ABSTRACT

This paper reports the outcome of an exhaustive analytical and numerical investigation of stability and robustness properties of a wide class of adaptive control algorithms in the presence of unmodeled dynamics and output disturbances. The class of adaptive algorithms considered are those commonly referred to as model-reference adaptive control algorithms, self-tuning controllers, and dead-beat adaptive controllers; they have been developed for both continuous-time systems and discrete-time systems. The existing adaptive control algorithms have been proven to be globally asymptotically stable under certain assumptions, the key ones being (a) that the number of poles and zeros of the unknown plant are known, and (b) that the primary performance criterion is related to good command following. Hence, it is important to critically examine the stability robustness properties of the existing adaptive algorithms when some of the theoretical assumptions are removed; in particular, their stability and performance properties in the presence of unmodeled dynamics and output disturbances.

A unified analytical approach has been developed and documented in the recently completed Ph.D. thesis by Rohrs [15] that can be used to examine the class of existing adaptive algorithms. It was discovered that all existing algorithms contain an infinite-gain operator in the dynamic system that defines command reference errors and parameter errors; it is argued that such an infinite gain operator appears to be generic to all adaptive algorithms, whether they exhibit explicit or implicit parameter identification. The practical engineering consequences of the existence of the infinite-gain operator are disastrous. Analytical and simulation results demonstrate that sinusoidal reference inputs at specific frequencies and/or sinusoidal output disturbances at any frequency (including d.c.) cause the loop gain of the adaptive control system to increase without bound, thereby exciting the (unmodeled) plant dynamics, and yielding an unstable control system. Hence, it is concluded that none of the adaptive algorithms considered can be used with confidence in a practical control system design, because instability will set in with a high probability.

1. INTRODUCTION

Due to space limitations we cannot possibly provide in this paper analytical and simulation evidence of all conclusions outlined in the abstract. Rather, we summarize the basic aspects of a single class of continuous-time algorithms that include those of Monopoli [4], Narendra and Valavani [1], and Feuer and Morse [2]. However, the same analysis techniques have been used to analyze more complex classes of (1) continuous-time adaptive control algorithms due to Narendra, Lin, and Valavani [3], both algorithms suggested by Morse [4], and the algorithms suggested by Egardt [7] which include those of Landau and Silveira [6], and Kreisselmeier [19]; and (2) discrete-time adaptive control algorithms due to Narendra and Lin [22], Goodwin, Ramadge, and Caines [23] (the so-called dead-beat controllers), and those developed in Egardt [17], which include the self-tuning-regulator of Astrom and Wittenmark [18] and that due to Landau [20]. The thesis by Rohrs [15] contains the full analysis and simulation results for the above classes of existing adaptive algorithms.

The end of the 1970's marked significant progress in the theory of adaptive control, both in terms of obtaining global asymptotic stability proofs [1-7] as well as in unifying diverse adaptive algorithms the derivation of which was based on different philosophical viewpoints [8,9].

Unfortunately, the stability proofs of all these algorithms have in common a very restrictive assumption. For continuous-time implementation this assumption is that the number of the poles and zeros of the plant, and hence its relative degree, i.e., its number of poles minus its number of zeroes, is known. The counterpart of this assumption for discrete-time systems is that the pure delay in the plant is exactly an integer number of sampling periods and that this integer is known.

This restrictive assumption, in turn, is equivalent to enabling the designer to realize for an adaptive algorithm, a positive real error transfer function, on which all stability proofs have heavily hinged to-date [8]. Positive realness implies that the phase of the system cannot exceed ± 90° for all frequencies, while it is a well-known fact that models of physical systems become very inaccurate in describing actual plant high-frequency phase characteristics. Moreover, for practical reasons, most controller designs need to be based on models which do not contain all of the plant dynamics, in order to keep the complexity of the required adaptive compensator within bounds.

