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ABSTRACT

Let 9 be an imbedded submanifold of a smooth manifold 9. In this thesis, we study the problem of
restricting generalized functions on 9N to 9. More generally, if O is open in 9 and 9 is contained in the
closure of O, we study the problem of defining boundary values on 9, respectively, a restriction to 9, for
generalized functions defined on O where 9 is contained in the boundary of , respectively, the interior of O.
The generalized functions that we work with are continuous with respect to L!-type seminorms which remain
bounded when applied to sequences of densities converging weakly to a Dirac-type measure on 9.

A new sufficient condition for restrictability is given in terms of a refined version of the wave front set of
a generalized function which we define and study. In terms of this refinement, we also derive sufficient
conditions in order that the product of generalized functions is well defined.
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CHAPTER 0
INTRODUCTION

Let 9N be a smooth manifold, 9 an imbedded submanifold of 9N, and O an open set in M. In
this paper, we are interested in defining boundary values on 9 or a restriction to 9, for
generalized functions defined on © depending on whether 9 is contained in the boundary or the
interior of 0. The definition we give stems from the observation that if f(x, f) is a smooth function
on R”™! and » is a compactly supported density on R” X {0}, we can define the value of the
restriction of f(x, ) on »,  f(x,0)», as the limit we get by integrating f(x, ) against any sequence
of the form {r ® n,} where {n,} converges weakly to the Dirac density at t = 0.

Hence, in Chapter 1, we begin by defining a space of generalized functions on 0, R4, g, that are
continuous with respect to Ll-type seminorms that remain bounded on such sequences. Then,
since we wish to work on a manifold and the form of such sequences is not coordinate invariant,
we define permissible sequences {y,} which are just a coordinate invariant version of the above
sequence {» ® n,}). Then, if T is a generalized function, we say that T has a restriction to 9 if
(T,u,, converges as n — co and the limit depends only on ». We then show that this is a local
property and if a limit exists, it is given by a generalized function on 9%, denoted T o-

We also define convergence in % o which is strong enough to insure that if 7, converges to T
in Ry g then (7;)%(9 converges to Ty o weakly. In fact, the collection of restrictable generalized
functions is seen to be sequentially closed in R ¢. That is, if 7, converges to T'in R, o and (1;,)%(9
exists for all n, then 7 ¢ also exists and equals the weak limit of the (7;1)%0. This property is used
throughout the paper.

Since in practice it is difficult to test T against all such sequences {p,}, it is natural to ask
whether it is sufficient to work within a single coordinate system and there test T against only
permissible sequences of the form {r ® ,,}.

In the first two sections of Chapter 11, we show this to be the case for both bounday values and
restrictions when 90U has codimension one. In fact, by a Tauberian-type argument, we show that
with an auxiliary condition on the Fourier transform of 7, it is sufficient to consider only
permissible sequences of the form {y ® nny(nr)dr). To prove this, we construct a sequence of
smooth functions converging to 7 in R .

In these sections, we also study other properties of the spaces Rop o For example, if 9 is the
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boundary of G, we show thatif T € Gjl@w, then 7 can be extended to a generalized function on
9N in a natural way.

In section 3, we identify distributions on R” with generalized functions in the natural way and
show that if D is a distribution, ¢ a compactly supported smooth function with integral one, then
D = ¢, can be considered as a generalized function on RT] whose boundary value on R" is given
by D. Here, @, = ¢ "@(/1). »

In the two sections of Chapter III, we essentially follow the pattern of the first two sections of
Chapter II only in the case where the codimension of 90 is greater than one.

In Chapter IV, we are interested in studying the question of existence. To do this, we first refine
the notion of the wave front set of a distribution of Héormander [1] in section 1. Roughly speaking,
we split the wave front set into orders of decay and then show that this splitting in local and
coordinate invariant. These cones of variable decay are called k-wave front sets. We then study
properties of these sets and their projections to the manifold, called the singular k-supports. For
example, we show that if k is a positive integer, then the singular (—k)-support of a distribution
D is contained in the complement of the set of points where D is locally in C*.

In section 2, we extend these definitions to generalized functions in the natural way, and show
that if 9 has codimension /, and the (—/)-wave front set of 7 does not intersect the normal bundle
of 9, then T has a restriction to 9. In some cases, we also derive a relationship between the k-
wave front sets of T and Tg .

In section 3, we define the product of generalized functions as the restriction of the tensor
product to the diagonal of the product manifold. We then derive sufficient conditions, in terms of
k-wave front sets, in order that a product is well defined. Lastly, we discuss a couple of properties
of products.



CHAPTER 1
DEFINITIONS AND BASIC PROPERTIES

Let 9 be a second countable C* manifold of dimension n. Recall that a density p on O is a
signed measure on 9 which in every coordinate system U = {(x)}, p can be expressed as
p = @(x)dx where p € C®(91). Note thatif U = {(x)}, V = {(»)} are two coordinate neighbor-
hoods on 9N, say p = @(x)dxon U, p = Y(y)dyon V,thenon U N V,ify(x): UN V->UNV
is the change of coordinates diffeomorphism, we have

(1.0)

D ur(x)) = 9l0)

where |dy/0x| is the absolute value of det(dy/dx). Hence if x € C;°(U N V), we have a
coordinate invariant definition of

fum y Xb-

Also note that by (1.0), p # O at x, has an intrinsic definition. That is, if x, € U, where
U = {(y)} is a coordinate neighborhood, then p = y{y)dy on U and we say p # 0 at x; if
¥(x,) # 0. Then by (1.0), ¢(x,) # 0 in any other coordinate neighborhood of x,,
Now, let © be open in M. We denote by B(0) the collection of compactly supported densities
on 9 supported in O topologized as follows. Let {p,} C B(0). We say that p, — 0 if:
i) suppu, C K C O Vn whereKiscompact,
ii) If U is any coordinate patch in O with coordinate functions (x,...,x,), and
p, = @,(x)dx in U, then [(3/3x)*¢,| = 0 as n — oo uniformly on every compact
subset of U for any multi-index a.
Here we use the standard multi-index notation. That is, if x = (x;,...,x,), « = (a;,...,a,)
is an n-tuple of non-negative integers;

) a 3 ay 3 Oy
(B~ ()

Similarly, x* = x{" -+ xp" a! = ay! -0, ! o = 2 a;

Note that ii) is coordinate invariant as above. d

We denote by %'(0) the collection of continuous linear functionals on ®(9). By continuous we
mean the following. If T'is a linear functional on ®(0), we say that T is continuous if {(T,p,) — 0
for any collection {p,} C %®(9) such that p, — 0. If T € ®'(0), we call T a generalized function.
If {T.} C %'(9), we say that 7, — 0 if {T,,uy —> 0 for every p € B(0).

We denote by 0 the closure of 0.

Let 9 be an imbedded submanifold of 9 of codimension /. Let O be open in 9N such that
9N C O Let T € (0).
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DEFINITION 1.1. We define T € R ¢ if given any xq € I there is an integer m, a constant ¢ € RY,
and a coordinate patch UxO in 9N, with coordinate functions (xl, s Xy Vpr s y,), where UXO n 9
la|+|Bl<m

={(x, ..o y)ly; =0 Vi}, so that
« B
DY),
dax dy
|8I=I8

for allp € (U, N 0), where on U, , p = ¢(x,y)dxdy.

(11) |<T’“>| <c 2

i

Here we make the convention that (3/9x)°f = fif « = (0,...,0).
Clearly, if T has compact support, we may take c and m as independent of x,. Also, if 7 € R g
and { € C*(M), then {T € Ry ¢

PrOPOSITION 1.1. Let T € Ry, o, X9 € N, V. any coordinate patch in O containing x, with
N, 0 Xo Ly 0

coordinate functions (X, . ..,Xk,)'zl, ....¥) where N K = {(x,....7)|p, =0 Vi}. Then
there is a neighborhood of x, on C ¥y and an integer i so that
, 0\ g3\’
(1.2) KTl <e¢ > _H(ﬁ) y (55) e,
lal+( Bl <
|8l=|A1

forallp € BO N W), p = ¢x.y)dx dy.

ProoF. Let U, be as in Definition 1.1. Choose W, C U, N ¥ . Then W, has coordinate
functions (x,...,y) and (%,....5). Let p € BO N W) Then po= (p(x y)dxdy and p
= Y(x,y)dxdy with ¥(x,y) = @(X(x, ), 5(x, 7)) [0z, 5)/3(x, )| where [3(%,7)/3(x, )| is the abso-
lute value of the Jacobian determinant of the C*® diffeomorphism (x,y) — (%,7). Note that
X(x,0) = x and y(x,0) = 0. Expanding the ith coordinate y,(x, y) of y(x,y) by Taylor’s formula,
we have that

(1.3) )—)i(x’y) = ?yjfij(x’y)

where ];j(x, y) = fol (ay,/ Byj)(x, ty)dt are C* functions for all i, j.
Now the Jacobian matrix of the diffeomorphism (x,y) — (%,7) at y = 0 is given by

dx y=0 ay y=0 |.
0 f;j(x,O)

Hence, since this is a nonsingular matrix, we must have that det|f;(x,0)| # 0. Hence det|f;(x, )|
# 0 for (x,y) in a sufficiently small neighborhood of U,N ¥k, N N. We modify w,, to be this
neighborhood. Without loss of generality, choose WX; to be compact, Wx; cC U, NN,

Now, since p € %(on no c GJ?)(UXO N 0), we have by (1.1) that there is an m, ¢ so that

09 R N () 7(5) e

Now, by (1.3)



0x; & dx 0%, < dx k dy;
0% 3 .
- J (i)
= —+ 2, b’ ()75
; x; 0%; < Tk J oy

Hence, we have that

(2 - S s () (3]

where the sum is over |8 + |y| < |al, |y| = |¥’|. Similarly,
0\* AW ERY
) = g 5% ) \55 ) -

W= 3 b5’
|BI=lal

o )
where we note that all Ay Cay and bﬂ are C® functions. Hence,

(WA - 3, awen(B) o (3)-

lyl+8l <m

[Bl+|vI< o

And

where in the sum, we have |¢'| < [8] in general and d, 5 are C® functions for all v, &, &".
From the above expression it follows that the right hand side of (1.4) is majorized by the right
hand side of (1.2) with m = m, and an appropriate constant ¢’. W

DEFINITION 1.2. Let {,} C B(O). We say that {u,} is a permissible sequence on 0 if:
i) supp p, C K for all n, K a fixed compact set,
ii) If U is any neighborhood of N, then supp p, C U N O for n large,
iii) Given xy € N, there is a coordinate neighborhood U, = {(x,y)} where UN N
= {(x,y)|y = 0}, so that for every ¢ € C[)”(UXO),
lo|+| B <m

3N of 0 \F
(&) " (5) v
181=181

where c,, is independent of n, and p,, = @,(x,y)dxdy on U,
iv) There exists av, v € B(N) such that

<c Ym

m

1

li’r’n<F,un> = (Flo,vy  forall F € C*(9N)

where F|y is the restriction of F to .

(If {u,} is a permissible sequence, we will often say that p, converges to », where we mean in
the sence of iv).
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Clearly, if {p, ) is a permissible sequence, { € C*(SR), then {{u,} is a permissible sequence.

ProposiTioN 1.2. Let {p,} be a permissible sequence, xy € 9N, ., any coordinate patch where
N ¥ = {(®)|y = 0}. Then there exists W, C V¥ so that for all { € Cy (7).

[(Z) 0*(3 ) A

‘where c,, is independent of n, and p,, = ¢,(X,y)dxdy on W, .

Vm

(1.5)

lol+|B|<m
|81=18

Proor. Identical to the proof of Proposition 1.1. W

DEFINITION 1.3. We say that T € Qg o has boundary values on 9 [a restriction to 9] if:
i) Given Xy € 9, there is a neighborhood Vo of xg in N, v € H( Vo) such that v # 0 at x,,
and a permissible sequence on O converging to v,
i) lim,{T,p,) exists for all permissible sequences {p,,},
i) lim,{T,p,) = 0ifv = lim,p, = 0,
v) 9N C 0[N C 0.
Here, 90 is the boundary of 0.
Note that by (1.1) and (1.5), we have that for any T € R, ¢, any permissible sequence {y,},

(1.6) KT,p,0l < ¢ foralln.

However, this does not imply, in general, the existence of a limit.
The following example shows that i) in Definition 1.3 is not superfluous.
ExamPLE 1. Let 9 = R% 9t = {(0,y)). Let a, be a sequence so that gy = 1, a, > 0 and
(a,-; — a,)/a, < ay for a > 0. Let I, = {(x,p)|x € (a,,a,_;)}. Let O = U,I. Let {p,} be a
sequence of densmes satisfying i), ii) and iii) of Deﬁmtlon 1.2. Say supp @, C I,. Then on I, if
¢¥(s,5) = (8/85) (s, ),

* (s~ a,)" k <k+‘>(s,y)
el = | [ ol 0600 < lay - a | [P
k
!a L —a, | xsk+l¢'('k+l)(s,y)ds‘
< Ia |k+l a k!

Soon I,

ak k+1 (k+l)

s 5,)

n Ja,

Hence, [lg,l} < ¢ a"’(’”'l) where ¢, is independent of n by iii) of definition 1.2. So, as n — oo,

o, lh < cka"(kH) — 0. Hence, if F € C®(R?),

f F(x,y)@,(x,y)dxdy — 0.

Thus, if » € (), » = 0, there is no permissible sequence on O converging to ».
Before continuing, note that if {y,} is a permissible sequence converging to », then {{n,} is a
permissible sequence converging to |y » for any { € C*(9n).
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PROPOSITION 1.3. Let T € Ry o satisfy the conditions of Definition 1.3. Then there is a Ty , € ®'(9)
so that lim, (T, p,) = {Iy g,v) for all v € B(N).

Proor. First note, that by iii) of Definition 1.3, if {u,}, {E,} are permissible sequences converging
to », then lim (T, p,» = lim, (T, §,). Hence, we can define {7y 4,7, for any » so that there is a
permissible sequence {y, } converging to », and the value of {7y ,») is independent of the choice
of {u,}-

Let {5} C B(N), », = 0. We will show that (T ¢, 7, ) is defined and tends to 0 as k — co. Let
K C 9 be compact so that supp », C K Vk. Let x, € K; », ¥ as in i) of Definition 1.3. Let Uy,
be as in Definition 1.1. Choose W, C 9so that W, C ¥, ,» # 0on W . Let w, be the permissible
sequence on O converging to ». Clearly, if y € C; (WXO),

‘[’”k = @ where Py € C(C;O(I’KO)

and ¢, — 0. Let g, be in Cg° (UXO) so that g, |V'x, = . Then if w, is permissible and converges
to », P, w, is a permissible sequence and converges to ¢, » = {yw,. Clearly, we can choose
P € Cy (UXO) so that g, — 0. Hence, (T o, y», ) is defined ¥}, and by definition:

(Ty g9 = li’IIn<T, P,
laf+ B]<m

3N o/ 0\
(52) *(5) vt
181=181

where ¢ is independent of # and w, = 6,(x,y)dxdy. Hence,

Now, since T € @l%@, we have for all &, that

b

KT, g0l <c

1

()
) pB( = 9,
(ax ) %k .

