
AN INTERACTIVE PICTURE MANIPULATION SYSTEM

by

Daniel Lewis /Franklin
/'

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREES OF

BACHELOR OF SCIENCE

and

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September, 1978

Signature of
Department

Certified by

Author-.. . ..
of Electrical Engineering and

Compute^ Science, August 11, 1978

...... - v * / V * .1.

_We 1is Superv sor (MIT)

kerull leu Uy .. uy..
C-mpany upervisor (Bell L)

Accepted
Chairman, Departmental Committee on Graduate Students

ARCHIVES
~ -'.3CH, UT a , S 'R'STi UT r.

JG T l QC!..

J:~[k~ 3 1 10~j3

L!EARIES

*

11 - ; A; -1- I ..

An Interactive Picture Manipulation System

by

Daniel Lewis Franklin

Submitted to the Department of

Electrical Engineering and Computer Science

on August 11, 1978 in partial fulfillment of the requirements

for the Degrees of Master of Science and Bachelor of Science

ABSTRACT

A system for manipulating scanned picture files is
described. The system features an interactive language, PIPO,
for quickly and efficiently performing local,
position-invariant operations. There are also commands for
(inter alia) filling in an arbitrary closed curve, translating
a picture file into a file of phototypesetter commands, and
compressing a picture file into a compact format suitable for
long-term storage. The system employs an extensible command
language which permits the user to easily define his own
commands in terms of those already existing. Its modular
design also aids in the writing of entirely new commands.

Donald E. Troxel

Associate Professor, Dept. of Electrical Engineering

2

ACKNOWLEDGEMENT

I wish to thank my supervisor at Bell Labs, Dr. Peter

Denes, for providing helpful criticism and a guiding hand;

Prof. Troxel, my thesis advisor, for his advice; Susan

Patterson of Bell Labs, for all her help both during my stay at

Bell and afterwards; and Gary Madison and Mark Levine, for

providing moral and financial support. I also wish to thank

Jerry Roberts of ECD Corp, for allowing me to use ECD's

SMART-ASCII terminal, without which this thesis would probably

still have gotten done, but not without a great deal more pain.

Finally, I thank the Student Information Processing Board of

M.I.T. for funding computer time for the preparation of this

thesis.

This thesis was prepared using the Honeywell Multics

Word-Processing System.

3

CONTENTS

Chapter

I. Design Goals.

A. Introduction

B. Other Picture Manipulation

II. IPMS Structure.....

A. Introduction....

B. Overview........

C. The DO and FILL

* 000.00. 0. .0..... ..

0 0 0 e 000000000 ...

Systems.... 0............

,..00........0000000..0.0.......

,0........00.00...0000...000.0..

Commands..........................

III. The DO Command

A. Introduction

B. Implementation of the DO Command.

C. Reducing I/O Overhead

D. Extensions to the Language.......

Page

5

5

10

14

14

16

20

IV. Screening and the FILL Command.......................

A. Introduction

44

44

B. Producing Screened Pictures on the Phototypesetter 50

V. Conclusions 56

4

.. 006. 0 0.0.0.. 33

00000.00..0060.,· 33

.......... 0 00 34

.000. *. 0 ... 0. 39

.. 40

Chapter I

Introduction

Computers have been used to generate and display pictures

ever since the first line printer was used to make pinups. It

is only within the past few years, however, that they have

begun to be employed widely in commercial picture production.

Similarly, typesetters have traditionally been used only to

produce text: pictures were handled by a combination of

photography and pasteups, and only recently has there been a

move towards processing pictures by computer control of the

typesetters themselves.

An example of this changeover is Yellow Pages directory

production. Its long-term goal is a system in which the entire

directory, pictures as well as text, is on line and capable of

being printed on a CRT phototypesetter in a single pass and

shipped to the printer.

In Yellow Pages production, there are many examples of

picture manipulation carried out by time-consuming photographic

techniques. The directory customer has a wide variety of

picture formats at his disposal, which are prepared to his

specifications by the telephone company's commercial artists.

These pictures can contain gray areas of several shades. The

process of adding these areas is referred to as "screening",

since it involves the use of a screen of dots to simulate gray

scale. Unusual typography is also available. A commercial

5

artist can be requested to do custom lettering, or a

conventional font can be used with one or more modifications,

such as outlining, "drop-shadowing" (adding shadows to the

letters to make them look like three-dimensional block

letters), and "haloing" (adding haloes around outlines of the

letters).

Although advertisements containing all these features can

theoretically be produced by CRT typesetters, the required

software does not exist. Hence these operations are currently

performed using photography, manual processing, and pasteups:

a time-consuming process.

To automate this work requires a system capable of the

following:

(1) Scanning and digitizing pictures drawn by a commercial

artist to make the pictures available for computer

processing, and scaling them to fit. (The pictures

will be drawn off-line for convenience, and later

digitized using the scanner.)

(2) Performing modifications and additions on those

pictures, including combining them and screening

portions of them.

(3) Generating special lettering.

(4) Producing a file of phototypesetter commands which

reproduces the completed ads.

6

A system meeting these requirements is now under

development. The system will run on a NOVA 830 16-bit

minicomputer with 48K words running mapped RDOS. The hardware

includes three Diablo moving head disks, a 9-track tape drive,

a graphics tablet, a Dest Data digital scanner, a 512 x 512

color TV display, a Versatek printer/plotter, and a Tektronix

4010 console. To aid in its development, another system was

needed which would provide an environment suitable for command

development. The minicomputer itself was not particularly

hospitable, as it was slow and lacked memory. Once a command

for, e.g., drop-shadowing, was developed, it could be recoded

in NOVA assembler for efficiency; but for testing purposes, an

environment in which one was not penalized very much for

inefficiency was highly desirable.

The problem, then, was to develop picture-processing

operations for a commercial page-layout system, within the

framework of a general interactive picture manipulation system.

The operations to be developed included screening,

drop-shadowing, haloing, and outlining. The Interactive

Picture Manipulation System (IPMS) was the result.

IPMS is implemented using the following equipment:

1) An SEL 86 computer (600 nsec memory cycle time) with

40K 32-bit words of core, hardware floating point, and

two fixed head disks;

7

2) A raster-scanned color television display with 512 X

508 picture elements, each up to 4 bits long, and

stored in a digital refresh memory; the red, blue,

and green video signals are generated automatically by

accessing the refresh memory;

3) A Dest Data scanner-digitizer, capable of scanning an 8

1/2" x 11" black and white picture (no gray scale),

digitizing at a density of 240 lines/inch, in about 5

seconds;

4) An 11" x 11" tablet and stylus (Computek GT50/10) with

1K x 1K resolution;

5) An alphanumeric keyboard, a Tektronix 611 storage

scope, and a Tektronix 4601 Hard Copy Unit, used as

the system console;

6) A PDP-11/45 running MERT/UNIX and attached through

high-speed channels to the SEL 86. It provides a file

system for the SEL (using several 65 megabyte moving

head disks) and timesharing services for editing

programs to be run on the SEL. Only the SEL, however,

operates the interactive displays.