Motivated from such considerations, researchers in the field recently started investigating the robustness of adaptive algorithms to violation of the restrictive (and unrealistic) assumption of exact knowledge of the plant order and its relative degree. Ioannou and Kokotovic [10] obtained error bounds for adaptive

observers and identifiers in the presence of unmodeled dynamics, while such analytical results were harder to obtain for reduced order adaptive controllers. The first such result, obtained by Rohrs et al [11], consists of "linearization" of the error equations, under the assumption that the overall system is in its final approach to convergence. Annaou and Kokev [12] later obtained local stability results in the presence of unmodeled dynamics, and showed that the speed ratio of slow versus fast (unmodeled) dynamics directly affected the stability region. Earlier simulation studies by Rohrs et al [13] had already shown increased sensitivity of adaptive algorithms to disturbances and unmodeled dynamics, generation of high frequency control inputs and ultimately instability. Simple root-locus type plots for the linearized system in [11] showed how the presence of unmodeled dynamics could bring about instability of the overall system. It was also shown there that the generated frequencies in the adaptive loop depended nonlinearly on the magnitude of the reference input and output.

The main contribution of this paper is in showing that two operators inherently included in all algorithms considered -- as part of the adaptation mechanism -- have infinite gain. As a result, two possible mechanisms of instability are isolated and discussed. It is argued, that the destabilizing effects in the presence of unmodeled dynamics can be attributed to either phase -- in the case of high frequency inputs - or primarily gain considerations -- in the case of unmeasurable output disturbances of any frequency, including d.c., which result in nonzero steady-state errors. The latter fact is most disconcerting for the performance of adaptive algorithms since it cannot be dealt with, given that a persistent disturbance of any frequency can have a destabilizing effect.

Our conclusions that the adaptive algorithms considered cannot be used for practical adaptive control, because the physical system will eventually become unstable, are based upon two facts of life that cannot be ignored in any physical control design: (1) there are always unmodeled dynamics at sufficiently high frequencies (and it is futile to try to model unmodeled dynamics) and (2) the plant cannot be isolated from unknown disturbances (e.g., 60 Hz hum) even though they may be small. Neither of these two practical issues have been included in the theoretical assumptions common to all adaptive algorithms considered, and this is why these algorithms cannot be used with confidence. To avoid exciting unmodeled dynamics, stringent requirements must be placed upon the bandwidth and phase margin of the control loop; no such considerations have been discussed in the literature. It is not at all obvious, nor easy, how to modify or extend the available algorithms to control their bandwidth, much less their phase margin properties.

In Section 2 of this paper proofs for the infinite gain of the operators generic to the adaptation mechanism are given. Section 3 contains the development of two possible mechanisms for instability that arise as a result of the infinite gain operators. Simulation results that show the validity of the heuristic arguments in Section 3 are presented in Section 4. Section 5 contains the conclusions.

2. THE ERROR MODEL STRUCTURE FOR A REPRESENTATIVE ADAPTIVE ALGORITHM

The simplest prototype for a model reference adaptive control algorithm in continuous-time has its origins to at least as far back as 1974, in the paper by Monopoli [14]. This algorithm has been proven asymptotically stable only for the case when the relative degree of the plant is unity or at most two. The algorithms published by Narendra and Valavani [1] and Feuer and Morse [2] reduce to the same algorithm for the pertinent case. This algorithm will henceforth be referred to as CAL (continuous-time algorithm No.1).

The following equations summarize the dynamical equations that describe it; see also Figure 1. The equations presented here pertain to the case where a unity relative degree has been normally assumed. In the equations below r(t) is the (command) reference input, and d(t)=0.

