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Abstract

In the thesis I introduce an analogue of the Deligne-Fourier transform for vector spaces
defined over a p-adic field. The construction makes use of techniques of rigid analytic
geometry recently introduced by Berkovich, in combination with Lubin-Tate theory, re-
worked in a geometric guise. Most of the formal properties are derived as in Laumon,
once the necessary technical preliminaries are dealt with. Numerous open questions arise
from this work, and I list some of them in the last chapter of the thesis.
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The lord, who has the Delphi oracle,
does not speak nor conceals,

but gives signs.
- Heraclitus B 93 Diels

1 Introduction

The concept of the Fourier transform appears in many guises in geometry. In the context of
intersection theory, it arises as a correspondence on the product of an abelian variety and its
dual. For algebraic D-modules, it is given by an explicit formula on the algebra of differential
operators of a vector space over a field of characteristic zero. Another example is the Fourier-
Sato transform, defined on the category of conical sheaves over a fixed real vector bundle. Here
a sheaf is said to be conical if it is invariant under the multiplicative action of R+ on the fibers
of the vector bundle.

The cohomological Fourier transform for vector spaces over finite fields was defined by Deligne
and studied extensively by Laumon in [Lau]. This is an anti-involution of the derived category
of -adic sheaves on the vector space, whose construction makes essential use of the peculiar
properties of the affine line over finite fields, and therefore it would seem to be hopelessly
confined to positive characteristic.

In all known cases, Fourier transforms have yielded valuable insight on the fine structure of
the categories in which they were introduced.

A common feature that accounts in part for the success of the Fourier transform (at least
for the various sheaf-theoretic versions) is a certain capacity to translate local properties of an
object into global properties of its transformed, and viceversa.

To be more specific, consider the case of the Fourier-Deligne transform F : Db(An, Qe) 
Db(An, Qe). The full significance of the theory is revealed by the following two facts. First, F
preserves the subcategory of perverse sheaves: this result was obtained by Katz and Laumon
and the proof amounts to a careful study of the ramification of the Artin-Schreier map over the
point at infinity of P1. Second, by Deligne's solution of the Weil conjectures, F preserves the
category of mixed complexes. These two facts together make of the Fourier-Deligne transform
a powerful tool for the study of the monodromy of sheaves in positive characteristic.

As a demonstration, Laumon succeded in proving the conjecture on the local constant of
the functional equation for varieties over finite fields. On the other hand, the Fourier-Deligne
transform can be used to simplify significantly the proof of the Weil conjectures. More recently,
the functor F has found important applications in representation theory, as witnessed by the
work of Lusztig and Springer, among others.

Compared to the case of finite base field, algebraic geometry over p-adic fields is much less
understood. Let V be an algebraic variety over a fixed p-adic field k with absolute Galois group
S. According to a folk conjecture, one expects that the -adic cohomology of V, considered as a
g-module, should carry a kind of "mixed Hodge" structure, in analogy with the case of complex
algebraic varieties. Then a -module should be called pure if the monodromy filtration, coming
from the action of the inertia subgroup, coincides with the weight filtration, coming from the
action of any lifting of a Frobenius generator.



This conjecture is proved when chark > 0, because in this case it follows from the Weil
conjectures. By contrast, the case chark = 0 is still very mysterious, and it is in fact the
problem which originated the present thesis.

In this thesis I introduce an operation for sheaves over a vector space on a local field,
that behaves in many respects like the Deligne-Fourier transform. The main ingredients for its
construction are Lubin-Tate theory and the new etale cohomology theory for analytic varieties
found by Berkovich.

Before passing to a more detailed description, I should add that my work does not achieve
the goal of proving the conjecture, and probably does not even get anywhere close to it. It is my
hope that the interest of this work lies more in the provocative questions that it prompts, than in
the answers that it presently provides. In particular, this paper reflects the author's conviction
that, even if we are only interested in the cohomology of "classical" algebraic varieties, the new
analytic methods of Berkovich are inescapable, and provide the best framework for dealing with
these problems.

Now, let k be a p-adic field of zero characteristic. The main obstacle in defining a co-
homological Fourier transform over the base field k, is the well known fact that the algebraic
fundamental group of Al is trivial. Starting from here, it is perhaps natural to try to find a
richer geometric category, in which the affine line may have non-trivial coverings.

Such a category does indeed exist, and it is embodied by the theory of rigid analytic varieties.
This theory was discovered originally by Grothendieck and Tate; more recently Berkovich has
found a different fundational approach, that leads basically to the same class of objects, but is
more flexible and technically less demanding. I give a summary of Berkovich's theory in the
second chapter of this thesis.

The affine line is also an analytic group. In our quest for the Fourier transform, the next
question that we have to ask, is whether in this extended geometry the affine line admits non-
trivial group coverings, i.e. if there exists an analytic group G with a surjective analytic group
homomorphism G -* A*. A torsor over AAk would suffice to define an operator on D (An,Q),
but the stronger property that G - Ak be a map of groups is necessary if we want to show that
the operator satisfies the usual properties, like for instance involutivity (see section 6.1).

It turns out that the most elaborate and complete answer to this question has been given
almost thirty years ago in a paper of Lubin and Tate, now classical. In their paper they introduce
a whole class of formal groups defined over any p-adic field, and they show how to recover a
substantial portion of local class field theory in a very explicit fashion, by analysing the torsion
in these groups. This theory is reviewed quickly in the first chapter of the thesis.

Although all the Lubin-Tate formal groups are analytically isomorphic, they contain different
arithmetic information, and to pick up arbitrarily one of them would deprive us of this beautiful
diversity. Therefore I decided to develop the entire thesis for general Lubin-Tate groups.

Lubin and Tate worked out their theory in a purely algebraic framework. We are left with
the easy task of showing that in fact every Lubin-Tate formal group law gives rise to an analytic
group G whose underlying analytic variety is a small disc in the plane. To produce the morphism
G -- A, we use the logarithm map, another useful gadget in the Lubin-Tate toolkit. This was
originally defined as a formal isomorphism between G and the formal additive group, but we
show that in fact it is a surjective etale morphism of analytic varieties. I am not aware of
any other arithmetic geometrical problem for whose solution it has been found convenient to
"geometrize" Lubin-Tate theory.
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Let G. be the kernel of the map G -- A: now it is not hard to produce a G -torsor out of
G, and it seems only fair to call this the Lubin-Tate torsor. Chapter 5 gives the construction in
full detail. Finally, the construction of the Fourier transform is accomplished by copying word
by word from [Lau]. But to make sense of this, we still have to take care of some technical
fine point: Berkovich develops his cohomology theory for finite coefficient rings only, and these
are not enough for us, since the group Goo is p-divisible, and therefore does not possess any
non-trivial homomorphism to a finite group. Thus we have to extend somewhat the theorems
of Berkovich: this is the purpose of chapter 4. In the last section of the same chapter we also
set up an -adic formalism, following the paper [Ek].

The definition of the Fourier transform is given in chapter 6, together with the proof of its
main properties. Some examples of computations follow: these are all translated from the paper
of Laumon, with the exception of the computation for the constant sheaf concentrated on a disc
in the plane, which has no analogue over a finite field.

We conclude with a list of open questions, for future investigation.

9



2 Review of Lubin-Tate theory

We recall here some well known fact from Lubin-Tate theory. The paper [LT] is the original
source, but a complete account can be found in Lang's book [La].

2.1 Formal groups over local fields

Let k be a local field with valuation I · ; denote by Ok and resp. r the ring of integers of k and
a uniformizing parameter in Ok. Let q be the cardinality of the residue field k = Ok/m, where
of course m = (r) is the maximal ideal. Set p = char k > 0. Let also k be the algebraic closure
of k, with the unique valuation I -· that extends the valuation of k.

Following Lubin-Tate [LT] we let:

F'. = set of power series f E Ok[[X]] such that:
f(X) ~ rX mod degree 2
f(X) Xqmod r .

The simplest example is just the polynomial f(X) = rX + . q . Recall that a formal group
F is a power series F(X, Y) = ij aij X 'Y j with coefficients aij E k, satisfying the identities
F(F(X,Y),Z) = F(X,F(Y,Z)), F(X,Y) = F(Y,X) and F(X,0) = 0. A homomorphism
of the formal group F into the formal group F' is a power series f(X) E k[[X]] such that
f(F(X, Y)) = F'(f(X), f(Y)). In particular an endomorphism of F is a homomorphism of F
into itself. We say that a formal group is defined over Ok if its coefficients aij are in Ok.

The following theorem summarizes the main features of the Lubin-Tate construction:

Theorem 1 a) For each f E F,' there exists a unique formal group Ff, defined over 0 such
that f is a (formal) endomorphism of Ff. Moreover, for any two power series f,g E F,, and
every a E Ok there is a unique [a]f,9 E Ok[[X]] such that [a]f, E Hom(Ff, Fg) and [a]f, 
aX mod degree 2.

b) The map a - [a]f,g gives a group homomorphism Ok --4 Hom(Ff, F9) satisfying the

composition rule
[a]g,ho[a]f,g = [ab]f,h.

In particular, if f = g, this map is a ring homomorphism Ok - End(Ff ).

Proof: This is theorem 1.2, chapt. 8 of [La]. O

We will write [a]f in place of [a]f,f; in particular notice that [r]f = f.

Given f E YF, the associated formal group Ff converges, as a power series, for all pairs
(x, y) of elements of I such that IxI, Iyl < 1. We introduce the notation A(a,p) for the set
{x E k such that Ix - al < p}. Here a E k and p is a real number. Then it is clear that F

induces a group structure on A(0, 1). Any a E Ok induces an endomorphism [a]f of this group.

Definition 1 For any positive integer n we let Gn C k be the kernel of the iterated power []7r.
Also we define Goo = Un>oGn.

We collect here some well known results about G,:
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Theorem 2 1) The action of Ok on A(0, 1) induces an isomorphism of Ok-modules between
G(',, and the additive group Ok/7rnOk.

