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Abstract
We study two distinct aspects of the evolution of cosmological fluctuations. The first
is the generation and evolution of quantum fluctuations in inflation with induced
gravity. The spectrum of density perturbations, SpIp, is estimated in the extended
inflationary model, in which the scalar curvature is coupled to a Brans-Dicke field.
Through a conformal transformation and a redefinition of the Brans-Dicke field, the
action of the theory is cast into a form with no coupling to the scalar curvature and
a canonical kinetic term for the redefined field. Following Kolb, Salopek and Turner,
we calculate 8plp using the transformed action and the standard recipe developed for
conventional inflation. The spectrum behaves as a positive power of the wavelength,
a feature of relevance in building models to account for the observed large scale
structure of the universe.

The second part of the thesis deals with the nonlinear evolution of density per-
turbations during the matter ominated era. In the weakly nonlinear regime we find
that the dominant nonlinear contribution for realistic cosmological spectra is made
by the coupling of long-wave modes and is well estimated by second order perturba-
tion theory. For realistic spectra we find that due to the long-wave mode coupling,
characteristic nonlinear masses are larger at higher redshifts than would be estimated
using a inear extrapolation. For the cold dark matter model at (1 + z = 20, 10, 5 2)
the nonlinear mass is about 180,8,2.5,1.6) times (respectively) larger than a linear
extrapolation would indicate, if the condition rms 8pl = is used to define the
nonlinear scale. At high redshift the Press-Schechter mass distribution significantly
underestimates the abundance of high-mass objects for the cold dark matter model.
Finally, we investigate possible long-wave divergences in the evolution of scale free
spectra, pk) C n' using analytic techniques and N-body simulations. For n < -1,
there are divergent terms in the evolution of the phases of the Fourier space den-
sity field. We give a kinematical interpretation of this divergence and demonstrate
that the self-similar scaling of physically relevant measures of perturbation growth is
preserved.
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Chapter I

Introduction

The first part of this thesis comprising Chapter 2 is a calculation of the density

perturbation spectrum produced in the extended inflationary model. This work was

done in collaboration with Alan Guth. The second part of the thesis comprising

Chapters 3 and 4 is a study of the nonlinear evolution of density perturbations during

the matter dominated era. This work was done in collaboration with Ed Bertschinger.

In this Chapter I shall provide a brief introduction to both parts of the thesis. For

details the reader is referred to the pedagogical review of inflation given by Blau 

Guth 1987), and to Peebles 1980) for a review of theoretical approaches to large

scale structure.

1.1 Fluctuations in Inflation

Inflation is a hypothetical period of rapid expansion of the universe in its very early

history. It can arise quite naturally in Grand Unified Theories of particle physics

at very high temperatures when the energy density of the universe is dominated by

the potential energy density [V(O)] of a scalar field . If O) is constant, then

the expansion scale factor a(t) expands exponentially in time. This is known as de

Sitter spacetime, and it provides the arena for calculating the detailed evolution of

the inflationary universe.

One of the successes of inflationary cosmology is the generation of quantum fluc-
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tuations which give rise to density fluctuations after the universe makes a transition

to the radiation dominated 7 and subsequently, the matter dominated era. The pre-

dicted spectrum of density fluctuations is the scale-invariant spectrum in which the

amplitude at horizon crossing is independent of scale. This spectrum has been popu-

lar in cosmology even before its origin was explained in the context of inflation. It is

in approximate agreement with observations of the distribution of galaxies (after the

spectrum at small scales is modified during the radiation dominated era), and with

the microwave background fluctuations detected by the COBE satellite. In Chapter

2 we present a calculation of the density fluctuation spectrum in a recently proposed

model of inflation known as extended inflation. This model is based on the Brans-

Dicke theory of gravity. In extended inflation the scale factor expands as a power

law in time, hence the background spacetime is no longer de Sitter. We find that

the resulting density perturbation spectrum has slightly more power on large scales

as compared to the scale-invariant spectrum. As a background to the calculation

presented in Chapter 2 the standard calculation of the density fluctuation spectrum

in inflation with de Sitter spacetime is qualitatively described here.

The goal of such a calculation is to compute the density perturbations in the

post-inflationary era induced by the quantum fluctuations in which are generated

during inflation on all scales within the event horizon. They rapidly cross outside the

horizon due to the exponential expansion of space. After inflation when the horizon

grows faster than the scale factor, these fluctuations enter the horizon as density

perturbations. The scale invariance of the spectrum of standard inflation is related to

the time-translation invariance of de Sitter spacetime: the physical size of the event

horizon and the expansion rate are constant in time. Therefore scales which cross

outside the horizon at different times do so under identical conditions, hence they

have equal amplitude. Once outside the horizon causal processes cannot alter their

growth, therefore when they enter the horizon after inflation they still have equal

amplitude. This simple expectation is borne out by detailed calculations which are

briefly outlined below.

The relevant wavelengths cross outside the horizon while the scalar field is still

10



very near the peak of the effective potential at = so during this period we can

take O) V(O = constant. The metric for the background de Sitter spacetime is

then
d52 = _dt2 + a t ) 2 dX-42

with a(t) eHt , where H is a constant proportional to �Vw- With this metric

the classical equations of motion for -,t) can be obtained from its Lagrangian.

Next is written as 0:F, t = Oo(t) + 80(:F, t), where 60(x-, t) represents the quantum

fluctuations in . With this substitution the following equation of motion for 50(x- t)

is obtained:

+ 3H�o = e -2MV28 _ 92V (00) 60. (1.2),902

We proceed by observing that at very early times the term involving O) on the

right-hand side of equation 1.2) is negligible (since the first term on the right-hand

side is exponentially large), so that can be approximated as a free, massless scalar

field in de Sitter spacetime. For such a field the propagator is known, and can be used

to estimate the root mean square fluctuations in , denoted by AO. At late times on

the other hand, the first term on the right-hand side becomes negligible, so 80 obeys

the same equation as the homogeneous part Oo(t). One of the two solutions to this

differential equation is found to damp quickly, so the solution at large t is unique. In

terms of this solution, 80 can be written as 80(4 t) Oo(t) 8r(:F), and to first order

can be expressed as:

OP 0 0 W - �0 M 6T V) - 00 ( 6 M) (1.3)

Hence at late times the effect of the fluctuations is to cause a position dependent time

delay 8r(i) in the evolution of Oo(t).

Thus one obtains the following simple physical picture of the generation of fluc-

tuations. As X-, t) approaches a minimum of O), the energy density in the false

vacuum gets converted into matter and radiation and provides the exit from the infla-

tionary phase. The final expression in equation 1.3) indicates that different regions in
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space follow the same history, but slightly offset in time due to the spatial dependence

of 5r(x-). Hence they exit the inflationary era at ifferent times - this causes their

temperatures at a given time early in the radiation dominated era to differ sghtly,

thus generating fluctuations in the post-inflationary epoch. These are calculated by

introducing a new time variable t' which is the argument of in the final expression

in equation 1.3). The perturbations are then recorded in the redefined metric which

has t' as its time variable. By introducing the energy momentum tensor of a perfect

fluid for the radiation dominated era the spectrum of the energy density perturba-

tions is obtained in terms of 8r. The latter is estimated by matching the early time

expression for AO with the late time approximation of equation 1.3). The result-

ing spectrum depends on H(oc VO)), and therefore the parameters of the particle

physics model, through AO. The result for the rms density contrast smoothed on a

given scale is 6pl - H 2/�' where the right-hand side is evaluated at the time that

scale crossed outside the event horizon during inflation.

1.2 The Growth of Density Fluctuations

If the scale invariant spectrum were to remain unmodified on entering inside the

horizon it would be of the form P(k) o k for all k. This spectrum is scale invariant

in the sense that the amplitude of the rms smoothed density contrast is independent

of scale at the time of horizon crossing. The relation of the power spectrum at a

given time to the spectrum of the rms 8plp smoothed on the comoving length scale

x at horizon crossing can be obtained by noting that WM, e-, a(t)x-1 for the scale

invariant spectrum. Now consider a mode that enters the horizon in the radiation

dominated era at time t when its physical wavelength A = a(t,,)x = t,. Since

a(t) OC t1/2 during the radiation dominated era, a(t,,) x x. Hence it follows that at

the time of horizon crossing, 6plp), - a(t,,) x-' is independent of the length scale x.

The physical processes operating within the horizon in the radiation dominated era

modify the spectrum at high k. Once a fluctuation scale enters the acoustic horizon

during the radiation dominated era, it is acted on by processes that arise due to the

12



coupling of baryons to photons. The baryon-photon fluid oscillates like an acoustic

wave due to radiation pressure, therefore fluctuations in this component cease to grow.

Perturbations in non-relativistic dark matter also remain almost constant until the

beginning of the matter dominated era due to the rapid expansion of the background.

In addition, there are possible damping processes such as the Silk damping of adiabatic

perturbations and neutrino free streaming which erase fluctuations on small scales.

Hence the spectrum at small scales gets frozen or damped, while on scales outside

the acoustic horizon it continues to grow.

Once the universe becomes matter dominated and recombination occurs, pertur-

bations in the matter density grow as they are no longer coupled to photons and are

Jeans unstable. The scales which enter the horizon during this epoch have remained

virtually unaffected by the radiation dominated era. This causes the spectrum to

retain the shape P(k) o k on these large scales, while it approaches the asymp-

totic form P(k) o k-' on very small scales. The k-3 spectrum on small scales

corresponds to density perturbations 6p1p).,,, which have equal amplitude as a func-

tion of scale at a given time. The scale that provides the transition between these

asymptotic features is, to within an order of magnitude, the size of the horizon at

matter-radiation equality, about 10(Qh 2)-l Mpc for a Cold Dark Matter dominated

universe (1 Mpc 3 x 1021 cm; h is the value of the Hubble parameter today in units

of 100 km/s/Mpc). The detailed shape of the resulting post-recombination spectrum

depends on assumptions made about the nature of dark matter. The basic features

are evident in the power spectrum of the standard Cold Dark Matter (CDM) model

(in which the matter density is taken to be dominated by pressureless, collisionless

dark matter) studied in Chapter 3 and shown in Figure 31.

The CDM spectrum can be regarded as a model for the initial spectrum for the

study of large scale structure in the universe. Since the mass density is taken to

be dominated by collisionless dark matter, the dominant force responsible for the

growth of perturbations is gravity. On scales sufficiently smaller than the horizon the

Newtonian Emit of general relativity is an adequate approximation for studying gravi-

tational dynamics. Therefore the growth of density perturbations is well described by

13



Newtonian fluid equations in the expanding coordinates appropriate for cosmology.

At the time of recombination (redshift z 1400) the -fluctuation amplitude on

scales of interest to large scale structure (about 1-100 Mpc) is very small. Therefore

at early times the growth of perturbations is accurately described by the linearized

cosmological fluid equations which show that the fractional density contrast grows as

5plp oc a(t). When the perturbation amplitude grows to be of order unity, nonlinear

effects become significant and cause the perturbation to cease expanding and then to

collapse. Such collapsed structures become the sites for the formation of galaides a

process in which dissipative processes play an important role as well. Cosmological

spectra Eke the CDM spectrum have increasing amounts of power on smaller length

scales. Therefore the first scales to collapse are likely to be the smallest, and there-

after structure formation proceeds hierarchically on larger scales. This picture is a

simplified version of the standard lore in large scale structure studies. It provides the

context in which the work presented in Chapters 3 and 4 can be placed.

14
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Chapter 2

Density Fluctuations in Extended

Inflationi

2.1 Introduction

Extended inflation is a new model of inflation, proposed by La and Steinhardt [1]. Its

key feature is that the effective gravitational constant G varies with time due to the

non-minimal coupling of a scalar field to the scalar curvature R. As first proposed

[1], it was based on the Brans-Dicke 2] theory of gravity, for which the action is given

by 3]
S d4xr- R gAV8;"4o'-q�

g - ) + - + matte (2.1)
167r 167r 1(b

Withl =_ 27rO2/W' the kinetic term for the scalar field can be written in the standard

way:
S d4x,/-- R 1

g _ 02 -9 AV apoaVo +Cmatter (2.2)
8w 2

We shall work with 2.1), the form originally introduced by Brans and Dicke.

The Brans-Dicke field 4P couples to gravity and is responsible for the time variation

of G. The inflaton field a contributes t Cm.tter and provides the nearly constant

vacuum energy density that drives inflation. is a dimensionless parameter of the

IPublished in Phys. Rev. D 45, 426 1992)

16



theory: Brans-Dicke gravity becomes identical to Einstein gravity as approaches

infinity.

In contrast to the exponential expansion of standard inflation, the time variation

of G in extended inflation leads to a power law expansion of the scale factor at).

The Hubble parameter H =_ oi/a is therefore decreasing with time. Once H becomes

sufficiently small, the transition to a radiation-dominated universe can be completed

by bubble nucleation, providing the possibility of a graceful exit to the false vacuum

phase. If H changes too slowly, however, then the problems of the original infla-

tionary scenario remain- a nearly scale-invariant distribution of bubbles is formed,

resulting in large inhomogeneities and distortions of the cosmic background radiation.

These distortions are unacceptably large unless 25 4], whereas time-delay ex-

periments constrain to be 2. 0 6 This problem can be avoided by introducing

potential for the field which has a minimum at = G-1, where GN i the present

value of the gravitational constant. Thus, a scalar field that couples to gravity can

be used to construct an interesting cosmological model. The physics of this coupling

is interesting in any case, because a number of particle theories-superstring, super-

gravity, and Kaluza-Klein theories, for example-involve such a coupling. In general,

terms with higher order couplings of to the scalar curvature are also possible.

Steinhardt and Accetta 7] have studied a generalization of extended inflation, called

hyperextended inflation, in which the consequences of such higher order coupling

terms are explored.

In this paper we compute the density perturbation spectrum 5plp in the context

of La and Steinhardt's original model of extended inflation. Specifically, we compute

the curvature fluctuations that arise from quantum fluctuations in the 4� field. We

work with the simple Brans-Dicke action because it provides tractable equations of

motion.

We begin in Section 22 by obtaining the equations of motion in the Jordan frame,

i.e., the frame defined by the action 2.1). In Section 23, following Holman et al. [8],

we make a conformal transformation that takes the action to the standard Einstein-

Hilbert form. In this conformally rescaled frame, known as the Einstein frame, a

17



rescaled time variable is introduced and the equations of motion axe derived. A

new field IQ, obeying the equations of motion of a minimally coupled scalar field, is

defined in terms of 4�. As pointed out by Kolb, Salopek and Turner 9 (hereafter

called KST), this form of the action allows us to directly apply the results for SpIp

obtained in standard inflation 10-13]. The calculation of SpIp is carried out in

Section2.4. We point out some subtleties in the application of the standard density

perturbation results, but we leave the investigation of these subtleties to a future

paper. We nonetheless argue that the present result should be acceptable as an order-

of-magnitude estimate. In Section 25 our result is compared with that obtained by

naively applying the standard formalism in the Jordan frame. A calculation similar to

ours is carried out in KST, but our result differs from theirs by a factor that depends

on w. This discrepancy vanishes in the limit of large w, a limit in which both results

agree with the answer that would be obtained naively in the Jordan frame. We point

out what we believe are the reasons for the discrepancy. We also demonstrate that

the action for a more general class of gravity theories can in principle be transformed

to the form for a minimally coupled scalar field with a canonical kinetic term. We

summarize in Section 26.

2.2 Jordan Frame Results

In this section we summarize the homogeneous background solutions for 4t) and

the scale factor a(t) for the Jordan frame action 2. 1), assuming a flat (i. e., k = )

Robertson-Walker metric. We follow the notation of KST to facilitate comparison of

results.

From the action 2.1), the equations of motion for 4t) and a(t) are given by

+ 3H,$ 87r (p - 3p), (2.3)
2w 3

2 W 2a 87rp
H2 - = - + - - H_ (2.4)

a 34) 6 4� 1P,

The energy density p and the pressure p are determined by Lm.tt,,, which describes

18



the inflaton field and all other matter fields:

lCmatter : 19'wO,,o,,Oo, - V(O, + (2.5)
2

In extended inflation V(o,) provides the nearly constant false vacuum energy density

that dominates the energy density of the universe during inflation. Since the O' field

stays anchored very near its false-vacuum value, its kinetic energy is negligible. Thus

during inflation we have p - pv,,,,: and p - -pv,,,r., where Pv,,,c M' is the value of

V(o,) in the false vacuum. The desired solution can then be written

-1)(t = Do(Bt)2, (2-6)

a(t = ao(Bt)-+i, (2.7)
+ 

2
H(t = t (2.8)

where
M2

B 0 - I and q (2.9)
qw

(Readers comparing with KST will note that we have chosen a different origin for the

time variable t.) Unlike exponential inflation I the Hubble parameter H in this case

is time-dependent.

2.3 Einstein Frame Results

In this section we make the conformal transformation [8] that defines the Einstein

frame in terms of the Jordan frame described above. The Einstein frame quantities

will be indicated by an overbar.

Define a new metric �,, as

gi. :F, t) 2 t_qA. t),
XI (2.10)

where
f22(t) M21 (2.11)

'qqt)

19



and mp = G112 i the present value of the Planck mass. Define a field IQ in termsN

of by

IQ To In (2.12)

where

To _+3 M (2.13)PI

The field is introduced so that the kinetic term also takes the canonical form.

Carrying out the conformal transformation 2.10) (see, e.g., Birrel and Davies 14] for

the transformation of R[g,,,]) yields

4XVf-3 d + _§1'11(9"Ti9'T
167rGN 2

1 T/To 21k/To M4+ -e- j1"Aaco - e- (2.14)
2

where we have used V(o-) = M4 . Notice that the gravitational part of has the

usual Einstein form, and that the kinetic term for also takes the canonical form.

Since the kinetic energy of the o- field is negligible, takes the form of the action for

a minimally coupled scalar field with an exponential potential,

v(T) =: m4 e-2'k/*o. (2.15)

In S, IF plays the role of the inflaton field-this identification simplifies the calculation

of /P [15].