Plant: \[y(t) = \frac{g_B(s)}{A(s)} [u(t)] \] (1)

Variables: \[w_i(t) = \frac{s^{i-1}}{P(s)} [u(t)] \quad \text{i}=1,2,...,n-1 \] (2)

Model: \[y_M(t) = \frac{g_B(s)}{A_M(s)} [r(t)] \] (4)

Control Input: \[u(t) = k^T(t) w(t) \] (5)

Output: \[e(t) = y(t) - y_M(t) \] (6)

Parameter Adjustment Law: \[\dot{k}(t) = \sum_{\text{i}=1}^{n-1} \frac{1}{\text{n}} \dot{w}_i(t) e(t) \] (7)

Nominal Controlled Plant: \[g_B* = \frac{g_B}{A^*} = \frac{g_B}{AP - AK^* - BK^*} \] (8)

Error Equation: \[e(t) = \left(\frac{g_B*}{A^*} - \frac{g_B}{A}\right) [r(t)] + \frac{g_B*}{A^*} \left(\frac{k^T(t) y_M(t)}{k^* r} \right) \] (9)

In the above equations the following definitions apply:

\[k^*(t) \frac{1}{k^* + \ddot{e}(t)} \] (10)

where \(k^* \) is a constant 2n vector

\[g_B^* = g_B(u(n-1))u\frac{1}{u(n-1)}s^{n-2} + g_B(u(n-2))s^{n-3}+...+g_B \] \(u_1 \)

where \(k^*_u \) is the \(i \)-th component of \(k^*_u \)

\[g_B^* = g_B y_n^{-1} + g_B y(n-1)s^{n-2}+...+g_B \] \(y_1 \)

where \(k^*_y \) is the \(i \)-th component of \(k^*_y \) and the vector \(k^*_y \) componentwise corresponds exactly to the vector \(k(t) \) in eqn. (3a). In the preceding equation we have tried to preserve the conventional notation [3,4,5,8], with \(P \) representing the characteristic polynomial for the state variable filters and \(k(t) \) the parameter
misalignment vector. The quantity \(g\mathbf{B}^{*} \) represents the closed-loop plant transfer function that would result if \(k \) were identically zero, i.e., if a constant control law \(k\mathbf{A}^{*} \) were used. Under the conventional assumption that the plant relative degree is exactly known, and if \(B_{u} \) divides \(\mathbf{P} \), then \(k^{*} \) can be chosen [1], such that

\[
g\mathbf{B}^{*} = \mathbf{A}^{*} \frac{g\mathbf{B}_{\mathbf{M}}}{\mathbf{A}_{\mathbf{M}}} \tag{11}\]

If the Relative Degree Assumption is violated, \(g\mathbf{B}^{*} \) can only get as close to \(\mathbf{A}_{\mathbf{M}} \) as the feedback structure of the controller allows. The first term on the right-hand side of eqn. (9) results from such a consideration. Note that if eqn. (11) were satisfied, eqn. (9) reduces to the familiar error equation form that has appeared in the literature [8] for exact modeling. For more details the reader is referred to the literature cited in this section as well as to [15].

Figure 2 represents in block diagram form the combination of parameter adjustment law and error equations described by (7) and (9).

3. THE INFINITE GAIN OPERATORS

3.1 Quantitative Proof of Infinite Gain for Operators of Class

The error system in Fig. 2 consists of a forward linear time-invariant operator representing the nominal controlled plant complete with unmodeled dynamics, \(g\mathbf{B}^{*} \), and a time-varying feedback operator. It is this feedback operator which is of immediate interest. The operator, reproduced in Fig. 3 for the case where \(w \) is a scalar and \(T=1 \), is parameterized by the function \(w(t) \) and can be represented mathematically as:

\[
u(t) = G_{w}(\tau)\{e(t)\} = u_{0} + w(t) \int_{0}^{t} \tau e(\tau) d\tau \tag{12}\]

In order to make the notion of the gain of the operator \(G_{w}(\tau)\{\cdot\} \) precise, we introduce the following operator theoretic concepts.

Definition 1: A function \(f(t) \) from \([0,c) \) to \(\mathbb{R} \) is said to be in \(L_{2}\mathbb{E} \) if the truncated norm

\[
||f(t)||_{L_{2}\mathbb{E}} = \left(\int_{0}^{c} f^{2}(\tau) d\tau \right)^{1/2} \tag{13}
\]

is finite for all finite \(t \).

