
Modeling Conventional and Pumped Hydro-Electric

Energy Using Booth-Baleriaux Probabilistic

Simulation

by

S. Finger

Working Paper No. MIT-EL 75-009WP

August, 1975

ACKNOWLEDGEMENT:

The work in this paper was supported by Northeast Utilities Service Company.

0.1 qt
··t \%



I



TABLE OF CONTENTS

I. Introduction 1

II. Deterministic Model 1

A. Thermal and Nuclear Energy 1

B. Conventional Hydro-electric Energy 5

C. Pumped Hydro-electric Energy 7

III. Probabilistic Model 8

A. Introduction 8

B. Nuclear and Thermal Energy 10

1. Single Increment Algorithm 10

2. Multiple Increment Algorithm 18

C. Conventional Hydro-electric Energy 20

D. Pumped Hydro-electric Energy 22

1. Base Loaded Energy Supply 24

2. Energy Consumed by Pumped Hydro 25

E. Loss of Load Probability 29

F. Expected Values of Running Capacity 29

G. Pumped Hydro Dispatch Strategy 31

33H. Numerical Example of Simulation

47IV. References





I. Introduction

Booth-Baleriaux probabilistic simulation models the operation of an

electrical power system. The two major outputs are the expected energy

generated by each unit and the loss of load probability for a given time

period. Prior to the introduction of probabilistic simulation, a determin-

istic model was commonly in use. The deterministic model is easier to im-

plement, but it does not give accurate results because the forced outage

rates of units are not accounted for in a realistic manner. Studies using

this deterministic method tend to underestimate the use of peaking units.

However, to understand how conventional and pumped hydro are modeled using

Booth-Baleriaux simulation, it is instructive to begin with the determinis-

tic model.

II. Deterministic Model

A. Thermal and Nuclear Energy

The objective of the planning study is to find the operation schedule

with minimum cost which meets the customer demand. The customer demand

is a time-dependent stochastic variable. A typical curve is given in

Figure la. For most long range planning studies, the time-dependent load

curve is simplified by converting it into a load duration curve as shown in

Figure lb. The horizontal axis gives the total amount of time that a given

demand level occurs. Although some detail is lost? the new load duration

curve is easier to work with than the time-dependent curve, particularly

for time periods longer than one day. Frequently, the load duration curve

is normalized to give the percent of time that a load occurs.
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An operating schedule for the system is determined by filling in the

area under the time-dependent load curve that corresponds to the energy sup-

lied by each unit, as shown in Figure 2a. The height of the area is con-

strained by the capacity of the unit. From Figure 2a, it is clear that if

an on-line unit is always run at the maximum possible capacity, such that

the load is just met, then the unit is always loaded and off loaded at the

same demand level. This demand level is called the loading point of the

unit. As before, the time-dependent load curve can be converted into the

load duration curve. The loading point remains unchanged and the total

energy supplied by a unit can be calculated by finding the area between the

loading point of the unit and the loading point of the next, on the load

duration curve as shown in Figure 2b.

In the deterministic method, a unit's capacity on the load duration

curve is usually reduced to reflect the random outages of the unit during

the operating period. This assumes that the unit is always available at

its derated capacity, or equivalently that it has a forced outage rate of

zero at its derated capacity. In fact, the unit is not always available.

When a unit does fail, more expensive generation must be brought on line to

replace it. Since the deterministic model assumes that units never fail, it

tends to underestimate the energy supplied by more expensive units.

The minimum cost operating schedule can be found by bringing up the

units (or incremental blocks) in order of increasing operating cost. In

this way, the least expensive units run for the greatest length of time.

Most costly plants are used only for short periods when the demand is high.

The final loading sequence of plants, from least to most expensive, is

called the economic loading order. The complete schedule is found by

bringing the first unit up to its derated capacity and running it 100% of

the time as a base loaded unit. Since there is still unmet demand, the unit
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with the next lowest cost is brought on line. This process is continued

until all the area under the load duration curve has been filled in. The

total cost of the system operation can be computed by multiplying each

unit's total megawatt-hours by the cost per megawatt-hour for that unit

and then sigimn the costs over all units.

B. Conventional Hydro-electric Energy

The inclusion of conventional hydro-electric power complicates the

problem of finding the minimum cost operating plan. The marginal cost of

conventional hydra is essentially zero, since there are only operating costs,

and no fuel costs. This implies that conventional hydro plants should be

first in the economic loading order. However, the total amount of conven-

tional hydro energy available is rliited by the river flows and the reservoir size.

Usually, the total energy is not sufficient to run the hydro unit 100Z of

the time at full capacity. There are several possible strategies for dis-

charging all of the hydro energy. One possibility is to load the conventional

hydro first, reducing the capacity until the area under the curve is equal

to the total energy available. From Figures 3a and 3b, it is clear that this

is equivalent to removing the same area from the top of the curve. But

because the last units to be loaded are the most expensive to run, the.

operating cost would be reduced if as much area as possible were removed from

the top of the curve. This can be achieved by removing the free hydro

energy at full capacity as shown in Figure 3c. This is equivalent to finding

the loading point for the hydro-electric unit such that, run at full capacity,

the hydro energy is exactly equal to the area under the load duration curve.

