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Abstract

The technique of very-long-baseline interferometry (VLBI) offers geodesy the

potential of estimating distances on the earth of several thousand kilometers with
uncertainties of a few centimeters or less. Since the completion of the Mark III VLBI
system-which combines group-delay measurements at two widely separated frequency
bands to estimate ionospheric refraction-the source of error that limits this accuracy
has been thought to be refraction by the neutral atmosphere.

The largest component of the radio refractive index of air is due to the dry
atmosphere. The integrated effect of this component can be estimated quite accurately
from the surface pressure for a signal arriving at the site from the zenith direction. For
a signal arriving from other directions, a model for the atmosphere must be combined
with surface meteorological measurements to estimate the propagation delay. The
accuracy of this estimation is limited by the accuracy of the atmospheric model. The

remaining component of the radio refractive index of air is due to water vapor. Water
vapor in the lower troposphere is unmixed, and its effect on the group delay can vary

from 0-20% of the effect of the dry atmosphere. The wet delay" is very difficult to

model using measurements of surface meteorological parameters.

In this thesis, we attempt to develop an improved model for the elevation-angle

dependence of the diy propagation delay. We first show that systematic, elevation-

angle dependent errors in estimates of baseline length using the Marini mapping func-

tion are of order 5 cm for 8000-km baselines. We hypothesize, based on analysis of the

effects of mapping-function errors, that these elevation-dependent systematic errors
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are caused by errors in the Marini mapping function. We derive an improved map-
ping function from the analysis of ray-trace studies utilizing a parametrized model
atmosphere. The propagation delay predicted by this new mapping function differs
from ray-trace results by less than 5 mm at all elevation angles above 50 elevation. We
present the initial testing of this mapping function using VLBI data, and show that es-
timates of baseline length, which had shown systematic behavior, show no perceptible
systematic behavior with the use of the new mapping function.

In order to test further this new mapping function, we undertook a series of
special VLBI experiments. These experiments include a large number of observations
from low elevation angles. Thus far, we have analyzed eight of these "low-elevation"
experiments, and we present their results. The estimates of the Mojave-Haystack
baseline length from these experiments possess a weighted-root-mean square repeata-
bility of -4 mm when the data are analyzed using the new mapping function, whereas
the repeatability is 10 mm if analyzed using the Marini mapping function. Fur-
thermore, these latter estimates show evidence of temperature-dependence. These
tests are consistent with-but not conclusive proof for-the conclusion that the new
mapping function has adequately modeled the seasonal behavior of the propagation
delay.

We also discuss the technique of water-vapor radiometry. The derivation of the
dual-frequency algorithm employing opacities as the "observables" appears for the first
time. We point out several important features of this algorithm, and discuss possible
sources of error. We also compare estimates of the wet propagation delay obtained
from WVR data located at the Mojave site during the low-elevation experiments and
processed with the dual-frequency algorithm to estimates of that delay obtained from
VLBI data processed with a Kalman filter. The short term behavior of these two series
of estimates is shown to agree quite well at the level of less than 1 cm, but there are
biases between the two series with apparently seasonal behavior with an amplitude
of nearly 2 cm. We hypothesize that this seasonal behavior can be attributed to the

use of a constant value for the dual-frequency weighting function; recent studies have
indicated that this value has a seasonal variation.

Thesis Supervisor: Dr. Irwin I. Shapiro
Paine Professor of Practical Astronomy, Harvard University
Professor of Physics, Harvard University
Director, Harvard-Smithsonian Center for Astrophysics
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Introduction

The phenomena of absorption, scattering, and refraction are all macroscopic and

familiar effects of the terrestrial atmosphere on visible light. Th blueness of the sky,

the redness of the setting sun, the haziness of the moon, and the blurriness of images

above a hot road are everyday spectacles. The atmosphere affects the propagation

of electromagnetic radiation at all frequencies, of course. In analyzing data obtained

from radio interferometric observations, the effects of the atmosphere at radio wave-

lengths are most obviously of prime importance. In order to use these data to estimate

parameters of geodetic, geophysical, or astronomical importance, the effects of the at-

mosphere must be understood and incorporated into the theoretical models that relate

the data to the parameters of interest. If one cannot obtain some outside" estimate

of the atmospheric effects, then theoretical expressions for the effects must be devel-

oped and parametrized in terms of quantities that can be estimated along with the

interesting parameters.

For the analyst of modern very-long-baseline interferometry (VLBI) data com-

posed of group or phase delays, and phase-delay rates, the most significant atmospheric

effect is the refraction of radio waves. Atmospheric absorption and :cattering will at-

tenuate the original radio signal, which will decrease the precision of the observable,

but atmospheric refraction induces an effective delay which, as mentioned above, must

be measured independently or modeled with parameters estimated using the VLBI

data. The total effect is quite large: the delay induced by the atmosphere for a radio

signal arriving from the zenith direction is -2.4 m for a site at sea level. For signals
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arriving in directions of lower elevation angles, the effect increases, and is about 10 m

at 10° elevation, for example.

The simplest way to deal with the atmospheric delay would be to leave it out

of the theoretical models; however, previous researchers have come to the conclusion

that the resulting errors in estimated parameters of importance are intolerable. Much

effort has therefore been spent to develop mathematical models for this delay. These

efforts have been aided by the fact that the atmosphere of the earth is very well

behaved in terms of its vertical structure, being very nearly in a condition of hydrostatic

equilibrium, and having a constant mean molecular weight up to about 80 km, due to

vertical mixing. These facts allow the prediction of the electrical path in the vertical

direction, and hence the propagation delay in that direction, based solely on the surface

pressure, regardless of actual temperature structure. (The propagation delay in this

direction is know as the zenith delay".) Complications arise, however, when one

tries to predict the propagation delay for radiation arriving from other directions; the

propagation delay then does depend on the temperature structure. Furthermore, the

presence of water vapor, the local density of which can vary greatly both spatially and

temporally, can contribute significantly to the propagation delay in all directions; this

variability makes this contribution all but totally unpredictable using only theoretical

models based on local meteorological conditions at the receiving location.

From the beginning of VLBI, it was realized that in order to take full advantage

of the data obtained by this technique, the effect of tropospheric water vapor on

the propagation delay would have to be overcome. (The problem of predicting the

propagation delay in off-zenith directions was, at least for the time being, adequately
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solved by existing models designed primarily for use in satellite tracking.) A promising

instrument known as a water-vapor radiometer (WVR) was studied by several groups,

and their results indicated that the WVRy could be used to estimate the contribution

of water vapor to the propagation delay (the "wet delay") with an accuracy of about

5 mm. These WVR's basically used the same design developed by Dicke in the 1940's

to measure the strength of the 22 GHz line of water vapor, except that a second

frequency was used to subtract the effects of liquid water (and, of course, the WVR's

possessed updated electronics).

In the early 1980's, several VLBI sites as well as mobile VLBI systems started to

become equipped with WVR's. In the United States, these WVR's were built at the

Jet Propulsion Laboratory under the direction of George Resch. Two of these WVR's

were mounted on mobile VLBI systems, while the fixed stations at Haystack/Westford,

.,v ens Valley, Ft. Davis, and Mojave each received one. An independent effort by

Gunnar Elgered and Bernt R6nnang also provided the Onsala Space Observatory in

Sweden with a WVR.

The next step was to prove the necessity and the sufficiency of the WVR as a

calibration tool in VLBI data analysis. Although it seems that in light of the previous

discussion concerning the variability of water vapor the necessity of the WVR might

seem to be an obvious premise, rather than something which needs proving, up to

that time there had not been any direct evidence in the VLBI data of the effects of

water vapor. Thus, the actual size of the errors in the geodetic parameters induced

by errors in the wet delay were unknown. Furthermore, it was not known whether

the theory behind WVR's is accurate enough to be of use, or which of the infinity
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of inversions relating atmospheric brightness temperature to wet path delay is the

"best." Of course, if the existing WVR's were able to prove their own necessity, then

that would go a long way towards proving their sufficiency.

The strategies for testing the WVR were at that time limited in number. Basi-

cally, they all were based on the idea of "trying out the WVR data on the VLBI data

to see if anything gets better." The anything" could be the RMS residual delay, or

the repeatability of independent estimates of a particular baseline length or station

position, or anything else that might be affected by errors in calibrai.ng the wet delay.

The first hurdle to be overcome was obtaining WVR data simultaneously with a

VLBI observing session. The WVR's at the U.S. sites all experienced severe mechanical

difficulties such that they were inoperable for a large fraction of the time. Furthermore,

the early data taken with these WVR's were extremely noisy, which was later shown

to be due to imprecise determinations of the instrumental gains. As a result of these

problems, no real conclusions could be reached as to the necessity for, or the sufficiency

of, the WVR.

One of the primary subjects of this thesis is the subsequent research devoted to

obtaining precise estimates of the wet delay from these WVR's, and employing these

estimates to evaluate the concept of water-vapor radiometry. This research is discussed

in Chapter 2. Chapter 1 reviews the effects of the atmosphere in VLBI, discusses

propagation in the atmosphere, and describes how models may be developed for the

predictions of these effects. In Chapter 3 and Appendix A, we discuss the development

of a new model for the elevation-mapping of the dry part of the atmosphere, which, as

will be described, was necessitated by the research on WVR's. In Chapter 4, we present

the results from a series of VLBI experiments intended to study the elevation-angle

behavior of the propagation delay and our ability to model this delay.

It should be noted that as this thesis is being written, there is much happening

in the area of WVR's. The WVR's originally built by JPL have been rebuilt and are

reappearing as instruments like the originals, but more precise and hopefully more

durable. Furthermore, a different design is being implemented for a new series of

WVR's. The discussions in Chapter 2 of accuracy and precision of WVR's will not

apply to the WVR's with this newer design, and because these radiometers have three

frequency channels, the discussions in Chapter 4 of the accuracy of the dual-frequency

algorithm may also not apply.
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Chapter 1

The Atmospheric Propagation Delay

Introduction

In this chapter, we will discuss the manner in which the atmosphere affects the

VLBI data, and how this effect may be taken into account in the model. We will begin

in Section 1.i by writing down in its most general form the equation for propagation

delay due to the atmosphere. In Section 1.2, we will discuss several specific properties

of the refraction of radio waves in the atmosphere, including determination of the rav-

path, refraction in a spherically symmetric atmosphere, the structure of the refractivity

in the atmosphere, and dispersion. Prior to presenting formulas for the propagation

delay, we will in Section 1.3 define some of the terminology often used, and then

in Section 1.4 we will discuss the treatment of the propagation delay in VT DI data

analysis, presenting the common formulas for the propagation delay. In Section 1.5 we

will discuss the effects of errors in the formulas for the propagation delay, and develop

simple models for these errors. In Section 1.6, we will discuss the options for treatment

of the propagation delay in light of the results of Section 1.5.

1.1 The effect of propagation media on the group delay

1.1.i The equation for the atmospheric propagation delay

In terms of the VLBI group-delay observable, which is discussed in detail in,

e.g., Herring [1983], the propagation delay is defined to be the difference between the
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observed value for the group delay, and the value which would have been observed had

there been no propagation medium. The sign of the propagation delay is such that if

the propagation delay is added to the value for the in vacuo group delay, one obtains

the value for the observed group delay.

Another quantity which the same term "propagation delay" describes is the dif-

ference between the travel time of a signal traveling from the radio source to a single

site, and the in vacuo travel time. In this case the "propagation delay" defined in

the previous paragraph is the difference between the "propagation delay" defined in

this paragraph for the two different sites, with the sign of the propagation delay being

determined by the definition given in the previous paragraph.

The two major components of the propagation medium that affect the group

delay are the earth's neutral atmosphere (or, in this thesis, just "atmosphere") and

ionosphere. The effects of the ionosphere will not be considered here, since they can be

removed approximately by utilizing "dual-frequency" observations. (See Herring [1983]

for a detailed discussion of ionospheric effects.) The (single antenna) atmospheric

propagation delay ra can be written in terms of electrical path lengths, and in a

system of units in which the velocity of light is unity, as

a= [j ds n(s) - ds] (1.1.1)

Here tg is the epoch to which the group delay is referred. The refractive index n(s)

is parametrized by the length s along the traveled path. The path-label atm indi-

cates that the integration is performed along the actual path of the ray through the

atmosphere, while vac indicates that the integration is performed along the path the

14
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*s

Figure 1.1.1. Illustration of the atmospheric propagation delay. The path labeled

atm represents the path of the signal through the atmosphere. The path labeled vac is

the path the signal would have taken were the atmosphere replaced by vacuum. This

latter path is shown as a straight line connecting the receiving antenna and the source

(see text).
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ray would take were the atmosphere replaced by vacuum. These paths are illustrated

in Figure 1.1.1. The in vacuo ppth to the radio source is shown as a straight line,

while the path through the atmosphere is shown curved. (In reality, the in vacuo

path, viewed from the surface of the earth, is not a "straight line." The model for the

group delay should account for the fact that the measurements are made in a frame

of reference that is not inertial, and for the fact that the space-time geometry is not

Euclidean. However, since the contribution from these two effects is nearly equal for

the refracted and in vacuo paths, the effects cancel when forming the difference of the

time of propagation along these two paths.) Although (1.1.1) tells us how to calculate

the delay given the path indicated by Figure 1.1.1, it does not tell us how to determine

that path. The determination of the ray path will be discussed in Section 1.2.

Of what magnitude is the atmospheric propagation delay defined in (1.1.1)?

For a site located near sea level at mid-latitudes, the propagation delay for a signal

arriving from the zenith direction anges typically from about 2.2-2.5 m (see below

for a discussion of the units of delay), and increases with decreasing elevation angle

approximately as the cosecant of the elevation angle. For sites located at a greater

elevation (above sea level), the propagation delay is smaller due to the smaller air

mass above the site. For example, for a site located 1 km above sea level, a typical

zenith propagation delay would be about 1.9 m. For tropical sites, the propagation

delay is usually greater because the air above these sites contains a large amount of

water vapor. A typical zenith propagation delay above Singapore, for example, might

be 2.6 m [Elgered et al., 1985]. Later in this chapter we will present formulas for the

propagation delay.
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Because the actual path through the atmosphere is curved, the contribution of

the first term on the right-hand side of (1.1.1) can La thought of as having two parts.

The first-and by far the largest-contribution is due to the increased refractive index

in the atmosphere, which "slows" the incoming signal traveling along the path. The

second contribution is the deviation of the ray path from a straight line. These facts

prompt us to write (1.1.1 as

a = |rds (n(s)- 1) + [ ds- ds] (1.1.2)

The first term on the right-hand side of (1.1.2) represents the delay along the path

of the signal. The second term represents the geometrical difference between the two

paths. The utility of (1.1.2) will become evident later in this chapter. In (1.1.2) we

have omitted stating explicitly the epoch to which the propagation delay is referred,

but now and hereafter we will implicitly assume that this epoch is the epoch to which

the group delay is referred.

The previous discussion defined the atmospheric delay in terms of the VLBI

group delay. This is only one of the VLBI "observables," and the most important

today in geodetic work using long (> 100 km) baselines. Since the atmosphere is

approximately non-dispersive below about 30 GHz (see Section 1.2.v), the atmosphere

affects the phase-delay observable in approximately the same manner as the group

delay, and (1.1.2) can be used to express this effect. In order to derive an expression

for the effect of the atmosphere on the phase-delay rate, we need to differentiate the
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time-dependent form of the propagation delay with respect to time, at the epoch to

which the group delay is referred:

fa = dt [|ds n(s)-f dsl (1.1.3)
dt [M J vac J t9

Here ia is the symbol for the atmosphere-delay rate, not the time-derivative of the

propagation delay ra, since Ta is referred to tg and is not time-dependent. Henceforth in

this thesis, unless explicitly stated, we will deal only with the effects of the atmosphere

on the group delay and omit discussion of the phase-delay rate.

1.1.ii A note on units and terminology

The delay equation (1.1.2) is written in a system of units in which the speed of

light is unity. Thus, we use the symbol r," which is ordinarily reserved for quantities

of time. At other times in this thesis, the symbol "L" is used to represent delay. Units

of length or time are used interchangeably in this thesis to express values for the delay

(with the rate of exchange given by 1 nanosec - 30 cm). Whenever the units for an

equation expressing delay are not specified, then either units of length or time may be

used.

The exact end-point for the termination of the path integrals in (1.1.2) has not

been specified. This topic is discussed in Appendix A, which details the development

of a new formula for the propagation delay. In the body of this thesis, we will refer

this end-point vaguely as the "site" or "base of the vertical column," depending on the

context. The use of "site" refers to the fact that the end-point is somewhere near the

location of the radio-antenna forming one element of an interferometer (or of several
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interferometers). The use of "base of the vertical column" refers to the fact that the

antenna is located within a few tens of meters of the ground. The site may or may

not be near sea level.

Another term frequently used in this thesis is "ray." Hecht and Zajac [1979] define

ray as ...a line drawn in space corresponding to the direction in flow of...energy." Thus

for our purposes, the ray is unambiguously defined, both for the group delay and, in

the absence of dispersion, the phase delay.

Finally, although the antennas used for VLBI are passive receivers, we will some-

times speak of a hypothetical ray as originating at the site. This terminology is con-

venient because the real signal travels a great distance before it encounters the at-

mosphere, and reversing the direction of propagation allows us to ignore propagation

along that distance, which does not contribute to (1.1.2). This convenience is allowed

because (1.1.2) is symmetric with respect to direction-ds is an element of path length.

1.2 The refraction of radio waves in the atmosphere

In this section we will discuss several aspects of the delay equation. First, we

will discuss how one determines the path through the atmosphere, and introduce the

so-called ray-trace equations. We will then discuss theoretical expressions for and

experimental measurements of the refractive index for moist air.

1.2.i The ray-trace equations

A ray of electromagnetic radiation traveling through the atmosphere will obey

Fermat's Principle, which states that the path will be such that the optical path length

is an extremum. We therefore require that

dsn(s) = (1.2.1)
tm
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where again n(s) is the refractive index parametrized by the distance s along the ray

path. Knowledge of the functional form of n(x), where x is the three-dimensional

position vector, will allow (1.2.1) to be solved by choosing a suitable Lagrangian and

solving the Euler-Lagrange equations. One may also solve (1.2.1) by the technique of

ray tracing. We will discuss the ray-trace technique in Chapter 3. For now, we will

concern ourselves with solving (1.2.1) for an atmosphere which is spherically symmetric

about the center of the earth. In other words, we assume that the earth is a sphere,

and that the properties of the atmosphere surrounding the sphere depend only on the

radial distance. The explicit solution will lead to the familiar Snell's Law for spherical

refraction, and to the "ray-trace" equations for a spherically symmetric atmosphere.

(Although there is a very simple method for solving this particular problem based

on Snell's Law for planar refraction, we will elicit the answer the "hard way" for

illustrative purposes.)

We first write down the path-length differential ds in (1.2.1) in terms of the

spherical coordinates and X defined in Figure 1.2.1:

ds = V/(dr)2 + r2(d) 2 = dry/1 + r2(Y) 2 (1.2.2)

where

<,,- dr (1.2.3)

The third spherical coordinate does not appear in (1.2.2) because the assumption of

spherical symmetry assures that the ray will always remain in the plane containing

the origin of the ray, the vector parallel to the path of the ray at this point and the
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origin of the coordinate system, located at the center of our spherical earth (see Figure

1.2.1).

By substituting the expression for ds from (1.2.2) into (1.2.1), we can see that

an appropriate Lagrangian. C is

(a, '; r) = n(r) /1 + r2 (') 2 (1.2.4)

The Euler-Lagrange equations then reduce to a single equation with the independent

variable being the radial coordinate r

d - 0 (1.2.5)dr aq' d -

Using £ from (1.2.4) and noting that £ does not depend on b yields

d [n(r) r2t =] O (1.2.6)

Thus the term in brackets is a constant. In order to determine this constant, let us first

determine an expression for '. Figure 1.2.1 also shows the geometry which results

from the ray traveling from its position at (r, 0) to (r + Ar, + AO). A triangle is

formed whose sides are of length r,r + Ar, and As, and whose corresponding opposite

angles measure 0 - Ab, r - 0, and AO, where 0 is the angle between the radial vector

and the tangent to the ray at the point (r, 4). From the law of sines we have

sin( - A) _ sin (1.2.7)- r+0r (1.2.7)r r + Ar

Both sides of (1.2.7) can be expanded to first order in Ar and AO to yield

1 (sin 0-A A cos 0) I -(1- sin (1.2.8)
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1
-ta!7 t 

Figure 1.2.1. Geometry for the solution of the Euler-Lagrange equation for a spher-

ically symmetric atmosphere.
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Solving for AO gives

Ar
r

By taking the limit as Ar -- O0, we obtain the expression for ':

AO 1'E rlim -= -tan (1.2.10)
Ar--O Ar r

Solving (1.2.10) for sinG gives us something which looks very much like the constant

term in (1.2.6):

rq~'(r) =sin r5(r) -sin (1.2.11)
v1 + r2 (') 2

Substituting sin 0, then, into the constant term in (1.2.6) yields

n(r)rsin (r) = constant = n(ro)r, sin 0(ro) (1.2.12)

where r is a reference radius. The equation (1.2.12) is Snell's Law for spherical

refraction. Using this equation we can write integral expressions for the electrical

path length Le

Le =| de n2e (1.2.13)
ro /n 2 e2 - n2r2 sin2 0o

and the position angle O(r)

+(r) = nro sin O 0 d1 (1.2.14)
* e /n2e2- n2r 2 sin2 0

where in (1.2.13) and (1.2.14) no = n(r,), Oo = (ro), and we have assumed that

the integration begins at ro. The equations (1.2.13) and (1.2.14) are the ray-trace

equations for a spherically symmetric atmosphere.
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The delay equation (1.1.2) for a spherically symmetric atmosphere can also be

written in integral form, using (1.2.13), as

o00

Ta = d ne(n - 1)

/n22 - nr2 sin 2
0

(1.2.15)

To+ de [(1- 2 sin s 2 Of
To

The final integral on the right-hand side of (1.2.15) is the difference in ray paths; Of

is the "true" zenith angle. This integral converges because n -- 1 as -+ oo.

The formulas for the propagation delay which are used in VLBI data analysis are

based on approximations to (1.2.15). The accuracies of these approximations depend

critically on the behavior of the refractive index in the atmosphere. Therefore, before

presenting the formulas for the propagation delay, we will discuss the properties of

the radio refractive index of moist air. The formulas based on (1.2.15) will then be

presented in Section 1.4.

1.2.ii The refractivity of air

Both the general delay equation (1.1.2) and the delay equation for a spherically

symmetric atmosphere (1.2.15) contain the term n - 1. For radio wavelengths, the

refractive index n of the atmosphere differs from unity by less than one part per

thousand. Because n- 1 is so small, it is convenient to introduce the refractivity N

defined by

N = 106(n - 1)
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An important feature of the refractivity is that it is a quantity which for linear media

depends linearly on the density of the dielectric medium, all other conditions being

constant. (A linear medium is a medium for which the electric susceptibility is inde-

pendent of the applied electric field. The following arguments also hold for media for

which the response is for practical purposes linear due to the weakness of the applied

electric field.) To see why this is so, recall that the response of a linear dielectric

medium to an applied electric field E can be written in terms of the polarization P

per unit volume [Jackson, 1975] as

P = E (1.2.17)

where X is the electric susceptibility of the medium, which may vary in space. (X is

unitless and equals zero for vacuum.) Clearly X depends linearly on the density of

the medium, for if the applied electric field remains constant and the density doubles,

say, then surely the dipole moment per unit volume must double. Recall that the

susceptibility is related to the dielectric constant by

= 1 + 4rX (1.2.18)

where = 1 for vacuum. The dielectric constant is also related to the refractive index

by the Maxwell equations for propagation in a macroscopic medium [Jackson, 1975],

which yield the relation

n2 = CA (1.2.19)
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where p, is the permeability of free space ( = 1 for vacuum). For a medium, such as

the atmosphere, with /z 1 and n - 1, (1.2.18) and (1.2.19) yield

-n2 - 1 - 2(n - 1) 4rX (1.2.20)

Thus the refractivity N is proportional to the electric susceptibility, and therefore also

to the density. An approximate expression relating N to the density and temperature

of the medium is given by Debye [1929]

N= + B ) (1.2.21)

where A and B are constants which vary for different molecular species, and T is the

absolute temperature. The first term on the right-hand side of (1.2.21) arises from the

induced polarization (also known as the displacement polarization) of the molecules,

and the second term arises from the orientation effect of the applied electric field on the

permanent electric dipole of the molecules. If the molecule has no permanent electric

dipole moment, B = 0. The derivation of (1.2.21) can be done rather simply, using

a semi-classical scheme, or it can be done quantum-mechanically, which derivation is

beyond the scope of this thesis. However, by far the most important feature of (1.2.21)

is the dependence of N on the density. Because of this relationship, the refractivity of

a mixture of q species is

N -E- Ai + )Pi (1.2.22)

where Ai and Bi are the refractivity constants for the ith constituent, and Pi is its

constituent density.
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Although the atmosphere is a mixture of many gasses, it is usual to consider it

as being made up of but two: the "dry" gasses, and water vapor. In the following, we

show why this is possible. We will then present experimental determinations for the

refractivity constants for moist air.

1.2.iii The dry atmosphere

The atmosphere of the earth is a mixture of gases and aerosols which maintain

a proximity to the earth due to gravitational attraction. The major constituents of

the dry atmosphere are shown in Table 1.2.1. Of considerable importance in this work

is the relative number densities, or fractional volumes of the constituents of dry air.

The fractional volume fi of the it h constituent in a mixture of q species is simply the

ratio of the number (or number density) r7i of molecules of that species to the entire

number (density) of molecules of all species:

i q17i (1.2.23)
Z ok

k=1

For an atmosphere in hydrostatic equilibrium, we would expect the heavier species

to "sink" to the bottom, and if so the fractional volumes of the various atmospheric

constituents would be a function of height; his will occur only if diffusion is a major

source of vertical transport. Below about 90 km, however, mixing processes dominate

over diffusion, so that the mixing ratios of the dry constituents can be treated as being

constant below that height [Colegrove et al., 1965]. (At this height the pressure is about

2 x 10- 3 mbar, or about 2 x 10 - 6 of surface pressure, which for our purposes is to say

that the atmosphere is nonexistent there.) This mixing also maintains homogeneity
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over the surface of the earth. The size of the departures from homogeneity can be seen

from the third column of Table 1.2.1. The entries in this column are a measure of the

variability of the respective dry constituents, taken from Glueckauf [1951], expressed

in terms of the fractional volume. As one can see, the variabilities of the fractional

volumes are very small.

That the fractional volumes of the constituents of dry air are nearly constant is

very useful. It allows us to treat the dry atmosphere as a single gas with molar mass

Md given by
8

Md =- fiMi (1.2.24)
i=l

where the sum is carried out over the eight constituents of dry air listed in Table 1.2.1

and the Mi are the molar masses, also listed in Table 1.2.1. A "sigma" for Md, based

on the variabilities given in Table 1.2.1, can be calculated approximately by ignoring

the correlations between the variations in the fractional volumes. This approximation

gives
8

t2h = EZMiai (1.2.25)
i= 1

where the ai are the (unitless) variabilities listed in Table 1.2.1. From (1.2.24) and

(1.2.25) and Table 1.2.1 we can easily compute that Md = 28.9644:i±0.0014 kg kmol-1.

In the following, we will use the fact that the fractional volumes of dry air are

constant, and combine all the constituents of dry air together in creating a formula

for the refractivity of moist air. We will then present experimental determinations for

the values of the refractivity constants.
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Table 1.2.1
Primary Constituents of Dry Air

Variability
and Their

Molar Fractional Standard Deviation
Weight Volume for

Constituent kg kmol-l (Unitless) Fractional Volume

N 2 28.0134 0.78084 0.00004
02 31.9988 0.209476 0.00002
Ar 39.948 0.00934 0.00001

CO2 44.00995 0.000314 0.000010
Ne 20.183 0.00001818 0.0000004
He 4.0026 0.00000524 0.00000004
Kr 83.30 0.00000114 0.0000001
Xe 131.30 0.000000087 0.000000001
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1.2.iv The refractivity of moist air

In the previous section, we saw that it is possible to treat the fractional volumes

of dry air as being constant. We can now write down the expression for the refractivity

of dry air. Let us write the refractivity Nd of dry air, from (1.2.22) as

8

Nd = Aipi (1.2.26)
i=l

We have set Bi = 0 for all the dry constituents since none of these constituents

possesses a permanent electric dipole moment. Treating the mixture of dry gasses as

a single species, we should also be able to write Nd as

Nd = Adpd (1.2.27)

where Pd is the density of dry air (i.e., the sum of the constituent densities of dry air).

The constant Ad is, from (1.2.26) and (1.2.27) defined by

E Aipi 8 8

P i= l PdAd =Ad AifiPdM (1.2.28)

Since Md and the fi are, as we have seen, constant, (1.2.28) shows that Ad is constant

and that the dry constituents combined can be treated as a single gas in the refractivity

formula. We may therefore write the refractivity of moist air as

N = klRdPd + k2Rpv, + k3Rv (1.2.29)

Here Pd is the density of the dry air mixture and Pu is the density of water vapor.

The various A's and B's have all been expressed as kl, k2, and k3 . The specific

gas constants Rd (for dry air) and Rv (for water vapor) need not appear explicitly in
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(1.2.29), since they can be absorbed into any constant; we have included them however

in keeping with the conventional values and dimensions in which k, k2 , and k3 are

presented. Again, note that no permanent-dipole term appears for dry air.

The values for kl, k2, and k3 in (1.2.29) must be determined experimentally.

(Although in principle expressions for these constant could be determined from theory,

in practice the theoretical expressions themselves would contain parameters which are

unknown and would have to be determined from experiment.) The method used to

determine the constants is to measure the resonant frequency of a cavity into which a

known amount of gas has been introduced. This frequency is compared to the resonant

frequency for the evacuated cavity, and the refractivity is calculated [Boudouris, 1963;

Essen and Froome, 1951] using

g Ut =n-1 (1.2.30)
Vvt

where vv, is the in vacuo resonant frequency and vg is the resonant frequency with the

gas. For dry air, the dependence of the refractivity on density yields kl. For water

vapor, the dependence on temperature must be used to separate k2 and k3.

Table 1.2.2 contains a partial list of experimental determinations of the constants

in the refractivity formula. A full list of determinations dating back to 1932 appears in

Bean and Dutton [1966]. The precision with which the constant kl (dry air) has been

determined is about 0.03% of its value, while the constants k2 and k3 (water vapor)

have been determined only to about 8-15% and 1% of their respective values. The

uncertainties for the water-vapor constants reflect the fact that the determinations of
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k2 and k3 from any single experiment are correlated. This correlation, of course, tends

to inflate" the inherent uncertainty of the determination of these constants.

Realizing that the correlation between the estimates of k2 and k3 was a limi-

tation, Thayer [1974] attempted to reduce its effect by constraining the value of k2

to its optical value. (At optical frequencies, the k3 term does not appear and the

k2 term can therefore be determined with greater precision.) Through the breaking

of the correlation, the uncertainty in the k3 term was reduced accordingly. Thayer's

values for k2 and ks3 are also shown in Table 1.2.2. It is interesting to note that the

predicted value for the radio value of k3, based on using the optical value for k2, is

quite close to the experimental determinations of k3 in the radio range. While this

result does not prove that extrapolation from the optical range to the radio range

for k2 is correct, it does mean that Thayer's values are probably no worse than the

experimental determinations.

Hill et al. [1982] have criticized Thayer's extrapolation from the optical from a

theoretical view. They claim that this extrapolation ignores the contribution of the

infrared (vibrational) resonances. Based on this criticism, Hill et al. use tables of the

infrared spectra of water vapor to calculate this contribution; these calculated values

for k2 and k3 are shown along with the others in Table 1.2.2. The "uncertainties"

associated with the values from Hill et al. reflect the fit of the theoretical model

expressed by (1.3.21) to the calculated values, as reported by Hill et al.. It can be seen

that these values for the refractivity coefficients are significantly different (in terms of

the experimental uncertainties) from the experimental values. Hill et al. are unable to

explain definitively this difference and recommend use of one of the set of experimental
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Table 1.2.2

Determinations of Refractivity Constants

Reference Frequency kl k2 k3

GHz K mbar- 1 K mbar - 105 K 2 mbar -1

Essen & Froome [1951] 24 77.68 ± 0.03 64.7 3.72

Birnbaum & Chatterjee [1952] 9-25 71.4 ± 5.8 3.747 ± 0.03
Boudouris [1963] 7-12 77.64 ± 0.08 72.0 ± 10.5 3.75 ± 0.03

Thayer [1974] < 20 77.60 ± 0.02 64.8 ± 0.1 3.776 i 0.004

Hill et al. 1982] - 98.1 ± 1 3.583 ± 0.003
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values. This conflict will probably remain with us until more accurate studies of the

refractivity of water vapor at long wavelengths are undertaken.

1.2.v Dispersion in the atmosphere

The formula for the refractivity of moist air given in (1.2.29) contains no depen-

dence on frequency. A formula for the refractivity which inclndes dispersion can be

written as [Liebe, 1985]

N(v) = No + No () + Nv(v) + N 2(v) + N.(v) + N (v) (1.2.31)

In the above equation, No is the nondispersive term of the refractivity, given by

(1.2.29). The terms No2 (v) and Nv(v) are the contributions of the anomalous disper-

sion due to the oxygen and water-vapor lines, respectively. The terms N 2 (v), Nv (v),

and Ne (v) are the contributions of the continuum dispersion of dry air, water vapor,

and liquid water, respectively.

Formulas for each of the dispersion terms can be found in the Millimeter-wave

Propagation Model (MPM), outlined in Liebe [1985]. Figures 1.2.3-1.2.6 show the

individual contributions to the dispersion from the MPM , in the range 0-100 GHz

and for a total pressure of 1013.25 mbar (1 atm), a temperature of 300 K, and a relative

humidity of 50%. Figure 1.2.7 shows the total refractivity for these parameters, and

for a liquid density of zero. The largest dispersion in this range is due to the 60 GHz

oxygen line, and deviates from the zero-dispersion value by about 1.5 N-units, or about

0.5% of the nondispersive refractivity. Below 30 GHz, the dispersion is less than 0.04%
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of the nondispersive value, and is due not only to the water-vapor resonance, but also

to the tail of the 60 GHz oxygen resonance and the water-vapor continuum dispersion.

Although the dispersion below 30 GHz is small, it is not negligible with respect

to the uncertainty with which the refractivity is known (see Section 1.2.iv). The dry

refractivity constant kl is known to about 0.03% of its value. We will continue to

use the nondispersive formula for the refractivity, with the understanding that it may

need appending as per the MPM.

Figure 1.2.8 shows the dispersion due to liquid water from the MPM, for a liquid

water density of 0.5 g cm-3 and a temperature of 280 K. This density is typical for

clouds of thickness between 200 and 600 m [Decker et al., 1978]. No existing formulas

for the atmospheric propagation delay includes the effects of liquid water, since it is

difficult to estimate the amount of liquid water except by remote sensing. From Figure

1.2.8, hovever, we can see that the zenith propagation delay through a cloud with this

temperature and liquid density and a thickness of 500 m is approximately 3.5 mm for

a frequency of 8 GHz. For a slant path of 10° elevation, the delay through such a cloud

is approximately 2 cm. If we compare this delay to typical group-delay uncertainties

of about 1 cm, we can see that this delay is not in general negligible. We will discuss

this topic further in Chapter 5.

We have now completed our review of the properties of the refractive index at

microwave frequencies, and turn to the presentation of formulas for the propagation de-

lay, and the effects of errors in these formulas on the estimation of geodetic parameters

from VLBI data. However, preliminary to this presentation, we will review a number

of definitions which are frequently used in discussing models of the propagation delay.
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Frequency (GHz)

70 80 90 100

Figure 1.2.3. Contribution to the dispersive refractivity of 02 resonances, primarily

those near 60 GHz, calculated from the MPM (see text). The values of the relevant

thermodynamic parameters were pressure P = 1013.25 mbar and temperature T =

300 K.
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Frequency (GHz)

70 80 90 100

Figure 1.2.4. Contribution to the dispersive refractivity of H2 0 resonances, calcu-

lated from the MPM (see text). The values of the relevant thermodynamic parameters

were pressure P = 1013.25 mbar and temperature T = 300 K, and relative humidity

RH = 50%.
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Figure 1.2.5. Contribution to the dispersive refractivity of the 02 continuum, calcu-

lated from the MPM (see text). The values of the relevant thermodynamic parameters

were pressure P = 1013.25 mbar and temperature T = 300 K.
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Frequency (GHz)
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Figure 1.2.6. Contribution to the dispersive refractivity of H20 continuum, calcu-

lated from the MPM (see text). The values of the relevant thermodynamic parame-

ters were pressure P = 1013.25 mbar, temperature T = 300 K, and relative humidity

RH = 50%.
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Figure 1.2.7. Total refractivity, from the the MPM (see text). The thermodynamic

parameters used were those used for Figures 1.2.3-1.2.6.
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Figure 1.2.8. Contribution to the dispersive refractivity of the liquid water contin-

uum, calculated from the MPM (see text). (This contribution is not included in the

calculation for Figure 1.2.7.) Cloud-like conditions of T = 280 K and pi = 0.5 g cm - 1

were used.
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1.3 Modeling the atmospheric delay: some definitions

In this section, we will define several terms which are often used when modeling

the atmospheric propagation delay. These are zenith delay, mapping function, and wet

and dry delays.

1..i The zenith delay

The zenith delay is defined to be the atmospheric propagation delay (1.1.2) for

a signal arriving from the zenith direction. Although in general the path of the ray

arriving from this direction may be curved, for a spherically symmetric atmosphere

we find that the ray path is a straight line, because the path strikes the lines of equal

refractive indices normally. We also obtain this result immediately from (1.2.14), which

is the equation for the position angle. The delay equation (1.2.15) for a spherically

symmetric atmosphere reduces to

ra = j dr' (n(r')- 1) (1.3.1)

This equation can be rewritten in terms of the height z above the earth, z =

r/ - rt, as

= j dz (n(z) - 1) = 10- dz N(z) (1.3.2)

where N(z) is the refractivity defined in (1.2.16). The superscript z indicates the

zenith delay. Even though (1.2.15) is impossible to integrate analytically, as noted

below this equation, it is possible to find analytical, closed-form solutions for the

integral for the zenith delay.
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1..ii The mapping function

In the section defining the zenith delay we saw that the integral solution for the

delay (1.2.15) had a relatively simple form for the delay in the zenith direction (0o = 0).

The only other realistic form for the refractive index which has such a simple solution

is N(z) = constant. Then again there is no bending, and the delay as a function of

elevation c can be written in terms of the zenith delay r, and for a plane-parallel

earth, as

rc,(E) = csc E (1.3.3)

In (1.3.3), the function csc is known as the "mapping function" because it relates the

zenith delay to the delay at all other elevations. In this example, the mapping function

contains no dependence on azimuth because of the assumption of spherical symmetry.

The csc E mapping function is usually referred to simply as the cosecant law." The

earth's atmosphere is described by the cosecant law to some approximation. In fact,

(1.3.3) motivates us to write the atmospheric delay as

Ta(E) = r7. m(E) (1.3.4)

where m(e) is the true mapping function, which as we noted is only approximately

described by the cosecant law. Because overall the refractive index decreases with

height, and because the earth is approximately spherical, the true mapping function

will nearly always be less than the cosecant of E, for all c. (The exceptions to this rule

result from horizontal variations of the refractive index.)