Definition 2: The gain of an operator \(G[f(t)] \), which maps functions in \(L_{2}\mathbb{E} \) into functions in \(L_{2}\mathbb{E} \) is defined as

\[
||G|| = \sup_{f(t) \in L_{2}\mathbb{E}} \frac{||G[f(t)]||_{L_{2}\mathbb{E}}}{||f(t)||_{L_{2}\mathbb{E}}} \tag{14}
\]

If there is no finite number satisfying eqn. (14), then \(G \) is said to have infinite gain.

Theorem 1: If \(w(t) \) is given by

\[
w(t) = b+c \sin \omega_{0} t \tag{15}\]

for any positive constants \(b,c,\omega_{0} \), the operator of eqn. (12) has infinite gain.

Proof: The proof consists of constructing a signal \(e(t) \), such that

\[
\lim_{T \to \infty} \frac{||e(t)||_{L_{2}\mathbb{E}}}{||G_{w}[e(t)]||_{L_{2}\mathbb{E}}} \tag{16}
\]

is unbounded.

Let \(e(t) = a \sin \omega_{0} t \), with \(a \) an arbitrary positive constant and \(\omega_{0} \) the same constant as in eqn. (15).

These signals produce:

\[
w(t)e(t) = ab \sin \omega_{0} t + \frac{1}{2} ac - \frac{1}{2} a c \cos 2\omega_{0} t \tag{17}\]

\[
\dot{u}(t) = \frac{1}{2} abct + \frac{1}{2} ac \cos^{2} \omega_{0} t - \frac{1}{2} c \cos \omega_{0} t \sin 2\omega_{0} t \tag{18}\]

Next, using standard norm inequalities, we obtain from eqn. (19)

\[
||u(t)||_{L_{2}\mathbb{E}} \geq \frac{1}{2} abct + \frac{1}{2} ac \cos^{2} \omega_{0} t ||T_{L_{2}\mathbb{E}} - ||u_{0}||_{L_{2}\mathbb{E}} - \frac{1}{2} abc \cos \omega_{0} t \sin 2\omega_{0} t ||T_{L_{2}\mathbb{E}} - \frac{1}{2} abc \sin 2\omega_{0} t ||T_{L_{2}\mathbb{E}} - \frac{1}{2} abc \cos 3\omega_{0} t ||T_{L_{2}\mathbb{E}} - \frac{1}{2} abc \sin 3\omega_{0} t ||T_{L_{2}\mathbb{E}}
\]

with

\[
K_{1} = u_{0} + \frac{ab}{\omega_{0}^{2}} + \frac{ab}{\omega_{0}^{2}} + \frac{ac}{\omega_{0}^{2}} + \frac{ac}{\omega_{0}^{2}} + \frac{abc}{\omega_{0}^{2}} < \infty \tag{22}
\]

Now

\[
\left\{ \frac{1}{2} abct + \frac{1}{2} ac \cos^{2} \omega_{0} t \right\}_{L_{2\mathbb{E}}}^{2} =
\int_{0}^{T} \left(\frac{ab}{4} + \frac{ac}{4} - \frac{abc}{8} \right) t^{2} + \frac{abc}{2} \sin^{2} \omega_{0} t + \frac{abc}{2} \frac{t^{2}}{2} \sin^{2} \omega_{0} t dt \tag{23}\]
infinite gain for vectors with

Remark 1: therefore, omitted. conditions for infinite gain in the feedback path of

Proof of infinite gain for this operator then follows

Theorem 2: The operator \(H_w(t) \) with \(w(t) \) given in eqn. (15) has infinite gain.

Proof: Choose \(e(t) = \sin \omega_0 t \) as before.

Then \(\bar{K}(t) = H_w(t) [e(t)] \) is given by eqn. (18).

Proof of infinite gain for this operator then follows in exactly analogous steps as in Theorem 1 and is, therefore, omitted.

Remark 1: Both operators \(G_w \) and \(H_w \) will also have infinite gain for vectors \(y(t) \), since the operator

infinite gains can arise from any component of the vector \(w(t) \).

