ESSAYS IN ECONOMIC THEORY

by

VINCENT PAUL CRAWFORD
A.B., Princeton University
1972

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE OF DOCTOR OF
PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF
TECHNOLOGY

May, 1976

Signature of Author ..

[Signature]

Department of Economics, April 8, 1976

Certified by ..

Thesis Supervisor

Accepted by ..

Chairman, Departmental Committee on Graduate Students

[Stamp: JUL 8 1976]
ABSTRACT

ESSAYS IN ECONOMIC THEORY

Vincent Paul Crawford

Submitted to the Department of Economics on April 14, 1976 in partial fulfillment of the requirements for the degree of Doctor of Philosophy

The first essay, "Learning Behavior and the Noncooperative Equilibrium," is based in part on my article, "Learning the Optimal Strategy in a Zero-Sum Game," which appeared in *Econometrica* in September, 1974. In it, I investigate the possibility of players locating the mixed-strategy equilibrium of a noncooperative n-person game through an iterative learning process. Learning takes place during repeated play of the game, in which the players have no direct knowledge of the payoff function, but are allowed to record what happens during play. In this context, all members of a wide class of behaviorally plausible learning mechanisms are shown to be locally unstable for "almost all" noncooperative n-person games with solutions involving mixed strategies. These learning mechanisms are not generically unstable for games where the noncooperative equilibrium involves only pure strategies. Thus, to the extent that economists rely on adaptive justifications for using optimizing models to describe economic behavior, they must be especially cautious in applying the noncooperative equilibrium as a solution concept when it requires that players employ mixed strategies.

The second essay, "A Game of Fair Division," examines the divide and choose method as a resource allocation device. In the pure trade case, the noncooperative equilibrium of the game that arises when two agents who know each other's preferences agree to use the method is characterized and shown, under very general assumptions, to have several interesting properties. While the allocation of goods resulting from the game need not be Pareto-efficient in general, it is fair in the sense that neither agent envies the other's consumption, and it is an efficient point in the set of all fair allocations. The game confers an advantage on the divider, and as a result its allocations treat agents less equally than equal-income competitive allocations. When both agents have identical preferences, however, the Pareto-inefficiency, divider's advantage, and unequal treatment all disappear, and these results are robust in the sense that if agents have nearly identical preferences, nearly equal treatment and near-Pareto-efficiency
result. Thus, the divide and choose method is fairly attractive in general, and extremely attractive when preferences are similar, since in this case it achieves, at very low administrative cost, an allocation that is nearly as equitable and efficient as a feasible allocation can be.

All of these results except the one establishing the relationship between game allocations and equal-income competitive allocations continue to hold when production is possible. This fact, coupled with the attrition of the optimality properties of alternative arbitration devices caused by production, makes the divide and choose method still more attractive with production than in the pure-trade case. When the divide and choose process is followed by cooperative trade that players anticipate in their strategy choices, some of the results, notably the existence of divider's advantage, go through. However, none of the strong results obtained in the two-person case generalize to n-person versions of the divide and choose game.

Thus, the theoretical evidence seems to favor wider application of the divide and choose method to resolve bargaining disputes. Divorce settlements, in particular, seem to be an area where large gains in welfare could be realized.

Thesis Supervisor: Franklin M. Fisher
Title: Professor of Economics
ACKNOWLEDGEMENTS

I owe my greatest debt to the members of my thesis committee -- Franklin Fisher, Hal Varian, and Martin Weitzman. Each contributed greatly to my interest in and knowledge of economic theory, as well as to the form and content of this thesis. Many others have made useful comments on earlier drafts of one or both essays, notably Robert Bishop, Jacques Crémer, Clifford Donn, Jerry Hausman, Marc Lonoff, James MacKinnon, Paul Samuelson, Robert Solow, and several anonymous referees. The manuscript was cheerfully deciphered and beautifully typed by Vicki Elms. Finally, she and several other friends -- Peter Berck, Bev Cayford, Bill Cheney, Sally Ann Dodge, Lex Kelso, Rick Mishkin, Jeff Perloff, Mary Kay Plantes, Bernie Reddy, Don Sillers, Alix Werth, and Steve Wiggins -- provided much encouragement and helped to create an atmosphere in which writing a thesis was not only tolerable, but a pleasure.
TABLE OF CONTENTS

LEARNING BEHAVIOR AND THE NONCOOPERATIVE EQUILIBRIUM 7

1. INTRODUCTION .. 7
2. A SIMPLE MODEL OF LEARNING BEHAVIOR 10
3. EXTENSION TO THE GENERAL CASE 19
4. SIMULATION EXPERIMENTS 20
5. CONCLUSIONS .. 22
FOOTNOTES .. 23
REFERENCES .. 26

A GAME OF FAIR DIVISION 29

1. INTRODUCTION .. 29
2. THE PURE-TRADE DIVIDE AND CHOOSE GAME 33
3. THE DIVIDE AND CHOOSE GAME WITH PRODUCTION 55
4. THE DIVIDE AND CHOOSE GAME WITH COOPERATIVE TRADE. 64
5. FURTHER GENERALIZATIONS; CONCLUSIONS 69
FOOTNOTES .. 74
REFERENCES .. 79

BIOGRAPHICAL NOTE .. 81
TO MARJORIE AND BENNETT
LEARNING BEHAVIOR AND THE NONCOOPERATIVE EQUILIBRIUM

1. INTRODUCTION

To insure the existence of a noncooperative equilibrium for discrete n-person games, Nash [8] found that it was necessary to allow players to employ mixed strategies. The standard method for computing equilibrium mixed strategies is to solve a complex and rather artificial mathematical programming problem. Because the noncooperative equilibrium is sometimes used as a descriptive model of economic behavior, it is reasonable to ask if mathematically unsophisticated players will arrive at a mixed-strategy noncooperative equilibrium if they follow behaviorally plausible rules of thumb instead of optimizing formally.¹

For the special case of zero-sum, two-person games, Brown [2], Brown and von Neumann [3], and von Neumann [12] have provided rule-of-thumb analog methods that converge to the solution and are conceptually simpler than the mathematical programming method. Unfortunately these papers, while highly successful in terms of their goals of improving computational techniques, do not provide a behavioral justification for the mixed-strategy solution, even in this special case. Brown's [2] algorithm, styled "solution by fictitious play," comes closer than the others. He suggests that if two "statisticians" played the same game many times,
each at each play selecting the pure strategy that would have been optimal against the mixture of all his opponent's past pure strategy choices, the mixed strategies generated by this process would average in the long run to the solution of the game. This conjecture was later proved by Julia Robinson [10]. Brown's "statisticians," however, arrive at the solution through myopic attempts to outguess their opponents, much like the duopolists of Cournot, and thus fail to accept the rationale of the mixed-strategy solution.\(^2\) They also give fully as much weight to the distant past as to the immediate past in estimating their opponents' current strategy mixtures.

In 1966, Rapoport [9, pp. 145-157] took a first step in the behavioral direction, analyzing what he called "an inductive theory of games." He considers two players repeatedly playing a zero-sum game without direct knowledge of the payoff matrix. They begin with an arbitrary mixed strategy and change it experimentally, responding in proportion to improved payoffs by continuing the change that resulted in the improvement. The system of linear differential equations that reflects this process generates sinusoidal oscillations about the solution of the game, with constant amplitude determined by initial conditions. While the solution of the game is an equilibrium in this context, it is not a stable one. Rapoport nevertheless concludes that players can arrive at the solution through empirically based revisions of their
strategies, since the mixed strategies generated by his process will average over time to the solution.

This study, while of interest, has several important shortcomings. By substituting expectations for the realizations of the random payoffs, Rapoport is using a linear deterministic model to describe a stochastic process. While this simplification is often justified, it is a particularly misleading one when the deterministic model falls on the "knife-edge" between stability and instability. In this case, the deterministic model will generate oscillations with constant amplitude, while the "true" stochastic model generates oscillations whose expected amplitude increases over time. Therefore, in a stochastic version of Rapoport's model the natural zero/one probability boundaries will soon come into play, and the linear model he postulates cannot continue to hold. Additional difficulties are that Rapoport's formulation is limited to the case where each player has only two pure strategies and has no natural extension to the general case, and that his players fail to use all available information in adjusting their strategies. Finally, the differential equation formulation seems inappropriate for a process that is essentially discrete.

In this light, I set out to find a simple, behaviorally plausible model of the learning process that takes place when players repeatedly play a noncooperative game without direct knowledge of the payoff matrix. I hoped that such a process would converge in time to the solution of the game. The outcome of this
research is, unfortunately, the negative result proved in this paper, that all members of a wide class of such models are locally unstable for "almost all" games without solutions in pure strategies. In Section 2 of this essay I shall present the model and prove the basic theorem, which applies directly only to games whose mixed-strategy solutions have all positive probabilities. In Section 3 I shall argue that the results of Section 2 also apply to "almost all" games whose mixed-strategy solutions include some zero probabilities as well. Finally, Section 4 will summarize the results of some simulation experiments with the model and Section 5 will discuss the implications of the result.

2. A SIMPLE MODEL OF LEARNING BEHAVIOR

Consider n players repeatedly playing a discrete noncooperative game whose solution is in mixed strategies with all positive probabilities. They have no direct knowledge of the payoff function, but are allowed to record their payoff together with the pure strategy actually played after each play of the game. They pause after each group of P plays to evaluate their returns and adjust their strategy mixtures, in an attempt to improve their returns if possible. P is taken to be sufficiently large for the law of large numbers to make the difference between average returns and their expectations negligible; this implies
that information from still earlier periods is obsolete. It is highly unlikely that this simplification will affect the qualitative behavior of the models studied here.

