]

\[P_{B_2} = 0.0289 \text{ lbf/L.F.}(0.129 \text{ N/L.F.}) \]

If a factor of safety of 1.25 is applied to \(P_{\text{crit}} \), then the maximum developable normal force \((P_{\text{op}}) \) equals
2100 lbf (9345 N).

\[P_{op}/F_B = \text{total linear operating footage} \]
then,

\[P_{op}/F_{B_1} = 2100/0.0545 = 38.5 \times 10^3 \text{ ft} (1.35 \times 10^4 \text{ m}) \]

\[P_{op}/F_{B_2} = 72.7 \times 10^3 \text{ ft} (2.2 \times 10^4 \text{ m}) \]

Since only the hole size differed for cases \(F_{B_1} \) and \(F_{B_2} \), selecting the correct size drill bits for a particular drill motor and drill pipe can have a significant effect on the efficiency of the drilling operation, under ideal conditions. Of course, if the hole collapses, then the maximum penetration distance could be as low as 300 ft (91.5 m).

3.7 EFFECTS OF BORE FRICTION ON THRUST APPLICATOR

The worst frictional condition for a thrust applicator occurs when the drill hole behind the thruster collapses at a depth of 500 ft (153 m). In order to calculate the magnitude of thrust required for movement after hole-collapse, the following conditions are assumed:

1) The radial stress against the thruster hose is illustrated in Figure 3.13. The value of \(\bar{p}_r = 0.2 \bar{p}_0 \) is derived from measurements made on yielding tunnel liners by Hoeg (1965).

2) In order to pull the thruster hose, the sand must be failed in shear according to the Mohr-Coulomb criteria \((\tau_f = \bar{p}_0 \tan \phi) \).

3) The sand is completely saturated.

4) The soil properties are:

\[\gamma_t = 120 \text{ pcf} \quad \gamma_b = 57.6 \text{ pcf} \]

\[\phi = 35^\circ \]
Scale: 1" = ½"

Thrust Applicator Hose - 1½ in (3.8 cm) O.D.
Drilling Fluid Hose - 1 in (2.5 cm) O.D.
Hydraulic Hose - ½ in (1.3 cm) C.D.

FIGURE 3.13 Radial Stresses Applied to the Thruster Hose
At $D=500$ ft (153 m),

$$\bar{\tau}_{vo}=57.6(500)=200 \text{ psi}$$
$$\bar{\tau}_r=0.2 \bar{\tau}_{vo}=40 \text{ psi}$$

For a 1.5 in O.D. hose

$$A_S=12\pi d=12\pi (1.5)=56.5 \text{ in}^2/\text{L.F.}$$

Applied radial force from overburden

$$P_R=\bar{\tau}_r A_S=40(56.5)=2260 \text{ lbs/L.F.}$$

For sand $\phi=35^\circ$, $\tan 35^\circ=0.7$ and

$$P_{fric}=4P_r=0.7(2260)=1582 \text{ lbs/L.F. (7040 N/L.F.)}$$

Therefore, in order for a thruster to pull the cable through this collapsed hole, it must be capable of pulling 1582 lbs/L.F. (7040 N/L.F.). If the maximum thrust capable of being developed by the DRILCO thrust applicator, in ideal conditions, is 7000 lbf (31150 N), then the thruster would only move 4-1/2 ft (1.4 m).

Now, if the thruster MPS is at a depth of 25 ft (7.6 m) in sand, below the water table,

$$\bar{\tau}_{vo}=25(57.6)=1440 \text{ psi}$$
$$\bar{\tau}_r=0.2(1440)=2 \text{ psi}$$

$$P=\bar{\tau}_r A_S=2(56.5)=113 \text{ lbs/L.F.}$$

$$P_{fric}=4P_r=0.7(113)=79.1 \text{ lbs/L.F. (546 N/L.F.)}$$

With this hose friction, the minimum shear strength of the soil required to enable a thruster to pull a hose through a specific length of drill hole have been calculated and are presented in Table 3.6. For these
calculations, an 8 in (20.3 cm) O.D. thrust applicator with nine 1.5 x 8 in (3.8 x 20.3 cm) anchor pads whose total surface area equals 108 in\(^2\) (697 cm\(^2\)) will be assumed. Therefore, \(S_s = F/A_t\) where \(S_s\) is the shear strength of the soil.

Table 3.6 Minimum Required Shear Strength to Pull Thruster Cable through a Collapsed Hole

<table>
<thead>
<tr>
<th>Length of Collapsed hole (ft)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frictional Force (lbf)</td>
<td>739</td>
<td>1477</td>
<td>2216</td>
<td>2954</td>
<td>3693</td>
</tr>
<tr>
<td>(S_s) (tsf) (@ a depth of 25 feet)</td>
<td>0.49</td>
<td>0.74</td>
<td>1.11</td>
<td>1.48</td>
<td>1.85</td>
</tr>
</tbody>
</table>

To investigate the meaning of Table 3.6, consider a thruster that entered the ground at an angle of 30\(^\circ\) from the horizontal and was at a depth of 25 ft (7.6 m). The drill hole length would be 50 ft (15.3 m). In order to rescue itself, the 9 pad thruster would have to drill a vertical path in soil with a shear strength of at least 1.85 tsf (177 kN/m\(^2\)) or very stiff clay. The necessity for the maximum number of thruster pads then becomes obvious.

3.8 DRILL PATH AND EXIT ANGLE LIMITATIONS

Figure 3.14 illustrates a proposed idealized drill path, assumed to enable some basic
calculations to be made for finding the maximum exit angle (β) of the drill hole. The hole is assumed to be stabilized through proper mudding techniques. In an effort to more realistically analyze this problem, pseudoplastic fluid relationships (Graf, 1971) were applied to estimate the Reynold's number, annulus velocity, and the drag forces of the drilling mud which act on the drill pipe or cable.

The following conditions and assumptions are stated to help clarify the method of approach to this multiphased topic.

1) The initial trial entry path is inclined at an angle of 60° from an assumed horizontal ground surface.

2) All of the MPS equipment is neutrally buoyant in the horizontal section of the drill path and tends to bear against the lower side of the bore hole on the inclined drill path.

3) The frictional force encountered by the MPS at the two bends in the drill path is estimated to be 10% of the total frictional component along the incline. The free body diagrams shown in Figure 3.15, illustrate the forces acting on a portion of the MPS in each section of the drill path.

4) The coefficients of friction for sands is $\gamma_s = \tan \phi$. For cohesive soils an empirical value of the frictional force per linear foot was applied for a sticky, normally consolidated soil while in overconsolidated soil the frictional force was assumed to be the same as that for dense sands.

5) The weight (W) shown in Figure 3.15 is an average weight of the system estimated at the mid-point of the drill path in Sections I and III of Figure 3.14.
FIGURE 3.15 Free Body Diagrams of In-hole MPS

SECTION I

SECTION II

SECTION III
6) The mud slurry in the annulus is a pseudoplastic fluid and is assumed to behave according to the fluid power law, \(\tau = K (du/dy)^n \), which is explained in Appendix B.

7) The soil strata is assumed constant over the depth considered.

8) The mandrel MPS used for these calculations will be a 2-3/8 in (6 cm) O.D. Dyna-Drill with a 4-1/2 in (11.4 cm) bit and 2-3/8 in (6 cm) drill pipe.

9) The thrust applicator MPS was a DRILCO unit with a 5-3/4 in (14.6 cm) O.D. with 9 cylinder anchor pads whose contact area is 1-1/2 x 8 in (3.8 x 20.3 cm). A 7 in (17.8 cm) diameter bit was used.

10) The maximum applied normal force was estimated by applying a factor of safety of 1.25 to the previously calculated critical buckling load for the drill pipe.

The calculations for estimating the maximum exit angle for both MPS's were made with respect to both a sand and clay environment.

The method of evaluation for determining the maximum exit angle is the static force balancing equations applied to the free body diagrams in Figure 3.15. The critical point of evaluation was the top of the drill path in Section III of Figure 3.14. The result of summing the forces parallel to the drill path in Section III, is the equation

\[F_N - F = W \sin \beta + W \gamma \cos \beta, \]

where \(F = D_T + 1.1F_f \).

\(\gamma = \text{coefficient of friction} = \tan \phi \)

\(D_T = \text{total drag up to the top position of the incline in Section III} \)
\(F_f = \text{frictional forces acting on the drill pipe along the incline in Section I} \)

\(W = \text{weight of components in Section III} \)

Figure 3.16 was then developed from the above relationship for various angles of \(\beta \). If the ratio of \((F_N - F)/W \) were larger than the peak value at \(\beta = 60^\circ \), then the MPS was considered able to drill directly vertical from a previously horizontal path. Naturally, if this ratio were equal to a value that corresponded to an angle between \(0^\circ - 90^\circ \), then this is the maximum \(\beta \) value for this MPS to be able to exit the hole.

Calculations contained in Appendix B yielded the following results for a mandrel MPS operating in sand. For a drill hole with the horizontal distance in Section II of Figure 3.14 equal to 3000 ft (915 m), the ratio \((F_N - F)/W \) was equal to 3.11 and for a 5000 ft (1525 m) horizontal distance this ratio was 3.05. Therefore, since both of these values are greater than the critical \((F_N - F)/W = 1.2 \), the mandrel MPS with a neutrally buoyant drill pipe in Section II can exit vertically.

The above conclusion is based on the critical assumptions of no buckling of the drill pipe in the drill hole, especially in the horizontal section, and that only the drag force of the pseudoplastic
FIGURE 3.16 Maximum Exit Angle Relationships in Sand

\[\frac{F_N - F}{W} = \sin \beta + \mu \cos \beta \]

Where \(F = D + 1.1 F_f \)
fluid along the drill pipe resists movement in Section II. Another factor which had to be estimated due to the novelty of horizontal boring is the frictional effect of pushing a drill pipe around a bend. This frictional force resulting from "keying" was assumed as only a fraction of the weight of the drill pipe (i.e. $0.1F_f=0.1\gamma W\cos 60^\circ$). This is probably an unconservative estimate of the effect of soil friction on the drill pipe at this bend.

If the drill pipe were not neutrally buoyant in Section III, what would be the resultant effect for a 3000 ft (915 m) horizontal section using $F_f=\gamma N=0.7(3.83)(3000)=8043$ lbf (35791 N)? Since the resistance is greater than the total available normal force at the surface, the mandrel system will not drill a hole 3000 ft (915 m) in length if the drill pipe is not neutrally buoyant and the pipe slides along the bottom side of the drill hole.

It is instructive to find the maximum horizontal penetration distance for a mandrel system without neutral buoyancy. The results of calculations found in the appendix indicate that the maximum distance is 1600 ft (488 m) along the horizontal. These calculations were made for a medium dense sand with $\bar{\theta}=35^\circ$.
From the calculations it can be assumed that since the thrust applicator system is a lighter system, then it should be able to drill a further distance in a medium sand than a mandrel system as long as hole stability is maintained. This is, in fact, what does result when the friction force along the thruster hose on a horizontal plane in Section II is added to the total friction forces. The thrust applicator can exit vertically in Section III, even if the horizontal distance is 5000 ft (1525 m).

These example calculations for maximum penetration distance and maximum exit angles for MPS's in medium dense sand indicate that the thrust applicator would be a superior system. It is superior for the following two reasons. First, its lighter weight cables enable it to travel further and secondly, the maximum available thrust is not limited by the buckling of the drill steel. The results of similar calculations for the two MPS's in a clay environment follow below.

In order to calculate the maximum exit angle for a MPS system operating in clay, a value for the frictional forces acting on a drill pipe (or cable) being drawn across a clay soil must be estimated. No theoretical method in soil mechanics was found which could be adopted to this situation and result
in a reasonable value which compares logically with case study data. Different relationships taken from pile load tests were investigated which included estimating the skin resistance along the drill pipe and multiplying by an assumed reduction factor which resulted in an extremely high value for the frictional force. A similar approach was taken in an attempt to adopt McClelland's (1974) experience with deep penetration piles, however the adhesive values were much higher than the case history results. It was finally decided that since all the pile equations included a factor for the lateral earth pressure along the length of the pile that this could not be correlated to a drill pipe being drawn across the clay.

Therefore, a field value was used to calculate the frictional force on the drill pipe (or cable) in clay over the contact area as shown in Figure 3.17. The data for these calculations originates from a directional bore made by Titan Contractors in the Wax Lake region of Louisiana. The soil was mostly Atchafalaya clay which is a soft, sticky clay with a low undrained shear strength. After drilling a distance of approximately 700 ft (214 m) under a river, the 2-1/8 in (5.4 cm) O.D. BQ drill pipe buckled at the drilling carriage
FIGURE 3.17 Drill Pipe Contact Area
as shown in Figure 3.10b. Therefore, the frictional force per linear foot along this BQ drill rod was simply, \(P_{\text{crit}}/\text{L.F.} = \frac{2680}{700} = 3.83 \text{ lbf/L.F. (17 N/L.F.)} \).

This frictional value then is the upper limit for the frictional force from a soft sticky clay since the contact area for the smaller Titan Contractor hole is larger per running foot than the advanced systems considered herein. For an overconsolidated clay, the frictional force was assumed to be the same as that found in a saturated loose sand.

The maximum exit angle calculations, which appear in Appendix B, for a MPS in clay utilize the same approach as that applied to sand, except that now the friction force in Section III is not dependent on the maximum exit angle. The criteria for evaluation then becomes the ratio \(\frac{F_N - F/W}{\sin \varphi} \), where now \(F = D_T + 2.1 F_f \), for progress to be possible at an exit angle of \(\varphi \).

The results for the mandrel system operating in an overconsolidated clay yield a \(\frac{F_N - F/W}{\sin \varphi} \) equal to 2.67 for a 3000 ft (915 m) and 2.6 for 5000 ft (1525 m) of drill hole.

Both of these values are greater than one (\(\sin 90 = 1 \)), therefore the mandrel MPS should be able to drill vertically even after drilling a 5000 ft
(1525 m) horizontal section in overconsolidated clay. However, this is for a condition where the drill pipe is neutrally buoyant in Section II. If friction is considered in this section, the same results will apply as those previously found to be true in sand since the same friction force was assumed.

The situation is entirely different if the mandrel MPS is operating in the Atchafalaya clay with a high frictional force due to its "stickiness." In fact, the mandrel system will only drill partially up the incline in Section III before the friction and drag forces would be greater than the available normal force at the bit.

If friction were acting on the mandrel MPS in Section II in sticky clay, then the maximum horizontal distance that could be drilled is 660 ft (201 m).

These same basic concepts were applied to the thrust applicator MPS with only a few modifications. Both the calculations and modifications can be found in the appendix. The important question for now is in what type of clay can the thrust applicator operate?

The thrust applicator with the dimensions described in the initial assumptions, can only operate in a very stiff, overconsolidated clay
(i.e. $S_u = 2.0$ tsf). This includes operating for a horizontal distance of 5000 ft (1525 m) in Section II.

The limiting factor for the thrust applicator system is obviously the soil to provide the necessary shearing resistance at the surface area of the anchor pads which is a function of the undrained shear strength of the soil. For example, if the undrained strength is equal to 1.0 tsf (95.7 kN/m2) then the thrust applicator can climb an exit incline with an angle greater than 1$^\circ$ which is unsatisfactory.

The results of these various calculations are very interesting. If for both the mandrel and thrust applicator MPS, the drill pipe or cable could be produced to be neutrally buoyant in a horizontal drilling hole, surrounded by mud slurry, then any soil condition can be drilled and the MPS will be able to exit at angles up to 90$^\circ$ vertical. The only exception to this would be a thrust applicator system operating in a soft clay environment at any depth and the mandrel MPS system operating in soft clay at a depth of 500 ft (153 m).

However, if the drill pipe or cable does drag along the bottom of the horizontal drill hole the situation is reversed. The only system to operate out to 5000 ft (1525 m) in a stiff clay or dense sand is the thrust applicator system while the
maximum distance of the mandrel MPS is 1600 ft (488 m). In a soft, sticky clay the only system to operate is the mandrel MPS and the maximum horizontal distance is 660 ft.

Two very important conclusions result from these calculations. First, the effects of soil friction on the drill pipe and cable in the horizontal section of the drill hole will determine the maximum distance that can be penetrated. Secondly, a neutrally buoyant drill pipe or cable would be a very effective method of reducing this friction. However, the only cost effective solution for neutral buoyancy is to acquire a thrust applicator cable. This cable can be more easily produced since a steel drill pipe would require expensive retooling before it could be manufactured on a production basis. In addition, neutrally buoyant drill pipe would not be in great demand, therefore the price would be higher than a standard stock drill pipe.

3.9 DRILLING FLUID FLOW CHARACTERISTICS

Drilling fluid requirements for horizontal drilling are very complex, and, in fact, an entire thesis could be written on the subject, since there is little knowledge of the behavior of drilling
fluids in horizontal drill holes. This novelty is not surprising since only a small number of horizontal holes have been drilled in comparison to vertical holes. Nevertheless, enough information is available to apply the fluid mechanics of a pseudoplastic fluid in a closed conduit to estimate various important parameters. These parameters are the generalized Reynold's number for flow in a drill pipe and an annulus space; drag coefficient for a smooth pipe in an annular space and the associated drag force; and finally the return flow pressure losses that occur along a mandrel and a thruster MPS. In Appendix B calculations have been made for estimating the drag force of pseudoplastic fluid flowing past a 2-3/8 in (6.03 cm) O.D. drill pipe and a 1-1/2 in (3.8 cm) O.D. thruster cable. These calculations included the generalized Reynold's number; the coefficient of drag in an annulus for the two previously stated MPS sizes; and their respective drag forces. In this section the fluid pressure loss associated with the mandrel and thruster MPS's will be estimated for various length drill holes. Then the pressure that is required to force the fluid back out of the annulus will be compared to the hydraulic fracture gradient of the soil.
Pressure Loss for the Mandrel MPS. The mandrel MPS for these calculations was a 2-3/8 in (6 cm) O.D. Dyna-Drill with a 4-1/2 in (11.4 cm) bit and a 2-3/8 in (6 cm) O.D. drill pipe. The drill pipe was assumed to be a smooth pipe for all of the Reynolds's number calculations. The Darcy-Weisbach equation was used to calculate the pressure loss where the "d" factor was taken as four times the cross sectional area divided by the total wetted perimeters. The friction factor was calculated using an empirical relationship for laminar flow.

The pressure loss in the surface equipment will be minimal in comparison to the in-hole pressure loss because only a small size mud pump and short distances of connection hose and connections are needed. Therefore, for both the mandrel and the thruster MPS's, the surface equipment pressure loss will be assumed to be approximately 15 psi (104 kN/m²).