KT 0¥l = lianT,@kw,,}‘ < csup 2
" lal+|Bl<m

18I=18
But g, — 0in Cy° (U,,) clearly implies that

. 9 \” a3 \*
Z B _
kh—{%o [SUP (Bx) Y (By) P 6, ]:I =0
Hence, lim; (% g, y», ) = 0.

" latBl<m
Now if we choose {y,}, i = 1, ..., N as a partition of unity over K, we have that

|8l=18

N
<T9'L,(9’Vk> = 21 <TGJL,G’¢IV1€> s d 0 as k — 0.
i=

So, Ty € @'() by noting that the above construction shows that I o is defined on all
vy € BN). W

DEFINITION 1.4. Let O, N, O be as above. Let {T,} C R o We will say that T, — 0 in R o if given
Xg € 9, there is a coordinate parch U, = {(x,»)} in O where U, NN = {(x, )|y = 0}, an

integer m, and a sequence c,, — 0 so that
3\* 5/ 3\F
z: B
1.7 I<T’P">| <c < ) y ( ) '
(17) ’ " sl pcm 1N 0% o
|B8l=18]
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for any p € B(U, N 0), p = g(x,y)dxdy on U, . If {T,,T} C R we say that T, > T in Qg ¢
ifT,—T—0.

If T, > 0in Rg g and { € CT(M), clearly {T, — 0 in R g

PROPOSITION 1.4. Referring to Definition 1.4, if V is any other coordinate patch containing x,, say
= (%)} where ¥, N % = {(%, Y|y = 0}, then there is a neighborhood W, C ¥, , an integer
la|+ Bl <m

m, and a sequence T, 3 0 so that
B
(%) 0’(5) 9,
|8I=|81

KG.wl<e X
for any p. € %(VI{CO N 0), p = @(x,y)dxdy on W,

PROOF. Similar to the proof of Proposition 1.1 and is omitted. W

PROPOSITION 1.5. Let T, = T in R o and assume Ty o and (T, )q, o exist. Then (T,)q 9 — Ty g in
B'(N).

PrOOF. Let xy € N, U, as in Definition 14. Let U NN =K. Let » € QB(V) {1}

X
C U, NO)a perm1s31ble sequence converging to ». Note that {n,,} exists as in the proof of

Proposmon 1.3. Then
(Tovo = Tovp0 7> = Wm<T, = T, -

Now by (1.7), we have since {y,,} is permissible, [T, — T, p,, )| < ¢ - c, where ¢ is independent of
B> and ¢, = 0 as n — co. Hence, {(T,)or 9 — Ty 0,7 > Oforall v € %(V ).

Now 1f v € ®(N), we can write » = 2 ;v where the {{,} is a finite partltlon of unity over
supp » that is subordinate to ¥ as above. Then clearly, as n — oo,

M
<(T;,)m,e - Tgw,"> = igl <(T;1)%,e - TgL,e,‘P,' vy —>0. W
The following generalization of Proposition 1.5 will be useful later.

PROPOSITION 1.6. Let T, — T in R o. Assume that (T,)g, o exists for all n. Then Ty g exists.

PrOOF. Let x, € 9 Uy Y%, as in Proposition 1.5. Let » € &(V, ), {&;} C B(U, N 0) a

X
permissible sequence converging to ». Then

KT = )l < KTy = )] + KT = Tyt = )
I<T,,,u,~ — )l < KTop — gl + KT = T, — )l
Hence, since [T — p,j>| 2¢,, for all i, j; we have that for each n,
(1.8) I<T,.,M.- — )l = 26, < KTy — wdl < KTty — )| + 2,
By assumption, limy.(T,',, W — y,j> = 0 for all n. So using this in (1.8), we obtain that
liénKT, W=yl <2, foralln

Hence, lim,{T, ;) exists.
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Now if » = 0, we can proceed as above to obtain

(1.9) KTl = ¢y < KToppl < KTl + ¢,

Hence, lim,(T;, ;> = 0 implies that lim;{7, ;> = 0. So, Ty ¢ exists for » € B(K, ). In general, if
v € B(9), we proceed as in the proof of Proposition 1.5, using a partition of unity argument.

It will be convenient later to have each T € %R o supported in a coordinate patch. To this end,
let {U;} be a locally finite covering of 9, U; open in 9. Let {y;} be a partition of unity subordinate
to this cover.

PrOPOSITION 1.7.
a) TE Ry g if and only if ;T € R o for all i.
b) T, — 0inRg g ifand only if §; T, — 0 in R o for all i.
¢) Ty g exists if and only if (; T )y o exists for all i. In this case, we have

(1.10) | Iy = ; W T o

PrOOF. Note that a) and b) are clear by Definition 1.1 and Definition 1.4. As for c), we need only
check that (1.10) is independent of {U;} and {y,}. For this, let {}/} be another locally finite covering
of 9; {;} a partition of unity subordinate to {¥/}. Let {y,} be a permissible sequence converging
to ». Then

<‘Pj T’Nn> = ; <‘[’; T,‘ijin>~
Hence, lim, (g, T, 1,, ) exists for all j, and
(1.11) li'I1n<(pj T, I-Ln> = 2 <((Pi T)@L,@,(Pj‘%lo-
i

From (1.11), it is clear that lim,{(g; T, pn,) = 0 if » = 0. Hence, (¢; T ) ¢ exists for all j. Further,
from (1.11), we see that

3@ Thaer> = 3 Tt

since X; ¢;|o» = ». Hence, (1.10) is independent of {U}}, {;} and the proposition is proved. M
Thus, without loss of generality, we will study in the following sections, the existence of
boundary values or restrictions of generalized functions supported in coordinate patches.

Let T € ®/(9), p a nowhere vanishing density on 9. Then the product Tu is a distribution
D € ’(0) defined by:

(D,@) = (T,puy  forallg € C&(0).
It is easy to show that if y € C*(91), then

W) = UWTp) = )T

Also, since p is nonvanishing, we clearly have that the mapping 7 — Tu is bijective and
bicontinuous from ®'(9) to 9’(0). Hence, if D € D'(0), D/u € B'(0) is well defined. That is, if
1, € B(0), we have that y, = eu where @ € C°(0). Then D/p = T is defined by,
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<T’M']> = <D’ (P>

Hence, given D € 9'(9), and y, we can say D € Qg g if D/p € Ry o This makes sense, since if
1’ is another nowhere vanishing density on 9, then p = fu’ where f € C®(9), f(x) # O for all
x € M. Hence D/y' = f(D/p) and so D/’ € R ¢ if and only if D/p € Ry g

Also, D/p has a restriction to, or boundary values on, 9 if and only if D/p has. In this case,

we have that (D/p)g g = flo(D/w)gr -
Now if » is a nowhere vanishing density on 9, and (D/p)y ¢ exists, we can define Dy g

= Dy 4(p, 7) by
(1.12) Dy, o(1, %) = [(D/p)gy 017

As noted above, the existence of D‘DL,&) is independent of p and », but the value of D%O is not. In
fact, if u’ and »' are other choices, p = fi', ¥ = gv where f and g are non-vanishing smooth
functions on 9 and 9 respectively, then

(1.13) Dm,e(#’, V) = [flmg]Drg)L,e(H-, v).

For most purposes, it is more natural not to choose p and » independently of each other, but
as in R”, to be related by a Riemannian structure. To this end, let {,)_be a Riemannian metric
on 9. That is, for each x, {,), is a positive definite, symmetric, bilinear form on 7,(91) so that
if &, B: 9 — T*(9M) are smooth sections, then {a(x), B(x)), is a smooth function on M. This
Riemannian structure induces, in a natural way, a nowhere vanishing density p on 9 defined as

follows. If U is a coordinate neighborhood of 9 with coordinate functions (xl, ..., X,), we define
pon T(U) by

3 3 8 3\
() - )

Clearly, p is nonvanishing on T(U') and hence is smooth. If ¥ is another coordinate neighborhood
with coordinate functions (y;,...,)), ¥ N U # O, then a calculation shows that on ¥ N U,

(o) - o b 2)
M ax " dx, ax M\ o, Yy, |
where by dy/9x we mean the Jacobian matrix. Hence, p is indeed a density on 9. Now since 9
is an imbedded submanifold of 9, we can identify T, (90) with a subspace of T,(9) for all x € 9.
Hence, the Riemannian metric on 91 gives rise to a Riemannian metric on 9, and as above, this
gives rise to a nowhere vanishing density » on 9.

Hence, to work with distributions D € (), we could assume that 9T is given a Riemannian

structure and define D € @y o or Dy o as above with respect to the ‘natural’ densities y and ».
Note that if f € C*(9), dit f nequ 0 ditend on M and p’ = fu, ¥’ = fly », then by (1.13)

(1.15) Dy o(1,7) = Doy o(u', ¥').
This observation is a convenience locally, since given any Riemannian metric on 9%, U
= {(x,...,x,)} a coordinate neighborhood, we can choose f above so that on U, ' = fu

= ldx. Then, if p; € B(0), ;; = ¢(x)dx on U, we have that {D/y', s ) = {D, ) as in R". Hence,
locally we can suppress the identification D <> T, and work as in R".

Although we will work exclusively with generalized functions, we note that the above
construction gives a natural way of applying the results of this paper to distributions on a
Riemannian manifold.
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CHAPTER II
CODIM 9 = 1

1. Boundary Values of Generalized Functions

In this section, we make the following assumptions:
i) 9 C a9
(2.1.0) ii) For each x; € 9, there is some coordinate neighborhood U of x; in 9L such
that U N 9 = {(x,7)|t = 0} = V and V X (0,8) C O for some § > 0.
By Proposition (1.7), we can assume without loss of generality, that supp T C U, a coordinate
patch. Combining this with (2.1.0), we use the following model:
Hom =R"! = R"XR
ii) 9t C R” is open
(2.1.0y iii) N X (0, 0) C O
iv) 9T C 90
v) T € %'(0), supp T is relatively compact.
In this setting, there always exists permissible sequences for any » € B(9). For example, if
n € C¥(R"), fndt = 1, then w, = » ® ny(nt)dt converges to », clearly, and for all n, supp w,
C 0. Also, a simple calculation shows that w,, satisfies iii) of Definition 1.2. This type of sequence
is easier to work with in most cases than the general one. Our interest here is to justify the
exclusive use of such sequences in applications. That is, we are interested in the following
question:
Let T € Rg . If lim, (T, » ® nn(nt)dst) exists for all » € H(N), some n € C7° R™), fqadt
= 1, does T have boundary values on 9 in the sense of Definition 1.3?
The following example shows that without an auxiliary condition on 7, the answer is in general
in the negative.
ExampLE 1. Let ny € CP(R™), fnydt = 1. Assume that F(ny(e'))(zg) = 0 for Im z, = —1,
Re z, # 0, where F(ny(e'))(z,) is defined by:

Fng(e))(z9) = [ mole e .

Then, f ny(e'™* )e'?0dt = 0 for all s € R. Letting u = ¢, we have that

fn()( u )eizologu% =0 for all s.

e.i'

Hence,

. u,l
tim [ 10() g8 du = 0
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where g(u) = (e701%8%/y) is defined for u > 0. Let T = g(u) ® y(x) where ¢ € C5°(R"). Then
since Im z, = —1, we have that |(e701%8% /)| = 1 and hence, if p = @(u, x)dudx € B(O), where
0 is equal to R™ X R”, then

KT, ! < cligly-
Thatis, T € Rgn g+xre Also, for all » € B(R"),

. ty 1
£%<T,n0<g);dt ® V> = 0.
However, if n € C§°(R™), say supp  C [1,2], then:

l t _ ialoge 2 ialog"'
(Toon(2)dt @ vy = &5 [* () de [y,

where a = Re z; # 0. Clearly then, the limit as ¢ — 0 does not exist in general.
Hence, we must at least demand that F(n(e'))(z) # 0 for Im z = —1, Re z # 0. That is,
F(n(e")e')(s) # 0 for s € R. In this case, we have the following.

THEOREM 2.1.1. Let ng € CF°(RT), fmgdr = 1, F(ng(e')e')(s) # O for s E R. Let T € Ry
where 9, O, T satisfy (2.1.0). Assume that

(2.1.1) lim (T,v @ nny(nt)dr)

exists for all v € B(N). Then T has boundary values on 9 in the sense of Definition 1.3. That is,
i) im<T, p, ) exists for all permissible sequences {p,,},
i) im(T,p,> = 0ifr = 0.
The proof of Theorem 2.1.1 will be obtained from a series of resuits.

LemMA 2.1.2. Let g, f € S(R), f(f) % O fort € R. Thengiven M € ¥, ¢ > 0, thereis &, ..., &y;
51> « v, Sy SO that

50 = T &= 5) + 1)

where H(a’/dt)erI1 <eforj=0,..., M. Further,

N
£0) - f0) 3 ¢l <«

Proor. First note, that there is an # € S(R) so that & € C°(R) and (d/dr)’ (h — gl < e€/2,
J < M. To see this, let { € C5°(R), { = 1 near 0. Clearly, as § — 0 we have for all j that

& @0 (=it 8(1) = (=it (O | > ©
where £ is the inverse Fourier transform of k. Choose 8, so that
27§ 8o 1) (=it £(0) — (=it 8 ()] I} < 5

for j =0,..., M. Let h(t) = §(8,2)8(). Clearly, A(r) € Cy’ (R). Also, by the above inequality,
we have that

H(ﬁ)j(h - g)Hl <5 forj< M.
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Now f(f) # 0 for all ¢ implies that A(s)/f(r) € CS°(R). Hence, h/f = k with k € S(R). So,
W (1) = f/ + k(z) where b/ = (d/dr)’h and f/ * k(t) = § f/(s)k(t — s5)ds.