We write the equations of motion in terms of a rescaled time variable so that

the metric takes the Robertson-Walker form

V = df _ df)2 dj = Q-2 (t) dS 2 (2.16)

where

d = Q -' dt) (2.17)
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;1( = -la(t),

di = dx .

(2.18)

(2.19)

In these coordinates the equations of motion are

dV
41(i) + 3.91�(O + = 0,

dT
(2.20)

87r

3M2I
(2.21)

In 2.20) and 2.21) and in all subsequent equations, an overdot indicates a derivative

with respect to E.

Using Eqs. 2.11) and 2.15), one sees that the desired conformal transformation

is given by

Q(t = MP,B (I)1/2t '
0

(2.22)

The relation between and t can then be found by integrating Eq. 2.17), yielding

C = (Bt)2, (2.23)

with

C = 2Bmpi
(pl/2

0

(2.24)

By combining Eqs. 2.6), 2.12), and 2.13), the Jordan frame solution for 4�(t) can

be transformed to give

T(f =

Eqs. 218), 222), and 223) lead to

d(o::

where

To In C(Dof
M21 (2.25)

2w+3
= do(co (2.26)

(2.27)-11
do = ao

The time-dependence of the Hubble parameter can be obtained by differentiating

21

2
f12 = 40- W) 1,�2(1 + V(T)

2



Eq. 2.26), yielding
2 3 (2.28)

4i

It is straightforward to verify that the equations of motion 220) and 221) are

satisfied by these transformed solutions.

2.4 Calculation of 6p1p

The equation of motion 2.20) for is the same as that for a minimally coupled

scalar field in standard inflation. This identification 9, 16] allows us to use the results

[10-13] for density perturbations arising from quantum fluctuations of a minimally

coupled scalar field. The ensity perturbation amplitude for a scale coming inside

the Hubble length in the late universe is then given by

6P fl(02
(2.29)

P Hubbl. t=t,

where the right-hand side is to be evaluated at the time [h when the scale crossed

outside the Hubble length during inflation.

While the conformal transformation has eliminated the coupling between the

scalar field and gravity, we must still ask whether Eq. 229) is adequate for our

problem. There are several issues that must be considered:

(i) Even in the original context of standard inflation, the formula is only an ap-

proximation. It can be obtained, as in Ref. [11], by matching together an approximate

solution valid at early times and an approximate solution valid at late times. The

matching is done at the time of Hubble length crossing, a time when neither solution

is highly reliable. Alternatively, as in Ref. [10], it can be obtained by fixing the am-

plitude of the late time solution by using a rough estimate of quantum fluctuations at

early times. The approximation is good enough for most purposes, but here we face

the problem that the effects we will be studying are quite small- see, for example,

Fig. 1-1 below. To properly justify the consideration of such small effects, one wants

to know that the other uncertainties are even smaller. A rough estimate of the uncer-
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tainty in formula 2.29) can be obtained by recognizing that the precise time at which

the right-hand side is to be evaluated has not been carefully thought out. While the

standard convention holds that it should be evaluated at Aphysical H-1, one might

just as well have decided to evaluate it when Aphysical 2H-1. This modification of

the rules, however, would produce an w-dependent correction that is comparable to

the size of the effects that will be considered below.

(ii) The standard derivations of Eq. 2.29) assumed that the �V term of the equation

of motion for is negligible, while we will find that this is not the case when is

small. Again there is no problem if Eq. 2.29) is considered an approximation, but

the accuracy that we desire will merit a more careful look at this approximation.

(iii) Eq. 2.29) was derived originally for exponential inflation, while here we are

applying it to power-law inflation, with a(t) oc P. The application to power-law in-

flation has been investigated by Lucchin and Matarrese 17], who conclude that the

standard formula is correct. This conclusion, however, is valid only as an approxima-

tion. Abbott and Wise [18] have shown, for example, that the two-point function that

is used to calculate the scalar field quantum fluctuations depends on the exponent p

in a complicated way. Moreover, if H depends on time, any answer that depends on

H must specify precisely the time at which it should be evaluated.

These issues, however, are separate from the question of evaluating the right-hand

side of Eq. 229). In this paper we will carry out this evaluation, postponing the

investigation of the subtle issues. We believe that the answer obtained below is a valid

order-of-magnitude estimate (similar in its accuracy to the standard results 10-13]

in conventional inflation), but it is not a precise calculation.

Since the equation of motion is obtained from the Einstein action with as the

time variable, we must be careful to evaluate the right-hand side of Eq. 2.29) by using

f and the Einstein frame Hubble parameter R(O. In order to express 8P/P)Hubbl,

as a function of a present-day length scale, we use the ratio of the scale factors at

the time of Hubble length crossing and the present time. In doing so we assume

that the transition from inflation to radiation domination occurs instantaneously at

a temperature T -_ M, and that the field 4�(t) does not vary significantly after the
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end of inflation. Therefore we approximate

MPII (2.30)dN 

where t, denotes the time at the end of inflation. We assume that Eq. 2.30) holds also

for all t 4. Then f22(t = M2 /J�(t) pt� for a t - t, so after the end of inflation the
pi r-4

Einstein and Jordan frames coincide. The evolution of the perturbation amplitude

after inflation is therefore the same in both frames. We will need an expression for t-,

(the rescaled time variable at the end of inflation), which can be found by combining

Eqs. 26) and 2.23) to obtain 4�(f,, = C§of,, m2j. Then using Eqs. 2.24) and

(2.27), one has
f = qwmpi (2.31)

2M2

To evaluate 2.29) we use 2.28) for R(O and 2.25) for T(O to obtain

8P f12(f ) (2w 32 (2.32)

x�(O 16TofhP Hubbl.

To solve for fh, the rescaled time variable at the moment of Hubble length crossing,

we use

Aphysicaa(fh = i(fh)A, = I(fh)-' (2-33)

where AC denotes the comoving wavelength. This can be rewritten as

AC= Hffh)- (2.34)

where we have set the present value of the scale factor d(fo = 1. Since d(O oc T-1,

d(f.)/d(fo) ToIM, where To -- 29 K is the present photon temperature. Also,

h/f.)(2w+3)/4 from 2.26). We substitute these relations into 2.34 to

get
2.+3

fh TO -4fh
A (2.35)

t" M 2w+3
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Solving for 1h and substituting in 2.32) we obtain

(2.36)

We now eminate To and by using Eqs. 2.13) and 2.31), obtaining SpIp in terms

of known quantities:

8W+r' 2w+3

P:� V27r 2W+ 2(2,,=I) 1 2w-1

2 ) qw
2(2w+l)

( M 2w-1
X 2w-1 .

MPI (A. TO) 
(2.37)

Since we set WO = 1, A,: is the physical wavelength at the present time. Remem-

bering that we are using units for which = c = k = one has the conversion

AcTo = Amp, x 1 Mpc x 29 K = 364 x 1021 Amp,,. Thus,

2.+3
6P I- - 2(, 3 1 2w-1

- %f27r 2 qw
P bble

2(2.+I)
M 2w-1 4

XI MPI (3.64 x 1025AMPC ) 2w-1 (2.38)

where q is defined in Eq. 29). This is our main result. Notice that beyond using

SpIp - f2(0/,�(I)' the only approximation that we have made is to neglect the

evolution of P(t) after the end of inflation.

4/(2W-1)In agreement with KST, we find that the perturbations are proportional to A

This means that extended inflation might be an attractive way to account for the as-

tronomical observations that show evidence for increased power on large scales.
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2.5.1 Comparison with the Naive Jordan Frame Result

To see the effect on this calculation of the transformation to the Einstein frame 7 it is

interesting to compare our result 2.38) with the answer that would be obtained by

naively applying the standard formalism in the Jordan frame. Using an asterisk to

denote the naive calculation, we have

Sp H 2(t)
(2.39)

P dO(t)ldt =tz

where is the field defined canonically by the action 2.2), and t* is the time ofh

Hubble length crossing as seen in the Jordan frame. In the following we denote the

time of Hubble length crossing as seen in the Einstein frame by t = th (and = fh for

the rescaled time variable), while the time of Hubble length crossing in the Jordan

frame is denoted by t = t* and = h). Our result for 6P/P)Hubble differs from the

naive result for two reasons:

(i) At a given time the quantities H2 1(doldt) and ft 2/(dT/df) are not equal.

Using the formulas from Section 22, one esily finds that

2 (t) 1)2H - v"27rw(2w + q (2.40)
do(t)ldt 4M2t2

For comparison, the right-hand side of Eq. 2.32) can be expressed in terms of t by

using Eq. 2.23). One then finds

f12 VF2 _ 2w 3 2 H 2 (t)

d'P(Oldf 3 w + 1 dO(t)ldt (2.41)

(ii) The time of Hubble length crossing itself is different in the two frames. In the

Jordan frame this time is evaluated using

a(t')Ar =: H(t*)-' (2.42)
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which is not equivalent to the Einstein frame relation 233). Using Eq. 223 to

evaluate th in terms of ih, one finds the relation

4
1 2u 3 2w-1- = (2.43)

t2 2w + 1 t*2h h

To put together the two sources of discrepancy, note that the correct expression

for 6P/P)Hubble i obtained by evaluating the left-hand side of Eq. 2.41) at [h, which

implies that the right-hand side is evaluated at th. According to Eq. 240) this

expression is proportional to 1/t2' which can be replaced by the right-hand side ofh

Eq. 2.43). The factors occurring in Eqs. 2.41) and 2.43) are then multiplied to give

8P = F(w) 8 * (2.44)
P ble P ubble

where the correction factor is given by

2(2w+l)
F( 2w 2w 3 2.-1 (2.45)W =

w 3 2w + 1

The correction factor F(w) is plotted in Fig. 1-1. It decreases monotonically with ,

approaching one as approaches infinity.

We emphasize again that in the Einstein frame the field IF behaves as a minimally

coupled scalar field, and the rescaled time variable and scale factor d(O correspond

to a Robertson-Walker metric- therefore these functions not the original ones, must

be used in applying the standard methods to calculate (5PIP) Hubbl.-

2.5.2 Comparison with KST's Results

KST (Ref 9 have also worked with the Einstein frame action, but nonetheless their

answer (Eq. 221) of their paper) differs from ours: it is equal to our answer (Eq. 238)

times the factor
F�6w+ �5 2w 2w-1 (2.46)

V 3(2 3 2 3)

This discrepancy is due to the following reasons:
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(i) They evaluate F2 at the time of Hubble length crossing in the Jordan

frame, while we maintain that the time of Hubble length crossing must be evaluated

in the Einstein frame. According to Eq. 2.43), this causes their result to contain an

additional factor [(2w + 11(2w + 3)]4/(2,,,-1).

(ii) They use a "slow-rollover" pproximation -(dV/dT)/3fI(f), while we

evaluate 1�(f) by differentiating the exact solution for qf). This causes their result

to contain the additional factor 1�.Xactp�approx =3(2w + 31(6w + 5).

(iii) They evaluate 11 by using fl 2-- 8rV/3m21 (neglecting the kinetic energy),

while we used the exact expression. This causes their result to contain an additional

factor W-Pprox/kexact) 3 = (6w + 5) / 3(2w 3 3/2.

(iv) They omit a factor 2l(2w + 1) that should appear on the top line of their

Eq. 2.9). This causes their result to contain an additional factor [2wl(2w+ j)]4/(2--1).

Each of these discrepancy factors approaches one as approaches infinity, but in

this limit the effect of transforming to the Einstein frame disappears altogether.

The discrepancy factor 2.46) carries over into the formula for the temperature

fluctuations of the cosmic background radiation, (STIT)o>1o _ f2(f) /151�ff), given

as Eq. 2.25) in KST. For the same reasons, we would differ with KST's results for

graviton perturbations, Eqs. 2.13) and 2.16) in their paper. For the dimensionless

amplitude of a gravitational-wave perturbation as it comes inside the Hubble length

in the late universe, we obtain

2(2w+l) 2w+3
M 2W-1 2w 3 2w-1

hx =
MPI MPI 2q(.o

x 3-64 x 1025A.p,:) 2&a-1 (2.47)

2.5.3 Application to Generalized Gravity Theories

We have obtained the density perturbation spectrum for a simple model of extended

inflation. The method we have used, however, is applicable to a wide class of gener-

alized gravity theories that involve a scalar field coupled to gravity. Suppose that the
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action can be written as

4.,/-- 1S d -f (O)R + 9 JAM T(0)(9,00MO
2

+ lCmatte (2.48)

where f (0) and T(O) are arbitrary functions. From Eq. 22) it follows that for

Brans-Dicke gravity f (0) = 2 18w and T(O = 1 . If T(O = 1, then for a f (0 > 

(the condition for a general T(O) is given below) the conformal transformation to

the Einstein frame can be performed and, through a redefinition of fields, the action

can be cast in the form of the action for a minimally coupled scalar field. We first

demonstrate this for a general f (0), and then consider the analytically tractable case

of f(o = 4.

We make the conformal transformation gA, = Q2�P" where

M 2pi (2.49)

16-7rf 

The action 2.48) then takes the form (with .tt,, = for convenience)

4d m21 R + g" K (0) a,, OaM (2.50)
16,7r 2

where K(O) is given by Salopek, Bond, and Bardeen 19 as

2

K (0 = mp' [3fl (0)2 + f (O)T(O)] (2.51)
167rf(0)2

The first term on the right-hand side of 2.51) comes from the conformal transfor-

mation of the scalar curvature term in 2.48), and the second term comes from the

original kinetic term. If we define a field T(O) such that T'(0) =V K _(O) 7 then

,9AT(O),9MT(O = p0)2C9j'0,9MO = K(O),9AO,9�,O . (2.52)

So in terms of T(O) the kinetic term is canonical and the action takes the form for a
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minimally coupled scalar field. For K(O > the integral

IFW = I VK�(O)�do (2.53)

is well defined and is a monotonically increasing function of , so there is a unique

value of T(O) (up to an additive constant) for every value of 0. Therefore one expects

that the quantum theory for gives the standard result, Eq. 2.29), for the density

perturbation spectrum. In general the integral for O) and the solutions of the

equations of motions must be obtained numerically.

For Brans-Dicke gravity, the integral for T(O) is simple and the result is given by

(2.12). TO) can also be obtained in closed form for the case f (0 = 4, T (0 = .

From Eq. 2.51) one has

- mp2l 4802 
K(O = - 04 (2.54)167r

which can be integrated according to Eq. (2.53) to give

3mP1 /4802 

IF 0) 7r 4802

02 )+ 1 n ( �,448 + 4 W (2-55)

In hyperextended inflation a term of this form may dominate the f (O)R coupling

during a cosmologically important epoch, so it is of some interest to study its density

perturbation spectrum [91.

A non-minimally coupled scalar field with f (0) = _ 2 has been studied by

Futamase and Maeda 20], who have obtained O) for a > .

2.6 Conclusion

We have estimated the density perturbation spectrum in the original model of ex-

tended inflation, with Brans-Dicke gravity. Curvature fluctuations arising from quan-

30



tum fluctuations in the Brans-Dicke field contribute a significant amplitude of density

perturbations. They are a slowly increasing function of the scale, a feature that might

be useful in building models to account for the observed large scale structure of the

universe. We have performed the calculation by transforming to the Einstein confor-

mal frame, then applying the standard procedures used in conventional inflationary

models. We have pointed out some subtleties associated with this procedure, but we

nonetheless believe that the result is valid as an order-of-magnitude estimate

We have compared our density perturbation amplitude to the answer that would

be obtained by working naively in the Jordan frame our answer is larger by a factor

that is near unity, but which becomes large for very small values of the Brans-Dicke

parameter w. If the calculation is done correctly in both frames, however, one should

of course expect to obtain the same answer. Indeed, part of our motivation was to

lay some groundwork toward a consistent calculation in the two frames. The success

of such a calculation would give us confidence that the field theory is being treated

correctly, and that the conformal transformation method is valid at the quantum (or

at least semiclassical) level as well as the classical level. The question of consistency

between the two frames has been addressed in two recent preprints 21].

As pointed out earlier, the model we have studied must be modified if it is to

satisfy experimental constraints. One possibility is to add a small mass term for the

Brans-Dicke field- the evolution of during the inflationary period would not be

significantly affected, but the mass term could still freeze the value of the field in the

present epoch so that the theory would be consistent with observation. As pointed out

by KST, in this scenario the 4� particles would have to be unstable in order to prevent

the mass density of the universe from becoming dominated by them. If the model is

repaired in this fashion, then the calculation of density fluctuations presented in this

paper would remain valid. One can also imagine more substantial modifications to

the model, in which case our calculation would no longer be valid in detail. It would

nonetheless serve as an illustration of a technique to compute 5P/P)Hubble for models

with a scalar field coupled to gravity.
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Figure 2-1 The effect of transforming to the Einstein frame. The correct answer for
6plp is larger by the factor F(w) than the answer that would be obtained by naively
applying the standard formalism in the Jordan frame.
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Chapter 3

Second Order Power Spectrum

and Nonlinear Evolution at High

Redshifti

3.1 Introduction

There eists a standard paradigm for the formation of cosmic structure: gravitational

instability in an expanding universe. According to this paradigm, dark matter density

fluctuations -) =_ 8p(X-)1fi created in the early universe lay dormant until the

universe became matter-dominated at a redshift = 25 x 10' Qh 2 (where 

is the present density parameter for nonrelativistic matter and the present Hubble

parameter is Ho = 100 h km s1 Mpc-'). After this time, the density fluctuations

increased in amplitude as predicted by the well-known results of linear perturbation

theory (e.g., Peebles 1980; Efstathiou 1990; Bertschinger 1992), until the fluctuations

became nonlinear on some length scale. Bound condensations of this scale then

collapsed and virialized, forming the first generation of objects (Gunn Gott 1972;

Press Schechter 1974). Structure formation then proceeded hierarchically as density

fluctuations became nonlinear on successively larger scales.
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At early times density fluctuations were small on the length scales of present day

large-scale structure. Therefore, after the universe became matter dominated fluctu-

ations on scales much larger than the scale of collapsed objects can be studied under

the approximation of a pressureless, irrotational fluid evolving under the action of

Newtonian gravity. A perturbative analysis of the fluid equations in Fourier space

can then be used to study the effects of mode coupling between scales that are weakly

nonlinear. This is the approach we shall follow in this paper. Nonlinear analyses in

real and Fourier space are somewhat complementary in that real space analyses are

best suited to studying the effect of nonlinearities on the collapse and shapes of in-

dividual objects (Bertschinger & Jain 1993), whereas Fourier space studies provide

estimates of how different parts of the initial spectrum couple and influence the evo-

lution of statistical quantities Eke the power spectrum. In principle of course, the two

approaches are equivalent and should give the same information. For perturbative

analyses in real space see, e.g., Peebles 1980), Fry 1984), Hoffman 1987), Zaroubi

& Hoffman 1993), and references therein.