It is important to remember that (1.3.4) defines the mapping function m(E).

Other kinds of mapping functions can be defined. For instance, the grouping of the
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right-hand side of (1.1.2) into two terms might motivate us to define two functions: the

mapping function, which scales the zenith delay, and an additive "geometric delay" g

T.(E) = -m(E) + (E) (1.3.5)

Such a form has been suggested, for example, by Elgered and Lundqvist [1984]. Other

definitions are, of course, possible. The form one uses depends on the manner in which

one attempts to find a formula for the mapping function, and the manner in which one

will ultimately use the mapping function. For example, as discussed in Chapter 2, an

instrument known as a water-vapor radiometer (WVR) is in principle able to determine

the "wet" path delay (which will be defined below) along the line-of-sight. Thus, a

model combining the "dry" delay and the wet" delay determined from WVR data

would have the form

ra(E) = r *. m(e) + TWVR (1.3.6)

where Tr is the zenith "dry" delay and rwvR is the line-of-sight wet path delay deter-

mined by the WVR.

In the next section, we will describe in more detail what we mean by wet" and

"dry" delays. The definitions for these terms are important, for as we have seen these

terms also define the mapping function.

1.S.iii The wet and dry delays

Terms like wet delay" and "dry delay" are often used, but are seldom defined

carefully, and frequently not at all. This state of affairs is unfortunate, since there

is no obvious single way to define these terms. There are many ways to separate the
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different terms for both the refractivity and the delay. We will give the definitions

which will be used in this thesis, but they are not universal. We believe, however, that

they are "best" in a sense that will be discussed below.

The definitions of "wet" and "dry" refractivities are unambiguous, because it is

possible to write an expression for the refractivities of dry air and of water vapor. In

terms of the constants kl, k2, and k3 introduced in Section 1.2.iv, we have

Nd = klRdPd (1.3.7)

Nv= kR= p + k3R, P, (1.3.8)T

Let us examine the zenith delay. Equation (1.3.2) can now be written

r~ = 10- 6 dz Nd +lO 10- 6 dz Nw (1.3.9)

It seems obvious to call the first term on the right-hand side of (1.3.9) the dry zenith

delay, and the second term the wet zenith delay. These definitions become inconve-

nient, however, when one attempts to derive formulas for the zenith delay. The reason

for this inconvenience is that it is necessary to know the profile of the density of dry air

for the integration of the dry refractivity, and it is also necessary to know the profile

of the density of water vapor for the integration of the wet refractivity. On the other

hand, it is possible to estimate the integral of the total density without knowing its

specific profile. This ability stems from the equation of hydrostatic equilibrium, from

which we obtain

Po dz p(z) g(z) (1.3.10)
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where Po is the pressure at the base of the vertical column, p(z) the total density

(specified here and hereafter by the omission of any subscripts), and g(z) is the accel-

eration due to gravity. Because gravity varies only slightly over the effective range of

the integration in (1.3.10), we can expand g(z) to first-order in z with negligible error,

and write (1.3.10) as

f00 (00

Po = g dz p(z) +g dzz p(z) (1.3.11)

where g' is the derivative of g with respect to height evaluated at the surface. We can

rewrite the second integral in terms of the altitude HC of the center of mass of the

vertical column, which by definition is

H -fo dz z p(z)H _ fo dzzp(z) (1.3.12)
fo dzp(z)

Substitution of (1.3.12) into (1.3.11) yields

Po = (go + gHc) dz p(z) (1.3.13)

Although we have not examined the accuracy of (1.3.13)-this is discussed in Ap-

pendix A-the implication of this equation is clear: it is possible to estimate the

integral of the total density using the pressure at the base of the vertical column. This

result prompts us to rearrange (1.2.29) in terms of the total density, and the remaining

water vapor terms:

N = klRdp + (k2 - M k)Rpv + (1.3.14)
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We will now define the "dry" zenith delay to be

.r = lO0-6klRd dz p(z)
(1.3.15)

= 10-6klRd(go + g'Hc) Po

and the "wet" zenith delay to be

= dz 2-Md kl+ T(z)] P (1.3.16)

Several things should be pointed out about these definitions. Firstly, they are just that:

definitions. For other applications, it might be convenient to have other definitions.

One might disagree with the term "dry" for the quantity defined in (1.3.15) because it

depends on the total density. However, this term is a "dry" zenith delay in the sense

that if it were known that the atmosphere contained no water vapor, r would still

be defined by (1.3.15), because it is "parametrized" by the total pressure. It is not a

"dry" zenith delay in the sense that the mean molar mass of the atmospheric gas, the

density of which is p, is not equal to the molar mass of dry air.

Let us now move on to the propagation delay for directions other than the zenith.

In terms of the refractivity, we can write the delay equation (1.1.2) as

ra = 10-6 ds N(s) + [ ds - ds (1.3.17)
atm atm vac

If we express the refractivity not in terms of the wet and dry refractivity, but in

terms of the total density and water-vapor density as in (1.3.15) and (1.3.16), (1.3.17)

becomes

ra = 10-6klRd f~ ds p(s)
tm

+ 10-6RV t ds 2- tkl + ) P (1.3.18)

+Tg
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where the "geometric propagation-delay" rg is given by

= atn ds- ds (1.3.19)

The meaning of r,8 was discussed in Section 1.1.1. If we are to divide the delay into

a "wet" delay and a "dry" delay, what are we to do with the geometric propagation

delay? Elgered and Lundqvist [1984] have suggested that the propagation delay be

made up of three terms: the dry and wet delays, and the geometric delay as in (1.3.6).

In fact, the grouping of the propagation delay is primarily a matter of taste. It is clear,

however, that the definition of the "dry" delay being proportional to the integral of

the total density has the advantage of being able to integrate the dry delay exactly"

as already discussed.

In the following section, we will employ the definitions presented in this section,

when we discuss the formulas for the propagation delay used in VLBI data analysis

and the effects of errors in those formulas.

1.4 Treatment of the atmosphere in VLBI data analysis. I

In this section we will present the formulas commonly used to model the atmo-

spheric propagation delay in geodetic VLBI data analysis. We will begin in Section 1.4.i

by discussing the possible effect of the atmosphere on the estimation of parameters

from VLBI data. In Section 1.4.ii we will present common formulas used to me-el

the propagation delay. Then, in Section 1.5, we will discuss the effects on parameter

estimates of errors in these formulas for the propagation delay. Finally, in Section 1.6,
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we will again discuss the treatment of the atmosphere in VLBI data analysis, this time

in light of the results of Section 1.5.

1.4.i Parameter estimation from VLBI data

In this section we will review estimation of parameters from "geodetic" VLBI

data, (i.e., data composed of VLBI group delays). The usual means of estimating

such parameters is by weighted least squares. This estimation involves comparing the

"measured" group delay to an a priori estimate of that delay. The a priori estimate

of the delay is calculated from a model which uses a priori estimates of some set

of parameters; the differences between the observed group delays and the a priori

estimates are interpreted as being due to differences between the true values of the

parameters and the a priori values, plus measurement noise.

What effect does the atmosphere have on this estimation procedure? In Sec-

tion 1.1.i, we presented the effect of the atmospheric propagation delay on the "ob-

served" group delay. If unaccounted for in the mathematical model for the group delay,

this propagation delay will contribute to the difference between the observed and cal-

culated group delays. As we already discussed, the magnitude of the propagation delay

(single site) ranges from about 1.9-2.5 m in the zenith direction (depending on site

location and meteorological conditions), and increases approximately as the cosecant

of the elevation angle, yielding a 20-28 m delay at 5 elevation. If the antennas at

both sites of an interferometer observed that low, then the total atmospheric delay

(i.e., two-site difference) could range from about -26 to +26 m.
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Is the atmospheric propagation delay significant with respect to the precision

with which we can "measure" the group delay? Obviously, if the delay itself were not

significant, then its effects on the estimates of parameters would be insignificant, and

we would not have to worry about it. However, a typical uncertainty for a group delay

"measurement" is approximately 1-2 cm, based on the signal-to-noise ratio (SNR).

Thus, the atmospheric delay represents a potential 2000-a error, if we observe at an

elevation of 5° .

Ideally, we would like to have a "perfect" estimate of the propagation delay,

which we would then incorporate into our model for the group delay, and hence into

our a priori estimate of the group delay. Things are not ideal, however, and so the next

best thing is to have an estimate for the propagation delay which is "insignificantly

different" from the true propagation delay. By "insignificantly different" we mean small

with respect to the uncertainty of the measurement. (Note that errors can be made

insignificant by increasing the number used for the uncertainty of the measurement:

see Section 1.6.i.) As above, we assume that insignificant errors influence the estimates

of parameters insignificantly. This assumption is not always valid if the errors are of

a systematic nature.

Another option is to develop a mathematical expression for the propagation de-

lay which can be parametrized, and the atmospheric parameters can be estimated

along with the other parameters. Nevertheless, if the mathematical expression for the

propagation delay is incorrect, systematic errors may result. Even if this expression is

correct, the estimation of atmospheric parameters will have an influence on the esti-

mates of other parameters. (This influence is not specific to atmospheric parameters.
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The introduction of any parameters into a least-squares solution will affect the values

of the original parameter estimates, although the magnitude of the effect depends on

the correlations between the "signature" of the new parameter and those of the old

parameters.)

In the following section, we will discuss how the propagation delay has typically

been modeled, and how atmospheric parameters have been incorporated into the least-

squares solutions. We will then discuss the effects of errors in the model for the

propagation delay on the values of estimated parameters. We will also discuss the

effects of including these atmospheric parameters.

1.4.ii Modeling the propagation delay

In this section, we will review the way in which the atmospheric delay has been

modeled. In doing so, we will make use of the definitions of Section 1.3. The method

which we will first discuss is outlined in Clark et al. [19851, and is implemented in the

CALC-SOLVE suite of programs.

The formula used for the zenith delay is that developed by Saastamoinen [1972].

It relates the pressure, temperature, and humidity at the site, as well as the latitude

and altitude of the site, to the propagation delay in the zenith direction:

= 0.002277 1255 + 0.05) eo] (f (,H)) (1.4.1)

where r is the zenith delay in meters, PO is the total surface pressure in mbars, eo

is the partial pressure of water vapor at the surface, in mbars, To is the absolute
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temperature in Kelvins, and f (, H) is a function which accounts for the variation of

gravity with the latitude and altitude H of the site, and is given by

f(q, H) = 1 - 0.0026(1 - 2 sin2 5) - 0.00031H (1.4.2)

where H is in km. The term proportional to the total pressure we have discussed;

it is usually called the zenith "dry" delay. The term proportional to e is called the

zenith "wet" delay. Although, as we have discussed, it is very difficult to determine

the wet delay based only on surface measurements, Saastamoinen used an "average"

exponential vertical profile of humidity to determine the wet-delay constants in (1.4.1).

The Saastamoinen zenith delay formula must be combined with some mapping

function in order to yield a formula for the propagation delay in other directions. Two

mapping functions figure prominently in geodetic VLBI data analysis: the Chao map-

ping function [Chao, 1972] and the Marini mapping function [Marini, 1972; Marini and

Murray, 1974]. We will give the Marini mapping function here because it is not readily

available, having been given originally in an unpublished internal memorandum. The

Marini formula is based on a continued-fraction expansion for the propagation delay

originally developed by Marini [1972]. This formula yields for the propagation delay

ra (E) for a signal arriving from the elevation angle 

i( =A+B (1.4.3)
[B/(A + B)]
sin c + 0.015

where A is the Saastamoinen zenith delay given by (1.4.1) and B in meters is given by

B = X exp(-0.14372H) (1.4.4)
f(q,H)
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where f(O, H) is given in (1.4.2). We have presented (1.4.3) in a slightly different form

from Marini and Murray [1974] in order to emphasize the role of the Saastamoinen

zenith delay. Using (1.4.3) we can define a Marini mapping function given by

1+i;
m() = 1 )] (1.4.5)

sin e + 
sin e + 0.015

where ri = B/A. Although it might seem as though (1.4.5) is artificial, it does give us

a way to combine the Marini formula with different formulas for the zenith delay.

The other formula for the propagation delay which is frequently used for analysis

of VLBI data is the Chao formula [Chao, 1972]. This formula is also based on the

continued-fraction form of Marini, but the mapping function contains no dependence

on meteorological variables. The Chao formula for the propagation delay is

Ta(e) = A + w (1.4.6)
A C

sin e + sin e +
tan e + B tan e + D

In (1.4.6), and T< are the dry and wet zenith delays, respectively, and A, B, C, and

D are dimensionless constants, whose values are

A = 0.00143 B = 0.0445
(1.4.7)

C = 0.00035 D = 0.0170

Chao determined the values for the constants A-D by fitting (1.4.6) to values for the

delay determined by ray-tracing. The refractivity profile used in this ray-trace was an

"average" profile derived from radiosonde data.

Because, as we have discussed, the Saastamoinen formula for the wet delay can be

expected to be in error by , veral centimeters, an adjustment to A in (1.4.3) might be
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one of the parameters which is estimated when this formula is used for the propagation

delay. However, in the SOLVE program the Chao mapping function is used to calculate

the derivatives for this adjustment, whether the Chao formula or the Marini formula

is used for the a priori estimate. The reason for this inconsistency is that the Chao

formula is somewhat older than the Marini formula and was originally used to calculate

the partial derivatives when only the Chao formula could be used for the a priori

value of the propagation delay. When the Marini formula for the propagation delay

was introduced, the ability to use partial derivatives based on the Marini formula was

never encoded.

The Saastamoinen, Chao, and Marini formulas were the only formulas employed

for the reduction of VLBI data until about 1984. The Berman day-night" formula

[Berman, 1976] was also used, but this formula differs from the Saastamoinen formula

only in the expression for the wet delay. By mid-1984, two new mapping functions

had been introduced. One of these new mapping functions is described in Lanyi

[1984], and is based on a third-order expansion in the refractivity of the analytical

expression for the propagation delay. This new mapping function has not yet been

thoroughly tested using VLBI data, but preliminary tests indicate that use of this

mapping function reduces elevation-angle dependent systematic behavior in the esti-

mates of declinations of radio sources; testing of this mapping function is continuing

at present [R.N. Treuhaft, Jet Propulsion Laboratory, private communication, 1984;

1986] The other was developed by us, and its development and testing is described in

Chapter 3 and Appendix A.

54



In the following section, we discuss the effects on estimates of geodetic parameters

of errors in the models for the propagation delay. In Section 1.6, we will use the results

of Section 1.5 to discuss the "optimum" treatment of the atmosphere in VLBI data

analysis.

1.5 Effects of atmospheric modeling errors

In this section, we discuss the effects on the estimates of geodetic parameters (in

this case baseline length) of errors in the models for the propagation delay given above.

We will develop a simple error model for three types of errors in the above models:

(i) errors in the elevation-angle dependence of the mapping function, (ii) errors due

to azimuthal asymmetry, and (iii) errors in the estimate of the zenith delay. We will

use these error models to investigate the effects of the respective errors on estimates

of site position, and from these errors infer the errors in baseline-length estimates.

1.5.i Mapping function errors

In this section we will discuss the effects of errors in the elevation-angle depen-

dence of the mapping function. In developing an error model we will assume that the

"true" mapping function can be expressed as a Chao-type mapping function (i.e., a

continued fraction with the second sine replaced by tangent):

m(E) = 1 (1.5.1)
a

sin e +
tan E

The mapping function (1.5.1) is identical to the mapping functions in (1.4.6) with

B = 0. Setting B = 0 will not affect our results and makes for a simpler mapping
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function. Instead, this mapping function is parametrized by the single constant a. An

erroneous value for a will induce an error Ar given by

Ara - asin a (1.5.2)

where Aa = a- atrue. Equation (1.5.2) is an approximation for small a and small Aa.

How large an error does (1.5.2) yield for a mapping function error? From (1.4.7),

we know that a - 0.001. If we have an error Aa = -0.1a, and a zenith propagation

delay of 230 cm, then Figure 1.5.1 shows the predicted error between elevation angles

of about 5 and 200. From this curve, we can see that a 10% error in a can yield over

a 4 cm error in the value for the propagation delay at an elevation angle of 10°.

How will such an error affect the estimate of site position? In order to determine

this effect, we will need an a priori model for the group delay-error. This model will be

the one which we, in our ignorance of mapping function errors, assume to represent the

difference between the observed group delay and the calculated group delay. Of course,

our a priori model might contain the effect of an error in the mapping function, but

in general it does not, for reasons which are discussed later. We will use the simplest

"realistic" model:

Arg = -Ab. + Ar m(e) + AC (1.5.3)

Here Ab is an error in the a priori value for the baseline vector, is the unit vector

in the direction of the radio source, Ar is an error in the a priori value of the zenith

delay, and AC is an error in the a priori value of the "clock offset" (see Robertson

[19751). The system of units employed in (1.5.3) is such that the speed of light is

unity (refer to Section 1.1.ii). The signs of the baseline vector and the group delay are
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Figure 1.5.1 Error in the predicted propagation delay for a mapping-function error

of Aa = -10 - 4 and a zenith delay of 230 cm (see text).
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simultaneously defined by (1.5.3), i.e., if the baseline vector is defined to point from

site A to site B, then the group delay is defined to be tB - tA, where tA is the time of

arrival of the signal at site A, and t the time of arrival of the signal at site B in the

frame of reference of site A.

In our simple model,we will assume that we have data from a single baseline only.

In this case we can estimate changes in the three components of the baseline vector,

but we are insensitive to equal parallel displacements of the two sites. However, we

are primarily interested in the effects of an atmospheric-delay error at one site on

the estimates of the position of that site. It is irrelevant whether that site is the

"reference" (A) or "remote" (B) site. Thus, we will arbitrarily choose the "remote"

site; an error in the position of the "remote" site, expressed in a local cartesian frame,

along with the clock and atmosphere errors parametrized in (1.5.3), yield for the error

in the group delay

Arg = -Az sine- - Ax cos esin a - Ay cos cosa + AXTZ m(E) + AC (1.5.4)

The local right-hand cartesian frame is defined so that the x-axis points east, the y-axis

north; the azimuth a is defined in the usual manner of being measured clockwise from

the north axis as viewed down along the z-axis.

In general, the analyst of VLBI data will estimate the errors in the local site

coordinates (Ax, Ay, Az), the error in the zenith delay Ar, and the clock offset AC.

In this section, however, we will assume that the "observing" schedule is sufficiently

homogeneous with respect to azimuth that an error of the form (1.5.3) will induce only

small errors in the local x-y plane. We will therefore estimate only Az, Ar<, and AC.
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We will assume a uniform elevation coverage from the zenith direction down to some

minimum elevation angle Eo. In Figure 1.5.2 the solid line shows the estimate of Az as

a function of this minimum elevation angle, when the three parameters Az, Ar, and

AC are estimated simultaneously. The dotted line shows the negative of the estimate

of Az for the case for which no zenith delay parameter is estimated. Figure 1.5.3

shows the resulting "statistical uncertainty" for these corresponding estimates, for the

assumption of 100 observations uniformly weighted with a measurement uncertainty

of 1 cm. (The statistical uncertainty will scale with the measurement uncertainty and

with the reciprocal of the square-root of the number of observations.) Comparison

of Figures 1.5.2 and 1.5.3 illustrates a problem central to this thesis: the statistical

uncertainty in the estimate of the vertical component of site position is smaller for

smaller Eo while the effects due to atmospheric-related systematic errors are increased.

The statistical uncertainty of the estimate of the vertical coordinate is increased by the

estimation simultaneously of the zenith delay parameter Ar.. The partial derivative

for this parameter looks nearly like csc , while the partial derivative for Az looks like

sin E. The estimates of these parameters are therefore highly correlated. Figure 1.5.4

shows the correlation in the estimates of these parameters as a function of Eo. Even

for very low minimum elevation angles, the correlation is still very large.

An implication of Figure 1.5.2 is that if successive estimates of site position are

made from subsets of data having increasingly larger minimum elevation angles, then

the estimates of the vertical component of site position will monotonically increase or

decrease, depending of course on the sign of Aa (assuming co is below about 500). It

also tells us that we should get a systematically biased estimate for this parameter if
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Figure 1.5.2. Error in the estimate of the vertical coordinate of site position due to

the mapping-function error shown in Figure 1.5.1 (solid line). The dotted line shows

the negative of the error for the case in which no zenith delay parameter is estimated.

For a fuller explanation of the error model for the group delay, see text.
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Figure 1.5.3. Statistical uncertainty of the estimate of the vertical coordinate of site

position as a function of the elevation-angle lower limit (see text). Again, the solid line

refers to the case for which a zenith delay parameter is estimated, while the dotted

line shows the case for which no zenith delay parameter was estimated.
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we remove the zenith delay parameter from the solution. We will use these facts in

Chapter 3 to help us detect the presence of mapping function errors.

We now turn to another possible error in the models for the propagation delay:

azimuthal asymmetry.

1.5.ii Azimuthal asymmetry

In this section we will continue our study of the effects of errors in the models

for the propagation delay by investigation of the effects of azimuthal asymmetry. Both

the Marini and Chao formulas given above assume that the atmosphere is azimuthally

symmetric about the site, but it is reasonable to expect that the real atmosphere is

not so symmetric. Our approach will be to develop a model for the asymmetry error,

and to estimate its effects on the estimates of site position in a manner identical to

the previous section.

The model we will use to model horizontal inhomogeneities was developed by

Gardner [1977]. In this model, Gardner first expresses the refractivity in cylindrical

coordinates, with the positive z-axis directed up along the local vertical; he then ex-

pands the refractivity in a one-dimensional Taylor series about the horizontal distance

p from the vertical column above the site

N(p,z) = N(0, z) + p [-N(p,z) +- . )]_p2N (p z +... (1.5.5)

Assuming azimuthal symmetry is equivalent to assuming that N(p, z) = N(O, z) for all

p. Gardner calculated the effect of the higher order terms by integrating them along

the propagation path of the signal. This integration is equivalent to including these
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terms in the first integral on the right-hand side of (1.1.2), which represents the slowing

of the signal, and excluding these terms from the second integral, which represents the

change in propagation path. Thus, the correction terms calculated by Gardner are

zero in the zenith direction, whereas if he had included the effect on the changing of

the ray-path, the corrections would not be zero. We will discuss the corrections to the

ray-path below.

The approximate expression developed by Gardner for the first-order effect on the

propagation delay is given by GC 1, the first-order "gradient correction," the expression

for which is

GC1C= . V(PoToKo)
sine tan 

D(1 + 2 cos4 () . (PoT2K2 (1.5.6)D(+ + 

sin3 tan E 2 - Ko

where A is the unit vector pointing in the direction of the source, projected on the

local horizontal plane, and C, D, and Ko are given by

C = 10- 6 6.673 x 10-2 (1.5.7)
(Mdg) 2

2 R 3

D = 10-kl (M -6.139 x 10-7 (1.5.8)
ro (Mag)-

K-( 1Md (1.5.9)

In the above, kl is the dry refractivity constant, R is the universal gas constant, Md

is the molar mass of dry air, g is the acceleration due to gravity at the surface of the

earth, r is the distance from the center of the earth to the site, which will be taken to

be the mean radius of the earth, and o is the temperature lapse rate at the surface of

the earth. The dimensions of GC1 are meters when the gradient operator is expressed
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in units of m - 1. This model does not include inhomogeneities in the distribution of

water vapor, since there is no way to describe these deterministically. We will discuss

the effects of the random variation of water vapor later this section.

In order to simplify the investigation of the effects of horizontal inhomogeneities,

we will make some simplifying assumptions. Since Gardner found that the largest

contribution to the right-hand side of (1.5.6) is from temperature gradients, we will

assume that the gradients in pressure and lapse rate are zero. This assumption reduces

(1.5.6) to

56.8 (1+I Cos4 ) 1 AVT
GC1 ' it 6- - 0.219(1 2 cos4 )] ' VT (1.5.10)

sin tanE sin E tan j

The maximum value of GC1 (i.e., in the direction such that f VTo = IV ToJ) is plotted

in Figure 1.5.5 as a function of elevation angle for VTo = 0.01 K km -1 . This value for

the temperature gradient yields average values for the horizontal gradients reported

by Gardner. Thus, if the horizontal gradients he reported could be attributable solely

to temperature gradients, then the average temperature gradient could be expected

to be 0.01 K km-'. Although Gardner did not reveal the gradients of the individual

terms of (1.5.6), he did say that temperature gradients dominated over gradients of

pressure and Ko.

In deriving the expression (1.5.10) for GC 1, Gardner made approximations which

make the accuracy of GC1 poor for low elevation angles; we therefore show GC1 only

above 10° elevation in Figure 1.5.5. Gardner assumed that his correction would be

used in the analysis of satellite ranging data, and implicitly assumed that no ranging

would be done to satellites below this elevation angle. Therefore, if in the analysis of

VLBI data we wish to apply a gradient correction to the model for the propagation
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Figure 1.5.5. First order gradient correction, from Gardner [1977].
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delay for observations with elevation angles below 10°, we would first have to improve

the accuracy of the first-order gradient-correction formula.

In order to stlldy - he effects on the estimates of site position of unmodeled

horizontal gradients, we can make use of the technique used in Section 1.5.i to study

mapping function errors. However, we will make several changes to the method of

analysis. We will estimate all three components of site position, since it is conceivable

that the strongest effect may be in the horizontal direction. Also, to improve the

realism of the study, we will use a real observing schedule instead of the idealized

schedule used in the previous section. The distribution of observations used is shown

in Figure 1.5.6. This distribution represents the observations made at the Mojave Base

Station on 23 September 1984, when it participated in the first of the "Low Elevation"

experiments which are described in Chapter 4.

The effects of horizontal gradients on the estimates of site coordinates for this

experiment are shown in Figures 1.5.7 and 1.5.8, and are based on a horizontal-gradient

error of the form (1.5.10), with a temperature gradient of 0.01 K km- 1. The results

scale with the size of the gradient, but the dependence on the direction of the gradient

is more complicated, so we have repeated the test for the gradient direction having

azimuths of 0° through 1700 in steps of 10°. (A gradient in a given direction is

equivalent to a gradient in the opposite direction with the same magnitude but opposite

sign.) The result from each azimuth is represented by a black circle in Figures 1.5.7

and 1.5.8. The error bars shown in these figures are the statistical standard deviations,

based on the assumed observational standard deviations derived from the signal-to-

noise ratio [Clark et al., 1985J. These error bars have been placed on the 0°-azimuth
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Figure 1.5.6. Distribution of VLBI observations in azimuth and elevation at the

Mojave site, for the observing session used to investigate the effects of horizontal

gradients on estimates of site position (see text).
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results to indicate the size of the error bars as well as the 0° azimuth result. The

results for successively higher values of the azimuth of the gradient error describe an

ellipse, both in the X-Y plane (Figure 1.5.7) and the length-Z plane (Figure 1.5.8).

The purpose of showing the error bars is so that we can compare the systematic error

due to the horizontal gradient to the statistical standard deviation based upon the

"known" measurement noise.

The results indicate that even though the error is "horizontal," the largest effect

is in the estimate of the vertical component. The error in the vertical component is

largest for the azimuth of the gradient between 50° and 60°. From Figure 1.5.6, it can

be seen that this direction corresponds to a large number of low-elevation observations.

The next largest overall effect is in the estimate of the north component of site posi-

tion. This fact might at first be unexpected, because the east axis (i.e., 90° azimuth)

corresponds to the concentration of low-elevation observations, and we might believe

that when the gradient is in this direction we will suffer large errors in the estimate

of the horizontal component in this direction. However, it is important to recall from,

(1.5.4) that the elevation-dependence for an error in the the horizontal coordinates

of site position scales as the cosine of the elevation angle. If the set of observations

from a particular azimuth has associated with it a large range of elevation angles, then

a change in the component of site position in the direction of this azimuth will not

produce an effect which is correlated with the horizontal gradient effect; the horizontal

gradient will show up in the estimate of the vertical coordinate. If the set of observa-

tions from a particular azimuth has associated with it a small range of elevation angles,

then it is not possible to "separate" a change in the horizontal coordinate from the
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Figure 1.5.7. Errors in the estimates of the horizontal coordinates of site position due

to a horizontal gradient (see text). The error bars shown are the standard deviations

of the respective estimates. These error bars are shown only for the result for the

azimuth of the gradient being 00.
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site position. The Mojave-Haystack baseline length is approximately 3900 km.
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horizontal gradient effect. For the "Low-Elevation" experiment, the azimuths with a

large range of associated elevations are roughly along an east-west axis. The azimuths

with a small range of associated elevations are roughly along a north-south axis.

The dotted line in Figure 1.5.8 indicates the error in the estimate in baseline

length due solely to an error in the vertical coordinate of site position. It can be seen

that this line falls very close to the ellipse which is actually described by the errors.

The previous analysis assumed that horizontal variations of the refractive index

could be expressed by a Taylor expansion in the horizontal coordinates, and that the

terms of order higher than the first could be neglected. This assumption is not valid,

however, if we attempt to describe the random variations in the distribution of water

vapor. These variations are caused by the turbulence of the lower troposphere, wherein

most of the water vapor exists. We will assume that the estimates of the parameters

(site position, clock offset, and zenith delay), are obtained via the familiar standard

least-squares solution

x = (ATG-1A)-LATG-ly (1.5.11)

Here x is a vector containing the estimates of the differences of the parameters from

their a priori values, y is a vector containing the differences of the observations and

their value based on the a priori values for the parameters, G is a covariance matrix

of the measurement noise, and A is the derivative matrix. We have, of course, already

implicitly made use of (1.5.11) to study the effects of mapping function errors and

horizontal gradients. In order to study the effects of the random distribution of water

vapor, we will include only that contribution to y due to water-vapor turbulence.

Because we will be discussing the effects of non-zero zenith-delay errors in the next
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section, for these calculations we will assume that y is zero-mean, which implies that

* is zero mean. In order to characterize the random variations of the parameters due

to the random variations of the water vapor, we can look at the covariance matrix of

the estimates of the parameters, which can be obtained from (1.5.11):

K -(*kT) = (ATG-1A)-ATG-(yyT)G-1A(ATG-1A) - '
(1.5.12)

= (ATG-'A)-lATG-'KG-1A(ATG-A)

where ( ) indicates expectation, K: is the covariance matrix of the parameter estimates,

and K,, is the covariance of the contribution to the observations due to the random

variations of water vapor.

We will now derive an expression for K, based upon the known correlation spec-

trum for turbulence in the troposphere, and a simple model for the vertical distribution

of water vapor. (A more sophisticated model is described in Appendix B.) We will

discuss the effects of the simplifications later in this section. We will assume that all

the water vapor in the troposphere is contained in a thin plane above the surface of

the earth (also assumed planar) at a height H,. The turbulence in that l?.ker produces

"frozen features" in the distribution of water vapor, which move in the horizontal

plane with speed v and in a direction with azimuth a,. The turbulence is assumed

to be described by the Kolmogorov "2/3 law" [Tatarskii, 1961], which yields for the

two-dimensional structure function D of zenith delay

2.91C2AHp5/3, p < Po
D(p) = ([(Xl) - (X2)]) = (1.5.13)

2.91CAHp, 3 , p > po

Here rt(x) is the zenith delay measured up through the layer over the point x (see

Figure 1.5.9), and p = xI - x21. The "strength" of the turbulence is characterized
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by the terms C, AH and p. The term CAH comes from the integration of the

refractive-index structure function vertically through the layer of water vapor, which

is assumed to have thickness AH. Values for CIAH have been determined exper-

imentally using interferometry; the values for the determinations range from about

2 x 10-13 to 2 x 10-9 m1/3 (see Armstrong and Sramek [1982], e.g.). The larger this

number, the more turbulent the troposphere. The term po is the "outer scale" of the

turbulence, and has never been measured; its value is thought to be about 2 km.

We can derive a correlation function R(p) for the zenith delay from (1.5.13) if

we assume that the turbulence is a stationary process. We then find

) or2_ Ror2() 5/3 P < Po
R(p) = R(O) - D(p)= ( Po (1.5.14)

aI-Pof > Po

In (1.5.14), instead of writing the structure function in terms of the refractive-index

structure factor C2 and layer-thickness AH, we have expressed it in terms of the

outer-scale length Po and a corresponding "outer-scale variance" Co2. The correlation

at zero length R(O) has been expressed in terms of a zero-length variance u2.

We can now write the general expression for an element of the covariance matrix

Kv. For the element with the indices i and j we have

Ko(i, j) = R(pij) csc ci csc e (1.5.15)

where Pij is the distance between the point in the layer of water vapor which is pierced

by an imaginary line connecting the site and the source observed at time ti, and the

point which is pierced by an imaginary line connecting the site and the source observed

at time tj, in a frame of reference which is stationary with respect to the moving layer
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Figure 1.5.9. Geometry for the investigation of the effects of the random horizontal

distribution of water vapor (see text).
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of water vapor. The elevation angle of the source is Ei at time ti, and ej at tj. (The

sources observed at ti and t need not be the same ones.) The separation Pij can be

written

Pij = [(Azij)2 + (Ayii) 2] 1/2 (1.5.16)

where

Axij = Ho[cot i sin ai - cot Ey sin ac] - v(ti - t) sin a (1.5.17)

AYij = Hv[cot ei cos ai - cot ej cos ai] - v(ti - tj) cos a (1.5.18)

Therefore, in order to calculate (1.5.12), we must specify the values for six parameters:

Hv, av, , Po, oa, and oo.

In our calculation of K:, we chose values for these parameters which we believed

to be representative of "mild" conditions. (The effect of these choices are discussed

below.) We assumed complete decorrelation of the variations for p > po, so that

a2 = 2. We took av to be 3 mm, which from the analysis of water-vapor radiometer

data (see Chapter 2) we know is an upper bound for the minimum value of a,. For

the outer-scale length Po we took po = 1.5 km. (These values imply a value for C,2AH

of 3.1 x 10-11 ml/3.) We chose a height of 1.5 km for the water-vapor layer, and

a horizontal wind velocity of 2 m s - 1. The calculations were performed for wind-

directions of from 0° to 3200 in steps of 400. The distribution of observations was that

from the Mojave station, used in the previous section.

The results indicate no difference at the level of 0.2 mm between the effect on site

position of using a full matrix of Kolmogorov-type covariances and of using a diagonal,

i.e., white-noise, covariance matrix. (The effect of such a white-noise covariance matrix
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will be discussed in the following section.) This result is due to the sparseness of the

Kolmogorov covariance matrix: only observations closely separated in time and in the

approximately same direction will for all intents and purposes be correlated.

Performing the analysis with different model parameters would probably not be

enlightening. For more turbulent atmospheres, both a2 and a2 would likely increase,

but so would v, so that the these atmospheres would tend toward white noise. For

milder atmospheres, both a,2 and a2 would decrease, so that even though the corre-

lations increase, the covariances decrease. Furthermore, although we realize that our

model is a simplified version of reality, we expect our results to be correct to within

an order of magnitude, putting a very realistic upper bound of a few millimeters on

these effects. It should be noted, though, that the observing schedule used to perform

the preceding analysis is a so-called "geodetic observing schedule," with many widely

separated sources being observed. For observing schedules which have one or two

sources being "tracked" continuously or nearly so, one would expect the atmospheric

correlations to have a greater effect.

We will now discuss a final aspect of possible errors in the formulas for the

propagation delay, namely zenith delay errors.

1.5.iii Zenith delay errors

The effects of errors in the a priori estimate of the zenith delay can be calculated

easily using the same methods as were used in Sections 1.5.i and 1.5.ii. We will assume

that the errors in the estimates of the horizontal components are small, and estimate

only the vertical coordinate of site position.
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The results obtained are shown in Figure 1.5.10. The solid curve is the error in

the estimate of the vertical coordinate, for a zenith delay error of 1 cm, plotted against

minimum elevation angle. Herring [1986] has also examined the effect on the estimate

of the vertical coordinate of site position for a randomly changing zenith delay. His

results are also shown in Figure 1.5.10. The dashed curve labeled I is for a solution with

a zenith delay parameter estimated, while curve II is for a solution with no zenith delay

parameter estimated. Unlike the effect of a constant zenith delay error, the effect of

a random zenith delay error is greater when the zenith delay parameter is estimated,

because of the correlation between the estimates of the parameters of zenith delay

and vertical coordinate of site position. By estimating a zenith delay parameter, we

make our estimates of the vertical coordinate of site position less sensitive to a zenith-

delay bias (i.e., an error in the zenith delay which is constant for the duration of the

observing session), while increasing their sensitivity to short-term random variations

of the zenith delay.

We have now concluded our discussion of the effects of errors in the models for

the atmospheric propagation delay. In Section 1.5.iv, we will briefly summarize these

results. In Section 1.6, we will use these results to discuss future treatment of the

atmosphere in VLBI data analysis. Later, in Chapter 3, we will examine VLBI data

for evidence of such errors.

1.5.iv Summary

We have now examined the effect of three types of errors in the model for the

atmospheric propagation delay: mapping function errors, horizontal gradient errors,
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Figure 1.5.10. Effects on the estimate of the vertical coordinate of site position of

errors in the zenith delay, as a function of the elevation-angle lower limit, from Herring

[1986 (see text). The solid curve represents the effect of a constant error in the zenith

delay when no zenith delay parameter is estimated. The dash-dot curves represents

the effects of uncorrelated random variations in the zenith delay for the cases in which

a zenith delay parameter is estimated (I) and in which no zenith delay parameter is

estimated (II).
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and zenith delay errors. We can summarize our knowledge of the effects of these errors

on the estimates of site position:

* Of the three components of site position (east-north-vertical), the estimate of

the vertical component is most seriously affected. This statement is true even for

errors due to horizontal gradients. The primary reason that the estimate of the

vertical component suffers the most is that an error in the vertical coordinate

induces an error in the model of the group delay which is proportional to sin E,

which correlates highly with all forms of errors in the model for the propagation

delay.

* In general, the effect of an error in the model for the propagation delay increases

with decreasing elevation angle. Estimates of site position made from VLBI

data taken using an observing schedule with many low elevations will therefore

suffer more heavily than if all the observations had been in directions with high

elevation angles. However, this rule is not necessarily valid for time-dependent

errors, as can be seen from Figure 1.5.10.

* Estimation of a zenith delay parameter can affect the estimate of site position,

even if the a priori zenith delay is correct, because other types of systematic

errors in the model for the propagation delay (e.g., mapping function errors and

horizontal gradients) are also elevation dependent.

* The statistical standard error of the estimate of the vertical coordinate of site

position can be increased several-fold by the simultaneous estimation of a zenith
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delay parameter, due to the correlations between the estimates of those quanti-

ties. The amount of the increase depends on the elevation angles of the obser-

vations. If observations from low elevations are included, the correlations, and

hence the increase, are less than if no such observations are included.

In the next section we will add to our discussion of Section 1.4 dealing with the

treatment of the atmosphere in VLBI data analysis, based on what we have learned

in this section.

1.6 Treatment of the atmosphere in VLBI data analysis. II

In this final section of Chapter 1, we will discuss several more topics dealing

with treatment of the atmosphere in VLBI data analysis. In Section 1.6.i, we will

discuss the motivation and the possible consequences of reweighting" the data. In

Section 1.6.ii, we will discuss the estimation of atmospheric parameters from VLBI

data. The rest of this thesis will be devoted to methodrs f improving the atmospheric

models.

