Organizing the Middle Landscape:
A Proposal for Mixed-Use Nodal Development in Atlanta

Michael Spinello

Bachelor of Arts, English
Chapman University, 1994
Bachelor of Landscape Architecture
Auburn University, 1999

Submitted to the Department of Architecture
in Partial Fulfillment of the Requirements for the Degree
of Master of Architecture
Massachusetts Institute of Technology
February 2004

© 2004. Michael Spinello. All rights reserved.
The Author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document in
whole or in part.

Author...

Certified by...

Accepted by...

Department of Architecture
January 16, 2003

Paul Lukez
Assistant Professor of Architecture
Thesis Advisor

Bill Hubbard, Jr.
Adjunct Associate Professor of Architecture
Chairman, Department Committee on Graduate Students
Thesis Readers:

Anne Whiston Spirn, Professor of Landscape Architecture, MIT.

John De Monchaux, Professor of Architecture and Urban Planning, MIT.
Organizing the Middle Landscape:
A Proposal for Mixed-Use Nodal Development in Atlanta

Michael Spinello

Submitted to the Department of Architecture
January 16, 2004 in Partial Fulfillment of the
Requirements for the Degree of Master of Architecture

Abstract

"[Atlanta is] a sparse, thin carpet of habitation, a kind of suprematist composition of little fields. Its strongest contextual givens are vegetal and infrastructural: forest and roads. Atlanta is not a city, it is a landscape."

Rem Koolhaas, Atlanta Photographs

Atlanta, like many cities in America and now, in the world, has developed with no over arcing organizing principles, except for the accommodation of auto-mobility, residential privacy, and free enterprise. To what degree the resultant urban formlessness is a manifestation of private market forces or public desire is less relevant than the fact that the conditions of sprawl in Atlanta are so thoroughly entrenched that solutions to sprawl-related problems must be integrated with these existing conditions.

This thesis is an investigation of formal potentials for the future development of Atlanta and by association, the contemporary city in general. The project began with an initial fascination for the spatial by-products of sprawl; the vacant lots, brownfield sites, highway underpasses, parking lots, forgotten stream beds, fruitless interstices, in short, the "urban junk spaces" which are a ubiquitous symptom of the modern city. The cumulative total of this urban junk space forms a vast Middle Landscape, one which currently divides the city but which has the potential to connect it. These initial observations led to a basic guiding question: How can the spatial by-products of sprawl be utilized to create coherence and continuity in an incoherent and discontinuous urban fabric?

This thesis consists of two major designed components. The first is a proposal for an Atlanta Linear Park System (ALPS), a pedestrian and cycling circulation and recreation system that utilizes Atlanta's existing network of streams and adjacent junk spaces and serves to link areas of the city that are currently accessible only by automobile. The second involves the engagement of this new infrastructure through the addition of dense, walkable urban nodes composed of a variety of the elements that make up a healthy urban environment - housing, shops, workplaces and public places. The final vision is of a city reconnected by its network of green infrastructure, invigorated by its clusters of livable urban nodes.

Thesis Advisor: Paul Lukez
Title: Assistant Professor of Architecture
Organizing the Middle Landscape:
A Proposal for Mixed-Use Nodal Development in Atlanta
Contents

Abstract 2

Reflections on the New City 8

Sub-highway Sequence 16

Atlanta, Historical Development 18

Anatomy of Site: Three Scales 24

- Regional Scale 25
- Urban Scale 30
- Local Scale 36

Atlanta Linear Park System: Armature for Development 44

- Introduction 45
- Issues 46
- Opportunities 47
- Precedents 49
- Design Intentions 51
- Design Guidelines 54
- Implementation Sequence 58
- Conclusion 62

Piedmont / South Fork: Prototypical Urban Node 65

- Nodal Development 66
- Site: Piedmont / South Fork 66
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan</td>
<td>68</td>
</tr>
<tr>
<td>Strata</td>
<td>70</td>
</tr>
<tr>
<td>Building types</td>
<td>71</td>
</tr>
<tr>
<td>Illustration Credits</td>
<td>82</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>83</td>
</tr>
<tr>
<td>Bibliography</td>
<td>84</td>
</tr>
</tbody>
</table>

All text and images are by the author unless otherwise noted.
Reflections on the New City

The Twentieth Century engendered a new kind of city - the technology-derived city. It is a city which is referred to by a number of names in this thesis - sprawl-oriented, auto-based, modern, disconnected or suburbanized. Regardless of the name, there are a number of key technological advances which have facilitated the unprecedented horizontal expansions which cities have undergone. The telephone, automobile, airplane, air conditioning, the computer; all technologies that promote the dispersion of population, remoteness, and physical disconnection. The continuing effects of modern technologies on the city cannot accurately be predicted, much less totally controlled but it may be presumed that the future will bring new technologies that will further promote the tendencies toward urban fragmentation. Perhaps the tenuous forms of the technology-derived city are a reflection of what people want, perhaps they are a reflection of things that cannot be controlled. At some point however, planning must intervene. My thesis is a proposal of one such regulated intervention.

Questions
The principal questions behind my own thinking regarding sprawl are: Does the scat-
tered modern city reflect some basic human desires - desires for privacy, for exclusivity? Is it a reflection of the American pioneering, independent spirit? Is it a reflection of animal even physical nature, that is, a tendency to disperse when given the opportunity, to diffuse to the natural capacity available? Or is sprawl generated by commerce? My preliminary answer is that the modern city is all of the above. I am guided by the basic notion that there are no historical precedents for what is happening in today's cities, no blueprints. This is a time of unpredictable urban change, both daunting and exhilarating.

American Condition

The unregulated accommodation of growth for the sake of profit has outpaced the basic value of quality of life. This is an important point. Two basic values, two particularly American values -- the pursuit of profit and the desire for a secure and comfortable habitable environment seem to have become mutually exclusive. The drive for greater profit and efficiency has outpaced the desire for true community. My own position regarding sprawl-based development is that the two basic values of personal gain and desire for community are not necessarily mutually exclusive.

The pioneering spirit still exists in America. But today it is not the romantic version of pioneering; it is the negative version. It is the version associated with the plundering
of resources with no regard for the welfare of future generations. America seems to be out of kilter, as if perpetually off balance and stumbling rather than striding forward. It is a country which lives on credit - in a strange way a country that is driven forward by optimism, by the belief that in spite of what is done today the future will inevitably bring redemption.

Pessimism

For these reasons, the prevalent opinion regarding the new city is understandably negative. It is difficult to dispute that sprawl fails in many ways. Based on the standards that have been ingrained in the collective psyche regarding what quality urban environments are, many of the ills of sprawl are easy to identify: lack of community interaction, alienation and disenfranchisement of certain demographic groups, environmental degradation, homogenous environments, etc. Countless critics bemoan the ills of sprawl, even predict total societal disintegration, but they fail to offer antidotes to the problems. For instance, the New Urbanists, while being very clear in their analysis of sprawl and prescriptive measures for combating it, have so far created environments more exclusive than inclusive of all demographic groups and spontaneous activities. They have, in my view, failed to anticipate the unique and unexpected opportunities for unprecedented urban forms and experiences that the arma-
tures of sprawl have serendipitously provided.

Predictions (hopes)
Perhaps there will be a critical point, as there was in Paris in the Nineteenth Century, when the current urban disorder must be assessed and addressed. An organizing structure must intervene.