Under these conditions, it is reasonable to assume that each player adjusts the probability with which he plays each pure strategy in response to the difference between the average return from that strategy and the average return from the entire game over the period just completed. Formally, at time t, player i assigns the probabilities $z_t^i = (z_{1t}^i, \ldots , z_{m_i-1t}^i)$ to the first m_i-1 of his m_i pure strategies. Let $z_t = (z_1^t, \ldots , z_n^t)$, and define

$$\theta^i_{j}(z_t) = \lambda^i_{j}(z_t) - H^i(z_t), \quad (i=1, \ldots , n; \ j=1, \ldots , m_i),$$

where $\lambda^i_{j}(z_t)$ is player i's expected gain from playing his j^{th} pure strategy, and $H^i(z_t)$ is his expected gain from an entire play of the game. Let the functions F^i be any strictly increasing functions that satisfy $F^i(0) = 0$ and are once continuously differentiable at the origin, and define

$$G^i[\theta^i_{j}(z_t), z_{jt}^i] = \text{Max} \ {F^i[\theta^i_{j}(z_t)]}, -z_{jt}^i,$$

$$(i=1, \ldots , n; \ j=1, \ldots , m_i).$$
Then the system of nonlinear difference equations implied by the above assumptions can be written as follows:

\[
(2.3) \quad \frac{z^i_{jt}}{z^i_{jt}} = \frac{z^i_{jt-1} + G^i[\theta^i_j(z_{t-1}), z^i_{jt-1}]}{1 + \sum_{k=1}^{m_i} G^i[\theta^i_k(z_{t-1}), z^i_{kt-1}]} , \quad (i=1, \ldots, n; \ j=1, \ldots, m_i).
\]

(2.3) states that the mixed-strategy probability \(z^i_j \) is adjusted in response to \(\theta^i_j \), the difference between the average return from the player i's \(j \)th pure strategy and the average return from the entire game. Appropriate modifications are made to deal with boundaries, and the probabilities are deflated to insure that they sum to unity. This system is closely related to the one used by Nash [8] in his fixed-point argument for the existence of a noncooperative equilibrium. Substituting from (2.2) shows that the numerator of the RHS of (2.3) is nonnegative. The denominator is strictly positive, since, by (2.2),

\[
(2.4) \quad 1 + \sum_{k=1}^{m_i} G^i[\theta^i_k(z_{t-1}), z^i_{kt-1}] \geq 1 - \sum_{k=1}^{m_i} z^i_{jt-1} = 0 ,
\]

\((i=1, \ldots, n) \),

where the inequality is strict unless \(F^i[\theta^i_j(z_{t-1})] \leq -z^i_{jt-1} \) for
all $j=1,\ldots,m_i$. But multiplying (2.1) by z_{jt}^i, summing over j, and recalling the definition of $H^i(z_t^i)$ yields

$$
(2.5) \quad \sum_{j=1}^{m_i} z_{jt}^i \theta_j^i(z_t^i) = 0, \quad (i=1,\ldots,n).
$$

Evaluating the sum in (2.5) at time $t-1$ and recalling that F^i is a sign-preserving function shows that it is not possible for $F^i[\theta_j^i(z_{t-1})] \leq z_{jt-1}^i$ for all $j=1,\ldots,m_i$, so the inequality in (2.4) must be strict, and the denominator of the RHS of (2.3) is strictly positive. Thus, if the probabilities in z_{t-1}^i are nonnegative and sum to unity, the vector z_t^i must also lie in the unit simplex.

A sensible algorithm for computing noncooperative equilibria must stop at, and only at, noncooperative equilibria. The following lemma shows that the system (2.3) possesses this desirable property:

Lemma 2.1: The set of noncooperative equilibria coincides with the set of equilibria of (2.3).

Proof: First suppose that \hat{z}, partitioned like z_t, is a noncooperative equilibrium. For any (i,j) such that $0 < \hat{z}_j^i < 1$, it must be the case that $\theta_j^i(\hat{z}) = 0$, since otherwise it is clear from (2.1) that player i could increase his expected payoff from the game by changing that component of his mixed
strategy, a contradiction. By the same argument, for (i,j) such that
\(\hat{z}_j^i = 0 \) or \(\hat{z}_j^i = 1 \), it must be the case that \(\hat{\theta}_j^i(\hat{z}) \leq 0 \) or
\(\hat{\theta}_j^i(\hat{z}) > 0 \) respectively. If no component of \(\hat{z}_j^i \) equals unity, it is

clear from (2.2) that \(G^i[\hat{\theta}_j^i(\hat{z}), \hat{z}_j^i] = 0 \) for all \(j=1,...,m_1 \), so there

is no change in player i's mixed strategy. If \(\hat{z}_j^i = 1 \) for some \(j \), the fact that \(G^i[\hat{\theta}_k^i(\hat{z}), \hat{z}_k^i] = 0 \) for all \(k=1,...,m_i; k \neq j \)

implies that there is again no change in player i's mixed strategy. Since this argument can be repeated for each \(i=1,...,n \), the non-

cooperative equilibrium \(\hat{z} \) is indeed an equilibrium of the system (2.3).

To complete the proof of Lemma 2.1, suppose that \(\hat{z} \) is

an equilibrium of (2.3). (2.3) can then be rewritten as follows:

\[
(2.6) \quad \hat{z}_j^i \sum_{k=1}^{m_i} G^i[\hat{\theta}_k^i(\hat{z}), \hat{z}_k^i] = G^i[\hat{\theta}_j^i(\hat{z}), \hat{z}_j^i], \quad (i=1,...,n; \quad j=1,...,m_i).
\]

If \(\hat{z}_j^i = 0 \), (2.6) implies that \(G^i[\hat{\theta}_j^i(\hat{z}), \hat{z}_j^i] = 0 \) and thus that
\(\hat{\theta}_j^i(\hat{z}) < 0 \). Let \(S^i \) be the set of all indices \(j \) such that
\(0 < \hat{z}_j^i < 1 \). (2.6) implies that for all \(j \) in \(S^i \) the sign of

\(G^i[\hat{\theta}_j^i(\hat{z}), \hat{z}_j^i] \) is the same as that of the sum on the LHS of (2.6).

But if \(G^i[\hat{\theta}_j^i(\hat{z}), \hat{z}_j^i] > 0 \) for all \(j \) in \(S^i \), \(F^i[\hat{\theta}_j^i(\hat{z})] \) and therefore

\(\hat{\theta}_j^i(\hat{z}) \) must be positive for all \(j \) in \(S^i \), contradicting (2.5).

Similarly, the assumption that \(G^i[\hat{\theta}_j^i(\hat{z}), \hat{z}_j^i] < 0 \) for all \(j \) in \(S^i \)

leads to a contradiction, so it must be the case that \(G^i[\hat{\theta}_j^i(\hat{z}), \hat{z}_j^i] = 0 \) for all \(j \) in \(S^i \), and thus that \(\hat{\theta}_j^i(\hat{z}) = 0 \). (While the Kuhn-Tucker condition requires only that \(\hat{\theta}_j^i(\hat{z}) > 0 \) at a noncooperative equili-
brium where $\hat{z}_j^i = 1$, $\theta_j^i(\hat{z}) = 0$ at such a point because of the definition of H^i. I have argued that the equilibrium of (2.3) satisfies the Kuhn-Tucker necessary conditions for the maximization problems that define a noncooperative equilibrium. Since, as is well known, the maximized functions $H^i(z_t^i)$ are linear in z_t^i, these necessary conditions are also sufficient. Thus \hat{z} is an equilibrium of (2.3) if and only if it is a noncooperative equilibrium.

We are now ready to prove the main result. Let us ignore boundary problems for the present by assuming that all components of the noncooperative equilibrium \hat{z} are strictly positive; this assumption will be relaxed in Section 3. In this case, throughout a neighborhood of \hat{z},

$$
(2.7) \quad \theta_j^i(z_t^i, z_{jt}^i) \equiv f_j^i(\theta_j^i(z_t^i)), \quad (i=1,\ldots,n; \ j=1,\ldots,m_i).
$$

Partially differentiating the identity (2.1) with respect to z_{ht}^i and evaluating the result at \hat{z} yields:

$$
(2.8) \quad \frac{\partial \theta_j^i(\hat{z})}{\partial z_{ht}^i} = 0, \quad (i=1,\ldots,n; \ j=1,\ldots,m_i),
$$

because $\lambda_j^i(z_t^i)$ is independent of z_t^i by definition, and $H^i(z_t^i)$
reaches an interior maximum with respect to z_t^i at z_t. Since all components of z_t are strictly positive by assumption, the proof of Lemma 2.1 shows that

$$\theta^i_j(z_t) = 0, \ (i=1,...,n; \ j=1,...,m_i). \ (2.9)$$

Partial differentiation of (2.3) and substitution from (2.8) and (2.9) yields

$$\frac{\partial z^i_{jt}}{\partial z^i_{jt-1}} = 1, \ (i=1,...,n; \ j=1,...,m_i-1), \ (2.10)$$

and

$$\frac{\partial z^i_{ht}}{\partial z^i_{ht-1}} = 0, \ (i=1,...,n; \ h,j=1,...,m_i-1; \ h \neq j), \ (2.11)$$

where the partial derivatives in (2.10) and (2.11) are evaluated at the equilibrium z_t. Thus, the matrix, A, of the linear system associated with (2.3) at its equilibrium has identity matrices along its main diagonal, so that

$$\text{tr} \ A = \sum_{i=1}^{n} (m_i - 1), \ (2.12)$$

the number of independent
variables in the system. Since $\text{tr} A$ also equals the sum of the characteristic roots of A, this implies that either all the characteristic roots of A are equal to unity or that at least one of them has a modulus greater than unity. In the latter case the associated linear system is unstable, and thus the system (2.3) is locally unstable. In the former case, if the characteristic vectors of A are not independent the solution of the associated linear system has a polynomial time trend and is again unstable. If the characteristic vectors are independent and all the characteristic roots equal unity, then $A = I$. Even when all the characteristic roots equal unity, (2.3) is locally unstable except when all of the off-diagonal elements of A equal zero, which happens only on a set of measure zero. This phenomenon occurs, for example, in the trivial game where payoffs are independent of players' actions; I do not know if it can occur in more interesting games.

We have now established the following theorem:

Theorem 2.1: For all but a set of measure zero discrete noncooperative n-person games with solutions in strictly positive mixed strategies, the learning process described by the system (2.3) is locally unstable.

Even if I had followed Rapoport in modeling the
learning process as a system of differential equations instead of difference equations, the conclusion of Theorem 2.1 would have been the same.