1.6.i Treatment of the time-variability of the atmosphere: Reweighting

In Section 1.4, we discussed how the atmospheric propagation delay is treated

in VLBI data analysis. First, a model for the propagation delay is used to generate

the a priori value for the delay, and then a zenith delay is estimated in the least-

squares analysis. In practice, if after this analysis is performed the postfit residuals

of group delay still exhibit obvious elevation-angle-dependent behavior, the correction
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to the a priori model for the propagation delay can be represented as a polynomial in

time and the coefficients estimated, or an independent zenith delay can be estimated

for different time intervals within the experiment, as the analyst sees fit. (The two

techniques may, of course, be combined. Moreover, a polynomial representation is not

necessarily the most sensible representation.) Regardless of which of these techniques

is used, it is not unreasonable to believe that the true behavior of the atmosphere with

time is much more complicated. The horizontal structure of the refractive index is in

reality dominated by the turbulence in the lower troposphere; this turbulence is "fully

developed" and can be described by the Kolmogorov "2/3 Law" [Tatarskii, 1961].

In order to account for the inadequacy of the simple atmospheric models, a

method known as "data reweighting" is used. To understand how this method works,

consider the following simple situation. Suppose we wish to estimate some determinis-

tic, time-independent quantity x given a set of n measurements yi, i = 1, ... , n, where

the yi are given by

Yi = x + + i (1.6.1)

In (1.6.1), ci is a random Gaussian number, with zero mean and variance a42 and

represents measurement noise. (We will assume the Ei are independent.) The term

zi in (1.6.1) is some Gaussian random process which is interfering with our "direct"

measurement of x; the zi are independent and have a mean of zero and a variance

of a4. The zi and ci are independent of each other. The zi are analogous to the

time-dependent, random atmosphere.
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Since the zi are zero mean and independent of the i, we can write (1.6.1) as

yi = z + E' (1.6.2)

where E' is a zero mean Gaussian number with variance a 2 + o 2 . That is, the presence

of the random process represented by the zi is equivalent to having no such random

process and increasing the variance of the measurement noise by Or2 .

The effect on the precision of the estimate of x is obvious. If the zi did not exist,

the uncertainty in the estimate of z would have been / -; with the existence of the

zi, the uncertainty of the estimate of x is V -A .

Thus we can account for" the presence of the zi by ignoring them in all ways

except for increasing the effective measurement variance by the variance of the zi.

If we had some independent estimates of the zi, then we could include these in the

observation equations; these observations would help to decrease the uncertainty in

the estimate of x if the observation error for the measurements of the zi were less than

or of order of our a priori uncertainty, az.

If az is unknown, then some other information must be supplied. In current

methods of VLBI data analysis, that information is in the form of a criterion that

after addition of the variance for the atmosphere, the X2 per degree of freedom for

the postfit residuals for a particular pair of sites be unity. (The atmospheric variance

is added in a baseline-dependent manner.) Since the postfit residuals depend on the

weights used in the least-squares analysis, the analysis is usually performed with the

new atmospheric weighting, until some convergence criteria is met. This whole process

is known as reweighting. (In reality, reweighting is meant not only to account for the
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atmospheric mismodeling, but also for mismodeling of the behavior of the hydrogen

maser clocks.')

The point which we wish to make concerning reweighting is that although the

process is statistically "valid" if all the assumptions concerning the statistical noise

process are correct, if these assumptions are incorrect then reweighting may not have

the desired result, and may have undesirable results. For example, let us assume that

our a priori value (or values, for a time-varying atmosphere) for the zenith delay is

(are) correct, but that we have used an incorrect mapping function. We can reweight

this data set, and one can argue that the net effect is to increase the uncertainty in

the estimates of site position, which will in fact account for our "uncertainty" in the

atmospheric model. However, this argument does not take into consideration that a

mapping-function error may be of a systematic nature, thereby introducing errors in

the estimates of site position which are biased or may have long-period (e.g., seasonal)

correlations. Also ignored is the possibility that the increase in the uncertainty of the

estimates may not be a true reflection of the variability of the estimates.

Reweighting is really the process of adding noise to the data so that errors in

the model effectively go uunnoticed." If the nature of the errors can be represented

by a white-noise random process, then reweighting is an entirely adequate procedure.

However, the net effect is to decrease the "signal," or the amount of information, in

the data. If a more accurate model can be found, then presumably less reweighting

would be necessary, and some of the signal may be recovered. Parametrizing the model

further uses the signal in the data to determine the errors in the a priori model; the

uncertainties of all the estimated parameters increase to reflect the correlations with
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the new parameters. If feasible, either of these techniques is preferable to reweighting.

In the following section, we will discuss the estimation of atmospheric parameters

from VLBI data. In the chapters that follow Chapter 1, we will discuss the possible

improvement of the atmospheric model.

1.6.ii Estimation of atmospheric parameters

In this section we will discuss the possible parametrization of the model for the

propagation delay. In the previous section, we noted that it is usual in the analysis of

VLBI data to estimate a correction to the a priori value for the zenith delay. However,

we can also introduce the parameter Aa for mapping function errors, and from (1.5.6)

any horizontal gradients may be parametrized approximately by a direction and an

amplitude. Why then not estimate these parameters from the VLBI data in the same

way a zenith delay is estimated? In principle, this estimation is possible. In practice,

the estimation of these parameters is undesirable because they will all be very highly

correlated among themselves and with the estimate of the vertical coordinate of site

position. These correlations, of course, cause the statistical uncertainty of all the

parameter estimates to increase. Particularly affected are those parameters, such as

the vertical coordinate parameter, which have associated high correlations. To get

an idea of the effect, refer to Figure 1.5.3, which shows the increase in the statistical

uncertainty of the estimate of the vertical coordinate when a zenith delay parameter

was estimated. For a minimum elevation of 10°, the uncertainty in that coordinate,

when a zenith delay parameter was estimated, was more than twice the uncertainty

when a zenith delay parameter was not estimated.
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If we limit ourselves to one atmospheric parameter, why do we choose to estimate

a zenith delay parameter rather than, say, a mapping function parameter? The main

reason is that we know that our a priori estimates of the wet" zenith delay are very

inaccurate (see Chapter 2). It was not until recently, however, that clear evidence was

presented for mapping function errors (see Chapter 3). In practice, if a zenith delay

error did exist one could probably estimate the mapping function parameter and obtain

estimates of site position fairly close to those that would be obtained if one estimated

a zenith delay parameter, provided the observations were not from elevation angles

that were too low, because an error which scales as csc e can be represented fairly well

by the sum of a term which scales as s ' (i.e., the mapping-function parameter) and

a constant term (i.e., the clock-offset parameter).

The above considerations play an important role in the design of many VLBI

experiments. In designing an experiment, one must decide "how low" to observe.

Since errors in the model for the propagation delay tend to increase with decreasing

elevation angle, the tendency is often to observe above about 100 elevation. However,

from Figure 1.5.3 it can be seen that the effect on the uncertainty of the estimate of

the vertical coordinate increases rapidly as the minimum elevation-angle is increased.

In later chapters, we will detail attempts to increase the accuracy of the models

for the propagation delay. In Chapter 2, we will discuss the estimation of the "wet"

delay from ground-based radiometry. In Chapter 3 we will discuss attempts to improve

the mapping function. In Chapter 4, we will discuss the planning and results from a

set of experiments which have been used to test the models for the propagation delay.
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Chapter 2

Water-Vapor Radiometry

Introduction

In Chapter 1 we spoke several times of the unpredictability of the wet path

delay. This unpredictability arises directly from the "unmixed" condition of water

vapor in the atmosphere. The term unmixed" refers to the presence under normal

conditions of localized sources of water vapor, usually in the form of liquid water. These

sources along with turbulence in the lower troposphere lead to local variations in the

concentration of water vapor which are not correlated with variations even a short

distance away. In practical terms, this decorrelation means that the vertical profile

of humidity is unknown, and that the wet delay-even in the zenith direction-is not

predicted with any accuracy by formulas which are based solely on surface conditions.

In this chapter, we will discuss the means by which measurements of the inte-

grated intensity of emission of water vapor at microwave frequencies may be used to

infer the wet delay, and discuss the precision and accuracy of the instruments, known as

water-vapor radiometers, which make these measurements. We will begin in Section 2.1

by describing how exactly the wet delay may be related to such radiometric measure-

ments. In doing so, we will introduce the single-frequency weighting function. Then in

Section 2.2, before we discuss the dual-frequency algorithm, we will present some nec-

essary background dealing with the microwave absorption spectrum of the atmosphere.
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We will then be in a position in Section 2.3 to introduce the dual-frequency algorithm.

In Section 2.4, we will review several important instrumental features of radiometers,

and the way these features affect calibration via internal calibration loads. In Sec-

tion 2.5, we discuss a common alternative to calibration via internal loads, namely

calibration by the tip-curve method. We follow these discussions of instrumental ef-

fects by a discussion of the overall accuracy of the dual-frequency algorithm presented

in Section 2.3. We end this chapter by discussing alternate algorithms for estimation

of the wet delay from radiometric measurements, including alternate dual-frequency

algorithms (Section 2.7) and multichannel water-vapor radiometry (Section 2.8).

2.1 Relating the wet path delay to radiometric quantities

In this section, we will discuss the means by which radiometric quantities may

be related to the wet propagation delay. In order to discuss these methods, however,

we must first define the wet delay. In Chapter 1, we discussed possible definitions for

the both the "dry" and the wet" delay, and how these definitions are related to each

other. Hereafter, we will define the wet delay Lw to be the second term of (1.3.18):

Lw = 10-6Rv R ds k2-M k )Pv (2.1.1)

In the above equation, k, k2, and k3 are the constants in the refractivity formula

discussed in Section 1.2.iv; Ru is the specific gas constant for water vapor; M, is the

molar mass for water and Md the molar mass of "dry air," discussed in Section 1.2.iii;

Pv is the density of water vapor; and T is the absolute temperature. The path indicated

by atm is the path of the ray through the atmosphere, as discussed in Section 1.1.
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The use of the symbol "L" for delay-rather than "r," which was used throughout

Chapter 1-enables us to distinguish delay from opacity, which is introduced below.

Hereafter, we will combine the constants kl and k2 used in (2.1.1) above and define

k'-2

k'2 -k -M. k (2.1.2)
Md

The use of radiometers to estimate the wet path delay is motivated by the equation

for the optical depth r, of water vapcr in the atmosphere, along the path of the ray

[Chandrasekhar, 1960]

r= L ds XvPv (2.1.3)
tm

where ic is the mass absorption coefficient of water vapor, which is approximately

independent of Pv, but which depends heavily on P, T, and frequency (see Section

2.2). Equation (2.1.3) prompts us to write (2.1.1) in the form

L, = 10- Rv ds [ (k + -) Ec" ] vPv(a~~~t~M~ T ~~~(2.1.4)
= Wo-Tv

where the constant Wo has been defined as

Wo -- f atm 2 T (2.1.5)[10- eRvfatmdS[(k +- ) t' l] (~vPv) (2.1.5)fatm ds IcvPV

An alternate interpretation of the constant Wo can be found. If the "weighting func-

tion" W(s), given by

W($) = 106 R;' (k + ) CV(8) (2.1.6)
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is constant for all s, then we have Wo = W(s). Furthermore, it is simple to evaluate

Wo, using values for the temperature in (1.2.6), and calculating the mass absorption

coefficient from formulas given later in this chapter. Estimates for the opacity of water

vapor can then be used in (2.1.4) to yield estimates of the wet path delay.

Before examining the weighting function W(s) in detail, let us first look for a

means for determining the opacity r. The total opacity of the atmosphere can

be determined radiometrically by measuring the atmospheric brightness temperature.

The relationship between the atmospheric brightness temperature Ta and the opacity

r of the atmosphere is expressed by the equation of radiative transfer [Chandrasekhar,

1960]:

Ta = Tbge- r + Teff (1 - e- r) (2.1.7)

where Tbg = 2.7 K, and Tiff is an "effective temperature," defined below. Equation

(2.1.7) is for a radiometer pointed at the atmosphere in a direction in which there are

no sources of radiation except the 2.7 K microwave background and the atmosphere

itself. The effective temperature is defined by

Tiff_ fatm ds T(s)er()K(s)p(s) (2.1.8)
(1 - e-r)

where (s) is the total mass absorption coefficient (not just that due to water vapor),

p(s) and is the total density. The function r(s) is defined to be the optical depth of

the atmosphere were the atmosphere to be terminated at that point:

r(s) = f ds' rc(s')p(s') (2.1.9)

where the integral, as before, is to run along the path atm.
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As mentioned above, the primary observable" of a radiometer is the atmospheric

brightness temperature (although it does not directly "observe" this quantity). How-

ever, from (2.1.4) we can see that we do not need the total opacity, but the opacity

due solely to water vapor, and the contributions to the opacity from other atmospheric

constituents (mainly oxygen and liquid water) are not negligible, at least at those fre-

quencies at which one would observe in order to estimate the opacity of water vapor.

Thus there must be some way to determine the opacity of water vapor only, before

we can make use of (2.1.4). In the following sections, we will develop the so-called

dual-frequency algorithm, in which observations at two frequencies are used to deter-

mine the opacity of water vapor. We will discuss algorithms which use more than two

frequencies in Section 2.7. Before we discuss these other algorithms, however, we must

first first discuss absorption in the atmosphere for the individual constituents.

2.2 Absorption o2 microwaves by the atmosphere

Figure 2.2.1 shows the microwave absorption spectrum for frequencies below

300 GHz. The main features of this spectrum are the water-vapor absorption lines

near 22 and 183 GHz, 02 absorption lines near 60 and 118 GHz, and a number of sharp

lines due to ozone. (Not included in this figure is the effect of liquid water, although

liquid water plays an important role in microwave absorption in the atmosphere, as we

will see.) In this section, we will discuss the properties of the microwave spectrum near

the 22 GHz water-vapor line. It is near this line that existing WVR's operate, in order

to take advantage of the relatively low atmospheric opacity. There are radiometers

that use the 60 GHz 02 lines to obtain information concerning the oxygen opacity,
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but this use will not be discussed until Section 2.8. We will first examine the 22 GHz

water-vapor absorption line.

£.2.i The 22.2£5 GHz line of water vapor

Unlike any of the primary constituents of dry air, water vapor possesses a per-

manent electric dipole moment. Due to the rotational transitions associated with this

dipole moment, water vapor possesses a microwave absorption spectrum. (See, e.g.,

Debye [1929].) The lines in this spectrum are collision-broadened, and so possess a

Lorentzian shape [Van Vleck and Weisskopf, 1945]. Van Vleck [1947b] showed that

the accumulated effect of all the rotational lines above the 22.235 GHz line could be

written as a single additive term to the absorption near this line, because this line is

well separated from the other water-vapor lines and the tails of these lines all have

approximately the same shape. Barrett and Chung [1962] found that Van Vleck's theo-

retical expression for this accumulated effect disagreed with experimental results from,

e.g., Becker and Autler [1946] possibly due to Van Vleck's assumption of a single line

width for all of the lines. Barrett and Chung therefore introduced an empirical cor-

rection factor for this accumulative-effects term. Their expression for the water-vapor

absorption coefficient ac, expressed by Staelin [1966] in convenient units, is

a = IcvP = 3.43 x 10-3e-6 44/T vPvT 2. 5

x f(v; ,AV) (2.2.1)

+ 2.55 x 10- 8p v 2 / cm-l
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Figure 2.2.1. Atmospheric attenuation spectrum, from Waters [19761. The lower

curve has been calculated for a dry atmosphere, the upper for an integrated column

density of 2 g cm- 2 assumed distributed exponentially with a scale height of 2 km.
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Figure 2.2.2. Mass absorption coefficient cu of water vapor, at an altitude of 0 km

(solid line), 2.5 km (dotted line), 5 km (short dashes), and 7.5 km (long dashes). The

density of water vapor is taken to be zero, and the temperature and pressure are taken

from the U.S. Standard Atmosphere [1976].
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where T is the absolute temperature in Kelvins, Pv is the density of water vapor in

g m- 3, and v is the frequency in GHz. The line half-width Av in GHz is given by

A = 2.58 10- 3 1 + 3.0147 (T/318) 6 2 5 (2.2.2)

where P is the total pressure in mbars. The shape function f(v; vo, A) is given by

the expression

=V ; =,) [(M- +l (A2 + .)2+ +(A)2
where v0 - 22.235 GHz. Plots of v, for typical atmospheric parameters at several

altitudes are shown in Figure 2.2.2. Note that rv does not depend on the density of

water vapor except weakly through the half-width. Thus, the weighting function W (s)

in (2.1.6) has little water-vapor density dependence.

Waters [1976] has discussed the accuracy of the Van Vleck-Weisskopf line shape

as well as alternative line shapes, such as the "kinetic" line shape. The differences be-

tween these two theoretical line shapes is small (-10%) compared to the disagreement

between both theoretical line shapes and the experimental values. Thus, regardless of

the line shape chosen one must add the empirical correction term proportional to v 2

discussed for (2.2.1). However, as we shall see, the dual-frequency weighting function

is insensitive to additive terms with such frequency dependence.

2.2.ii Ozygen

While 02 possesses no permanent electric dipole moment, it does possess a per-

manent magnetic dipole moment, with which microwave absorption is associated. This
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absorption gives rise to a large number of lines clustered near 60 GHz, appearing in

Figure 2.2.1 as a single wide line. Van Vleck [1947a] showed that for frequencies below

about 45 GHz, the collection of lines can be treated as a single broad line centered

at 60 GHz. Snider and Westwater [1969] give the expression for the absorption below

45 GHz:

C10 2 = 2.6 x 10-8 2 ( 2P )(2)3

[1 o2~A~0 2 2 1 1 (2.2.4)

x (M- .o)2 + (o) + ( +(A )22 + (2(V 02)2] (2.2.4)

X AV0 2 cm -

where vo = 60 GHz, P is the pressure in mbar, T is the temperature in Kelvins, v is

the frequency in GHz, and Avo 2 is the oxygen line half-width in GHz, which Snider

and Westwater give as

A 02 = 0.75 (103.2s) (293)0.85 (2.2.5)

For frequencies above 45 GHz, see Rozenkranz [1975].

Of more use to us than the absorption coefficient of oxygen is the opacity due

to oxygen in the atmosphere, which is the integral of a 2 through the atmosphere.

This use is important because in the dual-frequency WVR algorithm presented in

Section 2.3, we must apply an oxygen correction" based on the opacity of oxygen. We

will therefore integrate (2.2.4) with respect to height to determine the zenith opacity for

an atmosphere which has the following properties: the atmosphere is in hydrostatic

equilibrium with surface pressure P,, and the temperature decreases linearly with

constant lapse rate ( < 0). The surface temperature is To, and the minimum value
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of the temperature, 0 K, is reached at an altitude of -To/fI. (We will discuss the

effect of using this "special" atmosphere as opposed to a physically sensible atmosphere

below.) Substituting (2.2.5) into the numerators of (2.2.4) yields

2 = 1.95 x 10- 6 1013.25 (T 2K m 1 (2.2.6)

where Kv represents the shape functions of (2.2.4); K, still depends on the line half-

width, but only very weakly if we are many half-widths from the line center: K, varies

by less than 5% for 0 < . < 45 GHz and 0 < v < 2 GHz. Thus, we may consider K,

to be constant with height for the purpose of integration of (2.2.6).

To integrate (2.2.6) with respect to height and derive an expression for the zenith

opacity, we must evaluate the integral

dz (1013.25) ( 3.5 (2.2.7)

By combining the equation of hydrostatic equilibrium and the ideal gas law (see Hess

[1959], for example), the pressure can be written as

P = T (2.2.8)

where

Mdg_ >0 do , o(2.2.9)
R]3

In the above equation, we assume that the air is dry. This assumption will introduce

a small bias in our result on the order of a few per cent, which we will see is negligible.
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If we now substitute (2.2.8) into (2.2.6), and change the variable of integration

by using dT = 3dz, then after lengthy but straightforward algebra we arrive at

P. 2 293 2.85

To2 101.25 (T. x 293/,-1(2-y - 2.85)-v 2Kv (2.2.10)

If we use standard values of Md = 29 kg kmol- 1, g 9 9.8 m s - 2 , R - 8314 J (kmol K)- ,

and B = -0.0065 K m-l 1, we find

2 = 115 X 10- 2 1013.25 2K, nepers (2.2.11)

Equation (2.2.11) shows that we can predict the opacity due to oxygen for frequencies

less than about 45 GHz for this special atmosphere if we know the pressure and

temperature at the surface. How well does (2.2.11) predict the oxygen opacity for a

"real" atmosphere? Up to about 11 kinm, the model for the temperature in our special

model and in the U.S. Standard Atmosphere are identical, except that in our model

the surface temperature may vary. Above this height only about 20% of the mass of

the atmosphere remains, so one may take this number as an (extreme) upper limit

to the error in (2.2.11). As we will see, the "oxygen correction" needed in the dual-

frequency WVR algorithm has an amplitude of only a few millimeters, so an error of

20% amounts to about 1 mm at most.

In Section 2.8, we will discuss algorithms for WVR's which make use of a mea-

surement of brightness temperature on the 60 GHz oxygen "line." Now, however, we

will complete our discussion of absorption in the atmosphere.
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2.2.iii Liquid water

Liquid water has a continuum spectrum due to absorption as well as to scattering

in the microwave region. Goldstein [1951] gives expressions for both the absorption

cross section ca and the scattering cross section ao for a single drop of water with

radius a. The ratio of these cross sections is

e, (a3/A) = (A/a)3 (2.2.12)
as (a6/A 4 )

Note that the scattering cross section used in (2.2.12) assumes Rayleigh scattering.

Equation (2.2.12) tells us that absorption dominates over scattering for A > a. For

A = 1 cm and a = 1 mm (2.2.12) gives a/a - 103. Staelin [1966] used the data

presented by Goldstein and determined

oePe = o-6peeo28l(l8-Tc) cm 1 (2.2.13)

where pe is the liquid water density in g m- 3 , is in cm, and Tc is the temperature in

°C. Because of the restriction on a/A, (2.2.13) is not valid in cases where a - A, such

as might occur in rain. For cases of clouds or fog or dense clouds, (2.2.13) begins to

break down, and the algorithm presented in the next section is less accurate.

2.3 The dual-frequency algorithm

Having discussed briefly the frequency dependence of atmospheric absorption,

we will in this section derive an expression for the wet path delay based on having

available a two-frequency radiometer. Such a radiometer when used for the purpose of

estimating the integrated water-vapor content is known as a water-vapor radiometer
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(WVR). One of the channels of the WVR is centered at frequency VI, the other at V2

(In the following, whenever we omit the subscript indicating the frequency channel,

then that equation holds for both channels.)

The total opacity can be written as

r = To2 + TV + re (2.3.1)

where the subscript 02 indicates oxygen, v indicates water vapor, and e indicates liquid

water. As discussed in Section 2.2.i, it should be possible to model the 02 opacity

with some accuracy. However, it is very difficult, using surface-based measurements,

to determine the liquid-water content of the atmosphere, because even on dry days

there may be a large amount of liquid water suspended in clouds several kilometers in

altitude. It is therefore desirable to eliminate the dependence on re. The total opacities

at the two different frequencies can be combined in a manner which eliminates the

liquid water term. Integrating (2.2.13) along the line-of-sight path in order to obtain

the opacity, we find that

r C c 2 (2.3.2)

where the constant of proportionality depends upon the profiles of temperature and

liquid water, but not on frequency. The frequency dependence of (2.3.2) enables us to

construct a liquid-independent "observable":

1 2 V12V- I - 2 -( - 2) 2+ (@)1-2 (2.3.3)
2 1 00
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where the subscripts "1" and "2" refer to the two frequency channels of the dual-

frequency WVR. From (2.2.11) we have

o2 = f(Po,To)v 2K (2.3.4)

where the function f(Po, To) depends only on the surface pressure and temperature

but not on frequency, and K, is the frequency-dependent shape term, which has only

a small dependence on temperature and pressure for v below about 45 GHz. Thus

(2.3.3) becomes

T1 - 2 = (TV - 27V2) + f (Po, To)2V[K -K2] (2.3.5)

Rearranging gives

V1 12 122r-1T2 =V2 (2.3.6)TV - "2 2 = r - l )- f(Po ,To)2K - K2] (2.3.6)

From (2.1.3), the left-hand side of (2.3.6) can be written

rv - . 2 = ds r,- v-4rv 2 P (2.3.7)
(2.3.7)

= ati ds W(s) 10-6 R [k + 3] Pv

where

W(s) = 106R R-1 (k + k3) (v (2.3.8)

is the dual-frequency weighting function, as compared to the single-frequency weighting

function of (2.1.6). Note that, from (2.2.1), the dual-frequency weighting function does

not depend on the contribution from the tails of all the water-vapor lines above the
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22.235 GHz line. Thus, any question as to the strength of these contributions is

irrelevant.

If the assumption is made, as with the single frequency weighting function, that

W(s) is constant, then (2.3.7) yields

' Lw = T 1- -T 2 - f(T, Po) [Ki - K2] (2.3.9)
1/2

Solving for the wet path delay and using (2.3.4) then gives

L_= W- I_ - ,1 2 - (r 2)1 - ] } (2.3.10)

Equation (2.3.10) expresses a relationship between the total opacities at two

frequencies and the wet propagation delay. As we mentioned in Section 2.1, the total

opacity can be inferred from radiometric measurements. Thus, the dual-frequency

algorithm would seem to be an improvement over the single-frequency algorithm in the

sense that the single-frequency algorithm depends on knowing the opacity due solely

to water vapor, which is not "directly" obtainable from a measurement at a single

frequency. However, we have not yet discussed the "inherent" accuracy of the dual-

frequency algorithm. Both the determination of the dual-frequency weighting function

and the accuracy of the dual-frequency algorithm will be discussed in Section 2.6. In

the next two sections, we will discuss effects of instrumental error on the estimates of

the opacity.

2.4 Instrumental effects

In this section we will discuss several effects of instrumentation which can affect

the accuracy of wet path delay "retrieval," as it is commonly called. We will not present
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an exhaustive study of the instrumentation of radiometers, but instead include those

sources of error which have been identified for the available radiometers. For the time

being, we will discuss the accuracy of the WVR in terms of the accuracy with which the

atmospheric brightness temperature or the opacity may be determined. Thus, we are

for now discussing the radiometer part of WVR. We will assume that the two channels

are equivalent. Later, when discussing the accuracy of the weighting function, we will

put the accuracy of the WVR in terms of wet path delay.

In this section and in Section 2.5, we will separate the discussion into two parts.

In the first part, we will discuss the effect of experimental error on the precision of

determinations of atmospheric brightness temperature and opacity. We will assume

that the radiometer is lossless and reflectionless, so that the radiometric temperatures

are represented by physical temperatures of calibration loads. In the second part, we

will discuss the effect on the accuracy of the determinations of brightness temperature

and opacity of the losses and reflections of the radiometer, while assuming that the

system is noiseless, so that there is no experimental error. Of course, both sources of

error exist in a real radiometer, but they can be analyzed separately.

This section and the following section represent a review of some of the principles

of radiometry, and do not contain any new insights on that subject. However, the

discussion is geared toward a user" of one of the several WVR's that are used today

in conjunction with geodetic" radio interferometry. These WVR's include:

* R-series. These instruments were constructed at the Jet Propulsion Laboratory

(JPL) in the late 1970's, and are described in Resch et al. [1985], for example.
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These WVR's are mechanically unreliable (having been built for R&D purposes),

and most of them have been or are being, at this date, "retrofitted."

* R-series retrofit. These are the retrofit versions of the R-series which are me-

chanically more reliable and electronically more stable than the original R-series.

* Onsala WVR. This WVR was built at the Onsala Space Observatory in Sweden,

where it has operated since late 1980. This WVR, described in Elgered [1983], is

of slightly different internal design than the R-series. Some of these differences

are discussed in this section.

* J-series. At the time of this writing, there is only one prototype J-series WVR,

which was built in 1983-1985, also at JPL. This WVR is a somewhat different

design than the R-series and the Onsala WVR, and much of the discussion in

these sections will not apply to the J-series. See Janssen [1985] for a description

of this instrument.

2.4.i Instrumental precision

Figure 2.4.1(a) shows a schematic of a simple radiometer. The signal, which

represents the radiant energy from the sky, enters the antenna horn and passes through

a series of components, which in Figure 2.4.1(a) have been all lumped together in the

box marked "radiometer system." This box in fact represents such components as

square law detectors, filters, mixers, and amplifiers. We will consider the effect of all

these components together. After passing through the radiometer system, the analog
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signal is transformed to a digital signal by an A/D converter, after which the resulting

number is presumably recorded for use.

We now must ask, how do we relate the output number to the atmospheric

brightness temperature? If the radiometer system and A/D converter are linear, then

we can write

Ta = G-1Na + Toff (2.4.1)

where Ta is the atmospheric brightness temperature, Na is the resulting output num-

ber, and G and Toff are instrumental "constants" which may in fact vary with time

and, quite frequently, with temperature. Linearity of the radiometer system is some-

thing which must be built into the radiometer design; in fact, today this linearity is

not a very difficult requirement to meet.

A problem separate from the designing of a linear radiometer is the determination

of G and Tff. There are several ways these quantities can be determined. The

method which is illustrated in Figure 2.4.1(b) is that used in the R-series. This method

consists of a switch placed between the antenna and the radiometer system. The switch

allows the input to the radiometer to be varied between the antenna and either of two

resistive calibration loads maintained at separate temperatures. For the R-series, the

calibration loads consist of a "hot" load near 1000 C ( 370 K) and a "base" load near

40° C ( 310 K). The instrumental "gain" G can be determined from the measurement

of the temperatures and corresponding digital output ("counts") from these loads using

G Nh - Nb (2.4.2)
Th - Tb
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Figure 2.4.1.(a) Simple schematic of one channel of a WVR. (b) Same, except showing

calibration loads.
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where the subscript h refers to the hot load and b to the base load. The "offset

temperature" Tff likewise can be determined using

Toff = Tb - G-1 Nb (2.4.3)

The three equations (2.4.1), (2.4.2) and (2.4.3) allow us to calculate the effects of

instrumental noise on the estimate of atmospheric brightness temperature. By using

(2.4.2) and (2.4.3), we can write (2.4.1) in terms of the calibration loads:

Ta =(N) (Na-Nb) Tb (2.4.4)( Th - Tb ) (N - Nb) Tb

Thus the error in the antenna temperature aT. is related to the instrumental errors in

the measurement of the temperatures of the calibration loads and the output counts

from the calibration loads and the antenna (all assumed Gaussian white noise and

uncorrelated) by

2 2

°a -) (T. -T2 2 + g)2

(2.4.5)

+( T a) (o + j)]

Note that the second term on the right-hand side of (2.4.5) is inversely proportional

to the square of the separation of the temperatures of the two calibration loads. For

typical atmospheric brightness temperatures (between 10 K and 100 K), and for the

values for Tb and Th given above, this second term is much larger than the first term.

Table 2.4.1 gives values for the various terms in (2.4.5) based on typical values from

the R-series WVR's. With these values, (2.4.5) becomes

aT, 0.15[1.0 + 4.0 X 10-4 [(Ta- 310)2 + (Ta- 370)]] (2.4.6)
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where both Ta and aT. are in Kelvins.

In Figure 2.4.2, the solid line shows aT versus Ta in the region 0 < Ta < 100 K,

for the R-series. The dashed line represents the error in the determination of the

brightness temperature were the hot load to be replaced by a cold load operating near

80 K. We can see that TaT is nearly five times smaller for the case of the cold-base

pair than for the case of the hot-base pair. From (2.4.5) we can see that this situation

arises from two contributions: (i) the increase in the factor Th - TE (which for the cold

load may be written Tc- Tb), and (ii) the decrease in the factor Ta- Th, which is now

Ta - To. Such a cold load is built into the design of the Onsala WVR. The precision

of this radiometer is about 0.2 K, while the precision of the R-series is about 1 K. In

Section 2.5, we will show how the precision of the R-series WVR's can be improved.

2.4.ii Instrumental accuracy

In writing (2.4.4), we assumed that the gain defined in (2.4.2) was the gain

of the signal propagating from the radiometer antenna through the switch and the

following system (see Figure 2.4.1). In fact this is not the case. The waveguides

transmitting the power from the loads to the radiometers will be lossy, and there will

be reflections at junctions, e.g., at the switch in Figure 2.4.1(b). Another problem is

that the thermistors used to measure the temperatures of the calibration loads will

have been incorrectly calibrated, mainly due to instrumental errors during calibration.

In order to allow us to examine the effects of these errors, let us denote the radiometric
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Table 2.4.1

R-Series Parameters

Parameter Typical value

(R-series)

Tb 310 K
Th 370 K

OaT = arTb 0.1 K
rNh = rNb = rN. 1-3 "counts"

G 6-10 counts K- 1

Uncertainty in "counts" depends on integration time, which is software selectable in

steps of 0.1 sec.
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temperature at the output of the switch with an asterisk. Then the output Na when

the switch is connected to the antenna can be written

Na = G (T* - T) + Nb (2.4.7)

where G is the instrumental gain of the signal at the output of the switch, and is given

by

G= Nh - Nb (2.4.8)
T~ - T;

The gain at the output of the switch" means the gain of the signal after it leaves the

switch propagating through the rest of the radiometer, including the A/D converter.

A "gain" may be defined from any point in the radiometer, for instance, from the

input to the antenna. This gain is related to the gain defined in (2.4.8) by G' = GaG,

where G' is the gain from the input to the antenna, and Ga is the gain of the signal

from the input to the antenna to the output of the switch. The gain at the output

of the switch is a convenient quantity to use since the path from the output of the

switch through the radiometer is the same for the signals from the antenna and both

calibration loads. However, the path from the antenna and each of the loads are all

physically different paths, and so the gains from the source of the signal to the output

of the switch may be different.

Let us introduce the terms Ca, h, and b, defined by

Ta = Ta + a

Tb = Tb + CEb (2.4.9)

Th = Th + h
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Here Th and Tb are the temperatures reported by the thermistors, which we will mis-

takenly use to calculate the brightness temperature, and Ta is the true atmospheric

brightness temperature. (In this analysis, the temperatures reported by the thermis-

tors will be the true physical temperatures of those loads. That is, we will not yet

consider errors in the thermistors.) We will now calculate the error in the estimated

atmospheric brightness temperature incurred by assuming that the ei (i = a, b, h) are

zero, i.e., that the radiometer is lossless and reflectionless. The quantity we calculate

for the atmospheric brightness temperature will be in error by an amount Ta, which

to first order in the c's is

67Ta e + T -TTb h ( Th - Tb) b (2.4.10)

What value can we expect for Ta? The following analysis follows Corey [1983] and

Elgered [1985]. The radiometric temperature at the output of the switch can be related

to the true physical temperature (in the case of the calibration loads) or to the true

sky brightness temperature (in the case of the antenna) by

Ti = iTi + ATi (i = a, b, h) (2.4.11)

where the hi represent ohmic and other losses, and the ATi represent additive noise

due to reflections and losses at junctions. Using (2.4.11), we can write the ci of (2.4.9)

in terms of the pi and ATi as

Ci = (Pi - 1)Ti + ATi (2.4.12)
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For a waveguide in which the effects of attenuation dominate those of reflection (a

state which can be achieved with decent engineering), then the additive noise AT is

given by [Evans and McLeish, 1977]

ATi - (1 - Pi)TP (2.4.13)

where TiP is the physical temperature of the transmission line (waveguide). With

(2.4.13), (2.4.12) becomes

i - (i- 1) (Ti - T) (2.4.14)

For the R-series WVR's (including the retrofits), the physical temperatures T,

TbP, and Th can all be replaced by the base-load temperature because the base-load

temperature is equal to the internal temperature to within about 10° C. Typical ex-

amples of base-load and internal temperatures are shown in Figure-2.4.3. Substituting

the resulting expressions for the i into (2.4.10) yields

6T - 3 ( - I (Tb - T) (2.4.15)

According to Corey [1983; private communication, 1986], for the -21 GHz chan-

nel of the R-series, the antenna signal propagates through roughly 30 cm more of

silver-plated waveguide than the hot-load signal, for a relative attenuation compared

to the hot-load signal of 0.2-0.3 dB. The antenna signal also encounters one more

ferrite switch than the hot-load signal, for a relative attenuation of - 0.2 dB. These

two differences lead to a relative attenuation of 1a/1h ~ 0.9. Then using,3a , 1 in

(2.4.15), we find that for Ta between 0 and 100 K, we have d6T between 15 K and
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20 K. Since typical zenith atmospheric brightness temperatures are 10-30 K, this error

represents possibly a 150% error in the measurement of brightness temperature.

Obviously, if the various Ei are not known, the calibration of the WVR by use of

the internal calibration loads is totally inadequate. It is possible to determine these

parameters. One problem is that they are temperature-dependent, and so the tem-

peratures of the waveguides must be monitored at all times. Another possibility is to

parametrize the temperature of the waveguides using the internal temperature. How-

ever, since a much easier (and cheaper) method of calibrating the WVR's is available,

no one has ever attempted to determine the i. This easier method of calibration is

discussed in the next section.

2.5 Calibration of the WYR

In this section we will discuss an alternate means of calibrating the radiometers

which make up the WVR's. This method is the tip-curve method, and it yields a

more precise calibration of the WVR because in effect it makes use of the atmospheric

brightness temperature itself as a calibration source. In a tip curve, the radiometer

takes several measurements at different elevations. In terms of the quantities we have

already defined, the output Nai of the radiometer at the elevation Ei can be modeled

as

N [=Tbger() + Tf (-Tbb + b+ i (2.5.1)

where r(ei) is the opacity in the direction of elevation i, and i is the random mea-

surement error, which we will assume is zero mean, white-noise Gaussian, and with

variance independent of elevation. The superscript obs on the base load temperature
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and radiometer output indicates that these quantities are observations, subject to ex-

perimental error, which, as in the previous section, is assumed zero-mean, white-noise

Gaussian. Also, for purposes of analyzing the effects of experimental error, we have

assumed that Ti = T* (i = a, b, h). Note that (2.5.1) per se requires no assumptions

concerning the structure of the atmosphere; there may be a directional dependence

of T eff, defined in (2.1.8), or likewise an azimuthal dependence of r. We will later

assume, however, that the gain G is constant for the duration of the tip curve, as are

T b and Nb.

The usefulness of (2.5.1) for calibrating the WVR comes from the assumptions

that (i) T eff is known, and (ii) the opacity can be written as (c.f. Section 1.3.ii)

r(e) = rZm(E) (2.5.2)

where r' is the zenith opacity and m(e) is the mapping function for the opacity. (We

will discuss the effect of an error in the assumption () in Section 2.6.) Since all of the

WVR's we consider are limited to angles of elevation above about 20° , we will for the

moment assume that

m(E) = csc E (2.5.3)

The zenith opacity and the gain can now be treated as parameters and estimated

by, e.g., weighted least squares. In principle, it is possible also to treat the effective

temperature and background temperature as parameters to be estimated. However in

our experience, the correlations among the parameters become so high as to render

meaningless the estimates of all the parameters. The reason for this correlation can

be seen from the expansion of the exponential terms of (2.5.1) after replacing r with
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(2.5.2). If we ignore the small background radiation term, then to first order in rZ the

radiometer output depends only on the product of Teff and .

In the following two sections, we will parallel our discussions in Section 2.4 of the

effects of instrumental errors on the precision and accuracy of brightness temperature

determinations. In this section, however, we will examine these effects in the context

of calibration done with tip curves.

2.5.i Instrumental precision

In order to determine the precision with which the zenith opacity and gain may

be obtained from a tip curve, let us perform a simple covariance analysis. For this

analysis, we will assume that Tbg and Teff are known. (The effects of errors in these

quantities are discussed in Section 2.6.) Our observation equation will be (2.5.1). We

will assume that one reading from the calibration loads is taken during the tip curve,

and that the gain and zenith opacity are constant over the duration of the tip curve.

