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Abstract say ((i,k),(k,),(Z,m),.....,(h,j)) going from i to

j. Let r.i(j) denote the time average data, in bits
Given the traffic flow from each source to 1

per second, entering the network at node i and
each destination in a network and given the aggre-
gate traffic in each link, we want to find if there destined for some receiver at node j. Similarly,
is any looping of traffic. A careful definition of let fik(j) > 0 denote the time average, in bits

looping shows that the question is equivalent to per second, of the traffic from all inputs flowing
whether some of the aggregate link flows can be re- over link (i,k) with the destination j. Note that
duced without increasing any of the others. It is link (k,i) is separate from link (i,k) and it is
then shown, through the use of duality in linear possible to have f k(j) > 0 and fki (j) > 0. We
programming, that an aggregate flow is loop free i k
iff all the traffic follows shortest routes for

from the network when it gets to j. Thus no traf-
some assignment of positive lengths to the links.

fic for j flows outward from j and fik(j) is de-

It is further shown that there is a finite set fined only for i Z j, (i,k)E s , where ~i denotes
of these length assignments, dependent only on the the set of links in the network.
topology of the network, such that every shortest
route flow is a shortest route flow for one of We assume that all traffic destined for j
those special assignments. Finally, it is shown eventually gets there by travelling over paths of
that any loopfree flow can be realized by a rout- the network. Thus all the traffic for j that comes
ing in which the sum, over all destinations, of the into each node i $ j must go out of it again, giv-
number of alternate route links required to reach ing us the fundamental conservation equation for
that destination, is at most the number of links each i / j,
minus the number of nodes.

r.(j) + E fi(j) = E fik(j) (1)
2.R k

Introduction The first sum above is over the integers 2
for which (k,i)c 2 and k / j. The second is over

When the data in a communication network oc- the integers k for which (i,k)EW; for brevity, we
casionally travel in loops, these loops generate regard such restrictions as understood in what
both an unnecessary loss of resources and also an follows. Also for brevity, we shall denote the
unnecessary increase in delay. Our purpose here is set {ri(j)} of inputs over all i,j, i / j by the
to define a generalized form of looping and to pro-
vide both a mathematical basis and heuristic under- portant) and the set {f (j) of flows for all
standing for this phenomena. We do not develop any oik

new routing algorithms here, but the results pro- (i,k)CS' and all j f i by the vector f.
vide insight into the weaknesses of current algo-
rithms and into potential directions for overcom- Definition: A set of flows f > 0 is a
ing these weaknesses. feasible multicommodity flow for the in-

puts r > 0 if (1) is satisfied.
Consider a network of n nodes and L directed

links. We denote the nodes by the integers 1,..., We regard each destination j here as cor-
n and denote the links by integer pairs, (i,k) de- responding to a commodity; an amount r (j) of that
noting a link from i to k. We assume that the net- commodity enters the network at node i and is moved

commodity enters the network at node i and is movedwork is connected in the sense that for each pair to j in accordance with the flow vector f. Each
of nodes i,j, there is some directed path of links, such feasible multicommodity flow represents a

such feasible multicommodity flow represents a
particular way of routing the inputs r to their

destination. Such routings can be implemented, in
*This work was supported in part by ARPA under
Grant ONR/Nk0014-75-C-1183 and NSF under Grant the presence of dynamic variations on the inputs,

GrantONSF/ENG76-2444.-7C-183 and NSF underGrantby taking the dynamically varying traffic arriving
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at i destined for j and allocating it to outgoing single commodity traffic to node 3 for Figure lb
links in the same ratio as given by the time aver- contains a loop. In general, the single commodity
age flows fik(j). traffic to node j contains a loop if there is a

cycle of nodes, i,k,Z,...,r,s,i such that f. k(j)>
Sometimes one wishes to consider multicom- f f i

modity flows in which more than one node is used fk(j) > ,...,frs(j)> 0, fsi(j) > 0. Loops
as a sink for a given commodity. This situation of this type have been treated in [1].
can be reduced to the one just described by add-
ing an extra node to the network for each commodity
and adding a link from each sink for a commodity Figure 1
to the special node for that commodity. 2

