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ABSTRACT

A ball is floated in a fluid and encased in a spherical shell.

This thesis models and analyzes the hydraulic system necessary to preserve

the orientation of the ball with respect to an inertial frame regardless

of outer shell motions. Two subsystems are investigated: a series of

hydrostatic bearings on the ball surface control ball radial translation

relative to the shell and a set of tangentially directed jets control

attempted ball rotation. The fluid power for the two subsystems comes

from a pump located in the center of the ball.

This thesis examines pressure-flow requirements of each of the two

subsystems and the pump. The transduction of fluid power to mechanical

power taking place in the suspension and torquing subsystems is analyzed.

Dynamic responses to disturbances in both the translational and rotational

modes of motion are predicted.
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Title: Professor of Mechanical Engineering
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CHAPTER 1

INTRODUCTION

1.1 Description of Purpose and Geometry of System

We are given a ball floated in a fluid and encased in a spherical

shell. It is desired to keep the orientation of this ball unaltered with

respect to an inertial frame regardless of outside disturbances to the

enclosing case. The purpose of this report is to model and analyze the

hydraulic system necessary to accomplish this task in order to be able to

predict responses both on a static and dynamic level.

There are two basic motions of the ball within the case. Extreme

eccentricities of the ball could result in collisions with the outer shell

and resultant loss of inertial reference. Also, the ball cannot be per-

mitted to turn about any of three orthogonal axes. Rotation of the outer

case may tend to induce a similar motion of the sphere via the viscous

drag of the annular fluid between the two members. The hydraulic system

under investigation must be able to prevent rotary motions of this sort.

Figure 1-1 illustrates the two modes of movement of the inner ball.

1.1.1 Suspension Subsys tem

Radial translational motion is restricted by a set of eight "fluidic

springs" situated symmetrically on the sphere's outer surface. By a "flu-

idic spring" is meant a hydraulic suspension pad. The placement of these

"springs" can be pictured by imagining a cube with a circular pad on each

of its eight corners enclosing the inner ball. The projection of each pad

along a cube diagonal onto the sphere determines its placement on the ball.

Figure 1-2 illustrates the pad positioning.
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PAD

Figure 1-2. Positioning of Support Pads for Suspension System
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The suspension pad itself consists of a circular disc with a recess-

ed central portion termed the plenum. The outer spherical shell acts as

one huge cover plate for all eight pads. Fluid is injected into the

plenum through an orifice in the center of the plenum bottom. It fills

the plenum and then flows out between the edges of "sill" of the pad and

the inner surface of the shell. (See Figure 1-3.) Pressure is built up

within the plenum and across the pad sill. The pressure distribution can

be integrated to obtain a support force for each pad. This force in-

creases as the clearance between the pad and the inner surface of the

outer shell is decreased. Each pad acts therefore as a spring undergoing

compression. All eight pads acting together serve to center the ball

within its enclosing case.

1.1.2 Torquing Subsystem

To prevent inner ball rotation a method of torquing the ball needed

to be devised. Two jet nozzles compose a valve in this system. (Older

designs had only one nozzle per valve.) One pair of valves, or "torquer

jet pair", was situated about each of three orthogonal axes of the ball.

The positioning of these six valves can be envisioned as being centered

on six of the twelve edges of a cube and expelling fluid in a direction

perpendicular to this edge. The three orthogonal axes pass through the

midpoints of the cube faces. (See Figure 1-4.) By expelling fluid tan-

gentially from the ball into the annulus at a high velocity a reaction

force couple is produced by each nozzle pair about a particular axis.
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Each double nozzled valve of each torquer jet pair has three modes

of operation; (1) it can expel fluid at a specific flow rate to produce

a reaction force contributing to a couple in a clockwise direction about

the pair's axis, (2) it can expel fluid in a direction 180? opposed from

(1) to produce a reaction force contributing to a couple in a counterclock-

wise direction, or (3) it can expel half the amount of fluid equally in

both directions (neutral position) to produce no torque. (See Figure 1-5.)

Combinations of these three discrete modes of operation for each jet pair

acting for infinitely variable durations of time can produce continuously

variable torques about any axis desired.

1.1.3 Piping to Subsystems

The fluid which enters the annular gap between the inner and outer

shell from either the suspension pads or the torquer jets is pumped out

to these two subsystems from a pump centered within the ball itself.

Eight pathways extend radially outward from the pump toward each suspension

pad or corner of the analogous cube. Two pathways feed one pad each and

the remaining six pathways each guide fluid to one pad and one half of

each of two valves. Figure 1-6 shows a schematic cube and accompanying

table to illustrate the inner piping of the ball. In the figure, V refers

to a valve and P refers to a pad. Pathways are numbered to correspond to

the pad they lead to but are not drawn in the figure. This passageway con-

nects to the particular corners that the cube edge joins. It serves as a

pressure equalizer between the paths.
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Inner Piping to Suspension and Torquing Subsystems

PATH # PAD # FED VALVES FED

1 P1 1/2 ViA 1/2V2B

2 P2 1/2 ViA 1/2 V3B

3 P3 1/2 V2A 1/2 V3B

4 P4

5 P5 1/2V2B 1/2V3A

6 P6

7 P7 1/2 V1B 1/2 V2A

8 P8 1/2 VJB 1/2 V3A

Figure 1-6.
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The eight major pathways split up just before reaching the sphere

surface into smaller passageways which lead either to a suspension pad

orifice,or to a certain half of a specific valve nozzle configuration, or

to.a pressure equalizing passage. That fluid which proceeds toward a

valve passes first through a filter to cleanse itself of impurities and

then out a nozzle in one of the three modes indicated in the previous

section. The fluid which flows through a pad orifice passes out to the

annular gap across the pad sills.

Once in the annular gap the fluid must be returned to the pump to

complete the hydraulic loop. Three intake holes which are screened with

filters are equally spaced circumferentially about each pad. The annular

fluid flows in these holes and back to pump in the center of the ball

through passages which parallel the eight original outlet pathways.

1.1.4 Pump

The centrally located pump used for the total hydraulic system is a

centrifugal pump powered by an eight pole polyphase induction motor. The

pump rotor acts as its own journal bearing while the central portion of

the rotor is the impeller of the pump. Low pressure fluid enters axially

through the hollow core of the rotor from either end and is pumped outward

when it reaches the center. A diagram of the pump is shown in Figure 1-7.
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1.2 Modeling of System

For purposes of analysis of a system such as previously described,

a mathematical model of it must be formed and computations made for that

model. The values computed from such a model can be only as accurate as

the model itself and their limit of credibility is confined to the regions

of operation where the model is deemed valid. For example, the fluid used

throughout the entire system is modeled as an incompressible, Newtonian

fluid, i.e., the shear stress exerted by the fluid is proportional to the

velocity gradient, the constant of proportionality being the fluid vis-

cosity, p. The fluid in reality is not truly incompressible. Its density

p may change by as much as 1.1% for extremes of temperature. Its viscos-

ity p may change by +13.6% for the same temperature extremes, For the

purposes of this analysis, however, temperature changes are assumed slight

enough and slow enough as to leave the fluid density P and viscosity V

unaltered. Each system component was modeled in a particular way. This

section explains the models used and assigns symbols to these mathematical

elements. Its goal is to formulate one concise diagram illustrating the

interactions of the important system variables.

1.2.1 Pmp

The pump is the source of fluid power for the system. It may be

modeled as a pressure source. The symbol used for a source is illustrated

in Figure 1-8a.
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Figure 1-8. Symbols for Various Fluid Elements
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1-8e CAPACITANCE
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1.2.2 Resistances

There are some elements in the system which serve to dissipate fluid

power and thus may be termed fluid resistances. There is a pressure drop

across the sill of a suspension pad. Flow through a filter or through an

orifice experiences a pressure drop in the direction of flow, also. Be-

cause of this pressure loss the sills, orifices, filters, and piping of

the hydraulic system have been modeled as fluid resistances. The symbol

to be used for a resistor is shown in Figure 1-8b. Its resemblance to the

symbol for an electrical resistor is intentional; both fluid and electric

resistors are analogous in that they both dissipate power. Unlike the

electrical counterpart, however, the fluid resistances do not have a

simple proportionality between the pressure loss and flow but rather are

highly nonlinear. An expression for each of these is derived in Chapter 2.

1.2.3 Suspension Pads

The suspension pads of the fluid system provide a support force

through the integration of the pressure distribution across the pad sur-

face. Since they convert a fluid effort variable, pressure, Pfluid to a

mechanical effort variable, force, Fmech the pads can be called trans-

forming transducers. They provide the coupling between the fluid and

mechanical aspects of the system which control radial translational motions

of the inner sphere. The symbol to be used for a transforming tranducer

is indicated in Figure 1-8c. The loop indicates the coupling between the

effort variables of both systems,
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1.2.4 Torquer Jets

The torquer jets spin the ball through the.reaction force produced

by expelling a high flow rate (i.e., high velocity) fluid stream from a

nozzle. The torques Tmech resulting in the mechanical rotary motion of

the system are a direct consequence of the high fluid flow rate Qfluid'

Since this subsystem converts a flow variable in the fluid system, to an

effort variable in the mechanical system, it may be modeled as a gyrating

transducer. The symbol which will be used for a gyrating transducer is

illustrated in Figure 1-8d. The crossed loop indicates the cross coupling

between the effort and flow variablesof the fluidic and mechanical

systems.

1.2.5 Mechanical Aspects

The modeling of the fluidic parts of the system are important in

their relation to the system's mechanical aspects. The ball itself may

be modeled as a lumped mass. For translational purposes it has an effec-

tive mass, Meff. It has rotary moments of inertia J about its spin axes.

The ball's inertances to both translational and rotary motions are modeled

by mechanical capacitances. The symbol for a mechanical capacitance is

illustrated in Figure 1-8e. The symbol reflects the ball's similarity

to an electrical capacitance. Just as in the electric circuits a capaci-

tor resists instantaneous changes of voltage, a mass resists instantaneous

changes of linear and angular velocities.
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1.2.6 Outside Disturbances

The ball-case system is subjected to two forms of outside distur-

bances. The entire system may be exposed to a linear acceleration. This

disturbance is modeled as a velocity source. Rotary disturbances are

present also; they are modeled by an angular velocity source. The symbol

for a source was given in Figure 1-8a.

1.2.7 System Circuit

Figure 1-9 shows a schematic of the modeling used for the system.

The fine lines indicate the hydraulics of the system. The heavy solid

lines represent the translational mechanical aspects of the ball and the

dashed heavy lines, the rotational features. The advantage of displaying

the system in the form of an electric analog is that the pathways of fluid

flow can be seen by imagining where the current would flow if Figure 1-9

were really an electric circuit. Elements with a common pressure differ-

ential or common velocity are pictured as parallel circuits.

To better understand the system we will trace the fluid path through

the circuit. Flow begins at the high pressure side of the pump at the far

left. The flow divides, part of it going to support the axial thrust

bearings of the pump rotor, the remainder heading out along eight pathways

to he corners of the imaginary cube. There is a pressure drop along each

of these pathways. When the flow is just beneath the outer surface of

the sphere it divides again. Six pathways feed one suspension pad and one

half of each of twovalves; two pathways feed one pad only as explained in

"Piping to Subsystems" (1.1.3).
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The pad flow passes through an orifice and across a sill before

entering the annulus. The valve flow, after passing through a filter

divides between the nozzle and bearing mechanisms of the nozzle operation.

The flow which reaches the annulus via the nozzle then rejoins the pad

flow and the total flow then returns to the low pressure side of the pump

after passing through twenty-four pad filters clustered in groups of three

about each pad.