8

IPMS includes a language (PIPO) for describing a wide

class of local, position-invariant picture operations. As

defined by Rosenfeld,(1) a "position-invariant" picture

operation is one in which the effect of the operation on a

point does not depend on its position within the picture;

i.e., it is a function only of the values of selected pixels,

not their coordinates. Position-invariant picture functions

are thus analogous to time-invariant functions in conventional

signal processing. A "local" picture function is one which, to

the extent that it is a function of input pixel values, only

depends on those within a finite area.

The class of local, position-invariant picture operations

is a large one, and it includes most useful picture-processing

operations. For example, averaging, quantizing, and edge

detection are all local, position invariant operations. Thus,

a system which provides the ability to specify almost any such

operation should be quite useful.

The usefulness of PIPO would be limited, however, were it

not for its high efficiency. (A 512 by 512 TV picture contains

approximately a quarter of a million points. An operation on

all of them will take 0.15 seconds longer for each additional

SEL machine cycle. They add up rather quickly.) Equivalent

efficiency could be obtained by programming the function in

9

(1) Rosenfeld, A. Picture Processing by Computer, University
of Maryland Computer Science Center Report TR-71, June
1968, Contract Nonr-5144(00), p. 1-11.

_ __ __ _

assembler, but such programming would be tedious and anything

but interactive, requiring a complete assemble-link-load cycle

for each change in the program. A complete cycle would also be

required in order to adapt the code for a different number of

pixels per line (if the code were to be as efficient as PIPO).

The programming could be made less tedious by using FORTRAN,

but at a great cost in execution time. Furthermore, a complete

compile-link-load cycle would still be required for changes in

the algorithm. PIPO avoids these problems by providing a

compile-and-go translator. The language is simple, and heavily

influenced by the instruction set of the machine, but is still

a great improvement over the alternatives.

Other Picture Manipulation Systems

Graphical systems can be divided into two general types:

those which work in terms of shapes (points, lines, curves,

etc.) and those which work with scanned pictures (pictures

stored as a two-dimensional collection of points).

Historically, systems which work with scanned pictures have not

offered nearly as many operations as the shape-drawing systems,

nor have they been easy to augment with new operations.

An early example of a picture-generation system is

SKETCHPAD,(1) which permitted the definition of complex line

(1) Sutherland, I. E.
SKETCHPAD, A Man - Machine Graphical Communication System.
Ph. D. Diss., Dept. of Electrical Engineering, MIT,
Cambridge, Mass. (1963)

10

drawings using a light pen and vector CRT display. Objects,

once drawn, could be readily replicated. Their shapes could be

made dependent on "constraints," permitting, for example,

demonstrations of lever mechanisms. However, SKETCHPAD was

limited to line drawings entered at the CRT.

More recently, there have been animation systems such as

that of Catmull,(1) which will generate halftone cartoons of

arbitrary complexity from an easily understood set of commands.

Designed for cartoonists with little or no computer experience,

it only manipulates picture features; picture processing is

not implemented.

There are also a wide range of graphics packages, of which

the most popular is probably GRAFPAC. These provide a library

of subroutines which draw points, lines, circles, etc. on

graphics displays. Programs using such packages, by their very

nature, are generally not interactive, at least regarding the

specification of their behavior. Changing their operation

requires programming the appropriate subroutine calls,

recompiling, and reloading. Furthermore, the host language

(usually FORTRAN) is generally not very well suited for picture

manipulation.

There are also interactive graphics systems designed for

special purposes, such as curve-fitting. While these perform

11

(1) Catmull, Edwin. "A System for Computer Generated Movies,"
Proceedings of the Association for Computing Machinery,
August 1972 Annual Conference, p. 422.

well in their area of intended use, they are not suited for

development work.

One example of a picture-processing system is BUGSYS,(1)

which permits fairly extensive examination and change of

previously scanned pictures on a pixel-by-pixel basis. It is,

however, difficult to make significant modifications to

selected areas, especially since BUGSYS is not interactive.

Moreover, there are no facilities for combining two or more

pictures.

The XAP system,(2) developed at the University of

Maryland, allows logical and arithmetic operations to be

performed using several previously digitized pictures, but

provides no mechanism for introducing or deleting features of a

picture. It also is not interactive. Users must write FORTRAN

programs which call the appropriate XAP routines. It is thus

similar to a subroutine package.

The CIPG system is an interactive facility capable of

operating on several scanned pictures simultaneously, combining

them, scaling them, and performing many other common operations

on them. New operations, however, must be defined by writing

new commands; there is no facility for specifying a

(1) Ledley, R. S., et al. "BUGSYS: A Programming System for
Picture Processing - Not for Debugging," Comm. ACM Vol. 9,
p. 79 (1966)

(2) Hayes, Kenneth C., Jr. "XAP User's Manual," Technical
Report #348, Computer Science Center, University of
Maryland. (1975)

12

picture-processing operation and seeing its behavior

immediately.

Commercial artists can manually erase offending portions

of a picture, crop the picture, superimpose parts of other

pictures on it, draw on it, and generally make drastic changes

to it. The IPMS is intended to possess the same capabilities

and to provide them in a more convenient form than the

photographer's equipment.

13

Chapter II

IPMS Structure

Introduction

As discussed in the previous chapter, the picture

processing routines of main interest at the time the system was

begun included the following:

(1) Screening specified areas of a picture. This is

actually a two-step operation: specifying the area to

be screened, and converting the specification into an

appropriate file of phototypesetter commands.

(2) Drop-Shadowing -- adding simulated shadows to objects.

In particular, it was desired to generate

drop-shadowed characters.

(3) Outlining -- essentially, detecting the edges in

two-level black and white pictures. This included

both generating tracings around the edges of the

objects, and hollowing out the insides.

In order to develop the routines required, a framework was

designed in which to carry on the necessary development quickly

and easily. The framework had to provide the ability to run

individual routines whose precise nature could not be foreseen

when the framework was designed -- routines whose arguments

might differ considerably, both from routine to routine and

from call to call of the same routine. A "command processor"

14

was called for; that is, a routine whose sole job was to

accept user instructions describing routines to be executed,

and execute them in the appropriate environment.

Another requirement of the system was that it facilitate

the "orthogonal command set" philosophy. This is the

philosophy of providing a small set of general primitives with

as little overlapping functionality as possible, so that while

a single command might not do very much, most tasks could be

undertaken by combining them in various ways.

Furthermore, if the primitives are not sufficient to

perform a given task, only those additional capabilities needed

to complete the task must be programmed; there is no need to

"re-invent the wheel" for each new application. This permits

faster development of new processes by encouraging a "building

block" approach to command development, an approach which has

been very successful on UNIX.(1) In order to encourage it,

however, the command processor should provide ways of

"coupling" individual commands. It must be possible to execute

a series of commands as though they were one command.

Each command may need to communicate information, such as

picture coordinates, to other commands. Obviously, the user

should not have to memorize such information and type it back

in. Ideally, the user should not need to be aware of the

15

(1) Ritchie, D. M. and Thompson, K. "The UNIX Time-Sharing
System". Comm. of the ACM Vol. 17, No. 7 (July 1974), pp.
365-375.

communication process at all, except when he needs to influence

it.

Yet another requirement for the system was that it handle

interfacing with the peculiarities of the "outside world" --

differing file formats, etc. Providing clean interfaces to

"dirty" environments permits even the most casually written

command to properly handle them. This requirement was

especially important in view of the many different file formats

that IPMS was expected to handle, and the peculiarities of its

TV display.