For purposes of studying the delay experi-
enced by traffic in a network (or some other kind 3
of cost experienced by the commodities), we are
often interested primarily in the aggregate, or
total flows, in the network lines. In terms of a rl(3) = 1 rl(3) =1
multicommodity flow f, the aggregate flow F with
components Fik is given by r2 (3) = 1

(a) (b)
Fik = I fik(j) ; (i,k) E£ (2)

jfi 4

Definition: F is a feasible aggregate 1 3 !
flow for an input F if (2) is satisfied
for some feasible multi-commodity flow f. 5

There appears to be no very simple test for 4
whether or not F is a feasible aggregate flow and
in fact, the problem is almost identical to the r3(1) = 1
following classic "multicommodity flow problem".
Given a set of capacities C ik 0, (i,k)cE , de- r3(2) = 1

termine whether there is a feasible multicommodity (c) r3(5) 1 r (1) = 1
flow f for which 3 4

fik(j) < Cik ; (i,k)g E (3) r2(5) 1
j (d)

In particular, it should be stressed that conserva-
tion of aggregate flow, as expressed by (4) below, Figure lc is similar, but harder to handle,

Figure lc is similar, but harder to handle,
is necessary, but far from sufficient, for F to be

fe ' 'le, since the single commodity flow to destination 1
is loop free and that to destination 2 is loop

C Fik _ F = I r (j) - r (i); all i free. However, the same aggregate flow is achieved
ik - F = r ) - r(i); all i by sending the traffic from 3 to 2 directly and

(4) that from 3 to 1 via node 4 with a loop to 2. This
leads us to our general definition of loops for

Loops and Loopfreedom in Network Flows multicommodity flows.

Before defining what we mean by loops in net- Definition: A feasible aggregate flow
work flows, we give several examples in Figure 1. F for the input r contains loops if it
To avoid cluttering the figures, the links are not can be expressed as F = F' + F" where
shown and each line between two nodes indicates a F' is a feasible aggregate flow for r and
unit flow. The flows are broken down into individ- F" > 0 is a conservative flow. F is loop-
ual source-destination flows indicated by the ex- free if it does not contain loops.
tensions of the lines through the nodes. Figure
la shows the most obvious type of looping where A flow F is conservative if it satisfies (4) with
the traffic from node 1 to 3 loops from 1 to 2 and the right hand side set to zero. Also, by F" > 0
back before going to 3. Figure lb shows a situa- we mean F" > 0 for all (i,k)cEi with strict un-
tion in which neither the source-destination traf- ik -

equality for at least one (i,k)cE . We shall usefic from node 1 to 3 nor that from 2 to 3 has a equality for at least one ik
the terminology positive vector to refer to theloop. However, if we look at the traffic for nodegy 

3 as a commodity, we have f (3) = f (3) = f (3) stronger condition where all components are posi-
12 23 21 tive. It is a well known result of graph theory

= f13(3) = 1. This could also be broken into indi- that a conservative flow can be represented as a

vidual source destination pairs by having the traf- finite sum of cycles, or loops.
fic from source 2 to 3 go directly over link (2,3)

Figure ld (due to J. Wozencraft) contains noand the traffic from source 1 to 3 go over the
looping path of Figure la. Thus we say that the new complications and is included merely to indicate
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that loopfreedom is not a property that can be called a feasible solution to the LPP; if in addi-

checked by inspection. Below we show the separa- tion they minimize (5) they are called an optimal

tion of F for Figure ld into F' and F". Note that feasible solution. Note that if f' > 0 satisfies

simply having a loop of aggregate flow does not (7), it is a feasible multicommodity flow for r.

destroy loopfreedom; consider for example a 2 node Thus if we define a vector F' with components Fik
network with traffic flowing both ways. satisfying