2) The field k(Gn) is a totally ramified abelian extension k with Galois group isomorphic to
(Ok,/7 rOk)X

Proof: See theorem 2.1, chapt. 8 of [La]. [

2.2 The logarithm

We specialize now to characteristic zero, that is char(k) = 0. In this case it is known (see [La],
section 8.6) that for any formal group F over k, there exists a formal isomorphism

A : F -, Ga

where Ga is the usual additive formal group over k, that is Ga(X, Y) = X + Y. The isomorphism
A is called the logarithm of F, and it is uniquely determined by F.

Lemma 1 Let F be a Lubin-Tate formal group, i.e. F = Ff for some f E F,. Then the
loqarithm A = AF can be written in the form:

X q'

A(X)= Egi(X)-,

with gi(X) e O[[X]].

Proof: This is lemma 6.3, chapt. 8 of [La]. O

It follows easily from the lemma that A converges over A(O, 1), therefore it induces a group
homomorphism

A A(0, 1) Ga(k).

The following theorem measures the extent to which A fails to be an isomorphism of groups:

Theorem 3 Let eF(Z) be the power series (with coefficient in k) which is the inverse of AF(X).
Then eF(Z) converges on the disc A(0, 1rl/( q-l)) and induces the inverse homomorphism to AF
on the subgroups

A(O,lr 1 /(q- ))· ' A G(O, 7rjl/(q-1)).

(the group on the right coincides set-theoretically with the group on the left, and we use the
notation Ga to emphasize that it is endowed with additive group structure).
Proof: See lemma 6.4, chapt. 8 of [La]. [

Remark: a) It can be shown that A is a homomorphism of Ok-modules, i.e. for all a E Ok
there is an equality of powers series:

a. A = Xo[a]f.

b) Using theorem 3 and (a) it's not hard to show that the kernel of A is the subgroup G,.

In what follows we will reserve the symbol po for the constant j7r[1/ (q- l)

11



3 Rigid analytic geometry

The purely algebraic Lubin-Tate theory is enriched with the adoption of the geometric language
of Tate-Berkovich rigid analytic varieties. We give here in compendium the main foundational
results of the theory of analytic varieties following Berkovich. Complete details can be found in
[B4].

3.1 Banach algebras

Let A be a commutative ring with identity 1. A seminorm on A is a function l Ii: A R with
values in the set of non-negative real numbers such that:

1) 11011=, 11111=1,

2) Ilf - gl < Ilfl + 1gll,
3) Ilfg ll Ilfll IIgll

for all elements f,g E A. The seminorm is said to be multiplicative if in (3) the equality
holds. Two seminorms II II and I II' on A are equivalent if there exist C, C' > 0 such that
Cllfll < IIfll' < C'llfll for all f E A. A seminorm is a norm if the equality Ilfll = 0 holds only
for f = 0. A normed ring, that is complete with respect to the topology determined by its norm,
is called a Banach ring. For instance, the base field k is a Banach ring.

A homomorphism X: M - N of Banach rings is said to be bounded if there exists C > 0
such that l10(f)II < Cllfll for all f E M. The residue seminorm on M/Ker(O) is defined as

If Il = inf{lIgll,g E f + Ker(o)}. The homomorphism is admissible if the residue seminorm on
M/Ker(O) is equivalent to the restriction to Im(k) of the seminorm of N.

Let A be a Banach ring with norm II 11. A seminorm I on A is said to be bounded if there
exists C > 0 such that Ifl < Cllfll for all f E A.

Definition 2 The spectrum M(A) of a Banach ring A is the set of all bounded multiplicative
seminorms on A provided with the weakest topology with respect to which all real valued functions
on M(A) of the form I If l, f E A, are continuous.

It's easy to see that the map A - M(A) defines a contravariant functor from the category
of Banach algebras with bounded homomorphisms, to the category of topological spaces.

The following theorem is proved in [B4], section 1.2.

Theorem 4 The spectrum M(A) is a non-empty, compact Hausdorff space.
0

Remark: Let x be a point of M(A) and let I I be the corresponding seminorm. The kernel
pr of I is a closed prime ideal of A. The value If I depends only on the residue class of f in
A/p,. The resulting valuation on the integral domain A/pt extends to a valuation on its fraction
field F. The closure of F with respect to the valuation is a valuation field denoted by 'H,. The
image of an element f E A in 'H, will be denoted by f(x).

For the purposes of analytic geometry, we single out a special class of Banach rings.

12
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Let A a Banach ring; for rl, ... , r, > 0, we set:

A{r-T1T .. ,'r T n} = f = E aT la, E A and lalrv -- 0 as Ivl -- 0,

(here = (l,.,Vn,), Il = vl + ... + v, T = T ...TP " and r = r ... rn)
This is a Banach A-algebra with respect to the multiplicative norm Ilfll = max, la,iru. For

brevity we will also denote it by A{r-'T}.

Definition 3 A Banach k-algebra A is said to be k-affinoid if there exists an admissible epi-
morphism k{r-lT} - A.

Note that if A is a k-affinoid algebra, then also A{r-'T} is k-affinoid.

3.2 Affinoid domains

The k-affinoid algebras provide the local model of a rigid analytic variety, in analogy with the
affine schemes of usual algebraic geometry. The underlying topological space for this geometric
construction will be the spectrum X of the k-affinoid algebra A.

Example: Let A = k{r-'T} be a power series ring in one variable T = T as above. We
want to describe M(A) explicitly. Let Ck be the completion of k. First of all, any a E Ck with
Ia < r determines a multiplicative seminorm by setting f f(a)l for all f E A. Two elements
a, b E Ck define the same point in M(A) if and only if they are conjugate by the Galois group
of Ck over k. In Berkovich's terminology, these are the points of type (1).

Furthermore, given a as above and a real number p with 0 < p < r, the closed disc D =
A(a, p) determines a multiplicative seminorm f If lD = max, lalp n, where ]_=o an(T - a)n
is the expansion of f with center a. This is a point of type (2). Notice that such a point depends
only on the disc D and not on its center a.

Berkovich shows that all the points of M(A) are either of type (1) or type (2).

Definition 4 Let A be a k-affinoid algebra. A closed subset V C X = M(A) is said to be an
affinoid domain in X if there exists an affinoid algebra Av and a bounded homomorphism of
k-affinoid algebras : A Av satisfying the following universal property. Given a bounded
homomorphism of affinoid k-algebras A - B such that the image of M(B) in X lies in V, there
exists a unique bounded homomorphism Av - B making the diagram

A Av

B

commutative.

Example: Let f = (f,..., fn) and g = (gl,...,gm) be sets of elements of A, and let p =
(Pl, n...,) and q = (ql, ..., q,) be sets of positive numbers. Then the set

X(p-'f, qg- ) = {x E XI Ifi(x)l < Pi, Igj(x)l > qj, 1 < i < n, 1 < j < m}

13



is an affinoid domain in X represented by the homomorphism:

A - A{p- 1Tl,...,pjlTn,qlS,...,qmSm}/(Tj- f,gjSj -1).

Affinoid domains of the form X(p-lf) (resp. X(p-lf,qg-1)) are called Weierstrass (resp.
Laurent) domains in X.

Various properties of affinoid domains are proved in [B4]. For instance, if : M(B) - M(A)
is a map induced by a bounded homomorphism A -- B is of k-affinoid algebras, then for any
affinoid domain V E M(A) the preimage +-l(V) is affinoid in M(B). Also, the intersection of
two affinoid subdomain in M(A) is again affinoid. Most importantly, for any point x E X, there
is a basis of closed neighborhoods of x consisting of affinoid (in fact Laurent) domains.

A finite union of affinoid domain is called a special set. For a special set V = UiVi, we set
Av = Ker(IliAvi - IIi,jAvnv), where the maps Av, Avnv) are as in the initial portion of
the Cech complex.

Let X be the spectrum of a k-affinoid algebra A. We endow the space X with a presheaf of
rings Ox as follows. For an open set U C X, we set

F(U, Ox) = lim A,

where the limit is taken over all special subsets V c U. Using Tate's acyclicity theorem it can
be shown that Ox is in fact a sheaf of rings and the stalk at any point x E X is a local ring.

The locally ringed space obtained in this way is called a k-affinoid space. A morphism of
affinoid spaces M(A) M(B) is a map of locally ringed spaces which comes from a bounded
homomorphism B -- A.

A k-quasiaffinoid space is a pair (U, k) consisting of a locally ringed space U and an open
immersion of U in a k-affinoid space X. A closed subset V C U is called an affinoid domain
if (V) is an affinoid domain in X. A morphism of k-quasiaffinoid spaces (U, ) -- (V, ?b) is
defined as follows. This is a morphism of locally ringed spaces : U -. V such that, for any pair
of affinoid domains U C U and V C V with (U) C Int(V) (the topological interior of V in V),
the induced homomorphism of k-affinoid algebras Bv -- Au is bounded.

3.3 Analytic varieties

Now let X be a locally ringed space. A k-analytic atlas on X is a collection of pairs (Ui, i), i E I,
called charts of the atlas, satisfying the following conditions:

1) Each Ui is an open subset of X, and the Ui cover X.
2) Each pair (Ui, 4i) is a k-quasiaffinoid space.
3) The induced morphism of locally ringed spaces j- : i(Ui n Uj) - j(Ui n Uj) is an

isomorphism of k-quasiaffinoid spaces for each i, j E I.

Definition 5 A locally ringed space endowed with an atlas is called a k-analytic variety.

In particular, any quasiaffinoid space is an analytic variety.
Let X, Y be two k-analytic varieties and let f : X -- Y be a morphism of locally ringed

spaces. Then f is called a morphism of k-analytic varieties if there exists an atlas {(Ui, 4i)} of
X and an atlas (Vj, 1,j)} of Y such that for each i,j the morphism if- 1: 4i(Ui) - j(Vj)
is a morphism of quasiaffinoid spaces.

14

�



We will show how to give a structure of analytic varieties to the spaces of main interest
for us. First of all, we define the affine line Al as follows. For any real number r > 0, let
Dr be the affinoid variety determined by the k-affinoid ring k{r-'T}. For r < s, there is a
canonical isomorphism of Dr onto the Weierstrass domain Ds(r-'T). Then Al is the inductive
limit Ur>oDr. The interior of Dr inside Al is a quasiaffinoid space that we denote A(0, r). The
collection of all A(0, r) will be an atlas for A.