Overview

IPMS consists of the components diagrammed in figure 1.

Each of its parts will be discussed in more detail.

16

! I

USER COMMANDS
I I

I I II~~~~~I I !
I I I I I

I I I' COMMAND FILES , , I ABBREVIATION FACILITY '
I t I I I

I_I I I I I

I I I

t~~~~~~~~~~~~~~~~~~I III I I

I~~~~~~~~~~~~~~~~~~~~~~~~~~~COMMAND PROCESSOR Ij , I .. .OTHER COMMANDSI I ~~~~~~~~~~~III I ~~~~~~~~~~~III~~ ~ ~~~ ~~~ I I I III~~ ~~~~~~~~~ I g I I I, DO COMMAND ,, FILL COMMAND SET COMMANDI~~ ~ ~~~ ~~~ I I I II
I _ _ _ _ _ __I I I I II

I I II

I I II

PICTURE I/O ROUTINES

BOTTOM-LEVEL I/O ROUTINES

T I I I

I I I I I I I

CONSOLE TV ' PICTURE FILES , GRAPHIC TABLET:

Figure 1. IPMS Block Diagram

The command processor implements a common, straightforward

command syntax. Each command is specified by giving the name

of the command, followed by its arguments. The name and

arguments are separated by spaces.

Two facilities are provided by the commmand processor to

combine elementary commands: command files and an abbreviation

17

II
III~~~~~~~~~~~~~

I
I
I

facility. Command files are just what the name implies: a file

of commands to be executed. If IPMS does not recognize the

name of a command, it checks to see if the user has a file by

that name. If so, that file is used for further input, just as

though the user had typed its contents. When the file is

finished, IPMS returns to the console for further input.

The abbreviation facility is somewhat more complex. It

permits the user to abbreviate any command, or part of a

command, or series of commands, by specifying the desired

abbreviation and the command sequence to the SET command. The

abbreviation can then be used whenever desired by typing a

period at the beginning of an argument. The rest of the

argument will be taken as an abbreviation, and its value will

be substituted in place of the argument. Because so many

abbreviations are just commands, if the abbreviation is the

name of the command to be executed, no period is necessary.

The abbreviation facility is also accessible to commands,

which use it to save values of coordinates and other

information intended to be invisible to most users. It is also

used to keep certain information about pictures used during the

session.

Much of this information -- e.g., abbreviations set up

during a session -- should be saved for the next session with

IPMS. This ability is provided by the SAVE command. It writes

out all the information in the form of a series of SET commands

which, when executed, set up the abbreviations, variables, etc.

18

to have the same value they did when the command was executed.

Since it is just a file of commands, it is read in by the

command-file facility just like any other command file.

Additionally, it may be examined by the user and edited at

will. Thus, as much or as little of the IPMS environment as

desired may be restored. Note that by using the same facility

-- which is nothing more than the ability to store strings by

name and recall them at will -- for many similar purposes, IPMS

is kept simple. This simplicity of design provides a high

degree of functionality without requiring excessive memory.

The commands which manipulate picture files are also kept

simple by simplifying the environment in which they do I/O.

IPMS can deal with picture files having from 1-8 bits per

pixel, up to 2048 pixels per line, and any number of lines.

IPMS commands, however, deal only with pictures having 8 bits

per pixel -- that is, one pixel per addressable unit of

storage. They obtain their data by calling the picture I/O

routines, which keep track of the actual size of pixels and

pack or unpack them as required. The size of a pixel, the

width of a line, and the number of lines must be fed to the

picture I/O open routine. However, even this job is

centralized; the command processor interprets a special

argument syntax to indicate the name of a picture file to be

opened, and looks up the format of the picture file in the

"abbreviation" facility. If the format has not been specified,

the command processor will interrogate the user for it. Once

19

it has been obtained, however, it is retained until the end of

the session, or longer if the user saves it and restores it

later.

One other important job of the picture I/O routines is

handling the TV. Adjacent scan lines in the TV are located

half a frame apart. The amount of TV buffer memory needed to

hold one frame varies depending on the size of a TV pixel,

which can range from 1 to 4 bits. (Smaller pixel sizes permit

more than one frame of data to be held in the TV; separate

commands select the frame displayed.) Furthermore, if the TV

is set to a pixel size of 3 bits, there aren't even an integral

number of words per scan line! All these complications are

handled by the picture I/O routines; a simple flag indicates

whether the routines should address the raw file like a TV.

Since the picture I/O routines do not actually "know" whether

they are driving the TV or not, the user can prepare TV format

files ahead of time and display them quickly by doing a direct

copy.

The DO and FILL Commands

IPMS presently implements 12 commands "directly" -- that

is, as FORTRAN subroutines. (Several more commands are

actually abbreviations.) Two of these commands have already

been discussed: SET and SAVE. Some other commands perform

minor functions such as setting the pixel size or colors of the

TV. These are not important to understanding IPMS. However,

20

the DO and FILL commands are important enough to be described

in some detail.

The first command is the "DO" command. It executes a

specification of a local, position-invariant, picture operation

over a specified portion of a picture. The result of the

command is a new picture; the input picture is unmodified

(under normal circumstances). The specification is in a

language called PIPO (for Position Invariant Picture

Operations). PIPO is described in detail in the next chapter;

the following description is meant only as an overview.

PIPO provides a convenient, interactive way of specifying

a large class of local, position-invariant operations on a

picture, including arithmetic and logical operations among

pixels, conditional operations, and table lookup.

The PIPO language was designed to meet the following

objectives:

(1) It should permit easy, natural expression of picture

operations;

(2) It should be compact, so that it will be easy for

users to specify an operation at the keyboard;

(3) It should be simple to understand;

(4) It should be straightforward to translate a PIPO

command into very efficient code.

21

The last objective was particularly important, in view of

the tight timing requirements imposed by an interactive system.

Although IPMS does not claim to be a real-time

picture-processing system, typical PIPO commands should not

take more than about 15 seconds to execute or the system is no

longer truly interactive. But an operation on all the elements

of a 512x508 TV picture must be very fast in order not to take

a long time. Hence this requirement had a strong influence on

the language.

A PIPO command is a specification of a series of

operations to be performed in order to produce an output pixel.

The command is iterated over a specified portion of the

picture, producing one pixel of the new picture with each

iteration.

For operands, a command may use local pixels, constants,

or values in a separate array. Use of local pixels is done

through reference to a matrix whose elements are numbered as

follows:

0,0 0,1 0,2..

1,0 1,1 1,2 ...

2,0 2,1 2,2 ...

This matrix is overlaid on the upper left hand corner of

the picture, and shifted over between each iteration until it

22

has covered the entire picture. The pixel at position (0,0) is

the "current pixel." Its absolute coordinates in the input

picture are equal to the coordinates of the output pixel that

will result from the iteration. In other words, if the

operation copies pixel (0,0) to the output on each iteration,

the new picture will be identical to the old. The IPMS

command to specify this operation is just

DO 0,0

The "DO" command translates its arguments into a PIPO program

and executes it over the picture. The pictures to be used for

input and output, and the portion of each picture (the

subpicture) actually used, are specified separately.

If (1,1) had been specified instead, the output picture

would have been shifted diagonally upward and to the left.