I believe that history will regard sprawl less as an inevitable evil than as a spontaneously logical development. It makes sense really. People, especially Americans, want mobility; they want to live in nature; they want convenience; they want the new (even if it is dressed up as old); and they want to make money. Sprawl is a physical manifestation of these aims.

Atlanta
For better or for worse, Atlanta has certainly just let growth happen. Yet I am optimistic. I drive around Atlanta and am excited by the prospects. Is this a city that has grown naturally? In a sense it has grown naturally, as naturally as a vine in the darkened undergrowth, sending out vigorous shoots, pushing for light, striving for vitality. Its growth has not been chanelized or regulated. It is a city that is difficult to comprehend, at once exhilarating and exasperating. It is a city without a blueprint. Many of the disparate pieces of Atlanta have been built before in other cities. They are urban typologies replicated
in small, self contained patches, broadcast across a vast area. But the entire organism that is today’s Atlanta is unprecedented. The urban conglomeration that is the city has never happened before. Therefore, Atlanta is exciting much as a medieval city is exciting. At times it charms with its unpredictability and its quirky adaptations to various physical and social parameters. The only organizing principles, if we may call them principles - are the accommodation of auto-mobility, free enterprise and residential privacy. These three forces have sent tendrils of development deep into the surrounding wilderness.

Traditional Parallels

A comparison of the development of Paris and of Atlanta provides valuable insights. Paris, like Atlanta, originated as a wholly unplanned city. In both cases, development was organic, spontaneous, based on the fits and spurts of localized, self-serving actions. Baron Haussmann’s nineteenth-century intervention, through the imposition of organizing strands of boulevards, transformed a chaotic urban tangle into an organized, comprehensible whole; in fact, Paris is today one of the most admired and visited city in the world. In this sense, the parallelism between Paris and Atlanta is clear. The development pattern of Atlanta may be likened to that of a medieval city with no identifiable order. Random circulation courses yielding odd angles and forms. Eventually, when den-
sification occurs in Atlanta, nonorthogonal building clusters will result. However, an intervening order can be introduced retroactively to create order out of chaos.

Of course, the major difference between Atlanta and Paris concerns density versus sparseness. While medieval cities developed densely behind protective walls, Atlanta and other auto-based cities developed sparsely. The reasons for low-density development are well documented -- technology, fulfillment of the American dream, highways, self-serving corporate intervention, government sponsored programs to encourage suburbanization, and certainly, the threat of nuclear annihilation. Current terrorist threats further promote the tendency for development to be decentralized.

Traditional Urban Development = Security through Density

Modern Urban Development = Security through Sparseness

Optimism
This is a thesis based in optimism. My position is that we are not, in fact, on a doomed course but that we will adapt. This project offers a hypothesis for the future of auto-derived cities, using one city, Atlanta, which is perhaps the prototypical sprawl-oriented city, as a test case. It is my hope that this project might be a viable suggestion of how
other cities might also develop during the next century. Largely uncontrolled sprawl has provided a particular foundation, an armature of infrastructure laid out across the landscape. We must build upon this armature and build boldly. My position is that a place of balance will be reached -- balance between density and suburbanism. The exciting potential result could be an urban landscape of fields of suburbia, spines of circulation and nodes of dense urban development.

I am interested in viewing the modern sprawling metropolis not as an intractable evil but as a landscape of opportunity in which new urban forms and experiences can be realized. New urban forms integrated with the armatures of twentieth-century development should accommodate the best of both the modern and the traditional worlds. Above all, I am optimistic about the future of cities. I believe in the inevitable human capacity to adapt to unfavorable conditions. Culture and identity will emerge from the disorder of cities like Atlanta.

Four critical assumptions regarding the future of Atlanta undergird this thesis:

1. Atlanta will continue to grow.
2. Alternative modes of connective infrastructure will be implemented.
3. Neighborhoods are sacrosanct.
4. Density and variety are needed.

This thesis will demonstrate how these four givens can be used creatively to produce a viable modern city that enhances the lives of its current and future citizens.
Sub-highway Sequence

approach

entrance

emerge

woods
Atlanta did not experience a gradual urban evolution as most cities have. The site of the current day downtown was a point on the map chosen by engineers as the ideal geographic location for the Western and Atlantic line coming from the Midwest to bypass the Appalachian mountains and distribute goods to the deep south and eastern seaboard. For this reason Atlanta was originally named Terminus.

From its inception Atlanta developed with no overarching city plan. Early maps illustrate the patchwork urbanism which is still a predominant feature of the city today. Throughout the mid nineteenth century Atlanta grew haphazardly, steadily pushing into the wilderness.
The 1865 burning of Atlanta by Union troops only briefly halted urban expansion and the new city seal, a phoenix rising from the ashes, appropriately symbolized the spirit of perpetual regeneration which still exists today. Even the name Atlanta is something of a fabrication, an idealized title which advances the mythic image of a landscape of opportunity.
Atlanta, being a railroad town, grew steadily in the ravaged Reconstruction economy. By 1868 it became the State Capital, by the 1880's it had streetcar lines. Overworked soils and boll weevil epidemics brought the rural population to the city. Atlanta's population grew from 8,000 in 1860 to 200,000 in 1920.
It was not until the introduction of the automobile and eventually the air conditioner and airport that Atlanta began its course towards becoming the sprawling city that exists today. The automobile made the outer landscape accessible, primed for development, but it was affordable air conditioning which made the sweltering summer climate a non-issue for the millions who eventually flocked to the new Southern metropolis. The increase in population from 1920 to 1950 was far less than from 1950 to 1960.
From the 1960’s to the 1980’s the population of the City of Atlanta, that is Atlanta proper, has steadily decreased while the population of the entire thirteen county Metro region has grown at a vigorous 6-8% rate. The evacuation of in-town Atlanta began its reversal in the 1990’s - during that decade the population increased by 1,200. From 2000 to 2003 the City of Atlanta increased its population by 16,000 (Confirm Stats ARC). This dramatic increase reflects the national trend towards moving back into urban centers. If Atlanta continues on this trend without adjusting its development strategies and transportation infrastructure it will become a city paralyzed by its own growth.
Anatomy of Site:
Three Scales

This thesis proposes a development prototype that may be implemented at any number of sites across the city. Therefore, the city was analyzed at three scales: the regional, the urban and the local. Regional analyses sought to reveal major physical and social systems. Areas chosen for analysis at the urban and local scales are composed of strands and fragments of these larger systems, therefore the condition of "site" as a clearly bounded entity, begins to take on a degree of ambiguity.
Regional Scale

For this study, a cursory analysis of basic economic, political and demographic information was made. Since the development of cheap electric air conditioning in the 1940's, the population of Atlanta has grown rapidly. Today, the city's official area of regional economic influence has grown to a size of nearly that of the area of Massachusetts. Despite this prosperity the city is still essentially segregated by social class and by race. Interestingly, the ridgelines upon which the first railroads were placed still delineate the lines between black Atlanta and white Atlanta. Because the black and white populations are essentially separated by ridges, connections via the proposed stream-based linear park system are gener
ally not feasible. For this reason it is important that Rails to Trails options or light rail systems like the proposed Beltline which utilize defunct in-town railways be implemented in conjunction with the ALPS proposal.