The set of k-points of A(0, r) of type (1) is just the set of all a E k such that lal < r and
therefore this notation is consistent with our previous definition of A(0, r). More generally, for
any a E k, we can define the open disc A(a, p) as the interior of an appropriate affinoid domain
inside A.

Any formal group with coefficients in k, converging over A(O, p) gives rise to a k-analytic
group. In particular, for any f E Y there exist an analytic Lubin-Tate group Ff. Of course also
Ga with its additive group law is an example of analytic group. More generally, for any real
number p > 0 we denote by Ga(p) the analytic group obtained by restricting the addition law
of Ga to the open disc of radius p centered at the origin. Given any f, g E YF1 and a E Ok, the
power series [a]f,g defines an analytic group homomorphism Ff - Fg. Moreover, the logarithm
AF associated to a Lubin-Tate group F, is an analytic homomorphism A(0, 1) Ga.

The category of k-analytic varieties admits arbitrary fibre products and for an isometric
imbedding of k inside another complete field K, there is a field extension functor X : XDK
from k-analytic varieties to K-analytic varieties, that we will denote sometimes with a subscript.
As an example, we can define the affine d-dimensional space Ad as the d-fold product Al x ... x A.

We say that a morphism X -, Y of k-analytic varieties is separated if the diagonal imbedding
X - X xy X is closed.

Definition 6 The category Ank of analytic spaces over k consists of all pairs (K, X) where K
is a complete field in which k embeds isometrically, and X is a K-analytic variety. A morphism
(K, X) -, (L, Y) is a pair (j, ) where j is an isometric imbedding L .Ii K and & is a morphism
of K-analytic varieties X -- YK.

Any scheme X locally of finite type over k gives rise to an analytic variety Xa. More
precisely, let be the functor from the category of k-analytic spaces to the category of sets
which associates to every analytic space X the set of morphisms of k-ringed spaces Homk(X, X).
Berkovich proves the following;

Theorem 5 The functor is represented by a k-analytic variety Xan and a morphism 7r:
Xan - X. They have the following properties:

(i) The map r is surjective and for any non-Archimedean field K over k, induces a bijection
Xan (K) X(K).

(ii) For any point E X an, the homomorphism r : OX,yr(r) - OXan,: is local and flat.
Furthermore, if z E Xan(k), then rr induces an isomorphism of completions fr: Ox,,(x) 
OXan X.

O

The map X 4 Xan defines a functor from schemes locally of finite type over k to k-analytic
varieties. We give a sample of properties that are preserved by this functor. Denote by IXI the
underlying topological space of the analytic variety ,'.

15



Theorem 6 Let X be a scheme locally of finite type over k. Then:
(i) X is separated -k IXIan is Hausdorff;
(ii) X is proper * Xanl is Hausdorff and compact;
(iii) X is connected ', IXanI is connected.

Furthermore, let 4: X Y be a morphism of schemes locally of finite type over k. Then:
(iv) is injective X Okan is injective;
(v) X is surjective X Okan is surjective;
(vi) " an is an open immersion X Oan is an open immersion.

0

From here on the theory proceeds parallel to algebraic geometry. For instance, there is a
well behaved notion of proper morphism; there is a theory of coherent sheaves, with the relative
finiteness results, and standard theorems like semicontinuity and proper base change hold in
this new context. The same is true for Zariski's main theorem and Stein factorization, to cite
just a few examples.

16



4 Berkovich's rigid etale cohomology

Berkovich has defined and studied a theory of etale cohomology for his analytic varieties. In the
papers [B1], [B2], and [B3] he establishes the usual properties for his cohomology, like proper
and smooth base change, Poincar6 duality, and introduces also a notion of vanishing cycle.

4.1 The analytic etale topology

We start by complementing the prevoius section with the basic definitions needed to set up the
etale topology for an analytic variety, following [B1].

Definition 7 Let A be a Banach ring. An A-affinoid algebra B is called a finite Banach A-
algebra and the map A -, B is said to be finite, if B is finite as an A-module.

A morphism of affinoid spaces M(B) M(A) is said to be finite if it is induced by a finite
map A - B.

A morphism of analytic varieties 4: X - Y is said to be finite if for any point y E Y there
exists an affinoid neighborhood V of x such -1(V) - . V is a finite morphism of affinoid spaces.

The morphism is said to be quasifinite if for any point x E X there exists a neighborhood
V of x and U of 4(x) such that induces a finite morphism V - U.

Recall that a morphism of schemes : X - Y is called quasifinite if any point y E Y is
isolated in its fibre 4-'(y). The following result is proved in [B1]:

Lemma 2 (i) Quasifinite morphisms are preverved under composition, under any base change
and under any ground field extension functor.

(ii) A morphism : X -+ y between schemes of locally finite type over k is quasifinite if and
only if the corresponding morphism Oan : ' nXa yan is quasifinite.

O

Definition 8 A morphism of analytic spaces ) :Y - X is said to be flat at a point y E Y if
OCy,y is a flat Ox,4(y) algebra. is said to be flat if it is flat at all points.

Unramified morphisms : Y -* X can be defined in analogy with the algebraic case, by
looking at the sheaf of relative differentials f1Y/X.

Let 4): M(B) M(A) be a morphism of k-affinoid spaces. The module of differentials QB/A
is the B-module J/J 2 , where J is the kernel of the multiplication B§B B. fQB/A determines
a sheaf on M(B). As usual, this definition globalizes to general morphisms of analytic varieties
Y -- X, and gives the sheaf flY/X.

Definition 9 Let : Y -- X be a quasifinite morphism. Then is said to be unramified if
QfY/X = 0. is said to be etale if it is unramified and flat.

Proposition 1 (i) Etale morphisms are preverved under composition, tinder any base change
and under any ground field extension functor.

(ii) A morphism : X --, Y between schemes of locally finite type over k is etale if and only
if the corresponding morphism a)n : yan yan is etale.
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(iii) Let : Z Y and : Y - X be quasifinite morphisms and suppose that )C, is etale
and X is unramified. Then is etale.

For a k-analytic space X we set Ad = A x X.

Definition 10 A morphism of k-analytic spaces 4 : 'Y X is said to be smooth at a point
y E Y if there exists an open neighborhood V of y such that the induced morphism V - X
factors as a composition of an etale morphism V _- Ad and the canonical projection Ad - X.
X is said to be smooth if it is smooth at all points y E y.

Proposition 2 (i) Smooth morphisms are preserved under compositions, under any base change
functor, and under extension of the ground field.

(ii) A morphism : X Y between schemes of locally finite type over k is smooth if and
only if the corresponding morphism yn : Xa" , yan is smooth.

We denote by Et(X) the category of etale analytic varieties over X. Objects of Et(X) are
all the etale maps U - X and the morphisms between two objects 4,: U - X and 4): V -- X
are all the maps : U - V such that ,)/3 = 1i. Proposition 1.(iii) means that all the morphisms
in Et(X) are etale.

The category Et(X) has an obvious Grothendieck topology for which the set of coverings of
(U -* X) consists of all the families of morphisms {fi: Ui - U})iE such that U = UiElfi(Ui).
This is the etale site of X that we denote by Xet. Any morphism (X, K) (Y, L) of analytic
spaces over k induces a morphism of sites Xet - Yet.

4.2 Higher direct images of torsion sheaves

For any ring A, the category of sheaves of A-modules on this topology is a topos, and the usual
formalism of sheaf cohomology goes through, like in the algebraic case.

In his paper, Berkovich considers mainly finite rings of coefficients, of the form A = Z/nZ.
For our purposes, these are not quite enough, since we have to consider characters of an infinite
divisible group Goo into A*.

Our next task is to extend the main results to more general torsion rings A. Instead of trying
to reprove all the statements that we need beginning from scratch, we take a shortcut: we will
show that in order to compute the effect of a cohomological functor on a sheaf F of A-modules,
it suffices to regard F as a sheaf of abelian groups and compute the cohomological functor inside
the category of sheaves of abelian groups. This will allow us to quickly derive our results from
the theorems of Berkovich.

To start with, let A be any torsion ring and let D(X, A) (resp.(D+(X, A)) be the derived
category of complexes (resp. of complexes vanishing in large negative degrees) of sheaves K' of
A-modules and similarly define D-(X, A); denote by OIx the forgetful functor from D(X, A) to
the derived category S(X) of complexes of abelian sheaves.

18
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Let f : X - Y be a map of analytic spaces over k. First of all there is a direct image functor
Rf. : D+(X, A) - D+(Y, A).

Proposition 3 The functor Rf. commutes with the forgetful functor, i.e.

Rf.*o[x = yoRf..
Proof: For any sheaf F we will construct a resolution I by sheaves that are both injective as
sheaves of A-modules and flabby as sheaves of abelian modules. One checks as in the algebraic
case that flabby resolutions are f-acyclic : to do this one can look at [Mi] chapt. III sections
1,2,3 and convince oneself that all the arguments work without change in the present situation.

Then I' computes at the same time Rf. in the categories D(Y, A) and S(X), and the propo-
sition follows.

For each x E X, choose a geometric point x' localized at x, i.e. an imbedding of the residue
field '7(x) of x in the completion of its algebraic closure. We form the locally ringed space
X' == UEXxx' that we endow with the discrete topology. This space is an inductive limit of
analytic spaces and therefore carries a natural eta-le site X-t. Let r : X' t X,t be the obvious
map.

The sheaf r*F is the direct product over the stalks F., = x'*F at the points x' E X'. For
every x' E X' choose an imbedding into an injective A-module F, Ie, · we see I,, as an
injective sheaf of A-modules over the point x'. The product I° = IIr,EXI, is an injective sheaf
of A-modules on X' and clearly F imbeds into 7r.I. Since 7r. preserves injective sheaves, we have
constructed the first step of an injective resolution of A-modules: if we iterate this construction
vve obtain a full Godement resolution I' for F. On the other hand, I is also flabby as a sheaves
of abelian groups (since every sheaf on X' is flabby) and r, preserves flabby sheaves, therefore
I' is also a flabby resolution, as wanted. E

Next we turn to cohomology with support. We recall the relevant definitions and notation
from [B1].

A family -t of closed subsets of a topological space S is said to be a family of supports if it
is preserved under finite unions and contains all closed subsets of any set from . The family of
supports is said to be paracompactifying if any A E b is paracompact and has a neighborhood
BE .