In Table 3.7 the pressure losses for the mandrel MPS's are summarized for various hole lengths. Included in this table is an estimate of the pressure drop across a 4-1/2 in (11.4 cm) diamond or drag bit. In addition, there is an estimation of the maximum pressure rating for the mud pump which is 50% above the total pressure loss.
<table>
<thead>
<tr>
<th>Equipment</th>
<th>1000</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mud Pump Hoses, Connections</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>2-3/8 in Drill Pipe, Joints (Internal Flush)</td>
<td>26</td>
<td>52</td>
<td>78</td>
<td>104</td>
<td>130</td>
</tr>
<tr>
<td>Drill Collar (1.995" I.D.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3/8 in O.D. Dyna-Drill</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>4-1/2 in Diamond or Drag Bit</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Total Equipment ΔP (psi)</td>
<td>691</td>
<td>717</td>
<td>743</td>
<td>769</td>
<td>795</td>
</tr>
<tr>
<td>Annulus Pressure Loss (ΔPa - psi)</td>
<td>22</td>
<td>44</td>
<td>66</td>
<td>88</td>
<td>110</td>
</tr>
<tr>
<td>Total Pressure Loss (psi)</td>
<td>713</td>
<td>761</td>
<td>809</td>
<td>857</td>
<td>905</td>
</tr>
<tr>
<td>Estimated Maximum Pressure Rating for Mud Pump</td>
<td>1075</td>
<td>1150</td>
<td>1225</td>
<td>1300</td>
<td>1425</td>
</tr>
</tbody>
</table>
Pressure Losses for a Thruster MPS. In an effort to better compare the two MPS's the pressure losses associated with the thrust applicator MPS have also been calculated. The important dimensions and characteristics of the thruster system are:

Thruster

- Overall length - 17 ft (5.2 cm)
- Diameter - 5.75 in (14.6 cm)

Hoses:
- 1-1.5 in (3.8 cm) O.D.
- Containing 3 hoses:
 - 1-1 in (2.54 cm) O.D. and
 - 2-1/2 in (1.3 cm) O.D.

Hydraulic Motor - 10 H.P., 30GPM, 300 RPM
- Length - 4 ft (1.22 cm)
- Diameter - 5 in (12.7 cm)

Modified Coring Bit
- Diameter - 7 in (17.8 cm)

The pressure losses for the thruster have been calculated in the same manner as the example calculations for the mandrel system in Appendix B and are summarized in Table 3.8.

Only one calculation requires special attention in Table 3.8. The value for the pressure drop across the hydraulic motor was calculated by:

\[\Delta P \text{ (psi)} = \frac{\text{H.P.}}{\text{GPM}} (1714) \text{ (Dyna-Drill, 1975)} \]

for this particular motor,

\[\Delta P \text{ (psi)} = \frac{10}{30} (1714) = 571 \text{ psi} \text{ (3940 kN/m}^2\text{)} \]
<table>
<thead>
<tr>
<th>Equipment</th>
<th>Drill Hole Length (ft)</th>
<th>1000</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Equipment (Mud pump, hose, connection)</td>
<td>15 psi</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>1 in O.D. Drilling Fluid Hose</td>
<td></td>
<td>149</td>
<td>298</td>
<td>447</td>
<td>596</td>
<td>745</td>
</tr>
<tr>
<td>Pressure Drop Across the Nichols Hydraulic Motor</td>
<td></td>
<td>571</td>
<td>571</td>
<td>571</td>
<td>571</td>
<td>571</td>
</tr>
<tr>
<td>7 in O.D. Drill Bit</td>
<td></td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Total Equipment (\Delta P_c) (psi)</td>
<td></td>
<td>795</td>
<td>944</td>
<td>1093</td>
<td>1242</td>
<td>1391</td>
</tr>
<tr>
<td>Annulus Pressure Loss (-\Delta P_a) (psi)</td>
<td></td>
<td>42</td>
<td>84</td>
<td>126</td>
<td>168</td>
<td>210</td>
</tr>
<tr>
<td>Total Pressure Loss (-\Delta P_t) (psi)</td>
<td></td>
<td>837</td>
<td>1028</td>
<td>1219</td>
<td>1410</td>
<td>1601</td>
</tr>
<tr>
<td>Estimated Maximum Pressure Rating For Mud Pump</td>
<td></td>
<td>1250</td>
<td>1550</td>
<td>1825</td>
<td>2125</td>
<td>2400</td>
</tr>
</tbody>
</table>
Critical Annulus Pressure Analysis. One of the problems associated with estimating the annulus pressure, using the above format, is that no consideration has been given to the strength of the soil and its ability to react to this pressure. In other words, so far the soil wall has been treated as if it were the inside wall of a rigid pipe.

Though the application of a common drilling mud quantity called an equivalent circulation density (ECD) (IMCO, 1975) and a soil mechanics property called a hydraulic fracture gradient, the criticality of the annulus pressure can be determined. If the ECD is less than the hydraulic fracture gradient, the annulus pressure should not cause loss of circulation fluid into the surrounding soil of the drill hole.

The equivalent circulating density is the equivalent mud weight (drilling mud) needed to exert the necessary hydraulic pressure at the bit.

\[ECD = \frac{\text{Hydrostatic head} + \text{Annular Pressure drop}}{0.052} \]
\[= \rho + \frac{P_a}{0.052L} \]

where \(\rho \) = mud weight
\(P_a \) = annular pressure drop (psi)
\(L \) = length of the annulus (ft)
Since the annular pressure loss increases linearly as the length of the drill hole increases, the ration of P_a/L remains constant for a horizontal section of the drill hole. Therefore, the ECD is the same value for a 3000 ft (915 m) and a 5000 ft (1525 m) drill hole length at the same depth. Added to the value of P_a for a horizontal section is the pressure head increase due to the difference in elevation. For example, at 500 ft (153 m) an increase in pressure is equal to 229 psi (1580 kN/m2).

The annular pressure losses for both the mandrel and thruster MPS have been presented in Section 3.8 and the calculations appear in Appendix B. These values are 50% higher than the pressure loss calculated by the Darcy-Weisbach head loss equation. This was done to account for the expected increase in the drilling mud viscosity it picks up the drilling fines from the bit and carries them out of the hole. Since there is no actual data for this increase in viscosity, an assumed value of 50% of the total calculated pressure loss was used. On the basis of these latter pressure losses, ECD values were calculated for both systems at a depth of 100 ft (31 m) and 500 ft (153 m). For the mandrel MPS at 100 ft the ECD equaled 1.21 g/cm3 while at 500 ft it was 1.46 g/cm3.

The results for the thrust applicator MPS at 100 ft were 1.22 g/cm3 while at 500 ft, the ECD equaled 1.49 g/cm3.

The fracture gradients, taken from Figure 3.18 (Hedberg, 1975), indicate that the mandrel and the thrust applicator MPS system can operate at a depth of 100 ft (31 m) in saturated sand or clay without fracturing the soil thereby losing circulation fluid. However, if the MPS were to penetrate a sand where the water table was 33 ft (10 m) below the ground surface, hydraulic fracturing could occur anywhere within the first 75 ft (22.9 m) below the surface. Naturally, in completely dry sand the drilling fluid would saturate the sand and all drilling fluid would be lost in the hole.

The mandrel and thrust applicator MPS at a depth of 500 ft (153 m) both have an ECD which is very near the value of the fracture gradient for a saturated sand and above that for a sand where the water table is at 33 ft (10 m). The mandrel MPS has an ECD equal to 1.46 g/cm3 while the thruster MPS is at 1.49 g/cm3. Whether or not the saturated sand will hydraulically fracture is a tricky question that can only be answered by drilling in it. The author would assume that some fluid would be lost in the drill hole, however, both of these
FIGURE 3.18 Hydraulic Fracture Gradient
(After Hedberg, 1975)

118
systems should operate satisfactorily in a saturated clay environment.

3.10 DRILLING FLUID RECIRCULATION METHODS

As indicated in Section 3.9, the return of drilling fluid back to the surface is a function of both the soil type and equipment and the combined susceptibility to hydraulically fracture the soil. For those soils and equipment which do not hydraulically fracture, the drilling mud must be handled in a recirculation system similar to that shown in Figure 3.19. In situations where hydraulic fracturing does occur, drilling fluid may not return to the surface. The problems associated with loss of circulation are very numerous. Details on the procedures to follow when circulation is lost can be found in Applied Mud Technology (IMCO, 1974).

Figure 3.19 is a schematic drawing of the desanding recirculation system used by Titan Contractors for the Cerritos Channel crossing bore in Long Beach, California. In their system the drilling mud was pumped into the drill pipe and returned to the surface either through a washover pipe or occasionally through the drill hole annulus and collected in the earth pit as shown in Figure 3.19. This earth pit or holding tank was
FIGURE 3.19 Desanding Recirculation System
large enough to hold drill fluid equal to the anticipated maximum volume of the drill hole. The pit detains the drill fluid for a sufficient time to allow large particles to settle to the bottom.

Sand sized particles did not settle out in a reasonable amount of time and were separated from the fluid with a shaker. The shaker was a fine mesh (usually #80–#100 sieve) which was slanted over the mixing tank in order for the fluid to be recollected in the mixing tank while the sand was carried away to the sand pit on the remainder of the conveyor. The recycled drilling fluid is then blended with additional mud, additives, and water. From the mixing tank the fluid was returned to the mud pump on the drill pipe to power the hydraulic drilling motor. The operational space was not a problem at this site.

When the operational space does become a problem there are mud recirculation systems which can be adopted for use on a flatbed trailer, such as the one shown in Figure 3.20a. Mud recirculation systems are a very specialized section of the petroleum industry, therefore, each specific application is a custom order. A typical mobile recirculation system to be utilized with a
(a) Mobile Drilling Mud Storage Tanks

(b) Mobile Drilling Mud Pump and Mixing Truck

FIGURE 3.20
122
2-3/8 in (6 cm) O.D. Dyna-Drill mandrel MPS might include a mixer with twin centrifugal pumps (Figure 3.20b), a carriage mounted mud pump, and a 9000 gal (34200 dm³) settling tank. The entire system would be a closed system which could be adapted for use in an urban environment.

3.11 DRILL HOLE RADIUS OF CURVATURE

There are at least three reasons for measuring the radius of curvature of the drill path. First, an equipment limitation factor can be defined for the mandrel and thruster MPS based on the maximum permissible radius of curvature of the drill path. Secondly, these equipment limitations, when combined with the calculation of spiral path adjustments, define minimum detection distance for obstacle avoidance. Finally, with knowledge of the radius of curvature the maximum depth required for horizontal drill orientation can be calculated as a function of the entry angle; or conversely, the minimum horizontal distance required for horizontal orientation of the drill path can also be calculated as a function of the desired depth and entry angle.

This section will deal with these three applications of the radius of curvature calculations. As a first step, the radius of curvature is defined,
and its translation to build angle per 100 ft of travel (the "oil patch" approach to radius of curvature) is given. Once these basic definitions have been established, the three applications of the radius of curvature will be discussed in the above mentioned order.

Definition of Methods and Related Terminology In Figure 3.21, the method and terminology associated with calculating the radius of curvature are illustrated. The lines 1-3 and 3-5 are tangent to the drill path at points 2 and 4, respectively, thus defining a constant radius arc. The angular displacement between points 2 and 4 is equal to angle A. By geometrical relationships, angle A, which will be designated the build angle, is also the angle of intersection between the two tangent lines.

One assumption which facilitates a simple calculation of the radius of curvature is that the arc distance from points 2 to 3a is approximately the same as the distances from points 2 to 3, for small A angles (i.e. less than 30°), for an error less than 5%. Therefore, the resulting formula for the radius of curvature(R) is: \[R = \frac{L_s}{2(\cot(A/2))}. \]

The relationship between the radius of curvature, the horizontal displacement, depth, and
A = \frac{\alpha}{l_s} = \text{Rate of change of angle per } l_s \text{ distance (or) the build angle per } l_s \text{ of distance}

l_s = \text{Assumed travel distance of drill bit between surveys}

R = \frac{\alpha}{l_s} \cot(\frac{\alpha}{2}) = \text{Radius of curvature}

FIGURE 3.21 Radius of Curvature Terminology

A
entry angle is shown in Figure 3.22. Both the depth and horizontal distance are a function of the entry angle for constant radius of curvature (circular) drill paths. The term "build angle" is basic to both of the above geometrical definitions. Build angle is actually an angular rate of change measured over a specified distance of the drill path. Traditionally, this rate of change has been expressed in degrees of change per 100 ft of drill path. Later in this section the effect of reducing the course length increment will be discussed.

Drill Path Radius of Curvature By applying the radius of curvature and build angle relationship, the curve in Figure 3.23 was plotted. As can be seen from the graph, when the rate of angular change increases, the radius of curvature for the drill path decreases.

The equipment limitations have been established for the mandrel and thruster MPS and are based on the maximum radius of curvature through which the equipment can fit without undergoing any internal bending moment or additional side friction from lateral loads. In Figure 3.24 this maximum arc is described by the three contact points: A, B, and C. This definition for the maximum radius of curvature
\[H = R \cos \delta \]
\[D = R(1 - \sin \delta) \]

Assuming constant build angle-

\(\delta \) = Angle measured between the vertical and a tangent to the drill path at the point of entry angle.

\(H \) = Horizontal distance from entry point to projected vertical point at which the drill path transverses to a horizontal plane

\(D \) = Depth when drill bit is tangent to horizontal plane

FIGURE 3.22 Radius of Curvature and Horizontal Distance/Vertical Depth Relationships
FIGURE 3.23 Radius of Curvature vs. Build Angle

127
FIGURE 3.24 Equipment Radius of Curvature Limitations
is true for both MPS's and since both MPS's are of similar length, the minimum value for the build angle is $5^\circ/100$ ft ($5^\circ/31$ m) which yields a radius of curvature equal to 1145 ft (350 m).

The smallest radius of curvature for the two MPS's was not theoretically calculated because of the many unknown variations which affect this value. Instead, field experience with the two systems has been the limiting criterion for estimating what the minimum radius of curvature would be if the MPS were pushed to its limits for a short period of time.

Titan Contractors have surveyed a mandrel MPS (1-3/4 in O.D. Dyna-Drill) drill hole and measured an arc which correlated to a build angle of $26^\circ/100$ ft ($26^\circ/31$ m) (Emery, 1975). One point must be emphasized, this is a maximum angular rate of change and is not an acceptable long term operating quantity.

For the thruster system, the maximum build angles experienced by CONOCO have been in a range from $13^\circ/100$ ft ($13^\circ/31$ m) to $15^\circ/100$ ft ($15^\circ/31$ m), which were measured during a field test in soft coal using the DRILCO thrust applicator (Edmond, 1975).

Combining these results with the related soil conditions in which these build angles were measured, a range of build angles for each MPS has been
estimated and is shown in Table 3.9.

Avoidance Distance One of the major objectives of developing a highly maneuverable penetration system is the ability to avoid subsurface objects. The following presentation does not imply that these objects are "seeable" at the calculated distances. For more information on subsurface object recognition, the reader is directed to Hedberg (1975).

To evaluate the ability of the drilling equipment to avoid an object, a model of the drill path had to be selected. A single spiral and reverse spiral, shown in Figures 3.25 and 3.26 respectively, were chosen over a circular path.

The spirals were selected in place of circular paths because of their ability to represent crabbing, a phenomenon associated with drilling in soft ground. Crabbing occurs when a directional change input is made to the MPS and the MPS does not immediately respond in changing direction along a circular drill path. But instead, it progressively deviates from its original drill path by decreasing the radius of curvature as it progresses. The rate of the progressive change of direction is believed to be a function of compaction (in loose sands) which increases the sand's bearing capacity and
<table>
<thead>
<tr>
<th>Landrel</th>
<th>Radius of Curvature in Stiff Clay, Dense Sand (System limited) (ft)</th>
<th>Radius of Curvature in Soft Clay, Loose Sand (Formation limited) (ft)</th>
<th>Minimum Horizontal Distance (Vertical entry) (ft)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrust Appl.</td>
<td>1145(5°/100') to 216(26°/100')</td>
<td>1145(5°/100') to 570(20°/100')</td>
<td>475</td>
<td>647</td>
</tr>
</tbody>
</table>

1) The system limit is based on the wear factor during bending of the rubber stator in the Dyna-Drill.

| Thrust Appl. | 1145(5°/100') to 380(15°/100') | 1145(5°/100') to 380(15°/100') | 715 |

1) The system limit is based on the minimum allowable deflection from bending which the thruster cylinder spline can withstand.
2) The soft ground limits are based on the ability of the thruster to develop thrust in this environment.
FIGURE 3.25 Single Spiral Drill Path

FIGURE 3.26 Reverse Spiral Drill Path
hence its ability to resist the applied skewed load. Since no drill hole in soft ground has been surveyed in small enough increments to establish the exact projectory, the existence of crabbing is hypothetical but definitely possible. The exact soil behavior causing direction change is beyond the scope of this thesis.

Both the single and reverse spiral were selected to represent two different avoidance situations. The single spiral represents the case where object avoidance is the only course desired without any consideration for returning to the original direction of drilling. The reverse spiral does take into consideration returning to the original direction of the drill path.

The avoidance distance "D" is defined for the single spiral in Figure 3.25 as A-A', while for the reverse spiral in Figure 3.26, it is B-B'. The object's diameter is the limiting criterion for defining these two distances.

A computer program was written to calculate the avoidance distance for several sized objects relative to a specific build angle. The build angle for these calculations is defined as the angle between a tangent to the spiral at a particular point on the spiral and a tangent to the original
drill path, as shown in Figure 3.25. The distance from point A' to point P in this figure has been chosen as 100 ft (31 m).

The results of this computer program are plotted in Figure 3.27. To find the minimum avoidance distance for a particular type of equipment, first go into the right hand graph in Figure 3.27 with a predetermined build angle and diameter of object to be avoided, and find the radius of curvature for either a single or reverse spiral drill path.

Then move across to the left hand graph with the same radius of curvature and build angle and find the distance required to avoid this particular size object.

Horizontal Surface Distance Two factors affect the horizontal distance and vertical depth at which an MPS will reach a horizontal plane: the entry angle and radius of curvature of the drill path. In Figure 3.28, a vertical entry angle has been chosen to display the variation in depth and horizontal distance as the build angle is changed. This graph shows the optimal continuous operating range for both the mandrel and thruster MPS. In Figure 3.29, the three optimal drilling paths for the two currently operating systems are shown. These drill
FIGURE 3.27 Radius of Curvature vs. Object Diameter and Avoidance Distance
FIGURE 3.28 Horizontal Distance vs. Depth for Various Build Angles
FIGURE 3.29 Three Optimum Drilling Paths

FIGURE 3.30 Build Angle Comparison
paths are drawn at 100 ft (31 m) increments between angle change points. The difference between the calculated drill paths for angle change rates measured every 100 ft (31 m), which is the standard interval, and those measured every 30 ft (9.2 m) are shown in Figure 3.30. The calculated drill path that is surveyed and plotted every 30 ft (9.2 m) falls below the one measured and plotted every 100 ft (31 m) while the actual build angle for the former drill path is 10.5°/100' instead of the expected 12°/100'. The discrepancy is the result of assuming the chord and arc length to be equal as discussed in the subsection "Drill Path Radius of Curvature." Therefore, by decreasing the coarse length between measurement points, a more accurate representation of the drill path and capabilities of the MPS are represented.