The translational section of the circuit is composed of a velocity

source and a force source (the pads) acting on a mass (the ball). The

rotational section has a source of rotational velocity (the outer case)

and a torque source (the nozzles) acting to rotate a mass (the ball) and

rotary damper (annular drag). This circuit and the interactions between

its various sections was used as a guide in the calculations of later

chapters.
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1.3 Organization of Paper

To analyze a system as large as described, a logical path throughout

the system is necessary. This report proceeds "from the inside to the

outside". Analysis begins in Chapter 2 with a calculation of the various

losses accrued in transporting fluid to the two subsystems, translational

and rotational. Once at the outer surface of the ball, Chapter 3 examines

the suspension system. Chapter 4 then examines the losses due to outer

surface geometry and presents an analysis of the torquing system. Once

the power requirements needed to get the fluid from the center of the

ball to the outer surface where it is utilized and the power needed for

suspension and torquing are known, the report then returns to examine the

pump necessary to achieve these tasks. Chapter 5 studies the pump itself.



29

CHAPTER 2

CALCULATION OF RESISTANCES

2.1 Sill Resistances2

The turbopump thrust bearings and servo valve bearings as well as

the suspension pads contain sills which experience pressure drops. An

analysis of a typical sill should be applicable to all three cases.

Consider a circular pad and plenum as shown in Figure 2-1. Notation

is as follows:

r 0radius of orifice

r p radius of plenum

d depth of plenum

r s outer radius of sill

h pad clearance

h 0 mean pad clearance

E tilt

0 position on pad

Inspection of Figure 2-1 yields the following relationship for the pad

clearance

h(r, 6) = h + e cos (2-1)

To simplify this relationship let us assume clearance variations across

the sill are much less than those around the sill, i.e.,

dh < dh(2-2)
1-r do
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Figure 2-1. Suspension Pad Illustrating Sill and Plenum Regions
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This assumption enables us to write the pad clearance as a function of 6

only, r being replaced by average of the inner and outer sill radii

h(e) = h + - S + P Cos 0 (2-3)

To obtain the pressure drop across the sill we must look at the

equilibrium of a small wedge of fluid between the sill and the lid. If

the width of the sill is much less than its length (mean circumference)

we may approximate our wedge as a rectangle. Figure 2-2 shows approxi-

mations made.

The preceding assumptions have reduced the wedge to a rectangular

segment which may be envisioned as a small section of a channel in -

Pouiseuille flow. For this case the volume flow rate per unit depth q

is given by

_h3()dp_(2-4)
= 12p dr

where p is the fluid viscosity and 42. is the radial pressure gradient.dr

The volume flow rate per unit area for one section may also be given by

S= Qsill (2-5)
rde

where Qsill is the total flow across the pad sill. Upon substitution the

following relationship for the radial pressure gradient is obtained

p l2i=dQ 1sill (2-6)
dr h3(e) rd6
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Separation of variables and integration of the above equaion between rp

and rs yields

(2-7)P(r ) - P(r ) - l2
p h'(o0)

A second integration obtains the total flow rate Qsill

P(rP) - P(rS ) 27
sill 12P in r/rp) J h 3() dO (2-8)

Substituting equation (2-3) for h(e) and integrating gives the relation

2w

I h3(6)d = 21h0 3

0

r R
rs

hrw (2-9)

A final substitution of equation (2-9) into equation (2-8) gives the re-

sul ts

P(r ) - P(r )
sil ":2p In r5/r p

2Trho3 3 (2-10)

or alternatively the pressure drop across the sill P(rP)-P(rs) is given by

6 p ln(rs%/r
P(r p) - P(rs );

0 3
E

2h
( 1 (2-11)I

- -1 - IV

dQs I I

+ 2~ I
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For zero tilt the pressure drop is inversely proportional to the

cube of the gap; any tilt tends to reduce this pressure drop. The hy-

draulic power lost across this sill is given by the product of the flow

and pressure drop across the sill

= [~rp - P(r 5 6P)Inr1 /_rQ2 (2-12r/r2
sill=hPJ{)l4sjsillr + 2 si (2-12)

0h 2 
+ 2h 0( r+

2.1.1 Numeric Applications

Having been derived, the above relationships describing system

pressure drops due to the presence of sills, will be applied to each of

the four sill geometries found in the hydraulic subsystem. Each one has

a picture illustrating the geometry involved and a list of parameter

values followed by plotted conclusions.

2.1.1.1 Pressure Drop Across Suspension Pad Sills

There are eight suspension pads on the outer surface of the inner

sphere. The eccentricity of the ball itself determines the gap of each

padand its corresponding resistive pressure drop. Pad geometry is shown

in the upper right corner of Figure 2-3. Values used in the computations

were

rs = .475 in. r = .475 in.

V = 2.077 x 10~ lb-sec/in.2

Figure 2-3 plots the pad fluid resistance

P(r ) - P(r s

Qsi11
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Figure 2-3. Suspension Pad Sill Resistance Versus Pad Gap
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as a function of pad gap for tilt values of 0.0, .001, and .002 in. Tilt

serves to decrease the pressure differential across the sill. Although

this occurrence is favorable from a resistance point of view, it is this

integrated pressure gradient which supplies necessary support forces.

Tilt thus decreases the available suspension pad force. (See section 3.1.)

2.1.1.2 Pressure Drop Across Turbopump Thrust Bearing Sills

The turbopump thrust bearings are configured such that they have two

sills. The bearing is pictured in the upper right corner of Figure 2-4.

The resistance across the inner sill

P(rd) - P(r 0)

Qsill

and the outer sill

P(r2) - P(r3)

Qsill

are plotted in Figure 2-4. Note that a positive flow across the sill is

radially outward and therefore in calculations the flow across the inner

sill must be considered negative. The pertinent parameter values were

r0 188 in. r 1  = .360 in.

r2 = .200 in. r3  = .375 in.

p = 2,077 x 10~7 lb-sec/in0  e = 0.0

2.1.1.3 Pressure Drop Across Valve Thrust Bearing Sills

The valve thrust bearing sills differ from the previous two types

only in that there is no plenum region. Flow leaks directly into the

sill area and radially outward. Figure 2-5 illustrates the bearing in the

upper right corner and plots the pressure drop at flow rates ranging .from

0.0 to .01 gpm. The slope of the graph is the sill resistance .
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Figure 2-5. Pressure-Flow Characteristic of Valve Thrust Bearing Seal
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For the dimensions listed below this particular bearing's resistance was

4.38 x 103psi/gpm.

rp= .126 in. r5 = .180 in.

ji = 2.077 x 107 lb-sec/in.2

A constant gap of .0005 in0 and zero tilt conditions were assumed.

2.1.1.4 Pressure Drop Across Valve Radial Bearing Sills

The valve radial bearings, unlike the three previous sill designs,

have a rectangular rather than circular geometry. Three rectangular plen-

uns are "wrapped" circumferentially about the valve rotor at either end.

The same basic formulas, however, may be applied with slight modifications.

Instead of a radial flow, fluid flow is assumed to occur only perpen-

dicular to the long side of the rectangular plenum, i.e., along the axis

of the rotor. (See Figure 2-6.)

The flow across the pad sill is assumed to be Poiseuille flow as be-

fore and the gap b is modeled as the gap between two parallel plates.

Parallelism is a valid simplification here since the gap b is much much

less than the radius of curvature of the rotor. The equation for this

type of flow is

-iwb

3 (4a (2-13)
till l2p dxi

where Qsill is the flow across the sill, w is the width of the sill normal

to the flow direction, b is the sill clearance, p is the fluid viscosity,

and d is the pressure gradient in the direction of fluid flow. The
dx

upper portion of Figure 2-7 illustrates these quantities.
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Figure 2-6. Valve Radial Bearing Configuration Illustrating Sill and
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Integration of equation (2-13) across the length of the pad sill

(x = 0 to L) gives

AP 12 L Q (2-14)
wb s(

From symmetry arguments it can be seen that the flow across one sill is

one half the orifice flow Qorif so the pressure drop can be written as

AP=b L Qorif (2-15)

The resistance of two sillsQAP can be found by substituting the
Osill

values listed below:

w = .17 in0  b = .0005 in.

L = .03 in. p 2.077 x 10~ lb-sec/in.2

The resistance of the radial valve bearings is

R = 6.75 x 103 psi/gpm

The flow characteristics of the bearing are plotted in Figure 2-7.
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2.2 Orifice Resistances

The turbopump thrust bearings, suspension pads, and servo valves

all contain orifice losses0 Calculations of these losses can proceed by

applying Bernoulli's equation on a streamline through the orifice between

points on either side. Note from Figure 2-8 that fluid emerging from the

orifice will have a smaller cross sectional area than the orifice and thus

an increased velocity.

2 P2ri
P V ideal 2orif (2-16)

P1 2 2 + 2

or or onRf1 - V 2 ideal

1  2 _= 2-_ ida

The actual velocity may be written as a contraction coefficient

times the ideal velocity (Vorif = cv Videal)s Substituting this relation-

into equation (2-16) gives

P. PV2 1 1 (211
1 - 2 = 2orif( C2

A differential pressure AP is defined as P2  P1. The actual flow rate

is given by the reduced area orifice, Qorif = CcAoVorif, where cc is a

contraction coefficient for the orifice area. Substituting these relations

into equation (2-17) gives

Qrif(2-18)
AP - -T 2- ri

c v c c A 0
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Figure 2-8. Flow Through a Sharp Edged Orifice
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The coefficients c and c have been determined empirically in many fluid

texts. One need only know the orifice geometry. Some examples are given

in Figure 2-9.3

AP
The resistance for an orifice may be defined as R)i = or,

or -or ,

in terms of system geometry, Qorit

Rorif 2 22 22(2-19)

The hydraulic power lost across an orifice is given by the product of the

2
pressure difference and flow or since AP = R Qorif the power P is given

by

3 4 1 1 Q 3 (2-20)
P = R W orif 2 \ 72 c2A2 orif

2.2.1 Numeric Applications

Some of the various orifices found in this hydraulic system are pad

orifices, turbopump thrust bearing orifices, nozzle orifices, and valve

radial and thrust bearing orifices. Figure 2-10 pictures a few of these

orifices, the values for cc and cv assumed, and the resistances calculated.

All orifice calculations assume a fluid density of 1.675 x 10~4 lb-sec2

4in.
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I r

c= 1.00
c = 0.82

______________1_________ w

Cc = 0.61
cv = 0.98

c= 1.00
Cv = 0.98

Figure 2-9. Flow Through Various Types of Orifices. Typical Values of
Velocity and Contraction Coefficients are Noted for Each
Type
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C = 0.98
cc = 1.0
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VALVE RADIAL BEARING ORIFICE

Figure 2-10. Typical Orifices Found in System with Associated Velocity
and Contraction Coefficients
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2.3 Inner Piping Losses

The previous sections analyzed pressure drops experienced by various

system components due to sills, orifices, etc. There are pressure drops

along the way to these components as well due to frictional losses along

the inner piping. Ihe major contributors to these pathway losses are the

eight radial passages which transport the fluid to the pads and valves.

This section calculates the magnitude of these fluid resistances.