Example. Let S be a Hausdorff topological space. Then the family Cs of all compact
subsets of S is a family of supports. If S is locally compact, then Cs is paracompactifying.
More generally, suppose : T S is a continuous Hausdorff map of topological spaces (i.e. the
diagonal imbedding T T xs T is closed), and assume that each point of S' has a compact
neighborhood. 'Then the family C of all closed subsets A C T such that the induced map
A --- S is compact is a family of supports. We recall that a map of topological spaces is said to
be compact if the preimage of any compact subset is compact.

I,et be a family of supports on the k-analytic variety X. WVe can define the following left
exact functor F : S(X) Ab - groups;

rF(F) = {s E F(X)lSupp(s) E .

The value of its right derived functor are denoted by H,(X, F), n > 0. For example, if · is the
family of all closed subsets, these are just the groups HI(X, F). If = Cx then we get the
cohomology groups with compact support.
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Let now : Y -, X be a morphism of k-analytic varieties. For any map f: U - V in Et(X)
we will write U, (resp. V,) for the fiber product U xx Y (resp. I' xx Y) and f, for the induced
map U V.

Definition 11 (i) A -family of supports is a system · of families of supports ,(f) in U, for
all etale maps (U - X) E Et(X) such that it satisfies the following conditions:

(1) for any morphism g: V - U in Et(X) one has g 1 ((f)) C I(fg);
(2) if for a closed subset A C U there exists a covering {gi: Vi -- })iel in Et(X) such that

g92(A) E (fgi) for all i E I, then A E (f).
(ii) The 4-family a is said to be paracompactifying if, for any f: U X in Et(X), each

point of U has a neighborhood g: V - U in Et(X) such that the family of supports (fg) is
paracompactifying.

A -family of supports defines a left exact functor 4 : S(Y) -- S(X) as follows. If
F E S(Y) and f: U - X is etale, then

(4),F)(U) = {s E F(U,)Supp(s) E (f)}.

For example, if 6 is the family of all closed subsets, then 04F = 4.. If the map X Y is
separated then = C is a paracompactifying 4-family, and we get a left exact functor that is
denoted by !.

We can derive the functor 4O in the two categories S(X) and D+(X, A), and in this way we
obtain two functors that we denote both by RO4. The following proposition shows that in the
cases of interest no ambiguity arises from this choice of notation.

Proposition 4 Suppose that the family , is paracompactifying. Then the two functors defined
above coincide, i.e.

Rolx = yoR4).

Proof: The proof of proposition 3 produces for any sheaf of A-modules a resolution that is
injective in the category of sheaves of A-moodules and flabby in the category of sheaves of
abelian groups.

To prove the theorem, it suffices to show that this resolution is acyclic for the functor Xvs

defined on the category S(X), thus the proposition follows from lemma 3 below. 0

Lemma 3 Suppose that the family $ is paracompactifying. Let F be a flabby sheaf of abelian
groups. Then Rn4(F) = 0 for all n > 0.

Proof: It is shown in [B1], proposition 5.2.1, that RnO4)(F) is the sheaf associated with the
presheaf (U X) Hn(f)(UO, F). Therefore it suffices to show that under the stated hypoth-

esis, H(f )(UO, F) = 0 for all etale morphism U --- X and all n > 0. Since the restriction to U of
a flabby sheaf of abelian groups on X, is a flabby sheaf, we have only to prove this for U = X.

Consider the morphism of sites r: Xet - IXI, where IXI is the space X with its underlying
analytic topology. The morphism r induces a spectral sequence

HP(IXI, RQ .F) HP+q(XF).
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We will prove that Rqr.F = 0 for all q > 0. Assuming this for the moment, we show how to
conclude. It follows that H (IXI, r.F) = HP(X, F). Since F is flabby by hypothesis, we obtain
from [B1], corollary 4.2.5, that r.F is flabby in the analytic topology. Then 7rF is r-acyclic,
by lemma 3.7.1 from [Gro] and the lemma is proved.

To see that Rq7r.F = 0, we can look at the stalks of this sheaf. For any point x E X, let
Gx be the Galois group of the algebraic closure of the residue field Jt(x). According to [Bl],
proposition 4.2.4, we have (Rqlr.F), _ Hq(G ,Fx), q > 0. Since F is flabby, it follows from
[B1], corollary 4.2.5 that Fr is an acyclic G.-module, as wanted. O

As a corollary, we get a proper base change theorem for sheaves of A-modules. From here
on, we restrict to torsion rings A in which the prime char(k) is invertible.

Theorem 7 Let : Y X be a separated morphism of k-analytic spaces, and let f X' a X
be a morphism of analytic spaces over k, which gives rise to a cartesian diagram

y,ye Of' . y

Then for any complex K' E D+(Y, A) there is a canonical isomorphism in D+(X', A)

f*(R!K' ) _ Rk'(fI'i).

Proof: The usual devissage reduces to the case where K' is concentrated in degree 0. Then the
theorem follows from proposition 4 and theorem 7.7.1 of [B1]. O

Let Db(X, A) be the subcategory of D+(X, A) consisting of cohomologically bounded com-
plexes. Let : Y X be as in theorem 7 and suppose that the fibres of k have bounded
dimension. Then, by corollary 5.3.8 of [B1] and proposition 4 we deduce that RO! takes Db(X, A)
to Db(Y, A) and extends to a functor R! : D-(X, A) - D-(Y, A).

The following projection formula is proved as in [B1], theorem 5.3.8.

Theorem 8 Suppose that F E D-(X,A) and G' E D-(Y,A) or that F E Db(X,A) has finite
Tor-dimension and G' E D(Y, A). Then there is a canonical isomorphism

L L
F' ® R4!(G') - R4!(0*(F) G'). (1)

Remark: we point out that the isomorphism of the theorem is functorial in both F' and
G'. Explicitly, let : F - F' and g: G' -, G' be maps complexes; then the isomorphism (1)

21



induces the following commutative diagram

L ~ L
F 0 Rd!(G') - R!(q*(F' ) G')

L L
fORO!(g) RO:(o*(f)Og)

L L
F 0 R4!(G') R!(*(F) G').

We conclude this section with the statement of a remarkable theorem, that allows us to
compute cohomology in several important cases.

Let X be a scheme locally of finite type over k, and denote by Xet the (algebraic') etale site on
X. It follows from proposition 1.(ii) that there is a natural morphism of sites r : Xn - Xet. For
any sheaf F of abelian groups on Xet, we denote by Fan the pullback r*F. Given a morphism
of schemes f : X Y and a sheaf F on Y, it is clear that (f*F) a' = f*F an. The following
Comparison Theorem is proved by Berkovich.

Theorem 9 Let f : X -- Y be a morphism of schemes locally of finite type over k and let F be
an etale sheaf of abelian groups on Y. Then for all q > 0 there is a canonical isomorphism

(Rq fF)an - Rqf Fa n

Proof: This is theorem 7.5(iii) in [B1]. 0

4.3 Poincar6 duality

Lastly, we want to establish Poincar6 duality for sheaves of A-modules.
Let A' -* A be a ring homomorphism and let F (resp. G) be a sheaf of A-modules (resp. of

A'-modules) on the analytic space X. Then F becomes a sheaf of A'-modules by restriction of
scalars, and we can form the tensor product F ®AI G. The sheaf of A'-modules F ®A, G carries
also a canonical structure of sheaf of A-modules. To describe this structure, recall that a sheaf
of A-modules S is by definition a A-module object in the category of sheaves of abelian groups;
in other words, the structure of S is determined by a collection of endomorphisms A : S - S
for all A E A, such that AsoAs = (AA')S and 1 = ids. Then the structure of F ®A' G is given
by the rule: A*FOAG = AF A idG.

The following propositions set up the formalism of trace mappings in our context.

Proposition 5 One can assign to every separated flat quasifinite morphism : Y - X and
every sheaf of A-modules on X a trace mapping

Tr : !*(F) - F.

These mappings are functorial on F and are compatible with base change and with composition.
If q is finite of constant rank d, then composition with the adjunction map

Tr
F - 0*0*(F) = ¢!+*(F) Tr F

gives the multiplication by d. These properties determine uniquely the trace mappings.
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Proof: In theorem 5.4.1 from [B1] the mappings are constructed in the category of sheaves of
abelian groups, but the construction shows that Tro commutes with the homomorphisms A*,
· E A, i.e. it preserves the structure of A-module. E

Let X be an analytic variety over k. Denote by 7j,, the sheaf of roots of unity of order n.
We write it, for the d-th tensor power of n, with itself. Then we define the sheaves A(d)x =
ut Oz/n Ax. By the argument above, A(d)x is a sheaf of A-modules.

Berkovich shows that for all n prime to char(k) there is a Kummer short exact sequence,
analogous to the usual one from the algebraic case:

0 n- , Gm - 0.

Taking X = 1', a well known argument produces an isomorphism Pic(P 1)/n - H2(P l ,/tn).
Let n be an integer prime to char(k). Here we specialize further and assume that nA = 0.

Proposition 6 Suppose that k is algebraically closed. Then one can assign to every smooth
connected k-analytic curve X a trace mapping isomorphisin

Trx: H2(X, A(l)x) - A.

These mappings have the following properties and are uniquely determined by them:
a) for any flat quasi-finite morphism A: Y - X the following diagram is commutative

H2(Y A(1)y) H2(X, A(1)x )

A

b) Trpi is the canonical mapping H 2(Pl, A(1)pi) A induced by the degree isomorphism
deg: Pic(X) _ Z.

Proof: Theorem 6.2.1 of [B1] constructs trace mappings

Trx: H 2(X-, n)- Z/ 7Z

with corresponding properties. By theorem 7, these mappings induce isomorphisms of abelian
groups

rrx : H2(X,A(l)x) = H2(X, /,n) Z/nz A - Z/17Z ®z/nz A 2 A.

But the remark after the proof of theorem 7 implies that this isomorphism preserves the A-
module structure. El

Proposition 7 One can assign to every separated smooth morphism : Y X of pure dimen-
sion d a trace mapping

Tr : R 2 do!(A(d)y) - A x.
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These mappings are compatible with base change and with composition. If d = 0, then Tr, is the
trace mapping of proposition 5; if d = 1 and X is the spectrum of k, with k algebraically closed,
then Try is the trace mapping of proposition 6. These properties determine the trace mappings
uniquely.