The system (2.3) is formally analogous to a Walrasian tâtonnement system where prices are normalized after each adjustment to lie on the unit simplex. The z^i_{jt} correspond to prices, and the $\theta^i_j(z_t)$, which are clearly continuous and differentiable, correspond to excess demand functions. Summing equation (2.5) over i yields a result that corresponds to Walras' Law, since (2.5) is an identity in z_t. The instability of the present model is due to the fact that the functions that correspond here to excess demand functions are minimized at equilibrium with respect to, and thus locally independent of, the variables that correspond to their "own" prices.

This instability need not extend to games whose noncooperative equilibria involve only pure strategies. It is not possible to show in general that gradient processes like (2.3) converge to pure-strategy noncooperative equilibria. However, the results of Arrow and Hurwicz [1] and the literature on the stability of the Cournot oligopoly model (see Fisher [5] and the references contained therein) show that such processes are at least not generically unstable.
3. EXTENSION TO THE GENERAL CASE

Theorem 2.1 would be of some interest even if nothing could be said about the more general case where some of the components of the equilibrium mixed strategies are zero. It is possible to argue, however, that the results of the previous section extend to all but a set of measure zero of the games in this class as well. In the discussion that follows, degenerate games having pure strategies that are assigned zero probabilities in the solution but have expected returns at the solution equal to the value of the game are excluded from consideration; this occurs only on a set of measure zero. In the games that remain, if a pure strategy is assigned a zero probability in the solution, that pure strategy must have below-average returns throughout a neighborhood of the solution. To prove this, assume the contrary. We have already ruled out the possibility of average returns. If such a pure strategy had above-average returns at the solution, then raising its probability above zero at the expense of some pure strategy with below-average or average returns would improve the player's expected return from a play of the entire game, which contradicts a well-known property of the mixed-strategy solution. Since the functions λ_j^i are continuous, pure strategies assigned zero probabilities in the solution must have below-average returns throughout a neighborhood of the solution as well.
It follows that players whose collective behavior can be described by (2.3) will never raise these probabilities above zero in the neighborhood of the solution, except possibly in the degenerate cases excluded from consideration above. The behavior of the system (2.3) is independent of the payoffs corresponding to zero-probability pure strategies, since these payoffs enter the functions \(\theta_j^i \) only with zero weights. Therefore, for our purposes, we can ignore zero-probability pure strategies without loss of generality. Theorem 2.1 can then be extended to the general mixed-strategy case as well:

Theorem 3.1: For all but a set of measure zero discrete noncooperative n-person games with solutions in mixed strategies, the learning process described by the system (2.3) is locally unstable.

4. SIMULATION EXPERIMENTS

In the special case of a zero-sum, two-person game with a 2x2 payoff matrix, I have simulated the model to learn about its global properties. In the simulations the stochastic nature of the system was taken into account. The results of a few simple experiments can be summarized here:
(i) Pure-strategy saddle points are globally stable, at least in these simple games.10

(ii) After the initial departure from mixed-strategy equilibrium (induced by the failure of random payoffs to realize their expectations exactly), the model oscillates generally around the equilibrium, with amplitude increasing over time. The violence of these oscillations increases with the slopes of F^1 and F^2 as might be expected (these slopes are constant since F^1 and F^2 were linear in the experiments), and for moderate values of these slopes the zero/one probability boundaries become effective quite often.

(iii) In these cases, the boundaries cause a consistent distortion of the average observed mixed strategies toward the barycenters, $z^1_t = (1/m_1, \ldots, 1/m_1)$ and $z^2_t = (1/m_2, \ldots, 1/m_2)$, and in general the property of Rapoport's model that the observed probabilities average over time to the optimal strategies is lost.
5. CONCLUSIONS

In this essay I have investigated the possibility of players locating the mixed-strategy equilibrium of a noncooperative n-person game through an iterative learning process. All members of the class of such processes that I consider the most behaviorally plausible were shown to be locally unstable for "almost all" n-person games with mixed-strategy noncooperative equilibria. This instability corresponds to that which would be exhibited by a discrete Walrasian tâtonnement process if the excess demand for each good were locally independent of its own price at equilibrium. This instability need not extend to pure strategy noncooperative equilibria.

Thus, while the mixed strategy is a successful generalization of the concept of strategy from the normative standpoint and for the purpose of insuring the existence of a noncooperative equilibrium, it fails a test that I believe all descriptive optimizing models should be subjected to. Agents following simple, plausible rules of thumb will not converge to mixed-strategy noncooperative equilibria. To the extent that economists rely on adaptive justifications for using optimizing models to describe economic behavior, they must be especially cautious in applying the noncooperative equilibrium as a solution concept when it requires that players employ mixed strategies.
FOOTNOTES

1 Compare Winter [14], who studies the similar question of whether a competitive industry will approach long-run competitive equilibrium if firms follow satisficing rules of thumb instead of maximizing profits explicitly. Winter concludes that the long-run competitive equilibrium will be approached under reasonable, but not vacuous, assumptions.

2 For a discussion of this rationale, see, for example, von Neumann and Morgenstern [13], pp. 143-145.

4 Nothing in the analysis requires that the function F^i be the same for each of player i's pure strategies, but it seems unlikely that a reasonable player would use a different adjustment rule for each pure strategy.

5 Allowing one of each player's probabilities to be determined as a residual is simpler but asymmetrical, and leads to the same ultimate conclusions.

6 Of course, Nash [8] had to prove an analogous result, but the difference between his system and (2.3) makes a new argument
necessary.

Note that the arguments of H_i include only the first $m_i - 1$ components of player i's mixed-strategy vector; the constraint that probabilities must sum to unity has already been substituted out and the nonnegativity constraints are not binding, so

$$
\frac{\partial H_i(z)}{\partial z_{ht}} = 0
$$

is the appropriate first-order condition.

See McManus [7].

There is a subtle problem of interpretation here, since it has been assumed that players have information about the average returns of pure strategies even when they are played only with zero probability in equilibrium. Formally, this is clearly wrong, but not seriously so for my purposes. Local stability analysis examines the effect of perturbing a system a small distance away from equilibrium, but its interest lies in the information it yields about whether a system, approaching an equilibrium, will be attracted or repelled. Players may be able to collect information about average returns along a path approaching equilibrium, even though the information is no longer available once equilibrium is reached.
In fact, it is possible to prove this when the payoff matrix is 2x2.
REFERENCES

A GAME OF FAIR DIVISION

A chap out of the Illinois River, with a little stern-wheel tub, accosts a couple of ornate and gilded Missouri River pilots:

"Gentlemen, I've got a pretty good trip for the up-country, and shall want you about a month. How much will it be?"

"Eighteen hundred dollars apiece."

"Heavens and earth! You take my boat, let me have your wages, and I'll divide!"

--Mark Twain, Life on the Mississippi

1. INTRODUCTION

The "divide and choose" method has played an important role in the literature on fair division.\(^1\) This technique for allocating bundles of goods seems impartial, requires little cooperation from agents, and is nearly free of administrative costs. It is therefore somewhat puzzling that it has found so few applications in the real world, where sometimes even prolonged and costly negotiations produce only imperfect agreements. Either the method has drawbacks not yet well understood, or it is
underutilized. This essay examines the game that arises when two agents agree to use the divide and choose method. The analysis leads to a resolution of the puzzle mentioned above, and identifies a class of situations where replacing conventional arbitration procedures with the divide and choose method can be strongly recommended.

In the sequel, an agent who would prefer another agent's bundle of goods to his own will be said to envy the other agent. An allocation at which no agent envies another will be called a fair allocation. A well-known property of the two-person version of the divide and choose game is that each player can insure that he does not envy the other. The divider (D) can accomplish this by dividing so that he is indifferent to his opponent's choice; the chooser (C) need only choose his most preferred bundle after D divides. That the players, acting together, can insure that the outcome of the game is fair is interesting, but more information about the allocations actually generated by the game is needed to judge its usefulness as a fair division device. Conceivably, with players motivated by self-interest, the game could generate an unfair allocation in spite of the above result.

To learn more about the divide and choose method, I assume that players seek to obtain the most desirable bundle possible. They are also assumed to behave noncooperatively,
since negotiating a mutually acceptable settlement would be relatively easy if they were willing to cooperate, and the method would then be superfluous. In Section 2 of this essay D's problem is formulated and his optimal noncooperative strategy is characterized. As is suggested by Luce and Raiffa [6, p. 365] and Singer [9], the common belief that D should divide the bundle so that he is indifferent about C's choice is false. If D knows C's preferences with certainty, under very general conditions -- roughly, that players' behavior can be described by the maximization of continuous and strongly monotonic utility functions and that goods are homogeneous and perfectly divisible -- his optimal strategy involves dividing the bundle so that C is indifferent about his choice.

Once D's optimal strategy has been characterized, several interesting conclusions follow. Luce and Raiffa's belief [6, pp. 364-365] that the allocations resulting from this game are always Pareto-efficient is false. However, the noncooperative equilibrium of the game is a fair allocation and, under an additional mild behavioral assumption, is an efficient point in the set of all fair allocations. Luce and Raiffa's statement [6, p. 365] that the role of divider is an advantage in the game if preferences are known is formalized and proved, and the allocation resulting from the game is shown to treat agents less equally than an equal-income competitive equilibrium (EICE) allocation.4
When both agents have identical preferences, however, the Pareto-inefficiency, divider's advantage, and unequal treatment all disappear, and these results are robust in the sense that if agents have nearly identical preferences, nearly equal treatment and near-Pareto-efficiency result. Section 2 is self-contained, and the reader who has more faith than time may wish to read only Section 2 and Section 5, which includes a summary of the generalizations of Sections 3 and 4.

In Section 3, all but one of the pure-trade results (the one that establishes the relationship between game allocations and EICE allocations) are generalized to the case where production is possible — that is, where each agent is endowed with productive resources that may either be consumed directly or used to produce other consumption goods. In this context, D plans the operation of the economy — required factor supplies, production levels, and consumption shares — and C then chooses which of the two roles in the economy he will assume.