A plot of the mathematical relationship between constant radii of curvature, horizontal distance, depth, and entry angle is illustrated in Figure 3.31. By increasing the entry angle, the depth required to reach a horizontal plane decreases but the horizontal distance to that point increases for a constant radius of curvature.
FIGURE 3.31 Radius of Curvature vs. Horizontal Distance/Depth for Various Entry Angles
CHAPTER 4
DESIGN OF A FEASIBLE MANEUVERABLE PENETRATION SYSTEM

4.1 INTRODUCTION

Two aspects of horizontal directionally controlled drilling have thus far been presented: important soil-equipment considerations, and related equipment necessary to directionally bore. With this information, one should be able to select a particular maneuverable penetration system (MPS) for a specific drilling job.

In Chapter 1, several requirements for this particular drilling system were established. At this point it would be helpful to restate these requirements. First, this MPS must be capable of operating in soft ground down to a depth of 500 ft (153 m) and drill horizontally for 5000 ft (1525 m). Four basic geologies were chosen to represent a range of operating environments. They were: (1) loose sand or soft clay; (2) dense sand or stiff clay; (3) residual soil with possible pinnacles; and (4) any of the previous soil conditions in combination with the presence of sub-surface man-made objects.
This chapter presents four MPS models which will be functional in at least one of the four geologies. First, the equipment which is presently available or currently being developed will be presented as feasible horizontal drilling equipment. Next, the process of selection will be discussed, including the logic and specific requirements associated with each geology. The four MPS designs resulting from this selection process will be presented and their characteristics discussed. The four MPS systems will then be compared with a dimensionless parameter analysis. The last section of the chapter contains two system compatibility schematics for the final equipment design for a mandrel and a thrust applicator MPS.

4.2 FEASIBLE EQUIPMENT FOR HORIZONTAL DRILLING

This section briefly presents equipment considered feasible for horizontal drilling in soft ground. A more detailed description of downhole motors can be found in Appendix C, while Appendix D elaborates on downhole thrusters. Due to the wide variation in available drill bits, specific manufacturers should be contacted. In addition, since there is only one deflection shoe device, one articulating sub, and one fixed angle bent sub available on the market, detailed drawings of the equipment can be obtained from the respective manufacturers mentioned
in Chapter 2 and whose addresses can be found in the List of Contributors.

Downhole Motors Three out of the four downhole motors presented in the state of the art chapter are considered feasible for drilling a horizontal hole in soft ground. They are the Dyna-Drill, the W. H. Nichols hydraulic pump motor, and the Century Electric motor.

The Dyna-Drill is a well accepted and proven mud hydraulic motor used in directional drilling, for oil wells and river crossings. The W. H. Nichols hydraulic motor and the Century Electric motor have both been tested and proven acceptable in drilling soft coal, therefore they should both be readily adaptable for drilling in soft ground. The turbo-drill was not considered a feasible soft ground directional drilling motor because of its excessive weight, lack of an indication that it has stalled on the bottom of the hole, and the probable binding of the rotor and stator under a bending load induced by a sharp turn in the drill path.

The Dyna-Drill can endure some bending induced by sharp turns in the drill path (because of its rubber stator), but not for any consistent operational period. With time and excessive curvature, the effects of bending a Dyna-Drill will lead to the
deterioration of the stator. A few of the problems associated with Dyna-Drill include the vibration resulting from the eccentric motor of the rotor. This vibration can aid the drilling process as well as interfere with the geophysical and navigational equipment that would be attached to the maneuverable penetration system. Another aspect which limits Dyna-Drill's application to the entire downhole drilling system is the extreme difficulty in connecting an electric cable to the up-hole, free end of the rotor. The seemingly insurmountable difficulty of threading a static, non-rotating wire through an eccentrically rotating shaft may eliminate the possible use of the bit module space (shown in Figure 4.3) with the Dyna-Drill. This module space can house geotechnical or geophysical sensing equipment as explained by Hedberg (1975). A later section will deal with available module spaces in the various proposed MPS's.

The W. H. Nichols hydraulic motor could be the most adaptable of the three downhole motors recommended for soft ground horizontal drilling. It is a relatively short motor (i.e. 4 ft(1.2 m) in length) and yet it still develops a very high torque output for a low flow rate. Shortness and low flow rates are optimal features for downhole motors.
In addition, this motor has a concentrically rotating shaft which allows electric sensing wires to pass through the motor to the previously mentioned bit module space. The concentric shaft and smooth operation of the gerotors reduce the external vibration.

Finally, the electric motor allows a reduction in the follower cable weight of the DRILCO thrust applicator by reducing the size of the slurry hose while still providing the same drillability characteristics of the two previously mentioned motors. However, the electric motor requires a reduction gear box between the motor and bit to reduce the bit RPM. A wire cannot be strung through the reduction gear box, therefore the forward bit module is inaccessible. Another minor problem with the electric motor is its susceptibility to overloading and shorting out before corrective action could be taken by the drillers.

Even with the above mentioned related drawbacks with each motor, all of the recommended motors will perform in a soft ground environment and can be used for directionally controlled horizontal drilling.

Downhole Thrusters The only full sized operationally tested, downhole thruster presently available is the DRILCO thrust applicator. This thrust applicator has successfully drilled horizontal holes in soft coal
with a compressive strength about 1 tsf (95.7 kN/m²).
Two other thrusters, the WORM and NURAT, have potential for application to soft ground drilling, however they are still in the early development stages.

In order for the thrust applicator to operate in soft ground it must be designed specifically for that purpose. The 5-3/4 in (14.6 cm) O.D. model, in its present configuration, can operate in very stiff clay or compacted, cemented sands but not in soft clay or loose sands. As previously mentioned in Chapter 3, a possible redesign of the thruster pads could improve the operation of the 5-3/4 in (14.6 cm) O.D. thruster in clays.

The DRILGO thrust applicator cannot undergo bending stresses for any extended period. Two problems are created in bending: (1) the piston rod will bind within the cylinder section, and (2) the spline within the cylinder section will wear excessively, which increases the amount of precessing experienced by the thruster.

The drilling system, WORM, has considerable potential, if developed and satisfactorily tested. The basic concepts and principles of operation appear to make the system a feasible one for future application to horizontal drilling. However, the manner in which a device works on paper, as opposed to the field,
are two entirely different subjects.

Although least is known about the NURAT thruster, it too has the intuitive potential of being successfully applied to horizontal drilling. The major problem to be resolved with NURAT is direction control.

From the above mentioned equipment, the downhole thruster which will be adopted for the final equipment design will be the DRILCO thrust applicator.

Direction Control All three of the direction control devices that were presented in the state of the art chapter are considered feasible for horizontal drilling in soft ground. They are the bent sub, the articulated bent sub, and the CONOCO deflection shoe.

The important question is, in what situation can these individual direction control devices be successfully applied? The bent sub with the fixed angle is most efficiently adapted to the mandrel system, since the thrust applicator system does not have a long drill pipe section which increases the amount of leverage (bending moment) applied to the bent sub. On the other hand, the deflection shoe is ideally suited for the thrust applicator system because of its self-contained ability to apply a lateral force to the bit. The deflection shoe might not have the same effectiveness when applied to the mandrel system because of the increased flexibility
of the equipment between reactive force locations.

The articulated sub is limited by its present minimum diameter, 5 in (12.7 cm). Another limiting factor is the requirement of a special locking probe which will interfere with any survey system, except the single shot magnetic method of navigation.

Drill Bits The three basic types of drill bits available today and applicable to soft ground penetration are the tricone roller, drag, and diamond bits. Each of these bits is feasible for horizontal drilling in soft ground and like the direction control devices, each one has a specific application.

The tricone roller bit provides maximum cutting ability with its deep cut, chisel shaped teeth, while the roller bearings within each of the cones (as shown in Figure 2.18) reduces the torque requirements for cutting. The reduction in torque requirements allows for the most efficient transfer of motor output torque into shearing force at the outer edged heel teeth. These heel teeth are responsible for lateral excavation and thereby make the tricone the most efficient directional drilling bit. However, a major requirement for successful drilling is to keep the deep cut teeth free from clogging with clay or silty soil. Therefore, the drill fluid nozzle design on the tricone bit becomes a critical item
for maintaining clean roller cone teeth without using too high of a stream velocity which would erode the bit face in soft ground. A further consideration when using a tricone bit is the maximum operational RPM. A general rule of thumb places an upper limit of approximately 500 RPM, which is not a hard and fast number, but instead the general consensus of the bit industry.

A major advantage of the cone roller bit design is the space that exists in the center of the bit, as shown in Figure 4.1. The bit shown here is a quadricone but is also available in a tricone version and is presently used as a coring bit. Smith Tool Company currently produces a 10-1/8 in (25.7 cm) O.D. with a 2-1/2 in (6.4 cm) core. However, with retooling, the smallest core bit they could produce would be a 7 in (17.8 cm) O.D. with a 2 in (5 cm) core (Gardner, 1974). The advantage gained by adopting this core bit design is the availability of the module space where the soil sample would normally be collected. A detailed explanation of the various geotechnical and geophysical instruments adaptable to this module space is found in Hedberg (1975).

The drag bit is an acceptable bit for drilling in soft ground. Because of the long outer edge of the cutting face (shown in Figure 2.18), the drag bit
FIGURE 4.1 Coring Bit
requires more torque than a tricone to drill in the same formation. For this reason, the drag bit becomes inefficient beyond a particular size hole which is strictly a function of the bit-motor-combination and the type of formation being drilled. The shearing parameter, presented in a later section of this chapter, will help provide a means of analyzing this effect.

Finally, the diamond bit is successfully applied in drilling in soft ground when the bit RPM is in excess of 500 RPM and a residual soil condition is expected along the drill path. The diamond bit allows continuous drilling through residual soils for a longer distance than either a tricone or drag bit because it can penetrate core stones, whereas the drag bit cannot, and the tricone will wear rapidly unless fitted with tungsten carbide button inserts. Either one of the latter conditions will require the MPS to be pulled out of the hole to change bits, thereby increasing the overall drilling time.

4.3 SELECTION PROCESS

For each one of the geologies considered in the design process, there are certain requirements or characteristics which must be fulfilled by the MPS selected. Therefore, the selection process will be geared to finding a particular combination of the
previously mentioned feasible equipment which will meet the following requirements.

The first condition considered is a loose sand or soft clay environment. The MPS selected for this type of subsurface soil condition must be a mechanically simple device. This will eliminate the possibility of in-hole mechanical failure because of particle jamming (i.e. sand in the anchor pads). The annular space available must also be sufficient to maintain laminar flow as much as possible. This will decrease the amount of particle settling and decrease the amount of soil resistance and fluid drag experienced by the MPS.

The next geological subsurface condition is a dense sand or stiff clay environment. In this type of subsurface soil condition, the MPS selected must be able to overcome the possible increase in soil resistance which would occur if the drill pipe or hose drags along the horizontal section of the drill hole. Here again, a sufficient annular size should be maintained to allow for laminar flow of the drilling fluid.

The third geological condition is a residual soil environment. Any MPS selected for this environment must be able to handle the large distribution of particle sizes one might encounter when drilling in a
residual soil. Therefore, the minimum size of the MPS is a very important parameter. In addition, the MPS must have the reserve torque available to bore through a large pinnacle and be able to drill in a medium stiff clay.

The final condition, an urban environment, is not directly related to geology but is more concerned with avoiding encountered utilities and other subsurface objects. The subsurface soil conditions can be any one of the three previously mentioned environments. Therefore, the most important consideration for selecting a MPS for this condition is the mechanical flexibility and maneuverability of the system.

Figure 4.2 presents the possible combinations of the equipment choices that have been discussed, in a decision tree format. The use of the decision tree format does not imply that a utility function analysis was performed to arrive at four final equipment design selections. As can be seen from Figure 4.2, there are several alternative solutions for an MPS that will meet the drilling requirements for a horizontal hole in a particular geology.
FIGURE 4.2 Horizontal Drilling Decision Tree
4.4 FINAL DESIGN SELECTIONS

The four final design selections are listed in Table 4.1. Each one of these systems has been chosen to not only meet the previously stated requirements in Chapter 1, but also because of their applicability to operate in more than one geological environment.

The first MPS listed, selection A, is the 2-3/8 in (5.4 cm) O.D. Dyna-Drill in combination with a bent sub, 2-3/8 in (5.4 cm) diameter drill pipe, and a diamond or drag bit (because of the high motor RPM). This system is ideal for the soft clay-loose sand, stiff clay-dense sand, and urban area condition. The torque output is high while the flow rate is relatively low, which is ideal for directional control.

The second MPS, selection B, is the 6-1/2 in (16.5 cm) Dyna-Drill in combination with a bent or articulated sub, 4-1/2 in (11.4 cm) diameter drill pipe or an 8 in (20.3 cm) O.D. thrust applicator, and a 12 in (30.5 cm) diameter tricone bit. This MPS has been selected to be a heavy duty drilling system, applicable to a residual soil with erratic pinnacles. Another reason for such a large diameter system is to allow for more geotechnical and geophysical equipment space. Two normal force devices have been considered with this motor because, if an 8 in (20.3 cm) O.D. thruster is designed specially for soft ground
<table>
<thead>
<tr>
<th>Select'n</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drill Motor</td>
<td>Dyna-Drill</td>
<td>Dyna-Drill</td>
<td>Nichols Hyd. Motor</td>
<td>Century Electric Motor</td>
</tr>
<tr>
<td>Drill Motor O.D. (in)</td>
<td>2-3/8</td>
<td>6-1/2</td>
<td>5</td>
<td>3-11/16</td>
</tr>
<tr>
<td>Length (ft)</td>
<td>7</td>
<td>19.6</td>
<td>4</td>
<td>4.5</td>
</tr>
<tr>
<td>NFD O.D. (in)</td>
<td>2-3/8</td>
<td>8(T.A.) 4-1/2 (D.P.)</td>
<td>5-3/4 or 8</td>
<td>5-3/4 or 8</td>
</tr>
<tr>
<td>Bit Type</td>
<td>Diamond or Drag</td>
<td>Tricone</td>
<td>Tricone</td>
<td>Tricone</td>
</tr>
<tr>
<td>Hole Dia. (in)</td>
<td>4-1/2</td>
<td>12</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Comments</td>
<td>Excellent annulus size low flow rate, high torque</td>
<td>Max. annular size, max. torque RPM, high flow rate can be a problem</td>
<td>Opt. annular space, short length high torque low flow</td>
<td>Opt. annular space, min flow requirements, short length, problem w/shorting</td>
</tr>
</tbody>
</table>
conditions, then a thrust applicator could be used in soft clay soils that might also contain random boulders or pinnacles.

The next MPS, selection C, is the 5 in (12.7 cm) O.D. W. H. Nichols hydraulic motor in combination with a modified 5-3/4 in (14.6 cm) O.D. or redesigned 8 in (20.3 cm) O.D. thrust applicator, deflection shoe, and tricone core bit. This MPS can easily operate in a stiff clay or dense sand formation; however, as previously stated, a redesign of the thrust applicator is required for operation in soft clay.

The final MPS, selection D, is the Century Electric motor in combination with either the 5-3/4 in (14.6 cm) or the proposed redesigned 8 in (20.3 cm) O.D. thrust applicator, deflection shoe, and a 7 in (17.8 cm) diameter tricone core bit. This MPS can operate in the same geological conditions as selection C but has the added ability of operating with all of its components being electrical (except for the CONOCO deflection shoe). This allows the drilling mud slurry to be employed strictly to clean the bit and stabilize the hole.

In fact, what might be possible with the electric motor-thrust applicator MPS is to maintain just enough pressure at the bit to clean the drill
bit teeth. The drilling fines would be carried past the thrust applicator and allowed to settle out around the thruster cable. Therefore, there would be no need to recirculate the drilling fluid and the device would operate without cleaning out the drill hole. The biggest advantage to this would be the elimination of a drilling fluid recirculation system. However, the biggest disadvantage would be the reduction in travel distance due to an increase in the frictional resistance at the soil-hose interface. The actual calculations of this frictional effect have not been computed, however in this case, a neutrally buoyant thruster hose would be very beneficial to reduce frictional forces acting on the hose. The flow rate for the drilling fluid would be just enough to cool the electric motor, clean the bit and fill the hole with a very viscous mixture of drilling slurry and fines.

Table 4.2 summarizes the MPS-geology compatibility relationship as related to the four final design selections.

Throughout this chapter, reference has been made to certain module spaces available with each MPS. One objective of the design method was to isolate certain spaces on each MPS which could be adapted for
<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Layer Type</th>
<th>Loose Sand Soft Clay</th>
<th>Dense Sand Stiff Clay</th>
<th>Residual Soil</th>
<th>Urban Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3/8 in O.D.</td>
<td>Dyna-Drill with 2-3/8 in drill pipe</td>
<td>Yes<sup>o</sup></td>
<td>Yes</td>
<td>Yes<sup>▲</sup></td>
<td>Yes</td>
</tr>
<tr>
<td>6-1/2 in O.D.</td>
<td>Dyna-Drill with 4-1/2 in drill pipe</td>
<td>No<sup>+</sup></td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>5 in O.D.</td>
<td>Nichols Hyd. Motor with 5-3/4 in O.D. DRILCO Thrust Applicator</td>
<td>Yes<sup>*</sup></td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>3-11/16 in O.D. Century Electric Motor with 5 in O.D. casing and 5-3/4 in O.D. DRILCO Thrust Applicator</td>
<td>Yes<sup>*</sup></td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

- ▲ - With Diamond Bit
- o - Must use Washover Pipe
- * - Thrust Applicator Requires Redesign
- + - Due to Excessive Weight, See Appendix C

158
additional geotechnical or geophysical instrumentation. Figure 4.3 identifies the specific areas on the thrust applicator MPS designated as module spaces. The thrust applicator has the following module spaces: (1) core of tricone coring bit, (2) bit sub, (3) deflection shoe pad, (4) anchor pads, (5) additional equipment packages between the orientating motor and drill motor, and (6) follower packages behind the thrust applicator. The mandrel MPS has the following module spaces: (1) bit sub, (2) area on the Dyna-Drill motor around the internal connecting joint, and (3) within the drill pipe.

4.5 DIMENSIONLESS ANALYSIS

Four parameters, described in Appendix E, will be used to compare the performance of the four design selections. Three of the four parameters are dimensionless while the fourth is a ratio whose units are meaningless. The four parameters are the shearing, jetting, drill motor, and fluid system parameters.

The shearing parameter relates the undrained shear strength of the soil to the maximum rated torque of the drill motor. The jetting parameter is the ratio of the velocity necessary to erode soil divided by the drilling fluid velocity at the bit
orifice. The fluid system parameter is the equivalent circulating density of the drilling fluid, divided by the hydraulic fracture gradient of the soil. Finally, the drill motor parameter is the dimensional parameter that relates the output horsepower of the motor in relation to the volume of the motor to the rated output torque of that motor.

