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Reliability Quantification of Nuclear Safety-Related Software
by
Yi Zhang
Abstract

The objective of this study is to improve quality and reliability of safety-critical
software in the nuclear industry. It is accomplished by focusing on the following two
areas:

Formulation of a standard extensive integrated software testing strategy for
safety-critical software, and

Development of systematic test-based statistical software reliability quantification
methodologies.

The first step to improving the overall performance of software is to develop a
comprehensive testing strategy, the gray box testing method. It has incorporated
favorable aspects of white box and black box testing techniques. The safety-critical
features of the software and feasibility of the methodology are the key drivers in
determining the architecture for the testing strategy. Monte Carlo technique is applied to
randomly sample inputs based on the probability density function derived from the
specification of the given software. Software flowpaths accessed during testing are
identified and recorded. Complete nodal coverage testing is achieved by automatic
coverage checking. It is guaranteed that the most popular flowpaths of the software are
tested.

The second part of the methodology is the quantification of software performance.
Two Bayesian based white box reliability estimation methodologies, nodal coverage-
based and flowpath coverage-based, are developed. The number of detected errors and
the failure-free operations, the objective and subjective knowledge of the given software,
and the testing and software structurc information are systematically incorporated into
both reliability estimation approaches. The concept of two error groups in terms of
testability is initiated to better capture reliability features of the given software. The
reliability of the tested flowpaths of the software and that of the untested flowpaths can
be updated at any point during testing. Overall software reliability is calculated as a
weighted average of the tested and untested parts of the software, with the probability of
being visited upon next execution as the weight of each part.

All of the designed testing and reliability estimation strategies are successfully
implemented and automated via various software tools and demonstrated on a typical
safety-critical software application.

Thesis Supervisor: Michael W. Golay
Title: Reliability Quantification of Nuclear Safety-Related Software
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1. Introduction

1.1. Background

The problem of demonstrating a high reliability for software has become more
important as the need to use digital instrumentation and control (DI&C) technologies in
nuclear power plants has grown. In safety critical systems, the use of computers provides
many potential advantages. These advantages include more sophisticated safety
algorithms, improved availability, easier maintenance, reduced installation costs, ease of
modification and potential for reuse.

However, because of the critical nature of the applications, these advantages must
be weighed against the problems of ensuring that the computer system can be trusted so
that quality is adequately ensured. Much of the resistance to using digital technologies
has arisen in regulatory organizations. For safety-related functions, the operative policy
has been that available analog technologies are adequate, their weakness are well-
understood and their contributions to nuclear power plant risks can be assessed using
PRA techniques. Thus, the technological and commercial imperatives that have driven
digital technologies into most realms of life and high technology applications have been
absent in the case of nuclear power.

In the work prior to this thesis [Ouya95], a combination of modern software
engineering methods was identified to design and implement high quality safety-related
software. The stated techniques include design process discipline and feedback, formal
methods; automated computer aided software engineering tools and automated code
generation. The question left is how to assess the reliability of the software. Unlike that
of the hardware, software failures are exclusively caused by design errors. The good
news about this feature is that once an error is removed from a digital program, it is gone
forever. There will not be any problems because of fatigue as are observed in hardware
components. The bad news is that unlike mechanical equipment, we cannot test a piece

of software, measure its quality, and thereby deduce the performance of another piece of
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software. Also, we cannot increase the reliability of a software program by the
redundancy.

Thus, the focus of the work in this thesis is to provide a standard, systematic,
automated way to test the safety-critical software applied in the nuclear power industry
and to measure its quality. The target users include both the designers of digital systems
and the regulatory organizations. The method should be agreed upon by both parties and

serves as an intermediate interface between the two.

1.2. Objectives

This work seeks to develop a method for the testing of safety-critical software'
and for the systematic quantification of its reliability. The safety critical nature of the
software under question mandates very demanding requirements in regard to the
completeness of the testing strategy and the preciseness of the reliability quantification
method. Yet, we need to remember that what we are seeking i1s an engineering tool that
can help us overcome obstacles to the introduction of digital technologies into the nuclear
power industry. This requires the method to be practical.

Thanks to the relative simplicity of the software used in nuclear power plants, we
are able to leverage more toward completeness rather than feasibility of the resulting
testing technique. Aware of the impossibility of a fully complete testing strategy even for
an extremely simple piece of software, a systematic integrated testing method is
developed. It incorporates Monte Carlo input data sampling (utilizing knowledge of the
likely patterns of use of the software), software structure identification, nodal coverage
checking and feasible flowpath checking. An experiment-based method 1s designed to
quantitatively estimate the probability that an untested flowpath within a given piece of

software is encountered during the next execution at any stage of the testing process.

' Regarding testing techniques, the emphasis of this thesis is the integrated testing. Though it has not been
covered extensively in this thesis, it is very important to apply extensive, or even complete testing cn the
most important modules of the software before the final integration and finished product testing stage.
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Closely related to the systematic integrated testing method is the second goal of
the thesis which is a Bayesian updating method to estimate the software unreliability’ —
the probability of failure upon demand. A software failure is said to occur when the
behavior of the software departs from the result obtained from an oracle (an independent
mechanism to decide the correct behavior corresponding to the same input data set).
Failures are the result of a software error or a design defect being activated by a certain
input to the code during execution. Software unreliability estimation is performed at
various stages during the process of testing software. These estimates are used to
evaluate whether the software reliability requirements have been or might be met for the
system as a whole. The estimation result provides both a measure of the software quality
and also feedback to the software designer.

There are two activities related to software reliability analysis, estimation and
prediction. For both activities, statistical inference techniques and reliability models are
applied to failure data that is obtained from testing or during operation. Estimation is
usually retrospective and is performed to determine achieved reliability from a point in
the past to the present time. The prediction activity, on the other hand, parameterizes
reliability models used for estimation and utilizes the available data to predict future
reliability. In this work, both activities are carried out on the target software. An
estimate is made of the unreliability of the part of the software that has been tested and a
prediction is made of the unreliability of the part that has not been tested. Both are done
with available data obtained from the tested part.

The reliability estimation method should be chosen so as to limit the estimation
result uncertainty. The strength of the Bayesian updating method is its ability to
incorporate both subjective and objective knowledge in the effort to estimate the
parameters in question. It enables us to obtain the best estimation based on available
testing information. Hence, it narrows the uncertainty.

There are various existing reliability growth models that have already been
developed and implemented. The two major categories are black box models and white

box models. One way to compare these available methods and to choose the one that

? Software reliability is defined as the probability of success upon next execution. Its value is equal to one
minus the unreliability. Because both reliability and unreliability are measures of quality of the given
software, they will be used interchangeably throughout this thesis.
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best serves our purpose is to implement both and observe the results. But in this study,
we need to do more than find a value for the reliability of the given software. We intend
to learn as much about the software’s internal structure as possible. A Bayesian
technique has been chosen for this purpose. Currently all available Bayesian reliability
growth models are black box models, i.e. the internal structure of the software is not
examined. It is a more attractive idea to combine a Bayesian updating technique with a
white box reliability growth model, by which quality-related features of the internal
structure of the safety-critical software can be extracted. The most important factor or
result of such a reliability estimation activity in this research is the same as in the PRA
methods that are widely adopted in the nuclear industry. It is not the probability value
that is obtained at the end of the reliability estimation process that is the most valuable to
us. Instead, it is the relative reliability of the unique safety features of different parts of
the software that is more significant.

Systematic and standard Bayesian based white box reliability estimation strategies
are adopted in this study. They are intended to incorporate as much information as
possible from the target software. The software features identified throughout the
software quality assessment process provide a deeper understanding of the software itself.
The uniformity of the method when applied to different safety-critical software should
provide a standard measurement of the probability of success during a subsequent
execution. A software quality standard can be generated from this standard process. The
reliability value of a given piece of software estimated from the same procedure can be
compared with external requirements and a decision made as to whether the software is
ready to be deployed for unrestricted use.

The software quality assessment designed and demonstrated in this study does not
demand the use of the formal engineering software development method discussed in the
previous work. However, the use of the automated tools inherent in such development
methods renders the required testing program much easier and more complete than other
approaches.