Before trying to estimate any fluid viscous loss we must determine

first whether the flow is laminar or turbulent. Pressure losses in a

laminar flow are proportional to the volumetric flow rate Q. In turbulent

flow the pressure loss AP varies roughly as Q2. The determination of the

exact transition point from laminar to turbulent flow is almost impossible

to do analytically since it is a function of surface roughness, initial

flow disturbances and many other variables. Experiments have shown, how-

ever, that a good estimate for the laminar to turbulent flow transition in

pipes is when a nondimensional flow parameter, called the Reynold's number

Re, is roughly 2000. The Reynold's number for pipe flow is based on the

pipe diameter D and is given by

Re =VD (2-21)
V

where V is the average fluid velocity through the pipe and v is the fluid

kinematic viscosity. Flows with a Reynold's number of 2000 or less are

laminar; those with Re greater than 2000 are turbulent.
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The eight radial pathways do not have circular cross sections so a

problem arises as to the definition of the Reynold's number. To account

for this discrepancy, an equivalent hydraulic radius Rh is calculated

which is the ratio of the cross sectional area A to the wetted perimeter

Pwetted of the pipe. A cross section of a radial path is shown in Figure

2-11 with pertinent dimensions. A cross sectional area of .004 in.2 and

a wetted perimeter of .893 in. gives for the hydraulic radius

Rh = P A = .049 in. (2-22)
wetted

The Reynold's number based on the hydraulic radius is then given by

Re = (2-23)

where R has been substituted for the average fluid velocity V. It can be

shown that four times the hydraulic radius does indeed simplify to the

pipe diameter for pipes of circular cross section.

The pressure drop AP along a pipe is given by

W,4R 2 (2-24)

where L is the pipe length and P the fluid density. The multiplicative

factor f is known as the friction factor. It is a function of the

Reynold's number. For laminar flow

fa 64 (2-25)
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0.25 in.---- 
-

0.125 in.

A = (0.25)(0.125) + - (0.125) = 0.044 in
4

PWETTED = 2(0.25) + 7r(0. 125) = 0.893 in.

Figure 2-11. Radial Path Cross Section. Area and Wetted Perimeter are
Calculated
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and for turbulent flow

f .3164 (2-26)
Re'

In calculating pressure drop one must first determine if the flow is lam-

inar or turbulent. The critical flow for these paths (that at which Re =

2000) is about .14 gpm. The pressure flow characteristic is shown in Fig-

ure 2-12. The pipe length used for those calculations was 4 in. The dis-

continuity at Q = .14 gpm is due to the uncertainty during the transition

period. It causes no problems, however, because this system operates

totally within the turbulent regime of the radial paths.
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2.4 Filter Resistances

There is a pressure drop AP experienced as the fluid flows through

a filter0 To calculate the filter's resistance to flow some assumptions

are necessary. Let us visualize a filter as a thin sheet with cylindrical

holes through it with diameters equal to the particle retention size of

the filter P and lengths equal to the filter thickness t. (See Figure

2-13.) Looking at one hole a force balance is done between the pressure

and viscous forces

AP = TUpt (2-27)

The shear stress T can be relatedto the fluid velocity through the hole

Vhole and the density P of the fluid via a coefficient of friction Cf

T =Cf P 2hole (2-28)

Substitution of this relat' a into equation (2-27) yields

AP = 4Cf p holet(2-29)

The fluid velocity through the holes needs to be determined. From

continuity considerations and assuming an incompressible fluid the follow-

ing relationship between the hole area Ahole and pipe area Apipe and pipe

velocity Vpipe is obtained

A.

Vhole =Ahole pipe (2-30)

The hole area may be represented by a porosity or "percentage holes" co-

efficient C times the pipe area.

EAhole = pipe (2-31)
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Assuming an isotropic filter this porosity coefficient may be determined

from the weight per unit area w of the screen material.

=1 - tp ,-(2-32)
mat l

Here t is the screen thickness and Prmat'] is the weight density of the

filter material, Noting that the flow rate Qpipe through the filter equals

the velocity through the pipe times the pipe area and substituting into

equation (2-29) gives 2

AP=4f 2 p EA.
AP4C pipe, (2-33)

Definition of a friction factor f as four times the coefficient of friction

Cf yields: (pp

AP = f p \t pipe (2-34)
2 p App

What :.eeds to be determined is the friction factor f. For a series

of filters by the same manufacturer a plot of log Re versus log f was made.'

It is shown in Figure 2-14. The Reynold's number used in the plot was based

on the filter particle retention size and velocity through a filter passage

, i.e.,

Re = holep (2-35)V

where v is the kinematic viscosity of the fluid.
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To apply the above results a least squares linear fit was done to the

data of Figure 2-14. The three circled points were omitted in the fitting

procedure which took place in the two regions log Re > .1 and log Re < .1.

The somewhat arbitrary division point of log Re = .1 was decided by the

clustering of the original data points. The choice, however, can also be

justified by theory. For log Re = .1 the Reynold's number is 1.25.

Reynold's numbers less than one indicate a very viscous Stoke's flow.

Fluid behavior in this region is markedly different from that at higher

Reynold's numbers.

For log Re < .1 the relationship between f and Re was f = 5.1 Re-1.2

which is nearly an inverse proportionality between the friction factor and

const
the Reynold's number, i.e., f z Re s Substituting these approximate

value into equation (2-34) gives

AP- constIp P t V 2 =const t V (2-36)
Vpp 2 p t2 V(2-36)

p

this pressure drop has a linear dependence on the fluid velocity and filter

thickness and an inverse linear dependence on the hole area (zp2). Fluid

behavior is characteristic of a Stoke's flow where inertia terms are negli-

gible (the mass density vanishes).

The upper region was fitted by the equation f = 10.6 Re-.42. The

pressure drop dependency on velocity here goes as ~V1.6 and the density

term remains, Here the flow is more inertia dependent.

2,4.1 Numeric Applications

The previous results will now be applied to the two types of filters

found in the hydraulic system.
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2.4.1.1 Pressure Drop Across a Pad Filter

The geometry of the pad filter is illustrated in Figure 2-15 and the

pertinent parameter values are listed below.

t = .011 in.

p = .0013 in.

E = .456

A = 1.04 in. 2

v = 1.24 x 10-3 in. 2/sec

P = 1.675 x 10~4 lb-sec2/in.4

In the upper region the pressure drop across a pad filter is given

by AP = .201 Q1.58 (2-37)

where AP is given in psi and Q in gpm. The pressure flow characteristics

of a pad filter are illustrated in Figure 2-16. The discontinuity in the

curve at a flow rate of about .15 gpm is due to the uncertainty involved

in the exact determination of the transition point between the two types

of flows.

2.4.1.2 Pressure Drop Across a Valve Filter

The values for the pertinent parameters of the valve filter are

listed below and its geometry is shown in Figure 2-17.

t = .006 in.

p = .0004 in.

C = .361

A = .344 in.2

v = 1.24 x 10-3in.2/sec

P = 1.675 x 10-4lb-sec2in.4
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The pressure drop across the valve filter in the upper region is

given by

AP = 4.86 Q 1.58 (2-38)

where again AP is in psi and Q in gpm. Figure 2-18 shows the pressure-flow

characteristic. Note the discontinuity during transition to a different

flow region.
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Figure 2 .15. Geometry of Pad Filter

Fm
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Figure 2-16. Pad Filter Pressure-Flow Characteristics
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2.5 Sudden Contractions

Sudden reductions in flow cross sectional area produce an increased

flow velocity and by Bernoulli's principles a corresponding pressure drop.

One case in particular where this type of pressure drop is found is at the

nozzles of the valves. Here a sudden area contraction is necessary to

achieve the high flow rate which produces the reaction torque to control

rotational ball motions,, Two important features of the contraction deter-

mine the pressure drop; (1) the fractional area decrease and (2) the geom-

etry itself of the contraction. First the effect of area reduction is

exami ned.

Consider a flow Q along a passageway in which there is a cross-sec-

tional area contraction from A1 to A2  (A1I> A). A corresponding pres-

sure drop p -p2 can be anticipated. Using Bernoulli's equation along a

streamline givesI k9\O

p1 + 2 2 +

Solving for the pressure drop along the contraction gives

IF) r -- ,

( P
Next the geometry

contraction would incur

traction, however, acts

pressure drop across an

below for convenience.

(2-39)

. .1= I (2-40)
d)dred A 2" A12

reduction

of the contraction must be considered. A gradual

only Bernoulli's pressure losses. A sudden con-

as an orifice and accrues additional losses. The

orifice was given in section 2.2 and is repeated

- 2 e y 2 (v2 - 1 c2
)orifice 2 CV2 c c 2A2 2 (2-41)
geometryvc 2

A 2)
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where again cv and cc can be found from fluids texts from geometry

cosiderations.

The same flow which experiences the area reduction experiences

the orifice geometry so the two resistances are in series and their

pressure drops add. The total pressure drop due to the sudden con-

traction is given by

_ P Q2 [ I+1l (2-42)Vl - P2)tt a noz y 2  
2 Ac2A2

2.5.1 Numeric Applications

Equation (2-42) will now be applied to the nozzle for this par-

ticular system. The geometry is shown in the upper portion of Figure 2-19

and the pertinent parameter values are given below.

A1  = 3.14 x 162in.

A2  = 2.57 x 103in.

cv = .98

cc = 1.

p = 1.675 x 10~4 lb-sec/in.

pl - P2 2The resistance of the nozzle Rnoz 2 is found to be 1.94 x 10

psi Q
gp5. A flow rate through the nozzle of .35 gpm (.7 gpm per valve)
gpm
yields a pressure drop of 23.8 psi. A plot of the pressure drop across

the nozzle AP versus the flow rate through the nozzle Qnozzle is shown

in Figure 2-19.



66

APNOZ (P-s.i.)

120.0-

Q

A2

100.0-

A

80.0-

60.0-

40.0-

20.0-

.0C
0.0 0.2 0.4 0.6 0.8

ONOZZLE (9.p.m.)

Figure 2-19. Jet Nozzle Pressure-Flow Characteristic
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CHAPTER 3

TRANSLATIONAL MOTIONS AND SUSPENSION SYSTEM

3.1 Support Force of One Pad

As was seen from section 2.1, the pressure drop across the sill of

a suspension pad varies with radius and gap. To find the support force

provided by one pad we integrate the pressure across the pad and obtain

the following expression: FR

Fpad = TR P(Rf) + 2r J P(r)rdr (3-1)
R
p

The equation for the pressure drop across the sill is

6p ln(Rs/r)
Phr) 0

3C t sill (3-2)

For convenience a tilt coefficient ct has been substituted for the brack-

eted quantity of equation (2-11) where

2

ct= ++a(3-3)

Substituting equation (3-2) into equation (3-1) and integrating, the ex-

pression for the pad force becomes

Fpad R~p (Rp)+ A'R 2 Q Rsl[ , 2 + ln () p2
Fpad = Rp R+h 03c t R Sill 2 + ) In 2 ) 1 (3-4)

Noting that the plenum pressure P(Rp) and the flow across the pad sill

Qsill are both dependent on the pad gap and the rate of change of that gap

we seek to eliminate these two quantities in favor of the gap and its time

rate of change.
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Continuity tells us that (assuming an incompressible fluid) the

flow across the sill equals the flow through the pad orifice minus that

flow which is stored within the pad gap and plenum as the clearance

between the pad and outer shell changes with inner sphere translation.

We have the following relationship.

Qsill ~- orif - stored (3-5)

The flow through the orifice is given by

[P -P(R)

Qorif s1/2 p dA/-

where, by comparison with equation (2-18),

2
2 cccd 1 

(3-7)

c 2
v

The flow stored can be expressed as

Ostored = Rh0  (3-8)

where h0 is the time rate of change of the gap.

Assuming that the pressure throughout the plenum is a constant,

the plenum radius RP can be substituted into equation (3-2) to get

another equation for the plenum pressure

R
P(R 6p ln RSQ

p) rh 3C VR sill (3-9)
oh ct
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Substituting equation (3-8) into equation (3-5) gives an alternative

expression for the flow across the pad sill.

sill = Qorif (3-10)- rR s2 0

We now have three equations, (3-6), (3-9), and (3-10) for the three

unknowns Qorif' P(R) and Qsill. Solving them simultaneously we get

p .
P(R )=P - Qorif (3-11)

p s 2(cdA0)2

where

2 2
-K + K +

(cdAO (s KRs2 0

Qorif
P

( C dA0)

and

K= 6p
act h

R
p s

To obtain the support force of one pad, the flow through the orifice and

plenum pressure are calculated from equation (3-11) and substituted into

equation (3-5) to determine Qsill. These values are then back substituted

into equation (3-4) giving the force.
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A plot of the force versus pad displacement is given in Figure

3-1 for a pad tilt of 0.0 inches and gap rate of change of 0.0 in/sec.