Furthermore, if the fibres of c are nonempty and connected, then Try is an isomorphism.

Proof: The proof is a formal argument, starting from the case of curves. The details can be
found in the proof of theorem 7.2.1 of [B1]. 

Let G', G' E Db(Y, A); a general nonsense argument provides us with a canonical morphism
in D+(X, A)

R4O.(om(G', G')) -- 'tom(RO!G', RC!G" ).

Applying this morphism to complexes of the form S*F'(d)[2d] and using the trace mapping
RO!(O*F'(d)[2d]) -- F' we obtain for any G' E Db(Y, A) and F E Db(X, A) a duality morphism

Rc('Hom(G', OF(d)[2d])) -i om(2( R!G'. F').

Theorem 10 The duality morphism is an isomorphism.

Proof: The proof is given in [B1], theorem 7.3.1, with A = Z/nZ. The reader can verify that
the same proof goes through with no change for a general ring A such that nA = 0. 0

4.4 -adic cohomology

To conclude, we want to set up an -adic formalism. To this purpose we will use the method
of Ekedahl [Ek], appropriately downsized to fit our needs. The relevant proofs will be omitted,
save for giving references to the paper [Ek].

Fix a prime e different from char(k). We will need a coefficient ring somewhat larger than
the usual Qe; denote by Be the extension of Qe obtained by adding all the pn-th roots of 1, for
all integers n. Let O be the ring of integers of Be and let 7n be its maximal ideal. Since the field
Be is an unramified extension of Q, it's not hard to see that 0 is a discrete valuation ring, with
residue field a certain infinite algebraic extension of Fe.

Fix a k-analytic space X and let:
- S = Sx be the topos of etale sheaves of sets on X;
- (Sx,O) (resp. (Sx,L b)) be the category of O-modules objects (resp. of abelian groups

objects) in S;
- D(S,2b) (resp. D+(S,Zb), D-(S,tb)) be the derived category of complexes (resp. bounded

from below, bounded from above) of objects of (Sx, 2tb); same for D(S, 0) and its variants;
- SN = SX be the topos of inverse systems {Mn, n > 0, ir,: Aln+l Mn} of elements of

S, and we define (SN, lb), D(SN, tlb), D+(SN, lb), D-(SN, b) in the obvious way.
Clearly (Sx,O) becomes a ringed topos if we fix the ring object of S determined by the

constant sheaf of sets with stalk O at every point.
We have a natural ring object in SN, namely the system of constant sheaves O, = O/m n, n >

0 with the natural projection maps pr : On+1 - O,. With this choice, (S N , (On, n > 0, pr))
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becomes a ringed topos, and we have derived categories D(SN, b), D(SN,O.) with obvious
notation.

There is a morphism of ringed topoi r SN -- S defined as follows:

7r=M. = lim{M.}, (r'*I)n = M'I Go O,.

Definition 12 i) An element M. of (SN, 2b) is said to be essentially zero if there is a covering
{Ui})il of X such that the following condition is satisfied. For the restriction of M. to each Ui
there is for all n an m > n such that r m'-n : Mm -- Mn is zero, where rm-n is the composition
of the appropriate ri 's.

ii) An element M' of D(SN,Qb) will be said to be essentially zero if Hi(M' ) is essentially
zero for all i.

iii) The complex M' is said to be essentially bounded (resp. from below, from above) if
Hm (M' ) is essentially zero for all m with Imi >> o (resp. -m >> 0, m >> 0).

At this point Ekedahl introduces the following general notion. An O-ringed topos T is said
to satisfy the condition A if there is a class of generators T e'en of T and an integer N such that
for all M E T en and all Ol-module objects N in T, Hi(Ai, N) = 0 if i > N. Recall that in any
topos, Hi(M, N) is defined as Ext'(M, N) for any two abelian group objects M, N of the topos.

Lemma 4 The topos (Sx, 0) satisfies condition A.

Proof: As generators we can take the family of all sheaves fZLT. where Zu is the constant sheaf
on U, and f : U -, X ranges through all elements of Et(X). Then the lemma follows from
theorem 4.2.6 of [B1]. 0

Lemma 5 i) The map r. : SN S has finite cohomological dimension and therefore extends
to a morphism Rr. : D(SN, O.) - D(S, O0).

ii) If M' E D(SN, 0.) is essentially zero, then Rar.M' = 0.
iii) If M' E D(SN, O.) is essentially bounded in some direction then Rr.M' is bounded in

the same direction.

Proof: Taking into account lemma 4, this is lemma 1.3 of [Ek]. O

We say that an element M' in D(SN, Mib) is essentially constant if there exists a complex N'

in (SN, 2(b), a complex P in (S, U2b) and morphisms of complexes Al N r*P such that the
mapping cones of both f and g are essentially zero.

Definition 13 Let M', N' E D(SN,O.).
L

i) M' is said to be an O-complex if r*(O ) o. M' is essentially constant;
L

ii) M' is said to be negligible if 7r*(Ol) o. M' is essentially zero;
iii) a morphism M' - N' is said to be essentially an isomorphism if it has a negligible

mapping cone.
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Next, one notes that the negligible complexes form a thick subcategory of D(SN, 0.). This
allows to make the following definition.

Definition 14 The derived category of complexes O-adic modules is the category D(X, 0) whose
objects are O-complexes and morphisms are the morphisms Al' - N' with essential isomor-
phisms inverted. If * = b, + or - we denote by D*(X, 0) the essential image of the O-complexes
which are essentially bounded (resp. from below, from above).

Proposition 8 i) The functor

L
on, o R.(-): D(S, O.) D(X, On)

L
factors to give a functor D(X, O) -- D(X, O,) which we will denote 0,n o (-).

L
ii) The functor 0,o o (-): D(X,O) -- D(X, On) is conservative, i.e.:

L
M'= 0 O (A) = o

for all M' E D(X, 0).

Proof: Part (i) is lemma 2.6 of [Ek] and part (ii) is proposition 2.7 also from [Ek]. 0

We show now how to deal with tensor products, Hom functors, direct and inverse images in
our category D(X, O).

Definition 15 i) Let M' E D-(SN, O.) and N' E D(SN, O.) (or viceversa). Put

L L
M' Go N' = L'r*(Rr.M' Go Rr.N').

ii) Let M' E D(SN,O.) and N' E D+(SN,O.). Put

RHomo(M', N') = Lr*RHomo(Rr.M'. Rr*N').

L
Clearly (-) Oo (-) and RHomo(-, -) factor to give bifunctors on D(X, O).

Proposition 9 i) Let M' E D-(SN,O.) and N' E D(SN,O.) (or viceversa). The natural mor-
phism

L L L L L
On 0o (M' go N') - (On Go M') ®o (n 0 N')

is an isomorphism.
ii) Let M' E D(SN,O.) and N' E D+(SN,O.). The natural morphism

L L L
On ®o (RHomo(M', N')) -- RHomo,((On ®o M'), (O, Go N'))

is an isomorphism.
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Proof: This is proposition 4.2 of [Ek]. O

Proposition 10 i) Let M' E D(X, 0), N' E D+(X, 0) and denote by 0 the image of the inverse
system 0. in D(X, O). Then

HomD(x,o)(O, RHomo(M', N') = Homo(X,o)(M', N').

ii) Let M' E D(X,O), N' E D-(X,O) and P' E D+(X,O). Then

L
RHomo(M' o N, P) = RHomo(M', RHomo(N, P)).

L
In particular (-) 0o N and RHomo(N, -) are adjoint functors on D(X, O).

Proof: This is proposition 4.4 of [Ek]. O

Suppose Y is another k-analytic space, and let f: X - ' Y be a morphism. There is an
induced map of topoi f: Sx - Sy, from which we derive morphisms of triangulated categories
Rf : D+(Sx,O.) - D(SN,O.) and Lf* D-(SN,O.) D(SN,O.). It is clear that Rf.
and Lf* preserve -complexes as well as essential isomorphisins and therefore induce maps
Rf*D(X, O) D(Y, O0) and Lf* : D(Y, O) - D(X, 0).

The following proposition is not explicitly stated in [Ek], but it is used implicitly in that
paper. This is my justification for including it here, even though I cannot confidently point to
an adequate reference.

Proposition 11 i) Let M' E D+(SX,O.). Then the natural morphism

L L
,n o0 (Rf*M') - Rf.(O, 00o MAl')

is an isomorphism.
ii) Let N' E D-(SyN, 0.). Then the natural morphism

L L
On 0o (Lf*N' ) -- Lf*(,, o N')

is an isomorphism. O

This completes the set up of our -adic theory. Without giving details, we mention that all
the main results (proper base change, Poincare duality, and so on), stated for the sheaves of
A-modules, translate into corresponding theorems in D(X. 9). For the proof one uses repeatedly
the conservativeness property of proposition 8(ii).

Finally, we get the derived category D(X, Bt) of Be-adic sheaves by inverting the morphisms
in D(X, O) whose cone is a torsion complex.

In the same spirit, there should be a theory of perverse sheaves, with the usual properties.
It seems that the main obstacle in completing this program is the definition of a good category
of constructible sheaves, including the related finiteness theorems.
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Let A be a torsion ring. Tentatively, a constructible sheaf of A-modules on the analytic
variety X, should be a sheaf Y for which there exists a filtration X0 C X1 C ... C Xn = X of X
by closed analytic subvarieties such that the restriction of F to each open stratum Xi+l\Xi, is
locally constant and of finite rank.

See [BGR] section 9.5, for the definition of (closed) analytic subvariety, where it is shown
that there is a bijection between coherent analytic sheaves of ideals and analytic subvarieties.

We record here the precise statement of the conjecture:

Conjecture 1 Berkovich's etale cohomology extends to a theory of the derived category of con-
structible Be-adic sheaves by the method of Ekedahl, in such a way that theorem 6.3 of [Ek] holds
for this derived category, i.e. there is a formalism of the six operations, satisfying Poincare'-
Verdier duality.