To complete the proof, we now show that if f, k € S(R), then the Riemann sums of f* k
converge to f * k in L'(R). To see this, first assume that f, k € CZ(R). Then by partitioning R
into sufficiently small intervals, it is clear that for each x, and for all ¢, there is { y‘.};"=1 so that

|fCx = y)k(y)dy “én Fe = yk(m;| < e

where m, = measure of the jth interval. Now since f * k € C3°(R), we can have this estimate
. J . . m
uniformly in x. Hence for all ¢, there is { y;};,_, so that

m
I1f* k(x) — ; §Ef(x =yl <e
Note that &, = k(y;)m;and 3-, |&] < ||k||; for all m. Now, if f € S(R), & € C{ (R), we choose
>/ 77T =119 1 0

{£,} € C°(R) so that ||f — £l < 1/n. Then, by the above argument, we can choose {£,}7, { »;}T
so that

m 1
I, + k(x) —jgl R0 = <5

Then
1f * k() —é. E70c =l < If» k(D) — £, * k@ + If, * k() —él £4,0:— )l
¥ njgl EL0e - 2) = £ =l

<= flh iy + =+ 3 1=l < 201+ 20l
J=1

Finally, in the general case, we choose k, € Cg°(R), so that ||k — k||, < 1/n. We can then
choose {£;}, { ;} so that

I # k) = 3 650 = 0l <
by the above argument. Then,
172 k) = 3 60 =3l < I # K 6) =yl + 175 K, = £ &7x = )l
< 2 (1+ ().
Hence, we can choose {£,}, {s;} so that
W0 - 3 66 -s)h <3 J<M,

since 4/ = k * f/. Combining this with the estimate |4/ — g/ i < €/2 obtained above completes
the proof of the first part of the lemma.
By construction, we have that
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fe-Zaf=1[s- 3 [e/c-pard < lg= 2 &/t =0l <e
Noting that f g = g(0), f f = f(0), completes the proof. MW

ProposiTION 2.1.3. Let T € Rq o, mg satisfy the conditions of Theorem 2.1.1. Then for all
1€ CPRY), fn#0

(2.1.2) lim {T,v ® ny(nf)dt) exists for all v € B(9N).
n—0

Further, if { 7 = 1, the value of (2.1.2) is the same as the value of (2.1.1) for all v.

PrOOF. Letnn € CZ(R™). Clearly, n,(e')e’, (e’ e’ are in S(R) and [ng(e')e’] (s) # Oforalls € R.
So for 8 >0, M € Z", we have by Lemma 2.1.2 that there exists &b & S - Sy such
that

M
n(e*)e" = El £mo(e“ e ™ + r(u)

where |[(d/du)’rll, < 8forj =0, ..., M. Letting ¢* = t/e, we obtain
1

%n(é) = ZMI émo(é)ﬁ + é[r———(lof/(:/‘))].

Now by assumption, T € R ¢ Hence, if y = @(x, #) dx dt has support in 0, we have

(213) rwi<e S (&) (24

laj+j<N

Choose M above so that N < M. Then using (2.1.3), if » = ¢(x)dx € B(N),

(it () oes)

<o 3 )G TE:
(@) [ < N
Note that we have easily by induction,
(4 - gcﬂ(dg)’.

[ -] | (02 3 o)) )
- [ ][0 - () )

i=1

< '8,

1 1
since by substituting u = log(#/e),

J

<
1 =0

So,

< 8.
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If f=1, then

[t = (3 6) frolenrer

by Lemma 2.1.2. Also, [{T,ny(t/€)(1/e}dt ® v)| < ¢ Ve. Hence,
[ -tim | | (r.ta )t = m(H Dy @ vy
<[ -] [ (02~ (3, o) )

< ¢é.

+[@ _hTm] 1<T’(1 - igl Ei)no(é)%dt ® u>

Hence the limit in (2.1.2) exists and is equal to the limit in (2.1.1) for all ».

If fn = c # 0, then by considering § = n/c, we can see from the above argument that the
limit in (2.1.2) exists and equals c times the limit in (2.1.1). W

In order to generalize the result of Proposition 2.1.3 to more general permissible sequences, we
first construct a sequence of smooth functions converging to T as in (1.7). Note, however, that if
¢ € CX(R™), f ¢ = 1, we need not have ¢_* T — T in R o Where

1 x t
(PE(.XI) = F@(E’E)

For example, in R""! identifying distributions and generalized functions, the Dirac delta
§ € Ry g and (8)g o = 0, where 9 = R" and O = R" X (0, o). However, we cannot have that
@ * 0 = ¢, converges to § in Ry ¢ or else we would conclude that (@)oo — 0 weakly by
Proposition 1.5. Clearly,

@as = 7 #(3.0)

cannot converge weakly. We will modify the above convolution though, so that only the values
of T in {(x,#)|t > 0} are smoothed. This is natural, since if S, 7 € ®'(0), supp(S — T )
C{(x,0)r <0} then S— T € Ry gand (S — T)y ¢ = O.

Let T € Rgo; 9N, 6, T satisfying the conditions of Theorem 2.1.1. Let 7 € Ci°(R), ¢
€ Cy°(R"), even functions; O & suppm, say suppn = [~2,—1] U [1,2]. Assume also that
Sm =1, ¢ = 1. Define for v > 0:

(2.1.49) T.(yv) = <T,(p(m[y — x])m"dx ® %n(m In %)du>.
Note that since T has compact support, T, ( y,v) vanishes for large v uniformly in m.
PROPOSITION 2.1.4. The function T, (y,v) is continuous inv > 0, C® forv > 0 and T,, = T in R o

To prove the proposition, we need the following lemma.

LemMA 2.1.5. Let n € C°(R"), f m = 1, n an even function. Let f € L}(H(R”). Then

(2.15) Ine = = flly < cellflyy. .

where ¢ is independent of f.
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ProoF. For F(x) € L{(R"), we have that F(0) = — 3, f° E(tv)v,dt, where |y| =
FE = 0F/dx, Hence, letting & = fg,-1 do, we have that

1 n

F@) = —._f j(‘)“’ iél E(tV)%t"—ldt =-= i§1 fE(x)';%dx

Ssn-1

Substituting F(y) = f(x — y) into this expression, we get

100 =5 5 16 -02ad = L[ V1= Loy = (v 13 2 )0

Hence,

f_ns*f=é[(vf;ﬁ)—(vfiﬁ)*m] =$Vf-£=[ﬁ—ﬁ*m].

So

c X X
- * < = Tom T TR ¥ .
(2.1.6) “f Ne f“L}c W ”f”L}(H le le MNe I

To complete the proof, we need only show that

X X

< ce.
Tk S

n

(2.1.7)

* Me

Looking at components,

- (2o )6 = s
*1
R xl<2€ x| 2
<
| x]<2e

For II, we expand (x; — y;)/|x — y|" about y = 0 by Taylor’s formula and obtain;

= (Zren)

Now

dx < ce.

—dx +f i * 7,
| x| ii<2e |y

X; =Y X; 0 [ X, =y ]
= + x)y; + 111, where g.(x) = — : £
= Dt s A T ) N

Hence, since f 1,(y)dy = 1, and supp n C {x||x| < 1} say, we have that

= () - fm« (F -

=~ Ji<e Zg,(x)y,m(y)dy fyl < ) (y)dy

=0+ I
|st( )n.(y)dy

since 7 is an even function. So
|2

I < | < _l”
< s MO be < e[ n ey

1 and

dx = I+ I
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where 0 < |8 < |y|. Hence, since | x| > 2¢, |y| < e and |x — 8] > ||x| — |0]| we have that

11 < €2f ——d{—m < C€
|x)>2¢ || x| — €

Hence (2.1.7) is proved and so is the lemma. W
PROOF OF PrOPOSITION 2.1.4. First, T, € C* for v > 0 since

supp 1(m In %) C {ujve™* < u < ver).
Also, [ (m/u)n(m In(u/v))du = 1 Vv, m. So letting n,(u)du = (m/u)n(m In(u/v))du in Proposi-

tion 2.1.3, we see that for all m, each y, lim,_, 7, (y,v) exists. To show that 7, (y,v) can be
extended continuously to v = 0, we will show that

0
Tm(.y’ U)

(2.1.8) e

< ¢y
Then,

1 T,(3150) = T(92, 00l < T, (31,0) — T (v, o) + [T (3350) = T,(12,0)]
< leyl "‘)’2' + le()’pU) - Y;n(yz,o)l — 0 as (ylau) - ()’2=0)-
Hence, T, is continuous in v > 0.

For (2.1.8), note that the y, difference quotients of @(m[y — x])dx converge in $(0). Hence,

d m u a
a_y,.];"(y’v) - <T,;n(m In ;)du ® ¢;(mly — x])m" dxy  where @, = a—yiqv.
Now, since T € 6{%@ and
supp[%n(m In %)du ® o,(mly — x])m™'dx} C©  forallm,v >0,

we have that

1

i i * _ n+1 ¥i _a_>jﬂ E
ay,.Tm’ < Calé}w H(ax) @;(my — x])m 1 u (Gu S\ mn 1
3 \* o d\’ 4
<e Y ”(5};) (pinm\ +1 (E) all < e,

la[+j< M

proving (2.1.8). To complete the proof of Proposition 2.1.4, we must show that there exists an M,
¢,, —> 0 so that

a 9 J
219) KT-T.wl<c, X H(%) vj(gl—}) @ L for all p = W(y,v)dvdv € B(0).
jal+i<M

Before continuing, observe that if 7 € ®'(9), ¢p(x,y) € Cg° (0 X R""1), then

[ <Tox,p)dxy dy = <T[[ glx, ) dylas),

since the Riemann sums of [ @(x,y) dy]dx converge in B(0). Let p = y( y,v) dy dv be given. Then
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(T (o)) = [ T (W) dyay = [ (T, Zn(m In 2)plm y — x])m" dx duyy dy dv

= (T, Znlm in 2)glmly — x]ym™ 9y, v) dy dv) dx

by the above observation since

™y om 1n “)olom( y — 5))m"W 3,0)

has uniform compact support in ( y,v, x, u)-space for all m. Let

m u
fuw) = [ Zonom In Z)gmly — x1)m" Y y,v) dy do.
Then for sufficiently large m, supp £, C C. Hence, since T € R o, we have that;

KT = Tyt ) )] = K fy0,) — 9l dx)]
< 2 G () -
PN ORI

X [f Pl n “)p(mLy — 1)y, v)m" dy do — Y, ]| e

’ |«|§-<Nf l(ﬁa?c)a(%)j[f n(mlt — sp(mlx — yD)m'™ 4y, e*)e’ dy ds — Y(x,e")e']| dx dt

W [ 101 ® @) * £y = 1

where V=¢’',u=¢,f, = (i)a(i)j[lp(x e')e']
U =ehdy=\ox ) \ar) Wxedel

Now, using the assumption that n, ¢ are even functions, and applying Lemma 2.1.5 we get
c c AN /ayY., .
G-t <g 2 Wly<s 3 |l(m) (&) wxee
" N NN R N VAN
A\ /oY :
2 ) =
(5%) #(5) e

proving (2.1.9) with¢c,, = ¢/m;, M =N+ 1. R
~ Now let

1

3

lal+j<N+1 1

. T, t>0
%mﬂ_{gu;o t < 0.

Since T, have uniform compact support, we can choose S, €CY (R™*!) with uniform compact
support so that

o 1
(2.1.10) sup|T, — S, | < pt
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Clearly, S,, = T in Rg g since if p = ¢(x, 1) dx dt,

(S0 = Tl < S = Tl + T, = Tl < llolh 43 3 I(Z) (2

lal+j

N

We now restate and prove the main theorem of this section.

TueoreM 2.1.1. Let ng € C(RT), [y =1 and F(ny(e')e')(s) # 0 for s ER. Let T be a
generalized function on O, T € Rq o where I, O, T satisfy (2.1.0Y. Assume that

(2.1.1) nli_)r{.lo<T, v ® nng(nt)de)
exists for all v € B(9). Then T has boundary values on 9L in the sense of Definition 1.3.

PROOF. Let p, be a permissible sequence on 9 converging to ». Letn € C° (R*), fn = 1. Then
by Proposition 2.1.3, lim (T, nn(nt)dt ® v) exists. We will show that

n—o0
(2.1.11) im (T, p,) = im{T,nn(nt)dt ® v).

Let p, = @,(x,0)dxdt, v = Y(x)dx, S,, the sequence constructed in (2.1.10). Choose a subse-
quence, also denoted by S, so that [(T = S,,,p,»| < 1/m for all n. This is possible since p, is a
permissible sequence and S,, — 7 in R

Since S,, € Cy° (R™*1), we have that for all n, there is a_j, so that

"y 1 S
Sty =)t @ wp| < forj > j,.

Combining, we have that for each m, there is a j,, so that

| 2
KT, = (Spojn)d ® w)l <o forj > .

Letting j — o0, we see that

: 2
(2.1.12) lim (T, > —fsm(x,0)¢(x)dx| <= forallm,
Now by construction, S,, = T in %4 o Hence,

11_13.}) (S, Jn(jtydt ® v) = me(x,O)xp(x)dx = lim (T, jn(j)dt ® v)  asm — 0.

J®

Letting m — oo in (2.1.12), we have that
lim (T, = lim (Tjn(j)de © v)
j= J=oo

proving (2.1.11) and hence the theorem. W

Let U = {(1,5)}, ¥V = {(x,1)} be bounded open sets in R"*'. Let 9, be the slice {s = 0} of U,
N, the slice {t = 0} of V. Let x: U — V be a diffeomorphism such-that x(y,0) = (x,0) and
assume that x extends diffeomorphically to a neighborhood of U€. Let ¥ be the induced
diffeomorphism, x: 9¢; — 9N,. Let O, C V be open so that N, C 30, and {(x,7)|0 < ¢ < § x
€ N,} C 0, for some 8. Let &, = x ' (9,).

Now for T € #'(0,), p = @(y,s)dyds € B(09,), define

(2.1.13) Ty = (Lot ()

;(’)‘C _[1) ’ dx dt> .
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. . . X ;
Clearly, as in Proposition L1, if T € Ry o then x" T € Ry .

PROPOSITION 2.1.6. In the notation above, if 7;%2,@2 exists, (x* T)%. ) also exists and we have that for
all v € ®(9N,),

(2.1.14) (X Ty, 0,70 = X (T, 0,7

Proor. If T is given by a smooth function, the result is trivial. In the general case, let S,, be the
sequence constructed in (2.1.10). Then since x. extends to a neighborhood of U®, an application
of the proof of Proposition 1.1 yields that

* .
XS, x* T in GR%’@I.

Therefore, by Proposition 1.6, (x T)@L ¢, €xists and *S,)a 6 = X T )y, 0, Weakly. By the
above observation, (x* S o6 = (S )% o, since S, € Cy ZR'” ). Hence,

(2.1.15) X (Spor,0, = O Tay, o,
weakly. Now, since §,, > Tin Rop, 0, W€ have that (Sm)%’oz = I, weakly. So clearly, we have
(2.1.16) X (Spor, 0, = X (T, 0,)

weakly. Combining (2.1.15) with (2.1.16) we obtain (2.1.14). ®
We conclude this section with a theorem concerning the extension of generalized functions.