Atlanta, poised between the Appalachian foothills and the coastal Piedmont, has a gently rolling topography. Many of the city's major streets, designed for quick and efficient automobile movement, tend to be laid out smoothly across the terrain thereby creating the aforementioned separation of vehicular and stream systems. As with most American, automobile oriented cities the development patterns of Atlanta are extremely low density and generally zoned for single uses. For this reason the city is

Manhattan Island overlaid on Atlanta at same scale.
practically inaccessible without an automobile. For the most part, the city is a series of discrete pockets of usage. There are frequently no sidewalks on city streets and where there are sidewalks one is not likely to use them because of the dominant presence of quickly moving automobile traffic.

Interstate 285 is the perimeter highway which circles the city. From north to south is roughly 20 miles across. Downtown Atlanta is in the center, Midtown is just north of Downtown and Buckhead is a few miles north of that. Hartsfield International Airport is the large open space in the southwest corner of the map.

Figure 30 Atlanta's stream systems.
Atlanta's stream systems lace the entire city. Areas of high elevation tend to be the most intensely developed. In the center is Downtown, in the southwest corner is Hartsfield International Airport. The large waterway in the northwest corner is the Chattahoochee River which flows to the Gulf of Mexico. The stream network in the southeast corner feeds the South River which flows to the Atlantic Ocean.

For this thesis project I have chosen to focus on a particular stretch of Interstate 85 just north of Midtown Atlanta. Together with the Interstate there are three other distinct systems of infrastructure along this corridor: the so-called “connector,” which is a four lane elevated sub-highway, MARTA, Atlanta’s rapid transit system, and an infrequently used freight train line. In all, the corridor is approximately two miles long and 900 feet wide.
Atlanta density. Dark: Over 4.5 persons/ square mile, Light under 1 person.

Atlanta ethnicity. Green: white, grey: black.

Atlanta annual incomes. Red: $55,000 and above, white: $25,000 and below.

Atlanta's area of economic regional influence, roughly the size of Massachusetts - the area has a combined income larger than 35 of 50 states.
Urban Scale

The area of analysis was chosen for its abundance of conditions which typify the places where nodal development is possible. Located just north of the geographic center of Atlanta, the predominant element is the Interstate 85 corridor. This corridor physically divides the city in two. Automobile access across it is possible at only five points along the three mile stretch shown. Pedestrian access is nearly impossible. The area is composed of a mix of single uses: neighborhoods, commercial zones, industrial.
Another prominent feature is Peachtree Creek which runs west to the Chattahoochee river three miles away. Peachtree creek splits into a north and south fork. The riparian areas adjacent to the creeks are typically quite broad. The landscape swaths act as another dividing element within the Atlanta cityscape.
Based on the urban analysis, three sites were chosen as optimal places for nodal development: Piedmont/Clear Creek, Armour Valley, Piedmont/South Fork. The names are derived simply from the major streets and landscape features present. These sites have ample buildable land and are all at prominent intersections of the ALPS and proposed light rail lines.
Local Scale

Piedmont/Clear Creek
A thirty plus acre area of vacant city-owned land sits surrounded by major urban features: Piedmont Road to the west, Monroe Drive to the East and Piedmont Park to the south. Existing shopping centers and neighborhoods could allow for an urban node to be integrated into its context.
Armour Valley
An eighty plus acre, densely wooded riparian corridor flows between an affluent residential neighborhood and an underutilized light industrial and commercial district. The site has great potential for bridging between these two distinct zones through the addition of infilled mixed use programs in the industrial district.
Piedmont/South Fork

The Interstate 85 Corridor bisects the entire area between Midtown Atlanta and Buckhead to the north. The forty plus acre site includes land beneath the elevated highway and could be designed to accommodate passage across the formidable barrier. Also, the diverse surrounding mix of single use zones could be stitched together through development of the centrally located site.

Proceeding is a layered analysis of the site, chosen as the final thesis site.
Atlanta Linear Park System:
Armature for Development

ALPS (Atlanta Linear Park System) - A pedestrian and cycling circulation and recreation system that utilizes Atlanta's existing network of streams and adjacent "urban junk spaces and serves to link areas of the city that are currently accessible only by automobile.
Introduction

Atlanta is the prototypical disconnected American city (Fig. 1). With a lack of physical or policy-based parameters, the metropolitan area has grown to become what Rem Koolhaas has described as:

"...a sparse, thin carpet of habitation, a kind of suprematist composition of little fields. Its strongest contextual givens are vegetal and infrastructural: forest and roads. Atlanta is not a city, it is a landscape."

Underlying this thin carpet, however, exists a continuous network of streams and watersheds that traverse the cityscape virtually unnoticed, certainly ignored (Fig. 2). It remains Atlanta’s unutilized opportunity. The stream network itself is beautiful. To walk in it is to enter a different world. The city becomes distant while inside these insulating green corridors. For this proposal, the highest priority will be to treat the asset with extreme sensitivity, being careful not to destroy it.

This thesis is based upon the assumption that Atlanta’s existing network of streams and watersheds will be used as a new means of infrastructure for the city - The Atlanta Linear Park System (ALPS) - a system that would serve to link areas of the city that have been separated by the forces of auto-era urbanization. Primary efforts will be to engage this new infrastructure through the addition of dense urban nodes composed of a variety of the elements that make up an urban environment - housing, shops, workplaces and public places. The sites for these developments will be chosen based on available land adjacent to the proposed linear park system, proximity to existing urban development, and proximity to other nodes. The final vision of this project is of a city reconnected by its network of green infrastructure.
Issues

Atlanta is in dire need of changes to its current modes of development. As a direct or indirect result of Atlanta's current modes of development there are problems in at least the following areas:

- Air quality
- Traffic congestion
- Construction site storm water run-off
- Storm water runoff from impervious surfaces into streams
- Point source sewage pollution in streams
- Overuse of Chattahoochee River water
- Obesity of the population
- Lack of public green space
- EPA and other entities' restrictions limiting growth
- Lack of density = long commutes, fragmented society
- Negative image as the epitome of bad development

Obesity in Atlanta. Atlanta has a particularly high percentage of overweight citizens due mainly to automobile dependency and fast food culture. This information comes from the Atlanta-based Centers for Disease Control.

Transportation alternatives MARTA, the Atlanta rapid transit system, being a simple two line system, serves the city only moderately well. A number of additional systems have been proposed for the more dense areas of town, the best of which is the Beltline (Figs. 3, 4, 5) which utilizes a now defunct in-town railway.

Sewage separation efforts About 25% of Atlanta's streams still have raw sewage emptying into them. Recent Environmental Protection Agency restrictions have forced The City to begin the process of eliminating point source stream pollution by creating separate sewage lines adjacent to streams. This effort could work simultaneously with the implementation of the linear park system that this
document proposes.

Tree ordinance Relatively strict tree ordinances are enforced in Atlanta. Only a limited number of trees can be removed during construction and often an equal number of trees must be replaced.

In short, Atlanta public officials want desperately to deal with the issues that have given their city a bad reputation. Whether the motivation is to create a better environment for the citizens of Atlanta, to eliminate the stigma associated with the city or simply to get around imposed state and federal restrictions that are an impediment to growth, Atlantans are ready and willing for change to happen.