Although density fluctuations of different wavelengths evolve independently in

linear perturbation theory, higher order calculations provide an estimate of some

nonlinear effects. Preliminary second order analyses have led to the conventional

view that in models with decreasing amounts of power on larger scales long-wavelength

fluctuations have no significant effect on the gravitational instability occuring on small

scales. On the other hand, it is known that under some circumstances small-scale,

nonlinear waves can transfer significant amounts of power to long-wavelength, linear

waves. If the initial spectrum is steeper than k4 at small k (comoving wavenumber),

then small-scale, nonlinear waves can transfer power to long wavelength linear waves

so as to produce a k4 tail in the spectrum. (Zel'dovich 1965; Peebles 1980, Section

28; Vishniac 1983; Shandarin & Melott 1990).

The question of whether power can be transfered from large to small scales was

examined by Juszkiewicz 1981), Vishniac 1983), Juszkiewicz, Sonoda & Barrow

(1984), and more recently by Coles 1990), Suto and Sasaki 1991) and Makino, Sasaki

and Suto 1992). Their analyses involved writing down integral expressions for the
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second order contribution to the power spectrum, examining their limiting forms and

evaluating them for some forms of the initial spectrum. Juszkiewicz et al. 1984)

examined the autocorrelation function and found that the clustering length decreases

due to power transfer from large to small scales for the initial spectrum P(k) o V.

However, for the cold dark matter (hereafter CDM) spectrum Coles 1990) found the

opposite effect, though it is not significant unless o8 is taken larger than 1. Makino

et al. 1992) have analytically obtained the second order contributions for power law

spectra, and estimated the contribution for the CDM spectrum by approximating it

as two power laws. Bond Couchman 1988) have compared the second order CDM

power spectrum to the Zel'dovich approximation evaluated at the same order. Some

issues of mode coupling have recently been investigated through N-body simulations

in 2-dimensions (see e.g., Beacom et al. 1991; Ryden Gramann 1991; Gramann

1992).

We have used the formalism developed in some of the perturbative studies cited

above, and especially by Goroff et al. 1986), to calculate second order contributions

to the power spectrum (i.e., up to fourth order in the initial ensity) for the standard

CDM spectrum. Second order perturbation theory has a restricted regime of valid-

ity, because once the density fluctuations become sufficiently large the perturbative

expansion breaks down. For this reason N-body simulations have been used more

extensively to study the fully nonlinear evolution of density fluctuations. However,

perturbation theory is very well suited to address some specific aspects of nonlinear

evolution and to provide a better understanding of the physical processes involved.

Being less costly and time-consuming than N-body simulations, it lends itself easily

to the study of different models. Perturbation theory should be considered a com-

plementary technique to N-body simulations, for while its validity is limited, it does

not suffer from the resolution limits that can affect the latter. Hence by comparing

the two techniques their domains of validity can be tested and their drawbacks can

be better understood. In this paper we shall, make such comparisons for the CDM

spectrum.

The most powerful use of perturbative calculations is in the study of weakly non-
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linear evolution out to very high redshifts, spanning decades of comoving length scales

in the spectrum. Since the formulation of the perturbative expansion allows for the

time evolution of the spectrum to be obtained straightforwardly, we obtain the scal-

ing in time of characteristic nonlinear mass scales ranging from the nonlinear scale

today, about 1014 Me, to about 10' M(D, the smallest baryonic mass scale likely to

have gone nonlinear after the universe became matter dominated. Such an analysis

cannot be done by existing N-body simulations as the dynamic range required to

cover the full range of scales with adequate spectral resolution exceeds that of the

current state-of-the-art.

There are two principal limitations to our analytic treatment: the first arises from

the general problem that the perturbative expansion breaks down when nonlinear

effects become sufficiently strong. This drawback is particularly severe in our case

because the regime of validity is ifficult to estimate. It is reasonable to expect that

second order perturbation theory ceases to be valid when the rms 8plp 2 1, but one

cannot be more precise without explicitly calculating higher order contributions.

The second kind of limitation arises from the simplifying assumptions that pres-

sure and vorticity are negligible. On small enough scales nonlinear evolution causes

the intersection of particle orbits and thus generates pressure and vorticity. Through

these effects viriaJization on small-scales can alter the growth of fluctuations on larger

scales. It is plausible that the scales in the weakly nonlinear regime are large enough

that this effect is not significant. This belief is supported by heuristic arguments as

well as recent studies of N-body simulations (Little, Weinberg Park 1991; Evrard

& Crone 1992 and references therein). We conclude that the first kind of limitation,

namely the neglect of higher order contributions, or worse still, the complete break-

down of the perturbative expansion, is likely to be more severe for our results. We

shall address this where appropriate and accordingly attempt to draw conservative

conclusions supported by our own N-body simulations.

The formalism for the perturbative calculation is described in Section 2 We

describe the numerical results for CDM in Section 31 and compare them to N-body

simulations in Section 32. The scaling of the nonlinear scale as a function of redshift is
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presented in Section 33. The distribution of nonlinear masses is examined in Section

3.4 We discuss cosmological implications of the results in Section 4.

3.2 Perturbation Theory

In this section we describe the formalism for perturbative solutions of the cosmological

fluid equations in Fourier space. Our approach is similar to that of Goroff et al.

(1986). The formal perturbative solutions are then used to write down the explicit

form of the second order contribution to the power spectrum.

3.2.1 General Formalism

We suppose for simplicity that the matter distribution after recombination may be

approximated as a pressureless fluid with no vorticity. We further assume that pe-

cuhar velocities are nonrelativistic and that the wavelengths of interest are much

smaller than the Hubble distance cH-1 so that a nonrelativistic Newtonian treat-

ment is valid. Using comoving coordinates and conformal time d = dtla(t), where

a(t) is the expansion scale factor, the nonrelativistic cosmological fluid equations are

+ [ + 6-] 0 (3. 1 a)

a
+ (V - V- V - V - (3.1b)

197- a

,V20 = 4rGa 2p8 (3. 1 c)

where ii _= daldr. Note that =_ d:51dr is the proper peculiar velocity, which we take

to be a potential field so that is fully specified by its ivergence:

= V V. (3. Id)

We assume an Einstein-de Sitter ( = ) universe, with a C t2/1 oc -r 2. We wl also

assume that the initial (linear) density fluctuation field is a gaussian random field.
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To quantify the amplitude of fluctuations of various scales it is preferable to work

with the Fourier transform of the density fluctuation field, which we define as

d3X
k,,r = X (3.2)

and sinailarly for The power spectrum (power spectral density) of X-,,r is

defined by the ensemble average two-point function,

(Rk I -r) Rk2 r = P (ki r 8D k + 2) , (3.3)

where SD is the Dirac delta function, required for a spatially homogeneous random

density field. For a homogeneous and isotropic random field the power spectrum

depends only on the magnitude of the wavevector. The contribution to the variance

of x-,,r) from waves in the wavevector volume element d3k is P(k,,r)d3k.

Fourier transforming equations 3.1) gives

k ki �(- r) (3.4a)
d3ki f d3k2 8D + k2 ki k k, k2,

2(_'9� a 3kl k ki k2 -0 IC, (3.4b)�7r+-j+ fd f d3k2 8(kl + k - k 2 2 (k2,a I 2 2k k2

In equations 3.4) the nonlinear terms constitute the right-hand side and illustrate

that the nonlinear evolution of the fields and at a given wavevector k is determined

by the mode coupling of the fields at all pairs of wavevectors whose sum is k as

required by spatial homogeneity. This makes it impossible to obtain exact solutions

to the equations, so that the only general analytical technique for self-consistently

evaluating the nonlinear terms is to make a perturbative expansion in and j. The

formalism for such an expansion has been systematically developed by Goroff et al.

(1986) and recently extended by Makino et al. 1992). Following these authors we
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write the solution to equations 3.4) as a perturbation series,

00 W

�(k) E an(,r),6.(k �(k7 T =E oi(,r)a n-l(,) On(k (3-5)
n=1 n=1

It is easy to verify that for n = the time dependent part of the solution correctly

gives the linear growing modes �, oc a(,r) and j o ii and that the time-dependence

is consistent with equations 34) for all n. To obtain formal solutions for the k

dependence at all orders we proceed as follows.

Substituting equation 3.5) into equations 3.4) yields, for n > ,

n,6n( ) + On(k An(k 3,6n(k ) + (1 + 2n)On(k Bn(k (3-6)

where

n-1
3'k, 3k� S,,(- + ki (3.7a)ki k2 k1 E Om 8n-. (IC2)An(k -Id Id kk2

I M=1

k2(- - ) n-1ki k2
Bn(k) jd3kjjd3k2 6D(k + k2 k) .k2 k2 E O.(ki) On-,. (k2) (3.7b)

2 M=1

Solving equations 3.6) for Sn and On gives, for n > )

(1 + 2n)An k Bn(k 3

- An(k ) + nBn(kOn(k = (3.8)(2n + 3)(n - 1) (2n + 3)(n - )

Equations 3.7) and 3.8) give recursion relations for (k) adOn(k), with start-

ing values 1 (k ) and 6, -The general solution may be written

3 3 )61(q-1) ... 81(- (3-9a)k q + + n -k)F ql,-..,qn8n( d q ... Id qn6D( n( n

3 q, )61(-) ... 61 ( - (3.9b)

On(k) Id3q, ... Id qn6D( - ++ qn - k )Gn(ql ... qn q, qn

From equations 3.7)-(3.9) we obtain recursion relations for n and Gn:

n:-,' Gin (q-1 ... q,7 k kjF
q, qn = E 1) (1 + 2n)2 n_m( qm+, .Fn( (2n + 3)(n - 1) k i qn

M=1
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k2(- . k2)k,
+ k2 A;2 (3. 10a)

1 2

n-1
q, G.(ql,..., �m) k k1 qn)Gn I I n E , 3 

M=1 (2n + 3)(n - ) 1
k-2(- . k2)

+n- - k, Gn-m 4+1, �n) (3.10b)
k2A;2

2

where A;, =_ q + + qm, A2 +1 + + in, k k1 + k2 and F = G = 

Equations 3-10) are equivalent to equations 3.6) and (Al) of Goroff et al. 1986),

with n = Pn and Gn = 3/2)Qn in their notation.

3.2.2 Power Spectrum at Second Order

To calculate the power spectrum we shall prefer to use symmetrized forms of n

and Gn7 denoted Fn(') and Gl) and obtained by summing the n! permutations of n

and Gn over their n arguments and dividing by n!. Since the arguments are dummy

variables of integration the symmetrized functions can be used in equations 39)

without changing the result. The symmetrized second-order solutions of equations

(3.10) are given by

2 (k . k2) 1
5 2 1 A2) 1F(')(k,, + (3.11a)2 k2) - k2k2 2 k27 7 + �2 � k -2 1 2

- 2
G(') 3 4 (kl k2) (ki -k2) 1 + 1 (3-11b)

2 (kl, C2) - - 2k2 + k2 2
7 7 k1 2 2 1 T2

Note that 2g) and G(s) have first-order poles as k, -+ 0 or 0 for fixed :
F2") , G( (1/2) cos,0 (kl/k2 + k2/ki) where is the angle between k1 and k

2 2-

The expression for F(') will also be required, but since it is very long we shall wait

to write a simplified form below.

The recursion relations in equations 310) may be used to compute the power

spectrum at any order in perturbation theory. Substituting equation 35) into equa-
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tion 3.3), we have

P(k,,r)5D(k+k')

(52 (k) 162 (P)) + (3 (k) 161 P)) + 0 61") (3.12)

Equation 3.12) explicitly shows all the terms contributing to the power spectrum at

fourth order in the initial density field 1 (or second order in the initial spectrum), as

the nth order field 6n(k) involves n powers of (k). With the definition

(8.(k k k')

8--- 04 P.,n-,n(k) 6(- + (3.13)

the power spectrum up to second order (i.e., fourth order in 1) is given by equation

(3.12 as

P(k,,r = a(T)Pjj(k) + a(T)[P22(k) + 213(k)]

= a 2(T)pll (k) + a(-r)P2(k), (3.14)

where the net second order contribution P2(k) is defined as

P2(k = P22(k) + 213(k) (3.15)

To determine P2(k) we need to evaluate the 4-point correlations of the linear

density field 6 (k For a gaussian random field, all cumulants (irreducible correlation

functions) of (k vanish aside from the 2-point cumulant, which is given by equation

(3.3) for m = n - m = 1. AR odd moments of 81(k) vanish. Even moments are given

by symmetrized products of the 2-point cumulants. Thus the 4-point correlation

function of 81(k is

(81(kj)81(k2)S1(k3 )81(k4)) = Pk,)P(k3)6D(k + k2)gD(k3 + k4) +

P(k,)P(k2)16D(k + k3)8D(k2 + k4) +

44



P(k,)P(k2)SD(k + k4)8D(k2 + k3) (3-16)

With the results and techniques described above, we can proceed to obtain the

second order contribution to the power spectrum. The two terms contributing at

second order simplify to the following 3-dimensional integrals in wavevector space:

P22 k = 2 d3 q Pi (q) Pi (I k - qj F q, j 2 (3.17)
1 2 A;

with F(s) given by equation (3.11a), and

2P13(k = 611 (k)ld3q Pli(q) F3s)(q- -q-, k-) (3.18)

The numbers in front of the integrals arise from the procedure of taking expectation

values illustrated in equation 3.16). We write the integrals in spherical coordinates

q,,O, and : the magnitude, polar angle and azimuthal angle, respectively, of the

wavevector q- Then with the external wavevector k aligned along the z-axis the inte-

gral over is trivial and simplifies f dq to 27 f dq q2 f d cos'O. For P13, the dependence

on is also straightforward as it arises only through F(') and not P11. This aows

the integral over cos t� to be done analytically as well, giving (Makino et al. 1992)

27r k 2 q2 q4
2P13(k) P11(1C)jdqPjj(q) 12 - 58 + 100- _ 42-252 q2 V k4

+_ 3 - k2)3 (7q2 + 2k2) In k + q (3-19)
k5q3 Ik - j

Thus with a specified initial spectrum P11(k) equations 317) and 319) give

the second order contribution. Before evaluating these integrals for the CDM initial

spectrum, we point out that the poles of 2 and G2 described after equations 3-11)

give the leading order part of the integrand of equation 3.17) in (qlk) as:

P22(k) k2pll(k) d3q PI (q) . (3.20)
1 3q2

If P11(k) k- with n < -1 as k 0, then P22 diverges. Vishniac 1983) showed that
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the leading order part of 213 in (qlk) is negative and exactly cancels that Of P22 -

this can be demonstrated by examining the limiting form of F(') In a future paper

we will analyze the leading order behavior of perturbative integrals at higher orders

and also calculate it using a nonperturbative approach in order to investigate whether

there may est divergences for some power spectra at higher orders in perturbation

theory. For the purposes of the second order integration the cancellation of the

leading order terms has no consequence other than requiring that each piece, P22 and

P13, be integrated very accurately to get the resultant. This is necessary because

the cancelling parts cannot be removed before performing the integrals as the two

integrands have different forms: P22 i symmetric in q- and (k - j, whereas P13 is not.

We will return to this point in the next section.

3.3 Results for CDM

The results obtained in the previous section wl now be used to obtain the second

order contributions to the CDM power spectrum. We will use the standard CDM

spectrum with parameters = Ho = 50 km s'Mpc-1, and 0 = 1. For the linear

spectrum at a = we use the fitting form given by Bardeen et al. 1986):

P11(k) AkT2(k , A = 219 x 14MPC4 

T (k) ln(l + 9.36k) [1 + 15-6k + (64.4k)2
9.36k

+(21.8k)3 + (26.8k)41-1/4 (3.21)

where is in units of Mpc-1. With this initial spectrum equations 3-17) and 3.19)

can be used to obtain the second order contribution P2(k), which can then be used

to obtain the net power spectrum as a function of a and k from equation 3.14).

3.3.1 Nonlinear Power Spectrum

As pointed out in Section 22 the integrals for P22 and P13 contain large contributions

which exactly cancel each other. For the CDM spectrum these contributions are finite
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but care is still required in their numerical evaluation. Equal contributions from P22

are made as q- --+ 0 and q- --+ k, whereas the cancelling contribution from 213 i made

only as q- --+ 0. The integrand for P22 is symmetric in q- and (k - j and is positive

definite. For ease of numerical integration, we break up the integration range for P22

as follows:

d3q k 1C+C (k2+g2_e2)/2kg
0le d dy +I dq I dy + j dq dy

27r

+ dq dy , (3.22)
Jc+C 11 dy + I d 2+,q2-k2)/2kg

where y =_ cosd, and kr is the upper Emit required because at high q the spectrum

has departed strongly from the linear spectrum causing the perturbative expansion to

break down. Transfer of power from higher frequencies is suppressed by virialization.

The first term on the right-hand side of equation 3.22) has a factor of 2 because we

have used the symmetry between q- and (k - j in the integrand to exclude a small ball

of radius around q- = (where the integration becomes difficult) by restricting the

limits on y in the third term, requiring us to double the contribution from a similar

ball around q- = to compensate. The limits on y in the last term are set to ensure

that Ik - qj : k as required to consistently impose the upper Emit, i.e., to exclude

any contribution from P in equation 3-17) when its argument exceeds k. It is in

principle important to scale k, with time to reflect the growth of the nonlinear length

scale with time, because that determines the range of validity of the perturbative

expansion. We have done so using the linear scaling k; oc a-2/(3+n) , although as

explained below at early times the result is insensitive to the choice of kr.