Remark 2: The corresponding operators \(G \) and \(H \) defined for various other adaptive algorithms such as the Narendra, Lin, Valavani [3] and Morse [4] of the model reference type, as well as the algorithms developed by Esard [9], which include the self-tuning regulators, can also be proven to be infinite gain operators; see Rohrs [15].

Remark 3: Infinite gain operators are generically present in adaptive control and are typically represented as in Fig. 4, where \(F(s) \) is a stable diagonal transfer function matrix and \(M \) is (usually) a memoryless map. \(D \) and \(C \) are vectors of various input and output combinations, including filtered versions of said signals. The operator in Fig. 4 can also be proven to be infinite gain (see Rohrs [15]).

3.2 Two Mechanisms of Instability

In this section, we use the algorithm CA1 to introduce and delineate two mechanisms which may cause unstable behavior in the adaptive system CA1, when it is implemented in the presence of unmodeled dynamics and excited by sinusoidal reference inputs or by disturbances. The arguments made for CA are also valid for other classes of algorithms mentioned in Remarks 2 and 3, mutatis mutandis. Since the arguments explaining instability are somewhat heuristic in nature, they are verified by simulation. Representative simulation results are given in Section 4.

3.2.1 The Causes of Possible Instability

In order to demonstrate the infinite gain nature of the feedback operator of the error system of CA1 in Section 2, it is assumed that a component of \(w(t) \) has the form

\[w_1(t) = b + c \sin \omega_0 t \]

and that the error has the form

\[e(t) = \sin \omega_0 t \]

The arguments of Section 2 indicate that, if \(e(t) \) and a component of \(y(t) \) have distinct sinusoids at a common frequency, the operator \(G_w(t) \) of eqn. (12) and the operator \(H_w(t) \) of eqn. (31) will have infinite gains. Two possibilities for \(e(t) \) and \(w(t) \) to have the forms of eqn. (32) and eqn. (33) are now considered.

Case (1): If the reference input consists of a sinusoid and a constant, e.g.

\[r(t) = r_1 + r_2 \sin \omega_0 t \]

where \(r_1 \) and \(r_2 \) are constants, then the plant output \(y(t) \) will contain a constant term and a sinusoid at frequency \(\omega_0 \). Consequently, through eqns. (2), (3) and (30), all components of the vector \(y(t) \) will contain a constant and a sinusoid of frequency \(\omega_0 \).

If the controlled plant matches the model at d.c. but not at the frequency \(\omega_0 \), the output error

\[e(t) = y(t) - y_M(t) \]

will contain a sinusoid at frequency \(\omega_0 \). Thus, the conditions for infinite gain in the feedback path of Figure 1 have been attained.
Case (2): If a sinusoidal disturbance, \(d(t)\), at frequency \(\omega_0\), enters the plant output as shown in Fig. 1, the sinusoid will appear in \(y(t)\) through the following equation which replaces eqn. (3) in the presence of an output disturbance:
\[
y(t) = \frac{s^{-1}}{P(s)} \left[y(t) + d(t) \right], \quad i = 1, 2, \ldots, n
\]
(36)
The following equation replaces eqn. (6) when an output disturbance is present:
\[
e(t) = y(t) + d(t) - y_N(t)
\]
(37)
Any sinusoid present in \(d(t)\) will also enter \(e(t)\) through eqn. (37). Thus the signal \(e(t)\) and \(w(t)\) will contain sinusoids of the same frequency and the operators \(H_w(t)\) and \(G_w(t)\) will display an infinite gain.

3.2.2 Instability Due to the Gain of the Operator \(G_w\) of Equation (12)
The operator \(G_w\) of eqn. (12) is not only an infinite gain operator but its gain influences the system in such a manner as to allow arguments using linear systems concepts, as outlined below.