Note that this notation does not permit specification of

translation down or to the right. Note also that an operation

which must refer to pixels to its left or above itself has to

consider a pixel other than (0,0) to be the "current pixel."

The operation will thus end up translating the picture to the

left and/or up. These annoyances are not serious, because IPMS

provides other commands for translating pictures in any

direction.

PIPO commands can also combine several pixels. To produce

an output picture summing four adjacent input pixels, one

simply says

23

DO 0,0 + 0,1 + 1,0 + 1,1

(Spaces within a PIPO specification are ignored.) Each output

pixel will be the sum of four input pixels. To divide the

result by 4 for scaling purposes, another operator is added on

the end:

DO 0,0 + 0,1 + 1,0 + 1,1 / #4

Note that constants are represented by preceeding them with an

octothorpe ("#"). Note also that PIPO commands are performed

from left to right, rather than according to algebraic

precedence. All of the standard arithmetic and logical

operations are implemented. As another example,

DO 1,0 - 0,0

implements a simple vertical edge detector. A more complicated

command,

DO 0,0+0,1+0,2+1,0+1,2+2,0+2,1+2,2 / #8 - 1,1 * #-2 + 1,1

performs contrast enhancement, by first calculating the average

value of the neighbors of (1,1), then subtracting (1,1) from it

and doubling and negating this difference, and adding it to the

original value. This is less than a completely natural

expression of the algorithm because this version of PIPO lacks

parentheses. They were not provided because the additional

complexity would not have been sufficiently useful for the

24

development of the artistic operations for which IPMS was

intended.

The last kind of value a PIPO operation can refer to is an

externally supplied array value. The value calculated so far

is used as an index into the array, with a value of zero

selecting the first element of the array. For example, to map

each pixel of a picture into a new value, one simply says

DO 0,0 T

This simple operation causes the value of pixel (0,0) to be

used as an index into the array. The value found in the array

becomes the new current value.

An extension of this technique permits the taking of

histograms by using the increment operator, I:

DO 0,0 I T

The current value is used as an index into the table, and the

value found there is incremented.

To set and examine the table, the user employs the

abbreviation TABLE. The value of this abbreviation is a string

of numbers representing the values of successive elements of

the array. For example, the commmand

SET TABLE 0 2 4 6 8 10

25

sets the first six elements of the table to the specified

numbers. The DO command reads the value of TABLE when it

begins, and updates it when it is done.

In order to implement some commercial artists' operations,

another PIPO capability was required: the ability to execute

sequences of operations conditionally, based on comparison of

the last calculated value with other values.

Using the conditional feature of PIPO, one can compare the

value generated so far with a constant or element of the

matrix, performing some other operation conditionally as a

result. The C operator is used to perform the comparison, and

one of the IF operators is used to act on it. For example:

DO 0,0 C 0,1 IF< #0 ELSE #1

This command compares each pixel with its right-hand neighbor;

for each pixel that was less than its neighbor, the output

picture will contain a 0, otherwise it will contain a 1. Any

number of commands may follow an IF or ELSE, and they may refer

to the value last generated. All the commands following an IF

are conditional upon the IF, until a succeeding ELSE or FI.

FI, rarely needed, "closes" the IF statement so that later

commands are performed regardless of the result of the IF. All

the normal comparisons are provided; IF<, IF>, IF=, IF<=, IF>=,

and IF!= (not equal).

With the operators discussed so far, it is possible to

implement the following operations:

26

(1) Outlining. This operation consists of drawing lines

around the edges of the picture. For a

black-and-white picture, this is simply

DO 0,0o0,1 0,2:1,011,212,012,112,2
C#O IF> 1,1 C#O IF= #1 ELSE #0 ELSE #0

This operation ORs together all the neighbors of (1,1). (The

vertical bar, "I'", is used to indicate logical ORing.) If any

of them were nonzero, the center pixel may be by an edge. If

the center pixel is 0, then it is indeed next to an edge, so

put out a white point (value = 1). Otherwise the center pixel

must be in the middle of white space, so put out a black point

(value = 0). Figure lb contains an example of this operation.

(2) Edge generation. This operation produces a copy of the

input picture with the insides of white areas

"hollowed out." The technique is to simply check

whether the current pixel is completely surrounded by

white; if so, it is turned black.

DO 0,0&0,1&0,2&1,0&1,2&2,0&2,1&2,2 IF> #0 ELSE 1,1

The ampersand, "&", is used to indicate logical AND. The first

part of the specification will have a value of 1 if and only if

all the neighbors of (1,1) are 1 (white). The IF operator has

no preceeding C operator, so the IF will behave as though a

comparison had been made with zero.

27

(3) Shadowing. This consists of generating a shadow of the

picture, omitting the picture itself. The picture and

the shadow will later be combined, using two separate

colors. The algorithm simply produces a white pixel

whenever (1) the current pixel is black, and (2) a

white pixel is within a fixed distance in a diagonal

direction. The shadow lies along the axis of the

diagonal.

DO 0,0 IF> #0 ELSE 1,112,213,314,415,5

This command puts out a black pixel whenever pixel (0,0) is

white. Otherwise, it puts out a white pixel if any of the

pixels on the diagonal within five pixels are white. As simple

as this algorithm may appear, the shadows it produces are quite

acceptable. See figures c and d.

All the DO commands given so far have assumed that one

iteration is done for each and every pixel in the subpicture

being used as input. Many picture operations require

otherwise; sampling algorithms, for example, or ordered

dither. To permit skipping pixels, the DO command looks up the

values of the "abbreviations" DX and DY. Their values must be

positive integers. DX is the horizontal stepsize; DY is the

vertical stepsize. They are both normally one. The SET

command may be used to change their values.

28

The usual use for DX and DY is in displaying digitized

pictures on the TV. These pictures usually have a much higher

resolution than the TV. Hence, setting DX and DY to a suitable

value and executing the command

DO 0,0

will display a sampled picture on the TV.

Some operations required more flexibility than that

provided by the DO command. In particular, in order to

implement the screening operation, two new commands were

needed:

(1) A command to interactively specify the area to be

screened.

(2) A routine to convert the picture of the screened area

into a series of phototypesetter commands.

The easiest way to specify an area to be screened was

through a closed curve to be filled with screening of a

specified shade. This was because the picture generally

already contained curves around areas to be screened, and where

it did not, the artist could draw curves to indicate the areas

explicitly. At the console, specifying any point within the

curve would indicate that the entire area should be filled. To

specify the point, it was decided that the TV and graphic

tablet would be the most convenient input device. Hence a

command was written to display a cursor on the TV and read from

29

the tablet. The coordinates obtained when the user depressed

the stylus were stored as the values of abbreviations, where

any other command could reference them.

A second command was written to fill an arbitrary closed

curve with points of a given color. Given the user's

specification of any point within the area to be filled, the

color of the curve to be followed, and the color to be filled

in, the command generated an output file containing the filler.

There were several requirements for the fill routine. It

had to be reasonably fast, despite the fact that individual

scan lines of the picture containing the curve would be on a

slow random-access device. The routine also had to avoid

requiring main memory proportional to the area to be filled, as

it might be quite large, and the routine would eventually be

implemented on a minicomputer.

Achieving these requirements took some work. The command

had to keep track of the portion of the area already filled in.