The effect of tilt is to decrease the support force of the pad. This

effect is shown in Figure 3-2. The force is also lessened when the gap

increases with time. The velocity effect is illustrated in Figure 3-3.

This situation occurs when the ball is translating radially within the

shell. Half of the suspension pads experience a gap increase with

time and the remainder experience a gap decrease. The composite effect

of all eight pads is investigated in the next section.
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Figure 3-1. Support Force Versus Gap for One Pad
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3.2 Force of Eight Suspension Pads

To understand the springlike performance of the eight suspension

pads acting jointly we must grasp the geometry. Each pad is situated

on the corner of a cube and exerts a force radially inward along a cube

diagonal. Each force can be envisioned as a vector; its magnitude is

determined by a pad gap, supply pressure, etc. as in the previous section

and its direction is normal to the shell inner surface directly above

the pad position, positive when pointing radially inward. The pad gap

h and rate of change of gap h can also be expressed as vectors parallel

to the force vector F, also positive when pointing radially inward.

The vector direction for each pad can be defined by a unit vector un

where n is the particular pad. In this way the three vectors concerned

may be expressed as

Fn = IFnlun

tn = h Iun (3-12)

hn hnun

(See Figure 3-4).

To determine the composite effects of the force of all eight pads

on the inner ball, the force, gap, and gap change vectors of each pad

must be expressed in a common reference frame of the ball rather than

the eight individual frames of the pads. For this purpose x-y-z- co-

ordinates were used as the ball reference frame (see Figura 3-5). We pick

the orthogonal axes z and x to serve as reference baselines from which

to measure a latitude angle $ and a longitude angle 0 for sphere dis-

placement and velocity.
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REF.

Figure 3-4. Displacement Velocity, and Force Vectors in Reference Frame
of Pad
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A ball displacement d in this frame is expressed in terms of its

magnitude and direction as
AA 

( -3

d = Id{(sin $cose0) i + (sin $ sino0) j + (cos J) } (3-13)

where i, j, and k are the unit vectors in the x, y, and z directions re-

spectively. Similarly, the ball velocity v is given by

v = IvI {(sin p cose) i + (sin $ sine) j + (cos $) k} (3-14)

The force contribution from a particular pad is desired in the di-

rection of ball translation. The ball displacement d is converted into an

equivalent pad gap at each pad with the following transformation

jP d_.- un + h (3-15)

where h0  is the clearance of all pads when the ball is centered. Similar-

ly the rate of change of pad gap can be related to the ball velocity:

i=x *_ (3-16)

Knowing the pad gap and rate of change of that gap, the force for a

pad can be calculated. The only component of this force desired though is

that portion which is in the direction of translation of the ball. This

value is found by taking the dot product of the pad force vector F and

the ball displacement vector d

F d =F {A
F n =n {(s in4o'cos 0) + (s in4' cos 0) j + (cos fl) (3-17)
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The total force comes from sunning this quantity over all the pads

8

FTOT = Fn (3-18)

n=l

Two configurations were investigated. They are shown in Figures 3-6

and 3-7. Figure 3-6 shows ball displacement and velocity along a cube

diagonal. The corresponding latitude and longitude angles are $ = 54.74'

and 0 = 45'. Figure 3-7 illustrates displacement parallel to a cube face.

For this case $ = 0 and 0 = 0.

Figure 3-8 plots force versus displacement along a cube diagonal for

various ball velocities. Figure 3-9 shows similar calculations for dis-

placements and velocities along a cube face.

On a ball with eight suspension pads there are an infinite number

of combinations of pad tilts. Each pad could be misaligned a different

amount when it is placed on the ball so to define the effect of tilt on

total suspension force is a foreboding task. To simplify matters, all

pads were assumed to have the same tilt. Figure 3-10 plots the decay

of the support force at increasing tilts for specified ball displacements

along a cube face. The tilt effect is seen to be more pronounced at

high ball eccentricities.

Figure 3-11 assumes zero tilt conditions on all pads. It illustrates

the effect of ball velocity along a cube diagonal on the total suspension

force of the pads.
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Ball Displacement and Velocity Along a Normal to a Cube FaceFigure 3-7.
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3.3 Differential Equation of Translational Motion

Knowing the spring force supplied by the eight suspension pads

we would like to predict the translational subsystem's response to

dynamic disturbances. The role played by the suspension pads in this

analysis must be examined more closely. The previous section defined

the force produced by the pads and showed it to be a function of the

displacement of the ball from its centered position within the shell as

well as the ball's rate of displacement. The effect of velocity and dis-

placement can be represented as two separate elements in the model for

the translational system. Displacement effects are attributed to a

mechanical spring while velocity effects are attributed to a mechanical

damper or dashpot. Any disturbances propagated to the inner ball must

be reached via the outer shell so the model must include its mass as

well. Figure 3-12 shows a schematic of the translational system.

The mass of the outer shell Moutis an easily determined quantity.

The spring "constant" k and the damping "constant" b are in fact functions

of the ball displacement from center x. They are determined in the

previous section and it will be shown how they may be obtained from

the graphs in that section. For the mass of the inner ball an effective

mass Meff must be used rather than merely the mass of the ball itself.

The Meff takes into account the inertia of the annular fluid which must

be overcome as the fluid is squeezed around the ball when it moves

eccentrically with respect to the outer shell.
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From examining Figure 3-12 it can be seen that we have a third order

system. There are three independent energy storage elements (the two

masses and the spring) so one would expect one third order equation of

motion or else more than one of lesser order. The relations for the sys-

tem are:

Mt +b( -) + k (x -x)=F(t)
o 0 0 (3-19)

Meff 5 + b (x - k) + k (x - x ) = 0

The second equation can be rewritten in the following form

M x R + bxc+ kx = bx +kx =Fi(3-20)Meff o o input (-0

Equation (3-20) is of the form of a second order system with a forcing

function on the right hand side. The motions of the outer shell when

subjected to F(t) can be interpreted as the forcing function. In

reality the two masses do not act independently of each other but for

the purposes of examining the dynamic responses of the inner ball some

sort of forcing function Finput ' (xO, t) may be assumed which is

determined by the motions of the outer shell. Since the outer shell

motions are random, to the inner ball the Finput function would also

appear random although to a lesser degree.

Before interpreting equation (3-20) there must be some means of

determining values for the Meff3 b, and k. The effective mass can be

determined from considering the kinetic co-energy of the annular fluid

5
as it moves out of the way of the translating inner ball. Rather than

including the inertia of the fluid as another parameter in the model
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its effect is reflected in an increased mass of the inner ball. This

effective mass increase is derived approximately in Appendix A and is

given by

M4 31 l.2RI
Meff = ps s3R3 1 + h J(3-21)

where ps is the density of the sphere, p the fluid density, R the

ball radius, and h0 the annular gap. Assuming a neutrally buoyant

sphere the fluid density and ball density are approximately equal.

For p = 1.675 x 10O4 lb-sec2/in.4 , R = 4.25 in., and ho = .15 in. the

effective mass becomes

Meff = 1.88 lb sec2 (3-22)

which is 35 times the mass of the ball itself.

The spring coefficient k is a function of x. It is not a con-

stant but may be considered so for a linearized system with small

displacements. The slope of the force versus displacement curve for

the sphere is the value for k. As an example, displacements along a

cube diagonal will be considered. From Figure 3-8, k is found to be

4 lbs./.0005 in. or 8 x 103 lb./in. Note that this value could have

been picked off any of the curves of Figure 3-8; they all have the

same slope near zero displacement. The velocity effect of the force is

taken into account by the damping coefficient b.
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If one were to trace the path of the ball along Figure 3-8 as it

oscillated within the outer shell one would proceed upward on one of

the positive velocity curves. The ball would slow down as it approached

the wall; i.e. the path would gradually change from the .10 velocity

curve for example toward the zero velocity curve which it would finally

reach at its peak excursion from center. As the ball recedes from the

wall it would follow the negative velocity curves. The ball's oscil-

lation would form a hysteresis loop on Figure 3-8.

The damping coefficient b is also a function of x. The slope yields

the force versus velocity curve of Figure 3-11 yields its value. For

oscillations about the center (displacement = 0) the slope of this

curve is 2.3 lb/.10 in./sec or b = 23 lb-sec/in. At a .0005 displacement

b = 25 lb-sec/in. so for very small displacements a b of 24 lb-sec/in.

is reasonable.

It must be noted that these values have been taken with the ball

centered. In an analysis investigating extreme conditions the ball

can withstand without collision with the outer shell (and resultant

loss of inertial reference) the k and b are conservative. Both the

damping and spring coefficients increase at higher eccentricities.

The system in effect becomes stiffer in that region.
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Two parameters are important in understanding system performance.

They are the damping ratio and the natural frequency wn. The damping

ratio is an indication of the speed of response of a system. The

natural frequency states where the system resonance is likely to occur.

The damping ratio t is given by

b (3-23)

24ikieff

For this system its value is about .1. The natural frequency is given

by

k (3-24)

For this system w n = 65.2/sec or 10.37 cps.

Figure 3-13 is a sample of the system's response for various values

of k, b, and Meff, when the forcing function is a sudden step in force

6
as shown in the upper portion of the figure. The present system would

fail after about .05 seconds if the outer shell were disturbed in such a

way that a step input of 14 lb of force was suddenly applied to the

inner ball system. A step force of anything less and the ball would not

collide with the outer shell. Any force greater and it would collide

sooner. For example, a 20 lb step in force would result in a collision

after only .03 seconds. Again it should be noted that these estimates

are conservative. Since k increases at higher displacements, readings
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would be taken farther up along the ordinate scale of Figure 3-13. Higher

values of b at greater displacements would entail reading off lower curves

in the family.

Calculations done at a displacement of .002 in. would yield the

following results:

k = 1.9 x 104 lb/in.

b = 125 lb sec/in.

Wdn= 100/sec = 16 cps

C = .33

A step input force of 40.7 lb would cause collision after about .03 sec-

onds. Any lesser force is admissible. A greater force would again cause

collisions sooner.

One could also investigate what response could be expected if Finput

were a sinusoidal function of the form

Finput = Fin cos Wt (3-25)

where Fin is the amplitude of the force and o the frequency. Care would

need to be taken to avoid operating at resonance conditions. Again if this

were a linear system resonance conditions would occur when the driving fre-

quency at resonance wores is given by

W res = n 2(3-26)
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For this system evaluated at zero displacement conditions this fre-

quency is 64.5/sec or 10.27 cps. At this driving frequency the peak

ball excursion from center xmax (again assuming constant k and b) would

be given by

in/k (3-27)

for 1/VT and

Xmax = Fin/k (3-28)

for ( > l/V1.

It is desired to get a rough idea of the order of magnitude of

the force F. the inner ball could withstand under resonance conditions.