Besides designing a complete and reliable testing and quality estimation strategy,
the discussed techniques are implemented on a typical safety-critical piece of software

that has moderate complexity among digital programs in the nuclear industry. This is
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done to show the feasibility of all the stated approaches. The demonstration of the
method on the sample software provides us an opportunity to consider a sound solution

from both a scientific point of view and an engineering perspective.

1.3. Main Contributions

The work of this project can be divided into two parts, complete testing and
reliability quantification. The methodology design and implementation on the sample

software is carried out in parallel in order to guarantee the feasibility.

1.3.1. Grey Box Testing Technique

The testing technique that results from this study should be as efficient and
complete as possible. In order to design the method, the literature was extensively
reviewed, with completeness and general usefulness examined for each available
technique. Generally speaking, there are only two major categories among the huge
number of diverse types: black box and white box. Black box methods are based purely
upon the specification document of the program in question. The code is treated as a
closed box and is never examined. In white box testing, the code is examined, and tests
are formulated based on some aspect of the code itself.

Black box testing methods can be very useful because they simulate the actual
usage of the program. The tester of the program does not need to examine the internal
workings of the code. Exhaustive input testing is the only existing complete black box
method, and it is very impractical. White box testing methods generate test data by
examining the inner workings of the program in question. By correlating input data with
the control structure, it is a more directed strategy and thus more efficient in error
detection. The only complete testing technique within this category is the complete
flowpath testing method, which also encounters practicality difficulty, especially when
the software contains many looping structures. Under such circumstances, it is very hard

to judge what are the possible flowpaths that can be accessed by some combination of
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input data. Thus, it is impossible to calculate how many such flowpaths exist in the piece
of software. Furthermore, the task of identifying certain input data that can activate
certain flowpaths in the software is an easy one.

It was apparent from the literature search that none of the existing testing
techniques was a good candidate to satisfy the completeness and feasibility requirement
of this study. Our strategy was to design a method that combines strengths from both the
black box and the white box testing techniques. Because it has the flavor of both testing
categories, it is called the grey box testing method.

We start to generate input data by regarding the target software as a closed box.
The specification and other related knowledge about the software is studied, the most
likely patterns of use of the software are identified, and the operational environment is
projected. A probability density distribution of the input data is then approximated from
the study result. A Monte Carlo technique is applied to sample software input data
randomly based on the probability density distribution function. Up to this stage, we are
using a black box strategy to generate a large amount of input data in a very small
amount of time. However this approach is not exhaustive according to the black box
completion criteria. We feed the input data into the program. While testing the software
and getting the testing results, the flowpaths activated are identified and recorded. Given
that it is impossible to cover every flowpaths, we cut looping structures that include more
than two iterations into loops that contain only two iterations. Because of this cut, our
method is called a feasible flowpath coverage approach. Afier some tests are done, the
nodal coverage situation is checked. It is not possible that all the flowpaths are checked
unless every node in the software has been checked. As shown in our demonstration
example, the chance of identifying unnecessary nodes and of detecting hard-to-find errors
in the software is very high when efforts are made to check any uncovered nodes after a
fair amount of tests. We do not know the number of possible flowpaths in the software.
Hence the probability of encountering an un-identified flowpath can always be estimated
by an experimental method based on the flowpath information that has been accumulated.
This later flowpath and node identification part is more of a white box testing strategy in
that we are aware of the internal structure of the software and are trying to take advantage

of the knowledge obtained during testing. Because of the utilization of both black box
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and white box testing techniques in this study, we name the testing method used in this

study as grey box testing, which is a mixture of both available approaches.

1.3.2. Nodal Coverage Based Bayesian Reliability Estimation Methodology

The reliability of a software program is defined in nuclear industry as the
probability of success upon its next execution.

Existing software reliability models can be classified as either black box or white
box groups. Black box reliability models consider only failure data, or metrics that are
gathered if testing data are not available. They do not consider the internal structure of
the software in reliability estimation and are called such because they consider software
as a monolithic entity, a black box. For software built from reused or commercial off-
the-shelf components, architecture-based or white box reliability models are developed.
In these models, components and modules are identified, not in a traditional software
engineering architecture sense but rather in the sense of interactions between
components. The interactions are defined as control transfers, essentially implying that
the architecture is a control-flow graph where the nodes of the graph represent modules
and its transitions represent transfer of control between the modules. Failure behaviors
are combined with the architecture to estimate overall software reliability as a function of
component reliabilities.

Based on the features of nuclear safety-critical software and the strengths of both
available categories of software reliability models, an intermediate model was developed
during our research. From the black box group, we were especially interested in the
Bayesian model. It considers both the number of faults that have been detected and
failure-free operations. Detection and perfect removal of errors in the software increases
the reliability of the software. Failure-free tests on the software improve our confidence
in the software. Furthermore, the very unique advantage of this Bayesian model is its
ability to take systematically any subjective information into consideration. This is the
reason why we want to adopt the Bayesian model. From the white box group, on the

other hand, we have learned that it will be very helpful if we can incorporate structural
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information about the software into a reliability estimation model. To do so can help the
tester obtain deeper insight about the different importance of different parts of the
software and their individual confidence levels. Again, because the target software that
we are studying is safety-critical, the more knowledge we have about it, the better.
However, our approach in this study is unlike the available white box models in that we
do not divide the software into smaller modules because the software itself is small
enough. Rather, we go back and use the traditional software architecture concept. The
component of the software is the traditional node. There are no interface and control
transfer concepts involved in our model.

In this approach, we adopt a white box strategy to look at the reliability of the
software, incorporating both failure and structural information into the model. Each
component of the software (that is each node) is examined and its reliability is estimated

using the Bayesian method. It is required that all the nodes in the software be tested.

1.3.3. Flowpath Coverage Based Bayesian Reliability Estimation Methodology

A further step from the nodal based reliability estimation approach is a flowpath
coverage-based reliability model. But again, even for very simple software, the
requirement of testing every flowpath is too hard to complete. There is also no
theoretical method to calculate how many flowpaths exist within a program because of
the impossibility of accessing some of the theoretically existing flowpaths. The first step
to estimate reliability of the software in this approach is the same as that described in the
proceeding section, i.e., using a Bayesian method to estimate reliability of every tested
flowpath. After examining the different errors encountered in the projects, we initiated
the concepts of type [ and type II errors. If an error is of type I, it causes a failure every
time its host flowpath is visited. If an error is of type II, it has the same probability to
cause a failure during any visit to its host flowpath. It is apparent that because of the
existence of type Il errors, we can never claim one hundred percent reliability on a
software system because there is always a tiny probability of a type II error not being

detected even if a large number of tests have been done on a flowpath. Because we are
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not able to achieve a complete flowpath coverage testing, we first estimate the overall
reliability of the flowpaths that have been tested. In order to incorporate the reliability of
the untested flowpaths in the model, we have to come up with two estimates: the
probability that an untested flowpath is visited upon next execution of the software and
the reliability value of the untested flowpaths. The first value is approximated by an
experimental approach and the second is estimated using information from the tested

flowpaths in the light of the many commonalities shared by those two parts.

1.4. Thesis Organization

A brief summary of the work done prior to this thesis is presented in chapter2
where other stages of the formal software development cycle were achieved. The whole
picture is given and the position of the work done in this thesis research is pointed out. In
chapter 3, the grey box testing strategy and Bayesian based white box reliability
estimation techniques are discussed in full detail. Both testing and software reliability
models from the literature are studied. The assumptions, data requirements, action steps
and formulas are described. In chapter 4, all the methodologies are implemented and
demonstrated on the sample nuclear safety-critical software. The experiment details as
well as reliability estimating results are reported. Chapter 5 provides some discussion on
the demonstration results. In chapter 6, I conclude this thesis with a summary of the

major findings of this work. Possible future work is described.
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2. The Integrated Formal Approach — DBTF (Develop Before The Fact)

The objective of this study is to improve the quality of the safety-critical software
used in the nuclear industry. Two steps, one in the software developing stage and one in
the software checking & evaluation stage, are taken to achieve it. In this thesis, the major
effort is concentrated on the second stage while the first step is addressed by the selection
of a formal software development methodology, DBTF and its supporting tool, OO1
CASE Tool Suite. For completeness of this thesis, some major points about DBTF are
mentioned briefly in this chapter. Some results of applying this approach to the sample
software, SVA, which is studied intensively in this thesis, are presented afterwards. For
more details about DBTF, including the criteria and reasons to select this software

development method, refer to Ouyang’s study report [Ouya95].