Figure 3d shows the final result of these manipulations. These manipulations
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are necessary because it is not possible to subtract the energy from the

top of the curve in the probabilistic model which needs the equivalent

loading point. The logic for this point is easier to understand in the

deterministic model.

In the process of finding the optimal loading point for the conventional

hydro unit, it may be necessary to reduce the running capacity of the pre-

viously loaded plant. Because the conventional hydro energy is essentially

free, it is always less expensive than the energy it is replacing at its

loading point. The remainder of the other unit's capacity can be loaded after

the conventional hydro energy has been discharged.

C. Pumped

The energy

in the economic

meet the direct

loaded units by

can be released

Hydro-electric Energy

stored as pumped hydro is generated by units which are low

loading order, but which are not needed 100% of the time to

demand. Thus, an artificial demand is placed on these base-

units which pump water into a reservoir. This stored energy

during periods of high demand when more costly units would

normally be generating. Since the pumping and generating operations are not

completely efficient, the energy available to meet demand using pumped hydro

units is less than the energy generated by the base loaded units for pumping.

Pumped hydro energy is similar to conventional hydro in that the amount of

energy available is limited. However, modeling pumped hydro is complicated

by the fact that the energy is not free and that the energy is generated on

one part of the curve and discharged on another.

The total energy potentially available from a base loaded unit for pumped

hydro can be found by computing the area above the load duration curve for the
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base loaded unit. Due to the limited capacity of the pumping unit, soame of

this energy may be unavailable (see Figure 4a). Another limiting factor is

the size of the reservoir. When the energy above the curve, subject to the

limited pumping capacity and the pumping inefficiency, is equal to the storage

capacity of the reservoir, then pumping stops. Taking into account the in-

efficiencies of generating from pumped storage, the total energy available to

meet customer demand will be about two-thirds the energy used for pumping. This
results n a marginal generating cost about one and a half times that of

the base-loaded unit used for pumping.

Depending on the system and the shape of the load curve, several base-

loaded units may fill a single reservoir, or one base-loaded unit may fill

several reservoirs. For the deterministic case, the marginal cost of the

pumped hydro will be taken to be the average of the base-loaded costs (with

the inefficiencies factored in) weighted by the amount of energy each base-

loaded unit provides.

Once the pumped storage increments have been sorted into the economic

loading order and the first loading points has been reached, two possibilities

can arise. Either the pumped hydro unit has sufficient energy to discharge

at full capacity, or it does not. A proof is given in Section G showing that,

in the deterministic case, the operating cost of the system is reduced if

the pumped hydro is delayed in the loading order until the demand can be

met by using the pumped hydro at full capacity. The argument is analogous

to the one given for conventional hydro, even though the energy is no longer

free. An illustration of the loading of pumped hydro is given in Figure 4.

III. Probabilistic Model

A. Introduction

The probabilistic model presented here was first developed by Baleriaux

and Jamoulle in 1967. It was not widely used in the United States until the
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early seventies when Booth wrote several papers clarifying the model.

This paper does not follow the original logic used by Baleriaux and Booth,

but instead uses a more intuitive approach developed by Deaton at M.I.T.

References are given at the end of this paper.

B. Nuclear and Thermal Energy

1. Sngle IIcrmaent LoSarithm

In Booth-Baleriaux simulation, the power demand on the unit is re-

defined to be the sum of the direct customer demand and the demand due to

outages of previously loaded units. Both of these quantities can be con---

sidered as random variables. The load duration curve can be interpreted as

a form of the cumulative probability distribution function (CDF) for the

customer demand. The probability density function for demand due to forced

outage is found from the curve giving the unit's forced outage rate as a function

of its running capacity. Using these two curves, the CDF for the equivalent

demand can be found using convolution.

To obtain the CDF for customer demand from the load duration curve, the

axes are rotated and the time period is normalized to give percent of time.

These operations are shown in Figure 5. The percent of time that a given

load level occurs can be interpreted as a probability. That is, there is a

probability of one that the load will be greater than the minimum load at

any given time and a probability of zero that it will be greater than the

max-iam load at any given time. The resulting curve is not the cumulative

probability distribution function, but one minus the cumulative. The following

notation will be used:

d
GC(d) PrCDc < d - 4 fC (xdx

FC(d) -1 - GcCdl - PrCDC > d " f fC(x)dx (1)
d
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G (d) is the CDF of the customer demand. F (d) is the normalized customer load

C C

duration curve, and f(d) is the probability density function for the customer

demand. The subscript of the function identifies the variable which it des-

cribes.