Equation (3-27) could be rewritten as

Finmax = kh0 2C (3-29)

where the annular gap h0 has been substituted for the maximum allowable

excursion of the inner ball relative to the outer shdl . For this

system the maximum allowable amplitude of a sinusoidal forcing function

operating at the resonant frequency is 4.77 lb. when all pertinent par-

ameters are evaluated at zero displacement. If C and k are evaluated

at a .002 in. displacement the force amplitude can be as high as 35.5 lb.
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The two values calculated above differ significantly. The

system is sufficiently non-linear that the preceding analyses are

useful only in determining order of magnitude estimates on system per-

formance. To determine the true dynamic response of the translational

system would require a computerized solution of the system's displace-

ment-dependent damping and spring coefficients b(x) and k(x). The

entire third order system which includes theoutershell, would need to

be examined in its full non-linear glory.
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CHAPTER 4

ROTATIONAL MOTIONS AND TORQUING SYSTEM

4.1 Brush Friction

Since the eight brushes are the means by which the inner ball

maintains electrical contact with the outer shell they are a major

source of retarding frictional torque. They are configured on the ball

as the suspension pads are. The eight brushes can be pictured as

being positioned on the corners of a cube encasing the inner ball and

then projected onto the ball. Each pad-brush combination is equi-distant

from its three closest neighboring pad-brush combinations.

The frictional torque attributed to one brush can be given by the

tangential force produced on the outer shell surface by the brush, multi-

plied by the normal distance from the spin axis of the outer shell to

the brush, i.e., the moment arm of the brush. The tangential force is

represented by nFN where FN is the normal contact force between the

brush and the outer shell surface and n is an empirically determined

coefficient of friction. The moment arm of each brush is dependent

upon the location of the spin axis of the outer shell.

Figure 4-1 shows a possible configuration of the inner ball and

spin axis. From this figure it can be seen that the moment arm of

brush I for example is given byR sin$ where 4 is the polar angle of the

brush from the spin axis used as reference. The frictional torque due

to brush 1 is thus given by

TBRUSH = nFN R sin $l (4-1)
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The total frictional torque due to brush contact is obtained by

summing over all brushes assuming the normal contact force and the

coefficient of friction n are the same for each brush.

8

TBRUSHES = nFNR j sin$.(4-2)
j=1

Two extreme cases should be investigated: a) the spin axis pene-

trates the cube faces (Figure 4-2a) or b) the spin axis is located

along a cube diagonal and penetrates two brushes (Figure 4-2b). For

case (a) the polar angle for four brushes = (180* - 54.74*). Since the

sin (54.74*) = sin (1800 - 54.740) the total frictional torque is given by

TBRUSHESA = 8nFNR sin (54.740) = 6.53nFNR (4-3)

Case(b) with the spin axis on a cube diagonal works out similarly. The

polar angle in this case is $ = 70.53* for three brushes, q =(1800 - 70.530)

for another three brushes, and 0* for two brushes. Total frictional

brush torque is given by

TBRUSHESB = 6rIFNR sin (70.530) = 5.66nFNR (4-4)

For a normal force of .7ounce, a ball radius of 4.25 inches, and n = .18

cases(a)and(b)work out to

TBRUSHES = 3.5 in. oz (45)

TBRUSHES B = 3.03 in. oz
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This analysis for brush frictional torque is valid at any

rotational speed of the outer shell. The static coefficient of

friction's variation with sliding velocity is negligibly small. It

may be assumed constant for both static and dynamic analyses.
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4.2 Drag of Suspension Pads

Because the eight suspension pads protrude from the surface of the

inner sphere they are subject to form and pressure drag as the outer shell

pulls fluid past them. For the present configuration of eight pads and

three torquer jet pairs, geometry tends to indicate the bulk of the jet

streams from the torquer nozzles is directed along the attitude bands.

The attitude bands divide the sphere surface into eight triangular sectors

with one suspension pad centered within each. As the jet streams diffuse

away from the attitude bands and toward the pad their velocities decrease.

It seems a reasonable assumption, therefore, that the only velocity of

major importance seen by the pads is that produced by the relative motion

of the outer shell. The velocity of the fluid at the outer shell near a

pad is given by the product of the outer shell's angular velocity relative

to the inner ball w and the moment arm of that pad R sin$ where 4 is the

polar angle measured from the spin axis of the case to the pad. This is

the same angle as described in section 4.1 on brushes and pictured in

Figure 4-1. The velocity at the inner sphere is zero. Assuming a linear

velocity distribution in the gap the average approach velocity as seen by

a pad is given by

VE = Rsinw (4-6)
REL 2

A suspension pad can be modeled as a cylinder positioned such that

the projection of its long side is normal to the flow. The drag force D

on such a cylinder is given by

PV2 A
D = REL PROJC (4-7)

2 D
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where p is the fluid density, APROJ is the area of the cylinder projected

normal to the flow (in this case the product of the pad height and diam-

eter), and CD is an empirically determined drag coefficient which is

a function of the Reynold's number of the flow based on the cylinder

diameter.

For a cylinder in a flow where the Reynold's number lies between

102 and 2 x 105 the coefficient of drag is approximately constant, i.e.,

8
CD ~ 1.2 (see Figure 4-3). Substituting this value and equation (4-6)

into equation (4-7) gives

D = .15p APROJ R2w 2 sin2 (4-8)

To obtain the frictional drag torque for one pad, equation (4-8) must be

multiplied by the moment arm R sin$ to give

TPAD = .15p APROJ R3w2 sin 3 (4-9)

The total frictional drag torque is obtained by summing equation (4-9)

over all the pads.

8

TPADS = .15PAPROJR32E sin3 $0 (4-10)

j=l

As in section 4.1, two extreme cases are investigated. When the

spin axis penetrates the center of a cube face (case a) four pads are at

a polar angle of 54.740 and four at an angle of (1800 - 54.740). The

drag torque produced by the pads becomes

3w2
TPADS A .6 53PA PROJ R w (4-11)
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For case b, the spin axis penetrates a cube diagonal and two pads are

at a polar angle of 0, three at angle of 70530, and three at an angle

of (1800 - 70530). For this case the drag torque becomes

TPADS B =754p APROJ R3W2  (4-12)

The assumption of a constant drag coefficient CD of 1 .2 was only

valid for the region of Reynold's number between 102 and 2 x 105. One

woul d 1ike to k now the relati ve rota tion rate to whi ch thi s Reynold' s

number range corresponds. If the Reynold's number Re is defined as

Re _ VRELd _ Rwd (4-13)

where d is the pad diameter and v is the fluid dynamic viscosity, values

for R, d, and v may be substituted and a corresponding limiting value

for w found. For d = 1.4 inches, v = 1.24 x 1C-3 in2/sec, and R = 4.25

inches the limits 102 < Re < 2 x 105 correspond to .044/sec < w < 83.57/

sec or .007 cps < w < 13.3 cps. The analysis is valid over the range of

speeds of interest. A plot of case a) is given in Figure 4-4.
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4.3 Parasitic Valve Drag

To prevent rotation of the inner ball a pair of torquer jets are

located on each of three mutually perpendicular spin axes of the ball.

These jets expel a high velocity fluid on the principle that the reaction

forces produced by these jet pairs will counteract drag forces transmitted

from the shell to the inner sphere via the annular fluid. These high

velocity jet streams, however, excite the annular fluid and impart to it

a higher momentum such that the annular fluid produces a parasitic drag

torque on the inner sphere in a direction opposing the reaction torque of

the jets. Calculation of this parasitic valve drag torque through inte-

gration of shear stress exerted on the inner sphere proved unsuccessful;

rather, it was decided to investigate momentum changes of high velocity

jet streams within the annulus and attribute these losses to the viscous

dissipation on the inner ball and outer shell. To use this method a sim-

plified model of the occurrences within the gap had to be made.

From observations of jet streams operating within a confined gap it

was noticed that the jet would spread quickly to a finite width (about 2

inches on a 10-inch diameter ball) and remain at the width as it traveled

circumferentially about the ball. This high velocity jet stream is pri-

marily responsible for the induced drag on the inner ball. A stream ve-

locity profile a few nozzle diameters downstream of the jet nozzle and

another farther downstream where the jet's momentum has been dissipated

are assumed and used to calculate momentum changes. With a model for jet

geometry and velocity profiles within the jet stream, stall thrusts in

the present system can be predicted at various measured flow rates

through the nozzles.
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4.3.1 Jet Geometry9

For the purposes of momentum calculations we need to know the cross-

sectional area of the jet stream As anc a characteristic stream velocity

Vs. We can determine Vs by considering the control volume shown in Fig-

ure 4-5. As high velocity fluid emerdes from the nozzle it entrains sur-

rounding fluid to form a stream or trough of fluid with velocity higher

than that of the surrounding fluid within the gap. Assuming dissipative

forces are negligible in this spreading region the following momentum

balance is employed.

SF =4frPu2dA = P[Vs 2As - V A (4-14)

C.S.

The stream velocity therefore is given by

Vs (4-15)

and since the nozzle velocity equals the nozzle flow rate Q. divided by

the nozzle area Q.
i

s A As(4-16)

To determine the stream area we refer to Figure 4-6 and note

As = 0 [(R + h) 2 - R2 (4-17)

which when linearized for << givesr

As~ 2ORh (4-18)
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Trigonometry reveals that

6 = tan- 1  (R + R(4-19)

which again when linearized for h << 1 yieldsr

2 r~= (4-20)

Combining (4-18) and (4-20) the stream area becomes

As = 8Rh3 (4-21)

The pertinent parameters of jet geometry are therefore

Vs= ;A = 8Rh3 (4-22)

A 8Rh3I

Further validation of the above approximations is given in Appendix B.

4.3.2 Momentum Calculations of Shear Force in Gap

The effectiveness of calculating surface shear forces using change

of momentum principles lies in the successful choice of reasonable velocity

profiles. The jet stream here was modelled as a quasi-two-dimensional

channel flow between two parallel plates. The lower plate represents the

inner sphere; the upper plate, the outer shell. (See Figure 4-7.) This

planar assumption is quite reasonable since the gap h between the inner

ball and outer shell is much much less than the radius of curvature R of

the inner sphere. The flow is termed quasi-two-dimensional because the
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channel is assumed to have a finite width h along the z axis such that the

stream cross-sectional area As is given by hw; however, end effects on the

z faces are ignored.

Figure 4-7 shows the jet stream with its assumed velocity profiles

and the control volume to be used for the analysis. The jet nozzle is

squirted in from left of the figure. Profile" is taken several nozzle

diameters downstream of the jet after the spreading region. It is envi-

sioned as being formed by the superposition of a high velocity parabolic

distribution from the jet and a linear distribution due to the rotation of

the outer shell with respect to the inner ball at a relative velocity Rw

where o is the relative angular rotation rate of the shell in rad/sec.

Far downstream the jet has lost most of its momentum and can no longer pen-

etrate the annular fluid. The only velocity distribution remaining is that

due to the relative motion between the inner ball and outer shell. The

profiles are given by Rwy+ V2

=g-- + 6 V-
1 1 (4-23)

Rw

The shear force may be calculated by integrating the momentum flux

across the surfaces of the control volume, which in vector notation yields

Fx.= } u (p V - dA) (4-24)

C.S.

or (4-25)

Fx=w Pu2 2dy - w ul2dy +2hfpuvdx

0 0 0
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Since we are past the region where entrainment occurs we may use continu-

ity of flow and dimensional analysis to determine the relative importance

of the y direction velocity v.

The continuity equation for an imcompressible two-dimensional

flow is

U av 0(4-26)

Noting that u scales as the average stream velocity, Vs, the x dimension

scales with the stream length Y, and y dimension scales with the gap h

we get

V
s v (4-27)

or since ~ h and h << 1 we can claim v << Vs and v is therefore
s

negligible. (Note this assumption is not valid in the spreading region

since here k is of the order h.) The momentum balance then reduces to

Fx= (Pw f u22 - dy (4-28)

0

Substituting the profiles (equation (4-23)) and integrating we ,et

F = pVs2 w h(11 + ) (4-29)

and since wh = As the relation reduces to

Fx =p VsAs (_+ ) (4-30)
(S
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where Vs and As were given by equations (4-21) and (4-22). An alternate

form based on equation (4-16) is

4.3.3 Transformation of Shear Force into Drag Torque

The shear force calculated in the previous section is the total

force exerted on both the inner ball and the outer shell. It is

necessary to determine what fraction of that force acts on the inner

sphere. One cannot A priori claim that the force is equally divided

between the inner and outer members since the assumed velocity profiles

clearly show different slopes at each surface. A ratio of the outer

force F out to the inner force F. can be found by taking a ratio of the

shear stress on the outer surface to the shear stress on the inner surface

since in the planar model the areas they act on are equal.