The results of performing the integrals in equations 3.17) and 3.19) for a large

range of values of k are shown in Figure 31. We plot the linear spectrum a 2 p 1 (k),

the net spectrum including second order contributions given by eqution 14), and the

nonlinear spectrum computed from high-resolution N-body simulations described in

Section 32 at four values of the expansion factor. The spectra have been divided

by a' to facilitate comparison of the results at different times. The second order

results at different values of a are obtained by simply multiplying P1 and P by
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different powers of a as shown in equation 3.14), so the integration Of P22 and P13

needs to be done only once for a given k. The second order spectrum should be taken

seriously only for the range of for which a4p2(k < a2pll(k), as we do not expect the

perturbative results to be valid for higher k. The interesting range of k, the regime

where nonlinear effects set in, moves to lower as one looks at larger a, reflecting the

progress of nonlinearities to larger length scales (lower k) at late times. As expected

we find that at a given time the second order contribution is not significant for small

k where the rms 6pl < .

For smal k up to just over the peak of the spectrum, the second order contribution

is negative, causing the nonlinear spectrum to be lower than the linear one. At

relatively high the second order contribution enhances the growth of the spectrum.

This has the effect of making the slope of the spectrum significantly shallower at high

k than that of the linear spectrum. Thus, power is effectively transfered from long

to short wavelengths, although the enhancement at short wavelengths exceeds the

suppression at long wavelengths.

The two power law model of Makino et al. 1992) gives qualitatively similar results

to those shown in Figure 31. Bond Couchman 1988) also computed the second

order contributions to the CDM spectrum with a view to checking the reliability of

the Zel'dovich approximation at the same order. They found excellent agreement,

in contrast to the results of Grinstein Wise 1987) who found that in comparison

to perturbation theory the Zel'dovich approximation significantly underestimated the

magnitudes of the gaussian filtered, connected parts of the third and fourth moment

of the real space density. In comparison to our results, Figure 3 of Bond Couchman

shows a larger enhancement over the linear spectrum, and does not appear to show

the suppression at relatively low k at all. They do not give the explicit form of

the term corresponding to our P13, but state that it is negligible in comparison to

P22. This does not agree with our results at low and is probably the source of the

difference in our figures. It is difficult to make a more detailed comparison without

knowing the explicit form of their second term.

In order to obtain a better understanding of the dynamics of the mode-coupling, we
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have examined the relative contribution of different parts of the CDM initial spectrum

to the second order results at a given k. Let 4' denote the integrated wavevector and

k the external wavevector at which the second order contribution is calculated, as

in equations 317) and 3.19). There is a two-fold ambiguity because wavevector

k - contributes at the same time as q- We have carefully examined different ways

of associating second order contributions from different parts of the initial spectrum,

and found that the second order contribution from q 4� k tends to be positive and

that from q k negative. Indeed we also find this to hold for power law spectra with

-3 < n < independently of the value of n, thus indicating that it is a general

feature of second-order mode-coupling. In Figure 32 we associate the second-order

contributions, dP2(k)/dln q, with the smaller of q and I - 1.

There are two regimes in the CDM spectrum, divided roughly by the part where

the logarithmic slope n [= d In Pi,) Id In k] alls below - For small k, where n � -

1, the positive second order contribution from q < k is swamped by the negative

contribution made by large q. The net effect is to decrease the growth of the spectrum

compared to the linear growth. For relatively large k, where n _< - 2 the positive

contribution from small q dominates, increasingly so as one goes to higher k A

comparison of the curves in Figure 32 for = Mpc-1 and k = Mpc-1 shows

how the relative strengths of the positive and negative contributions shift as one

moves across the spectrum. This shift can be understood by observing that at higher

k there is an increasing amount of power in the initial spectrum at q < ; the plot of

the rms power on scale k in Figure 33 illustrates this point. The increased power at

smal q causes a larger nonlinear enhancement at higher k. Since the weakly nonlinear

regime moves to higher k at earlier times, the enhancement at high k in turn leads to

a stronger nonlinear growth at earlier times. We study the consequence of this fact

in detail in Section 33. The dominance of the nonlinear contribution from long-wave

modes also strengthens the consistency of the perturbative calculation, because the

amplitude of the density fluctuations is small for these modes. As discussed in Section

3.2, this may be responsible for the second order results being valid for a much larger

range of scales at earlier times.
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We emphasize that the transition value n -1 for the change in sign of the

second order contribution is only approximate, because it depends on the value of k

taken as being representative of the weakly nonlinear regime. We have examined the

nsecond order contribution for power law spectra P11(k) o k for a range of values of

n between 3 and to verify this transition. We find that in the weakly nonlinear

regime defined by k ka, where A:,a is the scale at which the rms SpIp = ), the

second order contribution for n sufficiently larger than -1 is negative and that for

n sufficiently smaller than -1 is positive. For n -1, the contribution is negative

for low k and positive for high k in the weakly nonlinear regime. These results are

consistent with the results of Makino et al. 1992) who examined the second order

contributions for n = ) 0) 1) 2; they also found good agreement with N-body

simulations.

A possible transition in the nature of nonlinear evolution at n = -1 has also

been explored by studying the clustering in real space in N-body simulations by

Klypin & Melott 1992). An examination of the origin of the term providing the

dominant second order enhancement suggests that the advective (V V) terms in

the real space fluid equations cause the change in sign of the nonlinear contribution.

This interpretation is consistent with the fact that for n < -1 there is an increasing

amount of power in the rms velocity -field on larger scales, and this appears to cause

the nonlinear enhancement of the density from long-wave modes to dominate. These

arguments are by no means rigorous, and merit further exploration.

It is worth noting that for the eeply nonlinear regime the stable clustering hy-

pothesis (Peebles 1980, Section 73) predicts that the spectrum steepens below the

linear theory spectrum for n > 2 and rises above it for n < 2. Consistency with

the second order results would require that at least for 2 < n < - the nonlinear

spectrum first rise above the linear one in the weakly nonlinear regime and then fall

below it in the deeply nonlinear regime.- This is indeed seen in N-body simulations;

the results of Efstathiou et al. 1988) show only hints of this feature owing to limited

resolution, but it is clearly evident in simulations with higher resolution (Bertschinger

& Gelb 1991; White 1993).
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The second order spectrum provides an estimate of the change in the fluctuation

amplitude due to nonlinear effects in the weakly nonlinear regime. The conventional

normalization is to set the rms 8plp on a scale of 8h-1 Mpc, denoted o-g, equal to

1. The rms value is computed from the power spectrum using a top-hat filter as

described in Section 33. We find that with the linear spectrum normalized in this

way, second order effects increase o8 by 10%. This is a smaller enhancement than

found by Hoffman 1987) for the standard deviation of the density (without filtering)

using the Zel'dovich approximation. The N-body spectrum shows an even smaller

change in o8 than the second order spectrum, although it is difficult to estimate

accurately in a box of length 50 h-1 Mpc.

3.3.2 Comparison with N-Body Simulations

The N-body results shown in Figure 31 are from two different particle-particle/particle-

mesh simulations of the CDM model in a 100 Mpc)3 box normalized so that linear

o, = I at a = 1/(1 + z = 1. For a > .1 we have used the simulation with 144 3

particles and Plummer softening distance 65 kpc performed by Gelb Bertschinger

(1993). To obtain accurate results at higher redshifts we have performed a new

simulation with 288 3 particles each of mass 29 x 109 Me with Plummer softening

distance 20 kpc. In both cases the energy conservation, as measured by integrating

the Layzer-Irvine equation, was much better than I percent.

The comparison of power spectra in Figure 31 shows qualitative agreement be-

tween the second order and N-body results - in both the small dip in the spectrum

at smal k and the enhancement at high k. At early times the agreement of the two

nonlinear spectra is excellent. This agreement extends beyond the naive regime of

validity of the second order results. As suggested above, the dominance of the contri-

bution from long-wave modes to the nonlinear enhancement at early times apparently

extends the regime of validity of the second order results.

At late times (0.5 I-E a 1) the second order results at high show a larger en-

hancement of the spectrum in comparison to the N-body results. There is significant

discrepancy in the two results even within the expected regime of validity of the sec-
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ond order results. Tis iscrepancy, coupled with the good agreement at early times,

indicates that even in principle the second order spectrum could not have agreed with

the N-Body spectrum shown in Figure 31 at all times. The simple dependence of

the second order spectrum on a given in equation 3.14) is incompatible with the

dependence of the N-Body spectrum on a for the full range of k lying in the nonlinear

regime.

A part of the discrepancy at late times could arise from the dependence of the

second order results on the upper cutoff imposed on the integrals. The cutoff de-

pendence is indeed the largest at late times: for a > 0.5 reasonable variations in kr

can change the result typically by over 10%. Another source of isagreement could

be that the N-body simulations axe clone in a finite size box, therefore they have a

small-k cutoff. Since the contribution from long-wave modes is positive, excluding

these modes could cause simulations to underestimate the nonlinear enhancement of

power. On comparing CDM simulations in boxes of sides 100 and 640 Mpc we do

find this to be true, but the difference is very small. Thus neither of the two reasons

mentioned above explain the magnitude of the disagreement between the second or-

der and N-body spectra. A possible explanation is an inadequate suppression of the

second order spectrum due to collapse on small scales, i.e., "previrialization" (Davis

& Peebles 1977; Peebles 1990). Indeed the second order contribution from q > 

is negative, in qualitative agreement with such a suppression, but it should not be

surprising if the magnitude of the suppression is significantly underestimated. Higher

order perturbative contributions may well include some of this suppression. Our ana-

lytic treatment neglects small-scale pressure and vorticity, which should also suppress

the nonlinear enhancement of power. As we mention in Section 1, so far N-body

studies designed to test this hypothesis have concluded that small scale effects are

negligible. However these studies have not tested ifferent initial spectra, and they

have not examined the power spectrum itself with as much dynamic range as our

simulations provide.
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3.3.3 Scaling in Time

The nonlinear power spectrum can be used to construct statistical measures of density

fluctuations in real space. These can then be used to study the most important

consequence of the coupling of long-wave modes: a systematic change in the variation

of characteristic nonlinear scales with time. We proceed to do this by first defining

the rms SpIp averaged on length scale R by integrating over the power spectrum with

an appropriate window function W:

2

82R (a) =E 6P d3k P(a, k) W2 (kR) (3.23)P R I

For W we shall use three different functions: a shell in k-space, the top-hat in real

space, and the gaussian, given respectively by,

W2, (kR = SD(kR - ) (3.24a)D

WTH (kR = 3 [sin(kR - kR cos(kR)] (3.24b)
(kR)3

WG(kR = exp - 2 (3.24c)

k3p k]1/2'In Figure 33 we plot [4,x (a, or 8R(a) for WD with = r-1, to illustrate

what we expect for the time dependence of a characteristic nonlinear scale, denoted as

R,,,l(a). If the spectrum evolved self-similarly then one would expect that at all a, the

onset of nonlinear effects occurs at a scale defined by setting 47rk3P(a, k = constant

for some value of the constant of order unity. This behavior is expected for power law

spectra of the form P(k) C kn, and has been verified in studies of N-body simulations

(Efstathiou et al. 1988). Even though CDM-like spectra are not pure power laws, the

simplest assumption would be that they show a similar behavior. However, Figure

3-3 shows that at early times (small a), the spectrum deviates from the linear one

at progressively smaller values of 4xk'P(a, k). This trend is even stronger for the N-

body spectra. Thus already there is a hint of a systematic departure of the nonlinear
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scaling from the conventional expectation, due to the variation of the spectral index

n with scale for the CDM spectrum.

This conclusion is confirmed by using the other window functions to define the

nonlinear scale as follows. We calculate 6R(a) using equations (3-24bc) for a range

of R and a. We then define R(a) as follows:

8R(a = for R = R (a) (3.25)

where is a constant of order unity. Since Rni(a) is a comoving length scale, it can

be used to define a nonlinear scale for the mass as: Mni(a = 4-x/3)p4(a), where 

is the critical density today.

In Figure 34 we have plotted M,,,l(a) from a = 004 to for the gaussian and top-

hat filters, with chosen to be and 169 for each filter. The dependence of Mnl(a)

confirms the impression conveyed by Figure 33: nonlinear enhancement is stronger

at earlier times. While the quantitative results depend on the choice of the window

function and &, it is clear that in each of the -figures the slope of the second order

curve is different from the linear curve, and this causes the relative enhancement of

Mni(a) to be larger at earlier times. Indeed, if the normalization of the second order

curves was changed (thus shifting them to the right) so that at a = they predicted

the same nonlinear mass as the linear curves, then all four panels would show very

similar relative enhancements at early times.

In stating quantitative results for the time-dependence of nonlinear masses we shall

focus on the gaussian filter with = This choice provides the most conservative

estimates of second order effects. At a-' = 1 + z = 20,10,5,2), Mni(a) from the

second order spectrum is about (180, 8 25 16) times (respectively) larger than the

linear case. Figure 34 can also be used to read off the change in the redshift of

nonlinearity for the desired mass scale due to second order effects. (Here as in the

preceding figures, the linear spectrum is normalized so that o = at z = and this

fixes the normalization of the second-order spectrum.) For example, the mass scale

10' MG goes nonlinear at (1 + z) 25 as opposed to 19 if only the hneax spectrum
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is used; and the mass scale 10" Me at (1 + z) 6 as opposed to 5. This change

in redshift is a more meaningful indicator of the nonlinear effect, as the change in

M,,1(a) is amplified due to the steepening of the spectrum at high k.

In Figure 34 we have also shown results from the Press-Schechter model (Press

& Schechter 1974, hereafter PS). The PS model is a widely used ansatz for predicting

the distribution of bound objects of a given mass at different times (section 34) It

relies on the linear growth of the power spectrum, hence it is no surprise that the

shape of the PS curve is very similar to the linear curve. Here the PS nonlinear

mass is defined as the mass for which a fixed fraction, 04, of the mass in nonlinear

clumps belongs to clumps of mass M, or larger. The fraction 04 is chosen so that

the normalization of the PS curves is close to that of the other curves at a = 

in the upper panels it is close to the nonlinear curves and in the lower panels to the

linear curves.

The N-body simulations can be used to define a characteristic nonlinear mass

in many ifferent ways. The dashed curves in Figure 34 show nonlinear masses

computed using the power spectrum from the simulation in the same way as for

the second order and linear spectra above (i.e., using eq. 325). The results are in

very good agreement with the second order results, as expected because of the good

agreement of the second order and nonlinear power spectra. The relative enhancement

of Mni(a) over the linear prediction at (1 + z = 1 0, 5 2 is (I 1 24 12). By examining

all four panels it can be seen that, independent of the parameters used, the slopes

of the curves using second-order and nonlinear power spectra are distincty different

from those of the linear and PS curves. The filled triangles use a different definition

of the N-body characteristic nonlinear mass and will be discussed in the next section.

Our results in Figure 34 indicate that linear scaling for (a) significantly un-

derestimates nonlinear enhancement at high redshift. Consequently the characteristic

masses predicted by the PS model are much smaller than the second order and N-body

masses for z > 4 even for the choice of parameters for which they agree at late times.

This conclusion may appear at odds with previous tests of the PS formalism made by

others. However, no previous tests have examined the CDM model at high redshift
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with as much dynamic range as we have. As we have emphasized, mode-coupling

from long waves is strongest for small n; for the CDM spectrum n varies with scale

and approaches 3 at high k. It is precisely in this limit, previously untested with

high-resolution N-body simulations, that we find the greatest departures from linear

theory and the Press-Schechter model.

3.3.4 Distribution of Nonlinear Masses

The characteristic nonlinear masses defined above do not fully characterize the dis-

tribution of dense clumps that form as a result of gravitational instability. A better

comparison of theory and simulation can be made using the complete distribution of

masses.

In the N-body simulation we have identified dense clumps at mean overdensity

about 200 using the friends-of-friends (FOF) algorithm with linking distance 02 times

the mean interparticle separation. (The N = 288 3 simulation was used at + z = 10,

while the N = 144 3 simulation was used for + z = 5 2 and 1.) The distribution

of nonlinear clump masses is very broad, so there is no unique nonlinear mass. We

have chosen to de-fine the characteristic nonlinear mass M"j for this distribution as the

median clump mass defined so that half of the mass in clumps of at least particles

is contained in clumps more massive than Mnj. The particle limit corresponds to

M = 1 16 x 1011 Me and 145 x 10'0 Me for the N = 144 3 and 288 3 simulations,

respectively. The resulting nonlinear masses are denoted by the filled triangular

symbols in the upper-left panel of Figure 34; for other panels these points would

be at the same locations as in this panel. (If the PS curves were efined with the

same lower limit for clump masses and the same value of the mass fraction, instead

of having no lower Emit an a mass fraction 04, they would agree more closely with

the N-body FOF points.) It is coincidental that this definition of N-body nonlinear

mass yields such close agreement with the analytic predictions at z = , because

the broad range of clump masses would allow us to vary Mni by factors of a few.

The relative variations as a function of redshift are more meaningful. It is clear

from Figure 34 that the variation of these N-body masses with a departs from the
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linear scaling even more strongly than the curve computed from the N-body power

spectrum. Thus, nonlinear effects on the formation of high-redshift objects appear

to be even more significant than they are on the power spectrum. However, the 

particle limit affects the FOF characteristic mass (no lower Emit is imposed on the

PS curve), so we should make a more detailed comparison with the mass distribution

before reaching firm conclusions.

The PS model makes the ansatz that the formation of bound objects is determined

by the overdensity in the linear density field. Using the gaussian distribution of

the linear density field, this ansatz gives the comoving number density, n(M, a), of

nonlinear objects of mass M in the mass interval dM at expansion factor a as (Press

& Schechter 1974):

=A 2 1/2 Sc2 1 da dM
n(M, a) dM - exp (3.26)

7r 01' 20-2 o, dM M

In this equation is a free parameter which can be taken to be a constant, with the

linear rms density smoothed on the mass scale M, o(M, a), growing in proportion

to a. A popular choice for is 169, the value of the linear density at which a

spherical top-hat perturbation collapses to infinite density. The PS mass distribution

n(M, a) has been tested against N-body simulations and found by other workers to

work very well. Efstathiou et al. 1988) tested it for scale-free simulations, and several

authors have tested it for the CDM spectrum (e.g., Carlberg & Couchman 1989). The

weaknesses of such tests - particularly, the finite resolution of the simulations - have

been recognized by these authors, but even so the agreement has been surprisingly

good for the range of masses and redshift probed. Consequently, the PS model has

been widely used in predicting the number density of objects at high redshift, or in

estimating the redshift at which a given mass scale goes nonlinear.