THEOREM 2.1.7. Let O C 9N be open so that 30 is an embedded submanifold of 9. Then for every
T € Ry there exists a T € B'(M) so that

In fact, we have that T € 6{3(9,% and there is a natural injection,

(2.1.18) Raoe = Ropor-

PROOF. Let T € Q9. Using a partition of unity argument as before, it is clear that it is enough
to show the result locally. That is, it is sufficient to assume that 7 has relatively compact support
in a coordinate neighborhood U = {(x,?)} of 9 where 9 = U N 30 = {(x,0)}, {(x,7) € U
[t > 0} C 0and there show that T € Ror o v €an be extended to an element T € %' (U). In fact,
we will show that T € @, . To define T, we first construct a partition of unity. For each k € Z,
let 7, C R be defined by

= [(k + })in 2, (k + )i 2]
2 2
Let x, be the characteristic function of /. Let
In2 In2
{ € C°(R), f§ =1, supp §{ C [_T’—Z_:I'
Then § * x, (1) = { * xo(t — kIn 2) and supp { * x, C [k In2,(k + 2)In 2]. Let

(2.1.19) () = § * xo(ln 2), t>0.
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Then if t > 0,

§ n(2kt)=k=§im§*xo(lnt+kln2)=§*k=§ika(lnt)=§*]=f§: 1.

Note also, that supp n C [1,4]. Now for p = @(x,7)dxdt € ®(U), we define T by,

(2.1.20) <Tp>——lnn z (T, (2% ).
Note that for each n, the above sum is finite since u has compact support. Also, since
supp 7(2%0)u C 0, we see that (T,n(2%1)p) is well defined.
Let S, = X" (T,n(2*1)u). Then for n > m,
S-S <l S aetowi<e S (E)Y 2V 8 wetn
n T Oml SN & s : x a) &, Ve
lal+i<M

<e 2 MG L&l G) el

1

Now
AV k f3Y & k i 3Y) & k
' = S )) < |l x=) 2 @)+ =) 2 92" K¢  forallt, n, m.
at Pyt ) Zn 1 i
keven kodd
Hence,

I C ROk

Clearly, then, |S, — S,,| = 0 as n, m = oo. Thus, lim, S, exists for all p. To see that T € Ror,v»
let

dxdt.

X0 = 3 a0 B0 = a0,

keven k odd

<T p) n(2kt)u>‘ < Sup{ 2 "(%)azf(%>j[2 n(zkt)tv]“l}
al47<
co <l 3 | A2 or])
ol 3, I (@ o)

Differentiating the products x| ¢, x5 ¢, as before and noting that

o\
1“(@> Xt

Then,

KT.ml < sup

< 4

; for all n,

i
< ¢ for all n, ‘t’(%) X3
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we obtain that (2.1.21) is dominated by

(2.1.22) c > ”(%)at"(%)jcp

lal+j<M

-
Hence T € Qg 4

To show that the mapping; R0y = Ryqey taking T — T is natural, we now show that the value
of T as defined in (2.1.20) is coordinate invariant.

Let U = {(,5)}, V = {(x,7)} be coordinate neighborhoods on 9 so that U N V' N 9N # &
and U N 9N ={(y,s)s=0}, VN 9= {(x,0))t =0} Let ¥: U— V be a diffeomorphism
(7,5) = (x,) so that ¥: (»,0) — (x,0). Let t = ¥,(y,s). Then since the Jacobian of ¥ ats = 0
is nonsingular, we have that (3¥,/9s)(»,0) # 0 for ally € U N V. Hence, given K C U N V,
K compact, there exists an € > 0, ¢, ¢; so that if 0 < s ¢,

(2.1.23) ¢;s < ¥(y,5) < cys  uniformly fory € K.

Clearly, we can assume (supp 7)° C U N V and is compact. Let ¢, ), ¢, be given for K
= (supp T)". Let p € H(U N V), n = ¢(y,5)dyds on U, p = §(x,#)dxdt on V. Then on U,

n
(Towy = lim 3 (T,n2ks))y = lim a,.
n—>

n—=00 f=—c

Also, on V,

(Tow = lim T (T,n2*)uy = lim b,,.
m—w0 f=_—cp m—»c0

Hence,

n m
@129 a,=b,= (1| 2 a0~ a0 |sr9wa).
k=—c0 k=—c0
Now supp n(2¥s) C {s27% <'s < 27%*2} and supp n(2¥¥,(y,5)) C {sld, 27 < s < d,27%*2)
for all y € (supp T) by (2.1.23). Hence, it is clear that

n

(2.125) supp [k S - 3 n(2k‘1’,(y,S))] {9 f(um) < 5 < glnm))

=-00

where f, g tend to 0 as n, m — oo0. Hence, using (2.1.25) and the fact that T € Rgg WE can
estimate |a, — b,,| from (2.1.24) as we estimated |s, — s,,| above, to obtain that |a, — b, | — 0 as
n, m — oo. Hence, T as defined in (2.1.20) has value independent of the coordinate system chosen.
n

2. Restrictions of Generalized Functions

Its now relatively simple to obtain a theorem for restrictions corresponding to Theorem 2.1.1.
We assume O C R™! is open, R™! = {(x,7)} and © N {(x,0)} = 9% Let 0" = {(x,7) € ©
It >0}, 07 ={(x,1) € 0]t <0). Let T € ®(9) and as before, we assume that supp 7 is
compact. Note that 0 and 0 satisfy conditions iii) and iv) of (2.1.0).

We first relate convergence in Qg o to convergence in R g+ and R o-. Our goal being to show
that the sequence S, constructed in (2.1.10) actually converges in Rox o-
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PrOPOSITION 2.2.1. Let T;, T € Ry o and assume that T, — T in both R g and Rg o Then
T, > TinRe

ProoF. Let € $(9), 7 € C;°(R) so that p = 1 for |¢] < 1; n = 0 for |¢| > 2. Then,

KT = Tl < KT = T (1 = (] + KT = TGl = 1+ 11

By assumption, we clearly have that 7, > T in ®Rg g+ o-- Hence since supp(l — n(t/e))p
C 07 U 97, we obtain that

e lal+/<M H<8X> tj(ig) It =l ))(p]H
<03 Jo=oE) G,
[*(5)

+c

n
la|+j+k< M
k>0

= [II + IV.

()]

v
~_~
—
|
=
—_~
m i~
=
| I—
| —]
N
ol
S—
e
~
<

1

Now

0 \* (9}
I < ¢, 2 H(é;> lj(a) Q
la|+j<M

clearly. Also,

wees [ GG

|ad,j

k ﬁk
’(at>

Hence, IV — 0 with € and we have that

since

< ¢ foralle

I <e¢

" |
la|+j <M

Now since T, T are in R o, we have

1< KTl + KT, n( )l
S IaLEM “<aa ) tj( ) 71( )<P +Cz’ <N H(E)x) tj( a) 71( )q)

Calculating as with IV, we see that I — 0 with e. Hence, combining the above estimates for 1
and I completes the proof. W
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COROLLARY 2.2.2. Let T € R o such that Ty g+, Ty - exist and are equal. Then there exists a
sequence S, € Cg° (R™™) such that S, = T in Rep g

ProoF. Let T m— be the sequences of functions as in Proposition 2.1.4 so that

* e G
I, = Tin Ry g

Recall that T (x, )[T ™~ (x,#)] was continuous in ¢ > 0[¢ < 0] and C* in¢ > 0[r < 0]. Also, note
by construction,

Ty (x,0) = (Ty g=» plm[x — y))m" dy).
So by assumption, 7, (x,0) = 7, (x,0). Therefore, let S,, € C5° (R™1) be chosen so that

1S, = Tl <

m
where T, € CP(R™!) is defined by:

;o TS, >0
i " .
T t<0
Clearly, S,, > T in Qg o= and S,, € R o Vm. Hence by Proposition 2.2.1, the corollary is
proved. W

THEOREM 2.2.3. Let m, 1, € Cy°(R) so that suppn C R, suppn, CRT, Sy =fn, =1,
F(m(e)e')(s) # 0 and F(ny(—e')e’)(s) # O for s E R. Let T € Rg o have compact support.
Assume that for all v € B(),

(2.2.1) lim <{T,nmy(nt)dt ® v) = lim {T,nn,(nt)dt ® v).
n—oo n—o0
Then T has a restriction to U in the sense of Definition 1.3, whose value is given by (2.2.1) for all ».

PrOOF. By Theorem 2.2.1 and (2.2.1) we have that T . and T - exist and are equal. By
Corollary 2.2.2, there is a sequence S,, € Cy° (R™!) so that S, = T in Qg e Hence, by
Proposition 1.6, T g exists and (T o,7) = lim,, (S, ) o, ») for all ». Combining this with (2.2.1)
and the fact that S,, = T in Rg; - completes the proof. W

Let U = {(y, s)} V = {(x,7)} be bounded open sets in R™!, x: U — V a diffeomorphism so
that x(»,0) = (x,0) and assume that x extends diffeomorphically to a neighborhood of U°. Let
N, be the slice {s = 0} of U, N, the slice {r = 0} of V. Let O, C ¥ be open, O, N N, # . Let
O = x_1(®2), and let x: 9¢,; — 9, be the diffeomorphism induced by x.

PROPOSITION 2.2.4. Let T € R o, and assume that Ty exists. Then X'T e Ry o and has a
. X 25V2 2:V2 1:¥1
restriction to N, given by: '

Ax* T)% ,9],V> = &* T%,@z,@ for all v € B(9,).

Proor. Identical with the proof of Proposition 2.1.6. W
We now give a generalization of Theorem 2.2.3.
PROPOSITION 2.2.5. Let T € Ry o+ N Ry o- and assume that Ty - exist and are equal. Assume also,
that forn € C;°(R), v € B(N), we have
(2.22) |<T,%n(£)dt ®r)|<¢, forale

Then T € R o and has a restriction to N equal to its common boundary value.
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PrROOF. We need only show that T € Rg o, then apply the proof of Theorem 2.2.3. Let
n € C(R),n = 1for |t| < 1, = 0for|t] > 2. Let p = q(x,#)dxdt € B(0). Then,

(223) KTl < KT = Ol + KTon(wol = 1+ 1.

As for I, we proceed as in the proof of Proposition 2.2.1 and obtain

(2.2.4) I<c “(%)at’(%)jm

la|+j<M

-
Identifying 7 with an element D € &(R""!), which we can since supp 7 is compact, we have that
for all u = @(x,#)dxdr € H(9),

225) Tl =Kol <esp 3 |(Z)(2) o] <o

laj+j<M

lal+i<M+1

By Taylor’s formula, write

K
(P-(X,O) i
(p(xst) = (P(xao) + 2 jjl tj + RK+1(xat)

Jj=1

where ¢; = (3/9¢) p and Ry, has a (K + 1)st order zero in 7 at t = 0. Then
1 ¢ 1 ¢ X 1t
KT, on(Delx, ) dxdt = —n()e(x, 0) dxd)| < 21 KT, o) 9 (x, 0) dx di)|
J=

1 ¢t -
+ KT o) Ry O, ) dx dt)).
Using (2.2.5), we have that
| N ; 1 ¢ .
(T (g 0)dxdi] < o), KT An( )R,y (x D dxd] < e if K> M.
Hence,
1 ¢ 1 ¢ )
KT Zn(Dn = on(D)elx, 0) dx di)] — 0 with e.
Combining this with (2.2.2), we have
(2.2.6) (T in(Owl < ¢y forall e, € B().
Hence, by (2.2.6),

1= (TS < epe— O with e

Letting € — 0 in (2.2.3) and combining the estimates for I and /I, we obtain

KTwl<c D “(%)atj(%)jw

la|+i<M

1

Thatis, 7 € Ry o. W
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REMARK. The assumption 7,, T € R o in Proposition 2.2.1 can be weakened to the following:
Forally € ®(M), n € C;°(R),

2:27) (TanDaios | <o, [T nbdon| <

vn

where c,, and c,,, are independent of e.

The proof is the same as the proof of Proposition 2.2.1 except to estimate /1, we follow the proof
of Proposition 2.2.5.

PROPOSITION 2.2.6. Let T € Rgy g+ N Roy o- and assume that Iy o+ and Ty o~ exist and are equal.
Then there is an S € Rg o such that S =T on O\, and S has a restriction to 9 equal to the
boundary values of T.

PrOOF. Let n(r) = { * xo(In|z|) where {, x, are as in the proof of Theorem 2.1.7. Then for all
t# 0,30, n(2%¢) = 1. We define S as follows. Let u = ¢(x, ) dxdr € B(0). Define:

(228) Sy = Jim B (T,

Imitating the proof of Theorem 2.1.7, we see that §'is well defined and § € Qg o. Clearly, S = T
on 9\9. Hence, So o+ and Sg o- exist and are equal. So by Corollary 2.2.2, there exists
{S,,} € Cg°(9) so that S, — S in Qg ¢ Thus by Proposition 1.6, Sy o exists and equals the weak
limit of (S, )g ¢ Clearly,

S@L,@: = T@L,E)t = Weak hm(Sm)%’@:.

Hence, Sg g = Ty p-- W

3. Poisson Type Integrals
Let D € 9'(R"), ¢ € CF(R"), f ¢ = 1. Then it is well known that ¢, * D — D in 9'(R")
where
1 . x
lx) = (7).

Let © C R"X R be defined by {(x,?)|t > 0}. Making use of the natural identification of
distributions and generalized functions in this setting, we will define D € R o so that Dy g = D.
Here we identify 9% = R" = {(x,0)}. For Y{x,1) € C;°(0), we define;

23.1) Bty = [ D+ TG ule ) .

The integral is well defined since i has compact support and the integrand is a continuous
function of ¢ for ¢ > 0. Clearly, D € 9'(9).

" PROPOSITION 2.3.1. Let D be defined by (2.3.1). Then D € %aw and Dy g = D

PrOOE. Let x, € R”, U a bounded neighborhood of x; in R" X R. Let ¥ = U N 9. Then if
suppy C U N G,

(232) <D~’¢> =f<D * t_n(P(é),ll’(',t»dt = f<D3¢'(7t) * t~nq)(_7’)>dt'
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Now since U is bounded, it is clear that for all ¢y € C°(U N 0), that Y-, ¢) * £ "p(— +/¢) has
bounded support as a function of x, uniformly in . Let W C R” be a bounded open set so that

supp[Y(:, 7) * t_"qz(%)] CW forally forally € Cy°(U N 0).

Letx € Ci°(R"), x = 1 on W. Then since xD € &'(R"), we have as in (2.2.5),

(233) KxD,&) < ¢ D H(ga;)as

lal< M

for all { € Cy°(W).
1

Hence, from (2.3.2), (2.3.3),

KDY < [ KDl « (=Dt = [ [KxD, 90, 0) + (=)

<J 2, 3, 1) s

le| <M la| <M

o)+ () v e < o

L(R"+) '

SoD e %%,@.
To prove that Dy ¢ = D, we will show that

(234 lim <D, 1a()Ux)> = <D,9)

forally € CP(V), n € CP(R™), with {7 = 1. Then by Theorem 2.1.1, the result will follow.
Letn € C¥(RY), ¢ € C (V) be given. Then

(235) (Bin(S W) = [ <D+ g 2a(Dydr = [ (D » ()9l ), W)y n(e) .