F out _ Tout 
(4-32)

Fin Tin

The ratio of outer to inner shear stress can be found by investigating

the ratios of the slopes of the velocity profiles at the outer and inner

surfaces.
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Differentiation of equation (4-23) yields

du1  Rw 6V

d7 h h h (4-33)

du2 _ Rw

We are now in the position to assume a distribution of our shear stress.

For simplicity let us assume a linear one

Tout 2 - out z+ I out (434)

Tin 2(T2-Tl)in j +T 1 in (4-35)

where the subscripts 1 and 2 refer to stress at the point of the corres-

pondingly numbered assumed velocity profiles. Since we are dealing

with a Newtonian fluid we may set the shear stresses I and 2 proportional

to the slope of the velocity profiles at these points such that

I i wmdu,
dyiynm(4-36)

du2

2 in 2mom ~y(4-37)

Td y= h(4-38)
1lout mom dy-(-)

out mom dy =(4-39)



115

The constant of proportionality in this case is pm which may be termed

a "momentum viscosity".

One might ask at this point why the shear stresses were not just

calculated directly from the slope of the velocity distribution instead

of using the momentum method. Similar calculations for the shear stresses

using the usual viscosity coefficient of the fluid yielded results far too

low. This is due to the fact that the jet stream may not be purely lami-

nar. Error may also have been introduced in the assumed velocity dis-

tributions which becomes magnified when differentiated. Since integra-

tion is a smoothing process the momentum method is preferable since it

integrates over the assumed velocity profiles only in the form of a ratio.

Since it is very probable that any percentage errors made are of the

same order of magnitude they should cancel or at least be diminished in

the ratio.

The ratio of the outer to inner shear force is given by integrating

the shear stress along the shear length Z

jZ T (+ j'jT1 out idx

Fout - out Z +i jt(4-40)

Fin 2 in + 1- 2 in dx

0

After substitution of equations (4-36) through (4-39) and integration, the

ratio reduces to Rw
F oR - 9V R_out _s_ s (4_4)
TT Rw +9V 5  Rw4-1
in s -+

s

the unknown quantities ymo and I conveniently cancelling in the ratio.
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A plot of equation (4-41) is shown in Figure 4-8. At very high
9VI

W >> R the curve is asymptotic to 1, which indicates that in the limit

of no jet stream we have a linear profile.

Noting the identity

F F.
out+ in _ Ftotal (4-42)

F. F. - F.
in in in

we may manipulate to get the following expression

Fin = I +lo Ftotal (4-43)
Fout
Fin

To obtain the shear torque on the linear member we need only 'Multiply

by the moment arm R.

2

Ti 1 PQJ R Q { + 6}(4-44)in R ItR{VTS 5
T9V.1 s

1+ Rw

9Vs
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4.C4 Calculation of Stall Thrust

Consider the system consisting of the inner ball and outer shell to

have reached a steady state in which the relative velocity between the two

members is zero. When the valves are ejecting fluid at a particular flow

rate, the thrust required to maintain the ball in this equilibrium position

is termed stall thrust, The stall thrust can be obtained from equation

(4-44) by setting w equal to zero and dividing by the moment am R

3 Q2

F =-6 P -l-(4-45)stall 5 A.

Calculated values for the stall thrust about a spin axis are com-

pared with measured values in Figure 4-9. The current design has four jets

per axis. The thrust of the combined force of all four jets is plotted

versus the total flow to all four nozzles. Figures 4-10 and 4-11 are sim-

ilar plots for older designs with only two jets per axis.
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4.4 Steady State Torquing Ability and Load Line

Based on equation (4-44) a steady state load line can be established

for the system's available torque. The system's available torque is given

by the ideal valve torque minus that torque which produces a parasitic drag

on the inner sphere or

Tavail =Tideal - Tin (4-46)

Since the ideal valve torque Tideal is given by

2Q.
Tideal A. R(4-47)

i

equations (4-47) and (4-44) can be substituted into (4-46) to yield

2

T =p R 1 - +
avail P A. _R L 5 (4-48)

+C1

The bracketed term may be called an annulus recovery coefficient (ARC) and

is plotted versus the non-dimensional parameter Lw in Figure 4-12.

As can be seen from the figure the data points are fitted very well

by a straight line with the equations

ARC = .4 - .6 (4-49)
Vs
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Substitution of equivalent system parameters for Vs in equation (4-49)

gives

ARC V .4 - .6k Q (4-50)

where the 21T has been added so that w may be given in cps,

The available torque may be found by substituting equation (4-50)

into eqwtion (4-48)

Tpvail R (ARC)R 4 .6 (451)

qnce the Available torque of the system is known it is compared with

the system loaO line to determine its adequacy or inadequgy, The load

which the torquing system must sustain is gpmposed of torques from the form

drag of the suspension pads, the frictional drag of the br4shes, and the

viscous drag of the outer shell pqlling the annular fluid along with it as

it rotates. The pad and brush torques were found in preVious sections.

The viscps shear torque due to the concentric rotation of p shell outside

a sphere is negligibly small compared with the first two, (For this system

the shear tprque would be .02 in-ox at a speed of 2 cps.) The solid lines

in Fiurs 4.13 show the available torque and load line for the present sys-

tem (ball radius P4,25 In.).

At first one's instinct is to have 4 large radius hall so that the

valve thr4sts are acting at a large oment arm, giving a larger torque.

From a hydraulics point ov view, however, it is advantageq4 to have a

small ball. The slope of the available torque curve is dirqctly propor-

tional tQ the slope of the ARC versus r- curve (Figure 4,19). Equation
S 5/

(4-50) shpws thpt this slope incre4se with R5/4. A steep plope implies

that the eyallable torque falls off rapidly with speed 'sq a shallower slope
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is desirable. The form drag of the pads increase as R3 (see Section 4.2)

so again a small radius is favored. The dashed lines in Figure 4-13 repre-

sent the same hydraulic system operating on a 3-inch radius ball. The hy-

draulics acting on a 4.25-inch radius ball are adequate to about .76 cps.

The same system acting ona 3-inch radius ball has a range of adequacy

which extends to about 1.2 cps. A 30% decrease in ball radius produced a

58% increase in range of performance.

Figure 4-14 illustrates the effect of the annular gap h on the load

line and available torque. Since the ARC varies as h3/4 (see Equation

(4-51)) the slope of the available torque versus speed becomes less steep

at smaller gaps. To maintain the pad clearance necessary for a specified

suspension force, the suspension pads would not need to protrude as far out

from the sphere surface as they would if the gap were larger. Since the

form drag is proportional to the area of these pads projected normal to the

flow, a pad which protrudes less accures less drag torque. It is true that

the laminar shear due to the rotation of the outer shell about the inner

sphere is inversely proportional to the gap and this drag contribution

would, therefore, increase at smaller gaps. However, again this contribu-

tion is negligible. (For a .075 inch gap this shear torque would rise to

only .04 in-oz at a speed of 2 cps.) A decrease in the annular gap, there-

fore, proves beneficial rather than detrimental. From Figure 4-14 it is

seen that an annular gap of .15 inch yields a system adequate to .76 cps

(solid lines). The dashed lines show an annular gap of .075 inch increases

the range of system to 1.25 cps. A 50% decrease in gap produced a 64% in-

crease in system performance.
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4.5 Rotational Dynamics

A steady state.-load line analysis of a system provides much useful

information; but a dynamic analysis is also needed to determine the system's

behavior as it approaches the steady state values previously calculated.

Since the objective of the entire torquing system is to eliminate rotation-

al motions of the ball with respect to an inertial frame, it would be ad-

vantageous to know the time variance of these angular motions. This section

considers rotation about one axis with one torquer jet pair in full torquing

operational mode. The axis chosen is perpendicular to the face of the

imaginary cube superscribed about the sphere so that the torquing axis of

the jet pair coincides with the spin axis of the sphere.

An electric analog modeling the rotational system is shown in Figure

4-15. As set forth in the introduction, torque corresponds to current,

angular velcoity to voltage, capacitance to inertances, etc. The symbols

used follow the conventions set up in Figure 1-8. The ball is modeled as a

spherical mass with rotary moment of inertia J about the spin axis and angu-

lar velocity QB. The pads are modeled as a rotary damper whose torque Xads

is given by a constant B times the square of the relative angular velocity

between the ball and shell,w. The brushes act as a torque source of magni-

tude, Tbrushes, while the shell is an angular velocity source of strength QC,
The chosen model for the jets requires some explanation. As derived

in the previous section, the available torque of the jets can be given by

T =Tideal (.4 - .6 (4-52)

where a previously defined R was the ball radius Vs the jet stream velocity

relative to the ball, and w the relative velocity between the ball and shell.



U ________ I ______________

K!p

Bco2

'ADS ANDI

+. 6 TDEAL (l+ vs)

I JETS

CASE

Figure 4-15. Electrical Analog of Rotational System

TBRUSj -r

- TIDEAL

I



130

This equation can be rewritten as

T i =Tideal - 6 Tidea 1 (4-53)

In this format it is easier to see how the jets may be modeled as a torque

source in parallel with a resistance. The reason for the minus sign in the

analog circuit is that the reaction torque of the jets is in a direction

opposite to that of the pads and brushes. A schematic torque balance dia-

gram is shown in Figure 4-16.

Based on the torque balance of Figure 4-16 the differential equation

of rotational motion for this system is

i = Tpads + Tbrushes + Tjets (4-54)

Using the relationships from Figure 4-15 the equation becomes

-2 + T[+ R f( 5)
= B(Qc-ZB) + Tbrushes - Tideal + .6Tideal r1 + -(a-B)J(4-55)

Defining the relative velocity QC~ B as w we see that

W = C~1 .B(4-56)

S= CB = B

since the case velocity 9% is assumed constant with time. Substituting into

equation (4-55) and manipulating gives

8- B 2 *6Tideal R Tideal - Tbrush _ 6Tideal (4-57)
S
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It is at this point that some deviation from the static mode for the

jets must be made. At the instant the jets are turned on full, the sphere

is subjected to the fully ideally calculated reaction torque. This situa-

tion occurs because at that point in time, the wake of the jet stream has

not been established and therefore cannot exert the parasitic drag force on

the sphere as described in Section 4.3. To account for this circumstance

the model must be extended. The simplest simulation to approximate this

pheaonmenon is to assume that the ball feels the full ideal torque, Tideal'

for a specified amount of time, t'. At times greater than t' the ball feels

the available torque as prescribed in Section 4.3. In other words, for

t<t' the rightmost resistance of Figure 4-14 is assumed to be non-existent.

Figure 4-17 shows the approximation to the jet torque assumed.

Equation (4-57) then becomes two equations, one for each time regime.

They are, for O<t<t'

B 2 Tideal - Tbrush
J +J)(4-58)

and for t'<t

B 2 _6Tideal R +.4Tideal - Tbrush (4-59)

J 3 V5s

Both of these equations are of the form

= 2 + OW+Y(4-60)

and are separable.
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The values for the constants, a, 3, y and 6 must be found from the system

constants B, J, Tideal' Tbrushes, R, and Vs.-

All calculations are done on a 4.25 inch radius ball. The damping

constant of the pads B can be obtained from equation (4-11). It can be

seen that

B = .653 p A projR 3  (4-li

A good estimate for the rotary moment of inertia of the ball J can be found

from the equation for the moment of inertia for a sphere. The mass of the

ball was found from the product of its volume and density. Since the ballis

approximately neutrally buoyant, the fluid density is about equal to the ball

density. Hence,

J = (P(p TrR3) R2 - 8 pR5 (4-65)5 3 -%15Q

The ideal torque of the jets was given by equation (4-47) as

2

Tid .- LR (4-47)
ideal 

A.4

while the brush torque was given by equation (4-5) as

T brushes =6.53 nFnR (4-5)
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The stream velocity is given by
Q.