2.1. Integrated Formal Approach

A variety of integrated formal software development approaches have been
studied. The target software system for this research is instrumentation and control
software used in nuclear power plants. The literature associated with this type of
software supports that a Develop Before The Fact (DBTF) method be chosen in this
project.

To make use of the underlying software safe, scientifically-based formal
techniques are introduced to replace the previous ad hoc approaches. The conventional
software development process can be described in terms of a “waterfall” model as shown
in Figure 2-1. It is generally agreed that formal software development should include
more elements as shown in Figure 2-2, incorporating strong feedback between different
elements of the design process. Academic research and industrial practice have greatly
advanced software engineering to a more disciplined level where increasing amounts of
mathematical formality are introduced. The term, formal method, is used to describe

such a cluster of mathematically formal techniques. Formal methods aim to improve the
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quality of software in two related ways: by providing a specification that is clear and
unambiguous, using easy to validate mathematical statements of the required software
behavior and by making verification during the software production process more
effective and easier to audit. Formal techniques are used to address activities in three
major blocks: specification, validation, and verification. Given that the formal
specification and validation issues have been addressed in full detail in prior work (as a
result, DBTF was chosen according to a series of criteria), the emphasis in this thesis is to
answer the question of how to apply formal methods in the verification block, including

systematic testing and structure-based reliability estimation.
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Figure 2-1 Traditional “Water Fall” Software Development Cycle
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Figure 2-2 Integrated Formal Software Development Approach

2.2. DBTF Process

Development Before The Fact (DBTF) is a trademark methodology of Hamilton
Technology. With DBTF, each system is defined with properties that control its own
design and development. With this paradigm, a life cycle inherently produces reusable
systems, realized in terms of automation. An emphasis is placed on defining things right
in the first place. Problems are prevented before they happen.

DBTF is automated by 001 Tool Suite, an integrated system and software
development environment. It can be used to define, analyze, and automatically generate

complete and integrated production-ready code for any kind or size of software
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application with a significantly lower error rate and a significantly higher reusability than

with traditional approaches. The conceptual structure of 001 is shown in Figure 2-3.

Aspecls of Using the 001 Toot Suite Four Major Elements of the 001 Togl Suite

System Engineering:
Dsfine FMaps and TMaps

Analyze . (reYDefine P

Simulate real-time behavior and performance {(Xecutor)
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.

Software Develupment:

Osfing FMaps and TMaps ‘
Analyze et ©
Analyze ‘:}

Execute

Generale complete and production ready code

Execute on targst machine k__ I
Design Change and Maintenance:

Revise Fiaps and TMaps

Repeat system engineering
Or software development process

- Reusable Objects

- Manageftrace
requirements and
matrices with RT(x)
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Management:
Organize projects inta working Habilities
Manage and trace requirements
Generate product and process metrics
Generate specification, design and test docume ntation

Figure 2-3 the 001 Tool Suite Structure
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3. Integrated Testing and Reliability Estimation Strategies

3.1.  General Assumptions

There are some limitations on the software systems, to which the testing and
reliability methodology discussed in this thesis, can be applied to.

The first one is that the software should be relatively simple because it needs to be
tested as complete as possible and use as much as possible information to quantify its
reliability. Intuitively, the completeness and feasibility are always opposite to each other.
At the first glance, this requirement seems to be very stringent, limiting the method
development dramatically. But if we concentrate on the instrumentation and control
software used in nuclear power industry, it is not the case any more. Software systems
can be categorized into three groups according to the reliability, R (defined as the
probability of error-free service, over life): fully testable (R=1), substantially testable
(R<=1), and largely untestable (R unknown). For nuclear software applications, many
can be made much simpler (i.e. entering category 1 and 2) than has been typical in most
non-nuclear applications (category 3). This thereby removes large feasibility concerns
about the testing and reliability estimation addressed in this thesis. In this study, we only
consider software reliability estimation in categories 1 and 2.

The second assumption about the target software is that it behaves uniformly as
time moves on. To be more specific, for the same input or inputs, the software always
gives the same output whenever it is executed. If this is true, every unique set of inputs
uniquely identifies a unique execution of the target software. The number of different
input data sets is the number of different test cases. Every set of output can be compared
to the corresponding oracle in correspondence to the same input data set at any time. If
there is any error detected, the same failure case can be repeated by inserting the same
input data into the software under testing. If we say the first assumption is made due to
both testing and reliability estimation requirement, this assumption is almost purely for

the purpose of achieving a reasonable testing solution. Again, this assumption is not very
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much a limitation to the instrumentation and control software applied in nuclear power

plants.

3.2. Definitions

3.2.1.  The Control Flowgraph

Understanding of the control flowgraph is essential to understanding much of the
literature on software testing. In general, the control flowgraph is a graphical
representation of the control structure of a program. There are only two types of
components to the flowgraph: circles and lines. A circle is called a node and a line a link.
A link is a connection between nodes. A link from node j to node k is given the notation
(G, k). Node j is designated as the predecessor of node k, and node k the successor to
node j. There can be only one link between any two distinct nodes. The first node of a
program is known as the start node, and has no predecessors while the last node 1s known
as the exit node and has no successors. A node with more than one link entering is a
junction and one with more than one leaving is a decision. A node is either a decision
node, or a successor of a decision node, or the exit node. It is important to notice the
difference between a node and a program statement. A node in the control flowgraph
may quite possibly contain more than one statement if it is not a decision node. The
reason is that the flowgraph only cares about the decision making points in the program,
thus highly simplifying the program structure by merging contiguous processing

statements into one node.

3.2.2. Flowpath

A path or flowpath in a program is a finite sequence of nodes connected by links.
A path is designated by a sequence of nodes. A complete path is a path with the start
node as its first node and the exit node as its last node. A loop free path is a path with

none of its nodes repeated.
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3.2.3. Feasible Flowpaths

In order to ensure complete path coverage, it is necessary to expand the program
flowgraph so that every distinct execution path is stated explicitly, and then every such
path is tested. In the event of looping structures, this expansion of the flowgraph
structure may be unfeasible because of the complexity of the graph. In such a case, only
limited testing may be practical. For this situation, the concept of feasible flowpath
coverage is used. A feasible flowpath is a flowpath that contains at most k iterations of
every loop in a given program or flowgraph. We have found that this approach will
reveal many of the errors in a program, but it does not guarantee finding all [Fran88]
[Ntaf88].

In our study, we have set k to two. For loops either with a fixed number, greater
than two, or with a variable number of iterations, we only treat zero, one and two
iterations of a loop as unique expansions of the flowgraph. If a loop is expanded to more
than two iterations during an execution, all the repetitions numbered greater than two are
removed from the flowpath record before any further analysis is performed on this
flowpath. Also we assume there is no horrible loop in the program under testing. See

the following pictures for feasible flowpaths with k equal to two and horrible loops.

{ Horrible Loop: “...code that jumps
! into and out of loops, intersecting
loops, hidden loops and cross-

/lz connected loops... " by Beizer.
e

Figure 3-1 Horrible Loop
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3.3. Testing Methodology

3.3.1. Testing Strategy Overview

In this project, our main purpose is to improve and Justify instrumentation and
control software reliability so that jt could be introduced into nuclear power plants.
Safety has always been a critical issue in this industry. The potential for injuries and loss
of property makes it imperative to test the digital systems extensively and to estimate
their reliability accurately prior to the deployment. As a result, the unreliability
requirement typically cited for safety-critical software is extremely high, with typical
failure frequencies of about 1077 per hour. It has been suggested that this is an unrealistic
requirement given the enormous amount of testing necessary to assure compliance with
this level of reliability [Litt92]. Also, it might be argued that, from a technical point of
view, the software reliability is only guaranteed if it is operated within a specified
environment. Taking the above factors into consideration, a compromised and balanced
solution should be provided. Both reliability and practicality are essential in this

problem,

3.3.2. Software Testing Method Literature

Testing is the process of executing a program on a set of test cases and comparing
the actual results with the expected results. Its purpose is to reveal the existence of
errors.

One of the main objectives of our research is to find a new testing technique that
is proper for safety-critical software used in Nuclear Power Plants. The resulting method
should be as complete as possible because of the safety-related feature of the sofiware in
question while kept practical enough for real life use, In order to achieve this goal, the
literature has been extensively reviewed, and each method has been rated for both
completeness and general usefulness. In the end, a new testing technique is introduced

that incorporates features from the two major existing testing methods, giving the
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maximum degree of completeness while maintaining the testing workload at a reasonable
level.