In order to take into account the me,surement uncertainties of the calibration load

readings, we treat Tb and Nb as parameters to be estimated, and add the "observation

equations"
Tbsb 8= Tb + Tb

(2.5.4)

Nbb = Nb + ENb

The values for the various parameters used to perform the covariance analysis are

shown in Table 2.5.1. If the observation equations (2.5.1) were linear in the parameters

to be estimated, then the results of the covariance analysis would be independent of

the values of the parameters; since the equations are not linear, typical values for G
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and rZ are shown in Table 2.5.1 and are used in this analysis. We will assume we are

making tip-curve observations at air masses of 1, 2, and 3 (elevation angles of 90 °,

30°, and 19.5°).

The results of the covariance analysis are shown in Table 2.5.2. These results

are not immediately comparable with the results of the instrumental error analysis

from the last section, because in the last section we found the error associated with

the line-of-sight brightness temperature, and in this section we have found the error

associated with the zenith delay. In order to compare the results, let us first calculate

the error in the line-of-sight opacity due to the error in the line-of-sight brightness

temperature. This calculation can be done by using the equation of radiative transfer

to solve for the opacity:

= -log (Ta Teff N (2.5.5)

so that
UrT 8 em r '

U - ITa - Teff Tbg - TffI T (2.5.6)

On the other hand, we can obtain the line-of-sight opacity from the tip-curve solution

using (2.5.2). Thus for the tip curve we have

a,(m) = moz. (2.5.7)

where we have expressed the error in the line-of-sight opacity as a function of air mass.

Using (2.4.6) for aT8 in (2.5.6), and substituting the value for o,. from the

covariance analysis into (2.5.7), we have

{ 5.7 x 10"4emr'(1 + 0.0004 [(Ta(m) - 310)2 + (T(m) - 370)2]) (loads)

4.6 x 10 - 4 m, (tip curve)
(2.5.8)
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Table 2.5.1

Values used in covariance analysis

Parameter Value used

Tb 310 K
Nb 3100 "counts"
UTb 0.1 K

CUNb = a. 1.5 counts"

G 10 counts K - 1

rZ 0.05 nepers

Tbg 2.7 K

Tcff 265 K
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Table 2.5.2

Results of covariance analysis

Parameter Uncertainty

Tb 0.1 K
Nb 1.5 counts
G 9.92 x 10- 3 counts K- 1
TZ 4.55 x 10- 4 nepers

The correlation matrix is found to be

G
7iz

Tb

Nb

G

1.0000
0.7029

-0.3268
0.4902

rZ Tb Nb

1.0000 00

-0.0394 1.0000

-0.0591 0.0000 1.0000
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These two expressions are plotted as a function of elevation angle in Figure 2.5.1. It

can be seen that the error in the opacity is always less for the tip-curve calibrated

WVR.

The values obtained for the standard deviations represent a lower limit" in

terms of radiometer stability and weather conditions, corresponding approximately to

a standard deviation of the zenith delay of 1 cm (internal calibration) and 0.1 cm (tip-

curve calibration). The standard deviation used for the output radiometer is actually

the sample standard deviation of the average value of the radiometer output for n

integration periods of 0.1 sec, where n is user-selectable. The choice of the value of n

reflects a balance between the stability of the radiometer and the weather. Choosing a

large value for n may not necessarily decrease the standard deviation of the average if

the instrument is unstable or the weather is unstable. For the R-Series WVR's, which

are very unstable, we have found that n = 50 seems to yield standard deviations

of between 1.5 and 4. Furthermore, the resulting integration time seems to be short

enough that instrumental effects dominate atmospheric effects. We base this conclusion

on our experience that the standard deviations of the output of the radiometer is about

the same regardless of whether the input is the antenna or either calibration load. If the

dominating effect were atmospheric, then the standard deviation of the output from

the antenna would be greater than those from the calibration loads. Furthermore, the

standard deviation of the output of the antenna would be elevation-angle dependent, a
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behavior we see no evidence for. Therefore, both curves of Figure 2.5.1 may be scaled

depending on the actual standard deviations.

In the following, we discuss the effect of instrumental accuracy on calibration by

tip curves.

2.5.ii Instrumental accuracy

Analogously to Section 2.4.ii, we can evaluate the effect on the tip curve results

of the radiometer-sensed temperatures being not equal to the physical temperatures.

A simple way of evaluating this effect is by assuming T, - mTeffrz, which is an

approximation of the equation of radiative transfer for small opacity, and by assuming

Tbg O. (These approximations will affect our interpretation of the results very little,

if at all.) If we were to assume (erroneously) that the Ei = 0, we would write (2.5.1)

as

Na = G(mnTff r - Tb) + Nb (2.5.9)

where G is the gain of the signal at the output of the switch. If our assumption

concerning the i were correct, G would equal the gain of the signal at the entrance

to the antenna. For illustration we now assume that the experimental errors are zero.

From (2.5.9), we find that our tip-curve analysis will be equivalent to fitting a straight

line to a plot of Na vs. m, and determining G and iZ, our estimates of the gain and

zenith opacity, from
slope = GTeff 

(2.5.10)

intercept = -GTb + Nb
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However, in reality, due to the losses and reflections of the signal in each of the channels

incurred prior to the switch, the correct observation equation, from (2.4.7) and (2.4.9),

is

N = G(mTeffrz + Ea - Tb - Eb) + Nb (2.5.11)

If we use (2.4.12) to express E,, and assume as in Section 2.4 that the physical tem-

peratures could be approximated by the base load temperature, then we can express

(2.5.11) as

N = G(mTef frz - a Tb) + Nb (2.5.12)

where m is again the air mass. Therefore, in the absence of noise the slope and

intercept will be related to the true gain G and true zenith opacity rZ by

slope = G3aTeffrZ
(2.5.13)

intercept = -G#aTb + Nb

We can solve (2.5.10) and (2.5.13) simultaneously to find the expression for the esti-

mated zenith opacity and gain in terms of the true opacity and gain. We then find

G = aG
(2.5.14)

AZ = TZ

Thus the estimate of the zenith opacity is not affected by the temperature "errors."

In fact, we have ignored certain factors in reaching (2.5.14) which virtually rule out

having zero error (even for a noiseless radiometer). The values Tb and Th which we

have taken for the calibration load temperatures are reported to us from thermistors

located near the corresponding load. Heretofore, we have assumed that the readings

from the thermistors were perfect, so that the Tb and Th reflected the true radiometric
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temperatures of the loads. This in fact is nearly impossible to assure, primarily because

the thermistors themselves are calibrated only to the tenth or few hundredths of a

degree. We have also assumed that for the base load the attenuation is exactly canceled

by the added noise; in reality this cancellation is never perfect. In practice, it is very

difficult to achieve standard errors in brightness temperature measurements of less

than a few tenths of one Kelvin [A.K. Wu, Bendix Field Engineering Corporation,

personal communication, 1985].

Let us for a moment look again at the estimate of the gain made only from the

physical temperatures of the calibration loads. Such an estimate has come to be known

as the "raw" gain. In terms of the true gain and the "errors" b and Eh, the raw gain

can be written
Nh - Nb

Grw = Th -Tb

(h Nb) -(1;h)b (2.5.15)
Tb -~) Th*- T;

--G 1 + h-b

Using (2.5.15) and (2.5.14), we can introduce a new quantity q which is defined to be

the the ratio of the gain estimated from a tip curve to the raw gain:

Gw (1 Th - Tb (2.5.16)

If we again make the assumption that the physical temperatures of the waveguides can

be represented by the base load temperature, then using (2.4.14) we can show that

Ch - Eb h h-1 (2.5.17)
Th - Tb
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which substituted into (2.5.16) yields

p (2.5.18)
Ph

Thus y depends only on the attenuations of the hot load and antenna signals. This

quantity is in principle a constant for the instrument which can be estimated easily

by performing a tip curve and measuring the raw gain simultaneously. In Section 2.4,

we assumed that - 0.9. In fact, has been measured for several radiometers of the

upgraded R-series (each WVR yields two values of y, one for each channel) by the

method described here. The measured values range from about 0.85 to 0.95 [M.W.

Hayes, Interferometrics Inc., private communication, 1985]. Time series of -y from a

single radiometer channel show time variabilities of 2-3% of the corresponding value

of y, for all radiometer channels, for time scales of several months. This variability

is probably due to small drifts in the calibration of the thermistors measuring the

temperatures of the calibration loads.

How can we make use of the knowledge of '-? Suppose that we have at some

time previously performed a tip curve, or many tip - rves, and have an estimate, or

an average of estimates, of -y. It is some time later, and we have made a "line-of-sight"

measurement which means we have measured Na with the WVR pointed in one specific

direction. We have also the calibration data Tb, Th, Nb, and Nh. The four calibration

quantities allow us to calculate the raw gain G,,,. Furthermore, our knowledge of y

allows us to calculate a quantity which we will call the "system gain" GY8

Gy, - 'Graw (2.5.19)
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From (2.5.18), we can see that Gys is the gain we would have measured had we

performed a tip curve. Thus, from (2.5.14), we have

Gay8 = p8aG (2.5.20)

where as before, G is the gain at the output of the switch.

We wish to use our data to estimate the atmospheric brightness temperature

Ta,, but so far we have no good estimate of the gain. Instead, we have only a "close"

estimate of the gain which we have called the system gain, which is in error by the

factor a,. Suppose, though, that we use the system gain along with Tb to calculate an

estimate of the atmospheric brightness temperature which we will call Ta:

Ta = G 8-'(Na - Nb) + Tb (2.5.21)

Equation (2.5.21) might be thought of as being very naive. On the one hand, it assumes

that G8y8 = G, which we know is not true. On the other hand, this equation assumes

that T = T, which from the analysis of the previous section we know is wildly

inaccurate. The cumulative effect of these two assumptions can be easily calculated:

Ta = (aG) - (Na - Nb) + Tb

= p,-'(Ta -Tb) + Tb

= /3,-1 (WaTa + (1 - a)Tb - Tb) + Tb (2.5.22)

= a (faTa - 3aTb) + Tb

= Ta
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The errors in the two assumptions compensate. This compensation in fact is not

totally unexpected because, as we pointed out earlier, Gsy, is the gain we would have

found had we performed a tip curve, and we earlier showed that the estimate of the

zenith opacity was unaffected even though the tip-curve-estimated gain was in error

by a factor pa. The basic reason for the compensation is that the estimate of the gain

was obtained by a tip curve, and hence by actually observing the sky. The estimate

of the gain is therefore in error by a factor which represents the attenuation of the

antenna signal. When that gain is used with the radiometer output, that output is

"boosted" by the amount which it was originally attenuated, i.e., by the inverse of the

antenna attenuation. Of course, as discussed above, the compensation is really not

perfect, and in practice it is very difficult to reduce the standard error of the brightness

temperature to less than a few tenths of one Kelvin.

We have mentioned two techniques for determining y, which is the ratio .

The first technique involved estimating the excess attenuation of the antenna signal

compared to the hot-load signal, based upon the known materials and lengths of the

wave guides. The second method involved taking the ratio of the tip-curve estimated

gain to the "raw" gain. The estimates of & obtained by these two methods agreed

well, with radiometer-dependent variations of about 5% from a nominal value of 0.9.

A third method of determining this ratio can be found by observing that (2.5.1), which

used the base load as a reference load, still holds if Tb is replaced by Th and Nb by

Nh. If we perform the analysis leading up to (2.5.4) with the base load replaced by

the hot load, we find

(I- Pa1 Th 28 (2.5.23)
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where : is the estimate of the zenith opacity obtained from a tip-curve analysis using

the hot load as a reference. Denoting the estimate of the zenith opacity obtained by

using the base load as f we find

ATz Th - - Phj ( Th ) (2.5.24)

Solving for , we find

Ad ~ -1( T( h Z (2.5.25)

Figure 2.5.2 shows a series of estimates of taken from the 20.7 GHz channel of

the WVR known as R-05 (fifth WVR from the R-series). Because we do not know the

zenith delay r z, the averages of if and fi were used for rT in (2.5.25). The standard

deviations of the estimates have not been shown in Figure 2.5.2 because they are

difficult to calculate since 7i6 and fh are correlated. However, from the short term

scatter of the estimates we can see that the standard deviation is less than 0.01.

The estimates of ih from Figure 2.5.2 agree quite well with the estimates madePh

using the two methods previously discussed. A systematic trend, however, is evident

from this figure. This trend is probably due to our assumption concerning the equality

of the physical temperatures of the wave guides and the temperature of the base load.

In Figure 2.5.3 we show the temperature of the base load as a function of time. The

same systematic behavior is evident in this figure as in the previous figure, indicating

that these behaviors are correlated.

Which of the three methods presented for the determination of h is the best"

method? One of the problems with the old R-Series WVR's was that they were unsta-

ble and the value of this ratio could change with time. However, this variability did
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not pose a problem if we used a tip-curve to determine the gain for every observation,

and due to the imprecision of calibration via the internal loads such a procedure was

necessary. Of course, using such a procedure, we do not need to know the value of

pa. A different situation exists with the upgraded R-Series, which are stable enough

that calibration may be obtained using smoothed or averaged values of a and the

"raw" gain, as discussed above. In this case, the best method for obtaining is

from the ratio method expressed by (2.5.16). The two other methods which we used

are approximate methods which we included only to compare with this more accurate

method.

2.6 Accuracy of the dual-frequency algorithm

In the preceding sections, we have examined the effects of errors in the WVR

calibration as well as several instrumental effects. In this section we will look at the

effects of other errors, including errors in obtaining the numerical value of the weighting

function. We will begin by reviewing the process by which one obtains delays from

WVR measurements. We will assume that the instrumental errors are zero, so that we

have perfect estimates of the gain, and the calibration load parameters. The brightness

temperature for each channel is determined by using (2.4.7) in the form

T, = G-I(Na - Nb) + Tb (2.6.1)

In practice, we will probably determine the raw gain using the calibration information,

and then use the known value of to obtain G,y,, which we will use in place of G

in (2.6.1). However, as we have shown, one still obtains the correct value of the
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brightness temperature. The equation of radiative transfer (2.1.7) is then used to

obtain the opacity r in each channel

r = -log T. ff TM) (2.6.2)

Alternatively, a tip curve may be performed, and the opacity in the direction of interest

obtained from the zenith opacity. However, the former procedure is preferred if possible

since the possible inhomogeneous distribution of water vapor makes the prediction of

a "line-of-sight" opacity from the zenith opacity less sure.

The opacities from the two channels are then combined to yield the wet path

delay, using a weighting function which has been determined previously:

Lw = V -1 - 2-r2 - (KO ) (2.6.3)
v112 Kx

We will now describe the usual method for obtaining the dual-frequency weight-

ing function W. There are in fact two methods, both of which involve the use of

radiosonde data. A radiosonde is a meteorological-sensor package carried aloft by a

balloon. The sensors report the pressure, temperature, relative humidity, horizontal

wind speed direction, and current height (usually derived from the pressure) for a

number of epochs as the balloon is rising, until the balloon bursts.

Both methods for determining the dual-frequency weighting function W have the

following procedure in common:

Given a set of radiosonde-launch data, it is possible to construct for each launch

a profile of pressure P, temperature T, and relative humidity RH. Although the
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radiosonde drifts horizontally, a "simulated" vertical path must be created; the errors

due to the radiosonde drift are discussed below. Each profile is used to compute a

profile of the integrand of (2.1.1). This profile can then be numerically integrated to

yield a value for the (zenith) wet path delay.

There are at this point two methods which can be used to complete the deter-

mination of W:

Method 1: If a WVR is available for the site being studied, a measurement in the

zenith direction may be taken simultaneously with the radiosonde launch. (To

avoid possible errors associated with the drift of the WVR, it is also possible to

take a WVR measurement in the general direction of the radiosonde drift. To our

knowledge, this technique has never been used.) A dual-frequency WVR observ-

able is then calculated using the right-hand side of (2.3.9). A regression fitting

the liquid-independent, WVR-derived "observable" (2.3.3) as a linear function of

the radiosonde-derived wet propagation delay, using a suitable number of WVR-

radiosonde pairs, then yields W. A constant parameter may be added to the

model for the wet propagation delay (2.6.3) in order to test the theory and the

data.

Method 2: If a WVR is not available (either not yet built, or perhaps the study

is for a site which will only be occupied for a short time, such as for a GPS

experiment), one must use the same radiosonde data to "simulate" WVR data.
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The procedure is first to use the measurements of P, T, and RH to calculate

the absorption coefficient of water vapor, given by (2.2.1), and of oxygen, given

by (2.2.4). The amount of liquid water present, if any, must be inferred from

the radiosonde data and used to calculate the liquid-water absorption coefficient

given by (2.2.6). (Usually, one infers the presence of liquid water from the rel-

ative humidity being greater than some predetermined value: see Decker et al.

[1978].) The individual absorption coefficients are added to yield a total absorp-

tion coefficient, which can be integrated using (2.1.7), (2.1.8), and (2.1.9) to yield

a simulated brightness temperature. The process is repeated for the second fre-

quency channel. The equation of radiative transfer can be used then to infer the

opacity at each frequency, which can be used to calculate the right-hand side of

(2.3.9), just as the opacities from the real WVR data were used. The procedure

for determining the weighting function W is hereinafter the same as for Method 1.

A reasonable question to ask is: Why go to the trouble of using the absorption to

calculate the brightness temperature, which is then inverted to yield the opacity, when

the absorption can be directly integrated using (2.1.9) with s -+ oo to calculate the

opacity directly (and with much less calculation)? The answer is related to the fact that

when we reduce the true WVR data, we in general do not have measurements of the

effective temperature Teff, but rather we have a model based on surface temperature.

If there are errors in this model, then there will be errors in the estimation of opacity

from brightness temperature. Since we want to take these possible errors into account

when we determine the weighting function, we use the radiosonde data only to simulate
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the WVR observable which is (relatively) independent of any atmospheric-model; this

observable is the brightness temperature.

Which of the two methods is "better"? The determinations of W via the first

method are usually thought to be better because the radiosonde data are used to

determine only one of the quantities necessary to obtain W. Any algorithm errors can

be observed during the derivation of W. Furthermore, unknown instrumental offsets

are automatically absorbed into the value of W. However, this "absorption" can be a

disadvantage, if the WVR changes sites or if a new WVR is brought to a site. The

"Method 2" determinations have the advantage that the value of W goes with the site,

and not the WVR.

Assuming now that we have a numerical value in hand for the dual-frequency

weighting function W, from where can errors in estimating the wet path delay from

WVR data arise? Assuming an ideal radiometer (no instrumental error, G and Toff

in (2.4.1) known perfectly, etc.), the only possibilities are:

1. Error in Tbg

2. Error in Teff

3. Error in o2

4. Error in W

Assuming the frequencies of the WVR are known, the above are the only sources

of error. We will examine these sources of error shortly. Before proceeding, however,

it is necessary to establish the value of some quantities, so that we can finally interpret
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these errors in terms of errors in the estimate of the wet path delay. We will assume

that the two frequencies for the WVR are approximately 21 and 31 GHz. (These

are within 1 GHz of currently available dual-frequency WVR's.) From (2.6.3), it can

be seen that the contribution of the 31 GHz opacity is therefore about 0.43 times

that of the 21 GHz channel. For the value of W, we can use an approximate value of

W-1 _- 170, as reported by Resch [1984]. Although this number is site-and possibly

season-dependent the variations in this number are less than 20% of its value. With

these numbers in mind, and using (2.6.1) through (2.6.3), we can now calculate the

effects of errors in any of these quantities in terms of delay.

2.6.i Error in Tbg

An error 6Tbg in the background temperature, from (2.6.2), induces an error 6r

in the estimate of the opacity

6r 'Tbg (2.6.4)
Teff

The temperature of the microwave background resulting from the creation of the uni-

verse is known to within a few tenths of a Kelvin, so that the contribution of this

uncertainty is less than about 1 mm (independent of elevation angle). However, be-

cause the widths of the WVR beams are not infinitely narrow, radiation leaks into

the sidelobes which effectively produces another source of elevation-dependent back-

ground" radiation. If the shape of the beams are known, then one can correct for

radiation from the atmosphere in directions other than the line-of-sight entering the

sidelobes [Lundqvist and Potash, 1985]. If the WVR is pointed too close to the horizon,

then some fraction of the ground temperature of approximately 300 K will go into Tbg.
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For example an obstruction of angular size 5° x 5° , physical temperature 300 K, and

distance of 15° from pointing direction will increase the estimated sky brightness tem-

perature by - 0.3 K, which (assuming both channels were affected by approximately

the same amount) would increase the estimated wet path delay by - 1 mm. (For

this reason the WVR's rarely point below 20° elevation.) It is also true that as the

number of earth-orbiting artificial satellites increases, the probability that a satellite

transmitting near 22 GHz increases, since this region of the spectrum is not within a

protected frequency band. There will therefore be times when there are glitches" in

the WVR data for seemingly unknown reasons.

2.6.ii Error in Teff

An error in Teff is due to the mismodeling of this quantity for use in (2.6.2).

Typically, when the radiosonde studies for the weighting function are performed, val-

ues for parameters in a model for the effective temperature are also determined. The

simplest model for the effective temperature is a linear model based on surface tem-

perature. The first to use such a model apparently was Wu [1979], who reported a

"good" fit using radiosonde data from a single site. Resch et al. [19851 using data
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from several U.S. sites also found a strong linear correlation with surface temperature,

but no details were reported.

We have used radiosonde data to study the modeling of the effective temperature.

This study involved using the radiosonde estimates of P, T, and RH to perform the in-

tegration on the right-hand sides of (2.1.8) and (2.1.9) numerically. The results for the

study using radiosonde data from the radiosonde launch site at Portland, Maine from

the year 1981 are shown in Table 2.6.1. Only the results for the frequency 20.7 GHz are

shown, but the results for the frequency 31.4 GHz are nearly the same, with a slight

decrease of a few Kelvins in the magnitude of the effective temperatures, as expected.

The first column indicates which subset of the launches were used. The label "all"

indicates that all of the launches were used which reported relative humidity data up

to a height of at least 2 km. The second column of this table indicates the cloud model

used. The cloud models used are those given by Decker et al. [1978]. An additional

model is cloud model zero, which indicates that no liquid was assumed to be present.

The third column gives the average surface temperature and the standard deviation

of surface temperature. The fourth column gives the average effective temperature

and its standard deviation. The fifth and sixth columns give the coefficients A and B

determined for

Teff = A To+ B (2.6.5)

where To is again the surface temperature. Since all the data were weighted equally,

the relationship

Teff A -To + B (2.6.6)
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Table 2.6.1

Tef studies for Portland, Maine

Site: Portland, Maine
Year: 1981

Frequency: 20.7 GHz

Data Cloud Tff A B A(T.), + B RMS N

set model (K) (K) (K/K) (K) (K) (K)

All I 282.4(9.9) 262.4(7.2) 0.6565 77.0 262.4 3.1 422

Winter I 270.7(7.0) 253.3(4.7) 0.4864 121.6 259.0 3.2 84

Spring I 285.7(6.4) 263.9(5.2) 0.6414 80.7 261.8 3.1 127

Summer I 290.8(4.4) 269.0(2.6) 0.3891 155.8 265.7 1.9 132

Fall I 275.5(6.4) 258.6(4.6) 0.5083 118.6 262.1 3.3 79

00Z I 287.0(8.3) 264.1(6.7) 0.7215 57.1 260.9 3.0 179

12Z I 279.0(9.6) 261.1(7.3) 0.7022 65.1 263.4 2.0 243

All 0 282.4(9.9) 262.3(7.3) 0.6551 77.3 262.3 3.1 422

All lI 282.4(9.9) 262.4(7.2) 0.6578 76.6 262.4 3.2 422

All Im 282.4(9.9) 262.5(7.3) 0.6603 76.0 262.5 3.2 422
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where Tcff is the average effective temperature and To is the average surface temper-

ature, is obeyed. This relationship gives us a handy method of comparing the values

found for A and B using the subsets of data. The seventh column contains values for

A (To)l + B, where the subscript "1" indicates that the value for the mean surface

temperature from the first solution was used. Because different data subsets were used,

and because the estimates A and B are correlated, differing values of A and B may

give nearly the same effective temperature for the same surface temperature, and this

column allows us to compare the differences. (Another method would have been to

constrain the parameter A to its value of 0.657 from the first solution. The estimates of

B would then be directly comparable.) The eighth column gives the root-mean-square

(rms) residual effective temperature, and the final column gives the number of profiles

used in that subset. (There were originally 722 profiles, of which 300 were rejected

due to the crterion given above.)

These results show that there is a variation in the constants over the year equiv-

alent to a 7 K difference in the estimated effective temperature. The RIMS fit is better

in the summer (1.90 K for the summer, compared to 3.11 K in the spring, for exam-

ple), probably due to the fact that the surface temperature in summer more nearly

represents the profile of temperature above the ground because of the lessened effect

of inversions. A constant value for the effective temperature in the summer could also

be used, and the RMS variation (2.6 K) would still be less than the RMS fit to the

linear model for the other seasons.

The results obtained here are not necessarily inconsistent with the experimental

evidence that the variation about the true value of the wet delay predicted by the
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dual-frequency algorithm using a constant weighting function is smaller during the

summer [Schaper et al., 1970; Moran and Rosen, 1981]. Their results probably reflect

the greater amount of water vapor in the summer, whereas our results depend mainly

on the profile of temperature, and to a lesser extent also on the profile of water vapor.

Indeed, smaller amounts of water vapor may contribute to large variations in Tff

since small variations in the amount of water vapor effect large changes in the overall

profile if the total amount of water vapor is small.

The rows labelled (in the first column) as "OOZ" and 12Z" indicate the launch

times of the radiosondes: OOZ = 00 hr GMT. The comparison between these two rows

shows a slight (2.6 K equivalent) difference between the resulting effective tempera-

tures. Use of the different cloud models has a very small (0.1 K) effect. The effect on

the RMS is to increase the RMS as the number representing the cloud model increases,

which is expected (since the higher this number, the greater the cloud thickness).

In order to test the dependence of these results on location, we have repeated

the study for the radiosonde launch site at Hilo, Hawaii. The results are shown in Ta-

ble 2.6.2. The effective temperature at Hilo displays much less variation: 1.4 K RMS

for all launches (cloud model I). In reference to the discussion for the Portland site,

this smaller variation is probably due to Hilo being a year-round "summer site." How-

ever, it is interesting that seasonal differences can still be discerned. The effective

temperature undergoes a 2 K peak-to-peak annual variation, with the high being in

the summer, as expected. Furthermore, the RMS residual predicted effective temper-

ature is much less for the summer than for the winter-0.55 K vs. 1.25 K. This smaller

variation seems strange in that the mean surface temperature itself for those seasons
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differs by only about 2 K; these facts imply that temperature inversions may have an

effect on the prediction of Teff even in tropic climates.

Another similarity with the results for the Portland site is the effect of the (as-

sumed) liquid water. The differences in cloud models tends to change the effective

temperature by only about 0.2 K, and the RMS of the postfit residuals increases as

the amount of liquid water increases.

The differences between the OOZ and 12Z launches are about 3 K for Portland and

about 1 K for Hilo, with the sense of both being Teff (OOZ) - Tff (12Z). At Portland,

local times for the launches are approximately 8 AM and 8 PM, while at Hilo they are

11 AM and 11 PM. Thus, there is a morning launch and an evening launch at both

sites (although the morning launch at Portland corresponds to the evening launch at

Hilo). The fact that the Hilo AM-PM difference is less than the Portland AM-PM

difference is no doubt due to the difference in climates.

Table 2.6.3 shows the expected errors in the estimates of effective temperatures

for several combinations of derived coefficients and their application. The entries in

this table indicate the average error (i.e., bias) which would occur from using the

constants derived from one set of data to predict the effective temperature for another

set of data. We can see that except for a few cases, the errors are less than 1%. The

exceptions arise from using constants derived (i) at one site to predict the effective

temperature at another, and (ii) for one season to predict the effective temperature

for another. In case (i), the large errors occur only for using the Hilo constants to

predict the Portland constants, and not vice versa. This effect is due to there being

such a small range of effective temperatures at Hilo, that for most of the time the
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Table 2.6.2

Te f studies for Hilo, Hawaii

Site: Hilo, Hawaii
Year: 1981

Frequency: 20.7 GHz

Data Cloud T T A B A(T) 1 + B RMS N

set model (K) (K) (K/K) (K) (K) (K)

All I 296.9(3.3) 272.0(1.3) 0.2317 203.1 272.0 1.1 574

Winter I 295.9(3.8) 271.2(1.4) 0.1633 222.9 271.4 1.3 146

Spring I 296.9(3.2) 271.7(1.2) 0.2295 203.5 271.6 1.0 144

Summer I 298.0(2.8) 273.1(0.7) 0.1523 227.7 272.9 0.5 152

Fall I 296.8(2.9) 272.1(1.2) 0.2504 197.8 272.1 1.0 132

00Z I 299.8(1.7) 272.5(1.3) 0.5083 120.1 271.0 1.0 285

12Z I 294.1(1.5) 271.6(1.2) 0.4142 148.8 271.8 1.0 289

All 0 296.9(3.3) 272.0(1.4) 0.2376 201.4 271.9 1.1 574

All II 296.9(3.3) 272.1(1.4) 0.2260 205.0 272.1 1.2 574

All III 296.9(3.3) 272.2(1.4) 0.2151 208.3 272.2 1.2 574
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effective temperatures at Portland fall well outside this range; the reverse, however,

is not true because of the relatively wide range of effective temperatures at Portland.

(These ranges are inferred from the rms variation in the effective temperatures from

Table 2.6.1.) For the same reason, the seasonal variations of case (it) are found at

Portland only, because at Portland the constants for each season are determined from

an approximately disjoint set of temperatures. At Hilo, however, where the seasonal

variation of temperature is much less, this effect does not occur.

How do the errors in effective temperature affect the estimates of delay? From

(2.6.2), we find that an error bTeff induces an error in the opacity given by

6r b Tcff (2.6.7)
T Teff

Because the results for the two frequencies were so similar, we will assume that the

fractional error in the effective temperatures is approximately the same for both fre-

quencies. Then from (2.6.3) and the equation of radiative transfer we have

bLwD -ETeff (2.6.8)
Lw Teff

The results of this section imply that the rms errors in the delay due to errors in the

effective temperature can be kept to less than 1%, if site-dependent coefficients are

used for the model of effective temperature. It is important to remember that the

error due to an error in the effective temperature will be changing on time scales of 1

day, so that this error will appear as a bias for a 24 hour observing session.
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Table 2.6.3

Errors from using erroneous Teff

Use A,B To predict Mean error

derived from Teff for (K)

All, Hilo All, Portland -6.2
All, Portland All, Hilo 0.1
Winter, Hilo Summer, Hilo 1.5
Summer, Hilo Winter, Hilo -1.6
Winter, Portland Summer, Portland 6.0
Summer, Portland Winter, Portland -7.8
All, Hilo Summer, Hilo 0.9
All, Hilo Winter, Hilo -0.6
All, Portland Summer, Portland 1.1
All, Portland Winter, Portland -1.4
All, Hilo OOZ, Hilo -0.2
All, Hilo 12Z, Hilo 0.3
All, Portland 00Z, Portland -1.3
All, Portland 12Z, Portland 0.9
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2.6.iii Error in To0

In Section 2.2.ii, we presented the form for the absorption for oxygen, and derived

an expression for the zenith opacity for oxygen. The contribution from oxygen to the

wet path delay for the dual-frequency algorithm can be calculated by from (2.6.3) and

(2.2.1). Doing so, we find that this contribution (the so-called "oxygen correction") is

L.(O 2) =-0.0038W ' ( (293)285 (2.6.9)1013.25(2.6.9)
where m is the air mass, and frequencies of 20.7 GHz and 31.4 GHz were used. For

V-1 -- 170 cm neper - 1, we find that for standard temperature and pressure, the zenith

contribution of oxygen is approximately 0.6-0.7 cm. As we discussed in Section 2.2.ii,

an extreme upper limit on the error of the expression for the oxygen opacity is about

20%, implying that any error in the oxygen correction at zenith is less than 1.5 mm

(corresponding to about 9 mm at 100 elevation).

Resch et al. 11985] report the results of an effort to obtain a weighting function

for frequencies identical to the above. They assumed a form for the zenith path delay

of

Lw=Ao+A 1 [ T 2 A2 ( 25Po 293J2 (2.6.10)

Note that in this algorithm, A1 takes the place of W-1. If the algorithm we have

presented is correct, than Resch et al. should have found Ao - 0 and A2 0.0038. In

fact, A 2 was constrained in such a way as to produce Ao - 0. However, the value they

obtained for A 2 was 0.0016, a value half as large as the theoretical value obtained here.

This difference could indicate a bias in the humidity values for the radiosondes used,
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which if unconstrained would cause a nonzero value for Ao. However, this comparison

clearly indicates that more work is needed at this level of algorithm development.

2.6.iv Error in W

Earlier in this section, we discussed the method by which the value for the dual-

frequency weighting function W has historically been obtained. Obviously one of the

greatest potential sources of error is error in the radiosonde data used to obtain this

value. The contribution of this error is probably between 5% and 10%, and is discussed

briefly in Elgered [1983].

When we formulated the dual-frequency algorithm we assumed that W was con-

stant with height. In practice, this assumption causes no errors since the methods

given above for determining W are equivalent to determining a mean dual-frequency

weighting function Wo which corresponds to the mean single-frequency weighting func-

tion Wo defined in (2.1.5). However, no one has made a comprehensive study of the

dual-frequency weighting function presented here to determine whether there are a

pair of frequencies for which W is nearly constant. The dual-frequency algorithm ap-

pearing in this thesis has never before been presented explicitly; it is however based on

the dual-frequency algorithm formulated by Wu [1979] for atmospheric brightness tem-

peratures, or alternatively for "linearized" brightness temperatures. In fact, the dual-

frequency weighting functions for opacity and for linearized brightness temperatures

are equivalent in the sense that they both have properties which might be exploited

in determining whether a constant weighting function can be found. They are both

independent of the water-vapor density, except for a weak dependence through the line
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half-width given by (2.2.2). Thus, calculation of profiles of the weighting function is

unaffected by the poor precision of the radiosonde's humidity measurements [Elgered,

1983]. Both the opacity and linearized brightness temperature weighting functions are

also unaffected by the cumulative strength of the water vapor lines above 22 GHz,

so any deficiencies in the theory regarding this strength is unimportant (see Section

2.2.i)0.

The benefits of finding a dual-frequency weighting function which is constant

with height (to within a few per cent) is obvious. Measurements of pressure and

temperature at the surface can then be used to determine the value of the weighting

function at the time of the WVR observations. Thus, overall variations in the value

of the weighting function can be taken into account.

Although no exhaustive search for optimum ' frequency-pairs has been con-

ducted, Elgered et al. [1985] have performed a series of "Method 2 studies, wherein

the value for W is determined for a nearly continuous range of first frequencies, for

a fixed second frequency. For each pair of frequencies, the value of W is determined

using Method 2, and the rms fit of the actual delay to the predicted delay is calculated.

Figure 2.6.1 shows their results for the site at Landvetter, near Onsala, Sweden. The

results were compared for two different fixed frequencies, 18 and 31.5 GHz. The cal-

culations were repeated for the two fixed frequencies, for two different assumed WVR

instrumental errors, 0.2 K and 1 K. Figure 2.6.1 shows the results broken down by

season. The results of Elgered et al. imply that "Method 2" determinations of W can
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be improved very little by choosing different frequency pairs. Instead, the instrumental

error appears to dominate.

What seasonal and site dependent variations of the dual-frequency weighting

function can be expected? Figure 2.6.2 shows preliminary results from Johansson

[1985]. Shown are values of VW- determined using Method 2, for Portland, ME and

Landvetter, Sweden. Since Johansson used linearized brightness temperatures, the

units are given as cm K - 1, rather than cm neper - 1. An approximate conversion

of linearized brightness temperatures to opacity is found in Section 2.7. Johansson's

results show that W can undergo a 10-20% annual variation. The site-to-site variations

in this study are about 10%, but variations can be expected to be larger for sites with

much different climates.

In this section we have discussed possible errors in the WVR algorithm. In

Chapter 5 we discuss experimental tests of the accuracy of WVR's. We will show

how VLBI data can be used to study the accuracy of WVR's, and present results.

These results will be interpreted in terms of the errors discussed in this section. In the

next several sections, we will discuss briefly alternative WVR algorithms, including

the algorithm for linearized brightness temperatures, already mentioned above, and

algorithms for multifrequency WVR's.

2.7 Alternative dual-frequency algorithms

The dual-frequency algorithm presented in Section 2.3 was motivated by the

similarities between the expressions for the wet path delay and the opacity of water

vapor: they both involve the integral of the density of water vapor. A dual-frequency

150



Figure 2.6.1. RMS residual wet path delay for "Method 2" determination of weight-

ing function (see text), from Elgered et al. [1985]. The RMS residual is plotted as a

function of frequency of the channel closest to the water-vapor line for different instru-

mental errors and for two fixed frequencies-31.5 GHz (curves 1 and 2) and 18.0 GHz

(3 and 4). The assumed instrumental errors are 0.2 K (1 and 3) and 1 K (2 and 4).
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formula was employed in order to form a liquid-independent "observable." However,

this algorithm is not unique, and in this section we present two alternative dual-

frequency algorithms. The first algorithm is very similar to the algorithm presented

in Section 2.3, except it makes use of "linearized brightness temperatures" instead of

opacities. The second algorithm is a new algorithm, and very different from the other

two; this algorithm is known as the "profile algorithm." In Section 2.8, we will briefly

discuss algorithms which utilize more than two frequency channels.

2. 7.i Linearized brightness temperatures

The first attempts to use radiometry to obtain the wet path delay or the in-

tegrated water vapor content used the sky brightness temperatures as the primary

observable [Schaper et al., 1970; Moran and Rosen, 1981]. However, by examining

the equation of radiative transfer (2.1.7), one can see that the brightness tempera-

ture suffers from effects of saturation: For high opacities, the amount of liquid in the

atmosphere can double, say, while the brightness temperature only increases slightly.

Therefore, Wu [1979], in the first presentation of the theory behind a dual-frequency

WVR, suggested the use of "linearized" brightness temperatures. The linearized at-

mospheric brightness temperature T' is given by

T= Tbg - (Tff - Tbg) log (1 Tr - Tbg (2.7.1)
Tff -Tbg

where Ta is the atmospheric brightness temperature, Tbg is the cosmic background

temperature, Teff is the "effective" atmospheric temperature, defined in (2.1.8), and

T'ff is the linearized effective temperature, given by

= fatm dS T(s)c(s)p(s) am ds T(s)c(s)p(s)2.7.2
eff fatm ds Ic(s)p(s) r
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The linearized brightness temperature can also be written in terms of the opacity r:

T = Tbg(l - 7) + T'ff, (2.7.3)

Comparison of (2.1.8) with (2.7.2) and (2.1.7) with (2.7.3) shows that T - Ta as

7 -+ 0. Because of these similarities, there is probably no discernible difference (at least

at our current levels of accuracy: see Chapter 4) between the opacity and linearized

brightness temperature dual-frequency algorithms. Using (2.7.3), we can determine a

conversion to the weighting function for the linearized brightness temperature from

the weighting function for the opacity:

-T' aT - ar aT T r (2.7.4)

A difference in the implementation of the dual-frequency algorithm using linearized

brightness temperatures has been the use of "v'" to represent the higher frequency

(-30 GHz), while "v2 represents the lower (-21 GHz). This simply causes an extra

factor in the conversion of the weighting functions:

1 21\2
T'ff 1 2 ) 'W?' (2.7.4)

Using T'f - Tff ~ 260 K and W?-1 170 cm neper-', we find that wIt

0.3 cm K - 1. If we examine Figure 2.6.2, we find that this estimate is very close to

the actual weighting functions determined for the linearized-brightness temperature

algorithms.
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7.2.ii The profile algorithm

The profile algorithm, developed by Robinson [1985], was introduced very re-

cently, and has not been tested with VLBI data in the way that have the opacity

and, by extension, the linearized brightness temperature algorithms. In the profile

algorithm, the relative humidity profile has a specific form: The relative humidity

varies linearly with altitude from its value at the surface to its value at an altitude of

3 km. The relative humidity at the surface is constrained by measurements there; the

relative humidity at 3 km is estimated in a way described below. Above 3 km, the

relative humidity is again assumed to vary linearly (although with a different lapse

rate), until it reaches the value of zero at an altitude of 10 km. Above 10 km, the

relative humidity is assumed to be zero. The density of liquid water is assumed to be

proportional to the absolute humidity at every point. The constant of proportionality

is another parameter to be estimated. The temperature profile is computed by taking

a linearly decreasing temperature profile and adding to this profile an exponentially

decreasing term with a scale height of 2 km, such that the temperature at the surface

matches the measured value.