In Section 4 the analysis is carried out in the case where the divide and choose process is followed by cooperative trade that both players anticipate in their strategy choices. Some of the results, notably the existence of divider's advantage, go through in this case. Finally, Section 5 discusses several possible further generalizations that would be of interest, summarizes the results obtained, and considers their implications.
2. THE PURE-TRADE DIVIDE AND CHOOSE GAME

Assume that two persons have agreed to share a fixed bundle of homogeneous and perfectly divisible goods by the divide and choose method, and that their roles have already been determined in some way, perhaps by the toss of an unbiased coin. Each person behaves noncooperatively, seeks only to obtain the most desirable bundle possible, and has preferences that are representable by a continuous and strongly monotonic utility function. In addition, D is assumed to know C's preferences with certainty, which is not a completely natural assumption to make in most situations. But studying the certainty case permits clearing up an area of confusion in the literature, provides a necessary preliminary to a more general analysis, and may serve as a reasonable description of some situations. Finally, an innocuous assumption is included to simplify the exposition. Whenever C is indifferent between the two bundles offered him he can be counted on to choose the one that D would prefer him to. Since it has already been assumed that C's preferences are known with certainty, this assumption is innocuous -- a tiny adjustment in D's division could induce C to make the desired choice without perceptibly altering either player's consumption or welfare. This assumption allows us to deal with maxima instead of suprema, and greatly
simplifies the statements of some of the results.

In the sequel, the following vector notation is used:

if \(a \equiv (a_1, \ldots, a_r) \) and \(b \equiv (b_1, \ldots, b_r) \), \(a \leq b \) means \(a_i \leq b_i \), \((i=1, \ldots, r)\), \(a \cdot b \equiv \sum_{i=1}^{r} a_i b_i \), and \(ab \equiv (a_1 b_1, \ldots, a_r b_r) \). \(O \) and \(\mathbf{1} \) denote a vector of zeros and a vector of ones, whose dimensionalities should be inferred from the context.

Units are chosen so that the vector of goods to be allocated is \(\mathbf{1} \). A division by D will be represented by the \(m \)-vector \(z \), indicating that C may choose between the consumption bundle \(z \) and its image \(1-z \). Let \(U^D \) and \(U^C \) be D's and C's utility functions, and assume without loss of generality that \(z \) is the bundle D intends for himself. Then D's optimal noncooperative strategy in the game is any solution of the following programming problem:

\[
\begin{align*}
(2.A) & \quad \text{Max} \quad U^D(z) \\
& \quad \text{s.t.} \quad U^C(z) < U^C(1-z). \\
\end{align*}
\]

A solution to (2.A) always exists, since a continuous function defined on a compact, nonempty (\(z = \frac{1}{2} \) is always feasible) set always takes on a maximum value at some point in the set. The following theorem provides an optimality condition that any solution must satisfy:
Theorem 2.1: Any solution to (2. A) must satisfy

\[(2.1) \quad U^C(z) = U^C(1-z). \]

Proof: The proof is by contradiction. Suppose that \(\tilde{z} \) is a solution to (2. A) and that \(U^C(\tilde{z}) < U^C(1-\tilde{z}) \). If \(\tilde{z} = 1 \) we would have the contradiction \(U^C(1) < U^C(0) \), so at least one component of \(\tilde{z} \) must be less than unity; renumber the goods if necessary so the first component is less than unity. Let \(\tilde{z}[\epsilon] = \tilde{z} + (\epsilon, 0, \ldots, 0) \). By the continuity of \(U^C \) there exists an \(\epsilon > 0 \) such that \(0 \leq \tilde{z}[\epsilon] \leq 1 \), \(U^C(\tilde{z}[\epsilon]) < U^C(1 - \tilde{z}[\epsilon]) \), and \(U^D(\tilde{z}[\epsilon]) > U^D(\tilde{z}) \). This contradicts the assumption that \(\tilde{z} \) is a solution to (2. A), and establishes Theorem 2.1.

The solution of (2. A) in the two-good case is illustrated in the Edgeworth box diagram of Figure 2.1. In the diagram are shown three of C's indifference curves (\(C_1, C_2, \) and \(C_3 \)), one of D's (\(D_1 \)), and the locus of points (EE) that satisfy (2.1). The EE locus can be constructed from C's indifference map as follows. First, it is clear that it passes through the point \(\frac{1}{2} \) (A in Figure 2.1). Additional points on the locus can be generated by drawing a circle with center at A and finding a pair of antipodal points on the circle that lie on the same indifference curve. If
Figure 2.1
U^C is differentiable, total differentiation of (2.1) reveals that the EE locus has the same slope at A as C's indifference curve through that point. If, in addition, U^C is quasiconcave,

\[
(2.2) \quad U^C \left(\frac{1}{2} \right) = U^C \left(\frac{1}{2} z'' + \frac{1}{2} [1 - z''] \right) \geq \frac{1}{2} U^C (z'') + \frac{1}{2} U^C (1 - z'') = U^C (z'') = U^C (1 - z''),
\]

where z'' is any point on the EE locus. Thus, if U^C is quasiconcave and differentiable, the EE locus lies entirely to the northeast of C_3, C's indifference curve through A, and must therefore be tangent to it at that point.

All points in the box that are not to the northeast of the EE locus satisfy the constraints of (2.A). If D makes a division represented by one of these points, C will choose so that the allocation represented by that point results. Naturally, D chooses the feasible point that yields him the greatest utility (B in Figure 2.1). (If D made a division represented by a point to the northeast of the EE locus, C would choose so that the allocation represented by the image of that point resulted. The outcome would therefore be the same as if D had made the division represented by the image point in the first place.)

It is evident from Figure 2.1 that the allocation of goods resulting from the game need not be Pareto-efficient in
general. The following example shows this directly, and may help to illustrate the way the game works. Suppose that there are only two goods, \(z_1 \) and \(z_2 \), and let \(U^D(z_1, z_2) \equiv (z_1 + 1)(z_2 + 2) \) and \(U^C(z_1, z_2) \equiv z_1 + z_2 + (z_1 z_2)^{1/2} \). Both of these utility functions are strictly quasiconcave and strictly increasing in \(z_1 \) and \(z_2 \), so there is nothing special about this example. The reader may verify (noting that, by the symmetry and monotonicity of \(U^C \) in \(z_1 \) and \(z_2 \), the optimality condition (2.1) is equivalent to the condition \(z_1 + z_2 = 1 \) in this case) that D's optimal division is \((1, 0)\). D obtains this bundle and a utility of 4 in the game, while C obtains the bundle \((0, 1)\) and a utility of 1. If C then gave D \(2\varepsilon \) units of \(z_2 \) in exchange for \(\varepsilon \) units of \(z_1 \), D's utility would increase to \(4 + 2\varepsilon - 2\varepsilon^2 > 4 \), and C's would increase to \(1 - \varepsilon + (\varepsilon - 2\varepsilon^2)^{1/2} > 1 \), where both inequalities hold whenever \(0 < \varepsilon < \frac{1}{3} \).

Since both players would gain from such a trade, the original allocation could not have been Pareto-efficient.

Before continuing with the main results of this section, it is convenient to pause for a lemma:

Lemma 2.1: By dividing appropriately, D can enforce any feasible fair allocation as the outcome of the pure-trade divide and choose game.

Proof: An allocation giving \(z \) to D and \(1-z \) to C is fair if and only if \(U^D(z) \geq U^D(1-z) \) and \(U^C(z) \leq U^C(1-z) \).
By inspection, the region defined by these two constraints and the feasibility condition \(0 < z < 1\) is entirely contained in the feasible region of (2.A).

The next theorem establishes that the allocations generated by the game are fair and that, although they need not be Pareto-efficient, they are efficient in a weaker sense. There may exist allocations that both players would prefer to the outcome of the game, but there are no such fair allocations.

Theorem 2.2: The outcome of the pure-trade divide and choose game is a fair allocation, and if D agrees to break ties for the solution of (2.A) by dividing as C would prefer, the outcome is an efficient point in the set of all fair allocations.

Proof: The first part of the theorem follows directly from Theorem 2.1 and our assumption about C's choice when he is indifferent. To prove the second part, observe that, by Lemma 2.1, D can enforce any fair allocation, so there cannot be any fair allocations that D prefers to the outcome of the game. Thus, either the outcome is efficient in the set of fair allocations or there exists a fair allocation that yields D the same utility as the bundle he obtains in the game, and that C prefers to the outcome of the game. But the latter possibility is ruled
out by our assumption about D's tie-breaking, so the outcome is efficient in the set of fair allocations. □

The next theorem formalizes the notion that the role of divider is an advantage in the game if preferences are known.

Theorem 2.3: In the pure-trade divide and choose game, D always does at least as well in the role of divider as he would in the role of chooser.

Proof: Consider the game in which C divides and D chooses. The allocation generated by this game is fair by Theorem 2.2. Therefore, by Lemma 2.1, D can enforce this allocation when he is divider, and so must do at least as well in the role of divider as he would in the role of chooser. □

Luce and Raiffa's example [6, pp. 364-365] of the game when the bundle to be divided consists of a single indivisible object shows that some restrictions on goods or preferences are necessary for Theorem 2.3 to be true. Strictly speaking, the above proof shows that the role of divider can never be a disadvantage, but begs the question of whether it is ever, or always, an advantage. The argument used to establish (2.2) and the fact that $\frac{1}{2} \mathbf{1}$ is feasible for (2.A) show that the role of divider is an advantage when U^D is strictly quasiconcave unless $\frac{1}{2} \mathbf{1}$ happens to be both D's and C's optimal division. When U^D
is not quasiconcave, it is easy to construct examples to show that it can still be an advantage.

The next theorem compares the allocations generated by the divide and choose game with those from an EICE. An EICE is shown to treat agents more equally, in a sense made precise by the theorem, than the game does. Assume that an EICE exists in spite of possible nonquasiconcavities in U^D and U^C.

Theorem 2.4: In the pure-trade divide and choose game, D always does at least as well as he would at an EICE and C always does at most as well as he would at an EICE.