Table 4.3 summarizes all of the calculations for estimating the four parameters. Also included on this table is the most favorable condition or value for each particular parameter. Briefly, the logic behind the "most favorable conditions" is as follows (more details are presented in Appendix E): A shearing parameter greater than 1.0 indicates the motor will have difficulty drilling, if shearing at the outer edge of the bit is the predominant cutting mechanism for that particular bit (i.e. drag bit). Therefore, a drill bit with less of a torque requirement (i.e. tricone bit) should be used with that particular motor. Any value less than 1.0 should provide good torque transfer efficiency for either one of the suggested drill bits. The larger the value of the jetting parameter the less erosion will occur in front of the bits, therefore the less chance there is of creating a large cavity at the drill face when the equipment advances slowly. The drill motor
<table>
<thead>
<tr>
<th></th>
<th>Shearing Parameter (SP)</th>
<th>Jetting Parameter (JP)</th>
<th>Drill Motor Parameter (DMP)</th>
<th>Fluid System Parameter (FSP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(S_n = 0.25 \text{ tsf})</td>
<td>2.0 Sand</td>
<td>0.094 Clay</td>
<td>1018.5</td>
</tr>
<tr>
<td></td>
<td>0.173</td>
<td>1.38</td>
<td>0.029</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>0.210</td>
<td>1.68</td>
<td>0.132</td>
<td>0.063</td>
</tr>
<tr>
<td></td>
<td>0.111</td>
<td>0.89</td>
<td>0.132</td>
<td>0.063</td>
</tr>
<tr>
<td>Most Favorable</td>
<td>Condition</td>
<td>larger value</td>
<td>smaller value</td>
<td>smaller value</td>
</tr>
<tr>
<td>Formula</td>
<td>(S_n = \frac{u}{16} \left(\frac{d^3}{T} \right))</td>
<td>(\frac{V}{GPM})</td>
<td>(\frac{HF(550)}{Vol})</td>
<td>(\frac{FSP}{HFG})</td>
</tr>
</tbody>
</table>

Table 4.3 MPS Comparison Parameters
parameter is an indication of the maximum design efficiency of the drill motor. The smaller the ratio value, the more efficient the motor. The smaller number means that a high torque output is accomplished with a minimum amount of rated power for a given size hole. Finally, the fluid system parameter should be less than 1.0 because any number greater than 1.0 means the annular pressure is greater than the minor principle stress in the hole, resulting in hydraulic fracturing of the soil.

The results from this analysis can be interpreted in the following manner. The hydraulic motor and electric motor, have the lowest shearing parameter for both soil strengths. Therefore, the rated torque output can easily shear the soil if that were the only mode of drilling the hole. The two values greater than 1.0 for the Dyna-Drill motor indicate that because of a lower rated torque output, drill bits which abrade rather than shear will have to be used.

The jetting parameter values indicate the hydraulic and electric motor both have a minimum jetting velocity, therefore, they will create the least amount of soil erosion at the bit face. Since the 6-1/2 in (16.5 cm) O.D. Dyna-Drill has the highest flow rate, it is intuitively obvious that this drill
motor will have the greatest erosive effect at the bit face.

However, when the drill motor parameter is considered, the larger Dyna-Drill appears to have the most efficient usage of its volume and power rating to produce a specific amount of torque. This then is one of the reasons for selecting it to be the heavy-duty drill motor. It is interesting to note that the small diameter Dyna-Drill has a very high drill motor parameter, however this is indirectly related to a low flow rate design which attempts to minimize the erosive jetting effects.

Finally, the fluid system parameter indicates that all of the systems considered for the final design have sufficient annular space such that hydraulic fracturing should not occur in fully saturated sand or clay because of excessively high annular fluid pressures at the bit.

In summary, the development of these parameters has required the author to analytically compare each MPS rather than subjectively stating that the four final designs will perform within a specific formation. The parameters presented are tools which should be used to objectively decide which drilling system is most compatible with a particular formation.
4.6 DESIGN COMPATIBILITY DRAWING

Figure 4.3 is a scaled drawing of the basic thrust applicator MPS with the equipment recommended from the previous section. This drawing is not intended to be a working drawing, but instead, is to illustrate the size compatibility of the various subsystem components. No intent has been made to duplicate manufacturers' drawings.
CHAPTER 5
CONCLUSION

Two basic horizontal maneuverable penetration systems (MPS) are presently available, which can be modified for soft ground exploration. The mandrel MPS consists of a Dyna-Drill downhole hydraulic motor, bent or articulated sub, drill pipe, a conventional diamond or tricone bit, and various miscellaneous surface support equipment. The thrust applicator MPS is built around a DRILCO thrust applicator and includes: a Century Electric or a W. H. Nichols hydraulic drill motor; a conventional drag or tricone drill bit; a CONOCO deflection shoe, orientating motor, and downhole hydraulic valving system; and the necessary embilical cables interconnecting the thrust applicator with the required surface support systems. Both of the MPS's contain module spaces for an electronic navigation package and various geotechnical and geophysical sensing devices.

Within the framework of these two basic approaches four MPS's have been proposed to operate in four selected urban environments.
Tables 3.8 and 4.1 are repeated here for convenience and will be referred to as Tables 5.1 and 5.2, respectively, throughout the following discussion. Selection A and B, in Table 5.1, will operate well in a stiff clay or dense sand out to 1600 ft (488 m) horizontally, while only Selection A will extend out to 700 ft (214 m) in soft clay or loose sand. In order to drill a greater distance a washover drill pipe is required to reduce the soil friction. Selection B's own weight hinders its directional control capability in soft clay. Both of these mandrel MPS's would be expected to perform satisfactorily in a residual soil if pebble size particles did not clog the drill bit or lodge between the drill body and hole wall. The minimum, continuous radius of curvature for the mandrel MPS is associated with a build angle of 12°/100 ft in stiff clay or dense sand while in soft clay or loose sand it drops to 9°/100 ft as shown in Table 5.2. The maximum "kink" radius of curvature for the mandrel MPS is measured at an associated build angle of 26°/100 ft.

The 5-3/4 in (14.6 cm) DRILCO thrust applicator, with modified anchor pads (1-1/2 x 8 in (3.8 x 20.3 cm)) was basic to the two thrust applicator MPS's which were analyzed as Selections C and D in Table 5.1. Either the Century Electric motor or the W. H. Nichols
<table>
<thead>
<tr>
<th>Select'n</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drill Motor</td>
<td>Dyna-Drill</td>
<td>Dyna-Drill</td>
<td>Nichols Hyd.</td>
<td>Century Electric Motor</td>
</tr>
<tr>
<td>O.D. (in)</td>
<td>2-3/8</td>
<td>6-1/2</td>
<td>5</td>
<td>3-11/16</td>
</tr>
<tr>
<td>Length (ft)</td>
<td>7</td>
<td>19.6</td>
<td>4</td>
<td>4.5</td>
</tr>
<tr>
<td>O.D. (in)</td>
<td>2-3/8</td>
<td>8(T.A.) 4-1/2 (D.P.)</td>
<td>5-3/4 or 8</td>
<td>5-3/4 or 8</td>
</tr>
<tr>
<td>Bit Type</td>
<td>Diamond or Drag</td>
<td>Tricone</td>
<td>Tricone</td>
<td>Tricone</td>
</tr>
<tr>
<td>Hole Dia. (in)</td>
<td>4-1/2</td>
<td>12</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Comments</td>
<td>Excellent annulus size low flow rate, high torque</td>
<td>Max. annular size, max. torque RPM, high flow rate can be a problem</td>
<td>Opt. annular space, short length, high torque low flow</td>
<td>Opt. annular space, min. flow requirements, short length, problem w/shorting</td>
</tr>
<tr>
<td>Landrel</td>
<td>Radius of Curvature in Stiff Clay, Dense Sand (System limited) (ft)</td>
<td>Radius of Curvature in Soft Clay, Loose Sand (Formation limited) (ft)</td>
<td>Minimum Horizontal Distance (Vertical entry) (ft)</td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Thrust Appl.</td>
<td>1145(5°/100') to 216(26°/100')</td>
<td>1145(5°/100') to 570(20°/100')</td>
<td>475 647</td>
<td>715</td>
</tr>
<tr>
<td>Opt:</td>
<td>475(12°/100')</td>
<td>Opt:</td>
<td>635(90°/100')</td>
<td></td>
</tr>
<tr>
<td>Opt:</td>
<td>715(8°/100')</td>
<td>Opt:</td>
<td>715(8°/100')</td>
<td></td>
</tr>
</tbody>
</table>

1) The system limit is based on the wear factor during bending of the rubber stator in the Dyna-Drill.

2) The soft ground limits are based on the ability of the thruster to develop thrust in this environment.
hydraulic motor perform equally well as drilling motors. The thrust applicator MPS was found to theoretically perform well in a stiff clay or dense sand while being capable of operating at depths up to 500 ft(153 m) and out to a horizontal distance of 5000 ft(1525 m). However, based on theoretical calculations and field experience, the presently configured thrust applicator MPS will not be able to develop the necessary shear resistance at the anchor pad-soil interface in soft clay (i.e. less than 1.0 tsf unconfined compressive strength) in order to penetrate at any depth for any horizontal distance. The thrust applicator MPS can operate in a residual environment with the same limitations as the mandrel MPS. In addition, this MPS has the directional control ability to avoid objects using a minimum radius of curvature with a build angle of $8^\circ/100$ ft while its "kink" radius of curvature is $15^\circ/100$ ft. These values are less than the mandrel MPS because of the rigidly connected front section on the thrust applicator MPS.

These two basic MPS's are presently available and have been tested in several different soil conditions. However, prior to the investigation for this thesis, the thrust applicator system was thought to be a conceptual model only.
In addition to the preliminary MPS design, three other important conclusions were reached during this investigation. First, the difficulty of drilling a horizontal hole is dependent upon the control of the drilling mud recirculation system. The proper bentonite drilling mud could provide enough lubricity to significantly reduce the skin friction between the soil and drill steel. The drilling mud also provides hole stability while cleaning the annular space of drilling fines, preferably without hydraulically fracturing the soil.

Secondly, the soil friction effect could be reduced with a neutrally buoyant drill pipe or thruster cable. If either the drill pipe or cable were neutrally buoyant in the horizontal section (Section II in Figure 3.14) of the drilling path, both Selection A and B could drill to at least 5000 ft (1525 m) horizontally at a depth of 500 ft (153 m).

Finally, a dimensionless analysis of the four alternate MPS's allowed their comparison to be quantifiable objective rather than subjective.

In conclusion, the two basic maneuverable penetration systems can be manufactured with the present state of technical knowledge as explained in Chapter 4. The most efficient combination of these subsystems, defined through the results of a
dimensionless analysis, will be able to penetrate a soft ground condition down to a depth of 500 ft (153 m) along a 5000 ft (1525 m) horizontal drill path.
CHAPTER 6
RECOMMENDED FUTURE RESEARCH

Throughout the course of research for this thesis, several important and specific items have been found to require future research in order to advance the state of knowledge in maneuverable, horizontal directionally controlled drilling in soft ground. Below are listed a few of the more important items. This list can obviously be expanded as research and development continue in this embryonic field.

1) The mandrel and thrust applicator MPS should be compared through a competitive field test in one of the four proposed geological environments.

2) During this test an instrumented package should be mounted on both MPS's to measure the normal force, torque, vibration, and RPM at the drill bit.

3) Conduct extensive research into the effectiveness of various drilling muds to stabilize the hole and retain the soil particles in the horizontal section of the drill hole.

4) The dimensionless parameter relationships between geology and the MPS should
be expanded and verified to allow the users to make a logical selection of subsystems in varying subsurface strata.

5) Methods of producing neutrally buoyant cable and pipe should be investigated to determine the feasibility of neutral buoyancy for reducing the skin friction along the drill pipe or cable.

6) The DRILCO thrust applicator should be redesigned for efficient soft ground operation, or possibly developing another thruster which operates on the concept of vermiculating motion such as the WORM.

7) The following subsystems should be further developed to improve existing equipment: a closed circuit downhole valving system for the DRILCO thrust applicator; a 7-8 in (17.8-20.3 cm) diameter tricone coring bit; and a more finely controlled hydraulic system for anchor pad and deflection shoe extension.

8) Determine the applicability of the W. H. Nichols hydraulic motor to the mandrel MPS.

9) Further research should be conducted into the actual condition of the drill pipe in the bore hole to determine whether slender, free-ended column buckling failure is occurring.

10) Investigate the assumption that the annular pressure (ΔP_a) of the drilling fluid is in equilibrium with the effective stress at the bore hole wall boundary.
REFERENCES

Dahl, H. Doug (1975), Personal Communication, Continental Oil Company, Ponca City, Oklahoma, January 10 and May 9, 1975.

Emery, Myron (1973), "Directional Control of Boring," Pipeline and Gas Journal, May, pp. 84-98.

———. (1975), Personal Communications, Titan Contractors, Sacramento, California, January 6-8, 1975.

Gaberson, Howard (1975), Personal Communication, Naval Civil Engineering Laboratory, Port Hueneme, California, January 7, 1975.

IMCO (1974), Applied Mud Technology, A Division of Halliburton Companies, Houston, Texas.

BIBLIOGRAPHY

179
LIST OF CONTRIBUTORS

Directional Drilling Contractor

Mr. Martin D. Cherrington
President
Titan Contractors Corporation
593 Market Street, Suite 200
San Francisco, California 94105
415-495-3883

Downhole Drill Motors

Mr. John E. Tschirky
Chief Engineer
Dyna-Drill
P. O. Box 327
Long Beach, California
213-426-7186

Mr. Roger Coffey
W. H. Nichols Company
48 Woerd Avenue
Waltham, Massachusetts 02154
617-894-0650

Mr. Ralph A. DeGrand
Chief Product Engineer
Century Electric Motor Company
306 North Bridge Street
Gettysburg, Ohio 45328
513-447-2221

Mr. Satish Goel
REDA Pump Company
P. O. Box 1181
Bartlesville, Oklahoma 74003
918-661-2000
Mr. Richard Bentley
Eastman Whipstock, Inc.
P. O. Box 14609
Houston, Texas 77021
713-748-2350

Mr. Scott Murray
Imperial Oil, Ltd.
Calgary, Canada
Alberta

Thrust Applicators

Mr. Jack Kellner
Engineer, New Product Development
DRILCO
P. O. Box 3135
Midland, Texas 79701
915-683-5431

Mr. Doug Dahl
Director of Mining Research
Continental Oil Company
P. O. Box 1267
Ponca City, Oklahoma
405-762-3456

Mr. William L. Still
President
Aerospace Industrial Associates, Inc.
P. O. Box 878
Purcellville, Virginia 22132
703-338-7134

Mr. H. A. Gaberson
Research Mechanical Engineer
Naval Civil Engineering Laboratory
Port Hueneme, California 93043
805-982-5117

Mr. C. A. Spearman
Manager, Development Division
British Gas Corporation
Engineering Research Station
Killingworth, P. O. Box 11H
Newcastle Upon Tyne, England
Telex 53470
Drill Bits

Mr. Lloyd L. Gardner
Chief Engineer Standard Products
P. O. Box 15500
17871 Von Karman Avenue
Irvine, California 92705
714-540-7010

Mr. B. J. Whitworth
Chief Engineer
Hughes Tool Company
P. O. Box 2539
Houston, Texas 77001
713-926-3101

Mr. Robert Stuart
Varel Manufacturing Company
P. O. Box 20156
Dallas, Texas 75220
214-351-6487

Drilling Mud Fluids

Mr. Michael Lowrance
Technical Development Engineer
Milchem, Drilling Fluids Division
P. O. Box 2211
Houston, Texas 77027

Mr. Preston Moore
Baroid Division, N. L. Industries
Houston, Texas
713-225-0391

IMCO Services
Division of Halliburton Company
Houston, Texas
713-622-5555

Mud Pumps

Mr. Richard Soltys
Gardner-Denver Company
P. O. Box 26436
Dallas, Texas 75226
Others

Dr. D. Hettiaratchi
Lecturer
Department of Agricultural Engineering
University of Newcastle Upon Tyne
Newcastle Upon Tyne, England
STD code ONE 2.28511

Mr. John Halase
Supervisor of Production Mill
Box 900
Youngstown Sheet and Tube Company
Youngstown, Ohio
216-755-1411

Mr. Ira Davis
Wilson Downhole Services
P. O. Box 1492
Houston, Texas 77001
713-225-0736

Bowen Tools, Inc.
2429 Crockett Street
Houston, Texas 77001
713-869-6711

Mr. L. J. McLaughlin
Chairman, Installation Methods Subcommittee
Electric Power Research Institute
P. O. Box 10412
Palo Alto, California 94304
415-493-4800

Mr. A. Penman
Building Research Station
Garston, Watford
Herts, England WD2 7JR

Mr. N. Osifchin
Director, Building and Energy Systems Laboratory
Bell Laboratories
Whippany Road
Whippany, New Jersey 07981
201-386-3000

Mr. Roy A. Sishin
Manager, Operating and Engineering Services
American Gas Association
1515 Wilson Boulevard
Arlington, Virginia 22209
703-524-2600
APPENDIX A

LIST OF TERMS, DEFINITIONS, AND SYMBOLS

A - Arc angle associated with a particular build angle (α) for a circular drill path.

Annular Space - The space surrounding a cylindrical object within a cylinder. The space around a pipe in a borehole is often termed the annulus, and its outer wall may be either the wall of the borehole or the casing.

Barrel - A volumetric unit of measure used in the petroleum industry consisting of 42 gal.

Bentonite - A plastic, colloidal clay, largely made up of the mineral sodium montmorillonite, a hydrated aluminum silicate. For use in drilling fluids, bentonite has a yield in excess of 85 bbl/ton. The generic term "bentonite" is neither an exact mineralogical name, nor is the clay of definite mineralogical composition.

Build Angle (θ) - Rate of angular change along a drill path measured in degrees per 100 feet.

Circulation - The movement of drilling fluid from the suction pit through pump, drill pipe, bit, annular space in the hole, and back again to the suction pit. The time involved is usually referred to as circulation time.

Circulation, Loss of (or Lost) - The result of drilling fluid escaping into the formation by way of crevices or porous media.

Circulation Rate - The volume flow rate of the circulating drilling fluid usually expressed in gallons or barrels per minute.

Clay - A plastic, soft, variously colored earth, commonly a hydrous silicate of alumina, formed by the decomposition of feldspar and other aluminum silicates. See also Attapulgite, Bentonite, High Yield, Low Yield, and Natural Clays. Clay minerals are essentially insoluble
in water but disperse under hydration, shearing forces such as grinding, velocity effects, etc., into the extremely small particles varying from submicron to 100-micron sizes.

D - Depth of the horizontal drill path.

Diameter - The distance across a circle measured through the center. In the measurement of pipe diameters, the inside diameter - I.D. - is that of the interior circle, whereas the outside diameter - O.D. - is the diameter of the circle formed by the exterior surface of the pipe.

Dog-Leg - The "elbow" caused by a sharp change of direction in the well bore.

Drilling Mud or Fluid - A circulating fluid used in rotary drilling to perform any or all of various functions required in the drilling operation.

