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0. INTRODUCTION

Models of large scale systems typically in-
clude weak couplings between subsystems. This re-
sults in the evolution of different portions
of the system at different time scales.
Frequently, intuition suggests that subsystems or
groups of states evolve slowly in comparison
with their internal dynamics. This suggests that
the overall system dynamics analysis may be simpli-
fied (or sometimes made tractable) by separately
analyzing the dynamics at a specific time scale -
by assuming constancy of variables evolving at
slower time scales and steady state values for
variables at. faster time scales. If this
intuition were to hold true, it then follows
that system behavior may be approximated by
means of a hierarchy of increasingly simplified
models valid at progressively slower time scales.
The motivation for the present work came from
mathematical models for interconnected power
systems. These models have variations on several
time scales - nearly instantaneous adjustment of
loadbus angles and voltages, dynamics of the swing
equations, voltage regulator and turbine power
generation dynamics, generation scheduling (set
point changes) are examples of progressively slower
dynamics. ’

With this general philosophy in mind, we study
in [8), a very simple class of systems - linear
and time invariant (equation 1l.1). For this class
of systems we model weak coupling by parametric
dependence of (1.1) on €, and obtain tight condi-
tions under which a hierarchy of reduced order
models valid at different time scales may be
constructed. The study of this (deterministic)
eguation is also relevant to the hierarchical
aggregation of finite state Markov processes with
some rare transitions. The details of the
application of our results in this context are
presented in [3].

l. PROBLEM FORMULATION

We consider here .linear time-invariant systems
of the form

‘€

[ B
x = AO(E)X x(O)--xo (1.1)

€ . . .
where x € Rn and the matrix Ao(e) is an analytic
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function of ET, of normal rank d except at € = O

«©
k
A (E) =} A € (1.2)
0 *=0 Ok
we analyze the asymptotic behavior of xe(t) as

€ v+ 0 on the time interval [0,®{. In general
© . €
Lim sup !Ix (t)—xo(t)ll¢0
EYO t>0
so that asymptotic behavior at several time scales

needs to be considered - xe(t) is said to have well
defined behavior at time scale t/g(e) (where g(g)

: . . o . R
is a monotone increasing C- function on IO,EO] with

c{0)=0) if there exists a bounded cogtinuous func~
tion yk(t), called the evolution at that time scale,

such that

lim sup er(t/q(e))-yk(t)l[=0 850, T<w  (1.3)

e+0 8<e<T
In this paper we give tight sufficient con-
ditions under which the multiple time scale be~
. € . .
havior of x (t) can be fully described by its evo-

. : k .
lutions at time scales t/€” for integers

k=0,1,...,m. These evolutions are used to:
(i) provide a set of reduced order models
valiéd at different time scales.
(ii) provide an asyvmptotic approximation to

x%(t) valid uniformly on [0,=l.

2. NOTATION

. nxn .

Given A € R , R(A) and N(a) denote the range
ané null space of A. pP(A) denotes the resolvent
set of A, i.e. the set of A € C such that the

resolvent, denoted R(A,A): = (A-AI)" Y, is well
defined.
A=C is an eigenvaluve of algebraic multi-

T
plicity m, then the Laurent series of R(A,A) at

' Formally, our results hold even if Ao(e) is only
assumecd to have an asymptotic series (see,for eg.
[4]) of the form (1.2), provided that A_(€) has
constant rank & for EG]O.aol- 0




B

A=0 has the form (see [5])

-P(a)

m-1 @
roum= ZELL TR e [ @ e
=1

k=0

where P(a), the eigenprojection: D(A), the eigen-
nilpotent and S(A) are defined by

-1
P(a):= —EELR(K.A)& (2.2}
-1
D(a):= —ﬁ;f AR(L,A)EA (2.3) .
Y
-1 -1
S(n):= ”ij; ATTRA,A) G (2.4)

withy a positively oriented closed contour en-
closing 0 but no other eigenvalue of A.

A is said to have semi-simple null structure
(SNS)if D(A)=0. 1In that case, R = R{A) @ N(a)
and P(A) is the projection onto N(A) along R(A).
A is said to be semi-stable if it has SNA and all
its non-zero eigenvalues are in the open left
half plane.

If A is semistable, then lim e>T=P(A) and
P
further
® at -1
s@y= - f (& panars GeranT - ).