The simplest way to keep this information was to use the filler

picture being built up. Refinements were necessary in order to

be able to process this information at a reasonable rate. The

complete algorithm is described in chapter 4.

Unfortunately, the fill command was not always successful

when applied to digitized line drawings. The curve to be

filled in often had small gaps. The fill command could

"escape" through these gaps if they were not eliminated. To

solve this problem, a command was added to draw lines at

30

specified places on the picture. As with the fill command, the

line command accepted coordinates which were obtained with the

tablet-reading command. The user was asked to specify a pair

of points, and a line was drawn between them. For convenience,

the command combination accepted any number of pairs of points,

until the user indicated that he was done by pressing a switch

on the tablet.

A third command wrote out the picture in a form suitable

for conversion to phototypesetter code, and another

(non-interactive) command did the actual conversion. The

conversion was not done immediately because it took much time

and resulted in a larger set of data than the picture itself.

These commands are also discussed in chapter 4.

IPMS also provided a command-level syntax for combining

pictures. In its simplest form, it permitted a user to replace

any rectangular section of a picture with a rectangular portion

of another (or the same) picture, simply by setting the

subpicture windows appropriately. In addition to replacement

of the subpicture, the user could also OR and XOR the two

subpictures together. This ability turned out to be only

marginally useful in the development of the picture-processing

operations described.

31

Chapter III

The DO Command

Introduction

The SEL-86 is a 32-bit single-address machine, with 8

32-bit general registers. Its instructions generally come in

two forms: immediate, in which the operand is a constant

contained in the instruction, and memory reference. A memory

reference instruction can specify an index register and/or an

indirect address (pointer) chain to be used in address

calculation. It also specifies the size of the operand: byte,

halfword, fullword, or doubleword. Thus, there is add

immediate, add byte, add halfword, etc.

A memory cycle on SEL-86 is 600 nsec. Each simple

immediate instruction takes one cycle; each memory reference

instruction takes one cycle longer than its immediate

counterpart, or longer still if indirect addressing is

specified.

As discussed earlier on page 9, interactive picture

operations of the sort envisioned for IPMS set severe

constraints on execution efficiency and user convenience,

rendering both assembly language and FORTRAN unacceptable.

What was needed was a compile-and-go translator providing the

efficiency of assembly language and the convenience of FORTRAN

(or better). Such a translator is provided by the IPMS DO

command.

32

Implementation of the DO Command

The DO command translates its arguments into SEL machine

code and executes the result on the picture. Both the

translation and the resulting code are quite fast; indeed, the

code produced is nearly as efficient as hand-coded assembler

would be.

The translator achieves this efficiency through a

combination of careful language design and clever

implementation. The PIPO language is actually close to the

machine language of the SEL in many respects; in fact, there is

very nearly a one-to-one correspondence between PIPO operators

and the resulting machine instructions. The translation

process consists of matching the first four characters of the

string (from which all blanks have been removed) against the

list of operators. Some operators are shorter than others, in

which case less than four characters of the input string are

actually compared against. In any event, further action is

dependent on the table entries associated with that operator.

These entries are (1) the machine instruction to be used, (2) a

value indicating the type of operand, and (3) an optional set

of flags for the operator.

For example, for the "+" operator, the instruction

obtained would be "addbyte"(1) and its type would be "memref",

(1) This is not the actual name of the instruction in SEL
assembler; throughout this discussion, long mnemonic names
will be used rather than the SEL names.

33

meaning that a matrix reference was expected to follow in the

input string. The translator would expect a coordinate

specification of the form "m" or "m,n" which it would translate

into an appropriate offset, indexed by a register which will

later hold the address of the "current pixel."

If a constant were specified as the operand to the "+"

operator, the table matcher would find a match for "+#", which

would have the instruction "add immediate" and type

"immediate." The translator would expect a number, which it

would insert into the instruction. Note that the "#" is

effectively part of the opcode rather than the operand, a

difference which is invisible to the user.

One operator which requires special assistance is the "/"

operator, which divides the current value by its operand. The

SEL requires that the dividend be 64 bits long, spread over two

registers. Hence this operator is flagged so that an

"extend_sign" instruction is put out first, extending the

current value into the adjacent register.

Another group of operators requiring special handling are

the ones that implement conditionals -- IF, ELSE, and FI. The

IF operator actually consists of the "IF" and its one or two

character condition name. The operator is translated into the

appropriate conditional branch. However, since this is a

branch forward, the translator does not yet know where it is

branching to. So it stacks the location of the IF. When it

finds an ELSE or FI, it unstacks the location and fills it in

34

with the address of the next instruction. ELSE is, of course,

an unconditional branch; its (earlier) matching IF is made to

point to the location just after the unconditional branch, and

the location of the unconditional branch s stacked in place of

that of the IF.

When the end of the specification is reached, the stack is

checked. If it is not empty, the specified locations are

filled in with the address of the instruction after the last

operator. This is the behavior that would have occurred anyway

if the specification had ended with the appropriate number of

FIs. This default action was chosen to minimize the number of

FIs needed in most operations. In practice, it is rare to need

any FIs at all.

The "T" operand also requires special treatment. This

operand refers, not to a constant or a pixel value, but to the

value of an element in a separately supplied array. The

element is chosen on the basis of the current value. This

operand is used for table lookup. It can be used with any

"memref" operator. It assembles into the same general form as

the matrix specification -- that is, an address and an index.

But the address is the address of the base of the array -- that

is, element 0. The index register is the register holding the

current value. Thus, the operator uses the appropriate value

from the array.

If the translator does not recognize the first few

characters, it prefixes an "L" to them and tries again. If the

35

first few characters specify a coordinate, such as "0,0", this

action will generate a match to the "L" operator in the table,

which generates a load instruction. This is how the first

value specified is loaded for use. If the first few characters

were a constant, "#34", for example, the "L#" operator would be

found. It generates a "loadimmediate" instruction, just like

the other immediate instructions.

Before beginning translation, and after it is over, fixed

sequences are put out. The prefix sequence starts loop

execution; the suffix sequence stores the value left in the

register all the operators use, and branches back to the

beginning if the loop has not yet been executed the specified

number of times.

Here is an example. The IPMS command

DO 0,0+#1

is translated into the loop

copy_reg rO,r5
load im r2,-<number of iterations>

loop load rl,<addrl>,r3
add im rl,1
store rl,<addr2>,r2
add_im r3,<stepsize>
inc_br r2,loop
return

The two instructions preceeding the label "loop" set up the

loop for execution. Strictly speaking, the copy is

unnecessary; it is provided as a matter of convenience for the

36

calling routine. The load immediate initializes register 2

with the negative (two's complement) of the number of

iterations, which is inserted in the instruction before

execution. The loop is then executed. Register 1 holds the

current value. The store instruction outputs the current value

into the appropriate output pixel. Then the index register for

the input array, register 3, is bumped by the "stepsize" of the

loop. This is the size of the "step" the virtual matrix takes

between iterations -- that is, the value of DX (see chapter 2).

Finally, register 2 is incremented, and if it is not yet zero,

control is returned to the location labeled "loop."

This sequence takes 7 cycles per iteration, for a total

time of 1.1 seconds when run on a 512x508 picture. The entire

command actually takes over twice as long, because of time

spent reading and writing the TV buffer. If the command were

instead run on a disk file, it would take even longer.