Figure 35 shows the cumulative mass fraction (CMF) as a function of clump mass

from the N-body simulation and the PS prediction. The CMF is defined by

CMF(M, a) fi-1 n(M, a)M dM , (3.27)
Am
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i.e., the fraction of mass in objects of mass M or larger. In Figure 34 we defined the

PS nonlinear mass using the condition CMF = 04. For the PS prediction of Figure

3-5 we have chosen the top-hat filter with = 169. At late times, this choice gives

fairly good agreement for the high-mass end of the mass distribution. However, we

see that at early times the N-body mass distribution es systematically above the PS

prediction. This is in qualitative agreement with the results shown in Figure 34 and

supports our conclusion that nonlinear effects on the formation of nonlinear clumps

are even stronger than they are for the power spectrum.

Because coupling of long waves modifies the power spectrum and therefore the

rms density a(M, a), the failure of Press-Schecter theory to match the N-body results

exactly does not surprise us. As an experiment we replaced o(M, a) in equation

(3.26) using the second-order and N-body power spectra instead of linear theory.

The resulting CMF(M) falls too rapidly at large M, even after is increased to

compensate for the nonlinear enhancement of density fluctuations. If the nonlinear

power spectrum is used the PS formula gives the wrong shape for n(M, a) because

it assumes a gaussian distribution of densities, while the nonlinear density field has

a broader distribution. We have found no simple modification of the PS formula

that can account for the systematic departures evident in Figure 3-5. Expressing

an optimistic view, we note that the PS formula is accurate to about a factor of 2

for the CMF over the entire range shown in Figure 35. On the other hand, the

deviations are larger for rarer objects (smaller CMF) and the sign and magnitude of

the deviation changes systematically with a. Therefore one should use the PS formula,

especially at high redshift and for rare objects, only with caution after calibration by

high-resolution N-body simulations.

3.4 Discussion

We have calculated the second order contribution to the evolution of the standard

CDM power spectrum. We believe that our results capture the dominant nonlinear

contribution in the weakly nonlinear regime. They are consistent with N-body results
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in this regime from z = 9 to z 1, but show a larger enhancement of the spectrum

than the N-body results from z to z = 0. The bulk of the second order en-

hancement in the growth of the power spectrum is provided by the mode coupling of

long-wave modes, especially for the onset of nonlinearities at high redshift.

By analyzing the perturbative integrals we have studied the sensitivity of nonlin-

ear evolution to different parts of the spectrum, and thus have probed the dynamics of

the mode-coupling at work. We find that on scales of interest to large-scale structure

in the universe, the dominant contribution to the weakly nonlinear evolution of most

realistic power spectra comes from the mode-coupling of long-wave modes. Pertur-

bation theory is quite adequate for estimating this contribution since the amplitude

of density fluctuations is small for the long-wave modes.

An important consequence of nonlinear evolution is to change the time depen-

dence of the nonlinear scale Mni(a) from linear scaling: it is found to be significantly

larger at high z. Thus objects of a given scale go nonlinear at higher redshifts than

indicated by the standard linear extrapolation. As discussed in Section 3 this is a

consequence of the variation with scale of the spectral index, with n - on the

scales of interest for large-scale structure and n 3 on the smallest scales. We

have given quantitative estimates of this effect for the standard CDM spectrum for

different window functions and definitions of nonlinear scale. For a gaussian window

function and b = which provides the most conservative estimates, the change in

the redshift factor of nonlinearity, (1 + za), is about 20% for 10" ME) objects (with

linear extrapolation 1 + z = 5) and increases to about 33% for 10' Me objects

(1 + zn = 19). We have also computed nonlinear corrections using high resolution N-

body simulations, using the power spectrum from the simulations as well as directly

identifying bound objects. The results are in very good agreement with the second

order predictions, especially between z 4 and 10. Quantitative comparisons are

provided in Sections 33 and 34 and in Figure 34.

Thus the most striking implications of second order effects are for the formation of

nonlinear objects at high z. Theoretical studies of, for example, the first generation

of collapsed objects, the redshift of galaxy-formation, and reionization at high-z (see
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e.g., Couchman & Rees 1986; Efstathiou & Rees 1988; Tegmark & Silk 1993 -

all require as an input the scale of nonlinearity as a function of z. For analytical

estimates this is invariably obtained using linear extrapolation, as for example in

the Press-Schechter mass distribution. We have shown (Figure 35) that the Press-

Schechter theory leads to a systematic underestimate of the abundance of high-mass

nonlinear clumps at high redshift in the CDM model, but have not succeeded in

suggesting a simple modification that works better. While nonlinear coupling to

long waves increases the amplitude of small-scale density fluctuations, it also changes

the probability distribution from the gaussian distribution appropriate in the linear

regime.

Most realistic cosmological spectra steepen to n 3 at the smallest scales and

have n 'Z - on the largest scales of interest. This is a generic feature arising from the

sluggish, logarithmic growth of fluctuations during the radiation dominated era, thus

causing the scale invariant spectrum with spectral index n = initially to approach

n = 3 on the smallest scales while retaining the primeval slope on scales much larger

than the size of the horizon at the end of the radiation dominated era. Hence for

different cosmological models the basic features of nonlinear gravitational evolution

that we have studied should hold, although the quantitative details would depend on

the values of parameters such as 08, 6r�, Q and Ho.

The increase in redshift of collapse relative to linear theory that we have calculated

for CDM should also occur in all realistic spectra provided that on the scales of interest

n decreases sufficiently rapidly with increasing k. Our results will not apply if the dark

matter is hot, but the qualitative implications should be the same for the evolution

of the baryonic component in a CDM- or baryon-dominated model until dissipational

effects become important. For spectra with a very steep slope at small scales (such

as in the hot dark matter model), second order effects may lead to a strong nonlinear

enhancement which would drive the spectrum to a shallower slope.

In the near future second order power spectra from theoretical models could be

related to the power spectrum calculated from observational surveys. Indeed the

shape of the best fit three-dimensional power spectrum computed from results of
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the APM survey (Baugh Efstathiou 1993) shows two characteristic features of the

second order CDM spectrum: a relatively shallow slope at small scales and a flattening

of the peak of the spectrum at large scales. The power spectrum computed from the

CfA redshift survey (Vogeley et al. 1992) and from the 1.2Jy IRAS redshift survey

(Fisher et al. 1993) had also shown the first feature of a shallow slope with n just

below -1 at high k, but these surveys lacked the depth required to determine the

shape of the spectrum near the peak. It will be interesting to see if the extended peak

of the APM spectrum is a robust feature.
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Figure 31 Linear and nonlinear power spectra at expansion factors a = .1 02, 0.5,
and where a = corresponds to linear o = 1. The linear spectrum is given by the

2pll(k) 4pdotted curves, the corresponding second order spectrum [P(k = a a 2 (A;)]
by the solid curves and the spectrum from high resolution N-body simulations by
the dashed curve. The spectra are all divided by a 2 to facilitate better comparison
of the nonlinear effects at different values of a The triangles marked on the second

4p2(k) 2porder spectra indicate the point at which a = a 11(k): this indicates the
approximate limit of validity of the second order results.
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wavevector. The two panels are for different choices of k. P2(k) is defined in equation
(3.15) and is the sum of the contributions P22(k) and 213(k). The integrand Of P22(k)

is symmetric in q- and (k-j; we have chosen to associate the contribution from such a
pair of wavevectors with the wavevector with smaller magnitude. Other choices do not
alter the basic trend seen here, namely, that the contribution from q < k is generally
positive and peaked at q = k/2, while that from q > is generally negative. Moreover,
a comparison of the plots for the two values of shown illustrates that at higher k
the positive contribution from small q dominates, leading to a net ehancement of
small-scale power. This is due to the increasing amount of power at q < for higher
k, as can be seen in Figure 3-3.

66



1

.5

CV

rjI-,
Cl..M
_,v. 0
rz

1-1

M
0

-. 5

1

-2 - .5 I -. 5 0 .5 1
log,( k M-,)

Figure 33 RMS amplitude of density fluctuations vs. scale for several expansion
factors. The lower curves correspond to smaller a. Solid (dashed) curves axe used
for the second order (linear) results. The second order curves are shown only for
the estimated regime of validity shown in Figure 31. It is clear from the results
at different a that the nonlinear contribution becomes significant at earlier a for
successively smaller values of [47rA;3p(a, IC)] 1/2.

67



10 to

10 16

10 14

10,31

10 12

It
0 10

10 to

lo'

lo'

lo'

106

106

10 to

10 14

10 13

10 12

, oil

10 to

lo'

lo'

107

lo'

lo'

Er
6.= Gaussian

ef

- linear

- 2d order 1

N-body

N-body FOF

PS

- I I . I I I _T
L-

6,,=1.69, Gaussian

6.=1, Top-Hat
-79

6,,=1.69, Top-Hat

.05 .1 .2
a

.5 1.05 .1 .2
a

.5 1

Figure 34 Growth of characteristic nonlinear mass with time. The mass scale M,,a(a)
at which the rms 6plp reaches a fixed value (denoted by , in the figures) is plotted
vs. the expansion factor a = 1/(1 + z). For each the rms SpIp is computed with
a gaussian window function for the upper panels, and with a real space top-hat for
the lower panels. The dotted curves show M,,,l(a) computed using the linear spectrum
P11(k); the solid curves include the second order contribution for the saxne normal-
ization of the linear spectrum. The dot-dashed curves have been computed from the
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which a fixed fraction, 04, of the mass in nonhneax clumps is in clumps more massive
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Chapter 4

Self-Similar Scaling of Density

Fluctuations

4.1 Introduction

A physical system is expected to display self-similar evolution if there is no preferred

scale (in a sense to be clarified below) in the system, either in the initial conditions or

in its dynamical behavior. The ifferential equations governing the evolution of such

a system then admit of a self-similar solution. Suppose the basic evolution equation

is a partial differential equation for the phase space density f X- - t), where is the

spatial position, -is the momentum, and t is the time variable. In a self-similar system

it is possible to re-cast the equation in a form with a solution f = t' V1 I RV)

where is in general an unknown function. If a, , and -y are known then the time

dependence of f is present only through the rescaled and -coordinates, aside fXom

the overall factor of t". This special form of the solution is de-fined to be self-similar:

the phase space density at timet2 is related to that at time t as

A - = t2 &J - t,
X2) P2) t2 Pi (4.1)tj

X1 (tl/t2)'. Equation (4.1) explicitly demonstrates
where X2 (tl/t2)'O, and P1 = P2

that the phase space density for any (X-, pj at all times t2 can be obtained merely by
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re-scaling from some chosen time tj. Clearly self-similarity is a powerful constraint

because any statistical measure constructed from the the phase space density should

be described by the appropriate scaling of coordinates consistent with equation 4.1).

We now consider the similarity properties of gravitational dynamics in a zero-

pressure Einstein-de Sitter cosmology. An Einstein-de Sitter universe refers to the

model with the cosmological density parameter �_- Qmatter= and zero cosmological

constant, so that the universe is spatially flat. The gravitational interaction also does

not pick a special length scale. Further let the initial power spectrum be a power law,

P(k o k n, over length scales of interest. Thus so far there is no preferred length scale

in the system. However, the amplitude of the power spectrum can be used to define

a characteristic physical length scale: the scale at which the rms smoothed density

contrast equals unity is the conventional choice. To within an order of magnitude it

is the scale at which over-densities collapse out of the background expansion. Hence

it forms the boundary between two qualitatively different regimes in the universe.

As we shall see below, it provides the reference scale required for scaling the spatial

variable according to the similarity solution.

The explicit similarity transformation for the single particle phase space density

f (X-) f, t) is described in Section 73 of Peebles 1980). It is also shown that knowing

the linear solution is sufficient to fix the indices a, and -t in terms of the spectral

index n of the initial spectrum. The resulting self-similar scaling of spatial length

scales x and wavenumber scales is:

X,,(t) oc a(t)2/(3+n) ; k ..(t - x,.(t)-' oc a(t) -2/(3+n) (4.2)

The similarity solution for f is obtained by dimensional analysis of the differential

equation describing its evolution. Whether or not the solution applies depends on the

initial conditions. The initial fluctuations in cosmology are believed to be generated

by a stochastic process which is statistically homogeneous and isotropic in space. For

a given realization, the stochasticity of the initial istribution in space precludes the

similarity solution for f from being valid. For all practical purposes, however, it is
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sufficient that the ensemble averages (averages across different independent realiza-

tions) of f, or products of f for more than one particle, evolve self-similarly. This

does happen because ensemble averaging removes the stochastic character of the ini-

tial conditions. Consequently statistical measures such as the correlation function

WX) t) OC f dP1 f dP2 (f (1)f (2)), where the indices and 2 refer to two ifferent par-

ticles) evolve self-similarly. The self-similar solution for is obtained from the formal

solution for The solution can be verified by imensional analysis of the evolution

equation for that is obtained by taking moments of the BBGKY hierarchy equa-

tions (e.g., equation 71.1) of Peebles 1980)). The solution for the power spectrum

is obtained by Fourier transforming �(x, t), and is P(k, t = ak�'P(kac/ko), where

c = 2(3 + n), ko is a constant which must be determined from the initial conditions,

and 15 is an unspecified dimensionless function. It is easy to verify that the linear

spectrum Pi, k, -r) oc a2kn is consistent with this functional form.

Likewise the scaling of all statistical measures defined as ensemble averages of

products of f (and of their momentum moments), can be straightforwardly deter-

mined. Using the ergodic theorem the solutions for ensemble averages can then be

applied to averages over sufficiently large volumes in space. A spatial statistic which

follows the self-similar solution is a function of the spatial variable scaled by a power

of time, rather than of time and space separately. This provides for a self-similarity

in time (in this statistical sense) in the evolution of structure.

As discussed above, at every epoch there is a scale which demarcates the linear

and nonlinear regimes. In wavenumber space this scale, denoted by k6, is given by

the condition k63 P(k6, t) for 3 < n < . If the linear power spectrum, a 2Pi (k)

is used as an approximation to P(k, t), then it can be checked that the self-similar

scaling of equation 4.2) is recovered for k6(t) as follows: V p(k, t) k.3 a2 k - or

k,6 oc a-2/(3+n). By applying this condition at the initial time ti, the constant ko can

be related to the nonlinear wavenumber at the initial time k(ti). For most realistic

cosmological spectra the density contrast increases with decreasing length scale; hence

even at the initial time, on sufficiently small length scales [or wavenumber scales

k > k6(ti)], the density contrast is larger than unity. Therefore in order to use self-
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similar scaling to determine the complete future evolution) the initial conditions have

to be such that a sufficient amount of nonlinear evolution has already occurred. One

usually imagines a hierarchy of nonlinear structures on small length scales, and linear

structures on the largest length scales. Then the system is believed to evolve such that

by scaling the transition scale k,6 from the linear to the nonlinear regime (and all other

scales as well) via equation 4.2), its complete evolution can be obtained. Clearly, to

implement such a self-similar scaling, the full range of nonlinear clustering must be

present on small enough scales from the outset. In practice, N-body simulations show

that even though such conditions are not implemented (they would require knowing

the full nonlinear solution), the system relaxes to self-similar behavior inclusive of

fully nonlinear structures.

The iscrete nature of particles introduces a scale, namely the mean interparticle

separation, which breaks the idealized self-similar scaling of a perfect fluid. Such a

departure from perfect self-similarity is typical of all realistic physical systems. The

notion of intermediate asymptotic self-similarity, i.e., self-similar scaling over a re-

stricted range of parameters, is used in such situations (Barenblatt 1979). In the

cosmological context it simply means that the range of length scales over which self-

similar scaling is accurately followed are restricted to be sufficiently larger than the

interparticle separation (and in the case of N-body simulations, other scales intro-

duced for numerical reasons).

Intermediate asymptotic self-similarity is a useful property even for realistic cos-

mological spectra Eke the CDM spectrum which are not scale free. As described

in Chapter the physical processes at work in the radiation dominated era imprint

characteristic length scales on the spectrum. These spectra are nevertheless approx-

imate power laws on a restricted range of k, over which their evolution may be well

described by the similarity solution for the corresponding scale free spectrum. Thus

the CDM spectrum has n 2 on galactic scales and n -1 on cluster/supercluster

scales- therefore the study of scale free spectra with -1 n 2 is relevant for un-

derstanding the development of large scale structure in a CDM-hke model. Another

important practical application of similarity solutions is to use them to check the

73



validity of N-body simulations even in the deeply nonlinear regime.

An aspect of self-similarity which merits attention is the range of n, the spectral

index of the initial spectrum, for which the statistics characterizing the growth of

perturbations are well defined. More precisely, n must be restricted from below and

above to prevent statistical measures of interest from diverging as the size of the

system is made infinitely large and the interparticle spacing made infinitesimally

small, respectively. In a finite system such a divergence is manifested by the influence

of the largest (smallest) scales on the evolution of all intermediate scales of the system.

This influence increases as the size of the system is made larger smaller), and thereby

breaks any possible self-similar scaling. This occurs (in spite of the initial conditions

being scale free) if either the statistic is ill defined even in the initial configuration,

or the dynamical influence of increasingly large or small scales is unbounded. If the

former is true in an otherwise reasonable initial configuration, then it must mean that

the particular statistic is not a suitable measure of the properties of the system (similar

to the case of well behaved probability distributions having ill-defined moments).

However, if the breaking of self-similarity is due to a divergent ynamical effect in

a statistic of interest then it bears closer examination. The goal of this work is to

examine the possible breaking of self-similar evolution for power law initial spectra

with a view to assessing its influence on the formation of structre.

Early studies of self-similar evolution in cosmology include those of Peebles 1974);

Press Schechter 1974); Davis Peebles 1977); and Efstathiou & Eastwood 1981).