Fik = flk(
j )

; (i,k) E, (8)

kJ

5 S we see that F' is a feasible aggregate flow for r.

Equation (6) can then be rewritten

s + F' = F (9)

%s / Note that if OPT < 0, then there is a feasible

solution to the LPP with s > 0, and from (9), F

contains loops. Conversely, if OPT = 0, there is

no s > 0 and feasible F' satisfying (9) and F is

loopfree. Next note that the LPP always has at

least one feasible solution, obtained by setting

s = 0 and setting f' equal to the multicommodity

flow corresponding to F. Since s is bounded,

Lemma 1: A feasible aggregate flow F contains 0 < s < F, the LPP must have an optimal feasible

loops iff F' is another feasible aggregate flow solution (although generally not unique). Finally,

for the same inputs with F' < F. from (9) and (5), we see that the F' in any optimal
feasible solution is loop free. Summarizing, we

Proof: Suppose F' < F, and let F" = F - F'. Then have the following theorem.

F" < 0. Since F and F' each satisfy (4), we can

subtract these equations from each other, getting Theorem 1: Let F be a feasible aggregate flow for
the input r. Then the minimum in (5) exists and

E F" - I F" = o the corresponding F' is loopfree; F is loopfree iff
k ik Zi OPT = 0.

Thus F" is conservative and F contains loops. Con- Next we derive the dual linear programming

versely, if F contains loops, there is an F' < F problem to that in (5) to (7). The standard form

by definition. for a LPP is to choose x > 0 to minimize c'x sub-

ject to A'x = b for a given row vector c, matrix A,
A Linear Programming Approach to Loopfreedom and column vector b. The dual LPP to this standard

primal LPP (see, for example, Luenberger [2]) is to
In this section we formulate a linear program- choose a row vector u to maximize u~b subject to

ming problem to determine whether or not a feasible u'A < c. The duality theorem states that if both

aggregate flow is loopfree. Our purpose is not to the primal and dual have feasible solutions, or if

develop a computational procedure but rather to use either has an optimal feasible solution, then both

the known results of linear programming to deter- have optimal feasible solutions with the same value.

mine some of the consequences of loopfreedom. Let In our case, since the primal always has an optimal

r be the input to a given network and let F be a feasible solution, the dual does also.

given feasible aggregate flow. Let s be a vector

of L slack components with one component sik for In order to visualize (5) to (7) -in standard

each (i,k)Cse.. Let f' be a vector of (n-l)L com- form, let x be made up of the L components of s fol-

ponents with one component f'k(j) for each (i,k)6ci. lowed by the (n-l)L components of f', thus x has nL

j 3 i. The linear programming problem (LPP) is to components. Choosing c as L components of value -1

choose s > 0, f' > 0 to form the minimization: followed by (n-l)L zeros, (5) is equivalent to min-
imizing c'x. It turns out that the dual variables

OPT = min A ik (5) will have more significance if we multiply .(6) on
k(ik) £f both sides by -1. Then the vector b will be the

components of -F followed by r.

subject to the following L + n(n-l) linearly inde-

pendent constraints Finally we must associate a dual variable with
each equation in (6), (7). Let dik be associated

k) (6) ik
Sik + fk(j) = Fik ; (i,k) (6) with (6) for each (i,k)cF , let Di(j) be associated

with (7) for each i f j, and let d, D be vectors

I fj (j) - fj.(j) = r.(j) all i,j, i # j with these components respectively. Letting u be
k Zk j i i. the components of d followed by those of D, the dual

(7) problem is to form the maximum:

If s > 0, f' > 0 satisfy (6) and (7), they are
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OPT = max - d. F + I D (j)r.(j) a minimum distance path from i to j. Similarly we
d,D (i,k)EX

d
ik ik i j say that F is a shortest route aggregate flow for

'9 (10) d if some multicommodity flow f corresponding to F
ifj is a shortest route multicommodity flow for d.