Table 1 summarizes the operators in the PIPO language and

their possible operands.

Reducing I/O Overhead

The description above has oversimplified the translation

task somewhat. There is no limit to the size of the matrix

coordinates. A DO command like "DO 0,0+1,0" requires only one

input scan line, while "DO 0,0+1,1+2,2+3,3+4,41' requires five.

All those scan lines are needed in order to produce one line of

output. Hence the PIPO translator determines how many input

37

lines are needed so that the DO command can allocate an

appropriately-sized buffer and read them in before executing

the PIPO loop.

Note that each use of the loop only produces one output

line. It would appear that if a PIPO program requires five

scan lines for each iteration, a fresh set of five lines must

be read in each time the loop is executed.

This is inefficient, particularly since I/O overhead is

such a large portion of total execution time. Note that

successive loop executions generally require overlapping lines

to be read in. In fact, once an initial set of lines has been

read in, each further use of the loop generally requires one

new scan line (if DY is one), and discards one old line.

Therefore, it ought to be possible to simply read in the new

line over the old one, and inform the PIPO program of the new

mapping between y coordinates and memory addresses.

To provide this ability, the PIPO translator outputs an

"unfinished" program -- one in which the mapping between y

coordinates of matrix elements and memory addresses is left

unspecified. A separate routine then fills in these addresses.

It is possible to relink the program with new addresses

after each execution of the loop, but it is normally well worth

the additional space to simply link N copies of the program,

one for each cyclic permutation of the N scan lines in memory.

The appropriate copy is then selected each time a new line is

read in. The result is an N-fold decrease in execution time.

38

Extensions to the Language

Although PIPO as it is now implemented is easily capable

of handling problems such as the operations desired by

commercial artists, many picture-processing algorithms require

considerable distortion before they can be implemented using

PIPO. For example, consider a smoothing algorithm which scales

the values of a group of pixels. It would be convenient if one

could say

DO 0,0 + (1,0 * #2) + (2,0 * #4) + (3,0 * #2) + 4,0

Since PIPO does not handle parentheses, it is necessary to say

instead

DO 1,0 * #2 S 1,0 2,0 * #4 S 2,0 3,0 * #2 + 1,0 + 2,0 + 4,0

Here, the store operator ("S") is used to store the products

back into the input array elements. They are then added back

in. This operation is slow (because of its use of memory to

hold partial results) and clumsy. Furthermore, it does not

generalize to operations requiring more than one input scan

line; the optimization described above leaves around the old,

scaled values.

Adding parentheses to the language would not be hard, and

is clearly desirable. For efficiency, it ought to use whatever

registers are available to hold partial results, storing into

temporary memory locations only when absolutely necessary.

39

Another problem with PIPO as implemented is that it can

generate only one output pixel per iteration. Some operations

could be expressed in a more efficient format if they could

write out many pixels in one iteration. For example, the

shadow generating algorithm could work by scanning for a

diagonal edge; that is, a configuration in which a black point

is diagonally adjacent to a white one. At such an edge, the

algorithm could write out a diagonal line of shadow pixels.(1)

Another extension which would be useful for picture

processing would be the ability to calculate with

floating-point pixels. Although this extension would not be

difficult, it would not be useful for the artistic operations

for which IPMS was intended, and so was not done at this time.

Additional flexibility could be provided if the user were

given the ability to "return" out of an iteration. This would

enable one to do pattern searching reasonably fast. Of course,

there would need to be some way of communicating the

coordinates of the pattern.

It might also seem useful to allow the user to call his

own special-purpose routines. This extension, however, removes

one of PIPO's chief benefits: its interactiveness. The user

would have to go through the same tedious process of

assembling, linking and loading that the DO command was

intended to avoid. It would seem more worthwhile, therefore,

(1) This shadowing algorithm is due to Don Davis of PRIME
Incorporated.

40

_

to increase the power of the language itself so that such a

mechanism is unnecessary.

41

THE PIPO OPERATORS

OPERAND TYPES[1] FUNCTION

&

C

IF

ELSE
FI
I

S
RL, RR
SL, SR
SLA, SRA
L

LN

memory
memory
memory
memory,
memory,
memory,
memory,
memory,
none

none
none
memory
memory
bits
bits
bits
memory,
memory

constant
constant
constant
constant
constant

constant

logical OR
logical AND
exclusive OR
add
subtract
multiply
divide
compare for IF [2]
test on condition:
=, , >, <=, >=, != , NO[3]
alternate branch for IF
terminates IF-ELSE clause
increments the location
stores into named location
rotates left or right
shifts left or right
like SL and SR, but signed
loads the value
loads negated value

Notes:

[1] "memory" is either a matrix point specified as X or
X,Y for X,Y nonnegative integers (if Y not given, 0
assumed); or the T operand. "constant" is of the
form #<integer>, where -32768 <= integer <= 32767. "#
bits" is a nonnegative integer ranging up to 31
inclusive.

[2] If there is no C operator immediately before an IF,
comparison with 0 is assumed.

[3] Calculations are carried out in 32 bits. Overflow can
be tested for with the IFO (if overflow) and IFNO (if
no overflow) operators.

42

NAME

Chapter IV

Screening and the FILL Command

Introduction

Screening is a process for simulating gray scale using

reproduction methods normally incapable of it. Gray areas are

represented by arrays of small dots. The size of the dots

determines the shade of gray. This technique can be used to

represent halftone photographs, which contain continuously

changing gray levels, or just to add patches of gray of various

shades to black and white pictures.

Presently, these patches of gray are added by hand; a

craftsman carefully cuts transparent windows in overlays to

match the areas to be screened. These overlays are then

combined with sheets of screening and photographed. The result

is combined with the original picture.

Sophisticated typesetters are readily capable of producing

both the black-and-white and screened portions of the ad; all

that is needed is the necessary software. Hence one of the

tasks of the system under development was to automate as much

of the procedure as possible.

The procedure can be divided into two parts:

specification of the area to be screened, and generation of a

file of phototypesetter commands for producing the complete ad.

As discussed in chapter 2, the artist indicates the area

to be screened by drawing curves on the picture surrounding the

43

areas to be filled. Then, at the console, he indicates one

point anywhere in each area to be filled. The FILL command

then fills in the area contained in the curve. The filled-in

area is displayed on the TV. Filled-in areas can be changed in

shade or erased entirely. Once the artist is satisfied, he

writes out the picture. A non-interactive task will later

convert the picture into phototypesetter commands.

IPMS was used to develop and check out the filling

alqorithm. Its FILL command was then rewritten for the NOVA

target machine.

The FILL command regards all closed curves as convex

curves with inner projections -- "stalactites" and

"stalagmites". To see how it works, consider the following

algorithm:

GIVEN:
a white picture containing a closed curve in black
a point (x0,y0) within the area enclosed by the curve

DO:
xl := x0
yl := y0
repeat

scan left along the line y=yl (current line)
until left edge (black point)

scan right along the line
until right edge (black point), doing:

find the leftmost white point on the line above
push its coordinates

find the leftmost white point on the line below
push its coordinates

fill in the current line
pop the last point pushed; assign to xl,yl

until there are no more points to pop

44

Here is an example of the operation of this algorithm.