Assume, initially, that the error signal is of the form of eqn. (33), i.e., a sinusoid at frequency \(\omega_0\). Assume also that a component of \(w(t)\) is of the form of eqn. (32), i.e., a constant plus a sinusoid at the same frequency \(\omega_0\) as the input. The output of the infinite gain operator, \(G_w(t)\), of eqn. (12), as given by eqn. (19), consists of a sinusoid at frequency \(\omega_0\) with gain which increases linearly with time plus other terms at 0 radians/sec (i.e. d.c.) and other harmonics of \(\omega_0\); i.e.,
\[
u(t) = \frac{a}{2} e^{2 t} \sin \omega_0 t + \text{other terms}.
\]
The infinite gain operator manifests its large gain by producing at the output a sinusoid at the same frequency, \(\omega_0\), as the input sinusoid but with an amplitude increasing with time. By concentrating on the signal at frequency \(\omega_0\) and viewing the operator \(G_w(t)\) as a simple time-increasing gain with no phase shift at the frequency \(\omega_0\) and very small gain at other frequencies, we will be able to come up with a mechanism for instability of the error system of Figure 2, where \(G_w(t)\) consists of the feedback part of the loop.

If the forward path, \(\frac{g^B}{k^A}\), of the error loop of Figure 2, has less than \(+180^\circ\) phase shift at the frequency \(\omega_0\), and if the gain of \(G_w(t)\) were indeed small at all other frequencies, then the high gain of \(G_w(t)\) at \(\omega_0\) would not affect the stability of the error loop.

If, however, the forward loop, \(\frac{g^B}{k^A}\), does have \(180^\circ\) phase shift at \(\omega_0\), the combination of this phase shift with the sign reversal will produce a positive feedback loop around the operator \(G_w(t)\) thereby reinforcing the sinusoid at the input of \(G_w(t)\). The sinusoid will then increase in amplitude linearly with time, as the gain of \(G_w(t)\) grows, until the combined gain of \(G_w(t)\) and \(\frac{g^B}{k^A}\) exceeds unity at the frequency \(\omega_0\). At this point, the loop itself will become unstable and all signals will grow without bound very quickly (as the effects of the unstable loop and continually growing gain of \(G_w(t)\) compound.)

Since the infinite gain of \(G_w(t)\) can be achieved at any frequency \(\omega_0\), if \(\frac{g^B}{k^A}\) has \(+180^\circ\) phase shift at any frequency, the adaptive system is susceptible to instability from either a reference input or a disturbance.

Thus the importance of the Relative Degree Assumption, which essentially allows one to assume that \(\frac{g^B}{k^A}\) is strictly positive real and that \(G_w(t)\) is passive, i.e.
\[
\int_{0}^{\infty} G_w(t) [e(t)] e(t) dt \geq 0
\]
(38)
Both properties of positive realness and passivity are properties which are independent of the gain of the operator involved. However, it is always the case that, due to the inevitable unmodeled dynamics, only a bound is known on the gain of the plant at high frequencies. Therefore, for a large class of unmodeled dynamics in the plant, including all unmodeled dynamics with relative degree two or greater, the operator, \(\frac{g^B}{k^A}\), will have \(\pm 180^\circ\) phase shift at some frequency and be susceptible to unstable behavior if subjected to sinusoidal reference inputs and/or disturbances in that frequency range.

3.2.3 Instability Due to the Gain of the Operator \(H_w\) of Equation (31)
In the previous subsection, the situation was examined where the amplitude of the sinusoidal error \(e(t)\) grew with time due to a positive feedback mechanism in the error loop. In this subsection, we explore the situation where the sinusoidal error, \(e(t)\), is not at a frequency where it will grow due to the error system but, rather, when there exist persistent steady-state errors. Such a persistent error could arise from either or both of the two mechanism discussed in Section 3.1.

1) A reference input with a number of frequencies is applied and the controlled plant with unmodeled dynamics cannot match the model in amplitude and phase for all reference input frequencies involved. This will cause a persistent sinusoid in both the error \(e(t)\), through eqns. (6), and the signals \(w(t)\), through eqns. (2) and (3), and/or

2) An output sinusoidal disturbance, \(d(t)\), enters as shown in Fig. 1, causing the persistent sinusoid directly on \(e(t)\), through eqn. (37), and \(y(t)\) through eqn. (36).