A search of the literature of code testing reveals many different testing strategies.
Some of these methods are specific to certain program types or programming languages
and are 1gnored here because of their lack of generality. In this study, the final chosen
method should be useful in general as well as in specific cases. Many of the methods
found fit this criterion. Although the methods are quite diverse, they can be divided into
two categories: black box testing and white box testing. Black box methods are based
purely upon the specification document of the program in question. The code is treated
as a closed box and is never examined. In white box testing, the code is examined, and

tests are formulated based on some aspect of the code itself.

3.3.2.1. Black Box Method

Black box testing methods, also called functional testing methods, derive test
cases from the software specifications without regard for the internal structure of the
module being tested. The tester is not concerned with the mechanism, which generates
an output, only that the output is correct for the given input set. Simple programs are
often tested with black box methods. For example, a simple program’s specification
document might indicate that two numbers (A and B) are taken from user input and their
sum (A+B) is displayed on the screen. To test this simple piece of code functionally, an
input set is chosen that represents the typical use of the code. The tester may wish to
input several combinations of A and B. For instance the cases where A is equal to B, A
1s greater than B, and A is less than B could constitute a test set. The tester may wish to
use input data values, which are more likely to cause errors. For instance, letters of the
alphabet could be entered instead of numbers. If all of these cases execute properly, the
code is found to be satisfactorily tested functionally. However, if one of the functional
test cases yields an incorrect result, the code must be examined for the error. Because of
the nature of this strategy, black box testing is also known as input / output testing.

Recall that the focus of this search is to locate a complete, yet practical testing

method. The only complete black box method is known as exhaustive input testing. For
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the example above, every possible combination of the two numbers would be tested,
resulting in an infinitely large test set. Exhaustive input testing is very impractical. If
any one of the input variables is a rational number, an infinite number of test cases must
be considered. Despite the apparent impracticality of complete black box testing, these
methods should be mentioned. They are examined here as possible complements to
another more useful testing method. It may be possible to use them in conjunction with
other testing methods to achieve a more complete result. Also, this approach, which is
common across many engineering disciplines, has several significant advantages. The
most important advantage is that the testing procedure is not adversely influenced by the
component being tested. For example, suppose the author of a program has made the
implicitly invalid assumption that the program would never be called by a certain class of
inputs. Acting upon this assumption, the author might fail to include any code dealing
with that class. If test data were generated by examining the program, one might easily
be misled into generating data based upon the invalid assumption. A second advantage
of black box testing is that it is robust with respect to changes in implementation. Black
box test data need not be changed even when major changes are made to the program
being tested. Another advantage of black box testing is that it simulates the actual usage
of the program. A final advantage is that people unfamiliar with the internals of the
program being tested can interpret the result of a test.

The Black box methods will always be useful in testing small pieces of code
designed for simple and specific tasks. Exhaustive input testing is the only known
complete black box testing method, and is very impractical. But because of the above
mentioned advantages of this method, it is very promising that black box methods can be
used in parallel with other testing methods to achieve an effective and close to complete

testing result.

3.3.2.2. White Box Methods

White box testing methods generate test sets by examining the inner workings of
the program in question. White box testing is also known as structural testing because

the basis of the method is the code structure. While black box testing is generally the
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best place to start when attempting to test a program thoroughly, it is rarely sufficient.
Without looking at the internal structure of a program, it is impossible to know which test
cases are likely to give new information. It is therefore impossible to tell how much
coverage we get from a set of black box test data. It is also necessary to do a white box
testing, in which the code of the program being tested is taken into account. Many types
of structural testing methods exist. Only some basic methods are reviewed in this
section. In reality, as in the black box testing group, none of the techniques satisfies both
the feasibility and completeness requirements at the same time. As discussed later, even
complete flowpath testing, which was believed complete before, is not necessarily perfect
in terms of detecting errors, let alone feasibility. The goal here, again, is to learn some
useful lessons from the existing white box testing techniques and use them in conjunction
with other methods to improve software reliability.

There are three basic structural testing techniques. They are statement, branch
and flowpath testing methods. These form the basis of understanding for most other
forms of structural testing. These testing techniques are said to result in some coverage
of the code.

Statement coverage is a testing method, which assures that every statement of the
code has been tested. In other words, the test set selected results in the execution of
every statement in the code. Statement coverage is the least rigorous structural testing
method. It is often possible to achieve statement coverage with relatively few test cases,
even for a large piece of code. At the end of the test campaign, the tester knows that all
of the statements in the code are executable, and that the program has yielded some
correct results. However, the program tester cannot conclude that the code is error free
because this method is insensitive to some logical control structures. Complete statement
coverage 1s a far too limited testing criterion to be used to indicate successfully complete
testing.

Branch coverage is achieved by testing every transfer of control from one
program statement to the next. To attain complete branch coverage, every direction at
every decision node must be executed at least once by test cases. In the context of
control flowgraph/node/flowpath, branch coverage is equivalent to nodal coverage. Each

successor of a decision node (we will call them alternative nodes from now on) represents
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a unique direction taken at that decision node. Path coverage involves testing every
combination of every direction at every decision node of a program. Compared with
branch coverage, path coverage is the more rigorous method. In fact, path coverage is
said to be the only complete testing method in the white box group. However, even
complete path coverage does not ensure detection of all errors as some may be found

only upon subsequent tests of the same path.

At least 3 test cases are needed for branch
coverage:
1-2-3-4-8-9-12

2 1-3-5-6-8-10-12
1-3-5-7-8-11-12
18 (2*(1+2)*3) test cases are needed for path
coverage:

1-2-3-4-8-9-12
1-2-3-4-8-10-12
1-2-3-4-8-11-12
1-2-3-5-6-8-8-12
1-2-3-6-6-8-10-12
1-2-3-5-6-8-11-12
1-2-3-57-8-9-12
1-2-3-5-7-8-10-12
1-2-3-5-7-8-11-12
1-3-4-8-8-12
1-3-4-8-10-12
1-3-48-11-12
1-3-5-6-8-9-12
1-3-6-6-8-10-12
1-3-6-6-8-11-12
1-3-5-7-8-9-12
1-3-5-7-8-10-12

Figure 3-2 Test Cases Needed for Branch / Path Coverage

Let us assume for now that the path coverage is complete. A potential problem
with such a testing strategy is that there are often too many different paths through a
program to make it practical. The number of paths is exponential to the number of
branches. Consider a simple program with a 100-iteration loop. There is an if-then-else
decision structure inside the loop. The if-statement causes either the true or false branch
to be taken, and both of these paths go on to the next iteration of the loop. Thus, for each
path entering the ith iteration, there are two paths entering the (i+1)st iteration. Because

there is one path entering the first iteration, the number of paths leaving the ith iteration is
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2"i. Therefore there are 27100 paths leaving the 100" iteration. Testing each of the
27100 paths 1s not likely to be practical.

The second problem is that many paths are impossible to reach due to the

relationships of data. Look at Figure 3-3 for a simple example.

f(G>D)  ecemcecmaoes

else

if{b>=0) o

statement3;
eke

statementd:
——  reachable

==-*  pnreachable

Figure 3-3 Calculate Total Number of Flowpaths

Assume neither of statement! and statement2 change value of a or b

Path coverage considers this fragment to contain four paths. In fact, only two are
feasible: success = true or success = false. This raises another question for: what is the
total number of reachable paths in a program.

Another problem is that a testing strategy based on exercising all paths through a
program is not likely to reveal the existence of missing paths, and omission of a path is a
fairly common programming error. Test data based solely upon analysis of the code
structure is not going to be sufficient. One must always take the software specification
into consideration.

A final problem with path coverage, found during our demonstration work, is that
even if a path has been tested, we are not 100% sure that the path is free of error.

Without taking into account the missing paths, still, a program can never be tested
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completely in terms of detecting errors. The reason is that there is always a non-trivial

probability that errors might exist in a path that has been tested a finite number of times.

3.3.2.3. Literature Conclusion

The goal of this literature review is to locate as close to a complete method as
possible, with a focus on feasibility at the same time. Also, only those methods that are
applicable in general have been studied.