Consider the following picture, in which an at-sign ("@.") is

used to represent a black point and 0, P, Q, and S represent

white points:

ooooo
o @ QO @Q O
@ 00 S O @0O
@ P 0 0 0 @0
0 @ @@ Q @ 0

The algorithm is started at point "S". It scans to the

left on the current line until it reaches the edge. Then it

scans right. It immediately finds point P, and pushes its

coordinates. Then it finds point Q, at which time it pushes

its coordinates. Finally, it reaches the end of the current

line. It fills it in. The picture now looks like:

oooo@@ o
0 @ @ Q 0 0

@ P 0000 @0

0 @ @ @ @ @0 00000 000

The coordinates of Q are popped off the stack and the

process is repeated. This time there are no points pushed, as

neither the line above nor the line below is white for any part

of its length. Finally, the coordinates of P are popped off,

and its line is filled in.

This algorithm will work on any "horizontally-convex"

curve -- that is, any curve satisfying the property that for

45

any two points on the same horizontal line, a line drawn

between them is contained entirely within the curve. This can

be seen from the fact that in order for all the points within

the curve at a given y coordinate to be filled, it is only

necessary to push one of them on the stack at some time. That

every horizontal line will have at least one of its points

pushed follows from the fact that two adjacent lines each have

at least one point with the same x coordinate. Every

horizontal line can eventually be reached through adjacency.

The algorithm fails, however, on closed curves not

satisfying the above property. For such curves, it is not true

that all the points on a horizontal line within the curve are

"reachable" from one pushed point. Consider the curve

P 0 Q 0 @
0 @0S 0 @

As the line containing point S (the starting point) is

scanned, point P will be pushed; but point Q will not.

Clearly what is needed is to identify the beginning of

these additional horizontal lines and push the coordinates of

them as well. The beginning of such a line is indicated by the

presence of a black point followed by a white one. The

coordinates of the white point should be pushed. The modified

algorithm is as follows:

6

GIVEN:
a white picture containing a closed curve in black
a point (x0,y0) within the area enclosed by the curve

DO:
xl := x0
yl := y0
repeat

scan left along the line y=yl (current line)
until left edge (black point)

scan right along the line
until right edge (black point), doing:

find the leftmost white point on the line above
push its coordinates

find the leftmost white point on the line below
push its coordinates

if the point above is white
and if the point to its left is black
push its coordinates

if the point below is white
and if the point to its left is black
push its coordinates

fill in the current line
pop the last point pushed; assign to xl,yl

until there are no more points to pop

The inner loop can be streamlined somewhat by combining

the search for the first white point on the line above or below

with the search for points after stalactites or stalagmites.

Demonstrating this optimization requires somewhat more detail:

xl := x0
yl := y0
repeat

loop for x := xl step -1 until point(x,yl) = black
x leftedge := x

prev_point_above := black
prev_point below := black
loop for x := x_left_edge+l step 1 until point(x,yl)=black

if prevpoint above = black and point(x, yl-l) = white
push(x, yl - 1)

if prev_point below = black and point(x, yl+l) = white
push(x, yl + 1)

point(x, yl) := black
prev_point above := point(x, yl - 1)
prev_point below := point(x, yl + 1)

until pop(xl, yl) returns error

47

One further complication ensued. It was required that the

command take as input the picture containing the curve, and

produce as output a separate picture containing the filled

areas. These areas would later be translated into screened

regions, while the original would be translated into black and

white.

The algorithm above modifies the picture as it goes. In

fixing this problem, it must be remembered that the filled in

areas generated in the course of the algorithm are needed to

guide it, so that it does not attempt to fill in the same area

more than once. (This is not merely an efficiency

consideration; without the filled-in areas, the algorithm

will, for all but the simplest cases, loop forever.)

Hence the fill routine was modified slightly: it produced

an output picture separate from the given input, and read from

both the input and output pictures.

Producing Screened Pictures on the Phototypesetter

Once the artist is satisfied with a screened ad, he writes

it out. The picture is then converted to phototypesetter

commands.

The actual commands to perform these operations are

different on the IPMS and the target machine. Hence the

following description applied only on IPMS.

After screening, the complete picture consists of several

picture files. This includes the original picture and one

48

picture for each shade of gray desired. Another command writes

out these pictures in compressed format.

Given the compressed files, a non-interactive task

converts them into a series of phototypesetter commands that

generate the picture.

Producing screened pictures requires merely producing a

series of dots across the appropriate regions. To make the

lines less apparent, these points are arrayed along diagonal

lines at angles of 45 and 135 degrees to the side of the page.

The following formula yields the horizontal center-to-center

distance between rules:

S = L / (D * sqrt(2))

where D is the screening density in (diagonal) lines per inch,

L is the resolution of the typesetter (basic units per inch),

and S is the center-to-center spacing in the typesetter's basic

units. For clarity, the rest of this discussion will assume a

(not atypical) resolution of 720 units per inch: that is, a

basic unit of one tenth of a point.

For the Yellow Pages, a screening density of about 90

lines to the inch was chosen as the nearest convenient density

to the standard 85 lines/inch being employed. This density

yields a spacing of 12 tenth points.

Given a center-to-center spacing of 12 tenth points, it

can be seen that a rule 12 wide and 6 high is the largest that

49

can be accomodated without overlapping. For non-overlapping

rules, the gray level can be calculated from:

L = W * H / (S * S / 2)

where W and H are the width and height of the rule, S is the

spacing found above, and L is the gray level (0 = white, 1 =

black). Note that this formula assumes that rules are

perfectly black. Although this is not strictly true, the

discrepancy can be ignored for now.

Adjacent rules (that is, rules on adjacent lines) will

overlap if both the width and height of the rule are more than

6 tenth points. In this case, the gray level is

L = (W * H - (W - 6) * (H - 6)) / (S * S / 2)

The second term is the amount of overlapping area.

How many distinct gray levels can be obtained? Assume

that the phototypesetter is capable of putting out rules as

small as 1 by 1. However, the Yellow Pages can reliably

reproduce dots no smaller than .5 mm in diameter, or

approximately 3 by 3. A selection of rule sizes, and the gray

levels they produce, is given in table 2. For Yellow Pages

purposes, only three distinct gray levels are actually

required, so more than enough are available to choose from.

There is one minor obstacle to this process. Producing

one dot requires two phototypesetter commands; one to move the

beam, and one to draw the rule. For typical screened areas,

50

the number of dots drawn can easily reach twenty thousand or

more. Such a large number of commands would cause screened

pictures to require an unacceptable amount of room -- both on

the tape mounted on the phototypesetter, and stored on disk in

the process of production. Hence the sophisticated instruction

set of the particular phototypesetter employed -- an APS-4 --

was used to set up a loop in one of its buffers which could

draw one line of dots. Then only three commands per line were

required: one to step vertically, one to set the length of the

rule, and one to execute the buffer. This procedure reduced

the number of commands needed to an acceptable level.

Recall that a run-length encoded picture file is a

sequence of value-length pairs, with each pair representing

"length" consecutive pixels of value 'value". A small amount

of protection is provided against error by encoding each scan

line individually, ending the sequence of pairs for each scan

line with a special sequence. For the phototypesetter

translator program, the pixel values will all be either 0 or 1.

1 can represent either a black pixel or a gray pixel.(l) An

area of gray pixels is translated into a screened area.