subject to uA < c. This constraint can be viewed We now state the complementary slackness
as nL inequalities, one for each column of A, or theorem of linear programming in the context of the
equivalently, one for each component of x. Iden- primal and dual problems here and then show its
tifying the elements of A with the coefficients of relation to shortest route flows.
s and f in (6) and (7), these nL inequalities can
be written explicitly for each (i,k)CE as Theorem 2: Let s, f' be a feasible solution to the

primal problem and d, D be a feasible solution to
> 1 (11) the dual. A necessary and sufficient set of con-

ditions for both solutions to be optimal is for

Di(j) dik + Dk(j) ; each j 3 i,k (12a) all (i,k)c.', i 

D. (k) < d. (12b) ik ifdik >1 ; (i,k) (14)
1 - kik

fk (j) = 0 if D (j) < di + D (j) (15)
Inequality (10) corresponds to the variable ik' k 1 ik k

(12a) to the variables fik(j), and (12b) to fik(k).12a) to the variables and (12b to fik(k). The following theorem relates loop freedom to
To avoid the notational inconvenience of constantly shortest route flows.
separating the case j = k from j 3 k in (12), we
shall often use (12a) for both cases under the con- Theorem 3: Let F be a feasible aggregate flow. F
vention that Dj(j) is a constant equal to zero. is loopfree iff there is a set of positive link

lengths d such that F is a shortest route aggregate
In order to understand the meaning of (12), flow for d. Furthermore, any such d, scaled up so

suppose that a path of links from node i to j con- that its components exceed one, yields an optimal
sists of the links (i,k), (k,Z),....(m,j). By ap- solution to the dual problem, (10) to (12).
plying (12) recursively to the final element in

(12a), we get Proof: Let f be any multicommodity flow correspond-
ing to F, and note that s = 0, f' = f yields a
feasible solution to the primal problem. Assume

D.(j) < dik + d + .. + d (13) first that F is loop free, so that the above solu-
m -jk kj + m tion is optimal. Choose link lengths dik > 1 and

If we interpret di as a length associated with the associated minimum distances D to give an op-
ik timal solution to the dual. From Theorem 3, (15)

link (i,k), and take the distance on a path to be is satisfied and hence f' = f is a shortest route
the sum of the link lengths on the path, then (13) flow. Next assume that f is a shortest route flow
states that D.(j) is less than or equal to the for some set of positive link lengths d'. Let
distance on each path from i to-j for the given d. d = d' /min d' for all (i,k)e 2. Thus
If, for a given d, we simply choose each Di(j) as di k (k,m)c6 

the distance of the minimum distance path from i dik > 1 and f is a shortest route flow for d.
to j (according to the lengths d), then this D Since d, D is a feasible'solution to the dual, and
clearly satisfies (12). From (13), any other since (14) and (15) are satisfied, we have an op-
choice D' will satisfy D' < D. The quantity (10) timal feasible solution to the primal and F is
to be maximized in the dual problem multiplies each loopfree.
Di(j) by the non-negative coefficient ri(j), estab-

lishing the following lemma. Part of the reason for our interest in this
result stems from our conjecture that in good
quasi-static routing algorithms, the act of chang-
ing a flow fik(j) from zero to non-zero or vice

Lemma 2: For given positive d, (10) is maximized versa (i.e. establishing or terminating routes)
over D, subject to (12) by setting Di (j), for each should be done much more slowly and carefully than

i,j, i 7Z j, equal to the minimum distance (i.e., the act of changing a flow between different pos-

the length of the minimum distance path) from i to itive values. Since the question of whether or
not a multicommodity flow is a shortest route flow
(for a given d) is simply a question of which flows

Minimum distance paths are closely related to are zero, it appears that these lengths
the concept of shortest route flows. Specifically, should play a role in quasi-static algorithms.
for a given set of positive link lengths d and the