28

___



5 The Lubin-Tate torsor

In this chapter we introduce and study the sheaf that plays the role covered by the Lang torsor
in positive characteristic. I believe the name "Lubin-Tate torsor" is appropriate enough for this
object. Let F be a fixed Lubin-Tate group.

5.1 Construction of the torsor
Lemma 6 The logarithm AF: A(O, 1) -- IA is an etale covering of A..

Proof: Let A = Ur>oDr be the covering of the affine line by affinoid domains described in
section 3. Denote by Er the connected component of A-l(Dr) containing 0.

From remark (a) following theorem 3 we get an equality of formal power series: Ao[r]f =
An · A. By analytic continuation, this formal identity gives rise to a commutative diagram of

analytic maps:

A(O, 1) ['], . A(O, 1) - (OP, o)

n

*Al ----- - Ga (PO). -

Looking at the diagram above, we see that the restriction of A to Er is a finite map, hence Er is
an affinoid domain in A(0, 1) for all r and A(0, 1) = Ur>oEr. Note that for r < s, Es is a closed
neighborhood of Er. It follows easily that A is etale and surjective if and only if the induced
maps Er " Dr are etale and surjective for all r.

Given r > 0, choose an integer n large enough such that [7r]r(Er) C A(0, po). By theorem
3, the power series eF converges on A(0, po). This means that eF defines a morphism on the
quasiaffinoid space A(0, P0), and therefore the restriction of A to A(0, po) is an isomorphism
of quasiffinoid spaces. It follows that A : E -. Dr is an etale covering if and only if [r]nr
E - 7rnr Dr is an etale covering. Let g E F, be any other power series; the homomorphism
[1]sg A(0, 1) . A(0, 1) of quasiaffinoid spaces has an inverse [1]g,f and therefore it is an
isomorphism. [1]g,f. From theorem l.(b) we see that [1]f,go[7r]fo[1]g,f = [r]g. Therefore it
suffices to prove that for some g E F the morphism [7r]g is an etale covering. Then we select
g(Z) = rZ + Zq. Now consider the map of schemes -k A. defined by the polynomial g(Z):
this map ramifies over a finite set of points xl,..., x, E A(k) = k, and using the jacobian
criterion one checks easily that Izil > 1 for all i. On the complement of xl,..., x,, g restricts
to an etale covering U - A - ({x,...,,n}. By proposition .(ii), it follows that the map
gan Uan . Alan _ {x,...,,n} is also etale, and by theorem 6.(v), it is surjective. But
clearly [r]g is obtained from gan by base change to LA(0, 1) Al an, and the lemma follows from
proposition l.(i). O

Remark: the proof of the lemma shows in particular that the restriction of the analytic
covering A : A(0, 1) - Ak to any bounded disc A(0,p) A- factors as a trivial (split) covering
followed by an algebraic covering of finite degree.

For any positive integer n, let kn = k(Gn), and let k,, = Un>okn.
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It has already been remarked that Goo = Ker(A: A(0, 1)- Al). In particular. this kernel is
contained in k.

We define a sheaf of sets (in the rigid etale topology) over rk as follows: for any U etale
over Al, let (U) be the set of analytic maps f : U - A(0, 1) such that the following diagram
commutes:

U f * A(0,1)

1A
Ak-

For any given extension field E of k, there is a base change map p : A - and we can
form the pull back OE = p*4b. For our purposes, the really useful sheaf is Eke; for brevity we
will denote it simply by 40,.

Lemma 7 The sheaf 0bo is a torsor for the group G.

Proof: Of course the group G,, acts on the local sections of d,, by translation and this action
is free and transitive. From lemma 6 we see that the sheaf $b trivializes over the etale covering
A(O, 1)k. 

Definition 16 The sheaf q0O is called the Lubin-Tate torsor.

Let X : -Go BeX be a character of Go. The following push out diagram:

0 o Goo ---- --- Ga 

o a B x ex o Ga 0 °

defines a torsor for the group BeX, or equivalently, a locally free rank 1 Be-adic sheaf over Ga that
we denote also by £x. In concrete terms Lx is a projective system {(n)}neN of O/mn-modules.
For this kind of generalities, [Ek] is a good reference.

A note about notation: for a map f: X Ga sometime we will write L(f) in place of f*£.
We list here some elementary properties of C,, that follow from the general yoga of torsors.

Let m: G6 x Ga - Ga be the addition map, and prl, pr 2 : Ga x Ga Ga the projection maps
on the first and second factor. Then C, comes with:

LT1) a rigidification at the origin:

£Cx,{O} " Bt,{o}

LT2) a trivialization:

m'dx ® prl--' 1 ® pr2L' Be,,aXG,X X _ t,6,XX
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compatible with the rigidification at the origin {O, 0} induced by LT1.
LT3) In particular:

IC-1 L-
X_ x

We will denote by P(X) the supremum of all real numbers p such that £x trivializes on Ga(p).
Notice that p(X) > Po and we have equality if and only if : is injective. Moreover P() = oc if
and only if X is trivial.

The proof of the following proposition is taken from [SGA4 ], Sommes trig. We reproduce
it here to be on the safe side.

Proposition 12 Let X : G_, - BeX be a non-trivial character. Then:

H(Ga(p)j, x) = 0

for allp > p(X).

Proof: Let AP be the connected component of A-l(Ga(p)) containing 0. For a k-rational point
x of AP, let t be the translation t(g) = g[+f]x on AP, where [+f] is Lubin-Tate group law.
Also, let t be the translation by y E Ga, with respect to usual addition law on Ga. The formula
Aot. = t( )oA states that the pair (tx,tk(x)) is an automorphism of the diagram p -, Ga(p).

Let +(x) be the induced automorphism of (G,(p),£C). For x E Goo this automorphism gives
the identity on Ga(p), and multiplication by X(x) - ' on x.

Let 'lH(X) be the automorphism of H2(Ga(p), 4C) induced by ¥,(x). Then 4fH(x) is multi-
plication by X(x)- 1. On the other hand, the following "homotopy" lemma shows that ,'H(x) =
1OIH(O). Since by hypothesis p > P(X), we can find x E G(p) n G,, such that y(x) J 1 and we
see that multiplication by (1 - x(x) - l) ; 0 is the zero map, therefore the claim follows.

Lemma 8 ("Homotopy" lemma) Let X and Y be two rigid analytic varieties over k, with Y
connected. Let G be a sheaf on X and (', E) a family of endomorphisms of (X. G) parametrized
by Y, i.e.:

Vb: Y x X , Y x X is a Y-imorphism and
E : 4*pr6 G pr2 a morphismn of sheaves.

Assume 4' is proper. For y E Y(k), let OPH(y)* the endo-morphism of H(X, ) induced by
,y X X and Ey ·: 5G g G. Then 4OH(Y)* is independent of y.

Proof: In fact, RPprl!pr*G is the constant sheaf on Y with stalk HP(X, ), and ,g'(y)* is the
fiber at y of the endomorphism:

RPprl!pr2 .* RPprl!,*pr2 e RPprl!prg.

To apply the homotopy lemma to the present situation, we take /': Ap x Ga(p) i Ap X Ga(p)
defined by +(x, y) = (x, y + (x)). O
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5.2 The character induced by Galois action

We conclude this chapter with some observations about the Galois action on L.
Let ~ be the pull back of boO to A; by transport of structure we get a natural action of

Gal(k/k.) on , covering the action on A. This action is inherited by L. In particular, if p
is a k,,-rational point of fA, then the stalk Lx,p becomes a one-dimensional representation of

Gal(k/k ).
For any n < oo, let kab denote the maximal abelian extension of kn. It is clear that the

action on Cxp factors through Gal(kab/k,).
I don't know the complete structure of Gal(kab/km); in particular I don't know whether

there is a canonical generator that takes the place of the Frobenius element as in the finite field
case. Instead we make the following:

Definition 17 Let kUr be the maximal unramified extension of k. Clearly ku" C k and kur n
ko = k. We say that an element a E Gal(k6/koo) is a Frobenius element if the image of a in
Gal(kur /k) is the canonical Frobenius generator.

Our aim is to give an explicit formula for the trace Tr(a, C,,p) of the endomorphism induced
by the Frobenius element a on the stalk of C, at the point p. M'e start with two elementary
lemmas:

Lemma 9 The map p - Tr(a, £,,p) is a continuous gro'up homomorphism Tr : koo - Bex.

Proof: It follows easily from LT1 and LT2 that the mnap Tr, is a group homomorphism.
Moreover, it follows from lemma 3 that the restriction of ,, to A(O,po) is the trivial G,-
torsor; therefore the restriction of £x to the same disc is a trivial line bundle, and we conclude
that the kernel of Tr, contains this entire disc, i.e. the map is continuous. O

Lemma 10 kb = Un<ookb.

Proof: It is clear that kab C kb. On the other hand, let x E kab and let x1 , ..., x be the orbit of
x for the action of the full Galois group Gal(k/k); take n big enough such that [kn(xl, ... , )
kn] = [ko(Xl,...,x ) : k]. Then there is a natural isomorphism Gal(kn(xl,...,xm)/kn) 
Gal(ko(xl,...,x,)/koo), and this last group is abelian, being a quotient of Gal(ka/k,). O

It follows from the lemma that the choice of a Frobenius element a in Gal(k /koo) is equiv-
alent to the choice of a sequence ao,al,... of liftings of Frobenius an E Gal(kab/kn) such that
the restriction of a,+l to kab acts as an, and such that ao acts trivially on km. Let /3n E kn such
that the Artin symbol (n, kb/kn) acts on kab as a,. Then by local class field theory, it follows

Nmkn,,+/kn(Pn+l) = in Also, by Lubin-Tate theory it follows 30o = ir.
Viceversa, the choice of a compatible system of elements 3,, E kn as before is equivalent to

the choice of a Frobenius element a.
For the next result we need to fix some notation. First of all we select for each positive

integer n:
1) a generator v, of Gn as an Ok-module, such that [r"'-n]f(vn) = vn;
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2) an element /3 E k such that the sequence of these elements satisfies the compatibility
condition above, and corresponds to the choice of a Frobenius element aO;

3) a power series b,(z) = z r,(z), where r(z) E Ok[[z]] satisfies r(O) 0 and such that
b,(v.) = pn.

Finally, let T, be the trace map from k, to k.