Now the integrand in (2.3.5) is absolutely integrable, uniformly bounded in ¢ and converges
pointwise to <D, y{(x)>n(u). Hence, by the Dominated Convergence Theorem,

B in( ) = Dy ase—0

since f n(w)du =1. M
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CHAPTER I1I
CODIM 9t > 1

1. Boundary Values of Generalized Functions

Let 9% have dimension k + /, 9 C 9 an embedded submanifold of dimension k. In this

section, we make the following assumptions on 0.

i) 9 C 99,

(3.1.0) ii) There exists U = {(x,y)}, a coordinate neighborhood of 9N, so that U N N
= {(x,y)|y = 0}, and for each x € U N 9, there is a neighborhood V of x, an
open truncated cone W C R’ so that VX W C 0. W is a truncated cone if
# € Wimplies 78 € W for all 0 < 7 < ¢, some €.

By Proposition 1.7, we can assume without loss of generality that supp 7 is relatively compact
and supp T C U X {y| |y|< €. Combining this observation with (3.1.0), we use the following
model:
i) 9 = R = RF x R/,
i) 9% c R* = R¥ x {0}, is open
(3.1.0y iii) 9 X W C ©, where W is an open cone in R/,
iv) 9L C 90,
v) T € %(0), (supp T)° compact in 9.
In this setting, there always exists permissible sequences for any » € ®B(9U). For example, if
n € CCRY), Sty ldt = 1,and {§,} C C®°(S™"), fgm §,do = 1,supp &, C S1 N W, then

(3.1.1) w, =r® n’n(nlyl)f,,((v])dy

converges to » clearly, and supp w, C 0. Also, if we require that

f ) s

then w, is clearly a permissible sequence as in Definition 1.2.

As in Chapter II, we want to justify the exclusive use of such sequences in applications. That
is, we are interested in the following question:

Let T € Rgy o If lim, (T, » ® nlno(n|y|)§n(y’)dy> exists for all v € B(N), all {§,} as above and
some 1y, does T have boundary values in the sense of Definition 1.3? Here y' = y/|y|.

As before, for the answer to be affirmative, we need an assumption on the Fourier transform
of 7. Also, because of the geometry of the support of such sequences, we will need to modify 0.

do < Claf for all n.
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Given 0 as in (3.1.0)’, we denote by @ C O any open set of the form:
(3.1.2) O =dqxXV
where V' is an open cone in R/ satisfying the following property:

(3.1.3) There exists an open cone W C R’ so that X W C @ and V\(0} C W.

Clearly, if we can take W = R’\{O} in (3.1.0), then we can take & = 0. We have then, the
following:

THEOREM 3.1.1. Let O 9, T, W and O be as in (3.1.0), T € Ry o Let 1y € CL(R™) satisfy:
(3.1.4) fz"‘no(z)dz =1,  F(eq(e"))(s) # 0, for s € R.

Assume that for all v € H(9N),

(3.15) Jim (T, v ® nng(nl y1)5,(3") dy)

exists and has value independent of (§,} where (¢} C C®(S"™1) satisfy:

(3.1.6) f{ndy’ = 1, supp &, C W n 71, f‘(aiy’) S| < ¢y foralln

Then for any & C O as in (3.1.2), Iy o exists. Also, if 01, 05 are two such sets, then T%@,l = T%@'z'

We will prove Theorem 3.1.1 following the same pattern as the proof of Theorem 2.1.1. But first,
we express the seminorms in (1.1) in local spherical coordinates in y.

Ify, €S 1 let U’ be any S"! neighborhood of ¥, diffeomorphic to an open set in R For
example, let U’ = S7\{ )} where y # Yo Let ¥: (y],....»)) = 0,(y),...,0_,())) denote
this diffeomorphism. Then {(r = |y[,8,,...,0,_;)} can be used as coordinates on the cone U
generated by U’. By induction, one can show that on U,

9 \? 3\ (Y
4 lo+j< B 96/ \or
where £, ;() are homogeneous of degree j — |B|. Hence, on U, if || = |8'], r = |y|, we have
8\" ANTEAY
Bl 2 = = -
(318) Y (ay> - 2 aa,j(y)(ag> rj(ar)

lod+/< | 8]

where a,, ; are homogeneous functions of degree 0. So if T € Ry p, then locally,

(2.19) (Tl < Cj+4a|+2|/sa<M ”(%Y(%)B’j(%)jq}(’“ ra)J(r’H)Hl

where p = @(x,y)dxdy, J(r,§) = F(@)r'"! is the Jacobian of the transformation (r,f) — y,
F & C®(R"™!) and the L! norm is with respect to dx df dr.

PrOPOSITION 3.1.2. Let ny € C(RT), {§,} € C® (s, T e Ry o satisfy the assumptions of
Theorem 3.1.1. Then for any n € CF(R") with § y()dr = 1, and any v € B(9), we have that

(3.1.10) lim (T ® n'n(n] y))3,(») dy)
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exists and is equal to the limit in (3.1.5).

PrOOF. Applying Lemma 2.1.2 to *n(e"), e’“no(e“), we have that for each N € Z*, and § > 0,
thereisa &, ..., &, s, ..., s, so that

k
(3111) T?(eu)elu — g gino(eu—s,-)elu*ls, + r(u)

where |[(d/du)j rllf < 8,j=0,..., N. And, since f g = 1170 1, we have that
1~ 3%, &] < 6. Letting ¢ = nr in (3.1.11) we obtain

k !
(3.1.12) nln(n)t, (') = E] ﬁno(g)(fy) ¢ () + g0, ()

where g(¢) = r(In[nz])/ (nt)[. Hence by (3.1.9), if » = @(x)dx € B(9N),

1<Tv®nn(nly|)§ )dy—zzm( )no(””')f(y>d>}

e
<o B IS sl oo () s

Ia|+\B|+J<M
i=12

where {g,,®,} is a partition of unity over S so we can use (3.1.9), and the L! norms are taken
with respect to dx, dfl and dt respectively. Choosing N in Lemma 2.1.2 equal to M and letting

x = In[nt], we have
@< 21

(3.1.13)

tj+l—l<g;)jg(t)n[ 2 >

Hence by assumption (3.1.6) on {{,}, we have that (3.1.13) is bounded by ¢8. So

(3.1.14)

[Enﬁ —hTm] |<T,v ® n'n(n| y))$, (") dy — i §v ® (%)no(nlﬁfl)s’n(y’)dyﬂ

i=1

k

B [HrrrTl _hhm‘] ’<T’V ® n'ninl y)5, () dy - (E 5,-)'/ ® n’no(niyi)fn(y’)dy>’ < e

=

Hence, since |1 — 2;‘21 ¢&| < 8 and [{T,» ® n'ny(n| y))¢,(»)dy)| < ¢, we have by (3.1.14) that
(1 —tim || 7ov @ a1, b = v @ img (a3, () )|

(3.115) < [F —tim || (Tor © ntntal 115,00 - (§ & Jr @ nino(nl 5, )|

+ [l—lnn_i -l_l'rg] KT( 2 §)v ® n'ng(nl y)8, (¥ )dy>‘

Hence, the limit in (3.1.10) exists and equals the limit in (3.1.5). W
In order to generalize Proposition 3.1.2 to more general permissible sequences, we construct a
smooth sequence S, so that S, — T in Rq o, O as before in (3.1.2). For this, let T € R, T
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satisfy the hypotheses of Theorem 3.1.1. Let @ be any set given by (3.1.2). We consider two cases:

1) If w# R\{0}, then W n ™! % S, Hence, there is a C* diffeomorphism, ¥:
wn s S REL Let ¢ e ¢ (R’ '), supp ¢ C {neighborhood of 0}, f ¢dx = 1. Let ¢ (x)
= m™ ¢ (mx), h(z') = 1/F(¥(z')), where F is as in (3.1.9). Let n € Cy°(R), 0 & supp 7 and
assume that [ n(s)ds = 1. Also, let ¢ € C{° (R¥), f¢ = 1 and denote m*p(mx) by @, ().
Assume that {, 1, ¢ are even functions. Finally, for (x,y) € ¢, we define

, z
(.116)  Tpl) = (Towsonles = win(m 1na)I (M) = ) e )
where as usual, y' = y/|y|, 2/ = z/|z|.

2) If W= RA{0}, let x;, x; € C®(S"!) be a partition of unity of S™! so that supp X;
#87 i=1,2. Let ¥, be C® diffeomorphisms from a neighborhood of supp x; to R,
h(z') = VE(¥%(2")), where F, is as above only defined via ¥. Let {, 1, ¢ be as in 1). Then for
(x,y) € O we define

(G117)  T,(ny) = 2 X Wz,(pm(x—-w)n(mlnH)l (50 - ‘I’i(z’))hi(z’)dwdz>.

We now show that 7., T, has the required properties.

PROPOSITION 3.1.3. Let T € Ry ¢ satisfy the hypotheses of Theorem 3.1.1. Then T, [respectively T},
is C% on O [resp. O], continuous to NX {0} and T, — T in Ry o[tid! T;, = T in Rgy ¢ |-

Proor. Without loss of generality, assume supp 7 C {¢|1 < |¢| < 2}. Then for any y, we have
that

l2l

supp n(m In ]

m _
)2 € e ISl

z
and supp {,(¥(y') — ¥(z’')) is contained in an S~ lneighborhood of y’ whose diameter
decreases to 0 as m — oc. Hence, since (supp T )" is compact, T, (x,y) is well defined and C* on
O since we can differentiate under the ‘integral’ As for T, note that since ¥V N st l) is
compactly contained in (W N S*!), we have that for m large, if (x,y) € ¢,

supp IZ‘P,,,(X - w)n(m In ‘l_j’—ll>i i,f () — \I'(z'))h(z’)dwdz] C MNX W.

Hence, T, (x,y) is well defined and C* on ©'.

To show that 77, is continuous to 90 X {0}, we first show that for each x, m,

T, (x,0) = lin(l) T, (x.y) exists .
y-—-)

3.1.18
(3.1.18) r2s

For this, let x, m be fixed. Define
1,002) = o = win(om I 5 )0, (U — M)

Then T, (x,y) = <T M (w,z)> and if we let 5() = n(m In Om/t’, t >0, we have that 7
€ ¢y (R+) and [ n(t)dt = 1. Note that we define 7 = 0 for ¢ < 0. Also, if we let
§ () = §,(¥(y') — ¥(z'))A(z’), then for m large enough, supp S‘Ty(z’) C Wfor ally € V. Now
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for each y, fgi1 §,(2')dz’ = 1 and for each a we have
a\:,,
fo |(22) 5]

1 0n2) = e = (51 ) G Ve

"< Gl

independently of y. Hence,

is easily seen to be a permissible sequence converging to ¢,,(x — w)dw as y — 0, so by Proposition
3.1.2, T}, (x,0) exists. Now

0 2
i ) = (T onte = Win(m i 5 200, (40 — M) e,

Hence, using (3.1.9), a calculation shows that

(3.1.19)

(%)T;n(x,y)‘ <c¢c, forally, x
So if (x,y) € ¢, (x4,0) € 9 X {0}, we have by (3.1.19), that
T3 (% 9) = Tp(x0,0) < |T7(x,0) = Ty (xigu )| + |T1(x0,%) = T (5,0

<3

as (x,y) = (x,,0).

Hence, T,(x,y) is continuous to N X {0} and T7,(x,0) is given by (3.1.18). A similar argument
proves the same statement of T, (x, y).
Finally, we show that T;, — T in @ ¢. A similar argument will show that 7, —> T in Qg .
For this, let p = Y(x,y) dx dy € €B(®’) Then since y has compact support, we have that,

e T’ m(X.)

|x - xol + |T (xoa)’) T;n(xo,O)l -0

J Ty, y) dxdy = < [f W5, 2)om(x - “’)"(m o ||y|l)|z|

(3.1.20)
x ¢ W(y) - ‘I’(z’))dxdy]h(z’)dwdz>.

For m sufficiently large,
supp | [ wxhon(c = win{min |2 2, () — ¥ DM x| <.
Hence, since T € %m,e' we have that

, 3\ s 3\¥
Tu-tl<e 3 [(&) ()
la+|Bl< M

|81=181

(3.1.21) |z]

| [ ¥5)om Gz = win(m 1n W)l n(H) = ¥ e

awdz.

- 4w
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Applying (3.1.9) to (3.1.21), and letting | y| = €°, |z| = €', u = ¥()'), v = ¥(z’) we have that
(3.1.21) is bounded by ‘

h |a|+|3|2+j<Mf l(%)(%)ﬁ(%);

(3.1.22) [f @,y (x = W, (s — D, (u — v)Y(x, es\I,—l(u))F(u)elsdxdsdu‘

— Y(w, & ¥ (V) F(v)e"]| aw dt dv

where 1, (s) = mn(ms) and F is defined as in (3.1.9). Now since ¢, n and { are even functions, we
can apply Lemma 2.1.5 to obtain that (3.1.22) is bounded by

(3.1.23) ¢, |a|+|ﬂ|+2j<M+l f ‘(%)a(%)B(%)j[¢(w,e"P_l(U))F(”)eh]

where ¢,, > 0 as m — co. Letting |z| = ¢/, we have by induction that

3y, & R
(@) = 2l (577)

Hence, substituting |z| = ¢’ and observing that (8/81)'[f(1)e"] = [S}—o 4 (8/ 3% f1e", we have
that (3.1.23) is bounded by

dwdt dv

(3.124) ¢, > f l(%)alzl“"‘(%)j(%)ﬁw(w,lzlxlf—‘(u))p(u)]dwd|z|du_

lel+| B < M+1
Now

(&) = 2, 0 (3:)

lvl<|8l
where ¢, € C% (R"™1). Hence, the integral in (3.1.24) is dominated by

oizs o 3 fl(G) 1 () () Wt ren| avala

laj+yl+i<M+1
k=j+ly|

Finally, letting v = ¥(z’) and noting that

() - =

3 B ]
cﬁzﬂ(a—z-) ; Izl < ¢ 2 |Z,-|
|BI=i =1

and F € C®(R"!), we see that the integral in (3.1.35) is dominated by
8 \* (3 \*
(%) #(52) ¥,

Hence, T}, = T in Qg ¢ as claimed, completing the proof of the proposition. M

3.1 ¢
(3.1.26) ! Ial*lrlﬁ|<1t14+1
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Henceforth, we will denote by 7., the approximation constructed in Proposition 3.1.3. Choose
S, € CP R so that

1
(3.1.27) sup|S,, — T,,| < —

on ¢ or O depending on W in (3.1.3). Clearly then, S, — T in Qg o (respectively R o).