Davis Peebles 1977) made a detailed analysis of the BBGKY hierarchy equations

and presented solutions for the deeply nonlinear regime based on the stable clustering

ansatz. Efstathiou et al. 1988) tested self-similar scaling in N-body simulations of

scale free spectra with n = 2, 1, 0, 1. They examined the scaling of the correlation

function �(x, t), and of the multiplicity function describing the distribution of bound

objects. They verified the predicted scaling for both statistics, and found consistency

with the picture of hierarchical formation of nonlinear structure on increasingly large

length scales. Their results for n = 2 did not match with the self-sirnilar scaling as

well as the other cases. Bertschinger & Gelb 1991) used better resolution simulations
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to address these questions and also found similar results. These authors concluded

that the reason for the weakness of the n = 2 results was the finite size of their

simulation box, as the n = 2 case has the more power on large scales and therefore

requires a larger box-size to approximate the infinite volume Emit with the same

accuracy as larger values of n.

The N-body results of Ryden Gramann 1991), and Gramann 1992) suggested

that the n = 2 case was different for a more fundamental reason. They studied

n = -1 simulations in two dimensions, which are the analog of n = 2 in three

dimensions, and examined the scaling of the phase (Ryden Gramann 1991), and

then both phase and amplitude (Gramann 1992) of the Fourier transform of the

density field. The scaling was found to be different from the standard self-similar

scaling. Characteristic wavenumber scales, instead of following the self-similar scaling,

-2/(2+n) -2given in two imensions by, .. (t) oc a(t) oc a(t) showed the scaling k oc

a(t)-'. They pointed out that this scaling would be obtained if the linear bulk velocity

field were used to define characteristic scales, as opposed to the conventional choice

of using the rms 8p1p. Other studies in two dimensions also suggest that a transition

in nonlinear evolution occurs at n = -1 (Klypin & Melott 1992).

It has been noted a along in the literature that the bounds on n for the self-similar

solution to be applicable are - < n < The requirements of an upper (lower)

limit are made to prevent the single particle velocity dispersion from diverging due to

contributions from small (large) length scales. These bounds on n are clearly stated as

the domain of applicability of self-similar scaling in Peebles Davis 1977), Estathiou

et al. 1988), and in the recent review of Efstathiou 1990). However, it appears to

be implicitly believed that self-similar scaling is applicable for n > 3, rather than

n > -1. This is because the divergence of the peculiar velocity field need not be

an indication of unbounded growth of perturbations. The primary quantity that

measures perturbation growth is the rms density contrast which is indeed convergent

in linear theory for n > 3 as k --+ 0 6plp - a 2k3+n) . Thus Peebles 1993, p.

545) presents the standard self-similar scaling as being applicable for 3 < n < 4

(increasing the upper Emit from n = to n = 4 relies on the asymptotic behavior of
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second order contributions to the density). Efstathiou 1990) is more cautious, but

nevertheless hopes that: "If n lies outside this range (i.e., - < n < ), the clustering

may still approximate self-similar evolution over restricted ranges of length and time,

although n > 3 is required to ensure that clustering proceeds from small to large

scales."

To summarize, there is no clear answer on the issue of self-similar scaling for

-3 < n < -1, in part due to conflicting results from N-body simulations: while three

dimensional simulations have arguably shown consistency with standard self-similar

scaling, the results of some two dimensional studies (which are numerically more

convincing) point to a breaking of this scaling. Aside from the observation that the

linear peculiar velocity field diverges but the linear density contrast does not, there are

no analytical analyses of this issue. Our goal is to analyze the dynamics of the coupling

of long wave modes by analytical and N-body techniques to address this question.

One must bear in mind that the answer can depend on the particular statistic used to

pose the question. For the purposes of structure formation the question of real interest

concerns the self-similar growth of the density contrast. Therefore our attempt will be

to identify the statistical measures that relate to the growth of density perturbations

and examine their scaling behavior.

Section 42 provides a more detailed assessment of whether 3 < n < -1 is ex-

pected to yield self-similar evolution on the basis of simple dynamics. We argue that

the issue can only be settled by a full consideration of the ynamical coupling of long

wave modes, rather than by studying the convergence of particular statistics using

linear solutions. In our analysis we shall work with the Fourier space density field as

it quantifies the relative amounts of power on different scales most directly. In Section

4.3 we use perturbation theory to study self-similar scaling. We begin in Section 43.1

by formulating perturbation theory in a way that obeys this scaling at every order

provided there are no long wave divergences. Next, in Section 43.2 we demonstrate

that there are potentially divergent perturbative terms, but the leading order con-

tributions exactly cancel out. Section 44 presents an alternative, non-perturbative

approximation to estimate the coupling of long wave modes. The analytical results
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obtained in this section are compared with results of N-body simulations in Section

4.5. Using high resolution simulations the scaling of the phase and amplitude is stud-

ied and kinematical effects which do not affect perturbation growth are distinguished

from dynamical ones which do. In the light of this, the questions of good and bad

statistics in the context of self-similar scaling are addressed. Some general aspects of

the study of nonlinear phases are also explored. We conclude in Section 46.

4.2 Long Wave Divergences for n < -I

We suppose for simplicity that the matter distribution after recombination may be ap-

proximated as a pressureless fluid with no vorticity. We further assume that peculiar

velocities are nonrelativistic and that the wavelengths of interest are much smaller

than the Hubble distance cH-1 so that a nonrelativistic Newtonian treatment is

valid. We shall work with comoving coordinates and conformal time d- = dtla(t),

where a(t) is the expansion scale factor. The proper peculiar velocity, _= dild is

taken to be a potential field, so that, up to an arbitrary constant, it is fully spec-

ified by its divergence, =_ V We assume an Einstein-de Sitter universe, with

a(,r = (Hor/2)2, where Ho is the present day value of the Hubble parameter. We will

also assume that the initial density fluctuation field, X-) =_ 8p(X-)1p, is a Gaussian

random field. Its Fourier transform is defined as 8(k,,r = f dx/(27r )3 e-k�5 5x-,,r)

and similarly for O(k, -r). The power spectrum (spectral density) of 4,r) is defined

by (8(k,,r) 5(k',,r) = P(k,,r) 86(k + W) , where SD is the Dirac delta function.

These approximations and the cosmological fluid equations for a self-gravitating

fluid that follow are described in detail in Section 32.1. Fourier transforming equa-

tions 3.1) gives:

a8 3k k ki
+ 0 Id � � k, k kj, -r) (4.3a)2 0 O 8- -(9,r ki

ao 'a 6 g Id3kj k2 ki (k - ki) -
�7r + - - :;-- 0kl,,r) O(k - 1,,r) (4.3b)

Ir 2k, 21 k' 12

77



The fields on the left-hand side are all functions of and r. The nonlinear terms

on the right-hand side of the above equations represent the coupling of modes at all

pairs of wavevectors ki , k kj), which influence the evolution of and at the fixed

external wavevector k.

In order to study the limiting behavior as one of the pair of wavevectors (l, k k)

approaches in magnitude (i.e., as the wavelength A = 27r/k is made infinitely large),

consider the variance of the nonlinear terms. For simplicity we take k, -- in

the integral on the right-hand side of equation (4.3a). Approximating - 1 by

k, dropping the dependence on T, and denoting the resulting variance by Ok we

obtain:

3kj � � k, k d3k2 0*(k2) 8*(k)d k 0_ 8A A;2 k2
1 2

3 3 k '11;2 O(kj)O*(-)8(-8*(-)
jd A;, jd J A;2 R k2 k) k (4.4)

1 2

Now we make the further approximation of taking k, small enough that the linear

solutions are valid, thus giving:

6(kl,,r) a(T Xi(kj) 0klT) -ii('081(kj). (4.5)

Substituting the expression for 0k,,T) in equation 45) into equation 44) and

evaluating the ensemble average using the properties of Gaussian random fields we

finally obtain:

k-ki 2
V;(k) i25D(O)pM jd3kj k2 P11(ki) _ 26D(O)p(k) 2 jdkjPjj(kj). 46)

1

Note that in expressing the 4-point moment of equation 44) in terms of P(k)

and P1(ki) we have assumed that 6k) is a Gaussian random field as well. It is

straightfoward to demonstrate that the right-hand side of equation (4.3b) takes the

limiting form shown in equation 4.6) as well.

Equation 4.6) indicates that if Pi, (ki) OC kn with n < 1, then the right-hand side1
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diverges due to contributions from low k. Thus a simple examination of the nonlinear

terms in the cosmological fluid equations by substituting the initial istribution of the

density and velocity field demonstrates the possibility of long wave divergences. These

divergences can potentially be present in solutions for 8(k,,r) and O(k,,r) obtained

from these equations. It is not possible to make any definitive statements, however,

because these are two coupled differential equations - it is necessary to first separate

the equations for and 0, and then identify the nonlinear terms that affect the

amplitude and phase of each quantity (since they are complex variables) to determine

whether the divergent terms affect a particular statistic of interest. This is done in

two different ways in Sections 43 and 4.4.

Before proceeding with a formal analysis of the divergent nonlinear pieces, we

make the connection between the divergent nonlinear terms to the advective (V )

terms in the real space equations. By tracing back the nonlinear terms on the right-

hand side of equations 4.3) to the fluid equations in real space it can be seen that the

terms which contribute to equation 4.4) arise from the V8 and VV- terms. It

is easy to see why such terms should diverge by examining the relation of the power

spectrum of the peculiar velocity to that of the density in linear theory. Using the

linear solutions of equation 4.5) and the definition O(i,,r) -,6(X-,,r), gives,

2Pi 1 . (k 7 = &,'Pi 1 (k) / k (4.7)

where Pll,,,(k) is the linear power spectrum of the peculiar velocity. The rms bulk

velocity on a scale x - k1, Vb(X, r), is given by integrating P(k) over k with a

window function W(kx) (just as one integrates over P(k) for the rms smoothed density

contrast):

Vb(X,,r )2 dkP,,,,(k,,r )W2 (kx) = iL2 47rfdkPjj(k)W2(kX). (4.8)

Since W(kx) - I as k ---+ (see for example the top-hat window function in equation

(3.24b)), the integral on the right-hand side of equation 4-8) diverges at low k for

n < -I in the same manner as the integral in equation 4.6). Thus via the advective
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(v.V) terms in the fluid equations, the divergence of the non] near terms demonstrated

in equation 4.6) can be traced to the bulk velocity field on a given scale receiving

divergent contributions from k -+ 0, i.e., from the long wavelength modes.

We can now understand why this divergence may not affect self-similar scaling:

the bulk velocity field does not in general have any influence on the growth of pertur-

bations on small scales. In particular, large contributions to the bulk velocity field

from long wave modes correspond to an almost uniform translation of the fluid, and

therefore should not couple to the evolution of at all. This reasoning, and indeed

the entire analysis of this section, relies on making plausible connections of linearized

statistics for and to their nonlinear dynamics. Therefore, while it provides a use-

ful guide to one's intuition, it does not substitute for a rigorous examination of the

nonlinear dynamics.

4.3 Self-Similarity and Perturbation Theory

4.3.1 Formalism

The basic formalism for perturbation theory has been developed in Section 32. Here

we use that formalism to explicitly show that, in the absence of long wave divergences,

perturbative contributions to the power spectrum preserve the standard self-similar

scaling of equation 4.2). At sufficiently small scales 8pl > even at the earliest

times - hence the perturbative expansion breaks down at these scales. This means

that even in the absence of a divergence as --+ oo a high-k cutoff, , must be

used to truncate the perturbative integrals. The requirement of a cutoff restricts the

nonlinear effects that can be studied perturbatively. Nonlinear contributions from

wavenumbers q > k,, cannot be evaluated, but the contribution to any (from all

q < k) are calculable.

It is interesting to note that provided the contributions to P(k) from low q are

convergent, a perturbative expansion can be consistently defined such that the self-

similar scaling of equation 42) is obeyed. This is achieved by defining the high-
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k cutoff k to be time dependent such that: k,,(,r) oc k.(-r) oc al/(3+n) . With

this scaling, we now show that at all orders in perturbation theory the nonlinear

contribution to the power spectrum takes a self-similar form with characteristic scales,

denoted by kc(T), obeying k(T) o a/(3+n). This should not be surprising since,

once k,(T) is chosen to scale with k,.(,r), there is no other scaling in the problem. We

proceed by obtaining the functional dependence of perturbative contributions on k

and , without needing to know them explicitly. Without loss of generality, consider

the contribution to P(k,,r) from the term (6�, (k,,r) T)), with < m < and

I being even. This contribution is denoted P,j_,n(k,,r) and is defined in equation

(3.13). We substitute for 81 and b;n in equation 3.13) to obtain:

Pnl -,, (k, -r = a d3q, ... dq(1-2) Siol) ... (k q --- i-1) 810m) ...

81 qm q(1-2))) Ml q, ... q(1-2)) (4.9)

where Ml is a dimensionless function of F,n) and F(') which are defined in equations

(3.10). Note that we have already set the arguments of the two 8's opposite to each

other, so that the expression on the right-hand side above has dimensions of a power

spectrum. On taking the ensemble average, the (I - 2 independent phase factors

contained in the functions qj) must cancel pairwise for the result to be non-zero

(recall that the 81's are taken to be independent Gaussian random variables). Thus

we obtain (I - 22 Dirac-delta functions which reduce the number of integration

variables to (I - 22. 12 powers of P(qi = A are also present. Collecting the

relevant factors which provide the k andr dependence, and imposing the high-k cutoff

k,,(T), we obtain

P.,,-, (k, T = a' k3(1-2)/2+nl/2 M2(ku (T)lk), (4.10)

where M2 is another dimensionless function. Taking ku(T) =qa where is a

constant, and introducing a new dimensionless function M3, we finally obtain

PmI-m (k, T = a/(3+n) M3(k 77a 2/(3+n)). (4.11)
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Equation 4.11) gives the desired self-similar form for characteristic scales kr(r) de-
fined by setting kP(k,,r = 1: kr 1/(3+n) (4.2).

.(-r) o a in agreement with equation

Thus at every order in perturbation theory the self-similar scaling of the power

spectrum, and therefore of physical measures of perturbation growth such as the

smoothed density contrast in real space constructed from it, is preserved. However,

this scaling is broken if the perturbative integrals diverge as -+ 0, thus requiring a

low-k cutoff. This possibility is considered next.

4.3.2 Long Wave Divergences in Perturbative Contributions

We showed in Section 32 that at second order in the power spectrum there are terms

that are divergent for n < 1 due to the contribution from k --+ 0. The two however

cancel each other. This cancellation does not prove there is no divergence in the power

spectrum. We must investigate higher-order terms 8 (k ). It is tedious to evaluate the

full expressions for 1 for I > 2 and then to form the power spectrum contributions

Pnl-,n(k). However, we do not need the exact nonlinear power spectrum if we are

interested only in determining whether leading-order long wave divergences are can-

celed. In this case, it is sufficient to work from the outset with only the leading-order

divergent parts of 81(k).

Iterating equations 37) and 3.8), one finds that the leading-order divergences

arise from the term with m = in equations 3.7), with the contribution doubled

in equation (3.7b) because of the term m = I - 1. The leading-order divergent

contributions are then

AI(k - 61-1 k Ck , BI(k - 201-1 k k k d3q 51 (4.12)
q2

The leading-order ivergence appears at q 0 in the function C(k). Using equation

(3.8) and iterating we now get the leading-order divergences of 1 and 01:

1-1

81(k) 0(k) 81(k) (4.13)
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From equations 313) and 413) we arrive at the leading-order divergent part of

P.,i-. (A;) - (M Pi i M (4.14)

where
(1-2)/2

(CI-2) = (I - 3! k1-2 d3 P(q) (4.15)
3q2

The net contribution to the leading-order divergent part of the nonlinear power spec-

trum 3.12 is

2(,r) p at-2(,r) ((I-2) 2)!
P(k,,r - a 11(k) -(I 2)! (M - 1)! (1 M (4.16)

m=2 M=1

Now, the sum over m is just the binomial expansion of ( _ 1-2 . Therefore, the sum

vanishes for n > 2 and the leading-order divergences cancel at every nonlinear order

of perturbation theory!

This surprising result does not prove that P(k, -r) is finite, however. Equation

(4.13) gives only the most divergent contribution to 81(k), (". Terms diverging as

(1-2 or more slowly have been neglected. The nonlinear power spectrum may still

have an n-point contribution that diverges as (CZ-4). The lowest order at which such

sub-dominant divergences would appear is I = 6 P = a(P15 + P24 P33 P42 51)-

Let us gather together the ingredients needed for evaluating the nonlinear 6-point

contribution to the power spectrum. Using equations (3.9a) and 3.13), we get

P15(k = 15P11(k) d3q, P1(q1) d 3q2 P1 1 (q2) F(s) (q-1, - q-1, q- q-2, k (4.17)

P24(k = 12f d3q, P(ql)fd3q2Pl(q2)Pll(lk-q2l)F4s)(ql,-qlq2,A;-q2)

x F2(') 42 - (4.18)

P33(k = 91(k) d3qPll(ql) dq2Pl(q2)F3-')(ql,-q,,k)F(')(q2,-q2,-k)
f f 3
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+6 d3qPll(ql)fd3q2Pl(q2)Pll(lk-q,-q-1)
1 2

xF3""(qj I q2 k - q - Q F3""(_qj, -6, q + q - (4.19)

The factors of 15, 12 9 and 6 in equations 4.17)-(4.19) come from the number of

equivalent graphs obtained by relabeling the internal wavevectors, assuming that F(')

and G00 are fully symmetric in all their aguments.

To make further progress we must evaluate 3, 4, and 5. With increasing 

the full expression for F(q-,,..., q') rapidly becomes unwieldy. We have attempted

to evaluate some of the divergent terms in equations 4.17)-(4.19). By examining

the form of the sub-dominant divergent parts of the contributing terms, it appears

that the second term in P33 Mst cancel with the divergent part Of P24 as q --+ 0

(and the other terms shown must cancel separately), if the net contribution at this

order is to be convergent. We evaluated these divergent pieces using the "Maple"

package for symbolic mathematics, and had tentatively concluded that the two terms

did not cancel. However we were not able to check our calculations, and due to the

computational complexity involved, did not pursue them further.