The estimation of the two parameters-the relative humidity at an altitude of

3 km and the liquid constant-is performed iteratively. Using the current values of

the two parameters to determine the profiles of relative humidity and liquid water,

the profiles are integrated as per (2.1.8) to determine the resulting brightness temper-

atures at the two frequencies of the dual-channel WVR. If the calculated brightness
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temperatures do not match the WVR's observed brightness temperatures, the param-

eters are varied, and the integration is performed again. This process is repeated until

the calculated brightness temperatures match the observed brightness temperatures.

Robinson has reported RMS errors of less than 3 mm in testing his algorithm

using radiosonde data to simulate WVR observations. These errors are almost a

factor of two less than the RMS errors Resch [19841 reported in testing the opacity

algorithm, again against radiosonde data only. In the near future, testing should begin

with Robinson's algorithm in real situations, and it may be determined if there are

site and/or season dependent behaviors of his algorithm (see Chapter 4). However,

this algorithm is too new and as yet too untested to support further comment.

In the next section, we will briefly discuss algorithms for WVR's employing more

than two frequency channels.

2.8 Multichannel water vapor radiometers

In Section 2.3, we presented an algorithm for estimation of the wet path delay

using opacities at two frequencies. The reason we chose to employ observables at only

two frequencies is that until very recently, all of the water-vapor radiometers available

for geodetic VLBI purposes received radiation at only two frequencies. These WVR's

included the R-series, the upgraded R-series, and The Onsala WVR (see Section 2.4).

Recently, however, a new design of WVR is becoming available: the J-series, which

has three frequency channels. (There are other differences also: see Janssen [1985].)

In this section, we will discuss two ways in which the dual-frequency algorithm

may be extended for a three frequency WVR, although only one of these methods is
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appropriate for the J-series. We will assume that two of the frequencies are situated

in about the same place relative to 22.235 GHz as for the dual-frequency WVR, that

is, the first frequency is on this line, while the second is not. (Take 20.7 and 31.4,

for example.) The implementation of a three-frequency algorithm then depends on

the placement of the third frequency. We will first discuss an algorithm for the third

frequency being near about 45 GHz, so that the opacity of oxygen may be determined.

However, the third frequency of the J-series WVR's is much closer to 22.235 GHz, and

a second algorithm must be used. This algorithm will also be discussed.

2.8.i Elimination of o02

The most obvious use for observations at a third frequency is elimination from the

delay algorithm of the opacity due to oxygen. This elimination can only be reliably

obtained, however, if the third frequency is close to the oxygen lines near 60 GHz.

However, since the form for the oxygen absorption given in Section 2.2.ii is only

accurate for frequencies less than about 45 GHz (since then the group of oxygen lines

can be treated as a single broad line), we will assume that the third frequency is less

than, but near to, 45 GHz. In principle this assumption is not necessary, but above

45 GHz a different form for the oxygen absorption must be used (see Rozenkranz

[1975], for example).

The three-frequency version of (2.3.5) is

->V~~~~~~~~~~~2 +V2(K K =(2.8.1)
12 [K 3 - K1 2+ K2 -K 1\

TV1 2 - 2 K3 - K2 ZV2 L3
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In (2.8.1), r1, r2, and r3 are the "observed" opacities; rl, rv2, and r, 3 are the corre-

sponding opacities due to water vapor; K 1, K2, and K3 are the oxygen shape functions;

and vl, 2, and v3 are the three frequencies.

We have not presented an explicit derivation of (2.8.1) because the derivation is

long and contains no interesting information. We will, however, outline the procedure.

(This procedure was used implicitly to derive the dual-frequency algorithm.) Using

(2.3.1), we first write three observation equations corresponding to the three frequency

channels:
Tl= T I + Tvl + Tdl

T2 = e 2 + Tv2 + Td2 (2.8.2)

T3 = I3 + Tv3 + rd3

We have used the subscript d for the oxygen opacities because the subscript 02 is

cumbersome. From Sections 2.2.ii and 2.2.iii, we know the frequency dependence of

the opacities due to liquid water and oxygen. Using the results from these sections,

we obtain
1r = TIl + Tvl + Tdl

22 K2 V2
,2 -= 2 1 + V2 2 (2.8.3)

2
2

T3 L= 2r7 + 3 + K2 l

We now treat the system of equations (2.8.3) as though there were three unknowns-

rel, v 1, and Tdl-and solve for rvl. This will lead to a solution of rvl in terms of 1,

r2 , and r3, as well as TV2 and rv3. Rearranging leads to (2.8.1).

At present, there are no WVR's available for geodetic use which utilize three fre-

quencies in such a way as to eliminate the oxygen opacity. This situation is unfortunate,
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considering the disparity between the theoretical value for the "oxygen correction" and

the value determined from radiosonde data, discussed in Section 2.6. As mentioned

above, the J-series has three frequency channels; these are arrayed, however, with two

near the 22 GHz line of water vapor. In the next section, we outline the use of data

from such a WVR.

2.8.ii Three close frequencies

If all three frequencies are below 30 GHz, then it is not clear that reliable in-

formation concerning the oxygen opacity can be obtained. The frequencies for the

J-series WVR's are 20.7, 22.2, and 31.4 GHz. How, then, can the third frequency be

incorporated? If we treat the third frequency as having additional information con-

cerning the strength of the 22 GHz absorption line, then we have an overdetermined

problem: we have three observables (the opacities at each of the three frequencies) and

two unknowns (the liquid opacity and water-vapor opacity at one of the frequencies).

The oxygen opacity is assumed known, as in the dual-frequency problem.

Since we have an overdetermined problem, we can use least-squares to obtain

estimates of the unknown parameters. As the problem is stated above, the estimate

of the water-vapor opacity at one frequency will be expressed in terms of the three

"observed" opacities, the water-vapor opacities at the other two frequencies, and the

oxygen opacity. Again, the derivation will be omitted, and we write the three-frequency

version of (2.3.5):

- VY(Vr2 + 2T3) Tv_ V2Y(V2T2 +2 r 3) a 4 (2y4 +K 4 (2.8.4)
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where

(Y = 4 1 (2.8.5)

Note that regardless of the number or placement of the frequencies available, there

is in principle only a single number (albeit time- and season-dependent) which must

be estimated from radiosonde data. In the case of a dual-frequency instrument, this

"number" is given by (2.3.8). Using (2.8.1) and (2.8.4), we can find an expression for

the appropriate three-frequency weighting function.

This ends our discussion of the theory of water-vapor radiometry. In the next

chapter, we will return to our discussion of models of the propagation delay, and

present a new mapping function for the dry propagation delay. Then, in Chapter 4,

we will discuss experimental determination of the accuracy of the dual-frequency WVR

algorithm on time scales from several minutes to one year.
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Chapter 3

Development of a New Mapping Function

for the Dryn Atmosphere

Introduction

In Chapter 1, we discussed the effects on estimates of site position of errors in

the formulas used to model the atmospheric propagation delay. We did not, however,

present evidence for any such errors in the formulas commonly used for VLBI data

analysis. These formulas include the Saastamoinen zenith delay, the Chao mapping

functions, and the Marini "mapping function." (See Section 1.4.ii.) In this chapter,

we will present evidence of systematic errors in these formulas. We will hypothesize

that the primary errors are in the mapping function for the dry" atmosphere. (See

Section 1.3.) We will then describe the development of a new dry" mapping function,

and present the results of a limited test of the new mapping function. In Chapter 4,

we will present the results of a more rigorous set of tests of the new mapping function.

These latter tests use data from the Low Elevation" VLBI experiments discussed in

that chapter.

3.1 Evidence for mapping function errors

In this section, we will present the evidence which led to the hypothesis of errors

in the mapping functions used to analyze VLBI data, although, as we will see, the
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evidence is not of itself conclusive. In later sections, we will describe the development

of a new mapping function and examine the effects of using this new mapping function

in VLBI data analysis.

One useful method for detecting errors in the formulas used to model the prop-

agation delay is to examine estimates of site position for behavior which depends on

the distribution in elevation of the observations from which the estimates are derived.

From the analyses performed in Section 1.5, we saw that any type of error in these

formulas leads to systematic behavior in the estimates of site position, and therefore

the presence of this behavior may indicate errors in these formulas. Herring [1983]

devised an elevation-angle-cutoff test" to examine estimates of baseline length for

dependence upon the distribution of elevation angles of the observations. In this test,

estimates of the baseline length using subsets of the full data set are compared; these

subsets are characterized by the minimum elevation angle of the data set. Figure 3.1.1

shows the results of the elevation-angle-cutoff test, as a function of baseline length.

Plotted as a function of nominal baseline length are the differences bo - lo0, where the

b0 are the estimates of baseline length using all data (no cutoff with elevation angle),

and blo those for an elevation cutoff of 100. The error bars represent the standard devi-

ation of the difference between the estimates from the two solutions (see Appendix A).

The obvious general trend in this figure is for the differences from longer baselines to

be larger than those from shorter baselines. This trend may be explained by nearly

constant differences in the estimates of the local vertical component of site position;
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Figure 3.1.1. Elevation-angle cutoff test" (see text) from Herring [1983]. Shown

are the differences of the estimates of baseline lengths using data with a minimum

elevation angle of 100 from estimates using data with a minimum elevation angle of

0° , plotted as a function of length of baseline.
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simply from geometry we can see that these differences affect thle baseline length more

for longer baselines, in a way which can be described by

Ab - z (3.1.1)
2re

where b is the baseline length, r is the radius of the earth, Az is the difference between

the solutions in the estimate of the local vertical component of the position of one

of the sites forming the interferometer, and Ab is the contribution to the difference

in the estimate of baseline length due to the difference in the estimate of the local

vertical component of position for that site. (To determine the total effect for the

interferometer, add the contributions from each site together.) Thus, if the difference

in the estimates of the local vertical for every site were constant, then the differences

in the estimates of baseline length would depend linearly on baseline length. Site-

dependent variations could account for the variability about a straight line seen in

Figure 3.1.1.

What could be causing these errors in the estimates of the vertical coordinate of

site position? In arriving at the estimates of baseline length, Herring used approxi-

mately 23,000 group-delay measurements (fewer for the 10°-elevation solution) taken

from all seasons. An additive adjustment to the a priori value of the zenith delay

(obtained by using the zenith delay formula (1.4.1) and measurements of pressure,

temperature, and relative humidity) was also estimated for each site and for each ob-

serving session. Hypothesizing that the effect was due to an error in the mapping

function used, Herring estimated a site- and experiment-dependent adjustment to the

mapping function, which was equivalent to estimating an adjustment to A in (1.4.6).
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The effect on the elevation-angle-cutoff test of estimating this mapping-function pa-

rameter can be seen in Figure 3.1.2. This figure does not show the systematic trend

of Figure 3.1.1. The estimated adjustments to A were, on the average, only a few per

cent of A. We take Herring's results to be very strong evidence for the existence of

mapping function errors.

We also found evidence for mapping-function errors in the comparison of esti-

mates made using the adjustment to the zenith delay mentioned above, and corre-

sponding estimates using no such parameter. Figure 3.1.3 shows such a comparison.

This figure shows the estimates of the baseline length for the Ft. Davis-Onsala inter-

ferometer, for the cases of a zenith delay parameter estimated (solid squares), and for

no such parameter estimated (solid circles). These experiments were analyzed as part

of an investigation of the accuracy of WVR's (see Chapter 2), and use WVR data to

estimate the "wet" delays at both sites. A bias is clearly visible between the estimates

of baseline length made with and without simultaneous estimation of an adjustment

to the zenith delay. One possible explanation for this result is that the web propa-

gation delay estimated from the WVR is biased. In order to check this possibility,

we performed the same comparison using the Saastamoinen model for the zenith wet

propagation delay in (1.4.1), mapped with the Marini mapping function (1.4.5). The

results of this comparison are also shown in Figure 3.1.3, with filled circles and squares

corresponding to open circles and squares, respectively. We can see that the bias still

exists, and that the estimates made using the model for the wet delay are (usually)

quite close to the estimates made using the WVR data. We might conclude that the

surface model is biased in the same direction and magnitude as the WVR data. This
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Figure 3.1.2. Elevation-angle cutoff test of Figure 3.1.1, repeated while simultane-

ously estimating a mapping function correction (see text).
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explanation is unappealing, however, because studies have shown that the surface hu-

midity and delay are uncorrelated [Reber and Swope, 1972 whereas this explanation

implies that these two quantities are correlated.

Another explanation for the bias could be found in the effect of estimation of a

zenith delay parameter if a mapping function error existed. This effect was studied

in Section 1.5.i, and summarized in Figure 1.5.2. We found that the estimate of

the vertical coordinate of site position could change by approximately 4 cm for an

elevation-angle lower limit of 100 and a mapping-function parameter error of 10%

(see Section 1.5.). As mentioned above, Herring [1983] found a few per cent error in

this parameter, so that it is not unreasonable to conclude that the biases in Figure 3.1.3

may be due to an error in the mapping function.

In order to determine conclusively whether the effects described in this section

were due to errors in the mapping function, we decided to attempt to develop a more

accurate mapping function. Such an attempt could be extremely time consuming,

however, if we chose to solve the ray-trace equation (1.2.13) analytically, albeit ap-

proximately, as was done by Marini. Instead, we chose an ad hoe method whereby we

fit some parametrized version of the mapping function to estimates of the mapping

function produced by "ray-tracing." This method is described in the following two

sections. Then, in Section 3.4, we present the new mapping function, and the initial

test of its accuracy.

3.2 Ray-tracing

In this section we will describe the ray-trace calculations which ultimately led

to the development of the new mapping function. The description will consist of two
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Figure 3.1.3. Comparison of estimates of the Ft. Davis (Texas)-Onsala (Sweden)

baseline length, made with () and without (,o) the simultaneous estimation of a

zenith delay parameter. The a priori estimates of the wet propagation delay were

derived from the Saastamoinen model (o,o) or WVR data (,e). A convenient but ar-

bitrary value of 794,073,200 cm has been subtracted from the estimates before plotting.

The error bars shown are the statistical standard deviations resulting from performing

a weighted-least-squares analysis, with the weight taken to be the sum of the signal-

to-noise variance given by Clark et al. [1985] and a baseline-dependent variance, the

value of which was determined by requiring that the x2 per degree of freedom be unity.
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parts. The first part briefly describes the calculational aspects of ray-tracing, while

the second part will describe the physical models actually used in the calculations.

Because these models are based on some simple assumptions (gravity is taken to be a

constant, for example), in later chapters we will discuss the effects of these assumptions

on the mapping function developed.

In principle, the propagation delay can be calculated by performing the integral

in (1.2.15). This equation, however, is written as though we knew both the zenith

angle at the site (0o) as as well as the zenith angle "outside" the atmosphere (f).

In practice, we generally know only one of these angles beforehand, and the other

angle depends on the profile of the refractive index. Therefore, we use the method of

ray-tracing to calculate Ta, the propagation delay.

We will first define some of the quantities which we will use in these calculations

(see also Figure 3.2.1). We will describe ray-tracing for a spherical atmosphere, but

the technique can be extended to handle any distribution of refractive index. The

calculation will be performed as a series summation of constant radial step Ar. (In

principle it is not necessary for Ar to be constant.) The atmosphere is therefore

divided into spherical shells of thickness Ar, the boundary for the first layer beginning

at r = ro and ending at r = r + Ar. The boundary for the ]kth layer begins at

r = r + (k - )Ar and extends to r + kAr. We will assume that the refractivity for

the kth layer is given by N((k - 1)Ar), although in principle it is possible to take into

account changes in the refractivity within the layer by using, for example, the average

refractivity within the layer. The ray forms an angle (r) with the outward normal

to the spherical boundary where it intersects the boundary at radius r. Similarly, the
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Figure 3.2.1. Geometry and definition of parameters for ray-trace calculations, de-

scribed in Section 3.2.
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ray forms an angle (r + Ar) with the inward normal to the spherical boundary where

it intersects the boundary at r + Ar. The position angle +(r) is the angle between the

radius to the origin of the ray, and the intersection of the ray and the boundary at

radius r. We will discuss the relationship between the angles below.

We will begin our calculations at r = ro, although it is possible to begin the

calculations at r ="oo." (Unless we qualify the term "radius," we will mean the

distance from the center of the spherical earth to the point in question.) We will

first describe the calculations for r = ro, and then for any r. For each layer, we

will increment three quantities. The first quantity corresponds to the first integral in

(1.2.15), and represents the decreased velocity with which the ray travels through the

atmosphere. For the r = ro calculation we begin with

r (ro) = 10-6N(O) Arsec , (3.2.1)

The term Tr (r) represents the "reduced velocity" term which includes the layers up to

and including the layer whose inner boundary is r. (The superscript r is for "reduced"

or "retarded.") The refractivity is parametrized by the altitude r - r,, according to

convention. We have retained the use of the subscript for 80- rather than writing

(r)-because this term has a special meaning: it is the "refracted" zenith angle.

Since beforehand we do not know the refracted zenith angle, at the beginning of our

calculation we assume some value for 8o. Then, at the end of our calculation, if the

ray is not directed at the source, we calculate an adjustment to O8 and repeat the

ray-trace. We continue to repeat the ray-trace until we are satisfactorily close to the

required direction. However, for the purposes of determining the form for a mapping
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function (see Appendix A), we do not need to know the delay in any specific direction.

It is necessary to know only the delay, and the corresponding elevation.

At the same time the calculation for the "decreased velocity" term is made, the

increment to the geometric path is calculated. This increment is

p (ro) = Ar sec 8O (3.2.2)

We have used the letter p instead of r to stress that p is a length and not a delay. The

function p9 (r) is the cumulative value of the "decreased velocity" term for all layers

up to and including the layer with inner radius r.

We also want to keep track of the position angle +(r). Equation (1.2.14) is an

integral for this quantity. The increment for the first layer yields

Ar
O(rK + Ar) = tan O. (3.2.3)

Finally, we wish to calculate the angle of incidence o(ro + Ar) of the ray at the

spherical boundary at r + Ar. This angle can be calculated using the law of sines. One

leg is the radius to the intersection of the ray and the spherical boundary at radius r,,

and the other is the radius to the intersection of the ray and the spherical boundary

at r + Ar. The law of sines yields

(r + - +) sineo (3.2.4)

We will now perform the ray-trace calculations for the general radius r (refer to

Figure 3.2.1). We will assume that we have previously calculated +(r), the position

angle of the intersection of the ray with the spherical boundary at r, and p(r), the
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angle of incidence of the ray at this boundary. We first must calculate (r). For the

first layer, this angle was a given," and so we did not need to calculate it then. Now,

in order to calculate this angle, we must use Snell's law of refraction for a ray with

angle of incidence op(r), and refractive index n(r - Ar) = 1 + 10-6N(r - Ar) in the

layer of the incident ray and n(r) = 1 + 10- 6N(r) in the layer of the refracted ray.

This yields for the sine of O(r)

sin (r) = (r) ) sinp (r) (3.2.5)
n(r - Ar)

Since 0(r) < 2, 0(r) can be determined unambiguously from sin 8.

Having (r), we can now calculate the contributions to the "reduced velocity"

delay Tr , the geometric path p9, the position angle , and also the angle of incidence

p for the next layer:

Tr(r) = Tr(r - Ar) + 10-6N(r) Ar sec 0(r) (3.2.6)

p9(r) = p9(r - Ar) + Ar sec 8(r) (3.2.7)

k(r + Ar) = 0(r) + n ro sin Ar (3.2.8)
r n2r2 - n2r2 sin2 0o

sin p(r + Ar) = + sin 8(r) (3.2.9)

The integration proceeds up to some limit rf. (The choice of rf must be such

that N(rf) - 0 above this radius; we have found that rf = 100 km is adequate.)

A final step in the calculation is to calculate the straight-line "in vacuo" distance

from the origin of the ray to the final position (see Section 1.1). This distance can
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be calculated from the law of sines using the position angle and the original zenith

angle 0o:

sin f(f)
P (f)= sin( (rf) + (rJ)) (3.2.10)

The superscript v in (3.2.10) indicates the distance the ray would have traveled in

vacuum to reach the point at radius rf, and the superscript g is to remind us that this

quantity is to be combined with pg of (3.2.7) to yield the "geometric propagation delay"

as in (1.1.2). Combining these delays concludes the calculation of the propagation

delay Ta:

r = Tr(rf) + [pg(rf)-p9(rf) (3.2.11)

Before discussing the accuracy of the ray-trace algorithm, we must first present

our formulas for the determination of the profile of refractivity. We have already given

our formula for the refractivity at any given point in space. The refractivity depends

on the pressure, temperature, and humidity at that point, and we repeat its formula

here for easy reference:

N = klRdp + -k2-Mwkl) Rpv + k3RPT (3.2.12)

As in previous chapters, Rd is the specific gas constant for dry air and Rv that for

water vapor, Md is the molar mass for dry air and Mw that for water vapor, T is the

absolute temperature, p is the total density, and p, the density of water vapor. The

origin of (3.2.12)-and values for kl, k 2, and k3 - were discussed in Section 1.2.

How do we determine the refractivity at some height above the surface? One way

is to use radiosonde determinations of P, T, and relative humidity, from which N can

then be calculated. However, we chose to derive the profile from a model atmosphere,
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because radiosonde data were at that time not available to us. This model atmosphere

has the following properties:

* The temperature decreases from its surface value To with constant lapse rate 

(f/ < 0). Both To and P are user-definable. This decrease with height continues

until the temperature reaches Tmin (also user-definable), at a height of (Tmin -

To)//. Above this height, the temperature remains constant.

* The relative humidity remains constant at the value e (user-definable) between

the surface and a height of 12 km (not user-definable). The partial pressure

of water vapor is calculated using the Clausius-Clapeyron equation for the sat-

uration pressure of water vapor at temperature T [Hess, 1959], which can be

expressed with an error of less than 1% in the range 240-310 K by [Crane, 1976]

(In , 25.2(T - 273) (3.2.13)
I6.V11/= T \3 273)

where P,, is the saturation pressure of water vapor in mbars and T is the tem-

perature in Kelvins. The partial pressure of water vapor p, is determined from

the saturation pressure using

Pu = ePv. (3.2.14)

and the constituent density of water vapor Pv determined using the ideal gas law.

Above 12 km, the relative humidity is zero.

* The atmosphere is in hydrostatic equilibrium. The equation of hydrostatic equi-

librium is integrated with respect to height simultaneously with the ray-trace
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equations to determine the pressure. Thus we find for the pressure at the radius

P(r) = P(r - Ar) - p(r - Ar)gAr (3.2.15)

The acceleration g due to gravity is constant with height and has a value of

9.784 m s-2 [Saastamoinen, 1974]. The density is calculated by adding the

constituent densities of water vapor and dry air, both calculated individually

from the ideal gas law and the appropriate partial pressure. The density of

water vapor is calculated using the procedure above, and the partial pressure Pd

of dry air is calculated using the law of partial pressures, Pd + Pv = P. The value

of the surface pressure PO is user-definable.

Many of the features of our model atmosphere are simplified versions of reality.

The easiest way to examine the effects of these simplifications is to increase the com-

plexity of the model, and compare the results to the ray-trace using the simplified

model. We will perform this comparison in later chapters, after we have presented the

results of ray-tracing with the simplified model. In the following section we will define

the new mapping function. Then, in Section 3.4, we will discuss using ray-trace to

calculate values for the mapping function, which will be parametrized in terms of the

user-definable values used in the atmospheric model.

3.3 Defining the mapping function

In this section we detail the development of a new mapping function for the dry

atmosphere. We have already described the ray-trace algorithms used, and so in this
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section we will describe how we modeled the ray-trace results and determined the

dependence of the mapping function on meteorological variables.

As we discussed above, we did not wish to spend a great deal of effort and time

on developing new expressions for the mapping function. For this same reason, we

chose to model our ray-trace results using a known form for the mapping function.

This form was a continued fraction formula developed by Marini, and modified as per

the Chao mapping function so that the value of the mapping function would be unity

in the zenith direction (see Section 1.4). In order to obtain accuracy for low elevation

angles, we retained one more term than had either Chao or Marini. We therefore

arrived at the expression

md(E) = (3.3.1)
sine+ b

tanE +
sine + c

The parameters a, b, and c were to be determined from the ray-trace data. We

chose to develop a mapping function for the dry atmosphere because an error in the

mapping function for this component has a much larger effect than a comparable error

in the mapping function for the wet component, as the dry delay is on the average a

factor of 10-20 times the wet delay. Using our definition for dry delay presented in

Section 1.3, we will define the dry mapping function to be

m(e) _O10-6klRd fatm ds p(s) + (3.3.2)

The first term in the numerator of (3.3.2) is the integral along the path of the ray

of the first term in the refractivity as presented in (3.2.12). The second term in the
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numerator of (3.3.2) represents the "geometric" delay discussed frequently and given

by (1.3.19). The denominator of (3.3.2) is the zenith dry delay, defined in (1.3.15). The

choice for this definition for the dry mapping function is made with the availability of

WVR's in mind. In Chapter 2, we saw that these instruments can be used to estimate

the wet" delay, defined to be

-- 1o-6R ds k k + p (3.3.3)

The wet delay can be recognized to be the integral along the path of the ray of the

final terms in the refractivity (3.2.12).

With the definitions presented above, the algorithm for routinely estimating the

propagation delay is as follows:

(1) Using WVR data, estimate the wet delay as defined above and as detailed in

Chapter 2. We will call this estimate of the wet delay TwvR, to stress the origin

of this estimate. If a WVR is not available, use some other estimate w, making

sure that the definition (3.3.3) is obeyed.

(2) Use surface pressure to estimate the zenith dry delay, as defined in (1.3.15). Since

under conditions of hydrostatic equilibrium the dry delay as defined in (1.3.15)

is proportional to the surface pressure, and that constant of proportionality can

be calculated very accurately, the estimate of the dry zenith delay is extremely

reliable. (We will discuss nonequilibrium effects later.) The estimate of the dry

zenith delay will be denoted ?d.

(3) Estimate the dry mapping function, using (3.3.1), the elevation angle of the

source, and the formulas for a, b, and c given in the next section. This estimate

will be denoted M.d-
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(4) Combine the above estimates to form the estimate a of the atmospheric propa-

gation delay:

a = rnd + WVR (3.3.3)

We have detailed the process of the estimation of the propagation delay explicitly

because it is important that the definitions of the individual contributions to the delay

(i.e., the two zenith delays and the dry mapping function) be shown to be internally

consistent, as indeed they are for the definitions above. Furthermore, from these

"instructions," one can see that we have "optimized" the definition of our mapping

function for use with a WVR, so that the surface pressure may be used to estimate

the dry delay. It is important when presenting a new mapping function to define the

zenith delay to be used in conjunction with the mapping function, and also to define

all the components of the delay.

The paper which describes the estimation of the mapping function parameters

from the ray-trace calculations, and the parametrization of the mapping function

parameters in terms of the user-definable atmospheric model parameters, is included

in Appendix A. This paper also describes some of the initial testing of the new mapping

function (called CfA-2.2). This testing consists of comparing the results of elevation-

cutoff tests for the Marini and the CfA-2.2 mapping functions. The estimates of

baseline length made using the Marini mapping function exhibit behavior that we

have previously described as being indicative of a mapping function error; the CfA-

2.2 mapping function, however, seems to be relatively free from these errors. It is

important to note, however, that the data used were all obtained within one month of

each other. Therefore, the possibility of seasonal effects still exists. In order to test

the CfA-2.2 mapping function more rigorously, a series of VLBI experiments involving

a number of observations from low elevation angles has been devised. The following

chapters describe these experiments and their results.
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Chapter 4

Experimental Results

Introduction

Table 3 of Appendix A contains an interesting result. In this table, we summarize

the elevation-angle cutoff tests for the Marini and CfA-2.2 mapping functions by pre-

senting the changes in the estimates of the local vertical site positions corresponding

to the baseline length differences from each of the elevation-angle cutoff tests. From

this table, we can see that the changes in the vertical estimates are nearly equal for

the two mapping functions, for sites having no data from below the elevation of 15° .

Apparently, if we restrict our VLBI observations to above 15° elevation, we limit our

systematic errors due to mapping function errors to the mm-level (assuming that both

mapping functions are effectively free from error above this elevation angle). Why,

then, did we need a new mapping function at all?

The answer to this question really lies in the answer to the question: Do we

need-or simply want--ever to observe at elevation angles lower than 15°? Or even

200?

There are several reasons why observations in this region are useful, even neces-

sary. Geometric limitations imposed by the locations of the antennas sometimes are

such that a large portion of the time some particular source is "mutually visible,"

that source is at a very low elevation as viewed from one of the sites. Figure 1.5.3
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illustrates another reason for having observations in this region. If the a priori value

of the zenith delay is thought to be incorrect, and a zenith-delay parameter must

be estimated, then the uncertainty in the estimate of the vertical coordinate for an

elevation cutoff of 20° is threefold its value for an elevation cutoff of 5° . Although

with WVR data and accurate knowledge of the weighting function (see Chapter 2) the

estimation of a zenith-delay parameter may be obviated, there is still a large number

(over 100,000) of VLBI group-delay data alone for which there is no WVR data, and

that number is steadily increasing as of this writing. Therefore, it is important to

have a mapping function which is accurate over all ranges of elevation angles for which

VLBI data exist, which is all elevation angles down to about 5° .

In this chapter, we discuss the results from a series of VLBI experiments in-

tended to test more thoroughly the newly developed CfA-2.2 mapping function (see

Chapter 3). For these experiments, as we will see, a large fraction of the data is

from observations at low elevation angles; for this reason the experiments are called

"low-elevation experiments." We will first describe the design of these experiments,

including the site and sources, and the data processing. We will also introduce a set

of "standard" solutions to which we can later compare solutions obtained with differ-

ent processings (i.e., with different atmospheric models or parametrization). These

different processings will be used, in Section 4.2, to investigate the accuracy of the

dual-frequency algorithm used to reduce the WVR data available during some of these

experiments. In Section 4.3, we will test the new mapping function, using elevation-

angle cutoff tests (as in Appendix A), and also using alternate models, parametriza-

tions, and subsets of data. The final section of this chapter will be devoted to a
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discussion of the implications of these experimental results for VLBI data processing.

This final discussion will rely heavily on the material presented in Sections 1.4 through

1.6.

4.1 Low-elevation" experiments

In this section we will describe a series of VLBI experiments designed to allow

us to examine the systematic error arising from the atmospheric delay formulas used.

We will describe the sites and sources used, and present a set of solutions which we

will characterize as the "standard results."

4.1.i Sites

Two main criteria dictated the choice of sites for the low-elevation experiments:

elevation coverage and availability. (Slew speed was also important but did not affect

our choice of antennas: see Section 4.1.ii.) We selected the Mojave antenna located in

the Goldstone antenna complex in California because it is available; for most months

of the year it is used for only one day in conjunction with mobile VLBI experiments.

Another advantage of using this site is that it is the test site for the retrofit R-series of

WVR's (see Chapter 2). Furthermore, prior to the arrival of the first retrofit WVR,

this site possessed a WVR belonging to the original R-series. One disadvantage of

using the Mojave antenna is that it is unable to observe below about 8° elevation.

The antenna originally used for the other terminal of the interferometer was the

Haystack antenna in Westford, Massachusetts. This antenna was chosen for its lower

elevation-angle limit of 3.5 ° . However, its availability was limited since this antenna
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is frequently used in conjunction with astronomy experiments. We decided to use this

antenna instead of the Westford antenna, located 1.2 km from the Haystack antenna,

because the greater sensitivity of the Haystack antenna allowed observations of shorter

duration to obtain the same signal-to-noise ratio (SNR). Observations of shorter du-

ration are preferred for two reasons: (i) more observations can be obtained in a given

amount of time, and (ii) there is less possibility of atmospheric variations during the

observation to affect the measurement. Several months after the first experiment, the

Westford antenna was upgraded with a low-noise receiver, and we began to use this

antenna for the low-elevation experiments. The availability of this antenna is greater,

and in practice the elevation coverage is the same as the Haystack antenna. In reality

there is a region of the sky to the northeast where the Westford antenna cannot observe

below 6-8° , but no observations were scheduled in these directions, because sources

there are not visible at the Mojave site. Hereafter, if the difference is unimportant, we

will refer to both Haystack and Westford as Haystack.

4.1.ii Radio sources

The radio sources were selected on the basis of two criteria. The sources must

have been included in the geodetic database comprising, by September 1984, approx-

imately 60,000 group delay observations. These observations yield accurate source

positions for the analysis of the low-elevation experiments. The sources must also be

strong enough that the integration time necessary for a SNR of at least 7 is less than
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about 400 s, for the reasons given in Section 4.1.i concerning short integration times.

(An SNR of 7 is indicative of a "solid" detection: see Clark et al. [1985].)

The choice of the number of sources to use required a somewhat arbitrary deci-

sion. The total number of sources meeting the criteria above was over 40 at the time

of the designing of the experiments. If all these sources were to be used, then it would

be possible to obtain only 3-5 observations per source. In a typical geodetic schedule,

only 10-15 sources are used in any single experiment. We chose to use 14 sources,

selecting the strong sources while attempting to obtain a uniform distribution in right

ascension, so that the time between having a source at low elevations at any one site

is minimized. One of these sources (1803+785) is in fact visible at all times at both

sites; we believed that observing this source throughout an observing session would

help us separate atmospheric and clock noise (see Section 4.1.iv).

The sources and their nominal positions are listed in Table 1.4.1. The nominal

positions of all sources except 1502+106 were obtained from the global solution de-

scribed in Herring et al. [1986], although these positions were not reported there. The

position of 1502+106 was obtained by rotating in right ascension the position of that

source reported in Ma et al. [1986] by -0.2 ms, which was the amount needed to align

the position of the source 37273B reported in that paper with the position determined

from the global solution mentioned above.

4.1.i6i Observing schedule

In developing an observing schedule, we simply tried to observe a source for a

period immediately preceding its setting, or following its rising. (We also attempted to
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Table 1.4.1

Radio Sources for "low elevation" experiments

IAU Common Right
name name Ascension Declination Symbol

hh mm ss.ssss dd mm ss.ssss

0106+013 - 1 8 38.7708 1 35 0.3215 A
0234+285 - 2 37 52.4056 28 48 8.9915 B
0300+470 -- 3 3 35.2422 47 16 16.2764 C
0528+134 - 5 30 56.4166 13 31 55.1490 D
0552+398 - 5 55 30.8055 39 48 49.1640 E
0851+202 OJ287 8 54 48.8747 20 6 30.6384 F
0923+392 4C39.25 9 27 3.0136 39 2 20.8495 G
1226+023 3C273B 12 29 6.6995 2 3 8.5962 H
1502+106 - 15 4 24.0860 10 29 47.2147 I
1641+399 3C345 16 42 58.8096 39 48 36.9948 J
1741-038 - 17 43 58.8558 -3 50 4.6132 K
1803+784 - 18 0 45.6828 78 28 4.0199 L
2216-038 - 22 18 52.0375 -3 35 36.8765 M
2251+158 3C454.3 22 53 57.7477 16 8 53.5653 N

Positions of radio sources are given in J2000 coordinates. These positions were held

fixed during processing except for the positions of 1803+784 and 1502+106 (see Sec-

tion 4.1.iv). The symbols are those used to identify the sources in Figure 4.1.1. For

references to source positions, see text.
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have as many observations in a given amount of time as possible: see below.) A source

rising at Haystack is not visible at Mojave, so all observations having low elevations at

Haystack involve setting sources. Similarly, a source setting at Mojave is not visible

at Haystack, and so all observations having low elevations at Mojave involve rising

sources. Thus, developing a schedule for the low-elevation experiments was a matter

of observing the sources as they rose at Mojave and as they set at Haystack. Often,

we chose to "track" the sources in order to increase the number of observations at low

elevation angles. This tracking is contrary to the technique usually used in a geodetic

experiment. During a period in which no sources were rising or setting, the visible

sources were observed at higher elevation angles.

Figure 4.1.1 shows the elevation angle as a function of the time of the observation

for both Haystack and Mojave. The same schedule was used for all the experiments

discussed here. The letters in Figure 4.1.1 correspond to the source observed (see

Table 4.1.1). Note that the tracking" of the sources at low-elevation angles is evident.

The fraction of observations below 10° elevation at Haystack exceeds 15%.

As we mentioned above, we attempted to have as many observations in a given

amount of time as possible. As the time between two observations becomes shorter,

the effect of the clock variations decreases, with the amount of decrease depending

on the sizes of the clock variations. Ideally, we would like to obtain an instantaneous

"snapshot" of the sky. We are prevented from obtaining this snapshot," however, for

several reasons. Primary obstacles are the "integration periods" (see Herring [1983])

required to obtain sufficient signal-to-noise ratios for the various radio sources; these

periods range from 100-400 sec for these sources and antennas. Another problem is the
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nonzero time for the antenna to slew between the radio sources, which can be located

far apart on the celestial sphere. In order to overcome these problems, we (i) used the

fast-slewing radio telescopes of Mojave, Haystack, and Westford, and (is) "tracked"

sources when they were close to the horizon. Unfortunately, the limited availability of

Mark III recording tapes re( ired that we reduce the number of observations acquired

using these methods. Therefore, we inserted an amount of idle time between the end

and start of successive observations such that the average time between start epochs

was about 10 min. Late it 1985, we changed the observing schedule to take advantage

of the new high-density tape recorders at Mojave and Westford. We were then able to

schedule approximately 245 observations in an experiment and use only 2 tapes per

site whereas, previously, we had made approximately 160 observations per experiment

while using 33 tapes per each site. Schedules spanned 26 hours for both the old and

the new experiments. The average time between start epochs for the new schedule is

-6 min. At present, we have not analyzed any data from the experiments with these

new schedules, because the schedules were implemented too recently for any of those

data to be processed.

In the following section, we describe briefly the technique used to process the

data from the low-elevation experiments.

4..iv Data processing

To process the data from the low-elevation experiments, we have used a Kalman

filter implemented for VLBI data processing. The term "Kalman filter" refers to a

specific technique, developed by R.E. Kalman [Kalman, 1960; Kalman and Bucy, 1961]
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for performing sequential least-squares parameter estimation, for which some subset

of the parameters are the values of a time-varying stochastic process. The statistical

properties of this stochastic process are known. Full derivations of the Kalman filter

equations are given elsewhere (see, e.g., Liebelt [1967]), and a general discussion of the

Kalman filter is given in Section 4.4.i. In order for the filter to be completely defined,

aside from partial derivatives which are given elsewhere [Whitney, 1974; Robertson,

1976], we must describe the state transition matrix, which relates the expectation of

the parameters at some time to the expectation of the parameters at a previous time,

and the covariance matrix of stochastic processes which are being modeled.