PROOF OF THEOREM 3.1.1. Using S, in (3.1.27), the proof is the same as that of Theorem 2.1.1. W
Let U = {(x,»)}, V = {(w,z)} be bounded open sets in R**' or coordinate neighborhoods on

two manifolds. Let 9, be the slice { y = 0} of U, 9, the slice {z = 0} of V. Let x: U - V'bea

diffeomorphism, x: 9, = 91,, that extends diffeomorphically to a neighborhood of U° and let

Xloy, = X be the diffeomorphism, X: 9 — 9,. Let 9, C V satisfy (3.1.0), & = x’z((‘)l). Let

T € ¥'(9,). Then if p = @(x,y)dxdy € B(6,), we define as before:

-1
—8—X—~}dwdz>.

(3.1.28) KT = <T"P(X—I(W’Z)) A(w, z)

By Proposition 1.1, if T € Rg_g, then x*T € Ry .

PROPOSITION 3.1.4. In the above notation, if Ty o exists, then (x* T)%,Gl exists, and for all

(3.1.29) X T, 0,7 = (X T, 0,07

ProoOF. The same as the proof of Proposition 2.1.6. H

2. Restrictions of Generalized Functions

It’s now relatively easy to obtain a theorem for restrictions corresponding to Theorem 3.1.1. We
assume that © C R**' is open, R**' = {(x,y)} and 0 N {(x,0)} = 9L Let Oy = O\.

THEOREM 3.2.1. Let T € Ry o Let ng € Cg° (R™) satisfy (3.1.2). Assume that for all v € H(N),

(3:2.1) lim (T,» ® n'ng(nl y))8, () dy>

exists and has value independent of {§,} where {{,} satisfy:

(322) [, Gdo=1, g ec2(s, fsl_l ‘(%)af

Then T has a restriction to 9 in the sense of Definition 1.3 whose value is given by (3.2.1) for all v.

do < ciy for all n.

PrOOF. Clearly, T € Qg ¢ and by Theorem 3.1.1, Ty o exists. Let {1,} C B(0) be a permissible
sequence converging to » € ®(N). Say p, = ¢,(x,y)dxdy, » = @(x)dx. Let x € C*(R) so that
x = 1fort > 1,x = 0for ¢ < 1/2. Then for all p € B(0),

(323) T = Ty ase—0.

To see this, note that since T € Rg
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)l < 3 MGG 0D

1Bl=|8

h |a|+%<M (1 - X<L€y_l> >(8'ai>ayﬁ(%>ﬁlq”“|
e Jalﬂﬁ%vKM H[yy<%>Y/(l - X<IT) )]

ly|>0
AN* 57 0\F
A\ 82 _
X[(ax)y (ay) “’]“1"”"

Clearly, I — 0 as € — 0. Writing »(3/ ) by (3.1.8), differentiating, and letting |y| = er, we
obtain that

1 Lo _
II < ce E ﬁ ff rjlxj(r)(paBB,(x,ery’)](er)l Yaxdy' dr
la+|Bi<m ™ *
0 ji<m

a\* g( 3\
where @, 50 = %) > P.

Hence, IT — 0 with e. That is, (T, x(| y| /e)uy = {T,p) as € — 0. So for each n, choose €, with

[T = (a2 o)

Then lim, {7, u,) exists if and only if lim,<{T, x(|y|/¢,)n, > exists. But a calculation shows that
x(1¥|/e, ), is a permissible sequence on 0, converging to ». Hence, lim,, (T, x(| y| /e, ), exists and
equals the limit in (3.2.1). Therefore, the same is true of lim,{T, p, >. That is, Iy o exists. W

1

n

<

ProrosITION 3.2.2. Let T, T € 6{%6 and assume that T, — T in 6]{%00. Then T, — T in @L@w.

Proor. The same as the proof of Proposition 2.2.1 only we estimate / in that proof as II was
estimated in the preceding proof. H

CoROLLARY 3.2.3. Let T € R o and assume that Ty o exists. Then there exists {S,} C C)so
that S, = T in Ry .

ProoF. Choose {S,,} C C;°(0) as in (3.1.27) where S,, —» T in Ry 0, {S,,) exists since T g, does.
Then by Proposition 3.2.2, we have that S, »> Tin R o. B

Let U = {(x,)), V = {(w,2)} be bounded open sets in R¥*! y 4 C* diffeomorphism,
x: U — V so that x: (x,0) — (w,0). Assume x extends diffeomorphically to a neighborhood of
U°®. Let 9, respectively 9,, be the slice { y = 0} of U, respectively {z = 0} of V. Let X be the
induced diffeomorphism, X: 9, — 9,. Let &, C V so that 9%, N O, #* . Let & = x~'(6,).

ProrosiTiON 3.2.4. Using the above notation, let T € %%2 0 and assume T%z,ﬂz exists. Then
(x* T)“JL. o, exists and

(3.24) (X T, 0570 = X Ty 0070 Jorall v € H(I).
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Proor. Identical to the proof of Proposition 2.1.6. W

The proofs of the following two Propositions are the same as those of Proposition 2.2.5 and
Proposition 2.2.6 respectively, and are omitted.

PROPOSITION 3.2.5. Let T € R o and assume that for all v € H(N), n € Cy (R") we have that
1

(3.2.5) KT,v ® —,n({)dy>[ <¢, Joradle
€

Then T € R o Further if Ty g, €Xists, so does Ty g and Ty o = Toy -

PROPOSITION 3.2.6. Let T € R % and assume that ]:l,@o exists. Then there exists an S € @l@w 50
that S = T on Oy, Sg g exists and equals Ty g .
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CHAPTER IV
EXISTENCE OF RESTRICTIONS AND PRODUCTS

1. A Refinement of the Wave-Front Set of a Distribution

Let X be a C* second countable manifold. We recall the definition of the wave front set of a
distribution D € ¢)’(X ) and several of its properties.

DEFINITION 4.1.1. Let X C R”" be open, D € 90'(X ). Then the wave front set of D, denoted WF(D),
is defined as the complement in X X (R™\{0}) of

{(xg, &) |there exists neighborhoods Uy, %, so that for all @ € Cy° (U,

4.1.1 .
( ) forall N € Z*,(®D) (&) = (™) uniformly in & € Igo}

It is clear that
(4.1.2) sing supp D = w(WF(D))
where 7: X X (R"™\{0}) = X, 7(x,£) — x and sing supp D is defined as the complement in X of
(4.1.3) {x| 3U, with D € C*(U)}.
Also, it is clear that WF(D) is a closed cone in X X (R"\{0}) where by conic, we mean:

4.1.4) ' (%o, &) € WF(D) = (xq,7¢,) € WF(D)  forallt € R".

PrROPOSITION 4.1.1. (xy,&,) & WF(D) if and only if for all real valued functions y(x,a) € C*(R"
X R?) so that d (xy,a,) = &y, there are neighborhoods Uyp Ag, S0 that for all @ € Co°(U), all N,

(4.1.5) (D, e~y = o(r~N)
uniformly in a € A,

PrOOF. See [1]

Hence, if X is a manifold, D € @’(X ), Proposition 4.1.1 is taken as the definition of WF(D).
This definition is clearly coordinate invariant and agrees with Definition 4.1.1 if X C R”". With
this definition, it is natural to consider WF(D) as a closed conic subset of 7% X \{0}. That is, the
cotangent bundle of X minus the zero section.

The objective of the rest of this section will be to refine the WF(D) into orders of decay and
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then show this refinement to be coordinate invariant. We begin with:

DEFINITION 4.1.2. Ler X C R" be open, x, € X, V C R" a cone. Let D € 9'(X), k € R. We
define the order of D at x, on V to be less than or equal to k, denoted

(4.1.6) Ord, D < k

if there exists a neighborhood U of x,, an open conic neighborhood W of V so that V\{0} C W and
for all p € C3°(U) we have

(4.1.7) (@DY () < c(1 + [£1)¢  uniformly on W.

We say that Orde,VD =k if

(4.1.8) k= inf{k’[Orde,VD < k')

If & € R”, we define

4.1.9) Ord, , D =0rd, D  where V = {t§y|r € RT).
If Orde,VD < k for all k € R, we say that Orde,VD = —o0.

Note that Orde, y D = k does not imply that Orde, yD < k. Also, if V' C V’, we clearly have
that

(4.1.10) Ord, D < Ord, ,»D  forall x,.

Letting g5,(x, ) = Ord, D, we see that for each D € D'(X'), gp(x,§) is an upper semicontin-
uous function on X X R” That is, for each A,

{(x,€)] |lgp(x,£)|< A} is open in X X R".
Also, if D € &'(X),

(4.1.11) Ord, gD < k  for some k independent of x;.
Finally, if D € L}(X),

(4.1.12) Ord, gD < -k for all x;.

PROPOSITION 4.1.2. Let h, g be measurable functions on R" so that |g| < (1 + |x|)k, { A
< el + |xDY. Then if — N is sufficiently large,

(4.1.13) I * g) ()] < (1 + |x])F.
Proor. If £k > 0, we can choose N = —k — n— 1 and
G x )C < [+ 1 =D U+ D™y <+ ) [+ DD

< ol + |xDE
If k<O,

(h+ ) < [

[yi<ixt/2

=TI+ 1l

(1 + x =y + [y)Vay +fly (1 +x =)+ )V ay

|>|xi/2
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If |y] < |x|/2, then |x — y| > |x|/2 so
I<c+ ) fa+DY <el+ ) N =-n—1.
And, in 17, since (1 + |x = y)* < 1, (1 + [y < (1 + |2,
<(1+ |x¢)"f(1 + DV F ey <l + [x)f EN-k< -n— 1.
Combining the estimates above, completes the proof. W
COROLLARY 4.1.3. Let D € D'(X), xy € X. Then

(4.1.14) Orde’R,,D < k, for some k € R.

ProoF. Let U C X be any bounded neighborhood of x,. Let x € C°(R"), x = 1 on U. Then
xD € &'(X), so by (4.1.11),

IxD) &) < o1 + |§)*  for some k,  all &
Now for all ¢ € C5°(U),

@D) (&) = @xD) )| = 6 * (xD) (€)] < (1 + [£])*

by Proposition 4.1.2 since ¢ € S(R"). W
The following two propositions will be useful in showing how Definition 4.1.1 is affected by
coordinate changes.

PROPOSITION 4.1.4. Let : R" — R” be smooth, and assume that [0 /3 x] % = (O] Then there is a
neighborhood U of x so that for all € Cy°(U),

(4.1.15) f P(x)e ™ HPNE g — ()

for all N, uniformly in ¢ € S™\.

Proor. Let

;el

g,(x$)—~—[(x+q>(x)) ¢ =¢; Z 2

Since 8@/ dx; = 0 for all i, j when x = x, it is clear that >, gf(x,g') = 1+ h(x,¢") where
|h(x, )| can be made arbitrarily small, uniformly in ¢’ € $"~, by taking |x — x,| small. Choose
Uso that 3, g # O for x € U, ¢ € §"". Define

o &xE) 2
(4.1.16) | Z (x £) [

Then L is well defined on U X $" ! and L[(x +3(x)) - £] = 1. Hence if ¢ € CZ(U),
f(p(x)ei-r(x+¢(X))~£'dx - .lf(p(x)L[eir(x+¢(x))-£’]dx = lf [L/(p]eif(x+¢(x))-§'dx

= ( )Nf[(L/) q)] ir(x+g(x) )-€ dx.
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Hence, | chp(x)eiT(x+¢(x))'£' dx| < ¢y~ " for all N, uniformly in ¢ € S"! where ¢, depends on
supyl(L') "¢l W

PROPOSITION 4.1.5. Let f be a measurable function on R" satisfying | f(&)| < (1 + |¢))™ some M.
Assume that on an open cone W C R", |f(¢)] < (1 + 1€ uniformly. Let g be a measurable
function on R" so that |g(¢)] < (1 + [51)N. Then if —N is sufficiently large, we have that

(4.1.17) (g * )] < el + )
uniformly on V, where V is any cone satisfying V\{0} C W.

Proor. Clearly, since V°\{0} C W, we have that there exists ¢ > 0 so that if ¢ € V, then
{x] |x — &< c|¢]} is contained in W. Let U be an open conic neighborhood of V' defined by:

U={x||x—§&<cl¢(|] forsome¢ e V}.
Then

(g NEN< [ 180 = ) flde + [, glx = §)f()ldx = 1+ 1L

RA\U

Now since U C W, we have that
1< [, 180 = I + <) dx <ol + 5" forall¢

if N is chosen as in Proposition 4.1.2. Now for II, note that if £ € V, x € R™\U then
[x — ¢ > c|¢]. Hence, since k — M < 0,

< [+ x =Y+ )Y ax <ot + BTV [+ 1= 2™+ )Y ax
<l + €)M+ D™

=1+ g)f forte v

by Proposition 4.1.2 if we choose N appropriately. Combining estimates / & II completes the
proof. W

We will use Proposition 4.1.4 and Proposition 4.1.5 to see how the order of a distribution
behaves under coordinate changes. First, we remove the presence of a norm | | in Definition 4.1.2.

DEFINITION 4.1.3. Let V be a cone in R". We say that a relatively compact set U'" C R"™\{0} is a
generating neighborhood for V if U = {r£|¢ € U’,r € R"} is an open conic neighborhood for V.

Clearly, in Definition 4.1.2 we can require that
(4.1.18) (@D) (r£') = ()
uniformly for §* € U/, where U/, is a generating neighborhood for V.