Proof: A pure-trade EICE is necessarily fair -- no agent can envy another agent, because he could have afforded the other's bundle but chose not to buy it. Therefore, by Lemma 2.1, D can always enforce an EICE allocation in the game, which establishes the first part of the theorem. To prove the second part of the theorem, note that, since all goods are desirable and we have just shown that D likes his game allocation at least as well as his EICE allocation, D's game allocation is at least as valuable at EICE prices as his EICE allocation. Because the value of the entire bundle is fixed, it follows that C's game allocation is at most as valuable as his EICE allocation. Therefore, C likes his game allocation at most as well as his EICE allocation, which completes the proof. \square
It is easy to verify that if U^C is quasiconcave equal division (ED) of the bundle also possesses the properties attributed to the EICE in Theorem 2.4.

The next two theorems show that, when D and C have identical preferences, the allocation generated by the divide and choose game treats them equally and is fully Pareto-efficient. In this case at least it is possible, even without cooperation, to achieve an allocation that is very good when judged by the traditional standards of equity and efficiency without incurring large administrative costs.

Theorem 2.5: If D and C have identical preferences, they are treated equally in the pure-trade divide and choose game.

Proof: D's and C's identical preferences can both be represented by the same utility function. By Theorem 2.1, both players derive the same utility from the game no matter who is the divider. □

Before proving the next theorem it is convenient to establish a lemma:

Lemma 2.2: If D and C have identical, strongly monotonic and continuous preferences, the utility possibility frontier is a continuous, downward-sloping curve which crosses the 45° line exactly once. 10
Proof: Let ψ represent both u^D and u^C. The utility possibility frontier in this case is the graph of the function

\[(2.2a) \quad \phi[\bar{u}] \equiv \max_{0 \leq z \leq 1} \psi(z) \quad \text{s.t.} \quad \psi(1-z) \geq \bar{u}\]

in the interval $\psi(0) \leq \bar{u} \leq \psi(1)$. ψ is a continuous function, and the constraints $0 \leq z \leq 1$ and $\psi(1-z) \geq \bar{u}$ define a closed nonempty set for all values of \bar{u} for which ϕ is defined. Therefore, by Berge's Maximum Theorem, ϕ is a continuous function, and by the strong monotonicity of ψ the constraint $\psi(1-z) \geq \bar{u}$ is always binding in this interval, so ϕ is a strictly decreasing function of \bar{u}. Finally, it is clear that

\[(2.3) \quad \phi[\psi(0)] = \psi(1) > \psi(0) \quad \text{and}\]

\[(2.4) \quad \phi[\psi(1)] = \psi(0) < \psi(1).\]

Therefore, by the intermediate value theorem there exists a \hat{u} such that $\phi[\hat{u}] = \bar{u}$, and since ϕ is a nonincreasing function, that \hat{u} is unique.

Theorem 2.6: When D and C have identical preferences, the outcome of the pure-trade divide and choose game is a Pareto-
efficient allocation.

Proof: Consider the problem (2.A) in utility space. By Lemma 2.2, the available resources determine a continuous, downward-sloping utility possibility frontier, as depicted in Figure 2.2. When D and C have identical preferences, the feasible region of (2.A) is mapped into the shaded area to the southeast of the 45° line and inside the frontier. D chooses the point in this region that is on the most preferred of his indifference curves, which are mapped into horizontal lines. This is clearly a point on the utility possibility frontier.

Theorem 2.6 is immediate when preferences are convex because the outcome of the game then coincides with ED, which is Pareto-efficient when preferences are convex and identical, and the EICE, which is always Pareto-efficient. However, Theorem 2.6 is a more general result: when preferences are identical the game always generates a Pareto-efficient allocation, even, for example, when the EICE fails to exist due to nonconvexities.

Theorems 2.5 and 2.6 attribute two highly desirable properties to the divide and choose method when D and C have identical preferences: equal treatment and Pareto-efficiency. These properties hold necessarily whenever there is a single, desirable good in the bundle to be allocated. In this case,
Figure 2.2
agents' preferences may be represented by identical, quasi-concave utility functions for my purposes, which require only the ordinal properties of preferences, and Theorems 2.5 and 2.6 therefore apply directly. However, it is extremely unlikely that the assumption of identical preferences should be literally realized in the general, m-good case -- even identical twins' tastes diverge as they are formed by different experiences. It would therefore be of interest to know if the results of Theorems 2.5 and 2.6 are robust in the sense that, when agents have nearly identical preferences, the game treats them nearly equally and generates a nearly Pareto-efficient allocation.

Fortunately, this is the case, although the results are not trivial. Even if preferences are convex the feasible region of (2.A) is not generally convex, so there is no economically attractive way to rule out discontinuous changes in the allocation resulting from the game in response to changes in preferences. However, the next two theorems establish that, at least when preferences are identical, these discontinuous changes do not induce discontinuities in the utility outcomes of the game. It follows that players with nearly identical preferences are treated nearly equally in the game, and since a small change in preferences induces a small change in the utility possibility frontier, when players have nearly identical preferences the game generates a nearly Pareto-
efficient allocation.

It will be convenient to introduce a slightly different notation. Assume that both agents have preferences that are representable by a member of the same p-parameter family of utility functions, where p may be large, but must be finite. 13 Let I^q denote the q-fold Cartesian product of the closed unit interval I with itself, and let $U(d,z)$ and $U(c,z)$ denote D's and C's utility functions, where $z \in I^m$ is a consumption vector as before, and $d \in I^p$ and $c \in I^p$ are vectors of parameters. Further assume that U is jointly continuous in its arguments, define

$$V^D(c,d) = \max_{z \in I^m} U(d,z) \text{ s.t. } U(c,z) \leq U(c,1-z),$$

and call the problem in (2.5) "(2.B)". Since U is continuous and the constraints of (2.B) define a closed nonempty set, Berge's Maximum Theorem 11 implies the following result:

Theorem 2.7: V^D is everywhere jointly continuous in c and d.

Theorem 2.7 is intuitively plausible. Wherever D's optimal division varies continuously with preferences, V^D is also continuous. As we have seen above, discontinuities in the optimal division cannot be ruled out, but even if the optimal
policy jumps from one point to another D must be indifferent between these points, so such jumps do not induce discontinuities in V^D.

The continuity result available for C's derived utility from the game is much weaker, though still strong enough for my purposes. Let $Z(c,d)$ denote the set of solutions of (2.2), which is compact because U is continuous, define

$$V^C(c,d) = \max_{z \in Z(c,d)} U(c,1-z),$$

(2.6)

call the problem in (2.6) "(2.C)", and let $z(c,d)$ denote a solution of (2.C). If D breaks any ties for the solution of (2.2) by dividing as C would prefer, V^C is the function that gives C's derived utility from the game. We can now establish the following theorem:

Theorem 2.8: When $c=d$, V^C is jointly continuous in c and d.

Proof: Let (c_1,d_1) be a sequence in \mathbb{R}^{2p} that converges to (c_0,d_0) where $c_0=d_0$, and let $V^C(c_1,d_1)$ be the corresponding sequence in the range of V^C. To prove the theorem, we must show that $V^C(c_1,d_1)$ converges to $V^C(c_0,d_0)$. When the range of V^C is compact, this is equivalent to showing that any convergent subsequence of $V^C(c_1,d_1)$ converges to $V^C(c_0,d_0)$. The range of
V^C is clearly bounded by $\max_{c \in I^p} U(c,1)$ and $\min_{c \in I^p} U(c,0)$. Thus, $V^C(c_1,d_1)$ has a subsequence that converges to some point in the closure of its range. I shall show by contradiction that any such subsequence must converge to $V^C(c_0,d_0)$, which will also show that the range of V^C is closed when $c=d$. In the sequel, the subscript i singles out members of the convergent subsequence in question, and no longer refers to the entire sequence. First suppose that $V^C(c_i,d_i)$ converges to some number greater than $V^C(c_0,d_0)$. I shall argue that this implies, for sufficiently large i, the existence of a z near $z(c_i,d_i)$ that is feasible for (2.6) when $(c,d)=(c_0,d_0)$ and that yields a higher utility than $z(c_0,d_0)$, contradicting the assumption that $z(c_0,d_0)$ is a solution of (2.6).

By the convergence of $V^C(c_i,d_i)$ there exist an $\varepsilon>0$ and an N_1 such that, for all $i>N_1$,

\begin{equation}
V^C(c_i,d_i) > V^C(c_0,d_0) + \varepsilon.
\end{equation}

Substituting from (2.6), applying Theorem 2.1 to (2.6), and recalling that $c_0=d_0$ shows that (2.7) is equivalent to

\begin{equation}
U(c_i,z(c_i,d_i)) > U(d_0,z(c_0,d_0)) + \varepsilon.
\end{equation}
Define, for all $\delta \in I$,

$$
(2.9) \quad g(\delta) = \inf_{i > N_1} U(c_i, (1-\delta)z(c_i, d_i))
$$

and observe that, by (2.8), $g(0) \geq U(d_0, z(c_0, d_0)) + \varepsilon$, so

$g(0) > U(d_0, z(c_0, d_0))$. Since the Inf is defined as the maximum possible lower bound, we can write

$$
(2.10) \quad \inf_{i > N_1} U(c_i, (1-\delta)z(c_i, d_i)) = \max \alpha \quad \text{s.t.}
$$

$$
U(c_i, (1-\delta)z(c_i, d_i)) \geq \alpha \geq \min_{c \in I^P} U(c, 0) - 1,
$$

all $i > N_1$,

where the constraints on the RHS of the inequalities have been added for formal reasons, and do not affect the problem, since

$\alpha = \min_{c \in I^P} U(c, 0)$ is always feasible and dominates any smaller choice of α. U is continuous, the feasible region of the problem in (2.10) is nonempty for all values of $\delta \in I$, and is closed since it is the intersection of a collection of closed intervals. Therefore, Berge's Maximum Theorem applies and g is a continuous function of δ. Thus, there exists a $\delta' > 0$ such that $g(\delta') > U(d_0, z(c_0, d_0))$. That is, defining $z'(c, d) = (1-\delta')z(c, d)$, we have
(2.11) \[U(c_i, z'(c_i, d_i)) > U(d_0, z(c_0, d_0)) \text{, all } i > N_1; \]

also, since \(z(c, d) \in I^m \) by hypothesis, \(z'(c, d) \in I^m \) for any \((\delta', c, d) \in I \times I^{2p}\). As \(c_i \) converges to \(c_0 = d_0 \) by hypothesis, by the continuity of \(U \) there exists an \(N_2 \) such that, for given \(\delta' \) and for all \(i > N_2 \),

\[(2.12) \quad U(d_0, z'(c_i, d_i)) > U(d_0, z(c_0, d_0)). \]