Equivalent Circulating Density - For a circulating fluid, the equivalent circulating density in lb/gal equals the hydrostatic head (psi) plus the total annular pressure drop (psi) divided by the depth (ft) and by 0.052.

Entry Point - Point on the earth's surface where the drill bit initially penetrates.

Filter Cake - Filter cake refers to the layer of concentrated solids from the drilling mud that forms on the walls of the borehole opposite permeable formations. Also called mud cake.

Filter-Cake Texture - The physical properties of a cake as measured by toughness, slickness, and brittleness.

Fluid - A fluid is a substance readily assuming the shape of the container in which it is placed. The term includes both liquids and gases. It is a substance in which the application of every system of stresses (other than hydrostatic pressure) will produce a continuously increasing deformation without any relation between time rate of deformation at any instant and the magnitude of stresses at that instant. Drilling fluids are usually Newtonian and plastic, seldom pseudoplastic, and rarely dilatant fluids.
Fluid Flow - The state of fluid dynamics of a fluid in motion is determined by the type of fluid (e.g., Newtonian, plastic, pseudoplastic, dilatant), the properties of the fluid such as viscosity and density, the geometry of the system, and the velocity. Thus, under a given set of conditions and fluid properties, the fluid flow can be described as plug flow, laminar (called also Newtonian, streamline, parallel, or viscous) flow, or turbulent flow. See above terms and Reynolds number.

Fluid Loss - Measure of the relative amount of fluid lost (filtrate) through permeable formations or membranes when the drilling fluid is subjected to a pressure differential.

H - Horizontal distance from the point of entry to the point the drill bit transverses to the horizontal plane.

Horsepower (HP) = \(\frac{\text{Force (lb)} \times \text{Speed (ft/min)}}{33,000} \)

The rate of doing work (transferring energy) equivalent to lifting 33,000 lb 1 ft/min (33,000 ft-lb/min). This is also 550 ft-lb/sec.

Hydraulic Horsepower (HHP) = \(\frac{\text{Circulation differential rate (GPM)}}{1,714} \times \text{Pressure (psi)} \)

Instantaneous Radius of Curvature - The radius of curvature along a spiral drill path measured at a particular point.

Jet Bit - A drilling bit having nozzles through which the drilling fluid is directed in a high velocity stream.

Key Seat - That section of a hole, usually of abnormal deviation and relatively soft forma-
tion, which has been eroded or worn by drill pipe to a size smaller than the tool joints or collars. This keyhole type configuration will not allow these members to pass when pulling out of the hole.

Kinematic Viscosity - The kinematic viscosity of a fluid is the ratio of the viscosity (e.g., cp in g/cm-sec) to the density (e.g., g/cc) using consistent units. In several common commercial viscometers the kinematic viscosity is measured in terms of the time of efflux (in seconds) of a fixed volume of liquid through a standard capillary tube or orifice.
Kink Radius of Curvature - The smallest radius of curvature in a undulated section of the drill path.

Laminar Flow - Fluid elements flowing along fixed streamlines which are parallel to the walls of the channel of flow. In laminar flow, the fluid moves in plates or sections with a differential velocity across the front which varies from zero at the wall to a maximum toward the center of flow. Laminar flow is the first stage in a Newtonian fluid; it is the second stage in a Bingham plastic fluid. This type of motion is also called parallel, streamline, or viscous flow.

Mud - A water-or-oil-base drilling fluid whose properties have been altered by solids, commercial and/or native, dissolved and/or suspended. Used for circulating out cuttings and many other functions while drilling a well. Mud is the term most commonly given to drilling fluids.

Mud Pit - Earthen or steel storage facilities for the surface mud system. Mud pits which vary in volume and number are of two types: circulating and reserve. Mud testing and conditioning are normally done in the circulating pit system.

Mud Program - A proposed or followed plan or procedure for the type(s) and properties of drilling fluid(s) used in drilling a well with respect to depth. Some factors that influence the mud program are the casing program and such formation characteristics as type, competence, solubility, temperature, pressure, etc.

Mud Pumps - Pumps at the rig used to circulate drilling fluids.

Newtonian Fluid - The basic and simplest fluids from the standpoint of viscosity consideration in which the shear force is directly proportional to the shear rate. These fluids will immediately begin to move when a pressure or force in excess of zero is applied. Examples of Newtonian fluids are water, diesel oil, and glycerine. The yield point as determined by direct-indicating viscometer is zero.

Pressure-Drop Loss - The pressure lost in a pipeline or annulus due to the velocity of the liquid in the pipeline, the properties of the fluid, the condition of the pipe wall, and the alignment of the pipe. In certain mud-mixing systems, the
loss of head can be substantial.

Pseudoplastic Fluid - A complex non-Newtonian fluid that does not possess thixotropy. A pressure or force in excess of zero will start fluid flow. The apparent viscosity or consistency decreases instantaneously with increasing rate of shear until at a given point the viscosity becomes constant. The yield point as determined by direct-indicating viscometer is positive, the same as in Bingham plastic fluids; however, the true yield point is zero. An example of a pseudoplastic fluid is guar gum in fresh or salt water.

Radius - Radius of curvature of the drill path,
\[R = \frac{1}{2} \cot \left(\frac{A}{2} \right). \]

Rate of Shear - The rate at which an action, resulting from applied forces, causes or tends to cause two adjacent parts of a body to slide relatively to each other in a direction parallel to their plane of contact. Commonly given in rpm.

Reynolds Number - A dimensionless number. \(Re \), that occurs in the theory of fluid dynamics. The diameter, velocity, density, and viscosity (consistent units) for a fluid flowing through a cylindrical conductor are related as follows:
\[Re = \frac{\text{diameter}}{\text{velocity}} \times \frac{\text{density}}{(\text{viscosity})} \]

\[= \frac{DV}{\mu}. \]

The number is important in fluid hydraulics calculations for determining the type of fluid flow, i.e., whether laminar, or turbulent. The transitional range occurs approximately from 2000 to 3000; below 2000 the flow is laminar, above 3000 the flow is turbulent.

Shear Strength - A measure of the shear value of the fluid. The minimum shearing stress that will produce permanent deformation.

Stuck - A condition whereby the drill pipe, casing, or other devices inadvertently become lodged in the hole. May occur while drilling is in progress, while casing is being run in the hole, or while the drill pipe is being hoisted. Frequently a fishing job results.

Tool Joint - A drill-pipe coupler consisting of a pin and a box of various designs and sizes. The internal design of tool joints has an important effect on mud hydrology.
Torque - A measure of the force or effort applied to a shaft causing it to rotate. On a rotary rig this applies especially to the rotation of the drill stem in its action against the bore of the hole. Torque reduction can usually be accomplished by the addition of various drilling-fluid additives.

Tricone Bit - A type of rock bit in which each of three toothed, conical cutters is mounted on friction reducing bearings. The bit body is fitted with nozzles—jets—through which the drilling fluid is discharged.

Velocity - Time rate of motion in a given direction and sense. It is a measure of the fluid flow and may be expressed in terms of linear velocity, mass velocity, volumetric velocity, etc. Velocity is one of the factors which contribute to the carrying capacity of a drilling fluid.

Viscosity - The internal resistance offered by a fluid to flow. This phenomenon is attributable to the attractions between molecules of a liquid, and is a measure of the combined effects of adhesion and cohesion to the effects of suspended particles, and to the liquid environment. The greater this resistance, the greater the viscosity.

Wall Cake - The solid material deposited along the wall of the hole resulting from filtration of the fluid part of the mud into the formation.

Washover Pipe - An accessory used to go over the outside of tubing or drill pipe, thus to clean out the annular space and permit recovery or movement.

Water Table - The underground level at which water is found.

Yield Value - The yield value (commonly called "yield point") is the resistance to initial flow, or represents the stress required to start fluid movement. This resistance is due to electrical charges located on or near the surfaces of the particles. The values of the yield point and thixotropy, respectively, are measurements of the same fluid properties under dynamic and static states. The Bingham yield value, reported in lb/100 sq ft, is determined by the direct-indicating viscometer by subtracting the plastic viscosity from the 300-rpm reading.
\(\alpha \) - Build Angle - Rate of angular change along a drill path measured in degrees per 100 feet.

\(\Theta \) - Exit Angle - Angle of incline the drill path forms with the horizontal as the drill bit returns to the earth's surface.

Note: Most of the above definitions have been taken from IMCO (1974), The University of Texas at Austin (1974).
APPENDIX B

CALCULATIONS FOR IMPORTANT CONSIDERATIONS IN HORIZONTAL BORING

B.1 INTRODUCTION

This appendix contains the basic soil mechanics, strength of materials, and fluid dynamics calculations behind the analysis of the operational characteristics of the Maneuverable Penetration System (MPS) in soft ground as defined in Table B.1. The underlying assumptions for these calculations have been made from an intuitive standpoint of what might be happening in the drill hole and do not reflect the results of laboratory tests or detailed field data comparisons.

These assumptions are as follows:

1) The clay soil is assumed to be in an undrained condition since 99% of the bore hole is located below the water table. Clay strengths are given in Table B.1, repeated here for convenience. Any sand encountered will be completely saturated, and total stresses are equal to effective stresses.

2) The maximum depth below the ground surface is 500 ft (153 m) and the optimal horizontal drill hole distance is 5000 ft (1525 m).
Table B.1 Shear Strength of Cohesive Soils
(Terzaghi and Peck, 1967)

<table>
<thead>
<tr>
<th>$S_u = \frac{2}{3} q_u \text{ (tsf)}$</th>
<th>Consistency</th>
<th>Unit Weight (pcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0.125</td>
<td>Very Soft</td>
<td>100-200</td>
</tr>
<tr>
<td>0.125-0.25</td>
<td>Soft</td>
<td></td>
</tr>
<tr>
<td>0.25-0.50</td>
<td>Medium</td>
<td>110-130</td>
</tr>
<tr>
<td>0.50-1.0</td>
<td>Stiff</td>
<td>120-140</td>
</tr>
<tr>
<td>1.0-2.0</td>
<td>Very Stiff</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>Hard</td>
<td>130+</td>
</tr>
</tbody>
</table>
3) Any estimations of the maximum equipment limits for bending stresses have not considered continuous, long-term operating conditions under these bending stresses and how this will affect the future performance of the equipment.

B.2 MINIMUM S_u FOR THRUST APPLICATOR OPERATION

First, the capabilities of the DRILCO thrust applicator will be calculated with a modified version which has the following characteristics:

Thrust Applicator O.D. - 8 in
Anchor pads
1 set of piston pads (3 pads/set)
3 sets of cylinder pads
Pad dimensions - 1-1/2 x 8 in
Single pad area - 12 in2
Total pad area available - 144 in2

The undrained shear strength for clay and the shear strength for sand are calculated using equations shown in Figure B.1. To calculate the minimum S_u required for the thruster to pull its hose down the hole, the frictional force on the hose must first be calculated.

Figure B.2 Friction Forces Acting on Thruster Hose
Cohesionless soil:

\[\tau_{ff} = S_s = S_d = \bar{\sigma}_r \tan \beta \]

Cohesive soil:

\[S_s \approx C = S_u \]
\[S_s \approx S_u \approx F_s / A_t \]

\(F_s \) = Shearing Force
\(A_t \) = Total Pad Area
\(\bar{\sigma}_r \) = Anchoring stress applied across anchor pad surface area

FIGURE B.1 Shear Strength Formulas
To overcome static friction $T > F_f = \gamma N$

for sands $\gamma = \tan \phi$

assume $\phi = 35^\circ$

$\gamma = \tan 35^\circ = 0.7$

Weight of the individual thruster hoses:

1-1" drilling fluid hose - @ 24.4#/100'
2-1/2" hydraulic hose - @ 13.4#/100'

$N = 51.2#/100'$

$F_f = (0.7)(51.2) = 35.84 \approx 36#/100'$

For 1000' tunnel length

$F_f = 360#$

Then, S_u is determined for a thrust applicator as follows:

Thrust Applicator - 8" O.D.
12 pads - (1.5" x 8")

$A_t = 144$ sq in

$S_s = \frac{T}{A_t} \tan \phi = F_f / A_t = 360 / 144 = 2.5$ psi

For sands:

$S_s \approx S_u = 0.18$ tsf

B.3 BEARING CAPACITY AND CONTRACT STRESS CALCULATIONS

Before any bearing capacity or contact stress calculations are performed, the size of the anchor pad must be redesigned for soft ground conditions for the dimensions stated in Section B.2. An estimation of a redesigned thruster pad is based on finding the length of a chord for the same degree of arc at a
larger radius.

\[c = 2 \sqrt{h(d-h)} \]

\[h = r(1 - \cos \alpha) \]

where \(c \) = cord length
\(h \) = cord diameter

\[\frac{C_2^2}{C_1^2} = \frac{r_2 d_2}{r_1 d_1} \]

\[C_2 = C_1 \sqrt{\frac{r_2 d_2}{r_1 d_1}} \]

if, \(C_1 = 1.06 \text{ in} \)
\(d_1 = 5.75 \text{ in} \)
\(d_2 = 8.0 \text{ in} \)

then, \(C_2 = 1.47 \text{ in} \approx 1.5 \text{ in} \ (3.8 \text{ cm}) \)
Calculation of Maximum Contact Stress The maximum contact stress is based on the maximum allowable hydraulic pressure the thrust applicator is able to apply to the anchor shoe diaphragm before rupture occurs. For the particular calculation this value of maximum pressure will be 500 psi (3450 kN/m²), however, this is a measured value for the 5-3/4 in (14.6 cm) O.D. thrust applicator.

For a thrust applicator anchor pad:

\[A_H = 1.06 \times 6 = 6.36 \text{ in}^2 \]
\[A_c = 1.5 \times 8 = 12 \text{ in}^2 \]
\[\Delta P_H = 500 \text{ psi} \]

\[\sigma_{c_{\max}} = 500 \left(\frac{6.36}{12} \right) = 265 \text{ psi} \]
\[\sigma_{c_{\max}} = 19.08 \text{ t s f} = 1826 \text{ kN/m}^2 \]

where:

- \(A_H \) = anchor pad area in contact with hydraulic fluid
- \(A_c \) = anchor pad area in contact with the soil

For the CONOCO deflection shoe:

\[\Delta P_H = 600 \text{ psi} \]

is the constant pressure applied to the drive piston (2 in dia.) for extending the deflection shoe

\[A_H = \frac{\pi d^2}{4} = \frac{\pi (2)^2}{4} = 3.142 \text{ in}^2 \]
\[A_c = 4 \times 8 = 32 \text{ in}^2 \] (estimated dimensions)
\[\Delta P_H = 600 \text{ psi} \]

\[\sigma_{c_{\max}} = 600 \left(\frac{3.142}{\frac{3}{2}} \right) = 58.9 \text{ psi} \]
\[\sigma_{c_{\max}} = 4.24 \text{ t s f} = 406 \text{ kN/m}^2 \]
Minimum Contact Stress The minimum contact stress is defined as the pressure required to first move the anchor pad. This pressure for the 5-3/4 in (14.6 cm) O.D. thrust applicator is 100 psi (690 kN/m²).

\[A_H = 6.36 \text{ in}^2 \]
\[A_C = 12 \text{ in}^2 \]
\[\Delta P_H = 100 \text{ psi} \]
\[\sigma_{c,\text{max}} = 100 \left(\frac{6.36}{12} \right) = 53 \text{ psi} \]
\[\sigma_{c,\text{max}} = 3.6 \text{ tsf} = 364 \text{ kN/m}^2 \]

Bearing Capacity Calculations The bearing capacity has been calculated for the type of failure shown in Figure 3.8.

In clay: \[q = N_C S_u + P_A \]

where \(N_C \) = bearing capacity factor
\(P_A \) = annular pressure

\(N_C \) (Rectangular shape) = (0.84 + 0.16 B/L)\(N_C \) (Square)

\(N_C \) (Square) = 6.2

Table B.2 Annular Pressure for 2-3/8 in O.D. Dyna-Drill with 2-3/8 in Dia. Drill Pipe and a 4-1/2 in Hole

<table>
<thead>
<tr>
<th>Drill Hole Length - ft</th>
<th>(P_A) - tsf</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1.58</td>
</tr>
<tr>
<td>2000</td>
<td>3.17</td>
</tr>
<tr>
<td>3000</td>
<td>4.75</td>
</tr>
<tr>
<td>4000</td>
<td>6.34</td>
</tr>
<tr>
<td>5000</td>
<td>7.92</td>
</tr>
</tbody>
</table>
Thrust Applicator (pad dimensions 1-1/2 x 8 in)

\[N_c = \left[0.84 + \left(\frac{1.5}{8} \right)(0.16) \right] 6.2 = 5.39 \]

\[S_u = 0.25 \text{ tsf} \]

\[L = 1000 \text{ ft} \]

\[q_{ult} = 5.39(0.25) + 1.58 = 2.93 \text{ tsf} \]

Deflection Shoe (dimensions 4 x 6 in)

\[N_c = \left[0.84 + \left(\frac{4}{6} \right)(0.16) \right] 6.2 = 5.87 \]

\[q_{ult} = 5.87(0.25) + 1.58 = 12.36 \text{ tsf} \]

In Sand:

\[q_{ult} = \frac{1}{2} S_y \gamma B N_y + P_n \]

\[S_y = (1.0 - 0.4 \frac{B}{L}) \quad (Vesic, 1973) \]

\[\gamma = \text{unit weight of bearing soil} \]

Soil Parameters: \(\phi = 30^\circ \)

\[\gamma = 110 \text{ pcif} \]

\[\gamma_b = 47.6 \text{ pcif} \]

\[N_y = 22.5 \text{ (loose sand)} \]

Thrust Applicator:

\[S_y = 1 - 0.4 \left(\frac{\gamma_b}{\gamma} \right) = 0.925 \]

For \(L = 5000 \text{ ft} \)

\[q_{ult} = 0.925(0.5)(47.6)(0.125)(22.5) + 15,840 \]

\[q_{ult} = 7.96 \text{ tsf} \]
Deflection Shoes:

$$S_y = 1 - 0.4 \left(\frac{4}{L} \right) = 0.733$$

For \(L = 5000 \) ft

$$q_{ult} = 0.733(0.5)(47.6)(0.33)(22.5) + 15,840$$

$$q_{ult} = 8.0 \text{ tsf}$$

B.4 MAXIMUM EXIT ANGLE

The maximum exit angle calculations have been performed for both sand and clay. In order to include all the forces acting on the MPS, a few of the drilling fluid flow calculations have been performed in this section.

Fluid Flow Calculations The Rheoplot data needed to calculate the Reynolds's number for the pseudoplastic drilling mud has kindly been provided by Mr. M. Lowrance from Milchem, Drilling Fluids Division.

For these following calculations the generalized Reynolds's number was adopted. The pseudoplastic stress-deformation relationship was modeled using the familiar Power Law \(\tau = K \left(\frac{du}{dy} \right)^n \).