Theorem 11 Let p be a point in Al(koo) = koo, and choose an integer n such that:
(a) I np < o;
(b) [k(p): k] < n.
Let m be any integer > 2n + 1. Then, with reference to the notation above:

Tr(ap, £,p) = x ([r1Tm ( P dm )] n)

Proof: First of all, notice that the group Gal(k/koo) acts also on A(0, 1)T in such a way that
the logarithm becomes an equivariant morphism. Let q E A-l(p). Let & be any lifting of a to
Gal(k/k..); then essentially by definition we have:

Tr(a,, Ex,p) = X(&(q)[-f]q) (2)

(where [-]f denotes subtraction in the formal group). Obviously this formula is independent of
the choices involved. Take n such that (a) is satisfied; by inspecting the proof of lemma 6 and
the remark that follows it, we obtain:

)-'(p) = [rn]l'(e(7rnp))[+f]G,,.

In particular we can take q E []l'(e(7r'p)) in equation (2). We recall now the definition of
the generalized Kummer pairing, introduced by Frolich in [Fr]: let F(k,) be the subgroup of
A(0, 1)(koo) consisting of the elements rational over kn; then there is a bilinear map:

(, )r: F(k ) x k - Gn

defined as follows. If E k x , let be the element of the Gal(kb/kn) which is attached to
/3 by the Artin symbol. If a F(kn), choose y in A(0, l1)(k) such that [rn]f(7 ) = a. Then
(a,/)F = r0(7)[-f]^. Clearly, if we take n such that both (a) and (b) are satisfied, the right
side in formula (2) translates as X((e(rnp), ,n)).

Then the formula of the theorem follows immediately from theorem 1 of [Wi]. O

Remark: It would be interesting to determine the maximal pro-e-quotient of Gal(k/koo).
In any case, recall that the maximal pro-l-quotient of Cal(k/k) sits in a short exact sequence:

0 - Z- Ge - Ze(l) - 0.

Let H be the cokernel of the natural map Gal(k/k,,) - Ga,. We obtain a surjective map
Ok Gal(k/k) -+ H. But the group Ok decomposes as I t q-1 x (1 + rO), that is a product of
a pro-p-group and a finite group. Therefore the image of this map is a finite group, and thus H
itself is finite.

We could interpret this as saying that no essential information on the -part of the Galois
action is lost, in passing from k to the infinite extension 1,,.
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6 Fourier Transform

We are now ready to define the Fourier transform. With the set-up of the previous chapters, we
only have to mimic the construction of the Deligne-Fourier transform. The proofs of the main
properties reduce to routine verifications, carried out by applying projection formulas, proper
base change theorem and Poincar6 duality, exactly as in Launion's paper.

6.1 Definition and main properties

We introduce the following notation:
- V _ Ak is a linear variety of dimension n over k,
- V' is the dual of V,
- a: {O}) V' is the imbedding of the origin,
- 7r: V -, Speck is the structural map of V,
- s: V x V - V is the addition law in the vector space V,
- (,) : V Xk V' -, Ga is the canonical dual pairing.

Fix a character x : G,: , Bx. We define an operator:

f'y: Db(V, Be) --- Db('', Bc)

by the formula:
x(K') = Rpr2 !(C((,)) 0 prK' ))[n]

where pr1 : V x V' -- V and pr2 : V x V' , V' are the projections and K' E Db(V, Be).

Definition 18 'x is called the Fourier Transform associated to the character y.

Next we would like to show that F shares some interesting properties with the Fourier
transform defined over finite fields.

Involutivity is easily established: denote by V" the double dual of V. The previous construc-
tion applies to V' and its dual V" to give a Fourier transform F'. We consider the composition:

Db(V, Be) Db(V', Be) - Db(l'", Be).

Denote by a: V -~ V" the isomorphism defined by a(v) = -(v. ).

Theorem 12 There is a functorial isomorphism:

F'oF(K') - a.(K')(-n)

for K' E Db(V, B ) (The brackets denoting Tate twist, as usual).

Proof: (Cp. Lau], theorem (1.2.2.1)). We fix some notation: let a : V x V' x V" V' x V"
be defined as a(v, v', v") = (v', v" - a(v)) and 3: V x V" · V" as /3(v, v") = v" - a(v).
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Consider the commutative diagram:

V x V"

pr,, pr"

x V"
a

pr

prx V'

V"

where the two squares are fiber diagrams.
It follows easily from property LT2 that

prl 2£C((, ) ) pr23C((, )) = C((, )).

Then we have:

_ '(Rpr(I2((,)) 0 pr*K')[n])

- Rpr''(L((,)) 0 pr'*(Rp$(£((,)) 0 pr*K')))[27n]
" Rpr"'(£((,)) 0 Rpr23!pr 2( ((,)) 0 pr*K '))[2n]
" Rpr'(L((,)) 0 Rpr23!(prl2pr*K'))[2n]

(proper base change)

Rpr''(IC((,)) 0 ((,)) 0 Rpr23!(a*1((,)) pr 3L((, ))- 1 0 pr*2pr*K'))[2n]
(by formula (3))

_ Rpr~'((, )) 0 £((, ))-' Rpr23!(a'L((,)) 0 pr12pr*K'))[2n] (proj. formula)
- Rpr"'Rpr23!(a*C((,)) ) pr 2pr*K')
- Rpr'IRprl3!(a*C((,)) 0 pr 3pr*K') (functoriality)
_ Rpr'(pr*K' Rprl3 !a*C((, ))) (projection formula)
_ Rpr~'(pr*K P*pr£C((, ))). (proper base change)

The proof is concluded with an application of the lemma that follows. 0

Lemma 11 For any L' E Db(Speck, Be) we have:

(a"[n]) " a.L'(-n).
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Proof: By the projection formula:

(r*L[n]) = L' ® Rpr'C'((,))[2n].

On the other hand, using proper base change, property LT1 and proposition 12, we get:

a*Rpr'C'((,)) = R!Be = Be(-n)[-2n]
RprC'((,))iv-{o = 0.

Corollary 1 Y is an equivalence of triangulated categories of Db(V,Be) onto Db(V', Be), with
inverse a*F'(-)(n).

O

In the case of the Fourier transform over a finite field, it is known moreover that F preserves
the t-structure coming from middle perversity. Even in absence of a theory of perverse sheaves
for analytic varieties, we can formulate a suitable conjecture:

Conjecture 2 There is an isomorphism of functors:

j(-) _ Rpr2*(£((,)) )r;(- ))
In the next few theorems we derive the other main formal properties of the Fourier transform.

The proofs have the same flavour as the previous proof of involutivity, therefore we leave the
details to the reader.

Theorem 13 Let V1 - V2 a linear morphism of vector spaces of dimension rl and r2 respec-
tively, and let f' : V2' V' be the transpose of f. Then there is a canonical isomorphism

.F2(Rf!Ki) f'*l(tKi)[r2 - rIl]
for all Kh'i E Db(V, B).

Proof: (Cp. [Lau], theorem (1.2.2.4)). Since f and f' are adjoint maps, we have

(f x 1v'2)'C((,)2) = ( 1 X f' )' ((,)I)-

Then the proof proceeds by repeated application of projection formulas and proper base change
by chasing the following commutative diagram with cartesian squares

V1 X V2

pr,

V - pr - V ,xV:

V2 : Pr2 V2 X

fxl

'

Ixf' I,
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Corollary 2 There is a canonical isomorphism

R7r'F(K') a (-)[-]

for all K' E Db(, Be).

Proof: We apply theorem 13 to the case V1 = V', V2 = Speck, f = r' and K i = F(K') and
then we use theorem 12. O

Definition 19 The convolution product on V is the operation

*: Db(V, Be) x Db(V, B) - Db(V, B, )

defined as
Ki * K = Rs(K i K'.2).

Proposition 13 There is a canonical isomorphism

;F(K * Ki) - .F(IKi) : F( I' 2)[-r]

for all K 1, K2 E Db(V, Be).

Proof: (Cp. [Lau], theorem (1.2.2.7)). If we denote again by F the Fourier transform for the
vector space V x V, then by Kunneth formula we have

F(K1 K2 ) = (Ki) s F(IA).

Then it suffices to apply theorem 13 to the case Vl = x V, V2 = V, f = s with K1 replaced
by k l Z K 2 -. 

Proposition 14 There is a canonical "Plancherel" isomorphism

Rir'(JF(KI) 0 F(K])) 2 Rr,(Ki 3 [-1]*Ii)(-r)

for all K1,IK E Db(V,Be).

Proof: (Cp. [Lau], theorem (1.2.2.8)). One applies in sequence proposition 13, corollary 2, and
proper base change for the cartesian square diagram

V v-l) x 

Speck a - E.
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6.2 Computation of some Fourier transforms

The following examples of calculation of Fourier trasforms are taken from [Lau], with the ex-
ception of proposition 18, that has no analogue in positive characteristic.

Proposition 15 Let W ,-+ V be a linear subspace of dimension s. Denote by W' L i' V' the
orthogonal of W in V'. Then there is a canonical isomorphism

.F(i*Be,F[s]) iBeF(-s)[' - s].

Proof: It follows from theorem 13 and lemma 11. 0

Proposition 16 Let v E V(k). Denote by r,, : V - V the translation by v. Then there is a
canonical isomorphism

F(T)'.K') X y(K) £((v, ))
for all K' E Db(V,Be).

Proof: We have rK' = (v.Bt) * K' and one applies proposition 13. 0

Proposition 17 Let a: V - V' be a symmetric isonlorphisnl. Denote by q V Ga and
q' : V' - Ga the quadratic forms associated to a (i.e. q(v) = (e, a(v)) and q'(v') = (a-l(v'), v')).
Let [2]: E' - V' be multiplication by 2 on the vector space V'. Then there is a canonical
isomorphism

[2]*Y(£(q)) C(-q') r'*Rr!L(q)[ r]-].

Proof: It follows from the formula

q(v) + (v, 2v') = q(v + al(v')) - q'( v').

For the next result, we suppose V has dimension one for simplicity, and we identify both
V and V' with G,, in such a way that (,) becomes multiplication in Ga. For any positive real
number p, let jp (resp. i) be the imbedding of Ga(p) (resp. D ) in Ga.