Since S(A) is a generalized inverse of A
S(a)ax = x = AS(A)x for all x € R(A)) we denote it

A,
3. STATEMENT OF MAIN RESULT -

We present here a uniform (in t) asymptotic
A {e)t

approximation of e involving behavior at

time scales t/ek ;: k=0,1,...,m. The proof relies
on results in [5] and is given in {8]

For our development, we need an array of

matrices Aik’ i>0, k>0 starting from the AOk of

(1.2), constructed recursively ((k+l)}th row from
kth row) by the following formula

T (x,) %) I

e S
k
Ak vp

)

1

<

3 +‘..+kp*l=p—1

v.>1, k,>0
i— i—

x,) k.)
[(s}} i + i
X P(Ak,o) and Sk =(Ak'0)

Remarks: (i) The computation of Ak+l I3 reguires
’

only A# O'Ak l""’Ak 241 so that it proceeds
’ r ’
triangularly as shown in Table 1.

where S

.

(id) " of special interest to us in the sequel is
the structure of AOO'AlO'A2O""' since they

determine the leading term in the asymptotic expan--
A ere ]

sion of e . For these matrices, (3.1) can be

simplified considerably. (see Remark (ii) after

the Theorem and Corollary).

Theorem

Let AO(E) be a merrix with SNS of the form

(1.2) of normal rank & except at €=0. 1If AOO'AlO'
Amo are semistable with rank AOG + rank A10+...+

rank A ,.=d then
m0
n -
R = R(AOO)(Q .- ® R ) @N (3.2)

: m
where N= ™ N@& ).
o o

Further let P, for k=0,1,...,m, be the pro-

jection onto N(Ako) defined by (2.2) and
9, = I-P,.
Then
{ Ao(e)t i
1im sup|le ~dE, )|l =0 (3.3)
€40 20 |

where ®{€,t) is any one of the four expressions
below .

m Akoﬁkt
e

) Q * PgP, ---B ) (3.4)
=0
«
n et
) e L (3.5)
x=0
X
m £t
T e XO (3.6)
k=0
m
< _k
)} Akoc t (3.7)
k=0 -
e !

With this theorem in hand, the entire multiple
time-scale structure of (1.1) can be read off
as follows:




Corollarv

Under the conditions of Theorem 1, xe(t) of
(1.1) has the following multiple-time scale
properties:

Aot

(1) lim sup 1‘x&(t/ek)-ﬂk e xoll=0
€ <E<ELT<
€40 0<6LE<T<™ (3.8)
for >0, T<® and k=0,1,...,m 1
t
(ii) lim sup |lxe(t/5m)- T e mo x0=‘=0
€40 0<8<te " (3.9)

for 6>0

where ﬁ0=l and T, =P P....P

x“PoP1 k-1 for k=1,...,m.

Equation (3.8) implies the results of {1)
and [2] where the authors analyzed the convergence

AO(E)t/Es for fixed s and over compact time

intervals of the form {0O,T].

Remarks: (1) The reguirement of semi-stability

- 3 .
of the matrices AOO 10,...,A 0 to obtaln well

defined behavior at time scales t/e is a tight
sufficient condition. Examples showing the
failure of the theorem without these assumptions,
are given in Section 4.

(ii) It is important to be able to calculate the
AkO for k=0,1,...,m for the given data AOO,AOl
Adz"" of (1.2), without having to obtain the
complete matrix of Table 1. This can be done by
a variety of methods. One approach that is suc-
cessful is the formal asymptotics of [7] relating
the A?O to Toeplitz matrices constructed with

the {a }
01 i=0

the Smith McMillan zero of AO(E) at €=0. In par-

. Connection is made therein with

ticular m ls'proven to be the order of the Smith

McMillan zero of A (€) at €=0. The construction

from the A

of the AkO' 01

proceeds as follows:

n
. : . 3
AlO is the null extension to R of AOl mo

) . ,
R(AOO)/N(AOO), i.e. A =P A, Py, where P, is

defined in the theorem. Pictorially AlO is the null

. n N :
extension to R of A, _ obtained as below

10
i A
N ) -0 Rn Ol; rR?
00 P
~ 0
~
~
~
~
~ ~
» ~
10 .