There are two major groups of testing methods: black box testing and white box
testing. Each method has its advantages and disadvantages. Each group has one
complete testing method. Among black box methods, the exhaustive input testing is
known as complete. But implementation of exhaustive input testing results in an
unreasonable number of test cases. Among the structural testing group, the complete
path testing is declared to be complete, though it is not truly complete as we discussed in
the previous section. Also, the literature regards complete path testing as being
impossible for all but the simplest loop free programs. The presence of a loop may result
in an infinite number of test paths, resulting in an infinite testing time. Because of the
unfeasibility of these methods, we conclude that there is not an existing practical method
for testing all except very small simple programs.

Faced with the impossibility of exhaustive testing, the goal of this project
becomes to find a reasonably small set of tests that will allow us to approximate the
information we would have obtained through complete testing. We want to take
advantage of the black box testing methods to check whether the correct functionality
specified by the user has been achieved and also to analyze the structure of the code itself
to imply how much new information is given by certain test data. Reliability estimation
techniques closely related to the integrated methods we choose are developed in order to
approximate how complete we are, in terms of error detection, at a certain testing stage,
so that we can decide when we can terminate our testing process. In the following
section, a framework of the testing method that we have developed and adopted in this
study is discussed. From the name we give to our testing method, “gray box” method, it

is very easy to imagine that it is a technique standing between white box and black box.
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We are trying to incorporate merits from both techniques and also circumvent their
impracticalities.

Because the testing process is very complicated, there are many details that need
to be given careful thought in order to make a theoretical method practical. Among them,
how to generate the input data, how to determine the correct answer for each test case
(the correct answer data base is known as an oracle), how to automate the answer
checking process, how to record the testing results, etc. These issues are covered in more

detail in the following sections.

3.3.3. A Mixed Testing Technique— Gray Box Method

Our own testing technique, “gray box” method, is presented in this section. It
stands at point between black box testing and white box testing. We relate the two
existing methods by their natural connection, resulting in an approach that is both

practical and satisfactory for our high reliability requirements.

3.3.3.1. Method Overview

The testing technique literature review tells us that there is no method at hand that
fulfills the requirements of this study. We intend to design a testing technique that
combines the advantages of current available methods. We use the black box method to
generate input data because it can simulate the actual usage of the software in question
given that the specification document is always available for testing purposes. If some
input data probability distribution could be obtained, Monte Carlo sampling would be a
simple way to generate a large amount of black box input data. Also it is an automated
process by nature. The flowpath coverage testing technique is inverted so that it can be
used in combination with the black box input data sampling process and its working
speed is increased dramatically. We look at the program itself as the software control
flowgraph and assume that it is always obtainable. The complete flowpath triggered by
each test case is recorded as a sequence of nodes. The first goal of testing is to achieve a

complete nodal or branch coverage of the program. A rough reliability estimate of the
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software could be obtained at this point. After this is achieved, we continue to test the
program more thoroughly and through a reliability estimation technique that is discussed
later to estimate the confidence we have for this software based on how much of the
software has been tested in terms of flowpaths and the confidence level that we have for
each of them. Because the whole testing methodology is developed in parallel with an
experiment and is shown to be suitable for the type of software in this study (described in
the demonstration session later) we have no doubt about its feasibility. In section 3.3.3.2,
the testing process as a whole is presented more extensively. More coverage on all the

particular issues concerning testing is given in section 3.3.4.

3.3.3.2. More on Gray Box Testing Technique

Every testing process starts from identifying input data sets. During the previous
work of this project, the process of searching input data sets by examining the inner
structure of the code has been studied carefully [Sui98]. The formal process includes five
steps. It takes in a program and through thorough analysis produces test cases
systematically, which achieve structured path testing coverage involving no infeasible
test cases. In brief, the five steps [Lyu96] are program control flowgraph construction,
dataflow analysis and transitional variable identification, further expansion of the
flowgraph with respect to the transitional variables, McCabe’s metric calculation to
determine the number of test cases needed, and finally determination of values of the
input variables that cause cach test path to be executed. At a glance, this is a very
straightforward method. But, when confronting the issue of automation, the complexity,
both in time and space, associated with its application is still very high. It does not
guarantee finding a feasible solution even if such a solution exists, especially when
nonlinear constraints on the input data are present, let alone the case that some paths can
never be accessed because of the data relationships.

In order to solve the above dilemma, we decided to adopt the trial and check
method. It is well understood how to generate input data without examining the source
code both manually or in an automatic manner. We argue that because of the safety-

critical feature of the software under our study, we should carefully design a set of input
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data from the software specification. Manual input identification may be applied during
this stage. This is very important first step for it enables us to earn confidence about the
software under well-known operating scenarios. Secondly, with some operating profile
of the input data being used, the Monte Carlo method could be used to computerize the
process of generating input data. The Monte Carlo Method is a numerical method that
provides approximate solutions to a variety of mathematical problems by performing
statistical sampling experiments on random variables. The input variables to the Monte
Carlo method are random variables with known probability density distributions. In each
single trial of the Monte Carlo method, the values of input variables are generated
randomly using the probability density distributions, the system responses to the
generated input variables are computed, and the outcomes recorded. There are several
benefits to this random sampling process. First, the obstacle to automating the process is
inherently removed. Second, without studying the internal structure of the code, missing
paths or logics are possibly detected. Last, the real time situation is reproduced as long as
the associated probability distribution is of a good precision. Finally, there is one last
method for the input data production. That is to get it directly from the user. Unlike
other software input data, no input can be obtained without the source code. For
example, many process control or data processing programs used in nuclear power plants
take input data directly from sensor readings or other time existing well-known plant
indicators. If a large number of those real data could be obtained before the software is
actually applied, that would serve as the best testing input data.

Until now, we have described the trial portion of our trial and check approach. If
we were to stop here, our approach would be a pure black box method. Now it comes to
the check portion. The target program is fed with the generated input data and the paths
executed are identified and recorded. Our first step in the check process is to achieve
complete branch coverage. The actual implementation is very simple. We take the
program as the flowgraph. Each execution of the target program leads to coverage of a
sequence of nodes — the executed path. For each tested path, all the nodes on the path
are marked on the flowgraph. Each node is associated with a counter. Before any test is
done, all counters are set to zero. Every time a node is found within a flowpath, the

counter of that node is increased by one. The value of a counter remains zero, if no visit
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has been made to its associated node. Otherwise, the counter stores the number of visits
that have been made to its corresponding node. After an amount of tests are performed
on the target program, the marking process is carried out for all the paths of interest. A
list of all the nodes on the software in question, with the number of visits (the value of its
counter) is transferred to a file. If no modification has been made throughout the whole
process, marking can be started from the first recorded flowpath after the last marking
process. The latest node list file is combined with previous node list files. Because the
group of nodes has been changed, this job can be easily accomplished by adding counter
values of the same node from both files together. If some modification has been made to
correct some detected error, all the previously used input data should be applied to the
target program again to make sure no new error has been introduced. As a result, the
marking process has to be done for all the tested paths because the set of nodes may have
been changed. Refer to Figure 3-4 and Figure 3-5 for a visualized description of the
marking process. The marking job is done after a specified number of tests. When at a
point, we find from the node list file that there are only a few nodes that have not been
checked, the process to manually identify a particular set of inputs that will lead to the
flowpaths that bypass those unvisited nodes should be performed. It is possible that some
surplus nodes that are impossible to visit will be found during this process. The tester
then could decide whether those nodes should be deleted from the program. As shown in
our demonstration result, a higher error rate will probably show up from the last few
hard-to-visit nodes. The reason is that usually these nodes are dealing with rare events,
which the programmer tends to not think very carefully about. After all the nodes have
been tested at least once, a rough approximation of the software reliability can be
estimated from the visiting frequency during testing for each node and number of errors
found on each node. This will be discussed later in the reliability estimation section.
When dealing with a program that belongs to the testable group (refer to section3.1 for
software categories according to their testability), such as the one used in our
demonstration work, it is often the case that some useless nodes are found when trying to
identify input data for every branch, or node, in the software. This is a beneficial result

because those unreachable nodes only add confusion to the program.
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Figure 3-4 Nodal Coverage Marking Process]

Flowgraph is marked after 1-2-3-5-6-8-10-12 is visited
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Figure 3-5 Nodal Coverage Marking Process2