Finally, by Theorem 2.1, \(U(c_i, z(c_i, d_i)) = U(c_i, 1 - z'(c_i, d_i)) \)

for all \(i \), which implies that \(U(c_i, z'(c_i, d_i)) < U(c_i, 1 - z'(c_i, d_i)) \)

for all \(i \). By the continuity of \(U \) and the convergence of \(c_i \) to \(c_0 \)

there exists an \(N_3 \) such that, for all \(i > N_3 \),

\[(2.13) \quad U(c_0, z'(c_i, d_i)) < U(c_0, 1 - z'(c_i, d_i)). \]

Thus, for some given \(\delta' > 0 \) and for \(i > \max\{N_1, N_2, N_3\} \), \(z'(c_i, d_i) \)

is feasible for (2.B) when \((c, d) = (c_0, d_0) \) by (2.13), and

yields a higher utility than \(z(c_0, d_0) \) by (2.12), contradicting the assumption that \(z(c_0, d_0) \) is a solution of (2.B). A similar argument establishes that, if \(V^C(c_i, d_i) \) converged to some number less than \(V^C(c_0, d_0) \), there would exist a \(z \) near \(z(c_0, d_0) \)

feasible for (2.B) when \((c, d) = (c_i, d_i) \) that dominated \(z(c_i, d_i) \)

for sufficiently large \(i \). These two contradictions show that
any convergent subsequence $V^C(c_i,d_i)$ must converge to $V^C(c_0,d_0)$, completing the proof of Theorem 2.8. □

The intuition behind Theorem 2.8 is almost as simple as that behind Theorem 2.7. As with V^D, whenever D's optimal division varies continuously with preferences, V^C is continuous. By Theorem 2.7, when the optimal division changes discontinuously, D must be indifferent about the change. When C's preferences are identical to D's, C must therefore also be indifferent about the change, so when c=d, discontinuous changes in D's optimal division do not induce discontinuities in V^C. It is interesting to note that, while discontinuities in V^C cannot be ruled out in general, the smaller the difference between C's and D's preferences, the smaller are the possible discontinuities.

The analysis of this section has provided a partial resolution of the puzzle mentioned in the introduction, and has identified a class of cases where application of the divide and choose method can be strongly recommended. The conspicuous failure to use the method in pure-trade situations is probably rational in some cases. At least when preferences are convex, there exist allocations, notably the EICE, that are both more efficient and treat agents more equally than the allocations generated by the divide and choose method.14 Casual empiricism suggests that when there are only two agents,
whose strategic possibilities are not limited by competition, EICE allocations are much more costly to achieve than divide and choose allocations, but their greater equity and efficiency may be worth the extra cost in some cases.

However, the divide and choose method does possess important optimality properties -- fairness and efficiency in the fair set -- which make it an attractive alternative to other arbitration methods. The non-Pareto-efficiency of the method is less disturbing than it might otherwise be because bargaining costs have been left out of the model, and the unequal treatment can be mitigated by assigning the role of divider randomly. Additional perspective can be gained by comparing the divide and choose method with the naive alternative of ED. Both appear to require roughly the same level of cooperation and administrative effort -- very little -- and both generate fair allocations that need not be Pareto-efficient. The method treats agents less equally than does ED, but the fact that it generates an allocation that is efficient in the set of fair allocations is an important advantage over ED, which is completely independent of agents' preferences and may therefore be extremely inefficient. On balance, the divide and choose methods seems superior to ED as a fair division device. Thus, in situations when bargaining costs are likely to be high and the inefficiency and unequal treatment of the divide and choose method are not likely to be
great, its use can be recommended. These conditions obtain in
the case of nearly identical preferences, where I have shown that the
method's drawbacks almost completely disappear. Noncooperative
agents with similar preferences playing the game will reach a
settlement nearly as equitable and efficient as any feasible
allocation, and there is no question that the method should be
used in this case.

An important real-world problem for which the analysis
presented here seems appropriate is that of divorce settlements.
The assumptions of perfect knowledge and noncooperative behavior
seem particularly palatable here. To the extent that assets
like houses and cars can be readily liquidated, the assumption
of perfect divisibility seems fairly reasonable as well. Children
are, of course, divisible, although not in the Old Testament
sense! One might even argue that married couples are likely
to have similar preferences.

For obvious reasons, divorce settlements are often
difficult to negotiate, and as a result, large sums are expended
on them every year. Therefore, unless there is some reason to
believe that exploitation by the divider will be a serious
problem (as might happen, for example, if one parent had a very
strong attachment to a child that was not shared by the other
parent, in which case he or she might, as chooser, receive
custody of the child for a little more than half the time and
almost nothing else) a good case for experimenting with the
divide and choose method as a technique for negotiating divorce settlements can be made.

3. THE DIVIDE AND CHOOSE GAME WITH PRODUCTION

Although the assumption that pure trade only is possible is a convenient simplification, most important economic situations involve production. In this section the analysis of Section 2 is extended to the case where production is possible. As in Section 2, agents are assumed to behave noncooperatively and to have perfect knowledge of all production and utility functions, and C is assumed to choose as D would prefer whenever he is indifferent between the possibilities offered him.

Each person is endowed with the vector \(l \) of perfectly divisible nonproduced goods that may either be consumed directly or applied in production. It may be helpful to think of these goods as different kinds of labor; one person's labor of a particular type may not be perfectly substitutable for the other's in production. There is also a vector of homogeneous and perfectly divisible produced goods, whose net outputs depend only on the inputs of each person's various kinds of labor. Each person's preferences are representable by a utility function that depends continuously on his labor supply vector,
denoted by \(x^i \), \((i=C,D)\), and on his consumption of produced goods, denoted by \(y^i \), \((i=C,D)\). Since there is no danger of confusion with the notation of the previous section, let \(U^D(1-x^D,y^D) \) and \(U^C(1-x^C,y^C) \) denote D's and C's utility functions, which are both assumed increasing in all arguments. Let

\[
(3.1) \quad y = G[\lambda,x^D,x^C]
\]

be the vector-valued function that gives the maximum possible outputs for given inputs and for a given value of the parameter vector \(\lambda \equiv y/1_y \). Heuristically, this function can be determined by following the ray associated with a value of \(\lambda \) out to the production possibility frontier determined by \(x^D \) and \(x^C \); varying \(\lambda \) sweeps out the function \(G \). I assume that \(G[\lambda,0,0] = 0 \) for all \(\lambda \) and that all inputs are productive. It follows that all components of \(G \) are strictly increasing in \(x^D \) and \(x^C \), except when some component of \(\lambda \) equals zero, in which case the corresponding component of \(G \) is zero for all values of \(x^D \) and \(x^C \). \(G \) gives net outputs -- if intermediate inputs are necessary, they are implicit in the form of the function, as are all the usual production efficiency conditions.

A division by D is represented by the vector \(\omega \equiv (x_1^1,x_2^1,\lambda,\theta) \), where \(x_1 \) is the vector of labor supplies required
of the player who assumes role i, and θ is the vector of shares of total production received by the player who assumes role 1. λ and θ could be allowed to depend on which player assumes role 1, in effect allowing the divider to plan in terms of total production and consumption instead of proportions and shares. This generalization would leave all arguments and conclusions (though not the outcome of the game) essentially unchanged, but the present formulation is retained for its relative simplicity.

In this section, a fair allocation is defined as one where no agent would prefer to exchange roles (i.e., required labor supplies and consumption shares) with another. Let Ud(i) denote the level of utility obtained by D if he assumes role i, (i=1,2), and define Uc(1) in the same way. If D has made the division ω, the reader may verify that:

\[Ud(1) = Ud(1-x_1, θG[λ,x_1,x_2]), \]

\[Ud(2) = Ud(1-x_2, (1-θ)G[λ,x_2,x_1]), \]

\[Uc(1) = Uc(1-x_1, θG[λ,x_2,x_1]), \text{ and} \]

\[Uc(2) = Uc(1-x_2, (1-θ)G[λ,x_1,x_2]), \]

recalling that θG ≡ (θ_1 G_1, ..., θ_s G_s), where the θ_i and G_i are the
components of θ and c. Assuming without loss of generality that D assumes role 1 at the solution, D's problem can be written as follows:

\[
(3.A) \quad \text{Max} \quad U^D(1) \quad \text{s.t.} \quad U^C(1) \leq U^C(2).
\]

The following theorem is analogous to Theorem 2.1, but its proof is somewhat more involved.

Theorem 3.1: Any solution to (3.A) must satisfy

\[(3.6) \quad U^C(1) = U^C(2).\]

Proof: The proof is by contradiction. Suppose that $\tilde{w} = (\tilde{x}_1, \tilde{x}_2, \tilde{\lambda}, \tilde{\theta})$ is a solution to (3.A) at which $U^C(1) < U^C(2)$. I shall argue that there always exists a feasible ω in the neighborhood of \tilde{w} at which $U^D(1)$ is higher than at \tilde{w}, contradicting the assumption that \tilde{w} is a solution of (3.A). By the continuity of U^C, any sufficiently small variation of ω around \tilde{w} still satisfies the constraint $U^C(1) \leq U^C(2)$, so in checking feasibility we need only insure that $0 \leq \omega \leq 1$ and $\lambda \cdot 1 = 1$. The reader may verify from (3.2) that it is possible to increase $U^D(1)$ by raising some component of x_2 above \tilde{x}_2 unless either
(i) $\tilde{x}_2 = 1$ or (ii) $\tilde{\lambda} \delta = 0$.