The results from the analysis of perturbation theory are therefore not conclusive.

The cancellation of leading divergences is certainly suggestive of an underlying kine-

matical effect which appears in the power counting assessment of the divergence, but

cancels out on computing the net dynamical influence on the power spectrum. We

will interpret this cancellation by examining the phase of 8(k) in Section 44. However

it is not feasible to evaluate all the divergent terms at arbitrary order in perturbation

theory, therefore we pursue a somewhat different approximation to evaluate long wave

mode coupling in the next section.
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Coupling

The approach in this section relies on assuming that the nonlinear terms in the

Fourier space cosmological fluid equations 43) are dominated by the coupling of

long wave modes. With this ansatz the mode coupling contribution is estimated and

then checked for self-consistency. This allows us to obtain a leading order solution

for the phase shift as described in Section 4.4.1. To make further progress we need to

make the additional assumption that at low k, the Fourier space density and veloc-

ity fields are continuous and therefore amenable to a Taylor series expansion. This

analysis is presented in Section 44.2, and its limitations are iscussed.

4.4.1 Solution for the Phase Shift

In equations 4.3) the integrands on the right-hand side involve products of and 

evaluated at ki and k - k1). Let

6(k ki = ) +E(k) ki) Ok ki = W + Wk, kj), (4.20)

where and are unknown functions. In this section we shall use "function" to

refer to random valued fields as well. We shall also suppress the time dependence of

8(k,,r) and of O(k,,r) for convenience (though when we introduce the near solutions

the T dependent part will be explicitly written). Substituting equation 4.20) into

equations 4.3) gives,

3kj+ OW = -id 0(ki) k2 [8(1-c + q, k-1) = Ak), (4.21a)

00( a ki (k - 1) - [0(- +-O(k)+-8(k)=_ d3kj k2 = -2 21 112 Oki) k) k, k, k).a Ir 2k, k

(4.21b)

In order to estimate the nonlinear effects of long wave modes we assume that the

85

4.4 Analytic Approximation for Long Wave Mode



integrands on the right-hand side of equations 4.21) are dominated by the contri-

bution from ki < k. We then approximate O(ki) by the linear solutions given in

equation 4.5): 01(k,,,r = -ii8i(kl), because for k < k the amplitude of the den-

sity perturbations is taken to be very small. Thus we write the right-hand side of

equations 4.21 as

3k,.ki I. k - 3kl.ki kA(k = i S(k) d 2 81 (kJ) it id k2 8kl),E(k ,ki), (4.22a)

3k,.ki A; 3kl -1 A;
B(k) =.iO(k) id k2 8ki) +itfd k2 81(ki) W(k , ki). (4.22b)

1 1

In the expression for B(k) we have multiplied the right-hand side by 2 to include

the contribution from (k - 1) -- 0 as required by the symmetry of the integrand.

We have also explicitly written out the dependence of 0k_1), so that 81 (kl) does not

depend on r. We now define the integrals:

k1 8(--i Jd3ki - kJ) (4.23)k2

where i = V�'-__1; and,

k ki 8(_ W(- 6 k kik) ki k ki ki k k (4.24)E( = ii f d3k, k2 k) d3k, 7C2 M , 1)
1 1

Using these definitions equations 4.21) can be written as:

a8(k)
a-r + O(k) = i ii k 5 8k + Ek) (4.25)

'90(k) -a - 6 -+ - OM + - 6(k = a k O(k) + W(k).r a 2 (4.26)

The above equations are exact aside from using the linear solutions for 0kl in

the right-hand side of equations 421). We have defined al in equation 4.23 so

that it is purely real. This can be verified by using the relation of 1 to its complex

conjugate: 81(ki = -ki), which is required to ensure that 8(i) is real. The reason
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for introducing is that it is independent of k and r, therefore, given the initial

density 1, it can be treated as a numerical constant.

We now turn to the issue of long wave ivergences. The variance of - is:

2) 3kj P11(ki)(a Ck d 47r dkPll(A;,). (4.27)k2
1

Thus (a2) is a ivergent integral for n < 1. To proceed further we need to estimate

the degree of divergence of the integrals Ek-) and W(k). We do so by using equation

(4.20) to substitute for and in E and W. The resulting expression for the variance

of E is:

2 3kj 3k k ki k k2(JE(k)l a2 d d 2
A;2 k2

1 2

61 ki) 8( ) [6(k - k1 - 8(k)] [8*(k- - k2 - k)] ).(4.28)

To simplify this expression we assume that for the purposes of assessing the degree of

divergence, a the fields involved are well approximated by the linear solution. Then

the expectation values can be evaluated using the properties of Gaussian random

fields. Of the twelve terms that result, the leading contribution in the long wave Emit

arises from the term with (1 k 81'(- (8(k - Icj)8*( - k2)) in the integrand. This

contribution is:

(I E(k)12) i2 P (k) SD (0) k2a2. (4.29)
3

The variance of the first term on the right-hand side of equation 4.25), iizi is

exactly the same as the above result for E(k-) 12) , hence both terms must be retained

at the same order in evaluating the long wave contribution. Likewise, it is easy to

show that W in equation 4.26) is of the same order as the first term on the right-hand

side, and is also proportional to a in its degree of divergence.

Equations 4.25) and 4.26) can be re-written as a pair of second order differential
- . ),equations in for and . For the result is (with a

+ _,i2 &2 6 ii3iii - - _ E + ia&E + W 0. 430)
a T2 a
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Since, to leading order, we know the degree of divergence of the variances of all the

terms involved in this equation, we are now in a position to evaluate the effect of

long wave divergences. The variables in equation 4.30) are complex, hence it can be

simplified further by separating the real and imaginary parts. To this end we express

8 in terms of its amplitude and phase as:

6(k,,r) A(k,,r) e (4.31)

For convenience, we further define Ee-i'O, V We-"O, and E te-io.

With these substitutions equation 4.30) separates into its real and imaginary parts

(respectively) as:

il&2 6 it+ + 2 + Re 2 + ia&B + V E = 0, (4.32a)
a 7 a

a� a -
(2 - Ii&) A a - + Im a E+ib&E+W-E =0. (4.32b)

"Re" and "Im" denote the real and imaginary parts, respectively, of the expressions

in the square brackets.

We now make the ansatz that O(a), and that A - 0(aP), where < p < .

Since E - W - O(a) (in an rms sense) from equation 4.29), keeping terms of (a2)

in equation (4.32a) gives,

A -_�2 + 2,i - i2&2) + Re [iit&E - E = . (4.33)

As we shall see below, retaining the term E is required for consistency. We make the

assumption that at leading order in a the two parts of equation 433) in brackets

vanish separately (this will also be justified below). The -first part gives a quadratic

equation for ,

2 - 2 ,i& + 2&2 = (4-34)
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which has the solution, a = d a'. Thus the leading order solution for is:

0(k-,,r = a(,r) al + (4.35)

where k) is the value of the phase at the initial time.

The solution of equation 4.35) can be used to justify the assumptions that have

been made. Firstly, is indeed of O(a), as assumed at the outset. Further, equations

(4.24) and 4.35) can be used to simplify the expression for E and thereby justify

setting the first part of equation 4.33) to separately. To start with let us write E

in terms of A and :

(4.36)io(k)E =,ifd3ki A;2 Ai(kJ)e k k, kI

Differentiating equation (4.36) with respect to and multiplying by e-i'O(k) gives,

a 3k, k k k, k k,E _.B+,ifd
a k21

x f A(k) + Aw�w I (4-37)

The leading order terms on the right-hand side above are the two terms with �: they

are at least of O(a 2). However, by substituting = into equation 4.37), and

comparing with the expression for that follows from equation 4-36), it can be seen

that these leading order terms exactly cancel the contribution from iii&B in equation

(4.33). Thus the surviving terms in the second part of equation 4.33) are a of lower

order than O(a2) - therefore they can be neglected in comparison to the first part

of the equation which was used to get the solution for of equation 4.35). This

establishes the consistency of the approximations used to obtain this solution.

The variance of the phase shift given by equation 4.35) is:

. . 2
2 3kJ (k. ki )

a(,r)2,k2 A;2 P11(ki), (4.38)

where 50(k,,r) = O(k,,r - k), and k and k, are unit vectors. Since k is a fixed
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external vector the angular integral can be performed so that the final result depends

only on the magnitude of :

[go(- r) 2 47r k2T a(,r)' dk-, Pi (c, (4.39)

Thus the leading order solution for 6(k) involves a growing (divergent) phase shift,

but there are no contributions to the amplitude at this order. The above analysis can

be repeated for the velocity divergence 0k) to verify that the leading order result for

Ow is the same, with equation 4.35) giving the solution for its phase as well. These

results were obtained by retaining terms of (a2). Since divergent terms of 0(CX) are

also present in the equations we cannot say anything conclusive about the degree of

(possible) divergence of the amplitude k). In the following section we shall address

this question by expanding the equations to next order in a with some additional

assumptions.

The solution 4.35) for the phase shift has a simple physical interpretation. As

noted in Section 42, the linear bulk velocity Vb diverges due to contributions from long

wave modes (equation 4.8)). The limiting form of the integral given in equation 4.8)

for v 2, and that of equation 4.39), is the same. This connection can be made more

precise by imagining a single sine-wave density perturbation in real space: X-' -r)

60 sin(k- -. Now suppose that the fluid in which this perturbation is made is moved

with a uniform translational velocity of magnitude Vb(,r) given by 4.8) (the scale x

in equation 4.8) has no connection to the spatial variable used here). The distance

moved by each fluid element is f dr Vb(,r = Vb(-r) a(,r)/a(,r), where we have used

Vb(,r) oc it(,r). If the coordinate frame is kept fixed relative to this translational

motion, then the density perturbation will acquire the following time dependence due

to the bulk velocity: x r = o sin Vba/iz)], where is the direction of the

bulk velocity. Therefore acquires a phase shift: 80(k = k - a/it Vb- On squaring,

and averaging over angles between and 6 this gives:

- 2 1 a2[80(k T) - - k2 V2(,r). (4.40)
3 j12 b
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Note that the averaging over angles is consistent with the angular integral done to get

equation 4.39), and amounts to estimating the typical phase shift due to a superpo-

sition of bulk flows of magnitude Vb directed randomly with respect to k. Substituting

for v from equation 4.8) and assuming it is dominated by the contribution from lowb

k, we recover the result in equation 4.39). Thus we have shown that for n < 1

the dominant phase shift is due to the kinematical effect of the bulk motion on small

scales imparted by long wave modes. This is consistent with the connection between

divergences in the nonlinear terms in the fluid equations and Vb made in Section 42.

4.4.2 Taylor Series Expansion

In this section we make an additional assumption about the k-dependence of 8(k)

and O(k): we assume that at small k, 8 and are smooth functions of k with a well

defined derivative with respect to k. With this assumption we expand the nonlinear

integrals in equations 4.3) in a Taylor series in (ki/k) about and restrict the range

of integration to small kj. Thus we write: k - k1) 8(k - ki a8l,9k, and likewise

for O(k - k). Unfortunately, the standard assumption about and in cosmology

is that they are Gaussian random fields at the initial time. Thus at each value of

k they are given by a random number drawn from a probability distribution. The

distribution of or with respect to k is quite the opposite of a smooth function,

because its values at any two k are uncorrelated. We return to this point later in this

section and in Section 46, but here we proceed with the Taylor series approach.

With the Taylor expansion described above, the right-hand sides of equations

(4.3), denoted by Ck) and D(k), take the form:

CM Id3k, 0) V 6(k) ki + 0k)8(ki) + (4.41a)

2-k 2(ki . ) k, - k - '90(k)D(k) d3k, 0k,) O(k) + O(k - --p-kj -r- ... ,k2k2

(4.41b)

where both equations have been expanded to the same order. In equations 4.41 we
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have included the contributions from (k- - k-,) -+ 0 as well. We now write equations

(4.41) at the order shown as linear equations by appro,,dmating and at small k,

by the linear solutions 1 and 01. Recall that we had obtained one linear term on the

right-hand side of each equation in the previous section by introducing the integral

Oe. Here we introduce three new integrals: q, -f and gij,

Id 3A;18(- d3k,[2(k -ki )2 _ 1]8(- d 3kjkjjkjj6(k-j), (4.42)ki) -Y ki) gj

where k1i and 1j denote the ith and jth components of the vector j, so that gij

is a tensor. Note that aside from the dependence of -y on the direction of all the

integrals in equation 4.42) are independent of k and T. In addition, all the integrals

are convergent in an rms sense for n > 3.

We proceed by writing down a second order differential equation for in terms of

C and D:
a 6 a

- - = C + -C + D. (4.43)
a T2 a

We then use the definitions of equation 4.42) to rewrite equations 4.41) as:

CM = iLk Cx + iL[kjgjjaj] - a770, (4.44)

and

D(k = ibk -0 - L[kjgjjaj] - &yO, (4.45)

where a =_ 91akj, and the repeated indices i and j are summed over. We will now

attempt to solve these equations for the amplitude and phase of to a given order

in a. We begin by using equations 4.44) and 4.45) to eliminate in the terms on

the right-hand side of equation 4.43) (we will also need to use the left-hand sides of

equations 4.3)). Some algebra yields the following equation for :

+ -ya - 2za - - 2a(kjgjiaj) 6 (1 + a7)8
a I T2

C - '(kjgjjailn6)]2 _ iL2 z 21nS 6[-k-gijCx + '(kgijaj) I
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a2
Ik 6 - i(kjgjj(9IIn6)j -ya + j2 8= O. (4.46)

a 1 + aq

We now make a WKB analysis, which relies on taking the phase to be more rapidly

varying than the amplitude, to obtain self-consistent equations for the amplitude and

phase. After some algebra we get the following relation for by solving equation

(4.46) at 0(a 2):

=gk- a igipajo). (4.47)

This yields the solution,

= kTFa + 0 ; F = egg-'(l - e -ag), (4.48)

where al has been represented as a column vector, kT denotes a row vector representing

k, and g and F are 3 by 3 matrices, with I being the identity matrix. This solution

can be verified by substitution using equation 4.46). Note that for ag < , F can be

expanded as a Taylor series: F a+ a 2g/2+a 3g2 /6+.... For ag I the leading order

solution is = ak + 0j, in agreement with 4.35). The solution for in equation

(4.48) can be used in equation 4.46) to obtain an equation for A only. After some

algebra, this equation simplifies to:

il I (kigijaj) 6 + iL2+ � � -ya - -2a _(1 + a7)A A(kjgjj8jInA)I
a I aq I 2

jZ 2
iL2A(kgja,)2 aa+ In - _(kjgjj,9jInA) ya A = . (4.49)

a 1 + aq j12

Note that in this equation for A, all terms involving i and the divergent integral a

have cancelled out exactly! Hence the solution for A has no dependence on a, the

only divergent integral in equation (4-46). Obtaining the fun solution for A is still not

possible as it requires solving equation 4.49) a nonlinear partial differential equation;

however, for our purpose the key goal was the assessment of the a-dependence of A.

Thus the Taylor series approach leads to two striking results: the solution for the

phase given by equation 4.48), and the result that the evolution of the amplitude is
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not influenced by any divergent integrals.

The above conclusions thus support the interpretation discussed in Section 42

that for 3 < n < -1, there is no dynamically relevant divergence. Hence the

evolution of scale free spectra will obey the standard self-similar scaling provided the

statistics used are relevant to the growth of density perturbations. The divergent

growth of the phase is not a measure of perturbation growth as it arises from bulk

motions. However these conclusions rest on the assumption of a valid Taylor series

approximation for and 0. This assumption cannot be justified in the cosmological

context for random-phase Gaussian initial conditions. Hence we must still regard

the conclusions of this section as being suggestive of the answer, but not as proven

results.

4.5 Self-Similar Scaling in N-body Simulations

N-body simulations provide a powerful means for testing the self-similar scaling of

scale free spectra. The deeply nonlinear regime is accessible in these simulations,

thus oering the possibility of measuring the complete similarity solution. N-body

simulations have limited dynamic range, but they do not rely on any approximations

of the kind made in Sections 43 and 4.4. Therefore they provide a complementary

technique to the analytic approaches of previous sections. In this section we study

two scale free N-body simulations, n = and n = 2, in order to measure their

scaling properties.

The n = 2 simulation was performed by Ed Bertschinger. It is a particle-

particle/particle-mesh simulation with 128' particles. Data from 21 time outputs of

this simulation were analyzed, with the scale factor a(,r) increasing by a factor of 2/4

between successive outputs. The n = simulation was performed by Simon White.

It is also a particle-particle/particle-mesh simulation done with 1001 particles. Data

were available for 9 time outputs, with the scale factor increasing by a factor of .6

between successive outputs (except for the first two). This simulation is used as a

control case to test the accuracy of the results for the n = 2 simulation. Since
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n = does not suffer from potential long wave divergences, the standard self-similar

scaling is expected to hold, and has in fact been convincingly demonstrated in earlier

work. Hence the results of this simulation provide a good indication of the degree of

accuracy with which the N-body simulations show the similarity solution (though the

differences in the number of particles and other parameters in the two simulations

complicate such a comparison).

Here we briefly outline the N-body calculation; many relevant details are provided

by Gelb 1992). The particle-mesh calculation of the simulation is done by solving

Poisson's equation on a cubical grid using the fast Fourier transform (FFT). In Fourier

space Poisson's equation is:

47rGpb(,r)a 2
'�b (A; r) k 2 (4.50)

where is the Fourier transform of the perturbed gravitational potential. In an

N-body simulation the density is computed using the number density of a finite num-

ber of particles. The real space density is computed on a cubical, three dimensional

grid by interpolating from the particle positions. This density is then Fourier trans-

formed using the FFT algorithm, and thenl�(k,,r) is computed using equation 4.50).