The parameters estimated in our solutions have been divided into two types:

deterministic parameters, whose values are assumed not to change over the duration

of an observing session (of approximate duration 26 hours for the low-elevation ex-

periments); and stochastic parameters, the models for which we give below. The

deterministic parameters include site coordinates, corrections to the IAU 1980 nuta-

tion series [Herring et al., 1986], and source coordinates. The positions of 12 of 14

radio sources are constrained to the values determined by a global least-squares solu-

tion involving - 70,000 data, mentioned above and described in Herring et al. [1986].

Corrections to the position of the source 1502+106, taken from Ma et al. [1986] and

rotated as described above, were estimated because the uncertainties for the position

of that source were large due to its being infrequently observed. (The inclusion of this

source violates the criterion given in Section 1.4.ii, but we did not realize the unreli-

ability of the position determination for this source when designing the low-elevation

experiments.) The standard deviations reported in that paper, and used as the a
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priori uncertainties in the solutions, were 0.02 ms in right ascension and 1.1 mas in

declination. We also estimated corrections to the a priori position of 1803+785. This

was unintentional, but the Kalman-filter software was being tested when we began an-

alyzing the data, and the control file we used indicated that these should be estimated,

and we did not change this command. However, the a priori standard deviations of

0.09 ms in right ascension and 0.2 mas in declination were obtained from the global

solution mentioned above, and these uncertainties were small enough that the correc-

tions were all constrained to < 1.5 a. Global-solution capability is currently being

developed for the Kalman filter processor, so that source positions may be estimated

simultaneously using all the low-elevation experiments.

For each stochastic element of the model for the group delay, two parameters are

in general estimated. Each stochastic process is modeled as the sum of two independent

processes: an integrated random walk process and a random process. A white noise,

Gaussian process is assumed to be generating the random walk process in both cases,

and these processes are assumed to be independent of each other. The two parameters

to be estimated, and w, at time ti, can be respectively interpreted as being an

"offset" and a "rate," and can therefore be expressed in terms of their values at time

ti- as

=(tj) ( Ati 0(ti-l) (t4.1.1)l(ti) 0 1 W(ti-l) A (ti)

where Ati = ti - ti-1, and Aqb(ti) and Aw(ti) are the (unknown) random changes in

the respective parameters which are to be estimated. The covariance matrix of the
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final vector on the right hand side of (4.1.1), which in effect yields constraints on the

solutions for this vector, is

!Eg (ti)3 + rl Ati 2fr2 (ti)2)

4 ;a~ - ~ 2 x- ,J (4.1.2)0 '2 (t,)2 2 At,

where a, is the assumed variance associated with the rate term controlling the inte-

grated random walk, and a is the assumed variance associated with the random walk

process. Note that by setting a2 = ag = 0, one can effectively convert that process to

a deterministic process.

In the following section, we describe the atmospheric models used for the stan-

dard solutions," and present estimates of baseline length for those solutions.

4.1.v Standard solutions'

Table 4.1.2 contains a list of the low-elevation experiments conducted to this date.

In this section, we will describe a set of "standard solutions" for these experiments. In

later sections, we will analyze these experiments using different mapping functions for

the dry delay and different a priori values for the wet delay, and the standard solutions

will be the references with which these later solutions will be compared. Below, we

describe the atmospheric models used and parameters estimated for these standard

solutions.

* Surface weather data. The pressure, temperature, and relative humidity at the

sites were monitored during the low-elevation experiments. These data were used

in the various formulas as called for below.
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Table 4.1.2

Low-elevation experiments

Experiment WVR at
Date Interferometer Mojave?

84/09/23 Mojave-Haystack Yes

84/11/16 Mojave-Haystack Yes
85/01/25 Mojave-Haystack Yes

85/03/20 Mojave-Westford Yes

85/05/30 Mojave-Westford Yes

85/08/13 Mojave-Westford No

85/09/12 Mojave-Westford No

85/10/02 Mojave-Westford No
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* Zenith dry delay. The Saastamoinen formula for the zenith dry delay was used

in the standard solutions: see (1.4.1) and (1.4.2).

o Zenith wet delay. If WVR data are available for a particular observing session,

then these data are used for the a priori values of the wet delay for this exper-

iment (see below). If WVR data are not available, then the a priori value for

the zenith wet delay is taken to be zero. While a model for the zenith wet delay

may be used, we have chosen not to do so since these models are based on the

humidity at the surface, which has been shown to be uncorrelated in general with

the integrated vapor content [Reber and Swope, 19721. The extent of this decor-

relation seems to depend on the climate. Elgered et al. [1985] have examined

seven sites distributed globally, and have used radiosonde data to determine the

constants co and cl for the model Lt = co + cl (pv)o, where Lw is the wet propa-

gation delay, and (Pv)o is the partial pressure of water vapor at the surface. The

regression was done individually for each site, and by season. The smallest RMS

difference of the true delay from the resulting model was 0.9 cm, for Barrow,

Alaska in the Spring. In general, the RMS difference was 2-3 cm. Interestingly

enough, they found one site-Singapore-which exhibited almost no correlation

at all (i.e. cl O0), and for which the regression led to a nearly constant value

for the wet delay.

* Dry mapping function. The CfA-2.2 mapping function is used for the mapping

function of the dry delay in the standard solutions. The development of this

mapping function is detailed in Chapter 3 and Appendix A. For the tempera-

ture lapse rate and height of the troposphere, the nominal values are used: see

Appendix A.
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* Wet mapping function. See WYR data, below.

* WVR data. The first five low-elevation experiments are shown as having WVR

data available. In fact, it is believed that "good" WVR data are available for

a subset of the VLBI observations for each of the remaining three observing

sessions, but at this time we cannot determine which, if any, of the data are

"good." Therefore, the standard solutions will not use WVR data from these

later experiments. For these first five experiments, WVR data were obtained

by means of tip-curve calibration (see Section 2.5). The tip curves yield values

for the zenith opacity at each of the two frequencies of the WVR. The dual-

frequency delay equation (2.3.10) was then used to determine the zenith wet

delay. A single value for the weighting function was used for all experiments.

This value of 163.9 cm neper - 1 was determined by Resch [1984], and is based on

a "Method 2" study using several radiosonde launch sites distributed across the

U.S. (see Section 2.6). The "oxygen correction" was also modified, as discussed

in Section 2.6.iii. After determining the zenith wet delay, we then "mapped" the

delay to the line-of-sight delay by multiplying the zenith delay by the cosecant

of the elevation. Although we realize that the cosecant law may be a poor

approximation to the "true" wet mapping function, there are no available studies

which present a reliable wet mapping function. Note also that a WVR was

available only at the Mojave site, from which no observations below 100 elevation

were made.

* Parameter estimation. The data for each observing session were processed sep-

arately from those from the other observing sessions. With the exception noted
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below, the solution was parametrized as discussed in Section 4.1.iv. However,

for those sessions with WVR data, the atmospheric parameters for the Mojave

site were limited to a single, constant additive atmospheric parameter. (As with

other parameters, one additive atmospheric parameter was estimated indepen-

dently for each observing session.) The purpose of this parameter was to estimate

any bias in the dual-frequency wet path delay algorithm described above.

* Stochastic process variances. The values for the variances used to represent the

"clock" and atmosphere stochastic processes were chosen to approximate the

known statistical behavior of those physical processes on time scales of up to

about 20 minutes, representing the maximum time between VLBI observations.

For the atmospheres, we used a = 0.5 psec2 sec- 1 and a2 = 0. The "clock"

performance is specified differently. We specified that the square root of the Allan

variance of the clock variations must be 2 x 10- 14 after 20 min, and the actual

values for ao and ao are determined in software. We are currently investigating

the best" variances to use, and there is some indication that these variances are

too large (see below). However, we know from experience that we can change

these variance by one order of magnitude in either direction and produce changes

in the estimated baseline length of less than 1 a.

Figure 4.1.2 shows the estimates of the Mojave-Haystack baseline length for

the standard solutions. (The estimates of the Mojave-Westford baseline length have

been "mapped" onto the Mojave-Haystack baseline using the precisely determined

Haystack-Westford baseline vector: see Clark et al. [1985].) The error bars shown
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are the statistical standard deviations of the estimates based upon the noise variances

used in the Kalman filter and the SNR-derived uncertainties of the group delay data.

(Only group-delay data were used-no phase-delay rate data were used.) The differing

sizes of these error bars can be attributed to different numbers of "good" data, to the

slightly lower sensitivity of the Westford antenna compared to the Haystack antenna,

and to the estimation of stochastic parameters at Mojave for those experiments with

no WVR data.

The root-mean-square scatter of the eight baseline determinations about their

weighted mean is approximately 4 mm. This scatter is only about 0.8 the value of

the expected scatter based on the standard errors of the estimates. This small scatter

may imply an overestimation of the variances of the stochastic processes for the clock

and atmospheres (see above). However, it is not true in general that the scatter of

the baseline length is less than, or even consistent with, the scatter predicted by the

standard errors. Typical values for the scatters are approximately 1.1-1.3 times the

predicted values. Furthermore, the purpose of the low-elevation experiments is to

expose systematic errors, none of which are evident in the standard solutions.

It is often useful to examine the postfit residuals of the group-delay observations

for individual experiments. We will in fact look at these residuals later. Now we

will test various features of the atmospheric models used to generate the standard

solutions. We will begin with the "WVR algorithm."

4.2 Accuracy of the dual-frequency WVR algorithm

In this section, we will discuss the use of data from the low-elevation experiments

to test the dual-frequency WVR algorithm described in Section 4.1. Several previous
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studies have placed the accuracy of the dual-frequency WVR algorithm at between

0.5 and 1 cm (for example, Schaper et al. [1970]; Guiraud et al. [1979]; Snider et al.

[1980]; Moran and Rosen [1981]; Elgered [1983]; Resch [1984]). None of these studies

has used radio interferometry data to establish these accuracies. An important study

by Resch et al. [1984] demonstrated that phase fluctuations of the VLA agreed well

with estimates of the two-antenna wet path delay obtained from dual-frequency WVR

data. There were periods, however, where for unexplained reasons these did not agree.

There also seemed to be drifts in the WVR data that were probably calibration errors.

In Section 4.2.i, we will compare estimates of the single-antenna wet propagation delay

obtained from VLBI group-delay data processed with the Kalman filter to estimates of

the wet delay obtained from WVR data, examining the temporal variations predicted

by the two methods for time scales less than about one day. In Section 4.2.ii, we will

discuss the variations in the differences between the two methods on seasonal time

scales.

4.2.i Short-term accuracy

In Section 4.2, we discussed the Kalman-filter processor for VLBI data. In princi-

ple, the Kalman filter is able to estimate the values of a time-varying zenith delay and

"clock" offset. Numerical simulations have established the ability of the Kalman filter

to separate the variations of these individual contributions [T.A. Herring, Harvard-

Smithsonian Center for Astrophysics, private communication, 1984]. We should there-

fore be ble to compare estimates of the wet delay obtained from processing VLBI
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data with the Kalman filter to estimates of the wet delay obtained from water-vapor

radiometry.

In order to estimate the wet delay with the Kalman filter, we in effect use the

dry delay as the a priori value of the total delay. Then, if this value for the dry delay

is correct, the remaining delay, which is estimated by the Kalman filter, is the wet

delay.

In Figures 4.2.1-4.2.5, we show the comparison of the estimates of the zenith

wet propagation delay. The estimates of the zenith wet propagation delay obtained

from WVR data are shown as squares with error bars. These error bars are the formal

standard deviations from the tip curve analysis based on the sample standard deviation

of the WVR output for the duration of the sampling interval. The estimates of the

zenith wet propagation delay from the Kalman filter are shown as a solid connected

line. Error bars have not been placed on all these estimates to avoid cluttering the

figures. In general, the standard deviations of these estimates are nearly constant.

Near the boundaries of data gaps," the standard deviations tend to increase due to

this lack of continuity. For observations at, or close in time to, other observations at

low elevations, the standard deviations are smaller. For illustrative purposes, the error

bars are shown for several Kalman-filter points on each figure.

It is obvious from these figures that the two series of estimates agree well at the

level of about 2 cm, even for rapidly varying atmospheres such as that of the 23-24

September 1984 observing session. In this session, the estimates of zenith wet path

delay change by approximately 5 cm in a few hours, and the Kalman filter estimates

track this variation extremely well. However, there are also features which appear in
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Figure 4.2.1. Comparison of estimates of zenith wet propagation delay obtained from

WVR data (squares) and Kalman-filter processing of VLBI data (solid line), for "low

elevation" experiment beginning 1984 September 23. For meaning of error bars, see

text.
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Figure 4.2.2. Comparison of estimates of zenith wet propagation delay obtained from

WVR data (squares) and Kalman-filter processing of VLBI data (solid line), for "low

elevation" experiment beginning 1984 November 16. For meaning of error bars, see

text.
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Figure 4.2.3. Comparison of estimates of zenith wet propagation delay obtained from

WVR data (squares) and Kalman-filter processing of VLBI data (solid line), for "low

elevation" experiment beginning 1985 January 25. For meaning of error bars, see text.
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Figure 4.2.4. Comparison of estimates of zenith wet propagation delay obtained from

WVR data (squares) and Kalman-filter processing of VLBI data (solid line), for "low

elevation" experiment beginning 1985 March 20. For meaning of error bars, see text.
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Figure 4.2.5. Comparison of estimates of zenith wet propagation delay obtained from

WVR data (squares) and Kalman-filter processing of VLBI data (solid line), for "low

elevation" experiment beginning 1985 May 30. For meaning of error bars, see text.
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one series but not in the other, as in the "bumps" in the Kalman filter estimates for

the 16-17 November 1984 observing session. Most intriguing is the comparison for

the 30-31 May 1985 experiment. For this observing session, the WVR and Kalman-

filter estimates agree for the first several hours while the zenith wet propagation delay

undergoes large variations. Then, rather abruptly, the WVR estimates increase several

centimeters while the Kalman-filter estimates remain at about the same value. The

two sets of estimates remain apart but slowly converge near the end of the observing

session.

What could cause differences between these independent estimates of the wet

delay? In Section 2.6, we discussed sources of error in the estimates of the wet propa-

gation delay from WVR data. These sources were e. rs in (i) Tbg, (ii) Teff, (iii) 2,

and (iv) W. We shall for the moment discount (i) as being capable of producing the

differences we observe in Figures 4.2.1-4.2.5, since from the discussion in Section 2.6

we expect these errors to be much smaller than observed. Errors in the effective tem-

perature can also be eliminated, since from the discussion in Section 2.6 we would

expect these errors to be larger for days on which the wet propagation delay was

larger. In fact, we can observe some of the greatest differences on days with very small

wet delays.

The two remaining candidates deserve attention. We have already pointed out

that the size of the "oxygen correction" in our particular wet-delay algorithm is about

half the size of the theoretical value for this correction. This error would amount to

about 3 mm in the zenith wet propagation delay. However, this error would be roughly

constant over one day, due to the weak dependence on the surface temperature and
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surface pressure expected for the oxygen correction: see (2.6.8). This error would also

be independent of the size of the delay, and for small delays could therefore account

for a sizeable fractional error.

We also expect to incur errors in the value for the weighting function. As we

mentioned earlier in this chapter, a constant value for the weighting function was used.

However, we have seen that we may expect seasonal and site dependence of the value

for the dual-frequency weighting function. We will examine this possibility further in

the following section.

Another possible source of error in the estimates of the wet propagation delay

from WVR data is a calibration error in one or both channels of the WVR. This

source of error was not considered in Section 2.6, but had been previously discussed in

Sections 2.4 and 2.5. Calibration used to obtain the estimates of the wet delay for these

experiments was obtained from tip curves. Nothing in the tip-curve data suggests that

any large calibration errors may have been incurred. However, we continue to examine

these data in an attempt to discern some evidence for the cause of these errors.

Errors in the estimates of the wet-delay from the VLBI data processed with the

Kalman filter would of course also contribute to the observed differences. One possible

source of error in these estimates is an error in the dry propagation delay, since the

estimation technique cannot separate the individual contributions to the propagation

delay. (In principle this separation is possible if the wet and dry propagation delays

possess different mapping functions. In practice, these mapping functions have so

similar a dependence on elevation angle as to make this separation impossible.) Thus,

estimates of the wet delay also reflect corrections to the dry delay. The error in the
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dry delay could have two contributions: an error in (i) the zenith dry delay, and (ii)

the dry mapping function.

In Appendix A, we discuss the precision of the zenith dry propagation delay. In

Equation (A14) we find that the uncertainty in the zenith dry delay is approximately

(0.0005 mm mbar-1)Po, where Po is the surface pressure. This uncertainty takes into

account the uncertainties in the dry refractivity constant, the mean acceleration of

gravity, the universal gas constant, and the variability of the mean molar mass of dry

air. The formula for the zenith dry delay and this uncertainty were derived, however,

under the assumption of hydrostatic equilibrium. An extreme upper limit for the effect

of nonequilibrium conditions is R'bout 20 mm/1000 mbar, or about 20 mm at a pressure

of 1 atm. Certainly, errors in the dry zenith delay of this size could account for the

observed differences. Furthermore, we might expect that errors due to this source

would vary on time scales shorter than one day, since nonequilibrium conditions may

be caused by storms or possibly passages of fronts. We hope to study the effects of

nonequilibrium conditions in the future, in order to obtain a more accurate estimate

of these effects.

The possibility that the differences are due to errors in the dry mapping function

is attractive, for it gives us a method for detecting such errors. If the errors were due to

this source, we would expect that differences are elevation-dependent. Unfortunately,

we can find no evidence of such dependence, possibly because the Mojave antenna

does not observe below 10° elevation. Perhaps we will obtain more evidence when the

Haystack site receives a WVR.
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In the next section, we return to the idea that the differences may be due to

errors in the value for the weighting function used.

4.2.ii Seasonal variations

As mentioned in Section 4.1, when WVR data were available, only a single atmo-

spheric parameter was estimated for Mojave. This estimation was to allow for the fact

that the WVR algorithm may be biased. In the previous section, we indeed saw that

the estimates of the zenith wet delay from the Kalman filter were often offset from the

estimates derived from WVR data. Figure 4.2.6 shows the estimated bias parameters

for the five observing sessions with WVR data. These bias parameters can be roughly

described by an offset and a sinusoid with a period of one year. An offset indicates a

constant error in the value for the weighting function used. This error might be due

to the site-dependence of the weighting function, for example. The annual variation

can be understood if we examine Figure 2.6.2. This figure shows the annual variation

in the value for the dual-frequency weighting function for the radiosonde launch site

at Landvetter airport near G6teborg, Sweden. From this study, we may assume that

the value for the weighting function at the Mojave site also undergoes some annual

variation, and this assumption is borne out by the results of the low-elevation exper-

iments. The bias parameters of Figure 4.2.6 are "in phase" with the sinusoid evident

in Figure 2.6.2, as we might expect. However, the amplitudes of the variations are

different. In Figure 4.2.7 we have plotted the corrections to the weighting function im-

plied by the corrections in Figure 4.2.6, in terms of the original value of the weighting

function. We can see that in one case the implied correction of the weighting function
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Figure 4.2.6. Estimated bias parameters for the zenith atmospheric propagation

delay at the Mojave site. The error bars shown are the statistical standard deviations

based on the SN:R-derived group-delay uncertainties and the values for the stochastic-

process variances used to represent the clock and atmosphere behaviors (see text).
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has a value of -50% of the value for the weighting function used. Errors in the original

value for the weighting function of this size are difficult to understand, and it may be

that some other (additive) error is contributing to the corrections in Figure 4.2.6. For

small values of the zenith wet delay, this additive error would correspond to a large

fraction of the total delay. Clearly, studies of the weighting function using radiosonde

data for (i.e., near) Mojave are needed. Simultaneously, an effort should be made to

examine the small uncertainties in the dual-frequency algorithm, such as those in the

oxygen opacity. Errors in this term (see Section 2.6) may contribute to the corrections

in Figure 4.2.6 and 4.2.7.

The examination of the accuracy of wet-path-delay algorithms for WVR's is an

ongoing research topic. The techniques for this examination presented in this and the

previous sections have only recently been developed: the results presented here may

be considered as intermediate results in that they indicate the direction of research

to be taken, but we cannot say anything final concerning the accuracy of the WVR

algorithms at the level of 2-4 cm or less. Nevertheless, these results do indicate the po-

tential for accuracies of less than 1 cm, depending on our ability to model the variations

of the weighting function. Currently, the modeling of these variations as a function

of surface temperature and pressure by Elgered [Onsala Space Observatory, Sweden,

private communication, 1985] has yielded encouraging if preliminary results. It will

quite likely be several years before a "final" site- and season-dependent algorithm

will have been tested and proven satisfactory. It is also possible that as our ability

to model the variations in the weighting function improves, our ideas concerning a

"satisfactory" accuracy will change.
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Figure 4.2.7. Errors in W-1 implied by the estimated bias parameters in Figure 4.2.6.
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In the following section, we will describe the use of data from the low-elevation

experiments to test the new mapping function for the dry path delay, the development

of which was described in Chapter 3 and Appendix A.

4.3 Testing the mapping function

As discussed in the introduction to this chapter, the primary purpose of conduct-

ing the low-elevation experiments was, at the time of their designing, the testing of

the new mapping function for the dry path delay, CfA-2.2. In this section, we will test

the mapping function in two ways. First, we will perform elevation-angle cutoff tests

using the CfA-2.2 mapping function, and compare the results of these tests to similar

tests using the Marini mapping function. We will then discuss seasonal variations in

the estimates of baseline length, which will be interpreted as seasonal errors in the

mapping function.

4.3.i Elevation-angle cutoff tests

Figure 4.3.1 contains comparisons of the results from the elevation-angle-cutoff

tests for the CfA-2.2 and Marini mapping functions, for the eight low-elevation exper-

iments. Shown are the differences b, - b 0, where bo is the estimate of the Mojave-

Haystack baseline length from all the data, and be, = 50, 7.5° , 10° , 15° , 20° , 25° , 30°,

is the estimate of that baseline length using data from above the elevation . The dif-

ferences obtained using the CfA-2.2 mapping function for the dry delay are indicated

by a square, those using the Marini mapping function by a triangle. The error bars are

the statistical standard deviations of the differences based on the statistical standard
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deviations of the estimates of baseline length, obtained using the SNR-derived group

delay uncertainties, and depending on the assumed standard deviations of the stochas-

tic processes representing the clock and atmosphere variations. These error bars are

shown only for the CfA-2.2 points, as they are the same for the Marini points.

We will first make a few general statements concerning the results of the elevation-

angle-cutoff tests using the CfA-2.2 mapping function. If this mapping function de-

scribed the mapping of the dry delay with no error, then we would expect the differ-

ences shown in Figure 4.3.1 to display no systematic dependence on elevation-angle

cutoff, or on date of experiment, and to have a statistical expectation of zero. If we

limit our discussion only to the differences using cutoffs of 5°, 7.5° and 10°, we could

probably say with confidence that the previous statement describes the results: the

differences are all within 1-2 standard deviations of zero. Since, from the discussion

in Chapter 1, these differences (i.e., from the lower elevation-angle minima) are most

greatly affected by errors in the mapping function, the results in Figure 4.3.1 seem to

imply that the CfA-2.2 mapping function induces "negligible" errors for minimum el-

evation angles below about 100, for these experiments. We will discuss this conclusion

further later in this and the following section.

For elevation-angle minima above 15-20°, an elevation-angle cutoff test practi-

cally gives no information about the CfA-2.2 mapping function. Since above these

elevation angles this mapping function is nearly equal to the cosecant of elevation,

and, based on ray-tracing studies, this law describes the dry delay quite accurately

for these elevation angles, we can assume that the error in the estimates of baseline

length attributable to mapping function error is very nearly zero. The differences
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Figure 4.3.1. Elevation-angle-cutoff tests for the low-elevation experiments, for the

CfA-2.2 (squares) and Marini (triangles) mapping functions. Shown are the differences

of the estimates of the Mojave-Haystack baseline length obtained using all the data

from the estimate of that length obtained using data from elevation angles greater

than the indicated angle. The error bars are the statistical standard deviation of the

differences, based on the standard deviations of the original estimates of baseline length

(see Appendix A). These error bars have been placed only on the CfA-2.2 differences,

but are the same as the Marini differences for the corresponding minimum elevation

angle.
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shown in Figure 4.3.1 for above about 150 should be constant, and that constant value

represents the difference between the "true" baseline length, and the baseline length

estimated using all the data. Of course, as we discussed in Chapter 1, the random

errors in the estimate of baseline length become very large as the elevation-angle min-

imum increases, and so the differences in Figure 4.3.1 above the 150 point are not

constant, and, unfortunately, we cannot discern the "true" baseline length with any

precision.

An interesting phenomenon which seems to be present in the results in Fig-

ure 4.3.1 is this systematic positive difference for the b15 - bo points. For the majority

of the experiments, this point seems to pop up" from the surrounding points. A

possible explanation for this behavior may lie in the fact that the Mojave antenna

cannot observe below 100 elevation. Thus, only low elevation-angle observations at

Haystack are deleted when raising the elevation-angle minimum to 100. There are

a large number of observations between 100 and 15° elevation at Mojave, however,

and deletion of these points may affect the results shown in Figure 4.3.1 if there is

a mapping function error at Mojave. Thus, this bump" may be indicative of a site-

dependent variation not accounted for in the implementation of the CfA-2.2 mapping

function. However, we will need to perform more low-elevation experiments if such a

result is to be believed. If we continue to obtain evidence pointing in this direction,

then we could attempt to "climatize" the mapping function. A first step would be

to use radiosonde or other data to determine site- and season- dependent values for

the temperature lapse rate and tropopause height, instead of using the nominal values
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(see Section 4.1.v). Other sites should also participate in these or other low-elevation

experiments to test this hypothesis on a larger sample of climates.

If we examine Figure 4.3.1 for the results for the Marini mapping function, we first

notice that the Marini differences seem to parallel" the CfA-2.2 differences, especially

for the higher minima. This is due to a fact which we have already discussed. Since

the Marini and CfA-2.2 mapping functions agree above the elevation of - 15° , the

estimates of baseline length made with the two different mapping functions will agree

if the minimum elevation angle is above this elevation. (Note that there is no random

effects involved: the estimates will be equal if the model is the same.) The offsets seen

in Figure 4.3.1 between the CfA-2.2 and Marini curves for elevation-angle minima

above 15° are due only to the differences between the estimates bo for the different

mapping functions, and are included to indicate that difference.

In fact, the curves for the CfA-2.2 and Marini mapping functions agree quite well

for the lower elevation-angle minima as well. It is only for the first three experiments

that there is evidence of nonzero differences. The largest differences from zero can be

seen in the results for the experiment dated January 25, 1985. For this experiment, the

estimates of the baseline length obtained using elevation-angle minima of 5°, 7.5°, and

10° are all approximately 20 mm greater than the estimate of the baseline length using

all the data. These differences indicate that the Marini mapping function exhibited

severe errors below an elevation angle of 5°. Note that no such behavior is evident

from the CfA-2.2 mapping function. The behaviors for both mapping functions for

minimum elevation angles above 10°, with only one experiment from this time of year,
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are difficult to interpret. Again, we must wait for more experiments to be conducted

before we can decide on the meaning of such results.

Throughout this section, we have been comparing differences of estimates of

baseline length. In the following section, we will compare the actual estimates of

baseline length, and attempt to interpret the results in light of the comparisons of this

section.

4.S.ii Seasonal variations

In Figure 4.3.2, we again present the "standard results" for the series of low-

elevation experiments conducted before November, 1985. As described in Section 4.1,

we used the CfA-2.2 mapping function to map the dry delay for the solutions from

which the data in Figure 4.3.2 are generated. Since we are attempting to determine

the effect of errors in this mapping function, we would like to know the errors in the

estimirtes shown in Figure 4.3.2. Unfortunately, we have no estimates of this length of

comparable precision with which to assess the accuracy of our estimates.

Figure 4.3.2 shows estimates of the Mojave-Haystack baseline length obtained

using a processing identical to that for the standard results, except that the Marini

mapping function has been used for the dry delay. (We also show the standard results

in this figure.) Since we do not know the true values of the baseline length (which may

be changing with time), we cannot say for sure that these estimates are any "better" or

any "worse" than the standard results. However, we make the following observations:
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Figure 4.3.2. Standard results from the low-elevation experiments (squares). Also

shown are the standard Marini" results (triangles; see text).
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* The weighted mean of the estimates of the Mojave-Haystack baseline length

made using the Marini mapping function is 3,904,144,247.3 mm, while the stan-

dard results have a mean of 3,904,144,246.9 mm. The difference between these

estimates is only 0.4 mm.

* The weighted root-mean-square (WRMS) deviation of the Marini results about

their weighted mean is 9.6 mm, for a X2 per degree of freedom of 2.5. The

standard results have a WRMS deviation of 4.5 mm and a X2 per degree of

freedom of 0.6.

Can we interpret the above observations in terms of the accuracy of our standard

results and therefore, by extension, in terms of the accuracy of the CfA-2.2 mapping

function? Our inclination is to say that based on the RMS about the weighted means

alone, the reproducibility of the standard results implies that these results are far more

accurate than the Marini results. Indeed, in terms of the "fractional stability" (i.e.,

the ratio of the WRMS deviation to the baseline length), the standard results are

among the most stable estimates for long (> 1000 km) baselines ever reported. The

small reduced x2 may be due to the overestimate of the variability of the stochastic

processes describing the behavior of the clocks and atmospheres (see Section 4.4.i).

On the other hand, the probability that the x2 per degree of freedom is less than 0.6

for seven degrees of freedom is about 0.25. Thus, the small WRMS alone is probably

not a good basis for the judgement of accuracy (although this line of reasoning assumes
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that the errors in the estimates of baseline length are statistical in nature, i.e., that

there are no significant systematic errors due to, say, mapping function errors).

Nevertheless, it is still true that the estimates using the Marini mapping func-

tion exhibit more scatter than the standard results. There is some evidence that the

variation in the Marini estimates depends on the weather. In Figure 4.3.3, we plot the

difference between the Marini and standard results plotted as a function of average

temperature at Haystack for the respective experiment. The error bars shown are the

standard deviation for the baseline length estimates, which are independent of map-

ping function, and do not represent statistical uncertainty in the differences. (Since the

estimates are obtained using identical data, but different models, the concept of statis-

tical uncertainty does not apply here.) There is a hint of correlation in this figure, due

mostly to the difference between the estimates for the January 25, 1985 experiment.

The difference of almost 20 mm from the mean for the estimate for this experiment is

alone responsible for a large fraction of the WRMS for the Marini results. Thus, we

might base a conclusion of temperature-dependent errors in the Marini estimates upon

this single point, except that we expect such errors based on the expression for the map-

ping functions. Figure 4.3.4 shows the propagation delay at 50 elevation for the Marini

mapping function and for the CfA-2.2 mapping function as a function of surface tem-

perature. The meteorological parameters used for this figure are PO =- 1013.25 mbar,

eo = 0 mbar, p = -6.5 K km - l , ht = 11.231 km. For the site position parameters,

we used values representative for the Haystack antenna of H = 0.1 km and b = 43° .

(See (1.4.1) and (1.4.2) for the zenith delay formulas, (1.4.3)-(1.4.5) for the Marini

mapping function, and (9)-(12) of Appendix A for the CfA-2.2 mapping function.)
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We can see that the propagation delay predicted by the Marini mapping function has

no dependence upon temperature, while the delay predicted by the CfA-2.2 mapping

function has a strong temperature dependence. The CfA-2.2 mapping function, in fact,

agrees with ray-trace predictions of the temperature-dependence of the propagation

delay, since it was derived from ray-trace calculations (see Chapter 3).

The above discussion leads us to conclude that at least some of the differences

between the estimates of baseline length obtained from the CfA-2.2 and Marini map-

ping functions are due to the improper temperature dependence of the Marini mapping

function. Moreover, the stability of the CfA-2.2 estimates under varying temperature

conditions might lead us to believe that the the differences in these estimates are due

mainly to errors in the Marini estimates. This line of argument does not prove that

the CfA-2.2 mapping function yields unbiased estimates, because it assumes this result

based upon the small scatter of the CfA-2.2 results. The most that we can say at this

time is that the conclusions drawn above are consistent with (i) the CfA-2.2 yielding

an unbiased estimate of the baseline length, and (ii) the known erroneous temperature

dependence of the Marini mapping function yielding biased estimates of the baseline

length.

The program of monthly low-elevation experiments continues as of this writ-

ing. From September 1984 through August 1985, the experiments were conducted

bi-monthly at best. Beginning in August 1985, the experiments have been conducted

monthly. They will continue to be conducted monthly at least through to the end

of 1986 (with a gap for the mobile VLBI summer campaigns). It is not clear that

after this time we will be able to say anything more definite concerning the CfA-2.2
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Figure 4.3.4. Dry delay at an elevation of 5° predicted by the CfA-2.2 mapping func-

tion (solid line) and Marini mapping function (dashed line). For values of parameters

used in the formulas, see text.
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mapping function, since we will still have a relatively small number of experiments.

In a sense, it is unfortunate (and certainly unexpected) that the standard results ex-

hibit so little scatter. The purpose of the low-elevation experiments is to test and

improve our mapping function; by observing at low elevation angles, the errors in the

CfA-2.2 mapping function should "stand out." Yet the standard results give no reason

to believe that the CfA-2.2 mapping function induces large errors in the estimates of

baseline length. Nevertheless, we do expect observable errors which are both site- and

season-dependent (see Appendix A). One possible improvement in the current "stan-

dard" processing technique may occur with the advent of a WVR at Haystack, and

with improved site- and season-dependent water-vapor weighting functions. Then

the necessity of estimating the zenith delay will be eliminated, and another test of

systematic error will be available: the zenith delay/ no zenith delay comparison (see

Chapter 3).

In the final section of this chapter, we again discuss the treatment of the propa-

gation delay during data analysis.

4.4 Treatment of the atmosphere in VLBI data analysis. III

In this section, we will again discuss the treatment of the propagation delay in

VLBI data analysis, this time in view of the results from the previous sections in this

chapter. We will assume that these results imply that (i) the dual-frequency weighting

function can be modeled and the "oxygen correction" determined so that the estimate

of wet path delay is unbiased, and (ii) the mapping function for the dry path delay

can be determined such that the error in the dry delay is "negligible." Although these
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conditions do not follow directly from the results in the previous sections, these results

do imply that the conditions are possible to attain. However, we will first discuss the

Kalman filter processor in m. ce detail than in Section 4.1.v.

4.4.i The Kalman filter

A difference from the previous sections dealing with the treatment of the atmio-

sphere in VLBI data analysis will be our use of a Kalman filter for processing VLBI

data. The Kalman filter was Driefly introduced in this chapter, and estimates using

this processor presented. It is still not necessary in this section to present the Kalman

filter equations [Liebelt, 1967], but we will outline the theory of the Kalman filter as

a sequential least squares estimator.

We first review least-squa ces estimation with a priori information. Suppose that

x is our "a priori estimate" of the parameter vector x, with "a priori covariance

matrix" P. We wish to "update" our values of the parameters using data. This

"update" either represents a "better" estimate of an unchanging set of parameters or

the new values of a changing set of parameters, or a combination. If the parameters

or some subset are changing m1 a random way, then the vector * can be interpreted

in a Bayesian sense as being t e expected value of x, with that statistic having the

covariance matrix Pz. The dati are assumed to be related to the parameter vector by

y = Ax + ' (4.4.1)

where E represents experimental error, and A is a matrix of partial derivatives. The

"updated" estimate of x can be written

' = P'ATG-1(y- Ai) (4.4.2)
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where Gy = (e-E), and the covariance matrix P' of *' is given by

P = (P1 + ATG A)-1 (4.4.3)

One observation which we wish to make for later referral is the dependence of x

in (4.4.2) on the difference between the observed value and the prediction for that

observed value based on the a priori parameter values. This difference has two contri-

butions: experimental error and the error in the a priori estimates. It is assumed that

both of these errors are zero mean and Gaussian and that their covariance matrices

are given by Gy (experimental error) and P2 (error in a priori estimates).

We are now in a position to review the estimation of parameters by a Kalman

filter. The first step for a Kalman filter is to take the "best estimates" for a set

of parameters-some of which are stochastic, and some of which are deterministic-

at the time ti-1, and obtain the expected values of those parameters at time ti.

Obviously, if the parameters do not change with time, the expected values at time

ti equal the values at time ti-1. For parameters, such as those that represent the

clocks and atmospheres, which change randomly with time, the expected values at

time ti are given by the expectation of (4.1.1). In taking the expectation of this

expression, we use (Aq(ti)) = (Aw(ti)) = 0. (The random variations are assumed to

be zero mean Gaussian, as mentioned previously.) Thus, the expected values of the

parameters for the clocks and atmospheres are determined simply by projecting those

values forward in time. For example, suppose that at some time, the offset" value for

a particular clock is 10 psec, and the "rate" value is 0.1 psec minute - 1. Then, using
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our particular model given in (4.1.1), the "expected" value for the offset 20 minutes

later is 10 + 0.1 x 20 = 12 psec. (The "rate" in this model remains the same.)

What is the covariance matrix of these "projected" estimates. In determining

this matrix we must take into account (i) the covariance matrix of the estimates at the

previous time, and (ii) the covariances due to the unknown random variation during

the time over which we projected the previous estimates. That is, because we assumed

that the variations were zero when we projected the stochastic parameters forward,

the values of those parameters are more uncertain. It is quite easy to show that the

covariance matrix at time ti is simply the sum of the covariance matrix at time ti-_

and the covariance of the stochastic parameters, which for our particular model for

those parameters is given by (4.1.2).

We now perform a constrained least-squares solution for the "updated" values of

the parameters at time ti. The data at time ti form our data vector, the "projected"

parameter estimates form our a priori estimates," and their covariance matrix forms

the "a priori covariance matrix." A Kalman filter does not use (4.4.2) and (4.4.3) to

make these estimates, but instead uses a very efficient algorithm with a much smaller

number of matrix inversions.

4.4.ii Estimating atmospheric parameters

Suppose that for a given experiment, the estimate of the line-of-sight wet path

delay-inferred from WVR data-for the VLBI observation at time ti is Lw(ti). The

true wet path delay for this observation is Lw(ti) and the error in the estimate is

ALw(ti) = Lw(ti) - Lw(ti) (4.4.4)
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If the ALto(ti) are zero mean, Gaussian, with corresponding standard deviation ai

(which represents WVR measurement error), how would we utilize our information?

Within the framework of a Kalman-filter processor, we effect this utilization in a

manner consistent witih the assumptions from which the Kalman filter equations are

derived: stochastic modeling of the wet path delay is implemented, and the obser-

vations at each epoch ti include the "observation" of the wet path delay with value

Lw(ti) and "experimental uncertainty" i.