Generalized Reynolds's Number:

$$N_R' = \frac{D n_y^2 - n}{K^* \rho}$$

The empirical corrected \(K^* \):

$$K^* = K (8^n - 1) \left(\frac{3n+1}{4n} \right)^n$$

\(n \) is the slope of the straight line on the Rheoplot.
When this relationship is plotted on log-log paper it takes the form:

$$\log \tau' = \log K + n \log(du/dy)$$

where the log K is the τ' intercept at $n \log(du/dy)=1$ and n is the slope of the straight line as shown in Figure B.3. Another way to look at the log-log plot of this relationship is as a stress-strain diagram for the mud slurry and the log K value is the dynamic yield point of the mud slurry and the "n" value is the dynamic viscosity of the fluid.

From Figure B.3 the following values were estimated:

$$K = 2 \times 10^{-2} \text{ lb}-\text{sec}/\text{ft}^2$$

$$n = 0.404$$

Therefore,

$$K^* = (2 \times 10^{-2})(8^{-0.592})(1.37)^{0.404}$$

$$K^* = 6.63 \times 10^{-3} \text{ lb}-\text{sec}/\text{ft}^2$$

The drag forces of fluid flowing past a neutrally buoyant drill pipe are calculated with a 2-3/8 in (6.0 cm) diameter steel drill pipe in a 4-1/2 in (11.4 cm) hole.

$$V = \frac{Q}{A}$$

$$Q = \frac{2.5}{7.48(60)} = 0.0557 \text{ ft}^3/\text{sec}$$

$$A = \frac{\pi(d_1^2 - d_2^2)}{4} = 0.0797 \text{ ft}^2$$

$$V = 0.7 \text{ ft/sec}$$
FIGURE B.3 Milchem Rheoplot®
The mud density for a 21 lb/bbl drilling mud is:

\[\rho = 65.834 \text{ lbs/ft}^3 \]

\[d = \frac{d_1^2 - d_2^2}{d_1 + d_2} = 2.125 \text{ in} = 0.177 \text{ ft} \]

\[N_R' = \left(\frac{0.177^{0.404} (0.7)^{1.57} (65,824)}{6.63 \times 10^{-3}} \right)(32.2) \]

\[N_R' = 37.8 \]

Then the empirical value for CD for laminar flow is:

\[C_D = \frac{1.28}{\sqrt{N_R'}} = \frac{1.28}{\sqrt{37.8}} = 0.137 \]

The drag force is:

\[D = \frac{1}{2} \rho C_D V^2 S \]

where

\[S = \text{surface area/linear foot} \]

\[= \frac{\pi d(1)}{LF} = 0.62 \text{ ft}^2/\text{LF} \]

\[D = \frac{1}{2} \left(\frac{65,824(0.1097)(0.49)(0.62)}{32.2} \right) \]

\[D = 0.034 \text{ lbf/LF} \]

Similar values are calculated for the DRILCO thrust applicator with the following dimensions:

Thrueter O.D. - 5-3/4 in

Hole Size - 7 in

Cable Diameter - 1-1/2 in

Flow Rate - 25 GPM

\[V = \frac{Q}{A} = \frac{0.0557}{0.098} = 0.568 \text{ ft/Sec} \]

\[N_R' = \left(\frac{(0.076)^{0.404} (0.218)^{1.57} (65,824)}{6.63 \times 10^{-3}} \right)(32.2) = 10.1 \]
and \(C_D = 0.403 \)

then the drag force is:

\[D = 7.7 \text{ lb/100 L.F.} \]

Forces Acting on the Mandrel MPS in Each Section

The weight calculations for the mandrel MPS are as follows:

- 2-3/8" Dyna-Drill - 60 lbs
- 4-1/2" bit - 3 lbs
- Navigation equip. - 15 lbs
- Sensing equip. - 20 lbs
- 2-3/8" Drill Pipe for 250' - 958 lbs

Total 1056 lbs

The buoyant weight of the drill pipe in a 21 lb/bbl drilling mud was calculated to be 3.83 lbs/L.F.

The following calculations have been made for a horizontal distance of 3000 and 5000 feet in Section II, as described in Chapter 3.

An estimate of the maximum normal force that can be applied to the mandrel MPS system is based on Euler's slender buckling criteria as applied to the drill pipe. The model used for these calculations, as shown below, simulates the condition illustrated by Figure 3.12b for Titan Contractors' drilling rig.
2 3/8 in O.D. (1.995 in I.D.) Drill Pipe
n = 2
l = 25 ft
E = 29,000 ksi

\[P_{\text{crit}} = \frac{n \pi^2 E A}{(l/r)^2} \]

where
\[A = \frac{\pi (d_1^2 - d_2^2)}{4} = 1.304 \text{ in}^2 \]
\[r = \sqrt{r_1^2 + r_2^2} / 2 = 0.775 \text{ in}^2 \]

\[P_{\text{crit}} = \frac{2 \pi^2 (29,000)(1.304)}{(387)^2} \]

\[P_{\text{crit}} = 4.93 \text{ kips} \]

For the normal force calculations a reduction factor of 1.25 is applied to \(P_{\text{crit}} \) which gives the maximum allowable normal force to be applied to the drill pipe at the surface (i.e. \(F_N = P_{\text{crit}} / 1.25 = 3.95 \text{ kips} \))

<table>
<thead>
<tr>
<th>Table B.3 Forces Acting on the Mandrel MPS in Sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section</td>
</tr>
<tr>
<td>Normal Force (F_N \text{(lbf)})</td>
</tr>
<tr>
<td>Frictional Force (F_f \text{(lbf)})</td>
</tr>
<tr>
<td>Drag Force (D \text{(lbf)})</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
The friction factor for Section II takes into account the friction encountered at the two bends in the drill path as shown in Figure 3.14 and explained in Chapter 3. For a horizontal distance equal to 3000 ft (915 m)
\[F=D+1.1F_f=176.5+516=693 \]
\[W=1058 \text{ lbs} \]
\[F_N=3950 \]

The exit angle criteria as defined in Section 3.7,
\[(F_N-F)/W = \frac{3950-693}{1058} = 3.08 \]

For a horizontal distance of 5000 ft (1525 m)
\[(F_N-F)/W=3.05 \]

Therefore, if the drill pipe remains neutrally buoyant in Section II (i.e. zero soil friction) then the mandrel MPS can drill out of the hole along an exit angle of 90°.

Maximum Horizontal Distance for Mandrel MPS These calculations take into consideration the effects of soil resistance along Section II and how this will change the maximum horizontal distance the mandrel MPS can drill before it has zero normal force at the bit. The maximum thrust available for the horizontal section is the normal force plus the angular weight component minus the friction forces along Section I \((T=3950+884-512=4322 \text{ lbf}) \). To find the maximum horizontal distance the MPS can travel, divide the
available thrust by the combined linear footage values for friction and drag forces.

\[T = D + F_f \]

where

\[D = 0.0425 \text{ lbf/L.F.} \]
\[F = 0.7(3.83 \text{ lbs/L.F.}) \]

Note: The buoyant weight of the drill pipe is 3.83 lbs/L.F.

\[H_{\text{max}} = \frac{4322 \text{ lbs}}{2.72 \text{ lbs/L.F.}} = 1589 \text{ L.F.} \]

Forces Acting on Thrust Applicator MPS in Sand

The weight estimations for the thrust applicator MPS are as follows:

- Thrust Applicator - 100 lbs
- Hydraulic Motor - 10 lbs
- 7" bit - 6 lbs
- Deflection Shoe - 10 lbs
- Orientation Motor - 10 lbs
- Hose @ 51.2#/100' - 128 lbs
- Total - 279 lbs

To calculate what the maximum pulling capacity available (MPCA) for the thrust applicator would be, the Mohr-Coulomb failure criteria was adapted in the following manner:

\[\tau_f = \sigma_n \tan \phi \]

Assuming K=1 (coefficient of earth pressure) at depth equal 250 ft then \(\sigma_n \) is the average normal stress required for anchoring. A worst condition case will
be analyzed:

loose sand, $\phi = 30^\circ$, $\gamma_t = 110$pcf

$\bar{\sigma}_n = 2 \gamma_b = 11,900 \text{ lbs/ft}^2 (570 \text{ kN/m}^2)$

$\tau_t = 11,900 \tan 30^\circ = 6,871 \text{ lbs/ft}^2 (329 \text{ kN/m}^2)$

$\text{MPCA} = \tau_t A_t$

where $A_t =$ total anchor pad contact area

The redesigned, enlarged anchor pads with dimensions $1-1/2 \times 8$ in (3.8×20.3 cm) are combined in three sets of cylinder anchors for the following calculations.

Table B.4 Forces Acting on the Thrust Applicator MPS in Sand

<table>
<thead>
<tr>
<th>Section</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPCA (lbf)</td>
<td></td>
<td>5153</td>
<td></td>
</tr>
<tr>
<td>Frictional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Force F_f (lbf)</td>
<td>98</td>
<td>9.8</td>
<td></td>
</tr>
<tr>
<td>Drag Force D (lbf)</td>
<td>4</td>
<td>3000 5000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>23 39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

For a horizontal distance of 3000 ft (915 m)

$\frac{\text{MPCA} - F}{W} = \frac{5153 - 1140}{279} = 14.4$

where now $F = D + 1.1 F_f + T$

T is assumed to be equal to 1000 lbf
For a horizontal distance of 5000 ft (1525 m)

\[\frac{\text{MPCA-F}}{W} = 14.3 \]

Now, if the worst condition is assumed where the thruster hose is dragging on the bottom of the hole in Section II, how will the thruster MPS perform? The friction force for Section II is \(F_f' = 1075 \text{ lbs} \) (@ \(H = 3000 \text{ ft} \)); therefore,

\[F = D + 1.1F_f + F_f' + T = 2249 \text{ lbs} \]

For a horizontal distance of 3000 ft (915 m)

\[\frac{\text{MPCA-F}}{W} = \frac{5153 - 2249}{534} = 5.4 \]

For a horizontal distance of 5000 ft (1525 m)

\[\frac{\text{MPCA-F}}{W} = 4.2 \]

Both of these values indicate the possibility exists for the thrust applicator MPS to exit at an angle up to 90°, even if it must drag its hose behind it in loose sand.

Mandrel MPS Operating in Clay The same mandrel MPS previously mentioned will be used for the following calculations.
Table B.5 Forces Acting on the Mandrel MPS in Clay

<table>
<thead>
<tr>
<th>Section</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Force F_N (lbf)</td>
<td></td>
<td>3950</td>
<td></td>
</tr>
<tr>
<td>Friction Force in F_f (lbf)</td>
<td>2209</td>
<td>221</td>
<td>2209</td>
</tr>
<tr>
<td>Sticky Clay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friction Force in F_f (lbf)</td>
<td>469</td>
<td>47</td>
<td>469</td>
</tr>
<tr>
<td>over-consolidated clay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drag Force D (lbf)</td>
<td>25</td>
<td>3000</td>
<td>5000ft</td>
</tr>
<tr>
<td></td>
<td></td>
<td>128</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

The friction force is different for a sticky clay than an overconsolidated clay as explained in Section 3.9. In addition, the frictional forces are now assumed values based on empirical information referenced in the same section.

For a horizontal distance equal to 3000 ft (915 m)

$$\frac{F_N - F}{W} = \frac{3950 - 1162}{1056} = 2.64$$

and for a 5000 ft (1525 m) distance,

$$F_N - F_W = 2.56$$

The ratio $F_N - F_W$ is equal to sink in clay; therefore both distances can be drilled and the maximum angle is 90°.
The maximum horizontal distance the mandrel can travel along the horizontal section of the drill path was calculated using the previously mentioned relationships. The available thrust\((T) \), after the first bend is as follows:

\[
T = F_N + w' - F_f - D = 3950 + 916 - 2209 - 25
\]

\[
T = 2632 \text{ lbs}
\]

\[
H = \frac{T}{F_f} = \frac{2632 \text{ lbs}}{3.83 \text{ lbs/L.F.}} = 687 \text{ L.F.}
\]

Thrust Applicator MPS Operating in Clay The following calculations are based on the assumption that the only clay the thrust applicator MPS can operate in is overconsolidated, stiff clay \((S_u = 2.0 \text{ tsf}) \).

Table B.6 Forces Acting on the Thrust Applicator MPS in Overconsolidated, Stiff Clay

<table>
<thead>
<tr>
<th>Section</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPCA (lbf)</td>
<td></td>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>Friction Force (F_f) (lbf)</td>
<td>329</td>
<td>33</td>
<td>329</td>
</tr>
<tr>
<td>Drag Force (D) (lbf)</td>
<td>4</td>
<td>3000</td>
<td>5000 ft</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

For the horizontal distance of 3000 ft (915 m),

\[
\frac{\text{MPCA}}{W} = \frac{3000 - 722}{279} = 8.1
\]

Since the thrust applicator system is lighter in weight than the mandrel MPS, the thrust applicator
will surely operate over a distance of 5000 ft, even if it must drag its cables behind it. This, of course, assumes that the hole remains open in the sticky clay environment.

B.5 PRESSURE LOSS CALCULATIONS FOR A MANDREL MPS

The pressure loss throughout the entire mandrel system is of concern when ordering the proper size surface mud pump and when analyzing whether or not the system selected will hydraulically fracture the soil at the drill bit. For these calculations, basic fluid dynamic relationships have been applied. The mandrel MPS is a 2-3/8 in (6 cm) O.D. Dyna-Drill system.

The pressure along a horizontal pipe was calculated using the Darcy-Weisbach equation:

$$h_f = f \frac{L}{d} \frac{V^2}{2g}$$

where

$$d = \frac{d_1^2 - d_2^2}{d_1 + d_2}$$

$$f = \frac{64}{N_R}$$ an empirical friction factor for laminar flow

and

$$\Delta P = \zeta_f h_f$$

where

$$\zeta_f = \text{density of the drilling fluid}$$
\[N'_{k} = 537 \]
\[f = \frac{64}{537} = 0.119 \]
\[h_f = 0.119 \left(\frac{1000}{0.166} \right) \left(\frac{2.26}{64.4} \right)^2 = 56.86 \text{ ft/1000 LF} \]
\[\Delta P = \rho h_f = \frac{65.824 \times 56.86}{144} = 26 \text{ lbs/in}^2 \]

The annular pressure loss for a 4-1/2 in (11.4 cm) diameter hole with a 2-3/8 in (6 cm) diameter drill pipe follows:

\[N'_{k} = 87.8 \]
\[f = 0.729 \]
\[d = \frac{d_1^2 - d_2^2}{d_1 + d_2} = 0.177 \text{ ft} \]
\[V = 0.7 \text{ ft/sec} \]
\[h_f = 0.729 \left(\frac{1000}{0.177} \right) \left(\frac{0.99}{64.4} \right) = 31.3 \text{ ft/1000 LF} \]
\[\Delta P_a = \rho h_f = \frac{31.3 \times 65.824}{144} = 14.3 \text{ psi/1000 LF} \]

ECD Calculations for the Mandrel MPS

For the above described mandrel MPS the following ECD calculations were made. ECD or equivalent circulating density is thoroughly explained in Chapter 3. Because of the uncertainty of the exact increase in drilling mud density due to drilling fines, the previously calculated annular pressure is increased by a factor of 1.5. In addition the pressure differential for the depth of the drill bit is added to the annular pressure loss for a horizontal pipe.
For a drill hole at a depth of 100 ft (31 m) and a horizontal distance of 1000 ft (310 m),
\[ECD = \rho + \frac{\Delta P_d}{0.52 \ L} \]
\[\rho = 8.33 \ \text{lb/gal} \text{ for 21 lb/bbl drilling mud} \]
\[\Delta P_d = \frac{100(65.824)}{144} + 21.5 = 67.2 \ \text{psi} \]
\[ECD = 8.33 + \frac{67.2}{0.052(1100)} = 10.01 \ \text{lb/gal (1.21 g/cm}^3) \]

At a depth of 500 ft (153 m),
\[\Delta P = \frac{500(65.824)}{144} + 21.5 = 250 \ \text{psi} \]
\[ECD = 12.04 \ \text{lb/gal (1.46 g/cm}^3) \]

B.6 PRESSURE LOSS CALCULATIONS FOR A THRUST APPLICATOR MPS

The pressure loss calculations for the thrust applicator apply the same basic relationships already mentioned. The thrust applicator is 5-3/4 in (14.6 cm) in diameter with a 1-1/2 in (3.8 cm) O.D. trailing hose operating in a 7 in (17.7 cm) diameter hole.

The pressure loss within the drilling slurry hose is as follows:
\[V = \frac{Q}{A} = 10.13 \ \text{ft/sec} \]
\[N_R = 3.76 \times 10^3 \]
\[f = \frac{64}{N_R} = 0.017 \]
\[h_f = 0.017 \left(\frac{1000}{0.053} \right) \left(\frac{10.13}{64.4} \right)^2 = 326 \ \text{ft/lf} \]
\[\Delta P = \rho h_f = 149 \ \text{psi/1000 LF} \]
Annular Pressure Loss

\[d = \frac{d_1^2 - d_2^2}{d_1 + d_2} = \frac{49 - 2.25}{51.25} = 0.076 \text{ ft} \]

\[N_R' = \frac{(0.076)^{0.444} (0.218)^{1.59} (65,824)}{6.63 \times 10^{-3} (32.2)} = 10.1 \]

\[f = \frac{64}{10.1} = 6.34 \]

\[h_f = 6.34 \left(\frac{1000}{0.076} \right) \left(\frac{0.218}{64.4} \right)^2 = 61.56 \text{ ft/1000 LF} \]

\[\Delta P = h_f \cdot \rho = \frac{(61.56)(65,824)}{144} = 28.1 \text{ psi/1000 LF} \]

ECD Calculations

At 100 ft (31 m) deep and at a horizontal distance of 1000 ft (310 m),

\[\text{ECD} = 8.83 + \frac{73.81}{0.052(1100)} = 10.12 \text{ lb/gal (1.22 g/cm}^3\text{)} \]

and at 500 ft (153 m) deep

\[\text{ECD} = 12.3 \text{ lb/gal (1.49 g/cm}^3\text{)} \]
APPENDIX C

SPECIFICATIONS ON DOWNHOLE MOTORS

C.1 INTRODUCTION

Four downhole motors are discussed in this appendix because of their previous application to directional drilling in general, or specifically with horizontal directional drilling. These four motors are: Dyna-Drill, Turbo-drill, the electric motor, and the hydraulic motor. Presented in this order, the various drawings will provide the necessary level of understanding for this thesis. If the reader desires more detail, he is encouraged to contact the individuals at the specific company on the List of Contributors.

C.2 DYNA-DRILL

The Dyna-Drill was born as a result of an idea Mr. Wallace Clark had when he saw a Moyno® pump operating as an auxiliary piece of equipment on an oil rig. The rotor and stator for the Dyna-Drill shown in Figure C.1 are illustrated in Figure C.2a while the basic principle of operation of the Moyno

215
FIGURE 10.1 Dyna-Drill (After Dyna-Drill, 1979)
FIGURE 6.2 (a) Dyna-Drill Stator
(After Dyna-Drill, 1975)

FIGURE 6.2 (b) MvnoP Pump Cross-section
(After Mvno Pump, 1974)
pump is illustrated in Figure C.2b. Smith
International, Incorporated supported the initial
development of this downhole motor, thereby forming
the Dyna-Drill Company in 1964.