Vs A 3~(4-22)

For this system the numeric values for these constants become

B = 1.8 x 163 in.lb sec2

J = .388 in. lb sec2

T =ideal 32 i n. oz = 2 in. lb (4-66)

T=brushes 3.5 in. oz = .22 in. lb

R = 4.25 in.

Vs = 46 in./sec

The values ct, , y and 6 may now be found. A comparison of terms be-

tween equations (4-58) and (4-60) and substitution of the values computed

from equation (4-66) show that

= B -4.639 x 1lO3

0 (4-67)

Tideal Tbrushes = 4.588/sec2

6 = 2.918 x 101/sec
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For 0 < t < t'. For these values of a, , y and 6 the tanh~I solution

may be used when

-3.145 x 101/sec < w < 3.145 x 10 /sec (4-68)

and the ln solution when

w < 3.145 x 10 /sec (4-69)

Since the lower limit of integrations is QC (at t = 0, B = 0) the tanh 1

is chosen. Equation (4-61) becomes

t = 3 tanh- (2aj+ ) - tanh~ (2aQC + (4-70)

which when solved for w becomes

W = 6tanh + tanh_ 2aC+) - (4-71)

Note that as t +o the solution asymptotically approaches

W + tc= 3.145 x 101/sec (4-72)

so there is no danger of going beyond the region of validity of the solu-

tion chosen.



138

Equation (4-71) is a solution to equation (4-61) only for t < t' ,

We evaluate (4-71) at t = t' and use the value for w as the lower limit

of the integral for times greater than t' when the jet torque experiences

the step reduction. For t > t' the constants a, 6, y and 6 must be re-

evaluated. A comparison of terms between equations (4-59) and (4-60) when

the values of equation (4-66) are substituted yields

S= -= -4.63 x 103

-. 6Tideal R 1I
J Vs -2.857x10 /sec (4-73)

.4TidealTbrushes =1 .495/sec2

6 = 3.307 x 10I/sec

For these values of a, , y and 6 the tanh~ solution is valid when

-6.644 x 101/sec < w < 4.850/sec (4-74)

and the in solution when

4.850/sec w (4-75)

Our choice of solution will depend upon the value of o at t = t.
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Up until now a value for t' has not been chosen. Physically there

can be no specific time t' when the drag of the jet wake takes effect.

Rather, the drag gradually increases as the jet wake covers more sphere sur-

face area. An approximation, however, is that the drag effect can be

ignored until the two jet wakes cover one half the ball circumference or

that each jet must have traveled one quarter of the way around the ball.

Dividing this distance by the velocity of the jet stream will give the time

elapsed until this situation occurs.

t'= -=.145 sec (4-76)
Vs

Substitution of this value for t' into equation (4-71) gives o at this time,

o', which depends upon the case velocity. A few values are given below for

particular case velocities.

Q = 37 radians W' = 10.028 radians
C sec sec

Q = 2r radians W' = 6.919 radians (4-77)
C sec sec

-=3T radians W' = 5.360 radians
C 2 sec sec

Q radians W' = 3.799 radians
C sec sec

For case velocities 3w radians/sec, 2w radians/sec and 3r/2 radians/sec the

In solution must be used. When 0C= w the tanh~1 solution must be used.

Let us consider the solution for Q > 37radans since it is the higher

case velocities which are more critical.
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Integration of equation (4-61) between t' and t yields

- 1 ln 2 ao + 1 - 61(4-78)6 [n2aoew+10+ 6

Defining the constant

K = 2a' ++6 (4-79)
~ 2a7 + 6+ 6

equation (4-78) can be solved for w to give

-a-6 + 1+6 K 6(t-t')

W=2o 2. (4-80)

1 - K e6(t-t'

As t +o reaches its steady state value.

S -- 4.85 radians/sec (4-81)

A plot of equation (4-80) is shown in Figure (4-18) for different

case velocities. As seen in the figure the case velocity does not affect

the time asymptotic steady state value for the relative rotation rate between

the ball and shell w. (Had the tanh~ solution been used as would have been

necessary for the lower case velocity values it too would have approached

this asymptotic value for w. The only difference in the two solutions is

that each approaches the value from a different direction due to different

initial conditions impoed by w'.) This steady state value checks with that

which would have been obtained by setting t = 0 in equation (4-60) and using

the quadratic formula to solve for o.
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Since it is the absolute motion of the ball itself which is of con-

cern a more useful plot would be that of the ball rotational velocity B

versus time. The ball velocity was given by equation (4-56) as QC-w. Fig-

ure 4-19 replots the information in a more intuitive form. To determine

the position of the ball versus time these plots have to be integrated.

It is interesting to note the significance of the short initial time

period 0 < t < t' when the jets produce an ideal torque value. From Figure

4-19 the ball velocity looks approximately linear with the time during this

period and can be written as

Q .65 t = -4.33 t (4-82)

Integrating this equation from 0 position (0B = 0) at time to to the ball

position eB at time t gives

6B = -. 045 radians = -2.6* (4-83)

This implies that the ball has rotated slightly in a direction opposite that

of the outer shell rotation. It, therefore, has a slight advantage when it

begins to rotate in the opposite direction in its attempt to track the outer

shell. To ignore the effect of the short duration of Tideal is to throw out

this favorable bias.

The ball velocity for =C-= /sec never crosses above the t axis; i.e.,

it never becomes positive, never is in the same direction as the outer shell.

This is indicative that at lower case velocities the jet torque is too strong.

This can be compensated by shutting it off at appropriate times and turning

it back on when needed. Conversely, the curves for QC = 3/sec and 2x/sec
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show that the jets are inadequate for such high case rotation rates. This

information reinforces that found in the previous section from the load line

graphs (Figures 4-13 and 4-14).
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CHAPTER 5

POWER REQUIREMENTS AND PUMP DESIGN

5.1 Modeling the Pump

The pressure needed to deliver a specified flow to all the components

of the hydraulic system is supplied via a centrifugal pump called a "turbo-

pump". The torquing power to operate the pump impeller comes from two iden-

tical eight-pole three-phase induction motors acting on the extended pump

impeller which doubles as the rotor for the motor. (See Figure 1-7.) A

model for the pump is needed in order to see its interaction with the sys-

tem components. The purpose of this model is to show tendencies within the

system. It is not intended for use in pump optimization. The detailed de-

sign and modeling of pump performance is a complicated procedure and beyond

the scope of this work.

The pump as modeled in this work is composed of two major parts:

(1) the impeller-rotor, and (2) the diffuser. The pump impeller raises the

pressure of the fluid passing through it and then passes the fluid on to the

diffuser (not shown in Figure 1-7). The diffuser channels the flow away

from the impeller blades through passageways of constantly increasing cross-

sectional area. The fluid velocity is lowered while pressure increases due

to the Bernoulli transformation of kinetic engergy into pressure energy.

5.1.1 Pump Characteristics

Any pump has a certain pressure-flow characteristic which is dependent

upon its speed of operation. Figure 5-1 shows an example of what these

characteristics might look like for a random pump. The family of curves

shown in Figure 5-1 could be reduced to one characteristic curve for a
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particular pump by plotting a non-dimensional pressure ' versus a non-dimen-

sionalized flow $. (These quantities will be defined in equations (5-5) and

(5-6)). One set of measurements then would be all required to determine '

as a function of $ and thus predict pump performance under conditions other

than those measured. The pressure head H across the impeller and the flow

rate Q through the impeller must therefore be stated in terms of thier re-

spective non-dimensionalized counterparts ' and $.

The pressure head raised across the impeller blades is given by

H = p (r2 2Q v - r1QvE) (5-1)

where rI and r2 are the impeller inner and outer radii respectively, v0land

Ve2 are the tangential velocities at the inner and outer radii and is the

impeller rotational velocity.

A schematic of this system's impeller is given in the upper portion

of Figure 5-2. Beneath is shown a velocity vector diagram corresponding to

flow past one impeller blade. The angle the blade makes with respect to the

radius is approximately constant and is denoted by the vane angle v. The

radial velocity at radii r1 and r2 are denoted by vrl and vr2. The fluid

velocity relative to the blade is vrel. From the vector diagram of Figure

5-2 it can be seen that

V = r1Q - V tan S (5-2)

v1= r2- v25-2)v02 = r2 Q -vr2 tan V
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From continuity principles and the assumption of an incompressible flow

the radial fluid velocities can be given by the radial volumetric flow Q

divided by the cross-sectional area at the point in question:

v Q

rl 2rr 1b(5-3)

vr2 2Tr 2b 2

where the b's are the widths of the impeller blades or depths normal to the

figure. Substituting equations (5-2) and (5-3) into (5-1) and manipulating

gives the following formula for the pressure head H:

H = prQ2 1 - (rl)22 Q b2 (1 -b--(5-4)
2~r 2 2Txr 2 b2bI

This formula is of the form

H = a (2) - a2 (Q) Q (5-5)

where a1 and a2 are constants for a specific value of Q. The pressure flow

relation is thus a family of lines whose y intercept a1 and slope -a2 depend

on the pump speed Q.

The pressure can be made non-dimensional by dividing by prQ2  to

give

r,)2 Q tan OV b2
1 (r2 -2 2b-1-(5-6)

2rr2 b2 b
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The flow coefficient can be normalized to the blade tip velocity and outer

cross-sectional area product (2rr2b2) (r2Q) or

' E _(5-7)
2Trrr2 b Q

2r2

Equation (5-7) can be substituted into equation (5-6) to give a ' - $

relationship

2'p = 1 -.~ )2- $p tan Sv 1- (5--8)

The ' - $ relationship above is a linear one of the form

' = a1 - a2 'p (5-9)

where by direct comparison between equations (5-8) and (5-9) the constants

a1 and a2 are seen to be

a - r1 2
(2

a2 = tan 
b 

~t)(5-10)

Thus the family of straight lines of equation (5-4) reduces to one straight

line with y intercept a1 and slope -a2. For this system a1 = .758 and

a2 = 1.407 and the p - $ relation is shown in Figure 5-3. The dashed lines

in the figure indicate that the model fails at very low and very high

flow rates.
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Another important parameter in the non-dimensional analysis of a

pump is its specific speed Ns which is given by

- --1/2 ($21/2 (
s- (H/p)3 $3/4

2 here is a geometric ratio given by the cross-sectional flow area at the

impeller outer tip divided by the impeller size

= 2 (5-12)

2 r2

Assuming thin impeller blades A2 is approximately given by 2rrr2b2 and 62

reduces to

2 = 2 (5-13)
r2

The characteristic or optimum specific speed of a pump is typically measured

during operation at peak efficiency. (Efficiency for a pump is the ratio

of the output fluid power HQ to the input mechanical power or torquevelocity

TQ.) It is an indication of the relative magnitude of the angular momentum

of the fluid versus the pressure head. Knowledge of the specific speed of a

pump gives a good indication of the shape of the impeller blades as seen in
11

Figure 5-4.

The introduction of the optimum specific speed is intended to give some

insight into the rationale behind the pump design for this system. The

specific speed for the turbopump calculated from the above pump model is .59.
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(The measured value was about .67.) A comparison of Figures 5-2 and 5-4

shows the similarity in blade shape.