Now suppose that in our study and evaluation of a season-dependent model for

the dual-frequency weighting function, we find that we cannot model the weighting

function perfectly, so that on any given day our estimate of the weighting function has

some error which for illustrative purposes we will assume as being constant for the

observing session. Then one method which takes this error into account would be to

use as the wet delay "observation equation"

L ob(ti) = [1 + AiL, ti) + ei (4.4.5)

where L (ti) is the estimate of the wet delay obtained from WVR data using the

nominal value for the weighting function; i is the experimental error from the WVR,

and is zero mean with standard deviation oi; and A is a parameter to be estimated. (We

have omitted a term which is the product of A and ei.) Note that for A = 0, we have

ALw(ti) = si, where AL(ti) was defined above. For consistency with our Bayesian

approach, an "observation" giving zero for the value of A, and using the standard

deviation for A determined from the radiosonde studies should be included. If the a

priori value of A is not zero (if there are remaining seasonal effects, for instance), then
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this value should be used instead of zero in the "observation," because, as we saw in

the previous section, the a priori uncertainty used refers to the standard deviation of

the difference between the a priori value and the true value. If the a priori uncertainty

does not reflect this difference, then the expectation of the "updated" estimates will

not necessarily be the true values of the parameters, and the corresponding covariance

matrix will not necessarily reflect accurately the statistical differences between the

estimates and the true values.

It should be clear that any number of potential errors can be treated-at least

formally-by interpreting the errors in the parameters within a general Bayesian frame-

work in which all a priori information can be treated as observations. The usefulness

of this approach depends on the "precision" of the a priori information. Poor "preci-

sion" of the a priori information can be equivalent to no a priori information at all;

the ability to estimate the parameters then becomes simply a matter of "separating"

the parameters in the familiar least-squares sense. For example, we have seen that

with no a priori information, the estimate of a single zenith delay parameter is highly

correlated with the estimate of the vertical coordinate of site position (see Section 1.5).

This increased correlation causes the statistical standard deviation of this coordinate

of site position to inflate. It is therefore important to use all the information available

to attempt to decrease correlations among the parameters. At the same time, it is

important that no systematic errors be introduced, so that the statistics derived from

the data" uncertainties (i.e., the group-delay uncertainties as well as the "pseudo-

observation" uncertainties) truly reflect the errors in the parameter estimates.
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Conclusions

Errors in the formulas for the atmospheric propagation delay used in conjunction

with the analysis of VLBI data will induce errors in the estimates of parameters. In

Chapter 1, we examined the induced errors in the estimates of site position due to

several types of errors in the formulas for the propagation delay. The coordinate of

site position whose estimate is most affected is the vertical, because the estimate of this

coordinate is highly correlated with estimates of atmospheric parameters of almost any

type. These correlations can be reduced-but not eliminated-by having observations

at low elevation angles. Unfortunately, systematic errors of atmospheric origin are

generally larger at low elevation angles.

A solution to this dilemma would be to eliminate errors in the atmospheric for-

mulas and to estimate no atmospheric parameters, or else to estimate these parameters

only if strongly constrained with a priori information. Such a solution could be ob-

tained by using observations only from high elevation angles, thereby approximately

eliminating mapping-function errors, using measurements of the surface pressure to

estimate the "dry" propagation delay, and having accurate WVR estimates of the

"wet" propagation delay. Up until t.e present, we had formulas for mapping functions

believed to be adequate above the elevation of 20°, we routinely and continuously

measured and recorded the surface pressure during VLBI observing sessions, but the

accuracy of the WVR delay algorithm had never been not well studied.

In studying the accuracy of the WVR delay algorithm, described in Chapter 2,

we became aware of a possible error at low elevation angles in the mapping function we
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were then using. The use of observations at low elevation angles was necessary to this

study to reduce the correlations mentioned above. The evidence for this mapping-

function error was presented in Chapter 3. We then attempted to develop a new

mapping function for use at elevation angles down to about 5°. The development of

this new mapping function was also described in Chapter 3. The initial tests of this

mapping function, using VLBI data obtained in the MERIT intensive campaign of

1980, seemed to indicate that systematic errors in the estimates of the baseline length,

which had been -5 cm for 8000-km long baselines with use of the Marini mapping

function, were less than 1 cm with use of the new mapping function, dubbed CfA-2.2.

In order to test possible site- and season-dependence of the mapping function,

a series of special VLBI experiments was undertaken. These experiments had a large

number of observations from very low elevation angles, and were intended to increase

the effects of errors in the mapping functions to cause the systematic errors to be

distinguishable from random errors. These experiments, described in detail in Chap-

ter 4, presented us with an unexpected result. Instead of the estimates of baseline

length displaying the effects of systematic mapping-function errors with seasonal de-

pendence, these estimates proved to be some of the most repeatable for that length of

baseline (-3,900 km) ever obtained, with a weighted-root-mean square deviation from

their weighted mean of -4 mm. These estimates were obtained using the CfA-2.2

mapping function. The estimates obtained using the Marini mapping function have

approximately twice this scatter, and display what may be a seasonal variation. One

possible explanation is that the primary mapping function errors were caused by erro-

neous temperature dependence of the Marini mapping function, and that the CfA-2.2

mapping function is a better approximation in this regard.
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We were also able to compare estimates of the wet delay obtained from WVR data

at the Mojave site to estimates of the wet delay at that site obtained from the VLBI

data processed with a Kalman filter. These comparisons demonstrate that the rapid

variations observed in the WVR-derived estimates also appear in the VLBI-derived

estimates-most of the time. There axe several instances in which large variations ap-

pear in one of the series but not in the other. These differences are as yet unexplained,

although possible causes are discussed in Chapter 4.

Using the WVR-derived delays as a priori estimates of the wet delay, we can also

use the VLBI data to estimate constant daily corrections to those estimates. These

corrections display a possible annual variation. Such an annual variation is expected,

based on recent detailed studies of the variation of the dual-frequency weighting func-

tion (Chapter 2), which show that quantity also to have an annual variation. The

variation of the corrections is in phase" with the expected variation based on these

studies, but the amplitude of the variations is too large. This discrepancy may reflect

an error in the "oxygen correction" (Chapter 2). Several groups are currently work-

ing to improve algorithms for the estimation of the wet path delay from WVR data

[Johansson, 1985; Robinson, 1985; Gary et al., 1985].

The "low-elevation" experiments are continuing at present. They will continue

to furnish information on the accuracy of our atmospheric models. We will also use

radiosonde data to investigate independently the annual variations in the weighting

function at Mojave. In the near future, a second WVR will be placed near the other

terminal of the interferometer, at the Haystack Observatory, allowing us to assess both

the site- and season-dependence of the weighting function.
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Appendix A

The CfA-2.2 Mapping Function

In this appendix, we include the paper Geodesy by radio interferometry: Effects

of atmospheric modeling errors on estimates of baseline length. In this paper, we

supplement the evidence for errors in the Marini mapping function given in Chapter 3.

We then use the ray-trace procedure described in Chapter 3 to develop a new mapping

function. We also describe the initial testing of the new mapping function.
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Geodesy by radio interferometry:
Effects of atmospheric modeling errors

on estimates of baseline length

J. L. Daris,' T. A. Herring,2 I. I. Shapiro,2 A. E. E. Rogers,3 and G. Elgered'

(Received March 14, 1985; revised June 27, 1985; accepted June 27, 1985.)

Analysis of very long baseline interferometry data indicates that systematic errors in prior estimates
of baseline length. of order 5 cm for -8000-km baselines, were due primarily to mismodeling of the
electrical path length of the troposphere and mesosphere (atmosphenric dela)") Here we discuss
observational evidence for the existence of such errors in the previously used models for the atmospher-
ic dela) and develop a new mapping" function for the elevation angle dependence of this delay. The
delay predicted b this new mapping function differs from ray trace results by less than - 5 mm, at all
elevations down to 5 elevation. and introduces errors into the estimates of baseline length of < 1 cm.
for the multistatlon intercontinental experiment analyzed here

1. INTRODUCTION

A signal from a distant radio source received by an
antenna located on the surface of the earth will have
been refracted by the terrestrial atmosphere. The cor-
responding delay introduced by the atmosphere de-
pends on the refractive index along the actual path
traveled by the received signal. For an atmosphere
which is azimuthally symmetric about the receiving
antenna. this delay depends only on the vertical pro-
file of the atmosphere and the elevation angle of the
radio source. The function which describes the de-
pendence upon elevation angle of the atmospheric
dclay has become known as the mapping function.
This mapping function is used, along with some
model for the zenith delay, to account for the atmo-
spheric delay in models for the interferometric ob-
servables. Historically. analyses of very long baseline
interferometry (VLBI) data for geodesy [e.g., Robert-
son, 1975] have made use of the Chao" mapping
function and, more recently [Clark et al., 1985], of
the Marini" mapping function. The Chao mapping
function [Chao, 1972] is based on ray tracing studies
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in which refractivity profiles, averaged over all sea-
sons and various sites, were used. This mapping func-
tion therefore contains no parametrization based on
surface weather conditions at the site. However, for
the refractivity profiles used, the mapping function
describes the elevation angle behavior of the atmo-
spheric elay to better than 1 for elevation angles
above 1'. On the other hand, the Marini mapping
function [Marini, 1972; J. W. Marini, unpublished
manuscript, 1974] contains terms which depend on
surface meteorological conditions, but it is based on
approximations that degrade its accuracy below
about 10'. Mapping functions other than these two
have appeared in the literature [e.g., Hopfield, 1969;
Saastarnoinen, 1972; Black, 1978; Black and Eisner,
1984], but these other mapping functions have not
undergone testing with VLBI data.

In the following. we review the manner in which
the atmospheric delay is modeled, and the effects of
these models on estimates of baseline length made
from radio interfetometric data. We present evidence
of systematic errors in estimates of baseline length
made from VLBI data, and we demonstrate that
these errors arc caused by the mismodeling of the
atmosphere. Finally, we describe the development
and testing of a new mapping function.

2. MODELING THE ATMOSPHERIC DELAY

The models for the interferometric observables of
group and phase delay, and of phase delay rate, must
account for the atmospheric delay:

T = ds n(s - j ds
tl Mc

(I)
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where the first integral is evaluated along the path of
a hypothetical ray originating from the direction of
the radio source and passing through the atmosphere
to a receiving antenna. and n(s) is the index of refrac-
tion at the point s along the path; the second integral
is evaluated along the path the ray would take werc
the atmosphere replaced by vacuum. For simplicity,
we have chosen units in which the speed of light is
unity. (Delay will therefore be expressed in units of
equivalent length.) The difference, T"' - r, for the
two antennas i and j, of an interferometer gives the
contribution of the atmosphere to the model of the
interferometric delay. (Using the term "tropospheric
delay" here would be inaccurate, since about 25% of
the atmospheric delay occurs above the troposphere.)

We can find the point at which the integration in
both parts of (1) is terminated at the earth by visual-
izing the path of the (hypothetical) paraxial ray. This
ray would strike the vertex of the paraboloid of the
antenna normal to the surface of the antenna and be
reflected back along the axis. For a prime focus an-
tenna, this paraxial ray would continue to travel
until it enters the antenna feed at the focus. For a
Cassegrain focus antenna, the ray would be reflected
once more at the subreflector and then enter the feed
located at or above the vertex along the axis. The
path(s) after the initial reflection can be ignored in
evaluating (1), because the delay is very nearly con-
stant. The daily variation is usually less than 0.5 mm
per 10 m of travel. (The largest diurnal variation in
this delay, calculated from data taken by meteoro-
logical sensors located at the sites, was recorded for
the Westford antenna site; the value was 0.8 mm per
10 m of travel and was associated with a rapid de-
crease in the humidity.) A constant delay of any type
at one of the sites is indistinguishable from a con-
stant clock offset or instrumental delay for that site.

For most antennas, the vertex of the primary re-
flector moves when pointing is changed; the size of
the movement is usually a few meters. This move-
ment can usually be ignored, with consequent negli-
gible error, and a fixed reference point used in the
evaluation of (1). For example, the intersection of
axes of rotation of the Haystack antenna (one of the
antennas used in VLBI experiments; see below) is
located 4.3 m from the vertex along the axis of the
parabola in a direction opposite to that of the prime
focus. In this case, if we use the axis intersection as
the fixed reference point for the evaluation of (1), the
errors introduced will be equal to the neglected delay
from vertex to the subreflector and back to the sec-
ondary focus (a total distance traveled of 25.2 m),

minus the erroneously added path from the vertex to
the intersection. These paths should contribute less
than -1 mm amplitude of diurnal variation (due to
diurnal variations of temperature and humidity) and
less than 0.01 mm variation with antenna pointing
angle.

Evaluation of the second integral on the right-
hand side of (1) requires only knowledge of the
source and antenna coordinates. However, evalu-
ation of the first integral requires, as well, knowledge
of the index of refraction in the neighborhood of the
correct ray path, which is necessary in order to
obtain the path itself via Fermat's principle [Born
and Wolf, 1970]. Since in practice it is not possible to
obtain this knowledge. one usually relies on models
of the structure of the atmosphere. For example, one
often assumes that the index of refraction of the at-
mosphere is constant from the surface of the earth up
to an altitude H; for altitudes above H. the index of
refraction is assumed to be unity, and the bending of
the ray at the atmosphere'vacuum boundary is ig-
nored. Then for a plane parallel model of the earth
and the atmosphere, (1) reduces to

= cs d-: (no - I)

£
(2)

where e is the elevation angle of the radio source and
no is the index of refraction at the surface of the
earth.

It is possible to write (1) in a form which is moti-
vated by the simple form of (2). Quite generally, we
can write

T.= (re, P)J d: [n(:)- ] (3)

The function m(e, P), which is defined by (1) and
(3), depends on the elevation angle E as well as on the
parameter vector P, which is a parametrized repre-
sentation of the behavior of the index of refraction in
the atmosphere. The number of elements (parame-
ters) in P depends on the assumptions made about
"regular" atmospheric structure. For example, if one
assumes that no discernible atmospheric structure
exists, then P will be an infinite-dimensional vector
containing the index of refraction at all points. Since,
as previously discussed, the refraction at all points is
not known, this assumption would void (3) of any
possible advantages. Instead, one usually makes
some assumptions and approximations concerning
the structure of the atmosphere and its effects on the
ray path. A simple set of assumptions and approxi-
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mations is, for example, that which led to the cose-
cant law. In this case, the dependence of the function
in on parameters P other than elevation is completely
absent. (See below for a discussion of the assump-
tions used to develop the new mapping function.)

The integral in (3) is the atmospheric delay for a
radio source at zenith. This integral will be denoted
tr, the "zenith delay." Its dependence on atmospher-
ic conditions directly above the antenna is discussed
in the Appendix A. The function m(&. P) is known
also as the "mapping function." For simplicity, the
dependence on the parameters P will be suppressed,
and we will write simply nm().

Often separate mapping functions are used for the
"wet" and "dry" components of the delay:

T, = Tr md(E + r m,.() (4)

where the subscript d on the zenith delays and map-
ping functions refers to "dry" and w to "'wet." Such a
form is used when. for instance. water vapor radiom-
eter (WVR) data are used to estimate the "wet" com-
ponent directly [Resch, 1984]. Then (4) is replaced by

to = T:md(e) + TWVR (5)

where rwR is obtained from the WVR data. The user
of such formulas, however, must be extremely careful
to understand exactly what is meant by the terms
"dry" and 'wet," because the path the radio signal
travels through the atmosphere is dependent on the
contributions to the index of refraction from all at-
mospheric constituents. Furthermore. the so-called
"dry" zenith delay also contains contributions from
water vapor (see Appendix A).

3. SYSTEMATIC ERRORS IN ESTIMATES OF
BASELINE LENGTH

The manner in which estimates of baseline length
are affected by errors in the mapping function used
to model the atmospheric delay can be understood
by first examining the approximate expression for the
"geometric" term ,o,,, of the group delay model

Tgeom = - b· = - (r 2 sin 2 - r sin E,) (6)

where b is the baseline vector (directed from site I to
site 2). i is a unit vector in the direction of the source,
r, is the distance from the center of the earth to the
ith site, and iE is the elevation of the source at the ith
site (i = 1, 2), and where the total group delay (of
which To,,, is but one term) i. diefined as the time of
arrival of the signal at site 2 minus the time of arrival
of the signal at site . (Sec Robertson [1975] for a
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more complete discussion of the group delay model.)
The feature of importance in (6) is the dependence of
the group delay on the elevation of the source at
each site. Any elevation-dependent error (such as a
mapping function error) in the group delay model
which correlates with the sine of the elevation will
corrupt the least squares adjustment of the radial
component of the site position. An error Ar intro-
duced into the estimate of the radial component of
the position of either site introduces a corresponding
error Ab in the estimate of the length of the baseline
between the sites:

b
Ab a - Ar

2r e

(7)

where b is the baseline length and r, is the radius of
the earth. The above equation is accurate to order
(Ar) 2, b.

Mapping function errors introduce systematic
errors into the estimates of other parameters as well.
In fact, all estimated parameters will be systemati-
cally affected, although the magnitude with which the
mapping function error manifests itself in the esti-
mate of a particular parameter depends on the func-
tional dependence of the group delay on that param-
eter. Thus one can expect systematic errors in esti-
mates of source position, earth orientation. nutation,
and any and all other estimated parameters; how-
ever, for illustration, this paper will confine itself to
studying only errors in baseline length estimates.

Do we have evidence of mapping function errors,
and, if so, how large are they? A useful method
which can be used to indicate the presence and size
of elevation-dependent systematic errors, such as
mapping function errors. is the "elevation angle
cutoff test." In this test, all baselines are estimated
simultaneously using all the data available. (Of
course. other parameters are estimated along with
baselines, but here and in the following, as stated
above, the discussion will be confined for illustration
to the effects on the estimates of baseline length.) The
baselines are then reestimated with the data limited
to observations above some minimum elevation
angle. More estimates can be made with different
elevation angle minima. If there are no elevation-
dependent systematic errors, the mean of the differ-
ences between the corresponding baseline-length esti-
mates should tend toward zero. Significant biases in-
dicate mapping function errors. Figure 1 contains the
results from such a test. Plotted are the differences in
baseline-length estimates for 5 and 15: minimum
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Baseline length (1000 kinm)

Fig. 1. Difference in baseline length estimates for the 15S-5- elevation angle cutoff test of the Manni mapping
function. The error bars are the statistical standard deviations of the differences (see Appendix B). The straight line
represents the effects of a change in the local vertical component of site position of 3 cm at each of the sites.

elevation angles. These differences are plotted against
the length of the baseline. The error bars shown are
the standard deviations of the differences, obtained
from the statistical standard deviations of the indi-
vidual estimates. (It can be quite easily shown that
the variances of the differences of the baseline-length
estimates are the differences of the corresponding
variances resulting from the two least squares solu-
tions; see Appendix B.) The group delay data used to
generate these differences are the entire yield of VLBI
group delay data from the project MERIT short
campaign of September and October 1980 [Robert-
son and Carter, 1982], with the exception noted
below. These data were processed as described by
Clark et al. [1985]. The atmospheric delay was mod-
eled by using the Marini formula, which requires sur-
face weather data. The group delay data involving
the site at Chilbolton, United Kingdom, were de-
leted, since surface weather data were not available

for this site for some periods of the campaign. The
phase delay rate data were not included.

From Figure 1 it can be seen that the differences in
the estimates of baseline length seem to be nearly
proportional to baseline length. Recalling (7), we can
interpret these differences as due to corresponding
differences in the estimates of radial positions of the
individual sites, if these latter differences are nearly
equal. For reference, Figure I contains a line repre-
senting the effect of a 3-cm radial difference at each
site. (The sense of the radial difference is, from (7),
such that the estimates of the radial positions from
the 0; cutoff solution were greater than those from
the 15" cutoff solution.) It can be seen that this nearly
represents the actual situation. We thus conclude
that the differences evident in Figure I are due to
mapping function errors, on the assumption that
there do not exist any other elevation angle-
dependent errors of this magnitude.
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4. THE NEW MAPPING FUNCTION

MAarini [19723] showed that the continued fraction
form of the mapping function

1
m() =

sin +
b

sin tE +
C

sin + - (8)
sin E + .--

where a. b. c, --- are constants, can be used to ap-
proximate the elevation angle dependence of the at-
mospheric delay. Only two terms are used in the
Marini mapping function (J. W. Marini, unpublished
manuscript, 1974). Chao [1972] uses two terms as
well, except he replaces the second sin with tan E,
thereby ensuring that m(90° ) = 1. We have attempted
to develop a mapping function for the "dry" or "hy-
drostatic" component of the atmosphere (see Appen-
dix A) based on the Chao model, but with improved
accuracy at low elevation angles. In order to achieve
subcentimeter accuracy at 5 elevation, we have
"continued the fraction" by adding one more term
but keeping the tangent:

m() =

sin E +

tan E + b (9)
sin E + c

The advantage of using this form is its simplicity,
both in calculating the mapping function itself and in
calculating partial derivatives of the mapping func-
tion with respect to the parameters to be estimated.
The disadvantage of this form is that for higher ele-
vation angles (20c-60), tan does not approach
sin E quickly enough. As a result, one can expect 1- to
2-mm errors in representing the atmospheric delay
with (9) for these elevations.

In order to determine the mapping function pa-
rameters a, b, and c, we performed ray trace analyses
for various values of a limited number of atmospher-
ic conditions. The ray trace algorithm we used was
based on a spherically symmetric, layered atmo-
sphere. The temperature profile was taken to have a
linear dependence with height up to the tropopause,
above which the temperature was assumed constant.
The total pressure was assumed to result from hydro-
static equilibrium, and the relative humidity was as-
sumed to be constant up to 11 km and zero above

that height. The acceleration due to gravity was as-
sumed to be constant with height. This simple set of
assumptions concerning the structure of the atmo-
sphere allowed us to examine the dependence of the
mapping function on variations about the nominal
values of the following parameters: surface pressure.
surface relative humidity, surface partial pressure of
water vapor, temperature of the tropopause, and
height of the tropopause. However, the sampling of
parameter space was not done in a systematic
manner due to the large number of ray trace analyses
which this would entail. For example, if just three
values for each parameter were used, there would be
3s' = 243 different combinations of parameters. In-
stead, 57 analyses were performed, and there are re-
sulting gaps in the sampling of the parameter space.

For each set of atmospheric conditions, then, we
determined the ray trace values for the mapping
function, in steps of 1° for elevations from 5 to 90:.
We then used least squares to estimate a, b, and c.
However, c could be fixed at some nominal value and
not appreciably degrade the solution; the nominal
value ultimately decided upon (see below) for c was
taken to be the approximate average of the values for
the first several ray traces performed. The mapping
function form given in (9) was, for each set of atmo-
spheric conditions, able to model the elevation angle
dependence of the delay to within 3 mm for all eleva-
tion angles down to 5', and with an rms deviation of
less than 1.5 mm.

The ray trace analyses thus provided a set of esti-
mates of each of the mapping function parameters, a
and b, covering a variety of atmospheric conditions.
We then represented a and b each as a linear func-
tion of the various atmospheric parameters that were
varied and used least squares to determine the coef-
ficients. Such a linear model fits the mapping func-
tion parameter a within 0.2% (corresponding to - 5
mm at 5' elevation) and the parameter b to within
0.5%/ (- 2 mm at 5: elevation) in all cases; the rms fit
for a is 0.08%°/ (-2 mm at 5 elevation) and for b is
0.15% (-0.6 mm at 5 elevation). In particular, we
have

a = 0.001185 [1 + 0.6071 x 10-4(Po- 1000}

-0.1471 x 10-3eo

+ 0.3072 x 10-2 (To - 20)

+ 0.1965 x 10- ( + 6.5)

-0.5645 x 10- 2(h,- 11.231)] (10)
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= 0.001144[1 + 0.1164 x 10-4(Po - 1000)

+0.2795 x 10-3 eo

+0.3109 x 10- (To - 20)

+ 0.3038 x 10- '(f + 6.5)

-0.1217 x 10-'(h,- 11.231)]

c = -0.0090

(11)

(12)

where P is the total surface pressure in millibars, eo
is the partial pressure of water vapor at the surface in
millibars, To is the surface temperature in degrees
Celsius, B is the tropospheric temperature lapse rate
in K km- ', and h, is the height of the tropopause in
kilometers. This version of the "dry" mapping func-
tion has been dubbed CfA-2.2. The sensitivities of the
CfA-2.2 mapping function to changes in these atmo-
spheric parameters are summarized in Table 1. For
example, a 10-mbar change in the partial pressure of

4U

30 -

F
E 20-

C- 

- t

!
0_. 1I

E

S

TABLE 1. Sensitiities of the Path Dela% From Model CfA-2.2
to Changes in Atmospheric Parameters for AL,, = 240 cm and

for Different Eleations 

P. T. e. a. h,.
E cm mbar cm "C cm mbar cm'(K km) cm km

15 -9.1 x 10-' -0.046 0.002 -0.29 0.082
10 -2.8 x 10- 3 -0.14 0.007 -0.88 0.25
5 -0.017 -0.75 0.053 -4.4 1.1

See text for explanation of model CfA-2.2 P, pressure: T. tem-
perature: e. partial pressure of water vapor: P. temperature lapse
rate: h,. height of tropopause.

water vapor produces a change of approximately 5
mm in the predicted delay at 5: elevation. (It is fortu-
nate, in fact, that the mapping function is not very
sensitive to the amount of water vapor in the atmo-
sphere, since this quantity is spatially highly variable
and not well predicted by surface measurements.)
Figures 2 and 3 contain the differences between ray

__1

Marini

0

-10

CfA-2 2
VI - - --N. _ -…-_

I , -I

I,, I

t PL I

- Chao 

I - I I I 

5 10 15 20
Elevation angle (deg)

Fig 2. Differences from ray tracing of the new mapping function, the Chao mapping function. and the Marini
mapping function for P0 = 850 mbar and To = 15C. The partial pressure of water vapor, temperature lapse rate.
and tropopause height are all al their nominal values of 0 mbar. -6.5 K/km, and 11.231 km. respectively. The

corresponding value of the zenith delay is 1.935 m of equivalent length (6.5 ns).
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4U
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Elevation angle (deg)

1000 mbar and To = -30C.
delay is 2.277 m.

20

The corresponding value of the zenith

tracing and CfA-2.2 for the different atmospheric
conditions indicated. These conditions, which repre-
sent the nominal conditions of humidity, lapse rate,
and tropopause height, were chosen because they
represent locations in the pressure-temperature plane
near which no ray trace analyses were performed.
Their agreement with ray tracing is therefore an in-
dication of the robustness of the method used in the
plane of temperature and pressure. Also shown are
the differences from ray tracing for the Chao and
Marini models. These models are the most common-
ly used mapping functions in VLBI data analysis
[Fanselow, 1983; Clark et al., 1985].

The accuracy of the CfA-2.2 mapping function
model seems higher near latitudes of 45N, for which
the nominal values of tropopau.;e height and lapse
rate used in CfA-2.2 are representative. For example,
for conditions representative of a latitude of 30'N
(h, = 16 kinm, = -4.7 K/km to -5.9 K/kmin), the
difference between CfA-2.2 and ray trace values
reaches -4 cm at 5 elevation. Relatively large differ-
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ences have also been noted for higher latitudes in the
extreme of winter: For a latitude of 60°N (h, = 8 km.
/B= -3.9 K/km), the differences from the ray trace
values reach -2.5 cm at 5°. These (comparatively)
large differences from the ray trace values seem to be
due to the simultaneous departures from the nominal
values of lapse rate and tropopause height. Although
our choice of -6.5 K/km is the standard one for the
lapse rate in the troposphere (U.S. Standard Atmo-
sphere, 1976), it seems to be somewhat large (in mag-
nitude) when one considers compilations of temper-
ature profiles found, for example, in the work of
Smith et al. [1963]. However, even with a better
choice of nominal value, a site-dependent model of
some type will have to be developed: lapse rate and
tropopause height do not truly vary independently.
since the temperature of the tropopause varies less
than the surface temperature. Thus those climates
with a very low tropopause height (high latitudes)
can be expected to have correspondingly small (in
magnitude) lapse rates. Those climates with a high
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tropopause height (equatorial latitudes) will have
correspondingly large (in magnitude) lapse rates.

The lack of dependence of the new mapping func-
tion on azimuth results directly from the assumption
of azimuthal symmetry. Gardner [1977] expressed
the index of refraction in (1) in cylindrical coordi-
nates (with the coordinate aligned along the local
vertical) and expanded it in powers of horizontal dis-
tance from the: axis. He showed that the zeroth-
order term represents the spherically symmetric term.
Thus our new mapping function represents this
zeroth-order term. The first-order term in Gardner's
expansion arises from horizontal refractivity gradi-
ents: Gardner showed that this term can be as large
as 5 cm at 10: elevation angle. However, this term
has never been included in our VLBI data analysis
because of the lack of a network of meteorological
sensors in the near vicinity of our sites from which to
determine the refractivity gradients. In principle,
though, there is no reason that this gradient term
could not be introduced into our atmospheric
models; its utility would depend on (1) a dense
enough network of meteorological sensors being in
place around each site. (2) models for the gradient
being developed that depend on the meteorological
conditions at the site only (such as wind direction
and speed). and possibly on climate and,'or season, or
(3) the ability to estimate accurately the gradient
term being demonstrated for data from a network of
distant (>100 km) meteorological sensors such as
exist at airports and other weather stations.

5. PROCESSING VLBI DATA WITH CfA-2.2

We have performed the elevation-angle-cutoff test
on the CfA-2.2 mapping function. For this test, the
Saastamoinen formula for the zenith delay [Saasta-
moinen, 1972] was used to be consistent with the
zenith delay values used for the Marini formula. The
"wet" part of the delay (see Appendix A) was
mapped by using (9H 12) as well, even though this
use introduces a small error which is, from (4), the
"wet" delay multiplied by the difference between
CfA-2.2 and the "true" wet mapping function. The
values listed in Table 2 were used for tropopause
height and lapse rate. These values are based on
tables of mean temperature profiles near the 80th
meridian west [Smith et al., 1963]. No attempt was
made to obtain the exact profiles of temperature that
prevailed at the sites, since for this elevation angle
cutoff test we were attempting only to remove the
gross effects of differences from the nominal values of

TABLE 2. Values for Tropopause Height h, and Temperature
Lapse Rate Used in Elevation Angle Cutoff Test of CfA-2.2

Mapping Function

Site Geographic North h,,* ,
Name Location Latitude km K km

Onsala south Sweden 57' 10.5 - 5.7
Effelsberg West Germany Si' 9.6 -5.7
Haystack east Massachusetts 43' 13.6 - 5.6
Owens Valley south California 3T 12.8 -5.6
Fort Davis southwest Texas 31' 13.4 -6.3

*Height of tropopause given as height above station for direct
use In CfA-2.2 mapping function formula; see text.

f and hr. The procedure used was first to obtain
estimates of f and h at the latitudes of 30°, 40', and
50: by fitting a linear function of height to the values
given in the tables; possible variations of these pa-
rameters with longitude were ignored. The three esti-
mates for each of the parameters and h, were then
expressed via least squares as second-order poly-
nomials in latitude. For each North American site,
the latitude of the antenna was then substituted to
determine e and h,. Each European site was treated
as though it were 5 south of its true position to
account approximately for the warmer climate at Eu-
ropean longitudes in the choice of x and h,. (The
value of 5 was based upon visual inspection of
world maps of tropopause height found by Bean et
al. [1966].)

The results of this elevation angle cutoff test are
shown in Figure 4. Any systematic trend that may be
present in this figure is clearly much smaller than
that seen in Figure 1. Table 3 allows us to compare
the results from the two tests more quantitatively.
The second column contains least squares estimates
of the differences in the radial site positions which,
from (7), would yield the baseline-length differences
evident in Figure 1. The third column contains the
same information, except for Figure 4. The fourth
column contains the differences of the second two
columns. The numbers in this fourth column, then,
represent the changes in the inferred differences of
the radial position we obtained in performing the
15°-5° elevation angle cutoff tests. It can be seen that
for the sites at Haystack, Onsala, and Effelsberg,
these changes were -4 cm, over 10 times the changes
at Ft. Davis and Owens Valley. This difference can
be explained by the entries in the fifth column. This
column contains the fraction of data obtained below
150 elevation at these si:es. That these last two sites
had no data from these lower elevation angles
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Fig 4. Difference in baseline length estimates for the 15--5' elevation angle cutoff test of the CfA-2.2 mapping

function. The error bars are the statistical standard deviations of the differences (see Appendix B)

0

implies that there should be little difference between
the results for either of these sites from using different
mapping functions.

Further testing of the CfA-2.2 mapping function is

TABLE 3 Comparison of Elevation Angle Cutoff Tests

Fraction of
Site Ar. cm Ar, cm Difference., Data Belo 15

Name (Marini) (CfA-2.2) cm Elevation

Onsala - 3.7 + 1.0 0.9 -4.6 10.4',,.
Effelsherg -4.9 ± 1.3 -0.7 -4.2 7.7%
Haystack -3.9 ± 0.8 0.1 -4.0 3.1,,
Owens Valles - 1.0 + 0.3 -0.8 -0.2 0%'
Fort Das - I 14 + 0.5 -1.1 -0.3 0%

The entries in the columns headed by Ar are the changes in the
estlmale, of the local vertical positions of the sites corresponding
to the baseline length differences from each of the elevation angle
cutoff tests. shown in Figure I (Marini) and Figure 4 (CfA-2.2).
The column labeled "difference" is the difference between the
changes in the radial estimates The uncertainties for the values of
Ar (CfA-2.2j are the same as for the values for r (Marini)

243

underway. Single-baseline experiments are now being
carried out in which a large fraction of the observa-
tions from one site are obtained for elevation angles
below 5: elevation. and for a very large fraction
below 10- elevation, while observations from the
other site remain at relatively high (>10:) elevation
angles. This procedure should enable us to isolate
mapping function errors for the site at which the low
elevation observations are taken, since we would be
relatively insensitive to mapping function errors for
the other site.

Plans are also being made to optimize the coef-
ficients in (10H12) for site location, and to develop
seasonal atmospheric structure parameters. For this
purpose. radiosonde data obtained from the National
Climatic Data Center for U.S. sites. and from various
European centers. will be used. Simultaneously. an
effort will be made to attempt to increase the accu-
racy of the mapping function at all elevation angles
(but with emphasis at extending the mapping func-
tion for use at elevation angles below 5) and to in-
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vestigate possible means for modeling of horizontal
gradients.

6. SUMMARY

Errors in modeling the elevation angle dependence
of the atmospheric delay can cause systematic errors
in the estimated radial positions of the antenna sites.
These radial errors will "map" into the estimates of
baseline length by an amount approximately pro-
portional to the baseline length. An elevation angle
cutoff test performed with the Marini mapping func-
tion indicated that the errors in the estimates of base-
line length introduced by this mapping function were
of the order of 5 cm for a baseline length of - 8000
km and that these errors display a systematic depen-
dence on baseline length indicative of a mapping
function error. A new mapping function has been
developed which is based on ray-tracing through
model atmospheres. Repetition of the elevation angle
cutoff test with this new mapping function yields ap-
parent errors in baseline-length estimates of I cm,
with the differences showing little or no dependence
on baseline length.

APPENDIX A: ZENITH DELAY FORMULAS

The purpose of this appendix is to derive an accu-
rate expression for the zenith delay from the wet and
dry refractivity formulas. We pay particular attention
to the treatment of the wet/dry mixing ratio. We also
obtain an estimate for the accuracy of the hydrostatic
(i.e., "dry") delay formula, and derive an expression
for the "wet" zenith delay which is consistent with
the "dry" zenith delay formula. This "wet" delay
formula makes use of the most recent expression for
the wet refractivity and can be used to establish the
relationship between the observables of instruments
which measure the radiative emission of atmospheric
water vapor (e.g., water vapor radiometers) and the
line-of-sight delay due to water vapor.

Derivation of the zenith delay from the
refractive index

The three-term formula for the total refractivity of
moist air, as given by Thayer [1974], is

Pd PZ P.Z
N = k, Z + k2 Z +k3 - (Al)

' 2 T T2

Here T is the temperature, p is the partial pres-
sure of the "dry" constituents ("dry" is defined
below), p, the partial pressure of water vapor, and
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Z` and Z' are the respective inverse compress-
ibilities, with the subscripts having the same meaning
as for the pressures. The symbol e is usually used in
place of p,,. Thayer's values for the constants k,, k 2,
and k3 are summarized in Table Al. The uncer-
tainties of these values limit the accuracy with which
the refractivity can be calculated to about 0.02%.

The first term in (Al) represents the effect of the
induced dipole moment ("displacement polariza-
tion") of the dry constituents. The second term repre-
sents the same effect for water vapor, whereas the
third term represents the dipole orientation effects of
the permanent dipole moment of the water molecule.
None of the primary constituents of dry air (shown in
Table A2) possesses a permanent dipole moment.

The values for k 2 and k 3 listed in Table Al have
been disputed by Hill et al. [1982]. They point out
that Thayer's extrapolation of the value of k2 from its
value at optical wavelengths ignores the effect of the
rotational and vibrational resonances in the infrared
[Van Vleck, 1965]. Hill et al. calculate a theoretical
value for k 2 and k 3 and find k 2 = 98 + 1 Kmbar
and k 3 = (3.583 + 0.003) x 05 K2/mbar. However,
these results are so greatly in disagreement with pub-
lished values of k2 and k 3 , which have been obtained
by measurements in the microwave region [Bou-
douris, 1963; Birnbaum and Chatterjee, 1952]. that
Hill recommends using the measured values instead
of either his or Thayer's. Birnbaum and Chatterjee
find k 2 = 71.4 + 5.8 Kmbar and k 3 = (3.747
+ 0.029) x 10 K2 /mbar, while Boudouris finds

k2 = 72 + 11 K mbar and k3 = (3.75 + 0.03) x 10
K2/mbar. As a compromise, we keep Thayer's values
for k and k3 (which differ from the experimental
values by less than the uncertainties of the latter), but
choose the (rounded) experimental uncertainties, as
shown in Table Al.

The grouping together of all the dry constituents
into one refractivity term is possible because the rela-
tive mixing ratios of these gasses remain nearly con-
stant in time and over the surface of the earth
[Glueckauf. 1951]. The eight main constituents of the
dry atmosphere are listed in Table A2, along with
their molar weight and fractional volume, and a stan-
dard deviation representing the variability of that
constituent in the atmosphere. Using these numbers.
we find the mean molar weight Md of dry air to be
Md = 28.9644 + 0.0014 kg'kmol, where the standard
deviation is an upper bound on the variability of Md
based on the values in Table Al and on the assump-
tion that these constituents vary independently.
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TABLE Al. Constants Used in the Appendix

Uncertainty Used
Constant Value' Uncernainty* (See Text) Units

A, 77.604 0.014 0.014 K mbar-'
k, 64.79 0.08 10 K mbar-
k, 377600 400 3000 K 2 mbar-'

Derived
Constant Equivalent Units

A, k - k,- = 7 _ 10 Kmbar'

k 3 + k2' T. = (3.82 + 0.04) x 10' K 2 mbar- 

Here M, = 28.9644 + 0.0014 kg kmol- '. molar mass of dr air. M, = 18.0152 kg kmol - , molar mass
of H,O: T., 260 ± 20 K. "mean temperature" (see text).

*From Thater [19'4].