Our next few results concern the basic optimal
corresponding minimum distances D we say that a

solutions of the primal and dual LPP's. The matrixmulticommodity flow f is a shortest route multi-
multicommodity flow for d if if (j) = s whenever A in these problems is an L + n(n-l) by Ln matrix

commodity flow for d if ik = 0 whenever with linearly independent rows. A matrix B is
Di(j) < dik(j); i.e., whenever link (i,k) is not on called a basis for the LPP if it consists of
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L + n(n-l) linearly independent columns of A (i.e., the sum of signed link distances around a cycle

it is formed from A by deleting linearly dependent set equal to zero. This is the same type of equa-

columns). An x satisfying Ax = b is called a basic tion as one uses in an electrical network, setting

solution (with basis B) if the components of x the sum of the voltages around a cycle equal to

corresponding to columns of A not in B are all zero. As is well known from electrical circuit

zero. If we let xB be the vector of components of theory (and from graph theory), there exist at most

x corresponding to the columns in B, then we see L - n+l linearly independent such equations, and

that xB is uniquely determined by Bx 0
=

b; thus since these equations involve only d, this is a

there is one basic solution x corresponding to each maximum over all destinations together. We con-

basis B. If this basic x also satisfies x > 0, it clude from this that at least n-l of the inequal-

is called a basic feasible solution. Another well ities di > 1 must be included as equalities inis called a basic feasible solution. Another well ik -

known result of linear programming [2] (and the any basis. Although we do not need it here, the

justification for the simplex algorithms) is that links corresponding to these equalities must also

if (optimal) feasible solutions exist to the primal include a spanning tree.

then a basic (optimal) feasible solution exists.

Finally, suppose we choose a basis with n(n-l)

Basic dual solutions are defined in a similar spanning tree equations and exactly L - n+l inde-

way. Let c -be the vector of components of c cor- pendent cycle equations. Since these cycle equa-

responding to the columns of A in B. Then u is a tions are homogeneous and form a basis for the set

basic solution to the dual problem if it satisfies of cycle equations, the sum of the distances around

uB = cB. Again u is unique, given B, and u is a every cycle must be zero; thus the dual solution

basic feasible solution if it also satisfies from any such basis is not feasible. We summarize
these results in the following theorem.

uA < c.

Our problem now is to investigate what sets Theorem 4: Every basis for the LPP of (5) to (7)
contains at least n-l columns corresponding to

of columns of A form a basis B. The simplest ap- contains at least n dl columns corresponding to

proach is in terms of the dual constraints (11) and slack variables sik and, for each j, there is a set

(12). We.must find a subset of L + n(n-l) of these T. of at least n-l links, which include a spanning

inequalities, which when satisfied with equality, 3

uniquely specify d, D; such a subset is called a ik

set of basic equations, and of course makes up a for each (i,k) ET. is in the basis. If the basis

basis B. First note that for each destination 3
is feasible for the dual, there are at least n

commodity j, (12) consists of a set of inequalities, is feasible for the dual, there are at least n

one for each link not originating at node j. These columns corresponding to slack variables.

are the only inequalities that involve the n-l var- Next we consider the restrictions on a basis

ables D.(j), i ~ j, and thus at least n-l of them
ables Di(j), i j, and thus at least n-l of them B if the corresponding primal basic solution is to

must be used as basic equations. Next observe that be feasible. First assume that r.(j) > 0 for all

the basic equations from (12) for a given j must j Then every feasible solution to the

correspond to a set of links T, that contain a
c primal must contain, for each j, a directed span-

spanning tree of the network (where the orientation ning tree to j of links for which f!k(j) > 0. By

of the links in the tree is immaterial). Other-
a directed spanning tree to j we mean a tree such

wise there would be a nonempty set of nodes that

were unconnected to j by the links of Tj, and the the tree links; i.e. a tree in which all links

equations corresponding to T. could not uniquely point toward j. Since an optimal basic feasible

specify D( frteiitest Theqaon solution to the primal must have a basis for which

specify D(j) for the i in the set. The equations the dual is also feasible, we see that the basic

corresponding to this spanning tree for a given variables for such a basis include at least n slack

destination j can now be rewritten to express each variables, and for each j, a directed tree to j of

D.(j) as a sum of signed link distances from i to variables fik(j). Because of the directed trees in

j, using the path in the tree from i to j. If the
the basis, it is easy to see that the corresponding

link (k,k) on the path from i to j has the same
kdirection as the path then +di is used in the soptimal basic dual solution d, D has the property

direction as the path, then +dk is used in the that the components of D are minimum distances cor-

sum and otherwise -dkR is used. responding to d.