Proposition 18 Fix a real number a > 0 and let P such that a13 = P(X). Then
i) (ia.*B,Do) = j!B,Go(p)[1],
ii) (ja!BC,G,(a)) = i,1BtD(-1)[- 1]

Proof: By theorem 12 we see that (i) and (ii) are equivalent. We will prove (ii). Set T =
Ga(a) x Dp. Note that the condition a/3 = P(X) implies that C((,)) trivializes on T. It follows
that the restriction of '(j~!Bt,6(a)) to Da coincides with Be[-1].Therefore it suffices to show
that (j,!Bt,G(a) ) vanishes outside D:. To this purpose we can check on the stalks, and then
the claim follows from proposition 12. 0
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Your soul is waiting for you!
-Swami Niranjan

7 Open Questions

Beside the two conjectures stated in the previous chapters, several questions are naturally
prompted by our work. Some of them must still remain vague for lack of an adequate lan-
guage, but some others seem to be already accessible to the present means, and hopefully they
will provide research material for the near future.

Collected in this final chapter are some of these open questions.

1.Analytic Class Field Theory. As it has been seen in chapter 5, the closed one-dimensional
disc D of radius 1 possesses many connected analytic etale coverings. By mimicking algebraic
geometry, we can easily define the fundamental group of an analytic variety, and therefore the
observation above can be paraphrased by saying that the funldamental group of D is non-trivial.

Suppose X = X "n arises by "analytification" of the schemle X. Then both the fundamental
groups of X and X are defined, and the first classifies analytic coverings of X, while the second
classifies algebraic coverings of X. It should be noticed that these two groups do not coincide.
Such a behaviour is already manifest in the case of the affine line Al: this is simply connected
as an algebraic variety, but its fundamental group as an aalytic variety is very large.

Given any analytic variety X we will denote 7ran'(X) this new invariant, for which we propose
the name "analytic fundamental group". Of course it would be interesting to compute 7ran(X),
at least for some simple varieties. In first approximation we could try to determine its abelian-
ization. In analogy with the case of algebraic geometry, this sould be called the problem of
Analytic Class Field Theory. One would expect that there should be an adelic description of
7ra(X), on the model of Kato-Saito theory. Already the case of curves presents interesting as-

pects. Kato and Saito produce a map from a certain adelic group to the abelianized fundamental
group of any non-singular algebraic curve. This adelic group is built as a restricted product of
local factors associated via K-theory to the local rings of the closed points. What are the local
factors for analytic class field theory?

As far as I know, this is an almost totally unexplored territory, but here are the basic known
facts.

a) Analytic etale cohomology computes the abelianization of 17r"(X): we have the formula

anab () = Hom(H'(X, Q/Z). Q/Z).

b) For any analytic variety X defined over the field k it is possible to find a formal scheme
X locally of finite type over the ring of integers of k, such that the "generic fibre" of X is X
and the special fibre is a scheme of finite type XA' over the residue field of k (see [Bo-Lii]). If X
is proper, the fundamental group of X is isomorphic to the fundamental group of X,, and there
is a surjective group homomorphism

an(X) - 7 ( Xl )-
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For X = D the closed disc, (b) gives a surjection

Iran(D) 7rl(A4)

where Fq is the residue field of k. The kernel of this map should be considered as some sort
of "analytic inertia", and it is this part of rn(D) to be responsible for the covering maps
[i]f: D -- D that arise in the thesis.

2.Harmonic Analysis. Let X be a scheme defined over a finite field Fq and let K' be
any complex of -adic sheaves on X. Grothendieck showed how to associate to K' a function
f(K') : X(Fq) - Qe. By means of this correspondence, common operations on functions can be
given cohomological interpretations. Here is a sample:

f(K' E L') = f(K') + f(L')
L

f(K ( L' )= f(K') f(L' )
f(RO!(Kt ))(Y) = CErE-l(y)n (Fq) f(I')(x)

for any map of schemes : X -, Y and any y E Y(Fq).
To define f(K')(x), we consider the action of the local Frobelius generator Frx on the stalks

of the homology of the complex Hi(K'). Then we let

f(K')(x) = (-1)iTrace(Fr.. Hi( h)x).

The first two formulas above follow immediately, and the third is a reformulation of the
Grothendieck-Nielsen fixed point formula for the action of Frobenius.

Given any function f on F = An(Fq) with values in Qe, we denote by .(f) the discrete
Fourier transform of f, relative to the character X : Fq - Q. Recall that this is the function

Y (f): Fn - Qe defined by the formula

Y(f)() = x((x, y)) J-'(.)
2EFn

where is the (,) is the scalar product in F.
On the other hand, let .x(K') be the Deligne-Fourier transform of the complex K' of e-adic

sheaves on An(Fq). Then it is not hard to check the equality

f(-Fx(K')) = Yx(f(K)).

Notice in particular that if £: is the Lang torsor associated to the character y, then

f(£, ) = X. (4)

We could try to repeat these constructions in the p-adic case. In this case our Fourier
transform should correspond to the Fourier transform defined on the space of L2-functions on
a vector space V over k. Recall that V is a locally compact topological group, therefore it is
endowed with an invariant measure, unique up to multiplication by a constant. The L2-Fourier
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transform is determined by assigning a character k - C, ill the same way as our e-adic Fourier
transform is determined by a character Goo - BeX.

Then the calculations of section 5.2 can be interpreted as establishing the analogue of equa-
tion 4. But the analogy falls short of the expectations: to complete the dictionary we should be
able to express integration of L2-functions associated to complexes, in terms of cohomological
operations on the complexes themselves. In the finite field case, this is achieved by means of the
Grothendieck-Nielsen formula, but in the -adic case no analogue of this formula is known.

In fact, in my opinion it is doubtful whether the formalism of etale sheaves is suited for such
a purpose. Possibly some new fundational ideas will be required to clarify the situation.

But perhaps a first step could be already at the reach of our means. In Deligne's words, 'where
a Fourier transform is, there should be an action of the metaplectic group'. The metaplectic
representation is an action of a double covering of SL(2, k) on the space of L2-functions over
Al, defined in vast generality by Weil for any locally compact Hausdorff topological field k. In a
letter to Kazhdan (see [Del], Deligne shows how to construct a complex of constructible -adic
complexes K' on the variety WFq = SL(2,Fq) x Al x Al, that works as the cohomological
counterpart of the Weil representation for finite fields.

BEy this we mean the following. First of all, notice that in the case of a finite field, the
metaplectic representation descends to an action p of the group SL(2, Fq). Let

Pl,P2 : SL(2, Fq) x SL(2, Fq) x A q x lq x Aq - VFq

be the projections defined as

Pl(gl1,g 2,x, 2, 2 3)= (g2, 2, x:3)
P2(gl, g2, X, x 2, x3 ) = (g l, 2 )

and define

P3: SL(2, Fq) x SL(2,Fq) A x/l Aq x A -S'L(2,Fq) SL(2, Fq) x A1q x AFp

by the formula
P3 (g, 92, x1, x2, X3 ) = (gl, 92 1, l, .C3 ).

Lastly, let
t SL(2, F) SL(2, Fq) Al x Al- )VFq

be given by

u(gl, g2 , X, X2) = (9gl 92. 1'2 )

Then we have the equality
Rp3!(p*K 0 p2K') = lA" . (5)

Moreover, for any Fq-rational point g of SL(2, Fq), let ' be the restriction of K' to {g} x Al x
Alq. Then f(K) is the kernel of the operator p(g): L2(A q(Fq))- L2(A1q(Fq)). In particular,

for g = (I 1), the sheaf K} is the pull-backs of the multiplication map

.a L: Al x Al - AlFq q Fq q
In case k is a p-adic field, the Weil representation does not descend any longer to SL(2, k),

however the metaplectic group M is still an algebraic group defined over k, and we can form
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the variety Wk = M x x Ax . Let g E M be a lifting o the element (O E SL(2,k).k k , erIFM e~llt~ u te lmet -1 0
Then it is natural to ask the following
Question: Is it possible to find a complex K' of -adic sheaves on Wk for which the obvious
analogue of equation 5 holds, and such that the restriction of A" to g} x A x Al is the sheaf
m*£x?

3.Subanalytic Stratifications. According to one of our conjectures, we expect that there
should be a theory of perverse sheaves for analytic varieties, and the Fourier transform should
preserve perversity. There is little doubt that for any reasonable definition of perverse sheaf, the
computations of section 6.2 will all serve to corroborate this conjecture. That is, all except for
proposition 18: if we model our notion of perverse sheaf according to the examples of algebraic
geometry or complex analytic geometry, the kind of sheaves considered in proposition 18 simply
have no right of membership in this category.

More precisely: to say what a perverse sheaf is, we must first decide what a constructible
sheaf is, and in turn this amounts to select, among all the possible stratifications of a variety, a
set of 'admissible' ones. In the complex analytic category, a stratification is admissible if all the
strata are analytic subsets; in the algebraic category, we restrict to stratifications by algebraic
subsets.

Now, in defining admissible stratifications for rigid analytic varieties, one is tempted to
follow the model of complex analytic varieties: in this case the strata would have to be analytic
subvarieties. That this choice should give a reasonable theory is the content of Conjecture 1 in
the thesis. Yet, according to this definition, a lot of interesting sheaves would be declared not-
constructible, and among them also some which seem to exhibit a rather 'controlled' behavior.
An example is the extension by zero of a constant sheaf on a bounded disc, that appears in
proposition 18.

Question: Is it possible to find a class of admissible stratifications that is
1) general enough so that most interesting sheaves (like the one in proposition 18) become

constructible, and at the same time
2) sufficiently restrictive so that there is a good theory of' perverse sheaves based on this

class of stratifications?
Here, the closest known analogue seems to be the theory of subanalytic sets. I refer to

[Ka-Sch] for a complete exposition of a theory of perverse sheaves in the real analytic category,
based on the notion of subanalytic stratification. Note that a (closed or open) bounded disc in
the real plane is a subanalytic set.

Perhaps rigid analytic varieties are closer to real analytic Ilmanifolds than to complex varieties.
Notice in particular that if the analogy holds, we would expect two distinct middle perversities,
and the Fourier transform should preserve both of them.
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