The inverse compressibilities in (Al) represent the
nonideal behavior of their respective atmospheric
constituents. This behavior is described by the equa-
tion of state for the ith constituent p, = ZipR,T,
where p, is the partial pressure. Zi is the compress-
ibility. p, is the mass density. and R, is the specific gas
constant for that constituent (R, = R M,. where R is
the universal gas constant and M, is the molar mass),
and T is the absolute temperature. For an ideal gas
Z = 1; Z differs from unity by a few parts per thou-
sand for the atmosphere. The expressions for the in-
verse compressibility Z`' for dry air and Z,' for
water vapor were determined by Owens [1967] by
least squares fitting to thermodynamic data. These
expressions are

Zd ; = I + Pd[57 .97 x I0-8(l + 0.52 T)

-9.4611 x i0-'t T2] (A2)

TABLE A2. Primar) Constituents of Dry Air and Their
VariabllltN

Molar Fractlonal
Weight.* Volume,t

Constituent kg'kmol (Unitless) at

N, 28.0134 0.78084 0.00004

02 3 1.9988 0.209476 0.00002
Ar 39.948 0.00934 0.00001
CO2 44.00995 0.000314 0.000010
Ne 20 I83 0.00001818 0.0000004
He 4.0026 0.000)0524 0.00000004
Kr 83.30 0.000 114 0.0000001
Xe 131 30 0.00(IXXKK)7 0.000000001

*U.S Standard Atmosphere (1976)
tGleuclauf [ 1951 ]

and

Z.' - I + 1650(p,, T 31 -0.01317i

+ 1.75 x 10-4t2 + 1.44 x 10-6t3) (A3)

where t is the temperature in degrees Celsius. Pd and
p,, are in millibars. and T is in Kelvins. Owens found
that (A2) and (A3) model the compressibility to
within a few parts per million.

The total zenith delay L is

c=
L = 10- 6 d: N(:) (A4)

Integration of the refractivity in the form given in
(Al) requires knowledge of the profiles of both the
wet and dry constituents, the mixing ratio of which is
highly variable. However, it is possible to create a
term nearly independent of this mixing ratio. We can
rewrite the first two terms in (Al) by using the equa-
tion of state as

Akl Z' +A2 Z ',) = k,Rapd + l22R.p.*
T T

PM= k,R1n + k Z-

where the total mass density p =
by the absence of subscripts, and
is given by

(AS)

Pd + P.. is indicated
the new constant k'

A2= A2 - R, = k - "
2 R. Af

(A6)

If a value for the molar weight of water M. =
18.0152 kg'kmol is used [CRC Press, 1974]. and-if
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independent errors in k. k2 , and Md are assumed,
then we find k = (17 + 10) K mbar - '. By using
(A51. we find the expression for the total refractivity
to be

N = k,Rdp + ki. Z` + k Z. I-T T 
(A7)

It is important to note that the first term in (A7) is
dependent only on the total density and not on the
wet dry mixing ratio. This term can be integrated by
applying the condition that hydrostatic equilibrium
is satisfied:

dP
-= -p(:)g(:) (A8)

where g(z) is the acceleration due to gravity at the
vertical coordinate z, P(z) is the total pressure, and,
as above, p(:) is the total mass density. Denoting the
result of the integration of the first term in (A7) as L,
we find that

L, = [10-6 k,Rdg,', ]P (A9)

where P is the total atmospheric pressure at the
intersection of rotation axes of the radio antenna
(not the surface pressure, since the antenna is located
some height above the ground; see text), and where
g,,, is given by

d: (:g(:)

gO (AI0)

{d: p(:)

By expanding g(z) to first order in , it can be seen
that (A10) very nearly represents the acceleration due
to gravity at the center of mass of the vertical
column. The value of g, at this point is [Saastamoin-
en, 1972]

g,,, = 9.8062 m s-2(1 - 0.00265 cos 2i. - 0.00031H,)

(All)

where ;. is the geodetic site latitude and H, is the
height in kilometers of the center of mass of the verti-
cal column of air. The quantity H, and therefore g,,
is dependent upon the atmospheric total density pro-
file. but Saastamoinen [1972] used his simple model
atmosphere and "average" conditions to generate the
expression

H, = 0.9H + 7.3 km (A12)

where H is the height in kilometers of the station

above the geoid. Saastamoinen claims that this ex-
pression is accurate to within 0.4 km for all latitudes
and for all seasons. Substituting for H, into (All)
yields

a,, = 9.784 m s- 2(1 - 0.00266 cos 2. - 0.00028H)

+ . m s 0.001 m - g[f(; 0001] (A13)

where g = 9.784 m s-2 . Combining all the constants
in (A9). along with their uncertainties (assumed un-
correlated), gives

Po,L = [(0.0022768 + 0.0000005) m mbar '- H
f(2, j

(A14)

where a value of R = 8314.34 + 0.35 J kmol- 1 K- 
has been used for the universal gas constant [CRC
Press. 1974]. The uncertainty of the constant in (A14)
takes into account the uncertainty of k,, the uncer-
tainty in g,,, the uncertainty in R, and the variability
of the dry mean molar mass. It does not include the
effect due to nonequilibrium conditions. It is, in fact,
difficult to assess this effect without actually inte-
grating vertical profiles of vertical wind acceleration
(which, in general, are not available); no attempt to
assess this effect will be made here. Fleagle and Bus-
inger [1980] state that only under extreme weather
conditions (thunderstorm or heavy turbulence) do
these vertical accelerations reach 1% of gravity, cor-
responding to an error in L, of about 20 mm,'1000
mbar. Exactly where the true uncertainty lies be-
tween these values of 0.5 and 20 mm,'1000 mbar must
be left to future investigation.

Because the uncertainty associated with L, in
(A14) is so small, and because variability is associ-
ated with water vapor, L is usually (and inaccur-
ately) termed the "dry delay." Something like the
"hydrostatic delay" would be more descriptive, for in
principle the uncertainty of the dry density at any
point is no less than the uncertainty of the wet den-
sity, whereas the total density is very predictable.

The remaining two terms in the expression for the
refractivity are wet terms

N, = + ki3 Z (A 15)

The partial pressure of water is not by itself in equi-
librium, and water vapor can remain relatively un-
mixed, making the wet delay very unpredictable.
Water vapor radiometers (WVR's) will, we hope, ob-
viate this problem. However, there are large amounts
of VLBI and other data for which no WVR calibra-
tion is available, and more such data are being con-

246



DAVIS ET AL. ATMOSPHERIC DELAY IN VLB INTERFEROMETRY

tinually generated. Thus there is still a need for
models of the zenith wet delay. No attempt will be
made to develop one here. All such models in current
use [e.g., Chao, 1972; Berman 1976; Saastamoinen,
1972] use obsolete values for the refractivity con-
stants k2 and k3. However, these old values induce
errors on the submillimeter level, much less than the
inherent error in the prediction of the wet delay. On
the other hand, these models also tend to be based
on empirical models for the wet atmosphere,
averaged over location and season. However, we be-
lieve that site and season dependence of the atmo-
spheric profile could cause seasonal and site-
dependent biases in these wet models of up to 10-
20%0/, based on a comparison of expressions for
"average" profiles reported throughout the literature.

Water vapor radiometers

A water vapor radiometer is a multichannel radi-
ometer which uses the sky brightness temperature
near the 22-GHz rotational absorption line of atmo-
spheric water vapor to obtain an estimate of the inte-
gral of the wet refractivity in (A15). The WVR's now
coming into use should have their "retrieval coef-
ficients" [see Resch, 1984] "optimized" for site and
seasonal dependence of the atmospheric profiles. For
this optimization, one uses radiosonde estimates of
the wet delay AL,. to determine the retrieval coef-
ficients a, and a2 defined in the equation

AL., = alf(WVR) + a2 g(P, To) (A16)

where f(WVR) is some function of the WVR observ-
ables, and g(p0 , To) is some function of the surface
temperature and pressure [Resch, 1983]. Both
f(WVR) and g(P0 , To) are determined by theory. By
"radiosonde estimates of the wet delay" we mean
that AL,. is determined by numerical integration of
the wet refractivity given in (A15) using radiosonde
profiles of p, and T. In practice, most investigators
use a one-term expression for the wet delay:

AL. = 10-6k3 d: 
.j 'T2

(A17)

whence the (nearly) constant k3 is given by

k = k 3 + k T, (A19)

Most investigators choose a constant value for Tm
for all sites and seasons. For example, for T,, = 260
+ 20 K, we find, assuming independent errors in k2

and k 3 , k = (3.82 + 0.04) x 105 K2 mbar 1- . This
approach is adequate, since the k T, term is only
about 1% of k3 , and based on seasonal temperature
profiles, seasonal variations in ki T, are one order of
magnitude smaller, or <0.2 mm for a zenith delay.
However, it is fairly common in the literature to use
an incorrect value for k. This usage arises from im-
plicitly assuming that Md = M,. in (A6), which actu-
ally changes the sign of k;. The value then found for
k3 is approximately 0.373, or about -2.5% smaller
than the 0.382 number derived here. This (incorrect)
value results in an underestimate by -5 mm for a
zenith wet path delay of - 20 cm.

APPENDIX B: COVARIANCE
OF DIFFERENCED PARAMETERS

In this appendix we derive the expression for the
covariance matrix for the difference of two (different)
least squares estimates of the same parameter vector.
We assume that one of the estimates is based on a
subset of the data used to make the estimate of the
other. We begin by writing the linearized equation
relating the observations to the parameters.

Yl = AXx + z, (B1)

where x is a vector of parameters to be estimated, El
is an unknown, Gaussian, zero-mean random vector
whose covariance matrix is G, and whose mean
square is to be minimized, and where y, is a vector of
observations. (The subscript y was chosen for the
covariance matrix of to emphasize that it repre-
sents the experimental errors of the observations y.)
The least squares estimate xl of x based on y, is

, = [AtGA,-I'ATG`y 1I ).I I ).IY (B2)

The covariance matrix G,., of the parameter estimate
i is

G.- = [ATG-,A, 1-' (B3)

where k is the k3 in (A15) modified for the effect of
k'. This modification is made possible by using the
mean value theorem to introduce a "mean temper-
ature" via

d: P = T. d T-2

Let us now consider the least squares estimate of
ix, given a set of observations y, which are composed
of the previous observations y, as well as a distinct
set of observations Y2:

(A 18)
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We will assume that y, and Y2 are uncorrelated, so
that

G,= E[,- .T] = [G., 0 (B5)

where E[ ] indicates expectation. and Gy.2 is the
covariance matrix of £2, the observational errors as-
sociated with Y2. The least squares esimate i, based
on y, is therefore given by

X = [ATGJ A,]- 'IATG-' y,

= [ATG,-'A, + ATG.- A 2]- (A rTG, 1 +A G-,' '

= G,,G2i, + G ,A G, y (B6)

where

A, = A , (B7)

and

G., = A[ATrG A, + AG A 2]- ' (B8)

The difference between the parameter estimates i,
and i, will be denoted Ai. The covariance matrix
G,. of Ai is

G,, =' E[Ai T]

E[((G,,GI - - )i; + G,,A TrG,: I y2) x transpose]

(B9)

where I is the identity matrix.
Since y, and Y2 are uncorrelated, we have

E[i ,y ] = E[y2 i r ] = 0 (BI0)

and therefore

Ga, = (G,, G,, - I)G ,(G G: , - I)

+ G,, A2 G.I G,.2 G, A 2 G,., (B11)

where we have used the fact that a covariance matrix
is symmetric. Algebraic manipulation of(BI 1) yields

G&, = G,, GG,., + G, 1 - 2G,.,

- GA:G-:2 A2 G,, (B12)

From (B3) and (B8) it can be seen that

AG- A 2 =G, -G-. (B13)

Substitution of (B13) into (B12) and
yield

G,x = G., 1 - G.,

cancellation

In terms of this paper y, would be composed of
the VLBI observations from elevations above the ele-
vation angle cutoff. while y, would be composed of
observations from below this cutoff in elevation. The
vector i, is the least squares estimate of x resulting
from the observations y,, while , results from using
all the data (both y, and Y2). From (B14) it can be
seen that the covariance matrix of the difference be-
tween i, and i;, is the difference of their respective
covariance matrices.
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Appendix B

The small scale horizontal distribution

of tropospheric water vapor

Introduction

In this appendix, we develop a model of the small scale (1-10 km) horizontal

distribution of water vapor in the troposphere. In the model, we treat the distribu-

tion of water as a white-noise process passed through a linear time-invariant filter,

whose origin lies in the atmospheric-turbulence field, and whose impulse response is

interpreted as a small-scale water-vapor distribution function. We will present data

obtained from ground-based water-vapor radiometers, along with an interpretation of

those data based on the model, and an analysis based on a statistical description of

the tropospheric turbulence field.

The data used in this appendix were originally intended for use in a series of

tests designed to study the precision and accuracy of the estimation of the line-of-

sight delay due to water vapor by water-vapor radiometers. These instruments were

discussed in Chapter 2. The tests consisted of a series of quickly repeated observations

in the zenith direction, among other things.

These measurements also provided an opportunity to study the statistical fluc-

tuation of water vapor on a scale from several minutes to several days. The power

spectral density of these measurements was already being estimated in conjunction
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with the tests mentioned above. The next step was to perform the common aca-

demic exercise of treating the measurements as white noise passed through a linear

time-invariant (LTI) filter and looking at the filter response.

What was interesting in this case, however, was that the filter response has an

obvious, mechanistic, and simple interpretation in terms of the atmospheric turbulence

field. To see this, one need only imagine an initially dry atmosphere into which is

randomly scattered a series of point-blobs of water vapor. The turbulent motion of

the atmosphere would tend to smear out these blobs, acting in fact like a low-pass

filter.

This appendix begins by reviewing stochastic processes, LTI systems, and atmo-

spheric turbulence theory. The expression for the filter response is then parameterized

in terms of observables, and the results are presented. Also included is the modeling

of the input as shot noise, and a comparison of the results to Kolmogorov turbulence

and to other results.

B.1 Stochastic processes and linear time-invariant systemst

In preparation for what follows, a very brief review of stochastic processes and

linear time-invariant systems is included here. A stochastic, or random, process is

defined by an event space fn and a probability mapping function Pr( ). For every

w E fl, Pr(w) is the probability that w occurs. We now associate with every w E l a

t A standard reference for the material contained in this section is Davenport and

Root [1958].
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waveform x(t, w) defined in -oo < t < +o0, abbreviated simply as x(t). The stochastic

process x(t) has the following properties:

* For w given, x(t) is a deterministic waveform.

* For t fixed, z(t) is a random variable with expectation over fl of mn(t).

· For w not given and t viewed as an independent variable, x(t) is a random

waveform whose expectation at any time t is m,(t).

In addition to mn(t), x(t) in general possesses a second order moment, the auto-

correlation R.(t, s), given by

Rz(t,s) = E[x(t)x(s)] (B.1.1)

where E[] indicates expectation over Q. There are third and higher order moments as

well.

A process is wide-sense stationary if and only if (i) m(t) = m(0) for all t, and

(ii) Rx(t,s) = Rx(t - s,0) for all t and s. Note that the property (ii) allows us to

write the autocorrelation as a function of r = t - s only. Thus

R.(r) = E[x(t + r)x(t)] = R(-r) (B.1.2)

is used in place of R,(t, s).

The power spectral density S. (f) of a wide-sense stationary process x(t) is the

Fourier transform of the autocorrelation function:

oo-00
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The physical interpretation given S (f) is that S,(f)df is the mean square strength of

the process x(t) contained in the Fourier components located between the frequencies

f and f + df. The stochastic process x(t) is white noise if

Rz(r) = q6(T) (B.1.4)

where 6(r) is the delta function and q is a constant. Here q is called the spectral height

of x, since

SZ(f) = q -oo < f < oo (B.1.5)

It is clear that white noise cannot truly be said to exist, for a process being a white noise

process implies that the total expected power is infinite. There are many instances,

however, where a process can be modeled as white noise if the spectrum is fiat over a

desired finite band of frequencies.

We now turn to the subject of linear systems. We will consider a waveform x(t)

(not necessarily random) that is passed as input into some system whose resulting

output is y(t). The system is linear if y(t) can be written as the convolution of some

function h(t,r) and the input x(t):

y(t)= dr h(t,)(r) (B.1.6)
00

The system is time-invariant if h(t, r) = h(t - r). Then

y(t) = dr h(t -r)x(r) (B.1.7)
-oo00

The function h(t) is known as the impulse response of the system, for if x(t) = 6(t)

we have

y(t) = dr h(t-r) 6(r) = h(t) (B.1.8)
-00
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The Fourier transform of the impulse response yields H(f), the transfer function of

the system:

H(f) = dt h(t) e- 2- ift (B.1.9)
00

Let us now suppose that x(t) is a wide-sense stationary process with mean mz and

autocorrelation Rz(r). Then (t) will also be a wide-sense stationary process with

mean

My= m dt h(t) (B.1.10)
-oo

and autocorrelation

R,(r) = dr ds h(r) h(s) R(r -r+s) (B.1.11)

The power spectral density Sy(f) of y(t) is by application of the convolution theorem

[Bracewell, 1978]

S,(f) = H(f)12Sz(f) (B.1.12)

Equation (B.1.12) will play a major role in the model developed in Section B.3.

B.2 Statistical description of atmospheric turbulencet

In this section a statistical description of the turbulence field of the atmosphere

will be developed. In theory, it should be possible to derive a deterministic expression

for the velocity field u(x) via the Navier-Stokes equation for an incompressible fluid

(see Vinnischenko et al. [19801). This solution requires, however, a set of initial

conditions which are not readily available. Instead, u(x) is treated as a random field,

t The bulk of Section B.2 is covered in detail by Lumley and Panofsky [1964].
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defined in the same way as the random function of the previous section, except that we

now have a three-dimensional function u as well as a three-dimensional independent

variable x = (x, y, z). Analogous to the one-dimensional autocorrelation function is

the correlation tensor Rjk(r) given by

Rj k(x,r) = E[uj(x + r)uk(x)] (B.2.1)

If u(x) is wide sense stationary, then Rjk(x,r) = Rk(r), and we can define a three-

dimensional power spectral density tensor Sj(k) given by

Sjk(k) = (2r) 3 J dr Rjk (r)eir (B.2.2)

A random vector field which is stationary is called homogeneous, and appropriately so:

the correlation between values of u at any two points separated by the vector r depends

only on r. (If it depends only on Irl, then the field is also isotropic.) In reality, it is very

difficult to imagine that the atmospheric turbulence field is actually homogeneous; it

should be clear, for instance, that the mean velocity vector is not a constant over the

surface of the earth. Instead, one can introduce a three-dimensional structure function

Dj(r), based on the assumption that u(x) is a process with stationary independent

increments [Monin and Yaglom, 1975]:

D(r) = E[(uj(x + r) - uj(X))2] (B.2.3)

Tatarskii [1961] has stated that the assumption that u(x) is a stationary independent

increments process is correct for rl "not too large." On the basis of this stationarity,
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the structure function can be related to the diagonal components of the power spectral

density tensor via

Dj(r) = 2 dk (1 -e ikr) jj(k) (B.2.4)

Henceforth all the subscripts will be omitted on the assumption that all of the com-

ponents of u obey the same statistics. Thus we write simply

D(r) = 2 dk (1 -eikr) S(k) (B.2,5)

It is usual to write the structure function in the plane z = constant in terms of a

two-dimensional power-spectral density S 2 (k,, ky):

-oo -ooD(xyO) = 2J dk, f dk (I-e eiLkzx+kfY ) S 2 (k,,kY) (B.2.6)

where

S2 (kxkv) = 2 dkz S(k, ky, k) (B.2.7)

If the atmosphere is isotropic, then (B.2.6) can be written in terms of a Hankel trans-

form [Bracewell, 1978] as

D(r) = 4rJ dk, k, [1 - J(krr)] S2(k,) (B.2.8)

Finally, one can compute the one-dimensional power spectral density. The transform,

analogous to (B.2.7), is

S1 (k) = fdkS 2(kz kv) (B.2.9)

It is convenient at this point to convert spatial variations to temporal variations, as

measurements are often obtained by observing the atmosphere in one direction for a
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long time. Thus, if we assume that there exists a unique constant mean velocity my

at which the "frozen" features of the atmosphere drift, then we have

x(t) = (to) + m, x (t - t) (B.2.10)

This assumption is known as Taylor's frozen turbulence field hypothesis [Taylor, 1938],

and has been experimentally verified for scales of several kilometers, but not greater.

The one-dimensional temporal power spectrum corresponding to (B.2.9) is

S(f) = 2- S,(ki) (B.2.11)
msv k= 2wrf

Any attempt to model the spatial dependence of m, would result in complications

which are beyond the scope of this limited study. Armstrong and Sramek [1982]

have investigated the case for which the atmosphere is treated as a series of layers in

which each layer possesses a uniform probability density for the mean velocity. Their

results indicate that one can expect differences in the observed one-dimensional power

spectrum of no more than about 10% compared to the constant mean velocity case.

B.3 The model

The basic assumption of the model presented here is that the total amount of

water vapor in the atmosphere is due to the sum of a number of individual small

scale (- several kinm) conglomerates of water vapor, distributed horizontally. In each

of these conglomerates the horizontal distribution of water vapor is governed by an

identical "shape function." We will consider only a one-dimensional sky here. This

shape function, henceforth denoted by h(x), is assumed to be symmetric about its
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center, and normalized so that f dx h(x) = 1 Thus, if the total amount of water

vapor in one of these conglomerates is L, and the conglomerate is centered at x = x0 ,

then the amount of water vapor located between z and x + dx is Lh(x - xo)dx. For

convenience, we will measure L in units of centimeters of delay for a light ray traveling

from infinity in the zenith direction.

If, as previously discussed, there are a number of these conglomerates distributed

at x l , 2 ,..., and if the total delay in each of the conglomerates is L 1,L 2,..., respec-

tively, then the delay L(z) at the point due to the contribution of each of the

conglomerates, averaged over the length Ax, is is

L(x) = Axz Ljh(x - xi)

i3o (B.3.1)
= Ax dx' p(') h(x- x')

00

where

p(z) = O L 6(z- xj) (B.3.2)

Henceforth, instead of speaking of horizontal distance in terms of x, it will be in terms

of time t, as per Section B.2. The time At will become the time between observations

(approximately 3 minutes). Thus, (B.3.1) becomes

roo
L(t) = At dr p(r) h(t - r) (B.3.3)

Comparing this equation to (B.1.7), we can see that it is possible to view L(t) as

the output from a linear time-invariant filter whose input is p(t) and whose impulse

response is h(t). The power spectrum of L(t) is from (B.1.12) given by

SL(f)= -IH(f) 2 S(f) (B.3.4)
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where Sp(f) is the power spectrum of p(t).

If Sp(f) were known, then it would be possible to perform an experiment and

obtain the form of H(f), and therefore h(t). Unfortunately, Sp(f) is not known, and

it is even doubtful that p(t) is stationary. However, since we are working here on

somewhat short time scales, we will make the assumption that p(t) is a white-noise

process, so by (B.1.5) we have

Sp(f) = qp (B.3.5)

and an estimate of SL(f) leads straightforwardly to H(f).

The assumption that p(t) is white is probably not too bad considering that L(t) is

nearly an independent increments process (see Section B.2). This assumption implies

that p(t) might, for example, be modeled as shot noise [Davenport and Root, 1958]

with a constant average arrival rate (see Section B.6).

B.4 The observations

The observations reported here were obtained on 26 and 27 October 1982 from a

ground-based water-vapor radiometer (WVR) located at the George R. Agassiz Station

(formerly Harvard Radio Astronomy Station) located near Ft. Davis, Texas.

calibration and operation of the WVR was discussed in Chapter 2, and the reduction

of data in Chapter 4. In an attempt to achieve a high density of data, measurements
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were made at a rate of one observation every three minutes, continuing for nearly

forty-six hours before an instrumental malfunction occurred, aborting the experiment.

The data thus obtained have been separated into two twenty-three hour long

data sets, shown in Figure B.4.1. The average delay for the first data set (henceforth

referred to as Day 1) was 11.0 cm, and the data show relatively little variation for

the first twenty-two hours. The data of the second set (Day 2) have a mean delay

of 5.9 cm, and display short-term variations with amplitudes of several centimeters.

(These means were subtracted from the data for the following analysis.) For both

days, the weather was mild with light winds, and the sky was partly overcast. The

relative humidity was under 10% and the barometric pressure hovered near 850 mbar.

The spectra of the data are shown in Figure B.4.2. These spectra were estimated

first by forming the discrete Fourier transform (DFT) of the data, given by [Bracewell,

1978]:
N-i

X(f) = E x(jAt)e-2rifdAtAt (B.4.1)
j=O

In practice, the Fast Fourier Transform (FFT) routine FOURG [Gorden, 1976]

was used to obtain estimates of X(f) only at the frequencies f = kAf, k = 0,..., N-l,

where Af = N1, so that (B.4.1) becomes

N-1
X(k) = x(j)e-ijk/N (B.4.2)

j=0

An estimate of the power spectral density Sz(k) at the discrete frequencies indi-

cated above is then given by

Sx (k) = N f IX(k)l2 (B.4.3)
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Figure B.4.1. Unsmoothed zenith delays.

261

-
-

I. ·I'" ?i."Wp ~c cso y 3,?: .j 'r.1Y,
I V,1, 9 , hk .,A 

V -" '-
.~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Ylh

VI



Day 1

4*4 4

** *-* 0 * *:
* *0 * ^ 4- 

* * ._ * . .* *

** 4. He

* s I .

* . * #

..I.0
. ~ ~ ~ ,~ ..... 

-. 928 -. 42e0 .5268-(01

lo110 f

Day 2

-. 4200 .s26SE-01

1081 f
.s254

Figure B.4.2. Power spectra of data in Figure B.4.1. The units of spectra are square

centimeters per cycle per hour. The units of frequency are cycles per hour. The

standard deviation of the estimates is approximately 0.13 cm2 per cycle per hour on

Day 1 and 0.38 cm 2 per cycle per hour on day 2.
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Figure B.4.3. Data of Figure B.4.1 smoothed with a Gaussian filter of FWHM =

9 minutes.
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Figure B.4.4. Power spectra of data in Figure B.4.3. All units are the same as those

of Figure B.4.2. The standard deviation of the estimates is approximately 0.08 cm2

per cycle per hour on Day 1 and 0.22 cm2 per cycle per hour on day 2.
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Table B.4.1

Summary of powerlaw fits

Day A x 10- 1° /3- -1 

1 0.68±0.07 2.205 ± 0.010 3.205 ± 0.010
2 11.4±t0.6 2.033 ± 0.005 3.033 ± 0.005

Summary of least squares fit of power spectrum of Figure B.4.4 to SL(f) =

Af 1- P. The model was linearized prior to fit by taking the logarithm. All units

are MKS. The uncertainties given are the estimates of the formal standard deviation

resulting from the fit, assuming a standard deviation of 1 mm (post-smoothed) for

the estimates of the zenith delay. This standard deviation is based on the known

magnitude of instrumental fluctuations.
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The estimator in (B.4.3) is neither an unbiased nor an efficient estimator.

In handling measurements of this type it is usual to smooth the data either prior

to taking the DFT to act as a low pass filter, or to smooth the spectral estimates,

thereby alleviating edge effects [Jenkins and Watt, 1968]. Filtering, however, while

decreasing the random error in each measurement, introduces correlations and de-

creases the frequency resolution, thereby having a large effect on the results presented

in the next section. Therefore, the data were smoothed using a Gaussian filter, but

it was decided to use a FWHM of only 9 minutes. Thus, only three data points are

within the main lobe of the weighting function. This is roughly the lower limit of the

smoothing window usually employed to smooth these types of data. The smoothed

versions of Figures B.4.1 and B.4.2 are shown in Figures B.4.3 and B.4.4, and a sum-

mary of the powerlaw fit to SL(f) = Afl -P of the power spectrum of Figure B.4.4 is

contained in Table B.4.1.

B.5 Analysis of the observations

A parametrization for the shape function h(t) described in Section B.3 is possible.

It has been found [Armstrong and Sramek, 1982] that the two-dimensional phase

structure function-analogous to the velocity structure function of (B.2.3)-obeys

D(r) = K r - 2 (B.5.1)

where P, > 2 and K > 0. Conversion to the structure function of interest to us is

obtained simply by multiplication of (B.5.1) by the constant (c/w)2, where c is the
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speed of light, and w is the angular frequency to which (B.5.1) is referred. The two-

dimensional delay structure function DL(r) will therefore be written as

DL(r) = KL r-2 (B.5.2)

with KL = (CIW)2K. The two-dimensional power spectral density SL(kr) is given by

(B.2.8). This integral can be evaluated using the integral found on p. 130 of Panchev

[1971]:

oldx Ixl- n [1- J ()] =

(B.5.3)

2.-nr2 (+n) sin(n - 1)2

for 1 < n < 3. Applying this to (B.2.8) yields for the two-dimensional spectral density

of L the expression
-KLr2 () sin (3

SL2 = 422- (B.5.4)
47r221P

where r(x) is the gamma function. The one-dimensional spatial delay power spectrum

SL can be obtained from (B.2.9) and the following integral identity from the CRC

Standard Mathematical Tables (no. 615):

J0odx ( + b)

jZ (mI-bec a+1)(B.5.5)

b r(c)

for a > -1, b > 0, m > 0, and c > +l. We therefore find, after transforming to the

temporal power spectrum as per (B.2.11), that

SL =-2KLr () r (2) r (I 2 ')(sinf) (2r)1P2 (2Mu- 1 x) 2f (B.)
267
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Since we are assuming that the shape function h(t) is even, then H(f) 2 -

H 2(f), and from (B.3.4) we have

H(f)-B(P)f 2 (B.5.7)

where the constants in (B.5.6) have been absorbed by B(P). To obtain an expression

for h(t), we must use the identity from Tatarskii [1961], p. 269:

0ood n-I

|d jx -- (1 cos ax) = r(n)sin(n-1) (B.5.8)

for 1 < n < 3. We therefore obtain for h(t):

h(t) = h(O) 2rB()(2ir) It (Bf5.9)
0-1 sin 0-3r ( 2 ) 4

The region over which (B.5.1) is valid is known as the inertial subrange, and

extends to several tens of kilometers, although this "outer scale" has never been ex-

perimentally determined. Depending on the mean velocity, we would therefore expect

(B.5.9) to be valid on time scales of 0.5 minutes to several hours. As previously men-

tioned, the estimate of h(t) is obtained by back-transforming the complex absolute

value of the estimated Fourier transform of the delay. In this sense, h(t) closely resem-

bles an estimate of the autocorrelation function. In general, it is unwise to attempt

to estimate the autocorrelation function at values of the lag which are greater than

about 10% of the total period during which data were taken, due to the decrease in

the number of overlapping data at the greater lags. Applying this reasoning to h(t),

then, it was decided to estimate h(t) only for ItI < 2.3 hours. Figure B.5.1 contains the

resulting shape functions (solid line), along with the least squares fits (dashed line).
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Figure B.5.1. Shape functions. Solid lines result from back-transforming H(f) (see

text). Dashed lines are plots of (B.5.7) using the parametrization resulting from the

least squares fit as described in Section B.5.
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The fits were obtained by normalizing the back-transformed amplitudes to give a value

of unity at t = 0. The resulting values were then fit in a least squares sense to (B.5.9)

in the form

h(t) =1- (O)tl 2 (B.5.10)
h(0) h(0) Ii

The estimates of h(O) were obtained by requiring that

dt h(t) = 1 (B.5.11)
T

for some integration time T. In this case, T was chosen to be 10% of the total time, or

2.3 hours, as previously discussed. This limit seems reasonable, since from Figure B.5.1

it can be seen that h(t) is nearly zero beyond this time.

Although it is possible to fit the data in a least squares sense directly to (B.5.8)

with (B.5.11) as a constraint, there are practical considerations which make the pro-

cess described above more desirable: a linearized least squares fit to (B.5.8) requires

derivatives of h(t) with respect to 6; thesis derivatives (which depend on log Itl) do not

exist for t = 0. It was found that the exclusion of the t = 0 point allowed a solution

for which < 3 and qp < 0. Fitting the data to (B.5.10), however, "anchored" the

solution at t = 0 to a finite value, allowing an unconstrained linearized least squares

fit to be done. The "true" value of h(0) was then determined from (B.5.11).

The price paid for this method, however, can be seen in Figure B.5.1: a systematic

bias exists between the data and the least squares fit. Although there are alternatives

to fitting the data to (B.5.10), none has yet been tried. For instance, it is possible to

use a Bayesian approach and fit the data to

h(0) h() ( )
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Table B.5.1

Estimated shape function parameters

Day h(0) x 104 qp x 10-5 -3 3

1 3.8 ± 0.2 0.69±0.38 0.31 ±t 0.04 3.62 ± 0.06
2 3.6 ± 0.2 9.7 4±3.3 0.30 ± 0.03 3.60 ± 0.04

Summary of least squares fit to (B.5.10) of data shown by solid line in Fig-

ure B.5.1. The units of h(0) are sec- 1. The units of qp are cm2 Hz-'. The uncertain-

ties given are the estimates of the formal standard deviations resulting from the fit,

with the uncertainty of h(t) estimated from the postfit RMS residual. This residual

was 2.8 x 10- 5 sec - 1 on Day 1 and 1.7 x 10- 5 sec - 1 on Day 2.
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where the a priori variance on the parameter 6 is assumed small enough that 6 remains

in the neighborhood of unity.

The values of qp and h(0) resulting from the fit to (B.5.10) are included in

Table B.5.1. The value of qp was obtained by first estimating KL from the least

squares fit to the power spectrum and from (B.5.4). All units are MKS, and m,,

has been taken to be 1 m s - 1, so the results can be easily scaled (see (B.5.5)). For

both days, the values obtained for P are higher than those found via the powerlaw

fit to SL(f). This is possibly due to an error in the assumption that p(t) is white

noise. Based on the comparison with other studies (see Section B.5.7), it seems that

the estimates derived from the powerlaw fit are closer to the "true,' values.

The large differences between the estimates qp for the two days is expected, since

the fluctuations recorded for the second day are so much greater (see Figure B.4.3).

The variance of the delay on Day 1 was approximately 0.54 cm2 , whereas for Day 2

the variance was approximately 2.5 cm2 .

B.6 Modeling the input: An example

So far, we have avoided modeling the input p(t) of (B.3.3), except to assume that

p(t) is a white noise process. In this section we explore the implications of modeling

p(t) as shot noise as suggested in Section B.3. In this model, the Lj in (B.3.2) are

assumed to be a constant, Lo. Shot noise is defined by assuming that the number

of impulses in non-overlapping time intervals are a set of statistically independent

random variables, and that the probability of having k impulses for r < t < s is given

by

P(kJr, ) k! [ dt (t) ]exp [ dt A(t) (B.6.1)
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where, it can be shown, A(t) is the average rate of arrival of the impulses. In this case,

it can be shown [Davenport and Root, 1958] that the expected value of p(t) is given

by

mp (t) = Lb(t) (B.6.2)

and that the autocorrelation Rp (t, s) is given by

Rp(t, s) = L2 A(t)6(t - s) (B.6.3)

We will now assume that A(t) = A, a constant, so that by (B.1.10) the expected value

of L(t) is given by

mL(t) = ALo At dt h(t) = ALoAt (B.6.4)
-oo00

and that the autocorrelation function of L(t) is by (B.1.11) given by

RL(r) = (At)2AL dr h(r) h(r -T) (B.6.5)

Although it seems as though the mean and correlation depend on the time between

observations, the term At at this point is no more than a scale factor for the normal-

ization for h(t) which we chose. As we will see, the estimate of A will be independent

of At-under the assumptions of the model. We can now relate (B.6.4) and (B.6.5) to

some observable quantities by noting from (B.1.2) that

a = RL(O) - 2 (B.6.6)

where a is the variance of L(t). Combining (B.6.4), (B.6.5), and (B.6.6) yields

a = L2A [L dt h2 (t) _ A] (t) 2 (B.6.7)
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At this point, we have two unknowns, Lo and A since both oL and the integral

are easily estimated from the data. However, the Fourier transform of (B.6.3) yields

the power spectral density SL(f) = qp, which gives us the relationship qp = AL2.

Substitution of this relationship into (B.6.7) gives

A dt h2 (t) ' (B.6.8)
00 qP (At) 2

Note that under the assumptions of our model, A is independent of At.

For the two days the values for A have been estimated to be approximately

1.4 x 10- 4 Hz for Day 1 and 1.3 x 10- 4 Hz for Day 2. This means that the average

arrival times between impulses are 2.0 hours and 2.2 hours. It is difficult to tell how

plausible these values are simply from looking at Figure B.4.3.

It should be stressed that this is only one possible model for p(t). This particular

model has the appealing characteristic of having a simple physical interpretation.

B.7 Comparison with other observations and conclusion

It is possible to compare the results found in this work both to theory and to

other observations. For fully developed Kolmogorov turbulence [Tatarskii, 1961], one

would expect that P = 1 at scales at which the turbulence is isotropic, and /3 = 8

at larger scales. For the atmosphere, one can seemingly place an upper bound on

the scale of isotropy in terms of the tropospheric height (10 km). Both the data

presented here, and those of Hogg et al. [1981], as well as those of Armstrong and

Sramek [1982] seem to offer evidence that the upper bound is on this order, or even

greater. It is also possible that the differences between the two values for P found on

274



each day in this study are due to the fact that the found by the fit to h(t) depend

for the most part on delay lags of less than 2.3 hours, or 8.3 km at 1 m s - 1, while the

powerlaw fit to S(f) is sensitive to changes with periods of up to 23 hours. This could

also explain why the values for i from h(t) are very close to 3, while the values from

S(f) are slightly lower, having been corrupted by f3 variations at low frequencies. It

is therefore perhaps correct to model p(t) as white noise for t < 2.3 hours.

Figure B.7.1 illustrates the range of values for K and , which have been obtained

by this and other works. The constant K of (B.5.1) has been referred to a frequency

of 5 GHz. Results obtained from the powerlaw fit to SL(f) are indicated by asterisks

those via fit to h(t) by open circles The results obtained by Armstrong and Sramek

[1982] are indicated by crosses and that by Dravskikh and Finklestein [1979] by a

pounds sign. It can be seen that the values for 6 found via the fit to SL(f) are, for

these values of K, more consistent with the values from the other works than those

found by the fit to h(t).

The correlation evident in Figure B.7.1 between values of P and K is as yet

unexplained, although it could indicate the existence of a "mechanism" for the atmo-

spheric fluctuations such as that described here. That the values for K found here and

in Dravskikh and Finklestein seem consistently high could quite possibly be due to

differences in altitude. (At lower altitudes the total amount of integrated water vapor,

to which all these studies are sensitive, is greater, and the power of the fluctuations

tends therefore to increase.) The Armstrong and Sramek data were taken at the VLA

near Socorro, NM at an altitude of 2124 m, and those of this report near Ft. Davis,
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Figure B.7.1. Distribution of f, and K values culled from several works. The reference

frequency is 5 GHz, the units for K are MKS. The existence of the strong correlation

is not well understood. Key: + = Armstrong and Sramek [1982]; # = Dravskikh and

Finklestein [1979]; * = this appendix with from fit to S(f) (Table B.4.1 values);

o = this appendix with 65 from fit to h(t) (Table B.4.2 values).
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TX at an altitude of 1603 m. The origin of the Dravskikh and Finklestein data is not

known.

In conclusion, two days of estimates of the zenith delay due to the presence of

water vapor (the so-called wet delay) have been presented. These data were shown to

be consistent with the relationship S(f) - Kf 1- , with being within the range of

values values found in other works of 2.8 < < 4.0. A model for the wet delay was

developed in which the atmospheric turbulence was treated as a low pass filter with

a transfer function of the form h(t) = h(O) - Altl(P- 3)/2, and whose input is assumed

to be white noise of spectral height qp. This model yields values for 6 very close to

the ~1 predicted for Kolmogorov turbulence. Values for qp obtained were presented

although the a physical interpretation of qp is dependent upon the complete statistical

characterization of the input p(t). As an example, we modeled p(t) as shot noise; then

qp is related to the average time between pulses.

An analysis of the type presented in this appendix might be useful both to those

who view the turbulence of the wet atmosphere as an error source and to those who

are interested in atmospheric and meteorological studies of turbulence as it applies to

such subjects as the atmospheric propagation of heat, momentum, and moisture, and

atmospheric structure.
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