We have now identified n(n-l) of the basic Theorem 5: Let F be a feasible aggregate flow for

equations that must be used to uniquely specify d, input r > 0. In any optimum feasible solution to

D (i.e. for each of n destinations, there are n-l (5) to (7), F' (and F if F is loopfree) is a short-

equations corresponding to the links of a spanning est route flow for some d such that (d,D) is a

tree). These equations uniquely specify D as a basic feasible solution to the dual and the com-

function of d. Some destinations might have more ponents of D are minimum distances for d.

than n-l of their inequalities used as basic equa-

tions. Each additional such equation Di(j) = Proof: We have just seen that if ri(j) > 0 for all

dik + Dk(j) can be written using our previous solu- i,j, i # j, then there is a basic optimal feasible
solution (d,D) to the dual for which the components

tion for Di(j) and Dk(J); this equation now becomes From Theorem 2,
2 of D are minimum distances for d. From Theorem 2,
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F' (and F if F is loopfree) is a shortest route

flow for d in any optimal solution of the primal.e Aggr
If ri (j) = 0 for one or more i,j, i Z j, we let r gate Flow)

, ' Ho gate Flow)
r(c) be an input formed by adding £> 0 to each

ri (j) = 0. Similarly let Fik(E) = Fik + chik when

hik for each (i,k) eis chosen to make F(E) a fea-
ik , X g (d)

sible aggregate flow for r(e). Let £ vary over ar 

sequence .i 
+
0. Since there are a finite number

of basic feasible solutions to the dual, and these

are independent of r,F, we see that one of these

must satisfy Theorem 5 for an infinite set of Ci,

and thus must satisfy Theorem 5 in the limit E= 0. F: F < F*

Theorem 4 and 5 have an important consequence

with respect to the amount of alternate routing

required to achieve a given F (or its loopfree re-

duction F'). Let ai(j) be the number of links

(i,k) for which f!k(j) > 0 for a given basic opti-

mal solution to the primal, and let a be the aver-
age of ai(j) over the n(n-l) node pairs i,j, i # j. Geometric Interpretation,

Then a = 1 corresponds to no alternate routing. Figure 2

We have just shown that in addition to the directed
spanning trees (which contribute 1 to each a.(j)) F is loopfree (a fact we already know from Theoremspanning trees (which contribute 1 to each i (j))'

1 3). More compactly, this says that .r (d) is a

basic optimal solutions have at most L - n addi- , i.e. the subset of . that lies on
tional non zero f!k(j), over all i,k,j. This es- r r

tablishes the following. theorem. the supporting hyperplane of ~r with normal vector
tablishes the following theorem. d.

Theorem 6: The amount of alternate routing in a
Theorem 7: Let d be an arbitrary positive length

basic optimal solution to the LPP of (5) to (7) is 
vector. Then 4Sr(d) C 9r(d') for some d' E 

L - n We postpone the proof of this until after the
< 1 + - (16)
-- n(n-l) proof of Theorem 8. The theorem says that all the

shortest route flows for any given positive d are

Since L is typically much smaller than n(n-l) included in the shortest route flows for one of the

in large networks, very little alternate routing is basic distance vectors in M. Geometrically, it

required to achieve any desired loopfree aggregate says that the faces 9 (d) for d tV are in some
flow. r

sense superfluous, since each of them is contained

in some basic face F (d'). It should also be
In order to obtain a better understanding of insome basic face (d'). It should also be

noted from the dual problem (10) to (12) that the
the meaning of Theorem 5, let be the set of all

r set of basic distance vectors is independent of

feasible aggregate flows F for a given input r, the input r. Thus as r changes, each of the basic

and letg (d) be the set of shortest route aggre- faces r(d) move in space but maintain the same

gate flows for input r and link length assignment normal.