By definition, the equivalent load, DE, is the sum of two random variables:

D = D D (2)E C F(2)

where DC is the direct customer demand and D is the demand due to forced

outages of units already dispatched. From probability theory, the CDF for

the sum of two random variables is given by:

GEo(DE) = 
GE(D E)I

DE-DF
f C, F (DC'DF) dDdDF.

-00 -0

The function fC,F(Dc,Df) is the joint probability density function of the

customer demand, DE, and the forced outage demand, DF. We can assume these

two random variables are independent, which implies that:

(4)
fC,F(DCDF) = fcF(D fF(DF).

Using Equation (4), equation (3) can be simplified to;
DE-D

GE(DE) = fF(DF)dDF E F fC(D dDC.
-00 - (5)

Using the definition of the cumulative distribution function given in

Equation (1), Equation (5) becomes:

GE(DE) = fF(DF)Gc(DE DF)dDF. (6)
-00 (6)

For the case in which the forced outage rate is a discrete random var-

iable, the integral over the probability density function (DF), can be

(3)
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replaced by the sum over the probability mass function. For a plant with

forced outage rate, q, and capacity K, this probability mass function is

given by:

P if DF 0 (7)

PF (DF) if DF K

where p + q - 1. That is, there is a probability, q, that the plant will not

perform and the demand due to forced outage will be the capacity of the plant.

There is a probability, p, that the plant will perform and the demand due to

forced outage will be zero.

Replacing the integral with the sum, Equation (6) becomes:

GE(DE) - pGc(DE) + qGc(DE-K) (8)

or FE(DE) - PFC(DE) + qFC(DE-K).

This final equation gives the new equivalent load duration curve. Figure 6 il-

lustrates how this curve is found using convolution. This curve can be used

in much the same way the original load duration curve was used in the determin-

istic model, except that a new curve must be computed each time another unit is

brought on-line.

Units are loaded starting from the left of the equivalent load duration

curve. The demand on the first base loaded unit to be brought up is the

entire customer demand. There are no outages from previous units, so

DE - D- (9)
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where DE1 - equivalent demand on the first unit

DC total customer demand.

Because the two random variables, DE1 and DC, are equivalent, their distri-

bution functions are the same:

FEl (d) FC(d)

and 0 < DE1 _ Dmax (10)

where Dmax is the peak customer demand. FC(d) is just the original load

duration curve.

In the deterministic model, a unit was loaded onto the system by filling

in the area under the load duration curve. The area gave the KWhrs generated

per hour. The total energy was found by multiplying by the length of the

time period. To load a unit in the probabilistic model, the area is again

filled in. The vertical axis, instead of being the percent of time that a

unit is operating at a given capacity, is now the probability that a unit is

on-line and operating at that capacity at any given time. Taking the integral

over the capacity gives the expectation of the running capacity for the unit

at any given time. (A proof is given in section F.) This expected capacity

for the first unit is:

K1
E(C1 ) ' ;1 F(x)d (11)

where K1 - nameplate capacity of the first unit

C1 - random variable describing the running capacity of the

first unit.

This is the expected capacity required to meet the equivalent load, without

considering the availability of the unit. The total expected energy from

the first unit, taking outages into account, is:

MWH, p,. T . E(Cl) (12)
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where P = total availability of unit one including forced and planned

outages

T = total length of the time period in hours.

The capacity factor, the ratio of running capacity to nameplate capacity, is

given by:

CF1 = P '. E(C1)/K (13)

The equivalent demand on the second unit to be brought up is the

customer demand plus the demand due to the outages of the first unit:

DE2- DC + DF1
(14)

K1 < DE2 < Dm + K1.

Because of the way the equivalent load is defined, the loading point of the

second unit on the equivalent load duration curve is the same whether or not

the first unit has failed. If the tirst unit fails, it creates a demand,

K1, so the second unit is loaded when the equivalent demand is K1. If the

first unit had not failed, there would have been no demand due to outage.

The first unit would have supplied the demand until the demand exceeded

K1, at which point the second unit would have been loaded.

Equation (8) gives the equivalent load curve for DE2:

FE2 (d) = PlF(d) - qlFC(d-K1 ) (15)

Having used the load duration curve to find the equivalent load curve for
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the second unit, the expected capacity, the capacity factor, and total energy

can be obtained:
K1+K

E (C 2 ) ;1 2

Ki
FE2 (x)dx

CF 2 = 2 ECC) 2 /K 2

lml2 P2 T . E(C2 ).

The loading of the second unit is shown in Figure 6.

Moving on to the third unit, the equivalent load is given by:

DE3 = DC + DF1 + DF2

K1+ K2 < DE3 < D + K1 + K21 - E" max 1 

(16)

(17)

Using the definition of DE2 in Equation (14):

DE3 DE2 + DF2

The distribution for DE2 has already been found, so convolution can be used

again to find the distribution of DE3:

FE3(d) - p2FE2(d) + q2FE2(d - K2)

(18)
FE3 (x)dx

CF3 p3 E(C 3 )/K 3

-m'3 P3 ' T . E(C 3 ).