Multiplying 1(k,,r) by Zk (which corresponds to taking a gradient in real space) gives

the Fourier transform of the gravitational force vector. This is transformed back to

real space with three FFTs for each component. The real space forces are then used

to move the particles using the equation of motion in comoving coordinates. This

procedure is interated to continue the simulation. To increase the resolution of the

forces, the force on each particle due to its nearest neighbors is computed by direct

summation using a Plummer model for the force law: F(r = _GM2FI(r 2+ 2)3/2,

where is known as the Plummer softening parameter. It is (1/2560)L for the n = 2

simulation, where L denotes the size of the box.

Thus in the N-body simulations there are many departures from the idealization

of an infinite, continuous fluid. The limitations common to any N-body simulation

are the finite size of the box and the discrete nature of particles. Additional scales
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are introduced into the system due to the finite PM mesh and the Plummer softening

parameter. The limitations introduced due to the presence of these length scales

must be kept in mind while evaluating the accuracy of N-body results. As described

in Section 41, the presence of these scales is not a fundamental drawback; it only

means that one must be careful to ensure that the range of scales used to study the

scaling in time are such that they allow for intermediate asymptotic self-similarity to

set in.

The simulation data at chosen output times is stored in the form of particle

positions. These were interpolated onto a 512 3 grid to get the real space density,

which was fast Fourier transformed to get the Fourier transform of the density, 6(k, a).

For the n = simulation the grid used for interpolating the density was 128': the

relative coarseness of this grid led to some numberical suppression of the power at

high-k as evident in Figure 49. 6(k, a) is a complex number at each k, and is therefore

represented by a real and imaginary part. The values of k are represented by a three

dimensional vector (k., ky, k, and k,, being integers ranging from

-63 to 64. Thus the magnitude of k is the wavenumber in units of Ak = 27r/L, with

the longest wave in the box being of magnitude k = 1. Since 8(k = 8*(-k), only

one half of the values of k) are independent; thus, for example, the half of Fourier

space with k < does not contain any independent values of k) if all the values

for > are known.

We use the data for 8(k, a) to compute the amplitude A and phase given by,

a) = A k, a) e (4.51)

A and are the basic variables used for our self-similar scaling analysis. In Figures

4-1 to 43 the trajectories of the phase and amplitude of individual Fourier modes

as a function of time are shown for the n = 2 simulation. Each of these figures

has four panels, and each panel shows the evolution of five modes, chosen so that

they represent a large range in k. These figures give an iea of how individual modes

evolve, in contrast to the regular behavior shown by the statistics computed from
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them. Thus even at relatively early times when most statistics obey linear behavior,

the amplitudes and phases can be seen to follow quite jagged paths.

A technical problem in the measurement of the phase arises because conventionally

the phases are defined modulo (2,x). The phase trajectories that follow are shown in

Figure 41, where a the phases he between -x and7r. This is how the phases from N-

body data have been computed in previous studies (Ryden Gramann 1991; Scherrer

et al. 1991; Suto & Suginohara 1991). However, a glance at the phase trajectories in

Figure 41 makes it clear that this will have the effect of randomizing the phases at

late times relative to their initial values, even if the growth were monotonic. This is

because even a small change in the phase, 50, could cause it to be mapped to a value

indicating a change of (27r - 01). If the trajectories could be obtained with arbitrarily

small increments in a then such artificial mappings could be un-done, and the phases

plotted without constraining them between -7r and 7r. Since outputs are available

only at discrete values of a, there is a two-fold ambiguity in defining the phase.

Consider the phase values at two successive a's for a given k: O(k, aj) and 0(k, a+,),

defined in the usual way to lie between -7r and 7r. Let 60 = O(k aj+,) _O(k a)

An alternate value for the phase at a+1 is k a+, = Ok, aj) ± (27r - I 0j 1), where

the sign in positive if 80j < and vice versa. To choose between and O', we follow

the trajectory of each mode, and at each successive value of a, we define the phase by

taking the magnitude of the change in phase to be the smaller of 180 I and (27r - 150j 1).

The result is shown in Figure 42. As long as the typical changes in phase at successive

times are less than7r, this procedure is a reasonable way of extending the range of .

As we shall see, this considerably extends the degree of phase nonlinearity accessible

to our analysis.

Following Ryden Gramann 1991) and Gramann 1992), we define the following

statistics as a measure of the degree of nonlinear evolution. For the phase we define the

mean deviation from the initial phase, 50 k, a) =_ (I 80(k, a) 1 = a) - -, a)),

where ai is the initial value of a. The averages indicated are performed over the

different modes within a shell in k-space whose wavenumbers lie between (k-0.5) and

(k + 0.5). For the amplitude we simply measure the mean amplitude (A(k-, a)) within
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each shell in k-space. The results are plotted in Figures 44 and 45 for n = 2, and

Figures 48 and 49 for n = . These results are interesting in themselves, but here we

limit ourselves to using them to define characteristic wavenumber scales, which are

then used to test for self-similar scaling. For Figures 44 and 48, if we had used the

phase trajectories as shown in Figure 41 (i.e., defined to he between -7r and 7r), then

all the late time curves for (80(k, a)) would have reached a maximum of (27r/3) - this

corresponds to a distribution of 0(k, a) that is uncorrelated with - a). However,

it is clear from Figure 44 that 3 shows systematic growth well beyond 2r/3. Thus

with the phase information that we have generated, previously unexplored aspects of

phase evolution in the deeply nonlinear regime can be addressed.

To analyze self-similar scaling, we define two characteristic wavenumbers. The

first, denoted kc(a, OC), is defined by setting YO(k, a) = OC, where or is a constant.

The second, denoted kC(a, AC) is defined using the amplitude as follows:

IA(k, a) - Al(k- al
-= AC) (4.52)

Al k a)

where Ai(k) a) is the linear solution for A, and A is a dimensionless constant. Thus

kc(a, AC) is the wavenumber at which the fractional departure of the amplitude from

the linear solution is A These statistics involve summing the magnitudes of the

departures from linear behavior for each mode within a given k-shell; hence they

probe the degree of nonlinearity more directly than if a statistic was computed first,

and then its departure from the linear solution was calculated.

Figure 46 is a plot of log[kC(a, Oc)] vs. a with n = 2, for 4 different values of

OC. Also shown in the plot are the scalings expected from the standard self-similar

behavior) Ic oc a2/(3+.) oc a-2 for n = 2, and the scaling resulting from the solution

for 80 given by equation 4.35), k oc a-'. The plots show that for Oc =r and r/2,

the latter scaling is closely followed; but for the lower values Oc = r/4 and X/8,

the former scaling is more closely followed. We verified that the trends did reflect a

gradual transition in the scaling of kc(a, OC) by plotting a larger range of Oc down to

OC = 7r/20. This can be interpreted as follows. For a given k, at early times as the

98



phase just begins to depart from the linear solution (in which remains constant in

time), its evolution is dominated by perturbative or other weakly nonlinear efrects.

These effects in general involve the coupling of a range of values of W, mostly in the

vicinity of k = k, and obey the standard self-similar scaling. However at late times

the phase shift is dominated by the bulk flow due to the longest waves in the box.

The resulting phase change is given by equation 4.35) - it is a smooth function of a

and and therefore dominates the other, more stochastic components of the phase

change at late times. Thus the phase shows behavior that we can interpret as arising

from a combination of the kinematical divergence described in previous sections, and

a dynamical, nonlinear component which obeys the standard self-similar scaling. The

results for n = shown in Figure 410 show only one behavior, the self-similar scaling,

k oc a-'/'. This is expected as the linear bulk velocity does not diverge, therefore the

longest waves in the box do not dominate the phase shift.

For the amplitude scaling, Figure 47 shows a plot of log[k(a, A,,)] vs. a with

n = 2, for ,, = 025) 0.5) 1 2 For sufficiently high k, all four curves closely follow

the standard self-similar scaling, k oc a-2 . This is consistent with the indications from

previous sections that the divergence from long waves does not affect the amplitude.

All the curves show a consistent departure from the oc a-2 behavior at low ,

roughly for < This most likely indicates that the absence of power on modes

with wavelengths larger than the box-size has slowed the growth of modes which

would otherwise be enhanced by the former. Thus the standard self-similar solution

for n = 2 is obtained only on scales significantly smaller than the box-size. For

n = the self-similar scaling k oc a-1/3 is again shown convincingly.

Our results are in partial disagreement with those of Gramann 1992). She found

that for n = -1 in two dimensions (the analog of n = 2 in three imensions),

the standard self-similar scaling is broken for both the phase and amplitude. Our

results for the phase scaling are consistent with hers, but the amplitude scalings are

quite different our results show good agreement with the scaling o a whereas

hers agree with kr oc a'. Since the statistics that we have measured were chosen

to agree with her definitions, it is difficult to explain the origin of the isagreement.
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It is conceivable that there are basic differences in the dynamics in two and three

dimensions, but this is not reflected in the analytical results of Section 44.

4.6 Conclusion

In Sections 41 and 42 we presented arguments outlining the need to examine the

self-similar scaling of scale free spectra, pk) C kn' for 3 < n < -1. It was shown

that terms diverging due to the contribution from long wave modes were present in

the cosmological fluid equations, but that it needed to be determined whether they

had any dynamical influence on the growth of density perturbations.

We have examined this issue through analytical and N-body techniques in Sec-

tions 43-4.5. Our conclusions can be summarized as follows:

(i) In Section 43.2 we examined perturbative contributions to the power spectrum to

examine the possibility of long wave divergences in these contributions for 3 < n <

-1. We found that divergent terms were indeed present, but that the leading order

divergences cancelled out at each order in perturbation theory. Terms which diverged

less strongly are also present, but due to the computational complexity involved we

were unable to analyze them.

(ii) In Section 44 we developed a non-perturbative approximation to study the non-

linear coupling of long wave modes. We obtained a solution for the phase shift whose

variance is divergent for 3 < n < 1. This divergence was interpreted to arise from

the kinematical effect of the bulk flows induced by long wave modes. With additional

assumptions requiring that the Fourier space density be amenable to a Taylor series

expansion around k we showed that the evolution of the amplitude of 6(k a is not

influenced by the divergent terms. It was emphasised that the Taylor series expan-

sion cannot be justified for Gaussian random -fields, and therefore the final conclusion

cannot be regarded as a proof.

(iii) In Section 45 we studied the self-similar scaling of an n = 2 scale free sim-

ulations, and used an n = simulation as a control case. It was demonstrated

numerically that for n = 2 the phase shift indeed obeys a scaling consistent with

100



the solution found in Section 44 at sufficiently late times. At early times the evolu-

tion of the phase shift was consistent with the standard self-similar scaling. Thus the

phase shift arises from a combination of kinematical effects due to large scale flows

which dominate at late times, as well as genuine dynamical effects which dominate at

early times in the weakly nonlinear stage of its evolution. With some further analysis

it may be possible to construct a concrete analytical model to support this interpre-

tation.

(iv) The scaling of the amplitude followed the standard self-similar form, except at

wavenumbers k 10 (in units of 27r/L). This is consistent with the results of Sections

4.3 and 44, and the interpretation that dynamical measures of perturbation growth

preserve self-similar scaling for 3 < n < -1.

It was disappointing that neither of our analytical approaches led to a rigorous

result regarding self-similar scaling of the amplitude of the density. However, in

combination with the N-body results they lead us to conclude with some confidence

that the self-similar evolution of the density contrast is preserved for 3 < n < -1.

The kinematical interpretation for the scaling of the phase shift provides a useful

guide to identifying statistics susceptible to such effects. The rms displacement of

particle postions is another statistic which would be dominated by the bulk motions

from long wave modes for n < -1, and must therefore be used with caution as a

measure of nonlinear evolution.

It is a pleasure to thank Alan Guth for many stimulating discussions which helped

to clarify and sharpen our arguments. We thank Simon White for providing the

results of his scale free simulations, his hospitality at the Institute of Astronomy,

and for several useful suggestions. We also acknowledge useful discussions with Shep

Doeleman, Mirt Gramann, Ofer Lahav, Samir Mathur, Adi Nusser and, especially,

David Weinberg.

101



REFERENCES

Barenblatt G I. 1979, Similarity, Self-Similarity, and Intermediate Asymptotics (New

York: Consultants Bureau)

Bertschinger, E. 1992, in New Insights into the Universe, ed. Martinez, V. J., Portilla,

M. Saez, D. (Berlin: Springer-Verlag), p 65

Bertschinger, E. Gelb, J. 1991, Comp. in Physics, 5, 164

Davis, M. Peebles, P. J. E. 1977) ApJS, 34, 425

Efstathiou, G. 1990, in Physics of the Early Universe, ed. Peacock, J. A., Heavens,

A. F. Davies) A. T. (Bristol: IOP), p. 361

Efstathiou, G. Eastwood, J W. 1981, MNRAS, 194, 503

Efstathiou, G., Frenk C S., White, S. D. M., Davis, M. 1988, MNRAS, 235, 715

Gelb, J. M. 1992, PhD. Thesis, M.I.T.

Goroff, M. H., Grinstein, B., Rey, S.-J. Wise, M. B. 1986, ApJ, 311 6

Gramann, M. 1992) ApJ, 401 19

Klypin, A. A. Melott, A. A. 1992, ApJ, 399, 397

Makino, N., Sasaki, M. Suto) Y. 1992, Phys.Rev.D, 46, 585

Peebles, P. J. E. 1974) A&A) 321 391

Peebles, P. J. E. 1980) The Large-Scale Structure of the Universe (Princeton: Prince-

ton University Press)

Peebles, P. J. E. 1993, Principles of Physical Cosmology (Princeton: Princeton Uni-

versity Press)

Press, W. H. Schechter, P 1974) ApJ, 187, 425

Ryden, B. S. Gramann, M. 1991, ApJ, 383, L33

102



Scherrer, R. J.) Melott) A. L. Shandarin, S. F 1991) ApJ, 377 29

Suginohara, T. Suto Y 1991, ApJ, 371, 470

Vishniac, E. T. 1983, MNRAS, 203, 345

Zel'dovich, Ya. B. 1965, Adv. Astron. Ap. 3 352

103



4

2

4 0
_19-

-2

-4

4

2

I-
t-i
-v. 0
-9-

-2

-4

0 .2 .4 .6 .8 1 0 .2 .4 .6 .8 1
a(r) a(-r)

4

2

.4i 0

-2

-4

k=1-5
4

2

i-i
1.2 0

-2

-4

0 .2 .4 .6 .8 1 0 .2 .4 .6 .8 1
a(T) a(T)

Figure 41 The trajectories of the phases 0(k,,r) of individual Fourier modes for
n = 2 axe plotted vs. a(r). The magnitudes, k, of the wavevectors are labeled in
each panel; the full vectors were chosen as = , 0, k). Within each panel increases
in the following order: solid, dotted, dashed, long-dashed, dashed-dotted curves. The
phase is defined modulo 27r, and is therefore constrained to lie between -7r and 7.
Outputs at 21 values of a have been used to plot each trajectory. At a = 0, the value
of 0 at the earliest time has been plotted again to show the expected linear behavior.
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Figure 42 The same trajectories as in Figure 41 are plotted, but has been re-
defined so that it is no longer constrained between -7r and 7r (notice the limits on
the y-axis). To overcome the modulo 27r constraint, the phase at each time output is
defined by adding to the previous value of the phase the change in phase which is the
smaller of two choices as described in Section 45. In linear theory the phases do not
cha.uge with time; significant departures from this can be seen in all but the lowest 
modes. 
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Figure 43 The trajectories of the amplitudes k,,r) of individual Fourier modes for
n = 2 are plotted vs. a, as in Figure 41 for the phase. Note that at early times
A oc a: to check this a the curves have been joined to A = at a = . Therefore
the lowest value of a at which epartures from a straight line occur shows nonlinear
behavior.
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Figure 44 For n = 2, the mean magnitude of the phase deviation is plotted vs. 
for 20 values of a. This is defined as (I 0k, a) 1), where 80(k, a) = O(k, a) - k a),
with ai being the initial value of a. The averaging is performed over all the modes
in shells in k-space of width Ak = This is the statistic used to study the scaling
properties of the phase. The plots of characteristic scales, k(a) vs. a in Figure 46 is
obtained by setting 180(k, a) 1 = or, where is a constant. Hence they axe obtained
by reading off the values of k and a at which a horizontal line drawn at the chosen
value of the intersects these curves.
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Figure 45 For n = 2, the mean amplitude (A(k, a)) is plotted vs. k, as in Figure
4-4 for the phase. The dotted line has a slope of -1 as expected in linear theory for
(A(k)).
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Figure 46 For the n = 2 spectrum, the scaling of characteristic wavenumber scales,
k, vs. a is shown, as derived from the mean phase deviation. As described earlier in
Figure 44, c,, (a, ) is the value of and a at which (I 60(k, a) 1 = Oc. The four solid
curves correspond (from top to bottom) to the values of Oc labelled at the top of the
plot. Note that for high values of (the top 2 curves), the scaling closely agrees with
that derived from equation 4.35): k, oc a-', which is shown by the upper dotted line.

-2A transition towards the standard self-sin3ilar scaling k o a shown by the lower
dotted line, occurs for the 2 lower values of 0,.
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Figure 4-7 For the n = -2 spectrum, the scaling of characteristic wavenumber scales
derived from the departure of the amplitude from linear growth, k'r(a, A,,) vs. a is
shown for 4 different values of A, (see equation 4.52) for the efinition of k"(a, A,,)).
All the curves have a slope close to the standard self-similar scaling, k oc a-2 at high
k. For k below about 10 the slope becomes shallower, probably due to the limitation
of a finite box.
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Figure 4-9 Mean amplitude for n = 0: this is the counterpart of Figure 4-5 for n = .

112

I I I I I I I I I I I I I -- I I I I I I -

n=O



2

1.8

1.6

1.4

1.2

1-11
-6-
C�1-1

laI
Zen
0

1

.8

.6

-1.4 -1.2 -1 -. 8
log a

-. 6 -. 4 -. 2 0

Figure 410 For n = the scaling k. vs. a is shown using the mean phase deviation.
Notice that in contrast to the n = 2 case, here only one behavior for all values of

-2/3Or is evident: the self-similar scaling Ar o a
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Figure 4-11 For n = 0 the scaling kr vs. a is shown using the mean amplitude. Again,
as in Figure 410, the standard self-similar scaling is recovered.
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