Opportunities

I believe that the proposed ALPS could alleviate many of the above-mentioned problems simultaneously. The viability of the proposal for a linear park system that links the city of Atlanta is based on a number of existing opportunities inherent to the city:

Existing stream network the stream network laces the city, engaging literally every neighborhood and suburb (Fig. 6). It is the common thread that underlies Atlanta’s fractured urban patchwork. This network is
almost completely unutilized. It is unused because it is either too steep to build on or the land is part of a flood plain. Essentially the stream system, not being prime land, has been ignored.

The stream system is, by its nature, "below the grade of the city" - that is, the street system and stream systems are almost invariably separate, with significant clearance beneath bridges (Fig. 7). This could allow for a completely separate pedestrian and cycling system, unimpeded by quickly moving auto traffic.

Low density, "disposable" building Because Atlanta's growth has been so vigorous during its short existence, only prime land that is easy to build on has been used to create an extremely low density, single use urban fabric. As a result, there is a great deal of "waste space," space that is owned but unused either because the land was not ideal to occupy, zoning restrictions mandated a certain building type and size and a certain number of parking spaces, or developers practiced "land banking" schemes.

The opportunity presented by Atlanta's extreme low density and disposable architecture is simply that it is easier for land to be acquired and buildings demolished in order to complete linkages in an interconnected linear park system. In other words the city is not so firmly established yet that a vital linear park system could not itself be developed before a denser, more permanent fabric is entrenched.

Existing rail system Atlanta was established as a railroad hub (Fig. 8). Now many of the rail lines within the city are either unused or so seldom used that their necessity is questionable. These railways and their right of ways could be used either for public transportation corridors, for public pedestrian and cycling corridors or for both (Figs. 8 and 9). There is a lot of interest from city officials in the use of these now defunct or underutilized railways as public transportation corridors. Also, Rails to Trails programs, in spite of initial oppo-
sition, have proven to be an extremely effective and popular use of old railways.

Precedents

The following are a few cities which are, in various ways, relevant to study as precedents for this project.

Paris
Baron Haussmann's plan for Paris was complete and uncompromising (Fig 9). Haussmann understood that one must take risks to get anything of lasting value finished. Also, the scale of Haussmann's plan is similar to the Atlanta linear park proposal. Haussmann created an overarching civic vision which provided cohesiveness, order and identity to a city in chaos.

Chicago
Chicago and Atlanta are similar in several ways. First, they are American cities of roughly the same age. Also, both were begun in the 1830's, they both began as railroad towns, and were both reconstructed after devastating fires. Most of the similarities stop there because Chicago was transformed quite early in its existence by the plan of Daniel Burnham (Fig 10). Even though every aspect of Burnham's plan was not completed, it is the plan itself, the document, which is especially remarkable. The plan was exhaustive in its completeness, beautifully described and rendered. Essentially, the plan was used as a marketing tool which worked to gain private and public support for an expensive and time consuming proposal. As with Haussmann's Paris plan, the Chicago plan was carefully phased so that each portion of the plan was manageable but contributed to the whole.

Portland
In Portland, measures have been taken to counteract the predictable outbreaks of sprawl. It is unusual for a city to take these kinds of preemptive measures (especially if it means slowing
growth), but this is what Portland did. Portland employed an Urban Growth Boundary and now has a successful public light rail system (Fig. 11). There was considerable opposition to Portland’s initial growth regulations, particularly from those in the business community, but now there is a growing consensus that Portland is overall a highly successful city, in large part due to the various smart growth strategies employed. The anti-sprawl measures taken by the city of Portland represent the kind of foresight that other cities should emulate.

Helsinki Although smaller than Atlanta, Helsinki, a city of one million, is still comparable to Atlanta in terms of density. It is a priority in Helsinki and most cities and towns in Finland to have pedestrian/cycling trials accessible to all citizens. It could be said that it is a priority in Finland to be in some contact with nature. The trails are carefully designed to meet a certain standard of quality: all are well graded and are paved or use compacted gravel. Almost invariably, these trails are unimpeded by auto traffic either going under or over roads, highways and railways (Fig 13). Even small roads often have pedestrian/cycling path underpasses. In the United States, underpasses are generally considered to be unsafe places but in Finland, careful design and the sheer frequency of these underpasses make them as normal and unthreatening a feature in the landscape as traffic lights. These paths are also used in the winter-time for cross-country skiing thus providing year round utilization. These pedestrian and cycling paths move seamlessly from low-density suburb to open meadow to mid density housing villages to forest park to city in one unimpeded journey. Recently, I cycled 12 kilometers, from a suburb to the heart of town in about 30 minutes having crossed only one road.

In Finland, it is a matter of values that brings about such a unique infrastructural system. Health-promoting physical activity, mobility, and contact with nature are so valued there that citizens are willing to pay high taxes in order to provide an infrastructural feature which
is both pragmatic and recreational.

Bogotá The recent plan to introduce a system of tree lined pedestrian streets and bike paths, called Alamedas was intended to create both public space as well as pedestrian circulation (Fig. 14). The Alameda is part of a larger city plan, the Plan de Ordenamiento Territorial (POT), which recognizes the need to create public space and circulation zones particularly in the more recently developed outer periphery of the city. The periphery development patterns are apparently similar to the sprawling development patterns of Atlanta and one of the goals of the POT is to alleviate the resultant conditions of disconnection. Basically, it is the goal of the Alameda to establish a system that fosters public interaction and healthy modes of transportation in the modern periphery. Also, Bogotá's Alamedas are a good example of a master planned system that will be completed in phases and will provide both public space and auto-free circulation.

Design Intentions

The ALPS is conceived essentially as a network of green pedestrian streets and public spaces which serve to connect a city characterized by its condition of disconnection. In this way the system will act as an urban connective tissue or highway system, continuous and noncentralized (Fig. 15). The proposed ALPS will be well defined by both existing topography and vegetation and the proposed urban development which will act as another layer of definition for these corridors. Eventually, I envision that the greenways may be lined with shops, residences, and other buildings, as a sort of city unto itself. This is one way to approach this project - as designing an alternative cityscape, the success of which is reliant primarily on pedestrian and cycling traffic.
The existing stream system is such that it is a separate layer from the street system. This presents what is perhaps the key opportunity which makes the ALPS such a viable proposition: because streets and streams are separated systems and streets tend to be built well above streams at their intersection, this allows for unimpeded travel along the linear park system. Unimpeded travel is a key design goal because users of the park can feel assured that, when in the park system, they can travel freely without the slightest concern for auto traffic. Upon entering, users know they have entered a special environment. Unimpeded travel along the ALPS allows one to feel connected to every part of the city because travel to those places is not a burden, it is a pleasure.

This brings up an interesting issue: If the ALPS is by its nature disconnected from the city, how does it promote the connectedness for which it has been conceived? The answer is in the treatment of the transitions between the conventional city and the ALPS. If the linear park system creates an urban dichotomy, how do the two cities interact? Where do they intersect? The notion of transition between street layer and stream layer represents a rich design opportunity. There is a reciprocal condition between the "two cities," a give and take. The ALPS presents the opportunity to develop a new urban morphology, one that fronts the two urban conditions and one that transitions between them (Fig. 16).

Because the park system by its nature will be highly responsive to the existing terrain, pedestrian flow will be analogous to the water flow of these topographical features. Movement will be fast and steady where terrain is constricted and slow and eddying where the green swaths widen. The eddy points are logical entrances to the system (Fig. 17). Conveniently, many such eddies exist as parks or unclaimed land which extend into neighborhoods and other districts. Basically, access points are prevalent throughout the city. In Atlanta especially, the automobile dominates the street and all else is subservient to it. The ALPS' dominant feature is nature. In
a sense, much of the work is already done for this project; all that
remains is the task of sensitive implementation.