Flowgraph is marked after 1-3-4-8-9-12 is visited and node list shown is stored in a file
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After complete nodal coverage has been achieved on the program under
examination, the same testing process may or may not be continued depending on the
reliability requirement. It should be noted that reliability estimation can be made at any
testing stage, regardless of whether complete nodal coverage has been achieved. During
the testing process, the software reliability based upon path reliability is estimated at
specified stages depending on various factors (e.g. the number of new errors detected, the
speed of identifying new flowpaths, the estimation of the total number of executable
flowpaths, etc). The detailed method of path-based reliability estimation is covered in a
later section. But there is one piece of very important information that is mentioned here.
When we estimate the reliability, we do not simply assume that every flowpath has the
same importance. Because we assume that the program is tested according to the actual
operating profile, or according to a very close approximation, we put more weight on the
more frequently visited flowpaths during the testing process. This is because we are not
blindly secking complete path coverage. Rather, it is only treated as one of several
indicators that show how complete the testing process is. We can get an idea of how
many more test cases (sets of input data) we need in order to test a specified fraction of
the entire set of flowpaths. If some reasonable reliability level has been achieved and a
large number of new input data are needed in order to cover only a few untested
flowpaths that are rarely visited in reality, we may decide to stop the testing process
because the remaining large effort having to be made in order to achieve complete path

coverage is not worthwhile.

3.3.3.3. Conclusion

In this section, we discuss the framework of the gray box testing technique, used
in this project. In the following sections, the task of testing safety-critical software is
addressed from several perspectives, determining the operational profile, generating test
cases, making modifications in the program, checking the correctness of the output,
speeding up the testing process, reassessment after modification, incorporating

verification, making proper continuity assumptions, etc. Clearly, some of the obstacles to
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testing software can be overcome via advantages in technology. Some that are more

fundamental in nature remain unsolved.

3.3.4. Testing Details

3.3.4.1. Operational Distribution

In order to make the testing process more efficient and the reliability estimation
more accurate, obtaining a distribution of input data during actual operation is always a
necessity. But, in general, for a process control system, the only probabilities that can be
reasonably estimated are those of the occurrences of various events in the environment.
These probabilities must then be mapped to the distribution of inputs that the program
will encounter during actual operation. For some generic control algorithm, even when
the distribution of inputs and states can be determined for some parts of the input domain,
it is impossible to be complete or nearly so because we are not even able to know what
are the related events. Another complex contributor is the fact that, in many control
systems, a human is involved in the operating loop, whose decisions can change the
whole operation profile dramatically.

In light of the importance of obtaining a good input domain distribution as well as
the difficulties involved, we suggest several partial solutions to get as much solid
information as possible while maintaining a manageable workload. First, we look at the
program design document. Most of the traditionally designed digital control software
specifications are expressed using pseudo programming languages. The purpose of a
specification 1s to describe every procedure scenario that the designer could possibly
acquire. This information is exactly what we need to obtain some operational profiles.
We can never depend upon the specification to obtain a precise and complete operational
input distribution for two reasons. A specification is relatively abstract. It is more about
what tasks the program should complete than how the tasks should be completed. Many
details are still waiting for the software developer to address. If we were to partition the
input domain based solely upon the specification, many minute, subtle, but important

points in terms of testing might be ignored. Another reason is that human work instead
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of a computer calculation is necessary in order to find the operational profiles through
this method. This makes it almost impossible to be complete when translating the
software specification into an operational input distribution. In spite of the above
weakness, we are still able to claim that to obtain partial operational scenarios from
program specification is very useful, handy and efficient.

If the specification itself is too abstract, why don’t we look at the more detailed
part, that is, the program itself? It certainly contains some of the details that we need to
get the operational profile. Thus, analysis of the program structure can serve as the basis
of a complementary method. The program itself is more detailed and more about what
the programmer does to achieve every function mentioned in the specification document.
But, in order to take advantage of the additional information contained in the program
structure, even more human effort is necessary. Moreover, such information is even
further away from the real operational scenarios during field use. Thus, we argue that
this method could only be used as a supplement.

The only way to get very precise operational profiles is to put the software into
real field use, or get a large number of real input data to test the software. A nearly
equivalent way of doing this is to develop a full-fledged environment simulator, which
can be complex, error prone, and also require lots of testing. For most situations, it is
very hard to use the software on the spot before little testing has been done. To build a
simulator is expensive and time consuming compared with the development and testing
work for the software to be tested, although an environment simulator has an extra
advantage in that 1t simplifies the determination of the correctness of the output.

In this project, we only implemented this first method while taking the second
into consideration to some extent. We did not have the opportunity to obtain a large real
input data sample from our industrial partner nor did we have the time needed to develop

a simulator. More details are provided in the demonstration section of this project.

3.3.4.2. Input Data Generation

There are two major techniques used to generate test data. The first one is to

sample independent, identical input data points according to the operational distribution.
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The second one is to randomly generate uncorrelated test data within the input domain.
When implementing this method, the testing process should be instrumented to convert
status variables into input variables (save values of status variables from the previous
execution and use them as part of the input data to the program upon current execution),
which renders the program being tested not exactly identical to the actual program. Both
of these two methods have their advantages as well as disadvantages. On one hand,
because of the statistical nature of our reliability estimation method, we have to get
enough testing data from tests to permit a useful distribution. On the other hand, due to
safety-criticality of the software that we are testing, we have to make sure all the
tmportant logical scenarios covered in the design documents are tested to be correct.

In this work, we used both of the above these techniques to generate testing input
data. For the first method, in the beginning, we obtained as many as possible input
scenarios either from the design specification or from analysis of the program structure.
A complete algorithm requirement design should be completed at the time the software
specification process is initiated. For this reason, a majority of the program scenarios
during field use should be included in the design document. The given system may spend
most of its time in those well-understood operating regimes. As a result, checking all the
scenarios covered in the specification is the most convenient and fastest method to test
the software in the first place. There is an important point that needs to be emphasized.
That is, test cases should be chosen in such a way so that while the middle range of the
logics should be checked, the boundary situations are even more important.

Unlike random input data sampling, it is very hard to automate the generation of a
series of correlated test data in accordance with some of the operational scenarios. Test
scenarios are constructed manually, which precludes automated generation of a large
number of such data, which then prevents obtaining statistically significant test results for
the statistical reliability estimation. The importance of this method combined with the
difficulty in automating it leads us to apply only a small number of input data to the
target program 1n this fashion.

The second method to generate test data is to randomly sample the input data
domain. This method is similar to the technique used to determine hardware reliability,

selecting a random sample of components and subjecting them to operational use. It 1s
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fairly easy to make this process automatic. Rather than the detailed input distribution,
only some basic information, for example, the legal range of inputs and the dependency
among inputs within the same input data is needed. The input data generated in this
manner could cover a lot more scenarios than the first method. Some “unexpected”
faulty points in the program might be found. The automation also makes it possible to
achieve a much larger sample of test data, which, hence, makes the reliability estimation
more accurate and more statistically significant. Still there is another problem that needs
to be address. That is, a process control program, such as what we use in our
demonstration, usually has internal states. These internal states are hard to estimate or
generate randomly. They also make the tests persistently dependent on one another for
some period of time. We have no choice but to turn these internal states into some form
of input, thus making them controllable to some extent. One other minor issue
concerning input data is the possible human involvement in the program running loop.
Some simplification must be made in order to skip the human-computer interaction
thereby making automation of the testing process possible. Random sampling is used
again to simulate the operator controlling commands, though it may not match the actual
practice. As throughout our whole testing and reliability estimation process, we make

every possible effort to obtain a good compromise between accuracy and feasibility.

3.3.4.3. Verification

Verification is a very important modular testing method. Formal verification can
be used for proving the correctness of lower level components, general properties of
upper level components, and the correctness of the system under normal operating
situations. We argue that the higher the reliability achieved by a system before testing,
the fewer tests are needed in order to achieve specified reliability value. A hierarchical
design structure, like the 001 AXES language used in our project, organizes the software
into a series of abstraction layers in which a component at any given level only uses
components at lower levels. Doing this improves the testability and provability of the
software because the debugging and verification can proceed level-by-level starting with

the lowest one. It is true that we cannot solely rely on program verification to trap all the
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faulty points. However, it is certainly of great assistance in reducing the workload at the
integrated testing stage. It should be emphasized that the proofs obtained during the
verification stage do not directly reduce the number of test cases. The only way of
directly reducing that number is to prove complete path correctness. However, we can
indirectly reduce the integrated testing effort when a specified reliability objective is
required. Because verification can substantially improve confidence in the correctness of
the program, we can express such a belief in the form of the prior distribution of the
program reliability estimation value. General knowledge about the software development
and verification tool is required in order for proper prior parameters to be identified and
used. The more information we know about the verification process and put into the
prior distribution, the quicker the integrated testing process will lead us to attain the real

software reliability estimation and the fewer number of test cases will be needed.