If $\tilde{x}_1 = \tilde{x}_2 = 0$, substitution into (3.4) and (3.5) yields $U^C(1) = U^C(2)$ for $\omega = \tilde{\omega}$, and there is nothing more to prove. Otherwise, since all inputs are productive and $G[\tilde{\lambda},0,0] = 0$, $G[\tilde{\lambda},\tilde{x}_1,\tilde{x}_2] > 0$ for all i such that $\tilde{\lambda}_i > 0$. Thus, $U^D(1)$ may be increased while preserving feasibility by raising some component of θ above $\tilde{\theta}$ unless $\tilde{\lambda}(1-\delta) = 0$. But $\tilde{x}_2 = 1$ in case (i), so if $\tilde{\lambda}(1-\delta) = 0$, (3.5) implies that $U^C(2) = U^C(0,0)$, contradicting the assumption that $U^C(1) < U^C(2)$ for $\tilde{\omega}$ satisfying $0 < \tilde{\omega} < 1$ and strongly monotonic U^C. Finally, in case (ii) $\tilde{\lambda} \delta = 0$, so $\tilde{\lambda}(1-\delta) = \tilde{\lambda}_i \lambda \delta = 0$ cannot hold unless $\tilde{\lambda} = 0$, which is impossible since $\tilde{\lambda} \cdot 1 = 1$. This completes the proof. □

As in the pure-trade case, the outcome of the game is not necessarily a Pareto-efficient allocation. The proofs of the following lemma and theorems are identical to their counterparts in Section 2, and so are omitted.

Lemma 3.1: By dividing appropriately, D can enforce any feasible fair allocation as the outcome of the divide and choose game with production.

Theorem 3.2: The outcome of the divide and choose game with production is a fair allocation, and if D agrees to
break ties for the solution of (3.A) by dividing as C would prefer, the outcome is an efficient point in the set of all fair allocations.

Theorem 3.3: In the divide and choose game with production D always does at least as well in the role of divider as he would in the role of chooser.

In a productive economy, an EICE can be defined as a competitive equilibrium that results when each agent's initial endowment consists of all of each of his nonproduced goods plus his share of society's initial stock of produced goods. (The latter equals 0 in the present model.) At this point in the discussion, it would be natural to compare the allocations obtained from the divide and choose game with production with EICE allocations, and with the ED allocation, as was done in the pure-trade case. However, when there is production, no single definition of ED seems compelling, and even if an EICE exists the analog of Theorem 2.4 is not true. The problem is that an EICE defined in this way is not necessarily fair if agents have different productivities. If C envies D at an EICE allocation, D cannot enforce it as the outcome of the game, and examples can easily be constructed to show that D may prefer his EICE allocation to his game.
allocation. Similarly, the second half of the proof of Theorem 2.4 fails to go through here, so C may prefer his game allocation to his EICE allocation. Thus, in a productive economy, it is possible for the divide and choose method to treat agents more equally than the EICE.

The remaining results in Section 2 also generalize to the case of production. They are recorded here without their proofs, which parallel those of the corresponding results in Section 2.

Theorem 3.4: If D and C have identical preferences and productivities, they are treated equally in the divide and choose game with production.

The requirement that D and C have identical productivities means that there must be perfect substitutability in production between their labors of each type. Lemma 2.2 can clearly be generalized, under the present assumptions, to an economy with production, and the next theorem follows immediately.

Theorem 3.5: When D and D have identical preferences and productivities, the outcome of the divide and choose game with production is a Pareto-efficient allocation.
For the next two theorems, the functions V^D and V^C defined in Section 2 should be reinterpreted in the obvious way, and the parameter vectors c and d taken to include components that parameterize preferences (including preferences about labor supplies) and productivities, in such a way that, as the components of c and d that parameterize the production functions approach each other, D's and C's labors of each type approach perfect substitutability.

Theorem 3.6: When production is possible, V^D is everywhere jointly continuous in c and d.

Theorem 3.7: When production is possible and $c=d$, V^C is jointly continuous in c and d.

Theorems 3.6 through 3.7 have the same interpretation as their counterparts in the pure-trade case: when agents have similar preferences and productivities, the divide and choose method treats them similarly and generates an allocation that is nearly Pareto-efficient.

The introduction of production radically alters the relationship between the divide and choose method and the fair division devices it was compared with in the pure-trade case. ED appears to lose its precise meaning with production,
as no single way of resolving conflicts of interest about production levels seems compelling. In a pure-trade economy, at least if preferences are convex, the goals of equity and efficiency are compatible and could be satisfied by the EICE if a costless process were available to locate it. The pure-trade EICE shares the divide and choose method's optimality properties of fairness and efficiency in the fair set, and in addition treats agents equally and generates Pareto-efficient allocations, advantages not shared by the method unless preferences are identical. But when production is possible, an EICE need not be fair unless agents have identical productivities; in fact, simultaneously fair and Pareto-efficient allocations may fail to exist even in very regular economies.17 EICE allocations are still Pareto-efficient, of course, but with production they may treat agents less equally than the divide and choose method's allocations. In contrast, with production the divide and choose method retains all of its optimality properties. Efficiency in the set of fair allocations is a very desirable property if equity is considered as important as efficiency in judging allocations, and may be the best that can be hoped for in general since fairness and full Pareto-efficiency are not always compatible in a productive economy. Of course, the divide and choose method still favors the divider at the expense of the chooser, but this asymmetry is no longer a disadvantage relative
to the EICE, which now favors agents with high productivities. The EICE treats agents unequally unless they have identical productivities, and the divide and choose method treats them unequally unless they have identical preferences and productivities. And it is still possible to reduce the inequality of the divide and choose method by assigning roles randomly.

To sum up, while the divide and choose method retains all of its desirable properties when production is added to the model, alternative fair division devices lose many of theirs. If anything, this attrition makes the divide and choose method more attractive when production is possible than in a pure-trade economy.

4. THE DIVIDE AND CHOOSE GAME WITH COOPERATIVE TRADE

Because the allocation resulting from the divide and choose game is not necessarily Pareto-efficient, mutually beneficial trades may take place after the divide and choose process. C may also attempt to influence D's division by threatening to choose the "wrong" bundle. The analysis of Section 2 does not presuppose that such phenomena do not occur,
but it does implicitly assume that players do not anticipate them in choosing their strategies. Since this may not always be a reasonable assumption, this section will discuss the implications of optimizing behavior in the pure-trade case when players expect cooperative trade of a particular kind to follow the divide and choose phase of the game.

Unless otherwise noted, the assumptions and notation of Section 2 are continued in this section. The indeterminacy that pervades cooperative game theory will be resolved by applying a predetermined rule like that suggested by Nash [7] for such games. Players play the divide and choose game to establish their threats \bar{U}^D and \bar{U}^C -- the utilities of the bundles they receive if no trade follows the divide and choose process. Then bargaining takes place, and the utilities resulting from the agreement ultimately reached are assumed to be continuous functions of \bar{U}^D and \bar{U}^C, denoted by $W^D[\bar{U}^D, \bar{U}^C]$ and $W^C[\bar{U}^D, \bar{U}^C]$. W^D is strictly increasing in \bar{U}^D and strictly decreasing in \bar{U}^C, and W^C is strictly decreasing in \bar{U}^D and strictly increasing in \bar{U}^C. It is probably reasonable to assume in addition that W^D and W^C single out an allocation in the core, but this is unnecessary for the results of this section. The present assumption about the bargaining process includes as a special case the Nash cooperative solution, which has several desirable properties (described in Nash [7]) and seems to be a
sensible solution concept for two-person cooperative games. Nash assumed that players' utility functions are cardinal in the von Neumann-Morgenstern sense, but that assumption is not needed here. Of course, the forms of W^D and W^C depend, like those of social welfare functions, on the particular ordinal indicator of utility chosen.

Again assuming that z is the bundle D intends for himself in the first phase of the game, D's optimal strategy is determined by solving the following programming problem:

\[(4.A) \quad \max_{0 \leq z \leq 1} W^D[U^D(z), U^C(1-z)] \]

subject to
\[W^C[U^D(1-z), U^C(z)] \leq W^C[U^D(z), U^C(1-z)].\]

Because the objective function of (4.A) is monotone increasing in z, an argument like that of Section 2 establishes the following theorem:

Theorem 4.1: Any solution to (4.A) must occur when

\[(4.1) \quad W^C[U^D(1-z), U^C(z)] = W^C[U^D(z), U^C(1-z)].\]
and W^C, viewed as functions of z, satisfy the same monotonicity and continuity conditions placed on U^D and U^C in the analysis of Section 2, so (4.A) is formally analogous to (2.A). Therefore, the analogs of Lemma 2.1 and Theorem 2.2 could be established here and used to show that the role of divider is an advantage in this game. However, I will take this opportunity to illustrate a direct proof, due to Martin Weitzman, which is equally general and less unnatural in this context.

Theorem 4.2: In the divide and choose game with cooperative trade, D always does at least as well in the role of divider as he would in the role of chooser.

Proof: Consider (4.A) and the analogous problem C would face if he were divider:

\[
\begin{align*}
(4.B) \quad \text{Max}_{0 \leq z \leq 1} & \quad W^C[U^D(z), U^C(1-z)] \\
& \text{s.t. } W^D[U^D(1-z), U^C(z)] \leq W^D[U^D(z), U^C(1-z)].
\end{align*}
\]

Let \(z^* \) denote a solution to (4.A), and \(\hat{z} \) denote a solution to (4.B). The proof that \(W^D[U^D(z^*), U^C(1-z^*)] \geq W^D[U^D(\hat{z}), U^C(1-\hat{z})] \) is by contradiction. Assume the contrary. Then \(\hat{z} \) must not be
feasible for (4.A):

\[(4.2) \quad W_D(c_{(1-z),c_z}) > W_D(c_{z},c_{(1-z)}).\]

(4.2) implies in turn that \(1-z\) is not feasible for (4.B):

\[(4.3) \quad W_D(c_{z},c_{(1-z)}) > W_D(c_{(1-z)},c_z).\]

But Theorem 4.1 applied to (4.B) implies that

\[(4.4) \quad W_D(c_{z},c_{(1-z)}) = W_D(c_{(1-z)},c_z),\]

which contradicts (4.3). \(\square\)

While D's optimal strategy in the divide and choose game with cooperative trade is usually quite different from his optimal strategy in the simple divide and choose game, these strategies share some properties, since the problems he must solve to find them are formally analogous. However, whether or not the outcome of the game studied in this section is a fair allocation, a Pareto-efficient allocation, or has any particular relationship to EICE or ED allocations depends on the nature of the bargaining process underlying the functions \(W_D\) and \(W_C\).
Several possible further generalizations would be of interest. Combining the analyses of production and cooperative trade seems unlikely to present any new difficulties. Allowing some indivisible goods would be an important step toward practical applications, and is probably possible. Assuming that D does not know C's preferences with certainty, but has uncertain prior beliefs about them (perhaps because he knows that C is drawn from a population for which he knows only the distribution of preferences) would be of great interest. It is plausible that if D knows that C's preferences are likely to differ systematically from his own he can exploit this knowledge to obtain an \textit{ex ante} advantage. Also, since D must now weigh the advantages of exploitation against the chance that he will go too far and accidentally receive the "wrong" bundle, it is likely that increasing uncertainty reduces his advantage in the game. However, it seems very difficult to formalize and prove these notions without placing arbitrary restrictions on D's prior distribution about C's preferences.