The Dyna-Drill is essentially a multi-stage
Moyno pump operating in reverse as a motor which
comprises about one-half of the length of the tool.
The obround, spiral stator shown in Figure C.3 is
made from synthetic rubber which is compressively fit
to reduce slippage. The stator houses the solid steel
rotor which has a regular sinusoidal longitudinal wave
pattern shape which moves eccentrically within the
stator while rotating. The upper end of this rotor
is free ended while the bottom end is attached to the
connecting rod. The connecting rod in Figure C.4
consists of a universal joint that converts the
eccentric motion of the rotor to concentric motion
required for the drive shaft. The bit sub in
Figure C.5 is at the bottom end of the drive shaft
and is the only external moving part.

As the drilling fluid is pumped downward
between the stator and the rotor, the rotor is dis-
placed and rotated within the stator as the fluid
flows along the spiral path of the stator. This in
turn powers the connecting rod, drive shaft, bit sub
and bit.
FIGURE 2.3 End View of Dyna-Drill Stator (After Dyna-Drill, 1975)

FIGURE 2.4 Dyna-Drill Connecting Rod
FIGURE 7.6 Bit Sub

ROTATING BIT SUB
Since the motor is a positive displacement motor, the hydraulic horsepower and torque output are a function of the pressure loss across the motor.

\[
\text{H.P.}_{\text{Hyd}} = \frac{\text{GPM} \times \text{Pressure}}{1714}
\]

\[
\text{Efficiency} = \eta = \frac{\text{H.P.}_{\text{mech}}}{\text{H.P.}_{\text{Hyd}}}
\]

\[
\text{Torque} = \frac{\text{H.P.}_{\text{mech}} \times 63,025}{\text{RPM}} \text{ (in-lb)}
\]

The operational RPM can also be estimated from the change in pressure (ΔP). Therefore, the pressure loss across the motor is a very important factor when drilling with a Dyna-Drill. If the ΔP increases rapidly to a reading greater than twice the operating ΔP, the Dyna-Drill has stalled. The bit weight should be removed quickly when a Dyna-Drill stalls to prevent extensive damage.

The Dyna-Drill configuration lends itself either to a straight housing or bent housing assembly as shown in Figure C.6. The straight housing assembly is used with a bent or articulated sub while the bent housing is attached to the drill pipe with a standard connection. The bent housing tool has a set of ribs on the underside of the tool directly above the bend to help prevent the drill bit from dropping down unintentionally.
Two sizes of the Dyna-Drill have been considered in the final equipment design. The specifications for these two devices are listed in Table C.1

<table>
<thead>
<tr>
<th>O.D. (in)</th>
<th>Length (ft)</th>
<th>ΔP (psi)</th>
<th>RPM</th>
<th>GPM</th>
<th>HP</th>
<th>Wt (lb)</th>
<th>Torque (ft-lb)</th>
<th>Hole Size (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3/8</td>
<td>7</td>
<td>600</td>
<td>1000</td>
<td>25</td>
<td>6</td>
<td>60</td>
<td>30</td>
<td>4-1/2</td>
</tr>
<tr>
<td>6-1/2</td>
<td>19.6</td>
<td>250</td>
<td>305</td>
<td>250</td>
<td>28</td>
<td>1422</td>
<td>467</td>
<td>12</td>
</tr>
</tbody>
</table>

C.3 TURBINE DRILL

In 1960, directional drilling companies were beginning to appear in the oil well industry with a turbine downhole motor attached to a bent sub. This motor made it possible to deflect a well bore without the use of a conventional whipstock.

The turbine motor has three sections to it: a turbine section shown in Figure C.7; a replaceable bearing section shown in Figure C.8; and a rotating bit sub. The turbine section contains bladelike rotors and stators illustrated in Figure C.9. The stator is attached to the outer casing and is held stationary, while the rotor is attached to the shaft. Each rotor/stator section is called a stage. Several stages are combined to make a turbine.

As the drilling mud is pumped down through the turbine, the stator blades direct the fluid into the
FIGURE 7.7 Turbine Section of Turbo-Drill
(After U. of Texas, 1972)

FIGURE 7.8 Replaceable bearing Section
(After Eastman, 1969)

FIGURE 7.9 Turbine Rotor and Stator
(After Eastman, 1969)
rotor blades. The flow of the drilling mud forces the rotor to rotate the shaft clockwise, which in turn drives the bit.

Several difficulties arose in the initial application of a turbine motor to directional drilling. The operating rpm of this motor is approximately 1000 rpm. Therefore, the only bit which could be successfully used with it was a diamond bit, while the high rpm greatly reduced the bearing life. The high rpm's and relatively low horsepower output tended to result in the turbine motor stalling in soft, sticky clay.

When the turbo-drill stalls, there is no direct indication of this condition as there was with the Dyna-Drill.

Finally, the turbo-drill is very sensitive to bending because of the required alignment between the rotor and stator blades. Any bending, resulting from a sharp build angle, would result in binding or excessive damage to the turbine.

For the reason stated above, along with the excessive weight and length of the turbo-drill, lead the writer to the conclusion that this downhole motor would not be considered in the final equipment design recommendations for horizontal drilling in soft ground. Table C.2 lists the various specifications
for two sizes of turbo-drills available from Eastman Whipstock, Incorporated. The cross-section of an Eastman turbo-drill is shown in Figure C.10.

Table C.2 Turbo-Drill

<table>
<thead>
<tr>
<th>O.D. (in)</th>
<th>Lgth (ft)</th>
<th>ΔP (psi)</th>
<th>RPM</th>
<th>GPM</th>
<th>Stages</th>
<th>H.P. max</th>
<th>Wt (lb)</th>
<th>Stall Torque (ft-lb)</th>
<th>Hole Size (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 1/8</td>
<td>18 1/2</td>
<td>328</td>
<td>780</td>
<td>250</td>
<td>60</td>
<td>26</td>
<td>750</td>
<td>272</td>
<td>7 7/8</td>
</tr>
<tr>
<td>6 3/4</td>
<td>23 3/4</td>
<td>369</td>
<td>813</td>
<td>400</td>
<td>76</td>
<td>49.8</td>
<td>1985</td>
<td>591</td>
<td>7 7/8</td>
</tr>
</tbody>
</table>

C.4 ELECTRIC MOTOR

Earth drilling with an electric motor is not a new idea. The first use of this method goes back to the early 1950's in Russia. However, the length of these electrodrills ranged from 36-42-1/2 ft (11-13 m) with power requirements ranging from 100-230 Kw.

The electric motor considered in this thesis for use with a thrust applicator is an order of magnitude smaller in size, while the power requirements are 10 orders of magnitude smaller than these Russian electrodrills. This is because the requirements for drilling small diameter holes in soft ground are minimal compared to that being required of an electro-drill in larger diameter holes.

Continental Oil Company (CONOCO) has successfully adapted an ordinary submersible pump motor to drill 6 in (15 cm) diameter holes in soft coal (Dahl, 1975).
FIGURE C.10 Turbine Drill Cross-section (After Eastman, 1969)
FIGURE C.11 Schematic of Century Electric Motor

Not to scale:
This submersible pump motor is made by Century Electric Motor Company in Gettysburg, Ohio. The specifications for this motor are listed in Table C.3 while a schematic drawing is illustrated in Figure C.11.

The electric motor must be used with a reduction gear box because of the high output rpm's of the motor. A suitable planetary type gear box was designed by Reda Pump Company for one of their submersible motor pumps with available gear ratios varying from 28.51:1 to 3.165:1 for driving the drilling bit at 121-1095 rpm. The outside diameter of this unit is 4-1/2 in (11.4 cm) with a length of about 2 ft (0.6 m), weighing 100 lbs (45.3 kg).

Two important considerations should be made if this electric motor is adapted to drilling in soft ground. Quick trip overload protectors should be used in all three legs of the three phase motor. This will prevent lock-up of the motor if it stalls from an overload and is not restarted immediately.

Another consideration is to maintain a constant flow of drilling fluid over the outside of the motor to prevent overloading. The standard flow requirement is a gallon/minute/H.P. which is easily satisfied by all of the final design models.
Table C.3 lists the important specifications for the Century submersible motor.

<table>
<thead>
<tr>
<th>O.D. (in)</th>
<th>Length (ft)</th>
<th>Voltage</th>
<th>Amps</th>
<th>HP</th>
<th>RPM</th>
<th>Wt (lb)</th>
<th>Hole Size (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-11/16</td>
<td>2.7</td>
<td>460</td>
<td>10.0</td>
<td>5</td>
<td>3450</td>
<td>50</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>(4.7 with gear box)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.5 HYDRAULIC MOTOR

In an attempt to find a stubby, small diameter, lightweight hydraulic motor that could be adapted to the DRILCO thrust applicator, Continental Oil Company (CONOCO) had the W. H. Nichols Company in Waltham, Massachusetts make a special order gerotor pump motor (Coffey, 1975).

The outcome of this special order was a gerotor, internal gear, positive displacement pump motor. This motor was designed for a flow rate of 30 GPM, producing 300 rpm at 10 H.P. output and operating at 75% efficiency. Any type of drilling fluid can be used to drive this motor. Because the torque vibrations of the gerotor are minimal, there is essentially no vibration associated with the operation of this motor.

The most important part of this motor is the gerotor in Figure C.12. The gerotor element consists of an inner and outer gerotor and an eccentric
FIGURE C.12 Gerotor (After Nichols)
locator-ring. The inner gerotor always has one tooth less than the outer gerotor. This unit is placed in a casing or frame which provides housing and porting for the gerotor. The output capacity of this motor is a function of the number of gerotor units that are connected in series. For the previously mentioned design characteristics, the final motor had 16 sets of gerotor units in series.

The principle of operation of the gerotor is shown in Figure C.13.

Inlet ports in step 1 allow drilling fluid to fill a volume equal to the missing tooth. The toothed elements are mounted on fixed centers but turn eccentric to each other with the inner gerotor being mounted to the drive shaft. As the gerotors turn through steps 2 and 3 the chamber in which the fluid is carried decreases in size. At step 4 the fluid is forced out the discharge port into the next gerotor in series.

Table C.4 lists the important specifications for the particular motor designed for CONOCO.

<table>
<thead>
<tr>
<th>O.D. (in)</th>
<th>Length (ft)</th>
<th>ΔP (psi)</th>
<th>RPM</th>
<th>GPM</th>
<th>HP</th>
<th>Wt (lb)</th>
<th>Torque (ft-lb)</th>
<th>Hole Size (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>570</td>
<td>300</td>
<td>30</td>
<td>10</td>
<td>25</td>
<td>175</td>
<td>7</td>
</tr>
</tbody>
</table>
FIGURE C.13 Principle of Operation of Turboror
APPENDIX D

SPECIFICATIONS ON DOWNHOLE THRUST APPLICATORS

D.1 INTRODUCTION

A thruster is defined as a relatively short device which functions solely downhole by providing a base for reactive torque from a drilling motor or for a reactive normal force from a compacting mechanism which in turn forms a subterranean hole. This appendix will elaborate upon four of the devices: the DRILCO thrust applicator, NURAT, U.S. Navy Polytordial Tunneler, and WORM™.

If additional information is required by the reader, he is encouraged to contact the specific individuals on the List of Contributors.

D.2 DRILCO THRUST APPLICATOR

The thrust applicator manufactured by DRILCO, in Midland, Texas is a fully developed and operational thruster invented by Jack Kellner. This device can load and advance any type of drilling motor in any direction. Most of its application to date has been

* The name WORM is the trade mark which the inventor intends to apply to this system. It is so identified to preclude its assuming a generic connotation (Still, 1975).
in horizontal drilling, primarily in coal, with the longest hole being 1000 ft (305 m) at a diameter of 6 in (15.2 cm). Figure D.1 is the 2-3/4 in (7.0 cm) version of the thruster laying beside a 1-3/4 in (4.5 cm) Dyna-Drill.

A schematic of the thrust applicator in Figure D.2 will be helpful in explaining the operation of this device. The thruster is a double-acting cylinder having a hollow piston rod running through both ends. There are two anchor positions: the cylinder anchors, and the piston rod anchors. The anchor pads shown in Figure D.3 are made of steel with cross ribbing to improve their frictional characteristics. The unit shown in Figure D.3 is a complete anchor set for the 5-3/4 in (14.5 cm) which has three anchor pads positioned at 120° intervals around the sleeve. The dark area next to the anchor pad, in Figure D.3, is a hard elastic rubber which is molded to the metal body, including the entire internal circumference of the anchor sleeve. This rubber serves two purposes. First it provides a means for returning the anchor pad to its original position after the hydraulic pressure is released. It also eliminates the problem of any particles being caught underneath the anchor pads as they contract for repositioning. As many as three sets of anchor
FIGURE D.1 DRILCO Thrust Applicator System
FIGURE D.2 Schematic of Thrust Applicator
FIGURE 3.2 [PHOTO] Anchor Pad
units can be attached to the thruster in the cylinder anchor section, while at the present time only one set of anchor pads can be attached at the piston anchor section.

In order to prevent rotation, there is a spline between the extension piston rod and anchor cylinder section.

The operation sequence of this thruster is as follows: (1) pressure is applied to the cylinder anchors, securing them to the drill hole wall; (2) pressure is then applied to the "out-hole" piston which moves the piston rod forward, thereby providing forward thrust to the drilling motor as it advances in the hole (the advance is limited by the stroke of the device); (3) at the end of the stroke the cylinder must be reset, therefore the piston rod anchors are set against the drill hole wall; (4) next pressure is released from the cylinder anchors which retract; (5) pressure is then applied to the "in-hole" side of the piston, forcing the cylinder toward the bit one stroke length. The thruster is then in position for another stroke. The hydraulic power unit is designed so that the resetting operation is done automatically in 15-20 seconds (Kellner, 1974).

The auxiliary equipment located on the surface for this thrust applicator include 3-5 hoses which
are attached to the rear of the device, a 5 H.P. hydraulic power unit, and a means for powering the drilling motor which can be either hydraulic (water or mud) downhole motor, modified hydraulic motor, or an electric motor. Figure D.4 illustrates the surface equipment setup and required operating personnel. This picture was taken at the DRILCO test site in Midland, Texas.

Presently, DRILCO has the ability and experience to produce a thrust applicator which would be more compatible to soft ground operation than the current models. Future research and development for DRILCO in this area will obviously be a function of the market's demand for this thrust applicator.

Table D.1 lists the important specifications for the thrust applicator.

<table>
<thead>
<tr>
<th>O.D. (in)</th>
<th>Length (ft)</th>
<th>Stroke (in)</th>
<th>Weight (lb)</th>
<th>Hole Size (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3/4</td>
<td>7.6</td>
<td>18</td>
<td>80</td>
<td>3-1/8</td>
</tr>
<tr>
<td>5-3/4</td>
<td>10.6</td>
<td>30</td>
<td>200</td>
<td>6</td>
</tr>
</tbody>
</table>

The primary user of this thrust applicator has been the Continental Oil Company (CONOCO). As a result of their research program, a deflection shoe and orientating motor have been developed and
FIGURE D.4 Operational Test of DRILCO Thrust Applicator (After DRILCO, 1975)
successfully tested in combination with the thrust applicator.

The deflection shoe and orientating motor are shown in their respective locations in Figure D.2. The deflection shoe serves two purposes: (1) directional control device which applies a lateral force on the bit, (2) correction device for precession of the thruster. The function of the deflection shoe as a directional control device is thoroughly explained in Chapter 3. The function of the deflection shoe as a correction device for precession results from the thruster inherently precessing 1/2° per stroke because of spline error (Edmond, 1975). The deflection shoe is fully extended under 600 psi (4140 kN/m²) and requires a constant pressure of 220 psi (1518 kN/m²) to maintain a constant elevation on a horizontal drill path.

The orientating motor is hydraulically operated in two basic modes. The first mode is a slow pulse which orients the deflection and a pulsed signal to correct for precession. The orientating motor initially rolls at 7° increments which then settles back to a total angular change of 4° where it positively locks into position.

One of the most significant improvements to the thrust applicator made by CONOCO has been the
reduction of hydraulic lines from 5 to 3 by adding a
downhole valving system. The valving system is a
set of hydraulic control valves with one control
valve for the thruster and the other one for the
orientating motor-deflection shoe circuit. Both of
these systems vent the fluid to the annulus, thereby
completing the open hydraulic system. A future
development will be to have a completely closed
hydraulic system which would mean having only one
hose for the slurry line with a control line or hose
within this slurry hose for control of the closed
hydraulic system. The total resistance due to the
normal weight friction component will then be
decreased, thereby increasing the operational dis-
tance of the thrust applicator.

CONOCO has been able to drill a 6 in (15.2 cm)
diameter hole 1000 ft (305 m) horizontally in soft
coal. They have also been able to use three
cylinder anchor sets and operate in 1 tsf (96 kN/m²)
soft coal using the 5-3/4 in (14.6 cm) O.D.
thrust applicator.

D.3 NURAT

NURAT is an acronym for Newcastle University
Root Analogue Tunneller. This particular device was
the result of research performed by Dr. D.
Hettiaratchi, lecturer in the Department of
Agricultural Engineering at The University of Newcastle Upon Tyne, Newcastle Upon Tyne, England. No detailed information could be released by the sponsoring agency, British Gas Corporation, as a result of patents pending.

The device is not only a thruster, but also penetrates the soil with its cone-shaped front piece. The principle of operation for NURAT is based on Dr. Hettiaratchi's research of the mechanism associated with root penetration in dense soil. "The tunnel is formed by expansion of a hole from zero radius (Hettiaratchi, 1974)." As the anchor pads are extended radially outward, stress relief occurs at the tip of the device, thus allowing it to penetrate out ahead of the main body, compacting the soil around the cone.

The prototype of NURAT is approximately 3.3 ft (1 m) long and creates a hole about 6 in (15 cm) in diameter. The penetration rate of this prototype device was about 20 ft (6 m) per hour. There was no directional control device for the NURAT prototype.

The production development and future research programs involving NURAT have been passed on to the British Gas Corporation. The present developmental work being conducted by the British Gas Corporation
is geared to meet the following general design specifications (Spearman, 1974), stated in Table D.2.