>3 n} =
R ‘R(AOO) = N(Aoo)

(here, io is inclusion)

. . n .
A__. is the null extension to K of

20

202 A01"‘00‘“01

i.e., A20 is given by

o ~ ; A
mod R(Aoo)moa R(Alo),N(Alo)

’

P D
P1%0 P02 "01"00”‘01) of1

where Pl is defined as in the theorem Pictorially,

AZO is the null extension to Rn of ﬁzo

202 A01"‘00"‘01

: i
A 1, . 4
N(Am) — (Aoo) = R > i »
~ (o]
. =P
~ N, )=R lR(AOO)
A AN
A20 \\ l Pl
Sy
NA NG IR(ﬁlo)

and so on. The reader may refer to [7] for
comclete proof and details as well as the con-
nections between AlO'AZO'A30"" and the Toeplitz

matrices
- N b
[ 20 10 “oo |
E’A01 Aoo} ! | o1 Boo ©
; Ay O f (\AOO 0 o J
L J
l Boz  Poz Por 2o Ql
Boa Por Poo O© l
Ayy P O 0 ;
t By O 0 0 j

-ané so on.

(iii) The reader should observe using the formulae

5 v g i3 W < Y = s
in remark (ii) above that even if no(e} AOO*EAOI

une svstem can exhibit time scales of order
t/f t/f and so on. This is not & widely appre-

£

ciated fzct

(iv) Reduced order mocels. It follows from (3.8)
and (379) that the evoiution of xt(t) at time

k . .
scales t¢/e", k=0,1,...,m is given by

(0 e X0 4 x=0,1,...,m
Yy =.€e x*0 =0,1,...,
Thus, xs(t) may be represented asvmptotically by

the following expression unifcrmly valié Zor ©>0.

xE (v = yk(skt) + (z-

7, ) + o(l)
o X k

]

W e~1H




From the direct sum decomposition (3.2) of the

theorem, it is clear that a basis T € R can be
chosen such that

T1 2e™ 7

m
e
- . ~ _l
’.eAlet T "+ (1)

AO(E)t
e =T =

1 At

| e 0

Lo _ o (3.10)

where Ao,...,Am are full rank square matrices re-

presenting the non zero portions of A, . ,...,A in

00 m0
the new basis. (3.10) shows that the system (1.1)
decouples asymptotically into a set of subsystems
evolving at different time scales qoverned by the
reduced order dynamics of {Ak}

(v} Two time scale systems have been the focus of
considerable effort by Kokotovic and coworkers
(see [6], for example). It is easy to check in
our framework that the assumptions in their
systems guarantee precisely two time scales.

(vi) The significance of each row of matrices in
Table 1 is discussed in [8].

4. TIGHTNESS OF THE SEMI-STABILITY CONDITION

The requirement of semi-stability for the
matrices AOO'Alo""’AmO for the system (1.1) to

have well defined behavior at time scales

t, t/e,...,t/em_is tight.Counterexamples can be
found for the nonexistence of well defined be-~ :
havior at different time scales if Ako is not

semi-stable for some k:

Counterexample 1 (AOO does not have SNS)

o o fl 1]
Let A (€)= - e |
L1 0] LD 1 j
Then,
" cosvE & -vE sinvE t;
EAO(E): - . ; e~ &
c sinve t cosv/E t :
AO(E)t/E

Note that lig e does not exist for any t
£30

showing lack of well defined behavior at time

scale </t.

Recall that AkO is semistable if it has

SNS anc all non zero eigenvalues have negative

real sarts. The necessity of the second condition

is obvious and we will not furnish a counter-

examzle to illustrate it. We would like to note

that the semistability of Ao(e) for ee{o,aol does

Remark:

3 i m
not imply the semistability of {Ako}k=l

Counterexample 2 (Semistability of A (ex?é

sexmistability of Ako

Let
{ I 01 1 o0 -2

5o - 0 0 Oi +e {1 1 -2
11 -2 lo o o

Note that the eigenvalues of A () are

0, -2+0(l), —c2+o(g ), show1ng the semi-stability

of A (€). It may further be verified that
fo -1 o
AiO = 0 o] [¢]
’ 0 =-1/2 0

so that Alo is nilpotent. 1In this example

2
Ay (e)t/e
lim e does not exist showing no well-
22

s e s . 2 . :
defined behavior at time scale t/€° in spite of a

. R 2
real eigenvalue of order ¢ .

S. CONCLUSIONS

Qur theorem in section 3 provides a uniform
aprroximation over the entire real line [0®) to
the evolution of the system (1.1), thereby exten-
ding the results of [1], which are valid only for
intervals of the form [0,T/e}. Furthermore,
the hierarchy of models which result from the
Corollary is an extension to multiple time scales,
of the aggregation results in [6). The application

. of these approximations to problems of estimation

ané control, are currently under study, and will
be reported in later publications.
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Apyreveneenns B gy
o Pp-1,1

2 is grown triangularly.