3.3.4.4. Output Determination

In order to complete testing, an oracle is always required to determine whether the
output of a given input data set is correct. For a small number of input data used to test a
small program, manual checks can serve as a reasonable source for the oracle. It 1s
especially convenient if we want to test the scenarios described in the software
specification. The correct outputs corresponding to the inputs that lead the program to go
through that carefully studied scenario is known from the specification. However, for the
large number of test data that is required by the sampling model, it is essential to
automate the test oracle. But, without a full-fledged simulator, to achieve complete
checking via automation is a very difficult task. In practice, a combination of partial

solutions employing automation is usually used. These include:

a) Embedded assertions, which are conditions inserted into the program at various
places. If false, warning messages are displayed signaling the possibility of faulty
output.

b) Reverse checks, which is to substitute the program result as the input.

c) Reasonable checks, checking if the output values are plausible within given context.
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d) Interpolation checks, that is, for continuous functions, checking to see if resulting
values are within interpolated values of nearby test points.

e) Data diversity, that is to see if the output differs significantly from the input.

f) Dual programming, which is to develop two versions of the program, each by an

independent team, with the hope that they will not make identical errors.

[t 15 obvious that there is no single method that is perfectly automatic and able to identify
any wrong output. Furthermore, some methods are only applicable to a certain type of
software. A properly selected mix of some of the above approaches will reduce the
number of manual checks that would otherwise be required.

In our work, besides manual checks, the last approach, dual programming, was
applied in our demonstration program. Also in most of the programs developed these
days, embedded assertion is adopted too. But because this is part of the work that should
be done during programming and have become every programmer’s custom, we did not
cover it in our work. The details about how we took advantage of dual programming are

discussed in Chapter4.

3.3.4.5. Stopping Rule Base on Completeness

The traditional stopping rule states that if the estimated reliability reaches the
required reliability value the testing process can be terminated. The number of failure-
free test cases is connected with the reliability objective with some reliability estimation
model. In this project, we would like to approach the stopping rule decision from a
different perspective. Imagine, what we could do, if we were not to have a required
reliability value corresponding to our reliability estimation model. Or, if we want to put
the reliability requirement on hold for the moment and consider how reliable we want the
safety-critical software to be. Ideally, we want it to be failure free. In other words, we
want to test the software as complete as possible.

Because we intend to test the software completely on an executable flowpath
basis, we need to decide upon the final level of flowpath coverage completeness before at

which we can stop testing. As we found in our demonstration work, being exhaustive in
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terms of flowpath coverage is prohibitively expensive even for relatively simple system
control software. Use of some reasonable assumptions and simplifications becomes
essential in making the testing strategy pragmatic. In the following two subsections, a
phenomenon favoring the possibility of stopping the testing process early is discussed
first; followed by an important assumption used to bridge the gap between the testing

termination point and the executable flowpath complete coverage point.

3.3.4.5.1. Input Saturation Effect

Although we intend to attain complete testing in the first place because of the
safety-criticality nature of the software that we are working on, it is also true that the
running cost of such testing is huge. Another option would be that we may have to
sacrifice some of the completeness in order to achieve practicality. But how can we trust
the incompletely checked software? We have to find a way to show that in spite of the
incompleteness, it is safe enough to use. Recent research work shows that software
developed by using formal methods exhibit an early saturation effect during testing.
Thanks to this effect, random input sampling could be used to achieve nearly complete
flowpath coverage, even for some flowpaths that are not reachable by formal exhaustive
input data identification. In this manner, we avoid the theoretical problem of
incompleteness, provided that testing continues until after the saturation point. Such
random sampling 1s rapid, consumes little memory, is simple to implement, and can

handle very large formal models.
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Figure 3-6 Illustration of Saturation Effect in Software Testing

Saturation effect in our research context is visualized in Figure 3-6. In the
picture, most of the flowpaths have been reached very early in the random input sampling
and testing process. The assessment methods that exhibit a saturation effect support an
early stopping rule. That is to say, the quicker the saturation point is reached the earlier
the test can be stopped, because by then we should have covered most of the executable
flowpaths. It is claimed that assessment methods that use early stopping rules run the risk
of false positives, i.e., reporting that no faults are present when further assessment would
have found them. Hence, the early stopping rule can only be endorsed for sampling that
exhibits adequacy and flat plateau properties. Here, we briefly describe these two
properties, followed by discussions about whether our safety-critical software testing
process satisfies these requirements. And if not, what we should do to soive the problem.

Adequacy: An adequate assessment method does not fail to recognize faults in
states visited (covered) prior to the occurrence of saturation. This is to say that whenever
we have tested a flowpath we are always able to detect the error if there is any. For the
majority of software errors, it is true. But still there is a sizeable possibility that some
errors might not be discovered the first time that a flowpath is tested. Because of this
reason, as described in much more detail in Section3.4.4.2.3.1, we divide the errors into
two types. If a flowpath contains a type I error, it is always discovered during the first

time that the flowpath is tested. But if there 1s a type II error, the possibility of detecting
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the error is the same during any single visit to the flowpath. The event of finding a type
[T error during any single visit to the flowpath is independent of any other visit to the
same flowpath. In this work, we use Bayesian updating to estimate the percentages of

type I errors, p,, and that of type II errors, p,, as well as the possibility of finding a
type II error during a single visit to an error-prone flowpath, p, . It is clear that only

the error-triggering flowpath information could be used for this estimation purpose. The
safety-critical software developed via use of formal methods can provide us with very
limited data points. We argue that errors within all similar programs in terms of their
testability’ should also have these two types of errors with similar corresponding
probabilities: Py, P, and Py. This implies that information from all such testing processes
could be used to update distributions of these probabilities. The updated result at any
stage could always serve as prior information for further updating.

Flat plateau: If the saturation curve results in a flat plateau, then additional errors,
if present in the unseen portion of the formal model, are not detected. However, because
of the flatness of the plateau, they are most likely to remain unnoticed upon system
deployment, unless the associated operating regime undergoes drastic changes. Even
though studies [Menz00,Menz02] show that many formal models feature such flat
plateaus, there still exist cases where the flat plateau is not very clear. If this happens, we
should draw the real flowpaths vs. number of input samplings curve, from which we can
estimate how far away we are from the saturation point. A proper confidence level
should be associated with that estimation. Again the detailed estimation process is

delayed until the reliability estimation session.
3.3.4.5.2. Continuity Assumption Incorporation
From the reliability estimation point of view, in order for us to stop testing before

complete flowpath coverage is achieved, we have to use some measurement of the

complexity of the whole program. The information obtained from the tested flowpaths is

* According to the IEEE Glossary of Software Engineering Terminology, testability is defined as “the
degree to which a system of components facilitates the establishment of test criteria and the performance of
tests to determine whether those criteria have been met.”
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the sole base of this measurement. Continuity assumptions from the tested flowpaths of
the software to the untested flowpaths are needed to estimate reliability of the entire
software. In order to achieve this, the tested flowpath indexes vs. the number of unique
input sampling data that has triggered each of these flowpaths curve are plotted. The
probability that an untested flowpath will be visited is estimated by extrapolating this
curve. To extend the reliability information of the tested portion over to the untested
portion of the software for reliability prediction, we assume that the reliability of every
unchecked flowpath has the same value as the average reliability of the checked flowpath
given that no modification has been made and both portions were designed and
developed by the same group of personnel under the same programming environment. In
this section, we only intend to cover these assumptions briefly in order to make the
claimed testing termination before the complete flowpath coverage justifiable in every

respect.
3.3.4.6. Testing Result Recording

Dual programming is the main output checking method. Our approach is a little
different from conventional dual programming, i.e. we take a developed and thoroughly
tested program based upon the same algorithm as the software under consideration as the
oracle program. Most of the time", if we notice any difference between the outputs from
the two programs, we believe that the output from the oracle program is correct. We then
claim the discovery of an error in the software under testing at this point. For this reason,
we always record results from the two programs in the same format, which provides

considerable convenience when making output comparisons.