- -1'YK3
Kl Jz
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In general,
r-l

DEr = DC + Fi
i= DF 

or DEr = DE,r-l + ,r-

FEr (d) r PrlFE,rl(d) + qr-1FE,r-l( (d-K )

TK +K 19)

E(C ) I r F (x) dx
r TIr Er

CF 5 pr. E(Cr)/Kr

MWHr Pr T . E(Cr).

where r = loading order of the plant.

TK - um of the capacities of the r-l plants loaded before r.
r

2. Multiple Increment Algorithm

In the derivation of the equation for the equivalent load, it was assumed

that the unit would always be brought to full capacity. In reality, units are

frequently brought up to full load in increments. If each increment has a

discrete probability of failing, then the probability mass function looks like:

Upr if D =0
pF (DF) = F

F qri if DF = Kij j-0,1...J

and (20)

Pr + J=O qrj

jO 0

where J is the total number of increments of the unit under study.

Before performing the convolution using the new probability mass function

for outages, it is necessary to examine the definition of equivalent load:

r-l
Dr =D -1 ~~~~~~~(21)

DEr DC + Z DFii=li

Included in the demand due to forced outages are outages of increments of
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plant r that were lower in the loading order. But if a lower increment of

a unit failed, then a higher increment will not be available. A lower incre-

ment cannot place an outage demand on a higher increment. To account for

this, the demand due to forced outage of any earlier increments is removed

from the system before the increment is added. The equivalent demand on the

kth increment of the rth unit is given by:

k-l

Erk DE,r- + DF,r- 1 Frj 22)

To compute the distribution of this random variable, it is easier to

consider the system with all of the increments of unit r convolved into the

equivalent load. Because the order in which random variables are convolved

does not affect the final distribution, to include the kth increment of a

unit, one can assume that the k-l increments were the last ones added to the

system. Combining equations (6) and (20), the equivalent load duration curve

for the kth increment is:
k-l

FErk(d) - PrFE,r-l(d) + E qrjFE,r-l( -d-Krk-K r). (23)

Now suppose we have the equivalent load duration curve for the kt incre-

ment. In order to load the kth increment, the outages of the k-l previous

increments have to be deconvolved. Rearranging Equation (23) gives:

k-l

FErl (d) [F (d ) - Z qrjFE,r-l( - Kr,k-l-Kj)]. (24)
r J=O
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FErk(d) is the equivalent load curve for the kth increment to be loaded.

Equation (24) is used to remove all of the outages of plant r from this

curve. Points of the curve can be evaluated even though FEr_l(d) appears

on both sides of the equation. The curve is evaluated starting at d 0.

Since FE(d) always has a value of one for a negative number (i.e., the load

is always greater than zero), the right hand side can be evaluated. Through

an iterative process, the entire curve can be constructed from left to

right.

The kth increment of the rth unit is then loaded back onto the system

under the equivalent load curve FE,r-l' After the expected energy and capacity

factors have been calculated, all k increments are convolved back into the

system and the next plant is loaded.

It should be noted that the order of convolution does not change the

distribution of the sum of random variables. The increments are considered

individually rather than in a group in order to find the proper loading

points and expected energies.

C. Conventional Hydro-electric Energy

The treatment of conventional hydro using probabilistic simulation

will not be that different from the treatment in the deterministic case.

It will be more difficult to reduce the capacity of earlier plants and to

compute the area under the curve. At each successive loading point, a test

is performed on the feasibility of bringing up :the hydro unit. The total

energy demand on a unit with a capacity Kh can be found using the current

equivalent load duration curve. The total energy demand on the hydro unit

is given by:



TK + K
DM = T f FEr(X)dx. (25)

TK

FE (d) is the equivalent demand on the next unit to be brought up. Equation

(25) is used to find the energy demand on that unit if it were the conven-

tional hydro unit. If DMWHh is greater than the available hydro energy, then

th
the unit is not loaded. The r plant in the economic order is loaded instead.

If the total energy demand is less than or equal to the available hydro energy,

then the conventional hydro unit is loaded.

If one assumes that thermal plants are run only at valve points, then

the process is simplified since one has only to find the first loading point

at which the available energy is greater than the energy demand. If, however,

one wanted to find a lower bound on operating costs, then a procedure would

have to be followed which allowed loading or off-loading at any MW level.

To make the most efficient use of the free hydro energy, the previously

loaded unit should be off-loaded until the total energy demand balances the

hydro energy available. However, changing the capacity of the r-l t unit

changes the shape of the equivalent load demand curve for the r unit.

Equation (25) can be rewritten using Equation (19) and changing the capacity

of the last unit to K'
r-l

TK'+Kh TK'+Kh
Dh = T Pr-l FEr (X)d + r- TK FE,r-1(-K r-l)dx

(26)

where
r-2

TK' = Z K + k'
i=l 1 r-l
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If MWYH is the actual energy available from conventional hydro, we wish to

find K'rl such that DMGIh is identically equal to }MWHh This involves solving

Equation (26) for K'r_1 which is an argument in the limits of the integrals

and in the integrand of the second integral. Rather than solving this analy-

tically, we will simply remove the last unit and start adding it in small steps

until the energies are balanced to within a set tolerance.