THEOREM 4.1.6. Let X, Y be open in R", ® a diffeomorphism, ®: X — Y so that ®(X) = y. Let d®.,
denote the Jacobian of ® at %. Let D € 0'(Y), V a closed cone in R", W = (d®.)' V. Then

(4.1.19) Ord;;, D = Ordyp, @, D.
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ProOF. Let @, be the ith coordinate function of ®. Expanding by Taylor’s formula about x = %,

(4.1.20) 0,(x) = &,(x) + 9‘2—"?@ = X); + h(x)

j=1
where (x — X); = x; - X; ; € C*, and dh;/0x; = 0 at x = X for all i, j. Hence
O(x) = [B(X) — (dD;)X] + (dD;)x + A(x).
Letting y = ®(x), we get
(4.1.21) y =7 = (d2)2~ (M) + (d®)2~' () + 9(»)

where () = h o @ () has the property that 0p,/dy; = 0 for all i, jat y = y. Let k € R so
that OrdﬁVD < k. Then by Definition 4.1.2, there is a neighborhood U, of y, a generating
neighborhood U7, of V' so that

(4.1.22) KD, ()™ Y] = 6(zk)

umformly in ¢ € Uy for all ¢ € CF°(U;). We define U C &7 1(U) shortly. Let Uj,
C (do; ) U’y so that if Uy, is the cone generated by U}, then

(4.1.23) WCU, and U C (d®;) U\O).
We will show that
(4.1.24) (@, D, p(x)e™) )| = o(rF)

uniformly in » € U, for ally € Cy° (Uf).
Now by definition,

(4.1.25) (@, D.x)e™)y = (D ylg™ (1)),

Now for any choice of U, C &~ I(U) Wy) = Y@ (y) € Cq (U;). Also, for any v € Uy,
there is a &’ € U, so that v’ = (d®; ) ¢’. Hence, (4.1.25) becomes

(4.1.26) (D, Y y)e @R OIE,
Let ¢ € C5° (L) so that ¢ = 1 on supp . Substituting (4.1.21) into (4.1.26) we obtain

(4.1.27)
oM@ 2z)2~ (3)-71¢ (DY y)eif(y-ﬁ(y))-é’> = ¢il(d®)®~" (5)-7]¢ Yo D y)e—i@(y)-&’], eff(y~5’)>

eif{(d@;)q’_‘(}’)*?]'i'[(pD]" N [¢( . )e—i@(-)-i’]‘ (Tgr).

Now

(4.1.28) (D) (r£") = &%)

uniformly in §” € U, by (4.1.22). Also, by Proposition 4.1.4, if U C U is small enough, y € U,
“.129) W) PO (r8) = o) wN

uniformly in ¢ € $"! for any ¢ € C;°(U). Hence, by assumption (4.1.23) on U}, we can
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choose N large, apply Proposition 4.1.5 to (4.1.27) to obtain that Vy € Cy°(U;), where
U, c o7 1(U),

(4.1.30) (@, D, Yx)e™ )y = o(rF)

uniformly in »" € U}, Hence,

(4.1.31) Ord; @, D < Ord;, D.
So if Ordy, D = —oo, we are done. Otherwise, by the same argument, we can show that
(4.1.32) Ord,, g1y (7 )y (B D) < Ordyy (@, D).

Noting that (®~"),(®, D) = D, (d®; )W = V yields
(4.1.33) Ord;, D < Ordyy/ (9, D).

Combining (4.1.32) with (4.1.33) proves (4.1.19). R
We now define the order of a distribution D € 9’(X ) where X is a manifold.

DEFINITION 4.1.4. Let D € 9'(X ), X a manifold, x, € X, V a closed cone in (T* X \{O})XO. We say
that

Od, ,D <k keER

if there exists a coordinate neighborhood U, = {(x)}, a generating neighborhood U’ for V so that for
all ¢ € C8°(UXO),

(4.1.34) {pD, ™)y = (%)
uniformly in §' € U, We define Orde’VD = k etc. as in Definition 4.1.2.

By Theorem 4.1.6, the order of a distribution is well defined, independently of the coordinate
system chosen. That is, if Ord, ,D < k in one coordinate system, the same is true in any
coordinate system.

DEFINITION 4.1.5. Let k € R, xy € X, §, € (T*X\{O})XO, D € 9'(X). We say that (xy,%&;) is in
the k-wave front set of D, denoted ' :

(4135) (X(),g()) S WF,;D
ifOI'dxo,goD > k. That is, ifOrde,goT = k' where k' > k. We let WE,D = U, WE_D.

Clearly, WE D is conic for —co < k < o0, and since Ord, ;D is-an uppersemicontinuous of
(x,£), we see that for —oo < k < oo, WE, D is a closed set in T* x\{0).
Also, if (xy,&,) € WE,D, then (xy,%,) € WF(D). Hence

(4.1.36) WE,D = UWED C WF(D).
Also, it is clear that
(4.1.37) (T* X \(O\(WF(D)) C {(x9,%)|Ord, ¢ D = —o0}.

However, we may have that
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{(x0:£)I0rd, o D = —0} N WF(D) # &.

To see this, we construct the following example.
Given b > a > 0, let

fute) = {WH 03 Wo= D e <l <

otherwise .

Let ];{‘b(x) be the kth primitive of £, ,(x) on {x| a <|x|< b}. For example,
fip(0) = (x| = @)lln(lx| = @) = 1]+ (5 = [x)[In (6 — |x]) - 1]
is continuous on {x|a <|x|< b}. Here we define fa{‘b(x) = 0 outside of {x|a <|x|< b}. Clearly,
fhe) € L (L \Ly(I,,)  fork > 1

where I, , = {x|a <|[x|< b}. Define,

F(x) —_ {fl';nﬂ,l/n(x) if x € 'Il/n-f-l.l/n
0 otherwise .

Then for each n > 1,

1 1
F() € Ly (3 < D\LL(xl < D).
Clearly then, F(x) is not C* in any neighborhood of x = 0, so
WF(F(x)), # <.

However, if ¢ € C(|x| < 1/n), then (pF) = ¢* F = (&))" ™ by Proposition 4.1.2 since
¢ € &R). Hence

OI‘dO‘RnF = —00.
With this in mind, we give the following.
DEFINITION 4.1.6. We define WF__ D = {(x0,£0)|0rde,§oD = —o0} N WF(D).
Hence,
WE, D C WF(D).
(4.1.38) el VE WF(D)
Also, by definition,
- WE, D.
(4.1.39) WF(D) ol VE
Combining (4.1.38) with (4.1.39) we have
(4.1.40) WED) = U _WED.

Now given k, if ¢ € Cj¥(X), N = N(k) is large, p(x,) # 0, then by (4.1.11) and Proposition
4.1.5 we have that

(4.1.41) WE(¢D), = (WE.D)

Xq°
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If g € C(X), p(xg) # O, then (4.3.23) is true for all k. Now let 7: T*X — X be the usual
projection; (x,£) — x.

DEFINITION 4.1.7. Let D € D'(X ), —o0 < k < oo. We define the singular k-support of D by:

sing, supp D = [U w(WI'](,D)]C where k' > k,
(4.1.42)

: ) [
sing__ supp D = [k>U W(WE(D):I .

>—

Note that if Ord, . T = k, where § € (T*Xx \{0}),,, then xy may or may not be in the
sing, supp T. However if Ord, T < k where V = (T* X \{0}) then there is a neighborhood
U, so that Ord, , T < k for all x € U, Hence, x, & sing, supp T

If w cC (T *X \{0}),, is a closed cone we will sometimes write that Ord, , T < k where we
will mean either

i) Orde,WT = k’ where k' > k, or

ii) Ord, wT = k but we do not have that Ord, ,, < k.
Then if Orde’WT « k, we see that x, € sing; supp 7.
Clearly,

(4.1.43) sing, supp D C sing supp D for all &.
And, by (4.1.40) and (4.1.2),

(4.1.44) sing_ supp D = sing supp D.

PRrOPOSITION 4.1.7. Let k € Z* U {0). Then

(4.145) sing_,supp D C X\{x| 3U, with yD € CE(X)  forally € CP(U)).

PrOOF. Given x,, assume that there exists U, with
k
yD € Ci(X) VY€ Cg°(UXO).
Then in any coordinate system on Uy ¥D € L,l((UxO). Hence by (4.1.12),
Ord, D < —k,  where W = (T*X\{O})XO.
So, by the remarks following Definition 4.1.7,

xo € X \(sing_,supp D). W

PROPOSITION 4.1.8. Let ®: X — Y be a C* diffeomorphism, D € 9'(Y), &* denote the induced
mapping of T*Y — T*X. Then

(4.1.46) WE,(®,D) = ® (WED) —oo < k< .
Hence

(4.1.47) sing, supp(®, D) = &' (sing, supp D) —o0 < k < 0.
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ProOF. Immediate from Theorem 4.1.6 and the above definitions. W

2. Existence of Restrictions of Generalized Functions
Let T € ®'(9), u a nowhere vanishing density on 9.
DEFINITION 4.2.1. Let k € R U {~c0}. We define WE (T by
(4.2.0) WE(T) = WE,(Tu)
where Tu € D'(9) is defined by, {Tp, @) = {T,qu) for all p € C;°(M).

The above definition makes sense, since if u,, p, are two such choices of nowhere vanishing
densities, then y; = fu, where f € C*(91) and f # O for all x € M. Hence, T, = fTi,. So by
(4.1.41), WFE(Tw) = WE/(Ty,) for all k.

Our purpose in this section will be to derive a sufficient condition for restrictability of a
generalized function T in terms of its k-wave front sets.

In the following, we will use the convention set forth in Chapter I. That is, in local coordinates,
we will identify T with Tu. So if p, € B(0), T € B'(0), p; = op, we will identify {T,p,) with
(T, ). For notational convenience, we will denote Ty by D.

Let 9 be an embedded submanifold of 9. Say dim 9 = &k + /, dim 9 = k.

DEFINITION 4.2.1. The conormal bundle of N, denoted N*(9) is
(4.2.1) {zm) € T*OUN0)| z €N, mlpsgey = 0}

In local coordinates, if U = {(x;,...,xg, . ...,»)} so that V' = U N 9% = {(x,y)|y = 0},
then T,(9) is spanned by {9/3x,li = 1,...,k} clearly. Hence, N*(9L) over V is spanned by
{dyy,....dn).

THEOREM 4.2.1. Let T € ®'(9N), 9L C N as above. Assume that for each x € 9,
(4.2.2) Ord, ysoy T < -1
Then T € R oy and Ty oy, exists.
Note that (4.2.2) can be written as;
(4.2.3) WF,T N N*(0) = &.

REMARK. If WF(D) N N*(9) = &, D € 9'(91), the existence of a restriction for D was shown
in [1] using properties of wave front sets.

Proor. We first show that T € Gﬁ%% Let x, € 9 be given, Uxo C 91 as in Definition 4.1.4.
Choose U C U, with coordinate functions {(x,y)} so that U N % = {(x,y)|y = 0}. Let ¢
S CS"(UXO) so that ¢ = 1 on U. Then for all p = ¢(x,y)dxdy € B(U),

(4.2.4) (T,py = YD, ).
Now

WD, ¢y = [ WD) (&), n) dédn

= J.coq WO Empp(emdean + [ @DY Em)ien)ddn = 1+ 1.
7 <elé| |

n|>elt] (



50

In these coordinates, we can identify N, (90) with {(0,7m)}. Hence, for any € > 0,

(4.2.5) {En)] |nl> €]}
is a conic neighborhood of N, () in T*9m\{0}. Choose € so that

(4.2.6) WD) &)l < (1 + g + 925, 2k <~

on {(£1)| |n|> €l¢]}. This can be done by assumption (4.2.2) and Definition 4.1.4. With this ¢, we
estimate I and I1. Now since ¢y D € &'(91), we can find M so that |y D) | < c(1 + |£|2 + InIZ)M
Hence

2 2\M
1< [ g O+ 67+ 1) e m)l d
(4.2.7)

< supl(1 +e) e[ (U HERYTV + lgl + Inl')M dgan,

On the domain of integration, (1 + [£°)™" < (1 + |n|*)™¥. Hence, (4.2.7) is bounded by
(42.8) sup (1 +EP) ol (1 +igPY V(1 + [PV (1 + g + [P dgan.
Choosing N large, the integral in (4.2.8) is convergent and we obtain that I is bounded by

(4.2.9)
e supl( 651 sl + 87l 1< ellt + 8,70k < ¢ 3 () ot
la| <4N

where A, = — ¥, (8/ ax,.)z. Using (4.2.6), we have that /7 is bounded in absolute value by
(42.10) sup|(1 +P)Vl[ (1 +nl* + 1) (1 + 7)™ agan

where 2K < —I, N is arbitrary. Letting n; = (1 + |‘£|2)i {;, we have that

@211) [+ P+ ) an = 1+ g5 [+ KR & < o1 + D

since 2K < —/. Hence, inserting (4.2.11) into (4.2.10), we have that

|| < ¢ sup[(1 + Ax)Nq,]'|f(1 + |§|2)—N+1<+4/2dS

<cz

la|<2N

4.2.12)

: )a ”
— X, ) for N large .
(ax o | 24

Combining (4.2.12) with (4.2.9) proves that T € R op.
To prove the existence of Ty o, let » = (p(x)dx € B(U N N). Let n € C(RY) so that
S () de = 1. Let {¢&,) C C°°(S _1) satisfy (3.1.6). Then clearly,

(4.2.13) By = @(x)mn(mly|)5,(»') dx dy

is a permissible sequence converging to ». Then

(42.14) Ty = [ @DY (&0)i& )8, (n) dt
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where g,,(n) is the inverse Fourier transform of m'n(m| y| )$,,(¥'). Clearly, g,.(n) — 1 pointwise as
m — 0. Also, |g, | < lm'n(m|y))¢, (»)l; < ¢ for all m by (3.1.6) where the L! norm is with
respect to dy. Hence, the integrand in (4.2.14) is uniformly bounded, uniformly integrable by the
above estimates for [ and II, and converges pointwise as m — oo to (YD) (£7)@(£). Hence,
applying the Dominated Convergence Theorem proves the existence of lim,{(T,u, . So, by
Theorem 3.2.1, Ty o exists and equals this limit. W

THEOREM 4.2.2. Let T € B'(IM), N C M embedded so that dim M = k + [, dim 9 = k. Assume
that for some xy € N,

(4.2.15) Ord T<h<-—L

L 3
0. Tom)

By Theorem 4.2.2, there is a neighborhood 0 of x in M so that Ty g exists. Then

(4.2.16) Ord,, v (Tg) < h+ 1.

ProoF. Let U = {(x,y)} be a coordinate neighborbood of x, in 9 so that
) UcCo
i) UNX=/{(xy]y=0}
i) Vo € CR(U),

(4.2.17) <D, 9(x, ) E DS < o1 + [ + [m])”

for all £, n where & < —/ and D is a distribution associated with 7.
That U exists is clear by (4.2.15) and Theorem 4.1.6. Choose ¥ C U N 9 so that x, € V,
VeC U Lety € Cy'(U) so that ¢ = 1 on V. Let Dy o be a distribution on 9% N O associated
with Ty o. Let n € C(R) so that fn = 1. Then if ¢ € CZ(V),

(42.18) (pDog, ™) = li—%wD’elm(%)eix'&)
Hence,

(42.19) 9Dy < I D, (1))
Now

@D, = KD Dpwe™ ] = WD) (1), (Gn(HIoe™) ()l
(42.20) < [1@DY (e 2)iler)plx + &)l dx dy

< [+ 1+ D @)l + €)] dxdy
by (4.2.17). Letting y, = (1 + [x|){, (4.2.20) is equal to
(4221) S+ 1 g0+ £)] [ (0 + D e + |x]I5) d dx.