The proposed green streets of the ALPS introduce an interesting
dichotomy - one of conditions of front and back. In the current con-
dition of Atlanta, the isolated areas which make up the city all have
very deliberately constructed frontages (Fig. 18). In fact “the front”
is very much a part of the culture of Atlanta - both a condition of
typical American sprawl and of traditional Southern culture in which
a highly public façade conceals a more private interior. Currently
the stream system that laces the city is invariably “the back” condi-
tion. Backyards and backs of businesses face the streams. What
happens when this condition is inverted and the streams become
another kind of front? It poses an interesting design problem, one
that I feel is very exciting because of the possibilities it offers for
developing new urban typologies and ways of conceiving of a city,
especially a city that is so young and in search of identity as is
Atlanta. The new frontage condition introduced by the ALPS is very
different from the typical frontage of Atlanta auto-dominated streets.
The new frontage suggests a more intimate scale, one that begins
to blur the definition between what is actually front and back.

At this early stage of the project I have, for the sake of creating an
environment of relative design freedom, decided to disregard such
factors as zoning, property ownership, building codes and even
some built structures. In this way I hope to arrive at an overarching
civic vision, unencumbered by too many constraints. Additionally,
all of these constraints can change, especially if the citizens and
government of the city support such changes.

Figure 18 Peachtree Street, Buckhead. Miles of frontage in
a sea of trees.
Design Guidelines

Based on the needs of Atlanta and the opportunities inherent to the city, the stated design intentions and the analysis of urban conditions and related research, I have established a set of design guidelines for the architecture and landscape architecture of the proposed ALPS (Fig. 19). One goal is that a common aesthetic language will be derived from the various constraints and guidelines. This common aesthetic will help to unify the entire plan.

In addition, the following priorities have been made:

Do not destroy the asset The highest priority is to retain the physical beauty and to care for the fragile ecology of the stream systems of Atlanta.
Connectivity Another primary purpose of the ALPS is to create connections to currently disconnected places.
Unimpeded travel Pedestrians and cyclists must be able to travel freely with minimal concern for automobile traffic.
Security The ALPS must be a completely safe place to travel or recreate.
Access The ALPS must be easily accessible from any part of the city, either by foot, bicycle or automobile where necessary. Conversely, there must be easy access from the ALPS to any part of the city.
Public space Because the ALPS is intended not only as a circulation system but as a place for recreation and public interaction, it is a priority to provide access to new or existing parks and public spaces.

Landscape Architecture

Pedestrian/cycling entrances. Entrances to the ALPS should be distinctive and frequent. There should be an entrance/exit every
500-800 yards or within a one minute walk of any point on the ALPS. Many businesses and residences back onto the existing stream system creating the potential for private entrances to the ALPS.

Public parks. A park acts both as a public entrance and a space for the public to meet, relax and recreate. Many of these parks already exist along the stream system. Some form of open space (i.e., a park, concourse or plaza) should occur at least every mile.

Automobile access. There should be auto access wherever there is housing or any other built facility. Also, there should be access for maintenance and security at least every half mile.

Security. Along with pedestrian and cycling entrances every 500-800 yards and vehicular entrances every half mile, there need to be police call boxes also every half mile, evenly spaced between vehicular entrances. Small police outposts for patrolling bicycle police can also be situated along the paths every few miles. Also, all paths need to be well lit, especially in underpasses, densely wooded areas and areas far from earshot. Vegetation should be well maintained in order not to provide cover for assailants.

Vegetation. It is a high priority to retain as much of the original vegetation as possible. Generally, native plants are preferable. Invasive non-native species like privet and kudzu should be removed. If removal of these plants disrupts the soil too much, replacement plants should be installed. The native southern forest typically consists of a canopy, an understory and the forest floor with low growing shade tolerant species. Introduced species like privet, along with aggressive forestry, have made southern forests thick and impenetrable. One goal of the ALPS should be to try and return the forest to its native state. In this state, forests will be safer, more beautiful and easier to maintain.

Figure 20 ALPS path sections.
Path specifications. The path should be a minimum of twelve feet in width, wide enough for a vehicle to drive on it and wide enough for people to pass each other easily while walking or biking. The path should widen at places to allow for variety and at places for users to pause. Benches should be placed at least every half-mile.

The path should be made of concrete, elevated when possible or cast atop permeable gravel plinths (Fig. 20). Asphalt should not be used. Proper drainage including ditches, swales and culverts should be used. All parts of the ALPS should be compliant with the Americans with Disabilities Act regulations.

Architecture

Vegetation. Architecture will be responsive to existing vegetation (Fig. 21). Only a minimum of existing native vegetation will be removed for any built portion of the ALPS. Studies should be made which provide ideal ratios of built to vegetated areas based on shade casting and canopy spread, biodiversity, soil retention, aesthetic considerations, etc. Measures for the protection of trees during construction should also be considered, such as the use of piles and grade beams for root protection, wrapping of tree trunks, minimal grading activity, low impact construction techniques that do not require extensive use of heavy machinery.

Density and variety. The designed urban nodes along the ALPS should be relatively dense and should contain a variety of functions such that each urban node is mostly self-sufficient. In other words, housing, shopping, recreational and institutional facilities should be designed in close proximity to one another.

Slope. The architecture must be designed for a variety of steepnesses of slope. Depending on the site conditions, the same architectural typologies might take on different forms.

Figure 21 Typical Forest section.
Flood plain. The architecture must take into account that much of the ALPS lies within a flood plain. To deal with this issue, a number of approaches can be used. In flood plains, buildings and walkways can be built on piles the height of which is variable; buildings can be sited away from flood plains, and other similar measures taken to address flooding concerns.

Proximity to existing urban features. Architecture should be designed adjacent to existing places of relatively high density or high urban activity so that existing and projected nodes become one.

Proximity to path system and rapid transport. Any built portion should be designed for easy access to both the pedestrian/cycling path and to nearby surface streets. Also, nodes should be designed near rapid transit where possible.

Preliminary Design

This architectural approach combines a standard high-density urban typology (the row house) with traditional southern climate responsive techniques (Fig. 22). Deciduous trees shade in the summer but allow the warming sun to penetrate the building in the winter. The pile and grade beam construction allows for the building to be raised above the flood plain line and allow air to circulate underneath the building. Also, the row house allows for cross ventilation from the front to the back of the structure. The wooden construction uses a prevalent southern building material which does not act as thermal mass.

The units are oriented along the ALPS path which is oriented directly along the existing stream (Fig. 23). The path must be a minimum of 12 feet wide but should be wider where possible. Sig-
significant vegetation is generally avoided, creating a loosely meandering route. The path may be made either of permeable compacted gravel and rock dust, of some durable bridging material where necessary, or of concrete in low sensitivity areas.

Implementation Sequence

The following priorities for implementation suggest a four-part sequence by which the ALPS project can be most effectively carried out.

1. **A Comprehensive Plan**
 It is only with civic commitment to a strong initial plan that the success of subsequent phases of the ALPS project can be ensured. The plan must be comprehensive, must be thorough, clear and bold in its conception, must take advantage of the opportunities inherent to the city, and must be generated from a genuine desire for the betterment of Atlanta.