There are at least two ways that the pure-trade divide and choose procedure might be generalized to the n-person case. Following Steinhaus [10], we could study a process in which the
divider cuts a "slice," and each chooser, in a prespecified order, has the opportunity to diminish the slice if he wishes. The last person to diminish a slice must take it as his share, and the game then begins anew without him. An administratively simpler and analytically more tractable procedure would be to allow the divider to divide the bundle into n parts from which the other players choose in a prespecified order, the divider receiving as his share the part that remains after all the others have chosen. My discussion will be confined to this process.

When the problem that determines the divider's optimal division in the n-person case is formulated, it takes the form

\[
(5.A) \quad \text{Max} \quad U^n(z^n) \quad \text{s.t.} \quad U^k(z^j) \leq U^k(z^k),
\]

\[
\sum_{i=1}^{n} z^i = 1 \quad (k=1, \ldots, n-1; j=k+1, \ldots, n),
\]

where the \(i^{th}\) player has utility function \(U_i\), and receives the bundle \(z^i\), \(i=1, \ldots, n\). Player \(n\) is the divider, and the other \(n-1\) players choose in the order of their indices, starting with player 1. The inequality constraints of (5.A) express the requirement that each chooser must freely choose "his" bundle from those available at his turn to choose, subject only to the restriction that he breaks ties as \(n\) directs.
It is clearly still true that the divider can enforce any feasible fair allocation in the n-person divide and choose game, and if it were possible to show that solutions of (5.A) necessarily involved all of the inequality constraints holding with equality, an argument could be constructed to show that the n-person game always generates a fair allocation. Given these two results, virtually all of the results of Section 2 could easily be generalized to the n-person case. Unfortunately, only a weaker generalization of Theorem 2.1 is possible. For example, in the three-person case it is only possible to show, under assumptions like those of Section 2, that one of the inequality constraints \((k=2;j=3)\) of (5.A) is necessarily binding at the solution, and that at least one of the other two is also binding. I have constructed a three-person, two-good counterexample to show that even with smooth, convex and strongly monotonic preferences it is possible to have solutions of (5.A) where one constraint is slack, that the outcome of the game need not be a fair allocation, and that the role of divider need not be an advantage. As often happens in economic theory, the regularity of the two-person case does not extend to the n-person case. As a result, the divide and choose method seems to have much less to recommend it when there are more than two persons.

In this essay I have shown the divide and choose method to have several interesting properties. The noncooperative
equilibrium of the game induced by the method in the pure-trade case need not be a Pareto-efficient allocation, but it is a fair allocation and an efficient point in the set of all fair allocations. The game confers an advantage on the divider, and its allocations treat agents less equally than EICE and ED allocations. When both agents have identical preferences, however, the Pareto-inefficiency, divider's advantage, and unequal treatment all disappear, and these results are robust in the sense that, if agents have nearly identical preferences, nearly equal treatment and near-Pareto-efficiency result.

Nearly all of the pure-trade results can be extended to the case where production is possible, and attrition of the optimality properties of alternative arbitration devices seems to make the divide and choose method even more attractive in the production case than in the pure-trade case. When the divide and choose process is followed by cooperative trade that players anticipate in their strategy choices, some of the results, notably the existence of divider's advantage, go through. Finally, virtually none of the strong results obtained in the two-person case can be generalized to n-person versions of the divide and choose method.

Thus, the theoretical evidence tends to favor wider application of the divide and choose method to resolve two-person bargaining disputes. In the pure-trade case the method is fairly
attractive in general, and extremely attractive when agents are in a nearly symmetrical position, since in this case it achieves, at very low administrative cost, an allocation that is nearly as equitable and efficient as any feasible allocation. While failure to use the divide and choose method is probably rational in some cases due to its Pareto-inefficiency and unequal treatment, at least one class of cases has been identified where it can definitely be recommended: when preferences are similar the difference in administrative costs between the divide and choose method and alternative procedures is almost certain to outweigh its disadvantages. In Section 2 I argued that divorce settlements might fall into this class of cases frequently. To the extent that they do, large increases in welfare could be achieved by using the divide and choose method.
FOOTNOTES

1 See, for example, [3, 5, 6, pp. 363-369; 8, p. 85; 9, and 10]. It may be possible to argue that Rawls [8, pp. 16, 18, 103, 136-137, 152-153] has a divide and choose procedure in mind when he argues that rational men in the "original position" would accept his principles of justice. However, he also makes it clear that the "veil of ignorance" covers even one's own preferences, so the analysis of this paper, which assumes preferences are known, does not apply.

2 This sense of the word "fair" is consistent with the usage in [3, 4, 5, and 10]. In [12], our "fair" is equivalent to "equitable", and "fair" means simultaneously "equitable" and Pareto-efficient.

3 See, for example, [3, 5, and 10], which are mostly concerned with generalizing the result to the n-person case.

4 In a pure-trade economy, an EICE is defined as a competitive equilibrium at which all agents' initial endowments have equal value. For a discussion of the EICE as a fair division device, see [12].

5 Martin Weitzman has pointed out to me that this assumption can be greatly weakened. For many of the results it is clear from the
proofs that an assumption of local nonsatiation relative to the set of feasible allocations will suffice. The assumption of perfect divisibility can probably also be relaxed somewhat. I have ignored these possibilities for the sake of clarity.

6 This result does not really depend on C's cooperation when he is indifferent. If D is indifferent between the bundles of his division, it does not matter whether C cooperates. If D strictly prefers one of the bundles and induces the desired choice by making a small adjustment in his division, it is clear from the continuity of U^D that the resulting allocation will still be fair.

7 Martin Weitzman has provided an alternative proof of this theorem, which is illustrated in Section 4.

8 The first part of this theorem was originally conjectured by Clifford Donn.

9 This result is part of Theorem 2.2 in [12, p. 68].

10 Of course, this result is not new; it follows from Theorem 2.4 in Varian [12, p. 69] and the equivalence of weak and strong Pareto-efficiency when preferences are continuous and strongly monotonic. But the fact that I need the result only for two agents
with identical preferences makes possible the more elementary proof given here.

11 See [1, pp. 115-116] or [2, p. 19]. Berge's Maximum Theorem is paraphrased here for convenience: Let \(\alpha \in A \) be a vector of parameters, let \(\beta \in B \) be a vector of control variables, and let \(f \) be a continuous real-valued function defined on \(A \times B \). Define

\[
M(\alpha) = \max_{\beta \in h(\alpha)} f(\alpha, \beta),
\]

where \(h(\alpha) \) is a closed nonempty subset of \(B \) for each \(\alpha \in A \), and \(h \) is continuous for each \(\alpha \in A \). Then \(M \) is a continuous function of \(\alpha \).

12 Unless preferences are identical, the feasible region of (2.A) cannot in general be represented in utility space, since it is defined in terms of allocations, not utilities.

13 The assumption that preferences can be represented by utility functions depending on only a finite number of parameters is more restrictive than the assumptions needed in the rest of Section 2, but relaxing it does not seem worth the technical effort required. The assumption that the same number of parameters is needed to describe both utility functions is inessential, since some parameters can always be held constant.
14 For a discussion of the existence of simultaneously fair and Pareto-efficient allocations in a pure-trade economy see [12, pp. 68-70], and recall the difference in terminology pointed out in n.2.

15 In [12, p. 71], Varian defines fairness in an economy with production in terms of total consumption. If I allowed λ and θ to depend on which player assumes role 1, the present model would differ from Varian's only in notation, and none of the results would change.

16 This problem still arises if we instead define an EICE as a competitive equilibrium where all agents' initial endowments have equal values, because agents' leisures will have different prices if there are productivity differences. An agent may envy another for his high leisure consumption, but be unwilling to buy as much for himself if his high productivity makes his own leisure more expensive. It is possible to weaken the concept of fairness so that an EICE as defined in this paper is "fair," although not in a completely satisfactory way, and not for general production technologies. For a discussion of the problems encountered in defining fairness and the EICE in an economy with production, see [7a] and [12, pp. 70-75] and recall the difference in terminology pointed out in n.2.
17 See [7a] and [12, pp. 71-72].

19 I am indebted to an anonymous *Econometrica* referee for pointing out the fatal error in my "proof" of the strong n-person generalization of Theorem 2.1.
REFERENCES

Vincent P. Crawford was born in Springfield, Ohio on April 6, 1950, and settled in Maryland after several years of peregrinations. He was graduated from Georgetown Preparatory School in 1968, and received the A.B. summa cum laude in economics from Princeton University in 1972, entering M.I.T. as a National Science Foundation Graduate Fellow later that year. In September, 1974, he published an article, "Learning the Optimal Strategy in a Zero-Sum Game," in *Econometrica* and in 1975-1976 served as a teaching assistant in the Department of Economics. Once described as a "celluloid junkie" by one of his colleagues, he spent much of his time in Boston at the movies. Beginning July 1, 1976 he will be an Assistant Professor of Economics at the University of California, San Diego.