Given the equivalent load duration curve for FEk(d), the curve for

FE ,r(d) can be found using deconvolution:

1 (27)FEl(d) = 1 [FEh(d) - qF (d-Kr_ )].7)E,Pr- r-l

Once F (d) is computed, the capacity of r-ls t plant can be added in steps.
E,r-1

Let Kr_ 1 be the size of the kth step. Each time an increment is added, a

new load curve is computed and the right hand side of Equation (26) is

evaluated. As soon as the value is greater than MWHh, the current load curve

which includes the capacity up to and including the ith step is saved. The

conventional hydro unit is loaded under this curve. Its expected energy and

capacity factor are computed. It is then convolved into the system to give the

equivalent demand on the remaining capacity of the off-loaded unit. In order

to load the remaining capacity the outages of the earlier portion have to be

removed using the multiple increment algorithm. The final curve is the same

as if both units had just been convolved in. The intervening steps were

needed to find the proper loading point for the hydro unit.

D. Pumped Hydro-electric Energy

Once the energy available to pumped hydro has been computed, its

treatment is very similar to conventional hydro. However, there are ad-

ditional problems with pumped hydro in that one has to; (1) compute the
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expected excess energy available from base loaded units, given that each

such unit has a probability of failure; (2) compute the probability that a

pumped hydro unit generates a given amount of energy, that is, that it has

sufficient water available and that the generator does not fail; and (3)

compute the expected cost of the pumped hydro energy.

From the equivalent load curve (Figure 6), one can see that the base

loaded plants will frequently have excess capacity available for pumped hydro.

(Recall that the area under the curve is the expected capacity, not energy,

required to meet the load demand). This excess capacity is available with

a probability, p, the availability of the base loaded unit.

Thus, the expected supply for pumped hydro units could be expressed as

the convolution of random variables corresponding to the excess capacity

available from each base loaded unit. However, due to the time dependent

nature of the original load curve this excess capacity is not available

to pumped hydro all the time. In fact, during certain parts of the day,

the entire capacity will be used to meet customer demand, while during

others, most or all of the capacity will be used for pumped hydro. This

means that the capacity available for pumped hydro will be greater than

the expected excess capacity (the area above the equivalent load duration

curve), but it will be available for less than the availability of the base

loaded unit. The new availability includes the probability that the unit is

not forced out as well as the time-dependent availability. This is unfor-

tunate because it is difficult to justify interpreting the percent of time

available as the probability of being available. Indeed, to do so would

violate the assumption that availabilities are independent because if one

base loaded unit has excess capacity available for pumped hydro then so do

the rest of the units higher in the loading order.
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An alternative method is to include the time-dependency by computing

the expected energy available for pumped hydro and assuming that the energy

is available with probability, p. This method avoids the problems mentioned

above, although it obscures some detail. In particular, it does not allow

for the inclusion of the limited pumping capacity. However, it is conceptually

clearer and considerably easier to implement. For these reasons, the rest

of this paper will focus on the second approach. Reference can be made to

Section H where an example is worked through.

1. Base Loaded Energy Supply

The base loaded energy available for pumped hydro is the area above

the load curve multiplied by the length of the time period. This energy is

available with the same availability as the base loaded plant. Using this

fact one can create a cumulative supply curve of base loaded energy, FS B(S)'

by convolving random variables of the form:

p if x = Ex

P(s3 x) q if x = 0

otherwise (27)

p availability of the plant

Ex energy above the curve

Then:

FS,B (s) = qB-1FS,B 1 (s) + PB-1FS,Bl(Ex) (28)

where

FSB() - cumulative supply curve before Bth plant is loaded

B loading order of the base plant

s given supply level

N.B. (1) The cumulative supply distribution is a series of step functions

formed from discrete random variables; (2) the p's and q's are reversed
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from the forced outage demand random variable, because the supply is being

created, not consumed; (3) The original supply curve is one for all MWH

levels less than or equal to zero and zero for all MWH levels greater than

zero.

2. Energy Consumed by Pumped Hydro

After all the base loaded plants have been convolved, the curve of

FS,B(S) is the cumulative supply curve of energy available for pumped hydro.

We now define a new random variable, SE, the equivalent energy supply:

SE SB + SF (29)

where

SB original supply available

SF supply available due to outages of earlier pumped hydro units.

When a pumped hydro unit creates demand on the base loaded units, the

energy available is a function of the original base loaded supply plus a

supply due to the failure of earlier pumped hydro units.

Because of the inefficiencies in pumping, the demand created by a

pumped hydro unit is greater than the MWH size of the reservoir. The pumped

hydro demand, H, is given by:

H = z/e (30)

where

z size of reservoir (MWH)

e pumping efficiency.