 The following is, in no particular order of priority, what a strong initial plan for the ALPS should achieve:

 - **Connectivity.** To connect disparate parts of the city and connect disconnected segments of the society.
 - **Improved Transportation.** To decrease reliance on automobiles and provide alternative,
healthy modes of transportation.

Unimpeded Travel. A key component of the success of the plan, unimpeded travel along the ALPS makes it safer, easier and ultimately better used.

Creation of Value. Atlanta, from its conception has been a place designed to generate capital. The plan must create value.

Creation of Public Green Space Because Atlanta sorely lacks public green space (it needs to double its public green space to reach the national average for a city of its size).

Creation of Identity. Atlanta lacks a distinct and rich identity; the ALPS could provide a healthy and beautiful image with which the city may be associated.

Creation of Place. Distinct from Creation of Identity it is a key design concept that the ALPS will be distinctly its own place, clearly defined and continuous. Ultimately there should be the sense that the ALPS, although spread across many miles is one, continuous space.

Creation of Density. As a new infrastructure for the city, the ALPS will act as an armature for new, dense development, development based on pedestrian and cycling traffic rather than on automobile traffic. This would necessitate more human scaled development.

Wouldn't it be nice if this was traffic?

Figure 24 ALPS advertising.
Suggestion of Proper Phasing. How the implementation of the ALPS is phased is vital to its success.

Improved Ecology. The ALPS brings about decreased reliance on fossil fuels, improved stream habitat and potential for eco-friendly regulations for example regulations on impervious surfaces that may pose flooding threats, polluting emissions, etc..

Awareness of History. Many of the battles of the fight for Atlanta during the Civil War were fought along the streams, the ALPS is an opportunity to memorialize these and other historical places and events.

Safety. Because the predictable negative response to the ALPS proposal is that such systems are inherently unsafe for users and that they may provide access for criminals, the system will be designed as an especially safe environment. Arguably, greenways increase safety and property values.

2. Generate Support
It is understood that the realization of a project of this scope is absolutely dependant upon the support of all involved parties. Perhaps most importantly (particularly in Atlanta), the support of the business community is needed. The strong initial plan is designed to highlight the inherent benefits for business in Atlanta. The support of city, state and federal governments is also vital. Certainly the implementation of 16,000 acres of Atlanta you've never seen before.
such a park system is in the government’s best interest for many reasons: promotion of identity, community, ecology, etc. Finally, citizens’ support is absolutely essential. Without the support of the general public, proper funding and land donation is not possible. The initial plan will reveal how the ALPS is something that Atlanta businesses, government and citizens need.

It is important to keep in mind that business, government and the general public are an interrelated triad. No one entity is more important than another. Equal support from all three entities is vital to the success of this proposal.

3. Marketing
With a strong initial plan to generate the support of some key business, government and community members, the ALPS plan will be developed as a marketing package with the goal of reaching wider audiences and persuading them that this is what Atlanta needs. The marketing package will be verbally concise and graphically captivating. It will take its model from advertising and branding strategies (Fig. 24, 25, 26, 27) - the language of persuasion that is familiar to most Americans and particularly to image conscious, media-saturated Atlantans.

One potentially effective marketing strategy is to bring to light the notion that Atlanta is still seeking its identity and that it is not yet a
truly world class city. The 1996 Summer Olympics is a good example both of Atlantan’s desire for credibility on the global stage and for the need for an alternative transportation system and sources of beauty and identity. Also, another important strategy is to highlight the undeniable fact that fuel prices will soon escalate and the need for density will become a simple reality.

4. Phased Implementation

Based on the fact that a proposal of this scale could not and should not be implemented all at once, it is vital that the sequence of implementation be considered very carefully. The first implemented portion of the ALPS must be a success. It must achieve all of the goals which it claims it will achieve - connectivity of a disconnected city, the provision of much needed public green space, safety for users, creation of density along the system, and the generation of capital. The ultimate goal of the initial implemented portion of the ALPS is to prove to non-supporters that the plan works. As more portions are implemented the value of the ALPS should become more and more apparent. If, for example, a small portion of land is needed to connect to larger portions of the system, the previous success of the project to date will induce supporters to pressure non-supporters into making the connection happen.

Essentially, the implementation plan should be phased to bring about a kind of snowball effect in which the success of each implemented portion makes the next portion that much easier and more desirable to have realized. An ideal situation would be to have the initial phases of the ALPS be so successful that businesses financially support the ALPS, government sees it as a vital service, and citizens feel deprived by not having access to it.
Conclusion

Atlanta has the potential to be a world-class city. It has a mild climate, beautiful neighborhoods, a major international airport, numerous fine colleges and universities and is the home to numerous major international corporations. These attributes, coupled with the spirit of persistence and entrepreneurship that Atlanta has historically fostered in its citizens will keep this “Capitol of the New South” thriving well into the 21st Century. But without some measure of foresight the city is bound to suffer as the population grows and as fuel for automobiles becomes less and less affordable. The proposal for an Atlanta Linear Park System outlined in this document represents one opportunity to establish a system which can become a vital and integral part of the city in century to come.
Piedmont / South Fork:
Prototypical Nodal Development
Nodal Development

A primary goal of this thesis is to schematically design a prototypical urban node, that is to say a densely populated, completely self-sufficient urban environment embedded within a sparsely populated suburban context. Each urban node would be unique depending on a variety of site related and contextual conditions. There are, however, six basic principles for all nodal developments:

1. Contextual Integration / Distinction (symbiosis)
 All nodal development begins with connections to the surrounding urban context. All nodes are developed either around a transit stop, an ALPS path or, in ideal cases, around intersections of both systems. Existing roads are woven into the site. The presence of adjacent existing housing, workplaces, commercial and institutional buildings determine the makeup of the buildings within the node. A reciprocal relationship develops between node and context such that each condition is made more robust by the presence of the other.

2. Walkability (compactness)
 All nodal development will be physically compact enough that users can walk comfortably from a centrally located transit stop or ALPS path to any destination within the node. A comfortable walking distance is approximately 2000 feet horizontally. The limiting factors of building densities are adequate natural light and ventilation for pedestrian zones and primary inhabited interiors.

3. Diversity (of demographics and program)
 All nodal development must have a diverse mix of inhabitants and uses. Nodal developments should promote the inclusion of every demographic group. There must be a diversity of programs in the development. These uses include:
1. Housing
2. Workplaces
3. Shopping
4. Dining
5. Transit stop
6. Recreation
7. Industrial
8. Offices
9. Parking
10. Institutional (including libraries, schools, churches, public meeting halls, etc.)

4. Site Lines (formal generator)
Existing and/or proposed site lines will act as the primary form givers to built additions that is to say in order to achieve optimal density, new buildings will essentially be extruded from the site lines which exist on the horizontally projected ground plane. Site lines generally consist of those lines formed by:

1. Paths of circulation - roads and highways, pedestrian walks, rail lines.
2. Landscape Features - parks, streams, wooded areas, wetland areas.
3. Existing Buildings - Those buildings (including pertinent easements, property lines, setbacks) that are not to be demolished.