In the non-dimensional analysis of a pump one more important parameter

should be considered. It is known as the Reynold's number and serves to

indicate the relative importance of inertia to viscous forces acting within

a pump. The Reynold's number is typically evaluated at the outer tip of

the impeller baldes and is given by

r2
Re = (5-14)

Calculation of the Reynold's number for a pump is an indication of the

variations of q), $, and the pump efficiency rp. For a Reynold's number of

about 5 x 105 or greater p, q, and np are essentially independent of the

Reynold's number, and may be expressed as a function of 4 only. The

Reynold's number for the turbopump at a speed of 16,000 rpm is 1.95 x 105

which is only slightly below the value necessary to neglect Reynold's number

effects. The model gives linear relationships between p and 4, and H and Q,

because these effects are neglected. At Reynold's numbers lower than 5 x 105

viscous forces begin to come into play and not as high as head H can be ob-

tained. The head lost due to firction h ,is a nonlinear function of the flow

so when this is subtracted from the ideal head the result is no longer linear.

(See Figure 5-5.)12 Therefore the linear - characteristic of Figure 5-3

is not valid at low and high flow extremes.
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For the rough purposes of this model the Reynold's number effect

has been neglected. The lowest speed at which the pump is operated is

about 8,500 rpm and the highest about 16,000 rpm. The Reynold's number

range is thus

1.04 x 105 < Re < 1.95 x 105

To compensate for the head losses at these fairly high Reynold's numbers

the model ignores pressure gains across the diffuser. In reality the

diffuser does not truly compensate for head losses across the entire

range of pump operation. At high flows viscous energy losses decrease

and there is sufficient kinetic energy in the fluid that the diffuser

is able to use this to approximately recover the viscous head losses.

At low flow rates, however, viscous losses are greater and the diffuser

does not have enough kinetic energy to recover the losses. Although for

pump design purposes the compensating diffuser approximation is certainly

not valid, it is adequate to give a pump characteristic to be used in

studying pump-system interactions. The effect of the diffuser would

only change the slope of the p-c$ curve slightly.
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5.2 Pump Loadline

The previous section gave a model for predicting pump pressure-

flow characteristics at different operational speeds. A loadline for

the pump must now be calculated which gives the composite pressure-flow

relation for all the hydraulic components. Each point on this curve

dictates the specific pump operational speed necessary to support the

load.

The hydraulic system complete with its interactions with the

mechanical aspects of the ball was shown in Figure 1-9. For the pur-

poses of this discussion we are interested only in the fluid resistive

part of the network seen by the pump; i.e., the fine lines on Figure
13

1-9. This portion of the figure may be simplified somewhat by

collapsing certain resistances into equivalent resistances with

different pressure-flow relations according to the basic rule that

for series resistances the pressures add and for resistances in

parallel, the flows add. This was done. The pad orifice and pad

sill resistances were converted to an equivalent pad resistance

labeled P. The two parallel subsections each consisting of a valve

filter, nozzle, thrust bearing, and radial bearing were reduced to an

equivalent resistance for the two half-valves labeled 2HV. The two

parallel turbopump thrust bearings were similarly reduced.

For the moment let us look only at the pad and valve pressure-

flow characteristic for one half of the sphere. We are prevented

from reducing these components further to just one equivalent

resistance by the existence of the equalizing resistance in the
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circuit which makes the analysis indeterminate; i.e., it can not be solved

explicitly and an iterative solution is needed. To avoid using an iterative

procedure, however, we will try to bound the solution by considering what

the equivalent pressure flow relation would be for these components if

(1) the equalizing passage were not there (open circuited) or (2) the

passages provided no resistance to flow (short circuited). Figure 5-6

illustrates the equivalent network under each of these conditions. Each of

these cases is now determinant. 1 4

The pressure-flow relation characterizing the load line for the

entire system was affected only very slightly by the two methods of

calculation above. At an ideal valve torque of 32 in.-oz (.35 gpm

flow through each nozzle) the short circuit calculation predicted that

a pump pressure of 25 psi would induce a total flow through the

components of 5.67 gpm. The open circuit calculation under the same

pump pressure and nozzle flow conditions yielded a total flow which

was only .05% lower than that calculated by the short circuit method.

The effect of the equalizing passages is therefore negligible and

either method for the calculation of the system load line is adequate

to within the ranges of validity of the component models. The load

line calculated by the open circuit method, however, will always pre-

dict a higher pressure at a specified flow than will the short circuit

calculation so it perhaps is the more conservative of the two methods.

The load line calculated by the open circuit method is plotted

in Figure 5-7. Also shown is the family of pump characteristics at

different operational speeds as found from equation (5-4). Again
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the dashed lines indicate the model begins to fail at both very high and

very low flow rates. The intersection of the load line and pump character-

istic dictates the operational speed of the pump under thoze particular

flow conditions. One point in particular is shown. For an ideal valve

torque of 32 in.-oz the pump must run at a speed of 13,000 rpm.

The question arises as to the effect of ball translation on this

load line. This effect is also very slight. At 25 psi and 32 in.oz of

valve torque a ball displacement of .002 in. along a cube diagonal produces

only .1% decrease in total flow.
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APPENDIX A

EFFECTIVE BALL MASS

When the inner ball translates within the outer shell its mass appears

greater than its actual density-volume product. This phenomenon is due to

the fact that in order to move the ball relative to the outer shell the

force required must accelerate not only the actual mass of the ball itself

but also the mass of the annular fluid which must be redistributed to allow

ball eccentric positioning. The combined kinetic co-energy of the ball and

annular fluid when the ball is subjected to a velocity V can be used to de-

termine an "effective" ball mass.

To proceed in this vein, the ball and shell are modeled as two octagons

of revolution; i.e., their cross section is that-of two concentric octagons.

This model was divided into five regions as shown in Figure A-1. The kinetic

co-energy of the annular fluid in each of these regions is then determined

when the ball is moved instantaneously with velocity V. Assuming flow in-

compressibility we can write the continuity equation for each of the five

regions. The cross sectional area of a region was taken at its mid-length.

With theconvention that small v's refer to fluid velocity and the subscripts

refer to the regions as numbered in Figure A-1, we get the five equalities

Vir (R sin = U 2TR sin f h0  (A-1)

V1L R sin3/ - R sini)J+ Vu(R sins2u2 2TR sin 0

cos

Vir(R sin P 2 =uT3U2R cosEh0
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Vr(R sin 3)2 - V- (R 2= 4 2h

Vu (R sin 2 - Vi (R sin 82 = 05 2R sin4CO h0

Solving for the fluid velocities gives

R sin v

2hV

R sin
u2= 2h0 8 V

R sin 2
8

3 2h Cos T03 0 i

2
R sin

04 = 2h -v

O5 =

R
= .19 h V

= 4 R- V
0

= .46 KRv

R.07 v

0

To determine the fluid masses in one segment we multiply the fluid density

P by the segment volume V. Noting that segments 2, 3, and 4 have length 2R

sin 1 the five volumes become

(A-2)
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v~ =(T R

v/2 = (2-aR

v13 = (27TR

v14 = (2TR

sin 2 h0

si1n 4)h 0 2R

Cosa h 2R
si R

\Tr~
sJ% 4) o(2

sing)

sin

sin )

= .46 R2 h

= 3.4 R2 h0

= 4.4 R2 h0

= 3.4R

s R sin )2 h0=

The actual mass of the ball is given by its

4R3

density ps times its volume

We are not ins a position to determine the total kinetic co-energy T*

of the ball and annular fluid. It is given by the sum of each of the indi-

vidual kinetic co-energies of the ball and annular fluid segments.

T* =1, p rR3 V2 + VU + V2 U2 + V U3 + V U +1% (A-4)
P[1s 2 2 33 44 55

Substituting equations A-2 and A-3 into A-4 simplifies the total

kinetic co-energy to

* s= p -R3 V2 + 1.6 pR v2]
[ 4

(A-5)

(A-3)

.46 R2
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which can be rewritten as

= 1 4 rR3  (i1 + p 1.2 R) V 2 (A-6)
2 [j 3 S h0

The bracketed quantity in equation (A-6) can be viewed as the effec-

tive ball mass. For a neutrally buoyant sphere Ps = P and it can be seen

that the effective mass is 35 times the actual ball mass for an 8.5 inch

ball with a .15 inch annular gap.

The above technique for determining the effective mass could be ex-

tended further to give better estimates by dividing the gap and ball into a

greater number of smaller segments. Hand calculations would become more

tedious and computerization of the procedure would then be advisable.
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APPENDIX B

JET STREAM MODEL

The calculation for the stream area in Section 4.3.1 gave the stream

area as

As =o8[(R+h)2 -R2 (4-17)

which, when linearized for 1 << I yielded
R

As~ 2eRh (4-18)

The result for e in equation (4-19) implicitly assumes a jet width such that

the given trigonometric relation holds true. To be truly correct this state-

ment is exact only when the chord on the outer shell representing the jet

stream width is also tangent to the inner ball. Figure B-1 shows the more

general case. Here 0 is given by

8 = tan -1 (Rjjh)2 - (R+rh)2 (B-1)
L R + ch I

where s is some multiplicative factor for h which can be adjusted to acomMw-

date the chord length representing the jet stream width. (In Chapter 4 for

the cord-tangency situation e was 0.) Linearizing equation (B-?) for a << 1

sh
and -T << 1 gives

2 h_ IC1 (B-2)
R + Eh_

R
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which, when substituted in the equation for As gives

(B-3)

A s ~ Rh3 / hA+

Equation (4-16) gave the stream velocity as depending inversely on the

square of the stream area. Substituting this modified value for As into

equation (4-16) gives ..--

= _I_-IE

s A .Z8Rh 1 +(B-4
By assuming e = 0 in Section 4.3.1 a percentage error of +

is accrued when c deviates from 0. Figure B-2 plots the bracketed quantity

for -.75 < c < .75. These limits correspond to jet stream widths between

3 in. (E = .75). At wider jet stream widths the actual stream velocity may

be only about 86% of that calculated in Chapter 4. At narrower jet stream

widths the actual velocity may be as much as 43% greater than that calcu-

lated in Section 4.3.1. Guessing at a value for E (such as 0) gives at

most a ball-park figure for the characteristic stream velocity.

The crux of the matter lies in understanding exactly what determines

the jet stream width (and corresponding c value) and stream velocity. More

knowledge is needed of the entrainment happening in the spreading region of

the jet. The above analysis and that in Section 4.3.1 assumed dissipative

turbulent and viscous forces in this region were approximately balanced by

the momentum influx from the entrained flow. Let us examine what order of

magnitude of entrainment is implied by the preceding analyses.
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The entrained flow Q is given by the jet stream volumetric flow

rate minus the jet nozzle contribution

QE= =s - j (B-5)

Noting that

QS =VsAs (B-6)

equation (4-16) can be rewritten to give Qs in terms of Q.
CA1

Qs Qj(B-7)sV Q

The entrained flow rate may now be given in terms of the jet flow rate by

substituting equation (B-7) into (B-5) to give

QE s 1(B-8)

For jet widths between 1 and 3 inches the entrained flow rate ranged between

10 and 18 times the jet nozzle flow rate. For E = 0 the entrained flow rate

was 15 times the jet flow rate. These values appear very large. Intuitive-

ly one would expect something much smaller. If one stops and thinks, how-

ever, one must realize that flow is squirted from the nozzle at velocities

on the order of one thousand inches per second into a medium of roughly zero

velocity. Perhaps with this realization the 15 fold entrainment is more

palatable. In all likelihood some error is introduced in the initial

assumption that the momentum influx in the spreading region carried in by

the entrained flow balances the turbulent and viscous losses there. Clearly

a more complex phenomenon is occurring in this region than the above model

portends.