The distribution of the random variable, SF, corresponding to the supply

created by the failure of previous pumped hydro units, is formed by the
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convolution of random variables having the following distribution:

q if x H

Pr(SF = x) p if x = 0

otherwise (31)

The distribution of SF has the same form as the distribution of demand due

to forced outages in the load convolution, except that now the random vari-

able is energy supply rather than power demand.

The procedure for finding the expected energy for a pumped hydro unit

is completely analogous to finding the expected capacity for a non-hydro

unit. Each pumped hydro unit is loaded under the supply curve at its de-

mand, H, just as the units were loaded under the equivalent demand curve

at their capacity. The expected energy demand is found by computing the

area under the curve, between the loading point and the demand level, just

as the expected capacity was computed before. The outages of the pumped

hydro unit are convolved into the equivalent supply curve to account for

the fact that failure of pumped hydro units makes more energy available to

other units. At any point, the distribution of the equivalent supply, SE,

can be written as:

F u(S) - 1l F ulS) + q 1 F s - u)l) (32)

L+H
E(MWHC ) - Pu Fsul (x)dx. (33)

u u L s,u-L

where

FS = equivalent supply curve before the uth plant is loaded.Su
FS,1 = FS,B' the final base loaded supply curve

u - loading order of the pumped hydro unit

p = probability that the pump does not fail

L = loading point on the supply curve
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MWHC = megawatt hours consumed.
u

Finally, the expected energy available is:

E(MWH ) = E(MWHCU))e (34)

Comparingthis set of equations to those for the demand curve, the only dif-

ference is that time is not included in any of the equations. Time is in-

cluded in the original calculation of the expected energy available.

The expected cost of the energy can be found by assuming that the

base loaded plants are convolved into the supply curve in the same order

in which they loaded into the system load demand curve. This is the

same as saying that the first pumped hydro unit is probably supplied by the

first available and therefore cheapest base loaded unit.

The expected cost can be written as:

n
E[c(s)] = Z i Pr {unit i supplies the energy at S} (35)

i=l

where

c(s) cost of energy at point d on the supply curve

Ci = cost of unit i

n = total number of base loaded plants.

From Figure 7 in Section H it is clear that the probability that a certain

unit supplies the energy at any one point can be found during the convolu-

tion process given that we convolve the plants in the proper order. If the

units are convolved in a different order, then the final supply curve is

the same but the internal blocks are different resulting in different costs.

Equation (35) can be rewritten as;
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c (s) = c B-(S) + CB[Fs,B(s) - FS,Bl(s)] (36)

where

cB(s) = expected cost of the supply at point s after B is loaded

cB = cost per MWH of plant B.

The last term in Equation (36) contains the expected energy to be sup-

lied by any base loaded plant at any point s. This value:

AMWHB = [Fs,B ( ) - FS,B-()] (37)

can be accumulated for each plant to give the total energy expected from

each.

The expected cost for the pumped hydro energy can be found by summing

the expected cost of the original supply plus the expected cost of the

supply due to outages. Since the first pumped hydro unit has no supply due

to outages:

Cl(s) = CN(S)

H

and E(cl) = E1 C(s)
s=O

where cN(s) = cost curve after all base loaded plants

are convolved. (38)

In general for base loaded units:

FS,B (S) q ,B-l(s) + PB-lF S,B-1(Ex)

L+ EXB
E( M ) = f [F ,B(x )- FS,B-1(x)]dx (39)

L

CB (s) = CB l (s) + cB [FS,B(s) - FS,Bl(s)]
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For pumped hydro units:

F (s) = UF (s) + q F (s-H
s,u u-i su-l u-i s,u-i u-i

L+H
E(MWH ) = P *e. f F (x)dx (40)

u u su-l

cu(s) cU- (s) + I[Fs us) - F (s)]

L+H
c f c (x)dx
u u

E. Loss of Load Probability

After the last unit has been loaded, the final curve is the

equivalent load curve for the entire system. Since the loss of load proba-

bility is defined to be the percent of time that the customer demand

cannot be met, its value can be read directly from the final curve. The

energy demand that cannot be supplied is given by:

EN =T FEN(x)dx (41)

where TKN is the total installed capacity of the system. Figure 6 shows

the final system configuration.

F. Expected Value of the Running Capacity

In the deterministic model, the energy can be found from the area

under the load duration curve. In the probabilistic model, this integral

must be reinterpreted because the vertical axis does not have the dimension

of time. To make the reinterpretation, a new random variable, the running

capacity of unit r, is defined:
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r - DEr - TKr

where TKr is the loading point of unit r. The cumulative of C is:

G (S) = Pr(O < C < S)
cr r

(42)

(43)

or F (S) = Pr(Cr > S)
cr r

By definition of Cr, Fcr(S) is equivalent to:

Fc (S) - Pr(Cr > S) - Pr(DEr > S + TKr) FEr(S+TKr).

(44)

From Equation (1):

Fcr (S) = f f (x)dxcr cr
S

= f fEr (x)dx
S+TK

r

- FEr(S+TKr ).