5. Strata (3D organization)
All nodal development is based on a vertically stratified arrangement of distinct zones. The reason for these distinctions is that lines of flow through the city may require separation. The basic strata consist of:

1. Landscape - Earth, vegetation, hydrologic systems.
2. Pedestrian activity surface - ALPS, public circulation and
recreation areas, adjacent housing, commercial and industrial buildings
3. Mezzanine - elevated pedestrian zone either linking to destinations such as transit stations and office towers or bridging over lines of flow or between site features.
4. High speed transit - Either automobile or rail traffic. Parking structures may act as transitions between strata.
5. Elevated habitable space - Office and housing towers.

This ordering is to act as a rough guideline. Although these zones are typically arranged in this order, the strata may overlap, merge with one another and interweave depending on various conditions of site and program.

6. Phasing (4D organization)
All nodal development will be implemented according to basic phasing strategies. Ideally nodes would evolve gradually as resources allow and necessity dictates. The following phasing sequence is typical:

Phase one - ALPS / MARTA. In combination, the Atlanta Linear Park System and MARTA lines act as an armature for future development, particularly at areas of intersection and existing high density. Included as a part of this phase are parking structures for commuters.
Phase two - Low rise. Mid-density housing (outlined, section) and initial commercial development within walking distance of transit stop.
Phase three - High-rise. Office and housing towers, mezzanine pedestrian links between buildings. It is at this phase that the site is officially a node.
Phase four - Refined vertical growth. Existing low-rise building will give way to taller buildings which promote healthy density.

As with any built environment, nodes will evolve over time.
The ideal scenario is for nodal developments to reach a state of self-perpetuating stasis, drawing from and contributing the vitality of the surrounding context.

Site: Piedmont / South Fork

Ten sites were identified early on in the research phase. Each had in common a major ALPS trail running through it, a proposed or existing MARTA stop and abundant available or underutilized buildable land. The choice of the Piedmont / South Fork site was based on the presence of features which offered particular topographical and built challenges which provided the potential for unique architectural expression. Also, the site possessed most of the features which typify the sites of any future urban nodes. Those features include: Location of future ALPS and future MARTA rail lines, abundance of unused or underutilized buildable land, existing highway, existing major roads, adjacency to existing low density neighborhoods and mid density apartments and adjacency to existing low density commercial uses.

The Piedmont / South Fork site is named for Piedmont Road which defines the western end of the site, and the South Fork of Peachtree Creek which meanders east to west directly through the site. Piedmont Road is a major north / south viaduct but unlike Peachtree Street, Atlanta's popular

Piedmont/South Fork Site and context.
and attractive main drag, it is characterized by its unsightliness. The proposal for an urban node at this site is an early move towards the establishment of Piedmont Road as Atlanta's second major north/south spine.

Peachtree Creek is one of Atlanta's major streams. If the ALPS were to be implemented, it would become a major pedestrian thoroughfare. The nearness of Peachtree Creek to the site is a major asset. The South Fork splits just a few thousand feet from the proposed MARTA interchange, winding deep into Dekalb County through a diversity of neighborhoods and districts. The Piedmont/South Fork site is an ideal location for ALPS users to travel west through Buckhead to the Standing Peachtree Park and the Chattahoochee River corridor and east to the future Cheshire Bridge Park, Emory University, the future Water Works Park and other destinations. In this way the site offers pedestrians a connection to greater Atlanta.

Plan

The predominant site feature is the existing elevated highway swath which currently divides the area and renders much of the adjacent space unusable. By embedding the transit interchange within the highway swath, that feature which once divided will serve to connect the two sides of the site. The design proposes that the area to the north-
west of the highway is composed primarily of office towers and street level commercial uses which define the street edge of Piedmont road. The area to the southeast of the site is predominantly made up of housing, recreational and commercial uses. Thus, conceptually the node can easily be understood as having two zones: work zone and living zone. These two zones are connected across the highway by the ALPS paths, rail line, elevated walkways and housing tower / bridge.

Strata

All nodal development is based on a vertically stratified arrangement of distinct zones. The reason for these distinctions is that lines of flow through the city may require separation. The basic strata consist of:

1. Landscape - Earth, vegetation, hydrologic systems.
2. Pedestrian activity surface - ALPS, public circulation and recreation areas, adjacent housing, commercial and industrial buildings. Hardscape is elevated above landscape.
3. Mezzanine - elevated pedestrian zone either linking to destinations such as transit stations and office towers or bridging over lines of flow or between site features.
4. High speed transit - Either automobile or rail traffic. Parking structures may act as transitions between strata.
5. Elevated habitable space - Office and

1. Row houses
2. Commercial/Apartment Tower
3. Transit Interchange
4. Parking
5. Commercial
6. Light Industrial
7. Office Towers

A | Piedmont Road
B | South Fork Creek
C | Interstate 85
D | Connector Highway
E | La Vista Neighborhood
F | Light Industrial District
housing towers.

Building Types

Housing

Two major housing typologies have been employed in this scheme: a row house typology which is designed to occupy the areas adjacent to ALPS paths, and an apartment block typology, designed to be above commercial space in more densely built pedestrian areas.

In the design for the row house typology, a primary concern is for low impact constructability within the sensitive riparian areas directly adjacent to the ALPS. The row houses are predominantly prefabricated and could potentially be manufactured by the thousands. This typology is envisioned as the first architectural element to front the ALPS. The sites would typically be wooded overlooking streams and wetlands.

The row house is designed with evenly spaced, cast-in-place reinforced concrete grade beams set on cast-in-place piles. The concrete could be easily pumped from a surface street above, eliminating the need for wide construction roads and thereby creating a minimum amount of damage to existing vegetation. Also, the pile height can be adjusted according to maximum flood elevations.
The party walls of these row houses are composed of stackable pre-cast concrete wall sections which can be craned into position. The wall sections are designed with holes that align and can be threaded and post-tensioned after the full three to four-story height is attained. The floor plates are made of prefabricated structurally insulated panel units that span between the rigid party walls and can be configured in a variety of ways in order to allow trees to grow up between them. The existence of these trees allows for each unit to be unique in spite of its being prefabricated.

This architectural approach combines the standard high-density urban typology of the row house with traditional southern climate responsive techniques. Deciduous trees shade in the summer but allow the warming sun to penetrate the building in the winter. The pile and grade beam construction allows for the building to be raised above the flood plain line and allow air to circulate underneath the building. Also, the row house allows for cross ventilation from the front to the back of the structure. The wooden construction uses a prevalent southern building material which does not act as thermal mass.

Anchoring the south end of the site, the apartment tower provides both shade and spatial definition. Ten stories of apartments sit atop a three-story plinth of parking and commercial space. The tower hugs the curve of the adjacent highway off-ramp and, gradually curving in the opposite direction, bridges across the highway to connect to the Piedmont Road office tower. The tower bridge acts as a dramatic gateway to automobile and MARTA commuters traveling on the elevated highway. Rushing northbound traffic flows through the cavernous opening formed by the bulging overhead facade of the apartment bridge and into the clearly defined Piedmont / South Fork node. A roof garden
sits atop the three story parking structure, providing residents clear transitional zone between automobile and housing. This elevated landscape strip pierces the immense facade in two places creating bridges that span across to the roofs of adjacent three story buildings creating roofscape for residents and theatergoers.

The narrow tower is centrally loaded to provide residents with well-lit apartments and exceptional views. Views from the southern units of the combined midtown/downtown skylines are unique to Atlanta. Views to the north between the slender Piedmont office towers reveal the ever-growing Buckhead skyline.