Assume, that through one of the above or any other mechanism that a component of \(w(t)\) contains a sinusoid at frequency \(\omega_0\) as in eqn. (32) and that \(e(t)\) contains a sinusoid of the same frequency. Then the operator \(H_w(t)\) has infinite gain and the norm of the output \(w(t)\) signal of this operator, \(K(t)\), increases without bound. The signal, \(K(t)\), will take the form of eqn. (18), repeated here:
\[
K(t) = k_0 + \frac{1}{2} \frac{ab}{\omega_0 \omega_0} \cos \omega_0 t + \frac{ac}{4 \omega_0} \sin 2\omega_0 t
\]
From the second term one can see that the parameters of the controller, defined in eqn. (10), i.e.,
\[k(t) = k^* + k(t), \]
will increase without bound.

If there are any unmodeled dynamics at all, increasing the size of the nominal feedback controller parameters without bound will cause the adaptive system to become unstable. Indeed, since it is the gains of the nominal feedback loop that are unbounded, the system will become unstable for a large class of plants including all those whose relative degree is three or more, even if no unmodeled dynamics are present.

4. SIMULATION RESULTS

In this section the arguments for instability presented in the previous sections are shown to be valid via simulation.

The simulations were generated using a nominally first order plant with a pair of complex unmodeled poles, described by
\[y(t) = \frac{2}{s+1} \frac{229}{s^2 + 30s + 229} [u(t)] \]
and a reference model
\[y_M(t) = \frac{3}{s+3} [r(t)] \]
The simulations were all initialized with
\[k(0) = -0.65; \quad k_M(0) = 1.14 \]
which yield a stable linearization of the associated error equations. For the parameter values of eqn. (41) one finds that
\[g^* B^* = \frac{527}{s + 31s + 529} \]
The reference input signal was chosen based upon the discussion of section 3.2.2
\[r(t) = 0.3 + 1.85 \sin 16.1t \]
the frequency 16.1 rad/sec. being the frequency at which the plant and the transfer function in (42), i.e. \[g^* B^* \] has 180° phase lag. A small d.c. offset was provided so that the linearized system would be asymptotically stable. The relatively large amplitude, 1.85 of the sinusoid in eqn. (43) was chosen so that the unstable behavior would occur over a reasonable simulation time. The adaptation gains were set equal to unity.

4.1 Sinusoidal Reference Inputs

Figure 5 shows the plant output and parameters \[k_e(t) \] and \[k_p(t) \] for the conditions described so far. The amplitude of the plant output at the critical frequency (\(\omega = 16.1 \) rad/sec) and the parameters grow linearly with time until the loop gain of the error system becomes larger than unity. At this point in time, even though the parameter values are well within the region of stability for the linearized system, highly unstable behavior results.

Figure 6 shows the results of a simulation, this time with the reference input
\[r(t) = 3 + 2.0 \sin 8.0t \]
This simulation demonstrates that if the sinusoid input is at a frequency for which the nominal controlled plant does not generate a large phase shift (at \(\omega = 8.0 \), the phase shift of eqn. (42) is \(-133^\circ\)), the algorithm may stabilize despite the high gain operator.

Similar results were obtained for the algorithms described in [3,4,6,7,9], but are not included here due to space considerations. The reader is referred to [15] for a more comprehensive set of simulation results, in which instability occurs via both the mechanisms described in sections 3.2.2 and 3.2.3, for sinusoidal inputs.

4.2 Simulations with Output Disturbances

The results in this subsection demonstrate that the instability mechanism explained in Section 3.2.2 does indeed occur when there is an additive unknown output disturbance at the wrong frequency, entering the system as shown in Fig. 1. In addition, the instability mechanism of section 3.2.3, which will drive the algorithms unstable when there is a sinusoidal disturbance at any frequency, is also shown to take place. The same numerical example is employed here as well.

Instability via the Phase Mechanism of Section 3.2.2

In this case, CAL was driven by a constant reference input
\[r(t) = 0.3 \]
with a very small output additive disturbance
\[d(t) = 5.59 \times 10^{-6} \sin 16.1t \]
The results are shown in Fig. 7, and instability occurs as predicted. The only surprise may be the minuteness of the disturbance (\(10^{-6} \)) which will cause instability.