The expected value of a random variable is defined to be:

(45)

x F (x )dxo x o o

xmi <x <xmin - -E max.

Integrating Equation (46) by parts gives:
x

E(x) x G (xo ) max
min

xmax
max f

xmin

X

max
Xmin

x +Xmin + 
min

x
- fmax (Xo)d

Xmin x

Gc (x)dxo

[1-F (Xo)]dx o

F (xo ) dxo

xmax
E(x) -

min

(46)

(47)
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Using this definition and Equation (45), the expectation of Cr is:

r

K
E(Cr) = r Fr (t)dt

r rPtTcr0o

K
F (t+TKr)dt
Er r

0

TK +K
= r r F Er(x)dx. (48)

This is just the area under the equivalent load duration curve. Therefore,

even though the calculations for the energy produced by a unit appear to be

the same, the interpretation of the variables is quite different. In the

probabilistic model, the expected running capacity at any given time is com-

puted and then multiplied by the length of the time period.

G. Pumped Hydro Dispatch Strategy

Suppose a system in which plants are loaded in order of increasing

operating cost. All pumped hydro units are loaded at the point where their

costs become competitive. The capacity of the pumped hydro units is reduced

so that a unit can generate for the required length of time at the point where

it is first competitive.

Now suppose that the running capacity of the pumped hydro unit is in-

creased. Because the energy remains constant, the hours of operation must

be reduced. This means that the pumped hydro unit must be moved up in the

loading order (see Figure 4). Moving the pumped hydro unit creates, two

effects. One is that the plant directly above the pumped hydro unit must

generate longer to make up for the hours that the pumped hydro unit is no

longer supplying. The other is to decrease the capacity requirements on

units higher in the loading order.

The extra cost required to make up for the loss in pumped hydro
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generation time is:

Ac' = AH * MW * cr (49)

And the savings from decreasing the capacity requirement is:

Ac = AMW (H-AH) * ck (50)

where

MW - original pumped hydro running capacity

AMW increase in pumped hydro running capacity

H = original generation hours

AH = decrease in generation hours

Cr cost of replacement generation

ck = cost of unit(s) displaced.

Since the plants were loaded in order of increasing cost:

ck > cr k (51)

where k indexes all plants above the pumped hydro unit. In some cases

the replacement generation and the displaced capacity may be for the same

unit, however, Equation (51) still holds.

The pumped hydro energy remains constant:

E = H * MW = (H-AH) * (MW+AMW) (52)

or

(H-AH) * AMW = AH * MW (53)

This implies:

Ac - Ac' = AMW*CH- H)*ck - AH*MW*cr

= A*MW'(Ck-Cr)

> 0 C54)

by Equations (51) and (53). Therefore, the savings are always greater

than or equal to the additional cost of delaying the pumped hydro.

Therefore, it is always advantageous to increase the running capacity

of the pumped hydro as far as possible. Equation (54) is equivalent to
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stating that the same amount of energy must be generated no matter what,

and that it is always cheaper to generate the energy toward the bottom of

the load duration curve.

The argument given above does not carry through to the probabilistic

model since there is no upper limit on the capacity required by the system

to meet the peak. That is, each additional MW at the top of the curve

reduces the loss of load probability, but, the loss of load probability

never reaches zero. (There is always a finite chance that all plants will

fail).

In the probabilistic case, increasing the capacity of the pumped hydro

may actually increase the costs since the additional capacity places an

outage demand on future units. However, the additional costs would be rela-

tively small, and the overall effect would be to increase the reliability of

the system

H. Numerical Example of Simulation

Suppose one is given a system of five thermal plants, one conven-

tional hydro plant and two pumped hydro plants with the characteristics

given in Table 1. Also given is the customer load duration curve for a

summer week shown in Figure 7a. With this data, the expected energy and

expected cost for each unit can be computed as well as the loss-of-load

probability for the system.

To begin the simulation, the plants are ordered by their operating

costs to get the economic loading order. The conventional hydro unit, which

has no operating cost, is first in the loading order. The load curve is for

a winter month, so there is conventional hydro energy available. Since

the hydro unit is the first to be loaded, there is no demand due to forced

outages and the plant curve is the customer load duration curve. If the
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conventional hydro unit were loaded at 30 MWs at the beginning of the curve,

there would be a demand of 5040 MWHrs on it. The demand value is found by

computing the area under the load curve (the expected running capacity) and

multiplying it by the number of hours in the time period. So for this case

the demand would be (30 MWs * 1.0 * 168 hours/week) = 5040 MWHrs/week.

(See Figure 7b.) The energy demand is equal to the energy available, so

the hydro unit is loaded. The expected energy of the conventional hydro

unit is the energy demand times the units' availability. Using the notation

of Section IIIb:

K1 - 30 MWs

E(C1) = 1.0*30MWs = 30MWs

MWH1 .99 * 168 * 30MWs - 4989.6 MWHs/week

CF1 = .99 * 30MWs/30MWs - .99

COSTI = 0.0 * MWHs - $0.0/week

All final values are given in Table II.