The algorithm used to generate APS command files attempts

to put out as few commands as possible. It uses a virtual

cursor directed by the run-length encoded picture file, and a

(1) This awkward format, which requires a separate picture file
for each gray level of the picture, was necessitated by the
constraints on the target system.

51

"true" cursor which simulates the beam on the phototypesetter.

For a value of zero (white), the virtual cursor is moved

horizontally by the length specified. When the end-of-line

character sequence is detected, the virtual cursor is moved

down to the beginning of the line. The true cursor is not

moved. If the value is one (black), then it is necessary to

generate rules. First, the commands needed to move the

phototypesetter beam, represented by the true cursor, are

produced, and the true cursor is superimposed on the virtual

cursor. Then the commands to produce a rule (or sequence of

rules, if this is a screening file) are generated, and the true

cursor is moved to the position it will occupy after those

commands are executed. Since space can be saved if the rule

being produced is the same size as the last rule, the program

also keeps track of rule sizes, reusing them when possible. In

this way the size of the resulting data is kept down.

The program attempts to produce phototypesetter pictures

on a scale of one pixel per tenth point. For ordinary (black

and white) picture files, this presents no problems. For

screening files, since dots are considerably larger than one

tenth point, some finessing is required. Horizontally, partial

rules are put out at each end of a line when needed.

Vertically, the program simply samples every sixth line. These

compromises produce acceptable pictures. For testing purposes,

however, it is convenient to be able to convert a picture file

to a screened picture such that each scan line produces one

52

line of dots. (Otherwise, it would have been necessary to pad

each line with five lines of zeroes.) For this reason, scaling

facilities were provided in the conversion program. A scale of

six to one causes a picture file to be represented precisely.

53

SCREENING DENSITY AS A FUNCTION OF RULE DIMENSIONS
(90 LINES/INCH)

WIDTH HEIGHT GRAY LEVEL

3 3 0.125

3 4 0.167

3 5 0.208

3 6 0.250

3 7 0.292

4 4 0.222

4 5 0.278

4 6 0.333

4 7 0.389

5 5 0.347

5 6 0.417

5 7 0.486

6 6 0.500

6 7 0.583

Table 2

54

Chapter V

Conclusions

The IPMS provided a convenient framework on which to

design and test picture processing algorithms for the Yellow

Pages project. The language PIPO provided a very convenient,

interactive way of specifying local, position-invariant picture

operations. Although simple in both design and implementation,

PIPO proved to be both powerful and efficient. Using it,

drop-shadowing, outlining, and haloing were easily designed and

tested. It is expected that future operations of the same

general type will be just as straightforward to accomplish.

For serious picture processing, however, PIPO is not

nearly powerful enough. Some extensions to the language which

would make it more expressive for operations such as contrast

enhancement and averaging were discussed in chapter 3.

When it was necessary to design an algorithm for an

operation -- filling -- which was not position-invariant and

hence fell outside the range of PIPO's capabilities, the

modular design of IPMS enabled concentrating on the algorithm

while spending very little time worrying about interfacing with

the system or the user.

By splitting a given operation into its component parts --

for example, separating the filling operation into (1)

obtaining user input, (2) filling in the area, and (3)

55

producing phototypesetter output, it was possible to use the

same individual routines for other purposes. For example, the

routine to obtain user input from the tablet was used by the

line-drawing routine. Also, the fill command could be used in

the composition of full-color pictures on the TV, even though

it was actually used only for black-and-white phototypesetter

output.

The general-purpose abbreviation facility also proved

extremely useful. It enabled single commands, which were

abbreviations, to be at once powerful, easy to use, and easy to

change. Other users, and other tasks for IPMS, might require

totally different sets of abbreviations; the system permits

any degree of abbreviating without penalizing the user in any

way for abbreviations he does not need.

The abbreviation facility was especially helpful with the

DO command. Once a PIPO specification was worked out, a user

would have no desire to retype it every time that operation was

desired. Abbreviating the DO command with that specification

permitted building up a library of picture operations.

As described in chapters two through four, the

abbreviation facility also provided a convenient way for

commands to communicate with other commands, as well as system

routines. It also provided a place for storage of data needed

by a single command from one of its uses to the next,

minimizing the need for retyping. All in all, it proved to be

a very clean, accessible facility.

56

Providing permanent storage of abbreviations in textual

form, rather than some internal binary format, also had many

advantages. The user could, without being at the SEL-86

console, examine the abbreviations developed during the last

session, generate new abbreviations, or delete obsolete ones,

all with the system text editor. Also, because the form in

which the abbreviations were stored was a file of IPMS

commands, other parameters which were not abbreviation values,

such as TV characteristics, could be set. As a bonus, a

complete demonstration sequence could be prepared in advance.

The system was not without its problems. The elementary

picture I/O routines lacked any notion of "subpictures". These

were implemented at a much higher level (see the description of

the DO command). This higher level provided two windows, one

applied on input and one on output. As long as the input

picture and the output picture did not change, the effect was

identical to that which would have been obtained by associating

the subpicture specification with the individual pictures.

However, any time several different pictures were operated

upon, or an output picture fed back as input, the windows

proved remarkably clumsy.

Although the original specification of the I/O routines

included subpicture operations, for the sake of simplicity they

were not implemented. It was felt that providing them at the

lowest picture-manipulation level made operations not requiring

them needlessly complicated and inefficient.

57

This was a mistake. First, nearly all practical picture

operations require subpictures; even though this was only a

development system, such operations were annoyingly frequent.

Second, the simplicity obtained by leaving out the capability

was an illusion; the needed complexity was merely pushed up to

a higher, far more visible level. Third, the loss of

efficiency would have been insignificant compared to the losses

incurred in doing the actual bottom-level I/O. Therefore, one

enhancement that ought to be made to the system is a subpicture

capability at the lowest level (that is, in the picture I/O

routines.)

Another decision made early in the development cycle was

to avoid a special picture format so as to be able to work with

almost any scanned picture that might be obtained. The system

considered a picture file as merely a stream of pixels, with no

formatting information whatsoever. This view also enabled

convenient examination of pictures of unknown format; changing

the system's notion of the pixel length, picture width, or

picture height only required the use of one or two commands.

Decoupling the picture formatting information from the

picture itself was probably also a mistake. Again, by keeping

the picture file format simple, genuinely necessary complexity

was pushed up to a far more visible level. While the user only

had to specify the picture format once, he did need to be aware

of the fact that the format had to be saved from session to

session. Furthermore, it would be difficult to extend the

58

format description to include other parameters. It would have

been better to convert the picture into a special internal

format when the user first specified its properties. This

would have simplified the storing of a great deal of

per-picture information, including the dimensions of a

subpicture and the colors which should be used to display each

pixel value on the TV. Furthermore, picture files would not

have to be in the scanned, bit-map picture format which IPMS

commands expected; they could, for example, be in some

compressed format which the bottom-level routines could

automatically convert.

Even without these extensions, IPMS proved to be a

convenient system on which to develop algorithms for operations

on scanned pictures.

59

: 0

0)

-HI
O,-I

.

0

I,-I

-,-I

U

l,-tr4

I

,-

-,-

-H

l-I
'40

,1

-H,

i - ~ ~ ~ -- ~~
I