d. Lets be the set of link length assignments d

for which (d,D) is a basic feasible solution to Some additional interpretation of these faces

(10) to (12) and for which D is the set of minimum arises from defining
distances for d. Theorem 5 then asserts that the

set of loopfree flows for r, LFF , as given by R(d) = {(i,k,j): Di(j) = dik + Dk(j)} (18)

LFF = g} 9 r(d) (17) where D is the set of minimum distances for d.

r dCR g rr(d), then, is the set of aggregate flows for

We can interpret V (d) (for any d with posi- which a corresponding multicommodity flow exists in
which each commodity j flows only over links (i,k)

tive components) as the set of vectors F that min- for which (ikj) is in (d). This means that
for which (i,k,j) is in .E(d). This means that

imumize F.d over the constraint that F be a feasi- (d) is a function of d only through the set

ble aggregate flow for r (this comes directly from r

the definition of a shortest route aggregate flow). (d). It turns out that several basic distance

We also obtain the geometric interpretation from vectors can have the same 2(d) (in which case they

Figure 2 that if F minimizes Fed over F £ ,r ' determine the same face (d)). It can also hap-

pen that R (d) for one basic d can be strictly con-
than any vector F' for which F' < F must satisfy

d < F thus F < F implies so that tained in w(d') for another basic d', in which case
F''d < F'd; thus F' < F implies F' Mr,' so that
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3' (d) is strictly contained in .S (d') (assuming 2. D. G. Luenberger, Introduction to Linear and
r r Non-Linear Programming, Reading, Ma., Addison

positive r). Thus, in some sense, a more elegent Non-Linear Programming, Reading Ma., Addison
representation of the class of loop free flows
could be obtained directly in terms of a minimal
class of setsa(d), but we have been unable to do 3. D. G. Cantor and M. Gerla, "Optimal Routing in

this except through the basic distance vectors. a Packet Switched Computer Network", IEEE
Trans. Comput., Vol. C-23, pp. 1062-1069, Oct.
1974.

Theorem 8: Let F, F2 ,..., Fm be feasible aggre-

gate flows for input r and let X, 2..., Am be

positive numbers summing to 1. Then F0 =

M A. F. is in r(d) iff Fi e r.(d) for

i=l
1 < i < m.

Discussion: This says that the convex combination
of loop free flows is not in general loopfree un-
less each of the combined flows are shortest route
flows for the same d. This theorem appears to give
an indication why routing algorithms such as the
Cantor-Gerla algorithm [3], which operate by tak-
ing convex combinations of extremal flows (i.e.
flows that are extremal points of the set *'r), con-

verge quickly at first and then more slowly. Each
new extremal flow, when combined with the others,
typically adds a new set of loops to the solution,
and these loops are eliminated only when all of the
extremal flows being used are shortest route for
the same d.

Proof of Theorem 8: Let c = min F'd over F Ceo-
m

F *d = X.iF.,d > c

i=l

with equality iff F..d = c for 1 < i < m.

Proof of Theorem 7: Suppose, to the contrary that
S,(d) is not contained in 9r(d') for any d' ER.

Let d1, d2 ,..., d be the elements of Mand let F.

be an aggregate flow in 9 (d) but not in (d.);
r r 1

the Fi need not be distinct. Let Xl,..., X be

positive numbers summing to 1, and let F =

m
X. F.. From Theorem 8, F0 is not in r(d i)

for 1 < i < m, and from (17) F0 is not a loopfree

flow. However, again from Theorem 8, F0 is in

o.r(d), and hence is a loopfree flow, supplying the
r

desired contradiction.
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