After the unit has been loaded, a new load curve is computed using

Eq4ation (15):

FE2 (d) p1 FEl(d) + q l FEl(d-Kl).

The curve FE2 is the demand curve that the second unit sees, Sample cal-

culations are worked out here. The complete curve is given in Table III.

In the calculations below all values that do not appear explicitly in the

table are computed using linear interpolation. Remember that the proba-

bility that the load is greater than a negative number is one.

FE2(625) - .99 FE1(6 2 5) + 0.1 FE1C625-30)

- .99 * 1.0 + 0.1 * 1.0 = 1.0

FE2 1000)' = .99 FEl(1000) + 0.1 FE1(970)

= .99 * .5 + .01 * .5444

= .5004
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FE2 (1500) .99 FEl(1500) + 0.1 FE1(1470)

= .99 * 0.0 + 0.1 * .0204

= .0002

The new maximum for the equivalent load duration curve is 1530 MWs and the

loading point for the next unit will be 30 MWs.

The three base loaded units are loaded in much the same way except

that it is not necessary to test on available versus demand energy. In

addition, for each base loaded unit, one computes the excess capacity which

could be used for pumped hydro. (In Figure 7, this is the shaded area above

the curve.) The expected capacity available for pumped hydro is converted

to energy by multiplying by the hours in a week. Each of these blocks of

energy is available with a given probability, p, and a given cost. This

information can be used to create an energy supply curve for pumped hydro.

So, for example, after the first base loaded plant is loaded, one com-

putes that it has an expected energy of 111,456 MWHs and excess energy of

2,160 MWHs which is available 90% of the time at a cost of $7.00 per MWH.

Figure 8a shows the beginning of the supply cumulative probability curve

and the supply cost curve.

Remembering that for the original supply probability curve the proba-

bility for negative numbers is one, one obtains:

FS2 (S) qlFsl(s) + plFsl(s-Ex)

F 2(0) .1 + F (0) + .9 * F(-2160)

= .1 * 1.0 + .9 * 1.0 - 1.0

F 2 (100) = .1 * F (10) + .9 * FS(-2150)

- .1 * 0.0 + .9 * 1.0 = .9

FS2(2160) = .1 * FS1 (2160) + .9 * Fs1 (O)

= .1 * 0.0 + .9 * 1.0 = .9
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FS2 (2170) = .1 * F (2170) + .0 * (10)
S1 S1

= .1 * 0.0 + .9 * 0.0 = 0.0

For the cost curve one has:

c1(S) = cl (s ) + Pl *c*[Fsl(S-Ex) - FSi(s)]

c2 (0) = c1 (0) + .9 * $7.0 * [Fsl(-2160)-Fsl(s)]

= 0.0 + .9 * $7.0 * [1.0-1.0] 0.0

c2(2160) = c1 (2160) + .9 * $7.0 * [Fsi(0) - FS1(2160)]

= 0.0 + .9 * $7.0 * [1.0-0.0] = $6.3

Once all the base loaded units have been loaded, one can compute the expected

energy supply available to each of the pumped hydro units. Since each

pumped hydro unit consumes more energy than it produces, the units are loaded

under the supply curve at their size divided by their efficiency. The area

under the supply curve (see Figure 83) is the expected energy available to

the first unit. Dividing this number by the efficiency will give the ex-

pected energy the unit can supply to the system. To find the expected cost

of the pumped hydro energy, one recomputes the area under the supply curve

multiplying each incremental block of energy by its cost as shown below.

The total cost is not adjusted by the efficiency since the unit is charged

for all the energy it consumes.

The first pumped hydro unit is loaded between 0 and 1000 MWHs. This

block of energy is available at a single cost (see Figure 8e). Since a

cumulative cost curve was not kept, the cost per MWH of this energy can be

found by noting that 90% of the energy was supplied by Plant C, 8% by Plant A,

and 1.7% by Plant E. These percentages can be found from Table IV by taking

the difference between two supply curves at the desired level. The difference

is the incremental supply by the next unit at that level. The expected

cost per MWH for the first pumped hydro unit (the seventh plant) is the pro-

duct of these incremental supplies and their costs from Table I:
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7 = $7. * .9 + $12 * .08 + $15 * .017

= $7.52/MWH

After the first pumped hydro unit has been loaded a new equivalent

supply curve is computed to account for the fact that the first unit may

fail making additional energy available to the second unit. The procedure

for computing the new curve is completely analogous to computing the new

equivalent demand curve. Results are given in Table IV.

The cost for the second pumped hydro unit is computed in the same way

it was for the first. Also included in its cost, though, is the energy

available because the first unit was down. This amounts to .02% of its

expected energy between the MWH levels of 2160 and 2,500 at a cost of $7.52/MWH.

The cost per MWH for the second unit is found by weighting the costs by

the energy available in each block. Final results are given in Table II.
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