Instability via the Gain Increase Mechanism of Section 3.2.3

Figure 8 shows the results of a simulation of CAL that was generated with
\[r = 0.3 \]
but the disturbance was changed to
\[d(t) = 8.0 \times 10^{-6} \sin 5t \]
At \(\omega = 5 \), \[g^* B^* \] of eqn. (42) provides only \(-102^\circ\) phase shift so the sinusoidal error signal of increasing amplitude, which is characteristic of instability via the mechanism of Section 3.2.2, is not seen in Fig. 8. What is seen is that the system becomes unstable by the mechanism of Section 3.2.3. While the output appear to settle down to a steady state sinusoidal error, the parameter drifts away until the point where the controller becomes unstable. (Only the onset of unstable behavior is shown in Figure 8 in order to maintain scale). We note also that even when the error appeared settled, its value represented a large disturbance amplification rather than disturbance rejection.

The most disconcerting part of this analysis is that none of the systems analyzed have been able to counter this parameter drift for a sinusoidal disturbance at any frequency tried.
Indeed, Figure 9 shows the results of a simulation run with reference input
\[r = 0.0 \]
and constant disturbance
\[d = 3.0 \times 10^{-6} \]
The simulation results show that the output gain settle for a long time, again with disturbance amplification, but the parameter \(k \) increases in magnitude until instability ensues. Thus the adaptive algorithm shows no ability to act even as a regulator when there are output disturbances.

5. CONCLUSIONS

In this paper it was shown, by analytical methods and verified by simulation results, that existing adaptive algorithms as described in [1-4,6,7,19], have imbedded in their adaptation mechanisms infinite gain operators which, in the presence of unmodeled dynamics, will cause:

- instability, if the reference input is a high frequency sinusoid
- disturbance amplification and instability if there is a sinusoidal output disturbance at any frequency including d.c.
- instability, at any frequency of reference inputs for which there is a non-zero steady state error.

While the first problem can be alleviated by proper limitations on the class of permissible reference inputs, the designer has no control over the additive output disturbances which impact his system, or of nonzero steady-state errors that are a consequence of imperfect model matching. Sinusoidal disturbances and inexact matching conditions are extremely common in practice and can produce disastrous instabilities in the adaptive algorithms considered.

Suggested remedies in the literature such as low pass filtering of plant output or error signal [26,7,21] will not work either.

It is shown in [15] that filtering the output error merely results in the destabilizing input, being at a lower frequency.

Exactly analogous results were also obtained for discrete-time algorithms as described in [5,17,18,20] and have been reported in [15].

Finally, unless something is done to eliminate the adverse reaction to disturbances—any frequency and to nonzero steady-state errors in the presence of unmodeled dynamics, the existing adaptive algorithms cannot be considered as serious practical alternatives to other methods of control.

6. REFERENCES

Figure 1: Controller structure of CA1 with additive output disturbance, d(t).

Figure 2: Error System for CA1.

Figure 3: Infinite gain operator of CA1.

Figure 4: Infinite gain operator generically present in adaptive control.

Figure 5: Simulation of CA1 with unmodeled dynamics and r(t)=0.3 + 1.85sin16.1t. (System eventually becomes unstable).

Figure 6: Simulation of CA1 with unmodeled dynamics and r(t)=0.3 + 2.0sin8.0t.
Figure 7: Simulation of CA1 with unmodeled dynamics,
$r(t)=0.3$, and
$d(t)=5.59 \times 10^{-6} \sin 16.1t$.
(System eventually becomes unstable).

Figure 8: Simulation of CA1 with unmodeled dynamics,
$r(t)=0.3$, and
$d(t)=8.0 \times 10^{-6} \sin 5.0t$.
(System eventually becomes unstable).

Figure 9: Simulation of CA1 with unmodeled dynamics,
$r(t)=0.0$, and
$d(t)=3.0 \times 10^{-6}$.
(System eventually becomes unstable.)