Table D.2 Design Specifications for NURAT

<table>
<thead>
<tr>
<th>O.D. (in)</th>
<th>Length (ft)</th>
<th>Weight</th>
<th>Power Source</th>
<th>Rate of Penetration</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>5</td>
<td>Capable of being handled by two persons</td>
<td>Mobile Hydraulic Power Pack</td>
<td>60 ft/hr in sand or clay</td>
<td>Should have ability to reverse direction</td>
</tr>
</tbody>
</table>

D.4 U.S. NAVY POLYTOROIDAL TUNNELING THRUSTER

The Naval Civil Engineering Laboratory at Port Hueneme, California conducted a feasibility study of vermiculating or wormlike motion as applied to a thrust device. The objective of this study was to determine the feasibility of a polytoroidal tunneling thruster concept, especially its application as a thrust device for penetrating rock, clay, or sand in combination with a drilling motor or direct displacement method of penetration. High thrust was developed by using large contact surfaces while axial movement was provided by means of a vermiculating motion. Vermiculation is "a motion in which a longitudinal wave traverses a contacting surface in the direction of translation (Williams and Gaberson, 1973)."
The basic idea for a polytoroidal tunneling thruster evolved from careful study of the tunnel boring machines. It was noted that these devices lacked the versatility to operate in both hard rock and soft ground. Therefore, the theory behind the polytoroidal tunneler applies large contact surfaces, using low operating pressures, in order to provide a high thrust capability. The model used to test this theory is shown in Figure D.5.

The toroids squeeze against the tunnel wall and remain in position due to the frictional characteristics of the soil media. The thrust provided by each toroid was calculated using, \(P = \pi Dwp \gamma \), where \(D \) is the toroid diameter, \(w \) is the surface contact width, \(p \) is the inflation pressure, and \(\gamma \) is the coefficient of friction of the soil. This is the same relationship as the Mohr-Coulomb failure criteria (i.e. \(\tau_{ff} = \sigma_1 \tan \phi \)) for cohesionless soils. If both sides of the Mohr-Coulomb equation were divided by the contact area, then the resulting force would be maximum thrust available from the thrust device.

The operation of the polytoroidal thruster is illustrated in Figure D.6. In step (a) the most forward toroid is deflated, in step (b) the device has advanced one step because the forward bag expended simultaneously while the after bag deflated.
FIGURE D.5 U.S. Navy Polytoroidal Tunneling Thruster (After U.S. Navy, 1973)
FIGURE D.6 Operational Sequence of the Polytoroidal Thruster
(After U.S. Navy, 1973)
In step (c) the middle bag deflated while the after bag was inflating. Finally, in step (d) the forward bag is deflated. This then completes the cycle. With each step described the thruster moves forward.

Preliminary experimental tests verified that the theory was feasible. These results initiated a search for material to make the toroids stronger, more durable, and more flexible. The internal working pressure was set at 10-50 psi (69-315 kN/m²) while other design criteria included a cyclic inflating/deflating life of 10000 cycles, low weight-to-strength ratio, low permeability to gases, and a high resistance to an adverse environment.

The result of this industrial search for a suitable toroid concluded that bladders had to be custom made. "The technology and the materials required to fabricate such bladders are available commercially (Pal and Gaberson, 1974)." However, the purchase cost of these bladders was considered noneconomical.

A second test was performed using bicycle inner tubes as shown in Figure D.5. The model was able to lift 600 lb (272 kg).

The results of their feasibility study indicated that the polytoroidal tunneler is a very reasonable method of applying thrust to a downhole motor.
For example, an 8 ft (2.4 m) device was axially tested with a thrust of 55000 lb (540 N) with an air pressure of 50 psi. However, due to the high cost for developing this device, the Naval Civil Engineering Laboratory was unable to continue its research for this project.

D.5 WORM

WORM is an acronym for Wheel-less Orthogonal Reaction Motor which is a downhole drilling system as shown in Figure D.7 and was invented by William Still from Aerospace Industrial Associates, Incorporated. This design approach solves two major and costly problems in drilling horizontally at long distances. First, like the previous thrusters, it provides a constant force at the bit, independent of the distance along the drill hole, and secondly it provides adequate maneuverability and orientation within the system so that it can function continuously without stopping for a survey (Still, 1975).

Presently, the WORM is still in the embryonic stages of development and the principle of operation has only been tested with a small model. No prototype has been built or tested in a subsurface environment, to the best of the author's knowledge.
The major design difference between the WORM and a thrust applicator is the replacement of the conventional individual anchor pads with elastomeric cells, as shown in Figure D.7. This then is an advanced form of the same concept presented in the section on the U.S. Navy Polytoroidal Tunneler. The locomotion principle applied here is the vermiculating or worm-like motion.

Figure D.8 is an explanation of exactly how WORM propels itself down the hole. The cells shown in Figure D.8 are what the inventor calls, "vector force cells." There are two types of these cells, an axial and radial cell. The axial cell expands and applies force parallel to the axis of the borehole with insignificant radial expansion. The radial cells then expand radially outward from the borehole axis to provide contact surface for anchoring. The choice of an elastomer for the cell material allows for cyclic expansion without excessive damage to the drill hole wall. In addition, the properties of the elastomer, such as high abrasion resistance, high strength, and its incompressibility, make it a very desirable material for use in a subterranean environment (Still, 1975).

Directional control of this device is accomplished by controlling the degree of parallelism between the
"A" expands, locking drill string at these points.
"B" expands, forcing "C" to right and compressing "D".
"C" & "D" have been released from that shown in 3 below.

"C" expands, locking drill string at these points through "B" & "D".
"A" & "B" are released and "D" expands forcing "C" and "A" apart.
"A" is attached to drill string, "C" is not. "C" is locked to wall of drill hole. Thus "A" forces drill string to right.

"A" expands, relocking drill string at new point cycles, then repeats to 1 above.

Note: Single action, which provides one thrust per cycle is the simplest; other actions which provide smooth power flow have been derived.

FIGURE D.8 Operational sequence of the WCRM (After Still, 1975)
various muscle units. "A controlled lack of parallelism will force the WORM body to swing into an arc of fixed radius of curvature (Still, 1975)."

The WORM, as shown in Figure D.7 has a hydraulic drilling motor to power the drill bit. Also shown in this figure, directly behind the motor, are annulus openings for the drilling fluid to return through the WORM unit and exit out the up hole end of the body to provide lubricity within the drill hole for the drill pipe.

The WORM concept has many positive aspects to it, however since it has not been built as a prototype and field tested, it was not considered in the final equipment design.
APPENDIX E
DIMENSIONLESS ANALYSIS CALCULATIONS

E.1 INTRODUCTION

A review of the literature and several communications with key personnel in the horizontal directionally controlled drilling industry revealed that no system of comparison or correlation existed for the various drilling systems available. One major reason given for this state was that the variability of each drilling situation does not lend itself to a simple dimensionless ratio. Another reason was the difficulty in developing a set of parameters that, first would be meaningful, and second, be practical. Therefore, the selection of comparative parameters was tempered by the dual requirement of applicability in a variety of geological conditions and simple practicality.

Of the four parameters presented, three are dimensionless while the fourth one has units which are not significant for comparison. The dimensionless ratios are the shearing parameter, jetting parameter, and the fluid system parameter.
The dimensional parameter is the drill motor parameter.

Each of these parameters will be presented separately along with the logic of their derivation and the criteria necessary to evaluate a system with them. In addition, a sample calculation will be followed by a table which includes all of the values for the four systems selected. The reasons for evaluating these particular four systems are explained in Chapter 4.

E.2 SHEARING PARAMETER

The shearing parameter has been developed to indicate some measure of the torque required to fail the soil at the outer edge of the bit face, in relation to the torque that is available from a particular motor with a specific size drill bit. The torque required to shear the soil was derived from the cylindrical torque equation with the maximum torque resulting at the bit-drill hole wall interface.

\[
\frac{T_{\text{max}}}{r} = J
\]

\[
\gamma_{\text{max}} = S_u = \text{undrained shear strength of the soil}
\]

\[
r = \text{radius at the bit-soil interface}
\]

\[
J = \frac{r d^4}{32} = \text{polar moment of inertia}
\]
The resulting parameter is:

\[SP = \frac{S_u (J)}{r} = S_u \frac{\gamma d^3}{T} \]

Two different undrained shear strengths were adopted for these calculations. An \(S_u = 0.25 \text{ tsf} \) (soft clay) is the best condition for shearing because of its low resistive shear strength while conversely, an \(S_u = 2.0 \text{ tsf} \) (stiff clay) is the worst soft ground condition with respect to shearing at the outer edge of a bit face.

The following is a sample calculation for a 2-3/8 in (6 cm) Dyna-Drill motor in a 4-1/2 in (11.4 cm) hole.

\[S_u = 500 \text{psf} \]
\[d = 4-1/2 \text{ in} = 0.375 \text{ ft} \]
\[\text{Torque} = 30 \text{ ft-lb} \]

\[S.P. = S_u \frac{\gamma d^3}{T} = \frac{500 \times (0.375)^3}{16(30)} = 0.173 \]

The criteria established to evaluate the shearing parameter is that, if the ratio is less than one, the drill motor and bit will be able to shear
the soil from a dead start. A value greater than one does not mean that the motor/bit combination will not be able to drill in that specific soil, but instead that if the drilling operation depended solely on the shear ability of the system at the soil-bit interface, then the system could not drill.

Table E.1 indicates the various values for the shearing parameter for each system considered in the final equipment design.

Table E.1 Shearing Parameters

<table>
<thead>
<tr>
<th>Drill System</th>
<th>System Torque (ft-lb)</th>
<th>Shearing Parameter $S_u=500$ psf</th>
<th>$S_u=4000$ psf</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3/8 in O.D. Dyna-Drill</td>
<td>30</td>
<td>0.173</td>
<td>1.38</td>
</tr>
<tr>
<td>4-1/2 in hole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-1/2 in O.D. Dyna-Drill</td>
<td>467</td>
<td>0.21</td>
<td>1.68</td>
</tr>
<tr>
<td>12 in hole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 in O.D. Hydraulic Motor</td>
<td>175</td>
<td>0.111</td>
<td>0.89</td>
</tr>
<tr>
<td>7 in hole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-11/16 in O.D. Electric</td>
<td>175 @ 150 RPM</td>
<td>0.111</td>
<td>0.89</td>
</tr>
<tr>
<td>Motor 7 in hole</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
E.3 JETTING PARAMETER

One of the most important considerations to account for when selecting a drilling system to bore a hole in soft ground is, whether, in fact, the soil in front of the bit is being eroded under a high velocity stream of drilling fluid from the bit orifice. Some degree of jetting is desirable in order to increase the efficiency of the drill bit, however, an excess of jetting will create a large cavity in front of the bit as explained in Chapter 3.

The jetting parameter (JP) represents the velocity of a fluid to cause erosion of a particular soil in comparison to the jet stream velocity emitting from the bit orifice, or \(JP = \frac{V_e}{448.8} \text{GPM}/A_B.0 \). The erosion velocity has been taken for water and not drilling mud since no data was available for mud slurry. Therefore, the erosion velocity is probably lower than it would be for a drilling mud.

Another important assumption is the jet stream flows directly from the orifice to the borehole face. This is a conservative assumption, since the flow pattern is in reality a vortex and the vortex flow would increase the erosion effect at the bit face.

The erosion velocity data was found for a sand-gravel soil and a clay soil. The value adopted for the erosion of sand was taken from Leet and Judsen
(1971), Figure 11.16. The erosion velocity in this figure is for turbulent flow in a stream for a 7mm diameter particle and equal to 9.84 ft/sec (3.0 m/sec). Several reasons for using this value include:

1) there were no values available in the literature for the critical erosion velocity in sand (i.e. that required for initial movement of a particle of sand at the soil-liquid interface; 2) the actual flow within the bit face is, in fact, turbulent; and (3) the 7 mm diameter size particle is an average particle diameter for compacted, cemented sands. A value for the erosion velocity in clay was calculated and empirically derived in the literature. An empirical average value was taken from Graf (1971) and equal to 4.69 ft/sec (1.43 m/sec).

A sample calculation of the parameter follows:

For sand \(V_e = 9.84 \text{ ft/sec} \)

For a 7 in Tricone bit with a bit orifice diameter of 13/32 in:

\[
\text{Orifice Area} = \frac{\pi d^2}{4} = \frac{\pi (13/32)^2}{4} = 0.0009 \text{ ft}^2
\]

\[
\text{JP} = \frac{V_e (448.8)}{GPM} = \frac{9.84(448.8)}{30} = 0.132
\]

\[
\frac{A_{B.O.}}{0.0009}
\]
The criteria used to evaluate this ratio is that if the velocity required for erosion is greater than the bit orifice velocity ($JP > 1$), no erosion at the bit face occurs. Therefore, the smaller JP is the more erosion occurs in front of the bit.

To date there is no maximum limit to how small this number can be before detrimental jetting of a cavity occurs in the area surrounding the bit. However, this parameter can be used to evaluate the relative effects of jetting between various bit/motor/flow rate combinations for different soil environments.

Table E.2 presents the results of the jetting parameter for the various bit sizes considered in the equipment designs. The diamond bit is not included because it does not have orifices but instead has fluid passages.

<table>
<thead>
<tr>
<th>Bit Type</th>
<th>O.D. (in)</th>
<th>GPM</th>
<th>Orifice Dia (in)</th>
<th>Orifice Area (ft²)</th>
<th>JP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tricone</td>
<td>7</td>
<td>30</td>
<td>13/32</td>
<td>0.0009</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>325</td>
<td>5/8</td>
<td>0.0021</td>
<td>0.029</td>
</tr>
<tr>
<td>Drag</td>
<td>4-1/2</td>
<td>25</td>
<td>5/16</td>
<td>0.000533</td>
<td>0.094</td>
</tr>
</tbody>
</table>
DRILL MOTOR PARAMETER

The two previously discussed parameters have been dimensionless and have dealt with the geological aspects of drilling in soft ground. We will now turn our attention to the drill motor parameter which will deal with the equipment characteristics of each drilling motor. The parameter is not dimensionless, however, the dimensions that do result from this ratio are not meaningful to the analysis. What is meaningful, is that the horsepower output of the motor with respect to the size (i.e. volume) of the motor, is compared to the torque output. Therefore, the drill motor parameter (DMP) = H.P.(550)/Vol/Torque.

A more meaningful parameter for evaluating different motors in various soil conditions was presented by Dr. Neville G. W. Cook at the Third Congress of the International Society for Rock Mechanics (Cook and Harvey, 1974). Dr. Cook evaluated the efficiency of excavating in rock in terms of the specific energy of rockbreak ing and the specific power, that is the power that can be delivered to a unit area of the working face. The specific energy is the energy consumption per unit volume of the original solid rock that was broken. The specific energy is a function of the type and condition of the rock, the strength, and the size of broken particles. Dr. Cook
and his associates had done previous studies to determine these values for different size particles. The relationship adopted here is \(R = 3600P/S \) where \(P \) is the power delivered to the working face per unit area, \(S \) is the specific energy for the method used, and \(R \) is the rate of penetration along the tunnel axis. Therefore, each system was compared on the basis of its rate of penetration.

This type of comparison would have been adopted to this thesis, however, the specific energies of various soils are unknown. This then is the reason for adopting the drill motor parameter in the form \(DMP = H.P. \sqrt{\frac{550}{V_{m}}} / \text{Torque} \).

The following sample calculation is for a 2-3/8 in (6 cm) O.D. Dyna-Drill.

\[
\text{Output H.P.} = 6 \\
\text{Vol} = \frac{\pi d^2 (L)}{4} \quad \text{where } L = 7 \text{ ft} \\
\text{Vol} = \frac{\pi (2.375)}{4(144)} (7) = 0.215 \text{ ft}^3 \\
\text{Torque} = 30 \text{ ft-lb} \\
\text{DMP} = \frac{6(550)}{0.215(30)} = 511.6
\]

The evaluation criteria for this parameter is one which considers the smallest value of DMP to be the most efficient use of the volume of the motor for the rated design power and torque outputs.
Table E.3 lists the results of DMP calculations for the four proposed equipment designs.

<table>
<thead>
<tr>
<th>Table E.3 Drill Motor Parameter</th>
<th>H.P.</th>
<th>Volume (ft³)</th>
<th>Torque (ft-lb)</th>
<th>DMP (1/ft³·sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3/8 in O.D. Dyna-Drill</td>
<td>6</td>
<td>0.215</td>
<td>30</td>
<td>511.60</td>
</tr>
<tr>
<td>6-1/2 in O.D. Dyna-Drill</td>
<td>28</td>
<td>4.52</td>
<td>467</td>
<td>7.30</td>
</tr>
<tr>
<td>5 in O.D. Hydraulic Motor</td>
<td>10</td>
<td>0.79</td>
<td>175</td>
<td>39.78</td>
</tr>
<tr>
<td>3-11/16 in O.D. Electric Motor & Gear Box @ 150 RPM</td>
<td>5</td>
<td>0.348</td>
<td>175</td>
<td>45.2</td>
</tr>
</tbody>
</table>

E.5 FLUID SYSTEM PARAMETER

The final parameter relates the annular pressure in the drill hole to the hydraulic fracture gradient of the formation being drilled. The annular pressure is the hydraulic pressure required at the bit to push the drilling fluid back up and out of the hole. A convenient method used to express this pressure in mud weight is the equivalent circulating density which is completely explained in Chapter 3 and Appendix B. The hydraulic fracturing gradient for this parameter has been taken from the thesis work performed by Hedberg (1975). Therefore, the final form of the fluid system parameter (FSP) is
ECD/Hyd. Frac. Grad.

The purpose of this parameter is to objectively calculate whether, in fact, the soil formation will fracture in the direction of the minor principle stress, resulting in loss of circulation of the drilling fluid.

A simple calculation of the FSP for a 2-3/8 in (6 cm) O.D. Dyna-Drill is as follows:

\[
\text{ECD}=1.21 \text{ g/cm}^3 \text{ (at 100 ft depth)}
\]

\[
\text{Hyd. Frac. Grad.}=1.6 \text{ g/cm}^3 \text{ @ clay (Hedberg, 1975)}
\]

\[
1.5 \text{ g/cm}^3 \text{ @ sand}
\]

\[
\text{FSP}=\frac{\text{ECD}}{\text{HFG}} = \frac{1.21}{1.6} = 0.76 \text{ @ clay below the water table}
\]

The criteria for evaluating this parameter is such that the ECD is not greater than the hydraulic fracture gradient. If the ECD is greater, then loss of circulation occurs which could result in the drilling system becoming stuck in the hole.

Table E.4 lists all of the values of FSP for the various systems considered.
Table E.4 Fluid System Parameter

<table>
<thead>
<tr>
<th>Motor Type</th>
<th>ECD (g/cm³)</th>
<th>Fracture Gradient (g/cm³)</th>
<th>FSP Clay Depth</th>
<th>FSP Sand Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3/8 in O.D. Dyna-Drill</td>
<td>1.3</td>
<td>1.6 1.5</td>
<td>0.76 0.81</td>
<td>0.91 0.97</td>
</tr>
<tr>
<td>6 1/2 in O.D. Dyna-Drill</td>
<td>1.12</td>
<td>1.6 1.5</td>
<td>0.73 0.78</td>
<td>0.88 0.94</td>
</tr>
<tr>
<td>3 11/16 in O.D. Hydraulic Motor</td>
<td>1.13</td>
<td>1.6 1.5</td>
<td>0.73 0.78</td>
<td>0.89 0.95</td>
</tr>
</tbody>
</table>

Note: The electric motor was not considered because it only requires a minimum flow rate and pressure for cooling and voiding drill fluid from the drill hole.