Now since & < —/, we can apply the Dominated Convergence theorem to obtain that

(4222) m f (1 + )" a1+ [ & < c.
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Hence, by (4.2.22), (4.2.21) and (4.2.19) we obtain, since ¢ € S(R¥), that YN & Z*,

(4.2.23) KpDa e e 6| < ey [ (1+ [x)™(1 + |x + £)) Vax

for all £&. Applying Proposition 4.1.2 to the integral in (4.2.23), we have for N sufficiently large,
that for each ¢ € C3°(V), there is a ¢ € R so that

(4.2.24) K Doy, 63| < (1 + [£])™.
That is,
(4.2.25) Ord, (T%e) h+1l B

COROLLARY 4.2.3. Let T € ®'(IM) satisfy (4.2.15) for all xy € N. Then for every h < 0,

(4.2.26) singy, supp(Ty o) C (singg,_pysupp 7) N .

PROOF. Let xy € sing; supp(Zy oy )- By the remarks following Definition 4.1.7 we have that

Ord (Ton) € A

X0, T (m)

Hence, by Theorem 4.2.2,

Ord TLh-1L

%0, Toa(on)

So by the same remarks, x, € sing,_,ysupp 7. W

3. Products of Generalized Functions

In this section, we discuss sufficient conditions on generalized functions in order that their
product is well defined.

Let X be a second countable C* manifold. Let m € Z*¥, 9 = []., X; where X, = X for all
i, and 9N is given the usual product structure. Let 9L C 9% be defined by: N = {(x,...,x,,)
*|x; = x; ¥i,j}. Note that x; in general will be an n-tuples of coordinates if dim X = n. Let
Te®¥X)i=1...,m Clearly, 1T € ®'(9n), where ®_, T; is the tensor product.

DEFINITION 4.3.1. Assume ®_, T e GJI%G where O is a neighborhood of 9 in . We define the
generalized function, T~ , T by

(43.1) ﬁ =(§ )M

i=

—

when the restriction exists.

Clearly, if ; € C®(X), then ®L| T, € Rgy g, (®;L T)g ¢ exists and is equal to the product of
T; in the ordinary sense. From Theorem 4.3.1, it will be clear that if 7L € C*(X) Vi # j, and
T E %’(X ), then the above statement is also true. Also, it is clear that if N/Z,supp T = &, then

ie1 T € Qg ¢ for any 0, and (®]Z, ,)gw is well defined to be 0.

Let T € ®(X), I, = WF(T),i = 1,..., m Let I;? C T*(X) be defined by
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' 0
(4.3.2) L" = {(x,0)|x € supp T}.
Clearly, by definition,
(433) WFL®TL) CLXLULGXE UL'XT,.
By induction, and (4.3.3), we obtain that

@34 WF(él 7;) c u(ﬁ r;)

where the union is over all 2™ — 1 combinations of I'; = Lor T, = I‘O where we exclude []/~ I‘.O
Now, given cones T, C T*X\{0},i = 1,..., m, we define:

43.5) L=+ )| WE)ET V)

TlMs

THEOREM 4.3.1. Let T, € ®'(X), [, = WF(T), i = 1, ..., m. Assume that for every k < m and
every k-tuple (i, . . ,tk) P F Vj, 2, we have that

(4.3.6) L c T*x\{0}.

Y

.
™M=

Then @, T, € Ry o where I is the diagonal of M = ITZ, X, and O is any neighborhood of L.
Further, ®_, T, has a restriction to 9.

That is, TIi~, T, € B'(X) is well defined by Definition 4.3.1.
REMARK. It is shown in [1] that if D, E € 9'(X), WF(D) + WF(E) C T*x\{0}, then DE
€ 9’(x) is well defined by: '

DE =®,(D®E)

where ®: X — X X X given by: x — (x, x).
ProoF. Combining (4.3.4) with assumption (4.3.6), we see that:

43.7) {(x,,...,xm,g,,...,gm)er*(mn =% Vij

NYE

does not intersect WF(®],T,). To prove that @~ T, € Aoy e We must show the following,

Given X, €N, IM € Z +, and a coordinate nelghborhood U of X, with coordinate function

{Gq,...,u,)), where UN N = {(,...,u,)|y; =0,i > 2}, sothatV pu = @(u)du € B(U),
IaI+|Bl<m

(4.338) K@w >‘ “(a%l)a(“z""’“m)ﬁ(m)yq’”,'
|8I=I8

We will, in fact, show (4.3.8) with all 8 = 0. To do this, let X, be given. Then if = i = (£1i eens 5,';,)
e [T* (‘DTL)\{O}] and 2"’ | 5‘ 0, we have by (4.3.7) and Definition 4.2.1 that 3 neighbor-
hoods U of X, V of ' so that for all ¢ € Cy°(U)),

i

(4-3.9) , <E’é1 Di’ (p(xl PECI xm)e'1'(X'£)> ‘ = @(‘T_N)

for all N uniformly in ¥. In (4.3.9), we identify 7, € ®'(X) with D, € ®’(X). For each
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o= Sx (91), the cosphere bundle over X, le Ul ¥, be given. Since S'x (om) is compact and

(¢, ... 0 ¢,) € Sxol S & = 0}is closed in S (GJTL) we conclude that there is (z!,... VN
c S;ﬂ(%) and associated U, V, i = 1, N so that U, Vi covers {(§,...,£,) € S|

ST E=0)LLet w=nNY 1U,,V—u,.’L]V,Thequ;ecg’(W)

(4310) 1 <§1 D;, (pei’l’(x-i)> ‘ = @(T‘N)
i=

for all 9 uniformly in V.

Writing X, = (xg, ..., %) € 9 where xy € X, let U, be a coordinate neighborhood of x; in
X, say with coordinate functions {(y,, . . .,,)} so that ([]_, Uxo)c C W.LetU C [, U,, have
coordinate functions {(u,...,u,)} where uy = (¥, ... 0,)s = (V1 = V1oV = V)i
> 2. Here the set {(y, - - ., ,)} are the coordinates on the kth U, . Clearly, U N 9is the slice
{(u, ... u,)| ;=0 j>2}of U

Let ® € C°(W)sothat® = 1 on U. Then if p € C°(U),

(4.3.11)

‘<i§1Di’(p(u1’ o ”um)>‘ - !<q)(yl’ : --’ym)(él D.-)’tp(yl,yl =Yy e -—ym)>‘
U[ [§> ]]A(él,...,émW(é «Si,—éz,...,—gm)dz‘
< f\ S8 [o] 32] ] @ 2 660 -t,)| a=

i flgl €i|<e§ &1 ‘[Q[iél DI] ]A (€ )q)(él S b —g’”)

= [ +IL.

In the above, we abuse notation by writing y; for (y,;,...,»,), etc. Now ®[®™, D,] € &(M).
Hence :

(4.3.12) ’[@[éq] ]A(sl, Lot <

So, for any e,

m
n<efo o rlalee v Do 2 6tk
|i§|£i|>€1§||£i‘ i=l

(1 +’ él gilz)K(b(igl S ’_g’")’

m M m 2 —K
Xfm v <1+2I£,-|) (1+ ,) z.
|I_§l£i[>€i§l|§it i=1 i=1

But, on the domain of integration,

(]84 <o [8)

1+ g+ -+ |$m])M, some M.

< sup
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Hence,
‘ B . m M m 2\ —K
< eosup 0+ 8,0 gtV [ (14 2 1gl) (14 [ S 16l]) ez

a o
< ¢, 2 H(%—> luy, ... u,)
la| <2K 1 1

for K large. Here, 4, is the Laplacin in 4.
To estimate /I, we make the following observation. If € is small enough,

(4.3.13)

(4.3.14) {(gl,...,sm) € S,"ZO(GJK)\ ‘ é; s,.{< e} C V.

Extending conically, we see by (4.3.14) that if € is small enough,

(4.3.15) {(&,,..-,Sm)

igl £l|< ‘ igl I£l| <V

Hence, for this €, we have by (4.3.10) that

Ix

m -K
(43.16) 1 < f(l + > |§,.|) dZ  forall K.
i=1

sup d)(él &6, ., —§m)

Choosing K > mn, we obtain

(43.17) IL<c

€

sup (i)(:gl & ,~§m)

Combining (4.3.13), (4.3.17) with (4.3.11) proves (4.3.8). Thatis, ® T € Rg ¢ -
The proof that (®;Z 7))y, ¢ exists is then the same as in the proof of Theorem 4.2.1. W
When m = 2, Theorem 4.3.1 can be improved by using k-wave front sets. First, if [ C 7(X)
we define

(4.3.18) =T = {(x,-§)I(x,¢) € T}

< cllplys o up)lh -

THEOREM 4.32. Let T}, T, € ¥'(X), dim X = n. Let T, = WF(T,). Also, let
(4.3.19) Kxg) =[0 N (=Bl  Wlx) =[=5) N L.
Assume that for each x;, € X,

(4.3.20) Ord, yix) T +Ord, iy B < —n.

Then T ® Ty € Ry o where I is the diagonal in M = X X X, and 0 is a neighborhood of 9. Further,
(T ® T)gy ¢ is well defined. That is, T T, € B'(X) is well defined by Definition 4.3.1.

REMARKS. 1) Note that (4.3.20) can be stated as: If WE(T),, N K(xy) #+ & and WE(YE)X0
N HKxg) # &, then k + 1 < —n.

2) Clearly, ¥ = —¥,s0 f = Jif and only if 1§ = &. To be consistent with Theorem 4.3.1, we
define

Orde’g T = —CO0.



56

PRrOOF. Let (x4, xy) € 9 be given. Let U}, U be neighborhoods of x; € X as in Definition 4.1.2
corresponding to ¥(xy), ¥ (x,) respectively. Let U C U X U, so that there exists ;, € Cg°(U)),
¥, € Cp°(Uy) with Yy, =1 on U. Let U, U, have coordinate functions {(x,...,x,)},
{(»5---»x)) respectively. Let U be given coordinates {(x,v)} where u; = x,, v; = x; — y; for all
i. Then if p = @(u,v)dudv € B(U),

(4.321)
KT ® B, w| = K D)) ® (¥ D), 0x, x — y))| < f &4 D) (6) Wy Dy) ()& + m,— ) dédn

where D, is a distribution associated with 7. We break the domain of integration in (4.3.21) into
three parts;

N o= {Em)] €+ ql> e(€]+]n)),
N, = {0 & + 0l < e(€] + [n)} N {WFT X WFTL},
Ny = {(¢& )] & + n[< e(l€|+[n])} N {WFT X WFLY,

where {WFT X WFL} = R" X R™\{WFT, X WFT,}. As in the proof of Theorem 4.3.1, the
integral over N is bounded by

(4.3.22) | |<k ”( au) o, u)

for some k. Next, consider N; where we define

Ny=NnN S"'x8$") ={(¢n) € WFEx WFL) n ("' x " 1)| ¢ + n|< 2¢}.

Now if &, is not in an §"” Lneighborhood of WFT N (-WFTL) N S""! then for e small,
(¢9:m) & Nj for all 9 € WFYE N S"*!. Similarly, 1f Mo is not in an S" Lneighborhood of
(—-WFT) N WFT, N §""\, then for € small, (§,7,) & N for all § € WFT N S"". Hence, if
(¢y,mp) € N5, we must have that:

§yisin an S"~1 _neighborhood of WFT, N (-WFT) N s+t

1 is in an "' -neighborhood of (- WFT) N WFL, N §"'.
Let Wy, W, be the open conic neighborhoods of ¥, ¥ as in Definition 4.1.2. Let Wy,
=W N s™ i =1,2. Then the above comments 1mply that N3 C W X W’2 for € small.
Extendmg conically, we have that N, C Wy X W,. Hence, the integrand over N, is bounded by

4.323) sup|(1 +[¢ + 1) 5 @& + n,—n) (1 +EN QM+ (1 +E + ) % dgan

|fl£+11|<c(lifl+lnl)

where a + b < —n, K to be chosen. We estimate now, the integral in (4.3.23). Letting £ + n = 4,
¢ = vy we obtain

a b 2\-K
S enicaterery 0+ ED°QU+ 10071+ 1¢ + n) " dgan

< f(l + |v|)a[ %tH)—du] dv < f(l + D + W)y < ¢

since @ + b < —n and K can be chosen large enough to apply Proposition 4.1.2. Using this in
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(4.2.23), the integral over N, is bounded by

o

Now, for the integral over N;, note that at least one of (Y Yf)ﬂ (), W, T,) (n) is rapidly
decreasing, so this integral is bounded by an integral like (4.3.23) excepting that a + b < k for all
k. Hence, as above, this integral is bounded by (4.3.24). Combining (4.3.24) and (4.3.22) with

(4.3.21), we obtain
(5wt
Thatis, T ® T, € Ry
To prove that (] ® T, )g; o exists, we follow the proof of Theorem 4.2.1. W

We now consider two algebraic properties of products as defined by (4.3.1). As for commuta-
tivity, we have the following.

(4.3.24) c
lal<2K

(4.3.25) KE® Bl <e¢ D for all p € B(U).

la| <k

THEOREM 4.3.3. Let T, € ®'(X), i = 1, ..., m and assume that ;| T, € Ry o where O is a
neighborhood in O of the diagonal 9. Then for any permutation 7 (1,...,m) = (n(1),...,n(m)) we
have that

(4.3.26) ® T € R

where O’ C O. Further, assume that @], T, has a restriction to M equal to T. Then @~ | Tﬂ(i) also has
a restriction to 9 and

m
(4.3.27) (_® T ,)) =T
i=1 €N,

Proor. Let @: T]., — TI’Z, X; be the diffeomorphism defined by:

77(1

(4.3.28) D2 (Xp1ys - - o X)) = (X w0 X))

By Proposition 1.1, if ® L T, € R, then * (@™, T] = ®/L Ty € Ao e Where & C 0. Here
we used that &: N — 9. Hence (4.3.26). Now by Proposition 3.2.4, we have that the existence of
(®Z T)oy o implies the existence of [@* (®/L, Ty g = (®7L; T;))o¢- Further, we have that

(4.3.29) [ <,§’1 T)]M=6*[<f i >9w:|

where ® is the induced diffeomorphism, ®: 9 — 9. Noting that ® = identity, we conclude from
(4.3.29) that

(4.3.30) (® ,,(,)) =(,® 7,7) . B
o i=l /o0

As for distributivity, we only have the problem of existence. That is, from the existence of
S(E:’;l T;), we cannot conclude the existence of ST, for any j. The converse, however, is easily
seen to be true and we have the following.

u@s
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PROPOSITION 4.34. Let S, T, € ®'(X), i =1, ..., m. Assume that ST, exists for all j. Then
S, T) exists. Further

i=1 %

(4.3.31) S(_E 7:) = > ST,.
] =
PrROOF. Noting that

(4.3.32) S® (él 7;) -3 (S 1)

the proof is trivial. W
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