In order to avoid excessive heat gain, the concrete south facade is covered with climbing deciduous vines. The north facade is of concrete and glass and slightly canted inwards to allow for increased northern reflected light.

Transit Interchange
The transit station is the epicenter of the urban node. It is designed as an interchange between two rail lines: the proposed C Loop light rail line which runs east/west at ground level, and the proposed Interstate 85 MARTA line which runs north/south along the elevated highway. The highway cuts a swath of division across the city. By embedding the interchange within the elevated highway

Approaching apartment tower/bridge.
swath, barrier becomes destination.
The C Loop stops in the heart of the sub
highway commercial zone, dispersing and
drawing residents, commuters and shoppers
through the once intimidating space. Escalators and elevators take transit riders twenty
feet up to the elevated mezzanine level were
they can enter the Interstate 85 MARTA line
from either of its ends. For most of its
length, the tracks of the MARTA line are ele-
vated above the traffic of the highway to pro-
vide clearance but gradually slope down to
the level of the highway within the station
thereby bringing the train closer to riders at
ground level. In order to accommodate the
forty-foot width of the station, the highway
pull off lanes are displaced and northbound/
southbound lanes split to receive the station.
From behind thick glass panels, commuters
stand between the northern and southern
flows of rushing traffic. Sun-tracking helio-
stats project light down to the shaded C-Loop
stop below.

Parking
Elevated parking structures are situated
directly adjacent to the highway, acting as
sound abatement walls. Automobile com-
muters can pull off of the highway directly
into these structures and use attached ele-
vated walkways to move between adjacent
buildings or transit stops. A primary goal
in all nodal developments is pedestrian
empowerment. Segregation of fast moving
automobile traffic and consolidated vertical
automobile storage, results in a “reversal of subservience” in which the pedestrian, not the automobile, dictates patterns of flow within the site.

Commercial

Commercial activities animate at-grade pedestrian zones along Piedmont Road, in the ALPS level plaza on the east side of the highway and beneath the highway itself. Shopping, dining and office spaces occupy the first two stories. Rentable commercial spaces are designed with the spatial flexibility to accommodate changing patterns of use. For example, as the urban node evolves, dining establishments might gravitate to a certain area, shops to another and so on. A multi-theater cinema anchors the pedestrian plaza bringing light and life to the space through film projections visible from the building exterior.

The space beneath the highway offers particular challenges and opportunities. The centrally located transit interchange disperses commuters along narrow pedestrian walks, defined by shop facades, illuminated by bands of light from above. Vibration resistant design eliminate sound from the highway above. Light industrial uses are intended to be tucked away in the area beneath the highway adjacent to Piedmont road while more pedestrian oriented functions are located in between the C-Loop stop and ALPS South.

Station Interior.
Fork waterway.

Office Tower
Similar to the housing tower, the office towers rest atop a double story plinth of commercial uses which serve to define the street edge and activate the street level. Designed as continuous fifty foot wide bands which allow for interior daylighting, views and ventilation within office spaces. Landscaped terraces provide places of respite and views for occupants. Parking is located beneath the towers where changes in grade allow for access both at the Piedmont Road level and beneath the elevated highway. Mezzanine bridges connect to the MARTA interchange and plaza across the highway.
Commercial corridor, landscape bridge.
Commercial corridor, landscape bridge.
Theater, plaza.
Row houses, view to apartment tower.
Illustration Credits

<table>
<thead>
<tr>
<th>Page</th>
<th>Illustration</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Post war housing</td>
<td>Website. www.lsdg.net/courses.htm</td>
</tr>
<tr>
<td>8</td>
<td>Metropolis</td>
<td>Graham, Stephan.</td>
</tr>
<tr>
<td>9</td>
<td>Exponential technological change</td>
<td>Graham, Stephan.</td>
</tr>
<tr>
<td>10</td>
<td>United States highway system</td>
<td>Holl, Steven. P. 336</td>
</tr>
<tr>
<td>11</td>
<td>Bison skulls</td>
<td>www.angelfire.com/md2/BrokenArrow</td>
</tr>
<tr>
<td>12</td>
<td>American homes</td>
<td>www.uic.edu/.../arch362</td>
</tr>
<tr>
<td>13</td>
<td>Security through density, Frankfurt</td>
<td>odoketa.netfirms.com/germany</td>
</tr>
<tr>
<td>14</td>
<td>Security through sparseness, Atlanta</td>
<td>Bernardo, Jordi. P. 9</td>
</tr>
<tr>
<td>18-20</td>
<td>Atlanta historical maps</td>
<td>Russell, James Michael.</td>
</tr>
<tr>
<td>22</td>
<td>Atlanta suburban road</td>
<td>Bernardo, Jordi. p. 89</td>
</tr>
<tr>
<td>24</td>
<td>Atlanta historical images</td>
<td>Martin, Harold H.</td>
</tr>
<tr>
<td>25</td>
<td>Atlanta USGS map</td>
<td>Topo!, Atlanta cd rom</td>
</tr>
<tr>
<td>28-29</td>
<td>Atlanta demographic maps</td>
<td>Atlanta Regional Commision website</td>
</tr>
<tr>
<td>30</td>
<td>Atlanta aerial mosaic</td>
<td>Atlanta Regional Commision cd rom</td>
</tr>
<tr>
<td>46</td>
<td>The proposed Beltline</td>
<td>Gravel, Ryan Austin</td>
</tr>
<tr>
<td>46</td>
<td>Unutilized railways</td>
<td>Metropolis magazine, September, 2003.</td>
</tr>
<tr>
<td>49</td>
<td>Haussmann’s Paris</td>
<td>Burnham, Daniel Hudson.</td>
</tr>
<tr>
<td>49</td>
<td>Burnham’s plan for Chicago</td>
<td>Burnham, Daniel Hudson.</td>
</tr>
<tr>
<td>50</td>
<td>Light rail, Portland</td>
<td>Metropolis magazine, September, 2003.</td>
</tr>
<tr>
<td>51</td>
<td>Alameda Bosa, Bogotá.</td>
<td>Angel Samper, Marcela. p. 22</td>
</tr>
<tr>
<td>51</td>
<td>Connective tissue</td>
<td>Grey’s Anatomy</td>
</tr>
<tr>
<td>53</td>
<td>Peachtree Street, Buckhead</td>
<td>Bernardo, Jordi</td>
</tr>
</tbody>
</table>
Acknowledgements

For Mom and Larry, my deepest thanks for your constant unconditional support and for providing me invaluable opportunities for discovery.

For Dad, thank you for sharing your love of art, culture and the creative process.

For Kim, Thank you for giving so much. You believe in me even when I do not. I love you.

Also, my thanks to Paul Lukez, my thesis advisor, for helping me to have faith in the future of cities.

Anne Whiston Spirn and John Demonchaux, my thesis readers, for seeing so clearly what was not always clear to me.

Peter Lynch and Jane Weinzapfel, reviewers at my final thesis presentation, for your insights and encouragement.

My professors at MIT for your wisdom and passion.
Bibliography

Donald, James. *Imagining the Modern City*. Minneapolis: University of Minnesota Press, 1999.

Jackson, Steven. *TG (TRANSIT GUIDANCE): spaces for wayfinding in multi-modal transportation hubs, a proposal for Atlanta’s

Mumford, Lewis. The Highway and the City. New York: New American Library, c1963