* There is a very small possibility that the oracle program gives the wrong output.
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Figure 3-7 Conversing of Intermediate Status Values into Input Values

An important characteristic of signal processing programs is that adjacent runs of
the program are sequentially dependent via some intermediate status values. Because we
have to remember the output of every run of the program, we cannot let it run
continuously is the case during field use. This requires that we turn the intermediate
status variables, unseen to an outsider during operational time, into input variables. The
values of such variables are those of the intermediate status variables from last run of the
program. This additional process during testing forces the testing process to follow a
special sequence. A series of randomly sampled input data are first put into the oracle
program. Outputs and intermediate status values are recorded after each run of the oracle
program. Then, both the same set of inputs and the intermediate status values are put into
the program under testing, outputs are recorded after each run of that program.

There is another piece of information that needs to be remembered after each test
is the flowpath that was followed in this test. This is not necessary during normal test,
when one only intends to decide if the given input could lead to any failure of the
software. However, in our approach, we need this information due to two reasons. First,
we need it to decide how many flowpaths have been tested. According to the coverage
percentage and how far away the test is from the saturation point, we can decide if we can
terminate our testing process in terms of completeness. Second, we need the flowpath

information to estimate the reliability of every particular flowpath and thereby further
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estimate the reliability of the whole program. The method used to calculate the

estimation is covered in detail in the reliability estimation section.

3.3.4.7. Reassessment After Modification

Several of the reliability growth models assume that the modification of a faulty
point in the software does not introduce new errors. Under this assumption, reassessment
is not necessary as long as the program is not modified for reasons other than the
discovery of a fault, such as the incorporation of new features or a better algorithm.
However, this assumption is not sound enough to be applied to the safety-critical
software. Even though the possibility of introducing a new error is very small’, we
cannot take that risk because of the possible severe consequences. Reassessment in this
project is always required.

Partial retest of those affected portions of the software might be suggested as a
means to avoid the cost of assessment starting from scratch in the event of a debugging
action following a failure. The decision about which one should be adopted depends only
upon the expense involved because both of them can guarantee that none of the
previously tested input will cause a failure. The extra work brought about by the partial
retesting approach is the identification of the affected portion of the program and which
previously used input data are related to that portion. If the identification work is more
complicated and time consuming, the complete will be the better choice. Furthermore, if
the modification is made at a very high level of the whole software structure, most of the
flowpaths are affected and most of the input data should be used for retesting.

In this project, because of the relative simplicity of the software under
consideration and the high confidence requirement, we decided to use the full
reassessment approach. Because the testing process is automated and the identification
of the affected input data is therefore comparatively harder, partial retesting becomes
more expensive. It is more costly to differentiate the affected paths from the unaffected

ones than to test all the test data used before, let alone the probability of having some

3 In this project, we did not encounter such cases. In others word, every time we detected an error and
made corresponding modifications, the program always behaves correctly with all the previous used input
data.
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error in the new tool. In the future, if more complicated software is to be tested, further
efforts should be made so that the software is more modular. Hence, the related structure

and input data would be much easier to identify.
3.3.4.8. Nodal Coverage Checking

As discussed in the white box testing techniques that branch coverage is a far less
easy job than path coverage approach. Also, if complete path coverage testing has been
achieved on a program, branch coverage testing must have also been achieved. This is to
say branch or nodal coverage testing is a pre-requisite of path coverage testing. One of
the results of nodal coverage marking process is identification of any untested node.
Also, if a node is a decision node and has not been visited, all its child nodes must have
not been visited either. After this process is done and if the number of nodes unvisited is
not very large, manual checking can be done on those specific nodes. Those nodes tend
to be ones that deal with abnormal scenarios, e.g., a careless input from the operator that
is out of the specified range. If this is true, the corresponding input data should be
designed especially to visit these nodes. To achieve this, both the programmer and the
designer, who writes the specifications, should be present. This is the same job that the
tester is supposed to do in an idealized white box testing approach, that 1s, part of the
program structure is identified or located first and input data, which can lead an execution
toward that structure, are selected. The situation also exists that a node, which can never
be visited, is found in the unvisited node group. If this happens, that node might better be

removed from the program because this is a useless node.

3.4. Reliability Estimation Methodologies

3.4.1. Software Reliability Model Review

Software reliability is one of the most important parameters of software quality.

In the Encyclopedia of Computer Science, it is defined as “The probability that a

52



software fault that causes deviation from the required output by more than a specified
tolerance, in a specified environment, does not occur during a specified exposure period”.
In reality, people appear to not be able to endure any error at all and more often than not
simply set their tolerance to be error-free, especially under safety-critical circumstances.
Software reliability is then simply quoted as “The probability of failure-free operation in
a specified environment for a specified period of time” (Lyu96). A software failure
occurs when the behavior of the software departs from its specifications, and it is the
result of a software fault, which is a design defect that is activated by a certain input to
the code during its execution. During our study, we consider a more simplified situation
than that mentioned above in the two reliability definitions. Instead of considering a
continuous time software system, we view our target program as a discrete demand-based
system. Instead of approximating the error-free probability during some time period, we
focus on the probability that no error will occur on the next execution of the program. It
is apparent that demand-based reliability estimation can be converted to the widely used
continuous time-based reliability by multiplying the average execution time per demand
factor.

Software reliability analysis is performed at various stages during the process of
engineering software, for a system. The objective is to determine if the software
reliability requirements have been (or might be) met. The analysis results not only
provide feedback to the designers but also become a measure of software quality.
Statistical inference techniques and reliability models are applied to failure data obtained
either from testing or from operation to measure software reliability. Software reliability
models are classified as being either black box or white box models. The difference
between the two is simply that the white box models consider the structure of the
software in estimating reliability, while the black box models do not. In the following
two sections, a summary of fundamental black box and white box software reliability
models is given. Both from their names and their essential characteristic differences,
they seem to have exactly the same relationship as black box testing and white box
testing methods. But there is a significant difference in that these two types of reliability
analysis methods are targeting two different levels of the software systems (The black

box method can be applied to any software from its bottom level while the white box
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method has only been applied to highly modulanzed software, starting from its well-
known, casy to analyze component level) while the two types of testing techniques are
trying to solve the same problem. The white box reliability models uniformly assume the
component reliabilities are available and are always working on top of the black box

models.

3.4.1.1. Black Box Reliability Models

In the software development process, it is very typical to end up containing a
product with some defects, 1.e. faults, or bugs. For a specific input to the software, these
faults are activated and result in a deviation of the software behavior from its specified
behavior, i.e. a failure. It is common to demand that all known faults be removed,
especially in the case of safety-critical software. This means that if there is a failure
found during testing, the offending fault must be identified and removed without
introducing new bugs. Thus it is a fundamental for all black box models to assume that
every fault is perfectly fixed, i.e. the process of fixing a fault does not bring about any
new fault, and software reliability increases. If the failure data is recorded either in terms
of number of failures observed per test or given time period or in terms of the number of
tests or time between failures, statistical models can be used to identify the trend in the
recorded data, reflecting the growth in reliability. Such models are known as Software
Reliability Growth Models (SRGMs) or growth models in general. They are used to both
predict and estimate software reliability. All SRGMs are of the black box type because
they only consider failure data, or metrics that are gathered if test data is not available.
Black box models do not consider the internal structure of the software in reliability
estimation and are called such because they consider software as a monolithic entity, a
closed box. In the subsequent portion of this section, several basic black box models are
reviewed. There are many other existing black box models, but all are extrapolations of

these fundamental models.
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3.4.1.1.1. Terminologies in Black Box Reliability Model

Some of the terms commonly used in the context of Software Reliability Growth
Models (SRGM) are listed in Table 3-1. Other terms are also used in different models

and are explained as they are encountered.

Term Explanation
M) The total number of failures experienced by time t.
uit) Mean value function for an SRGM. This represents the expectation of the

number of failures expected by time t as estimated by the model.
Therefore, we have
u(t) = E[M ()]

A(t) Failure intensity function, representing the average number of failures per
unit time predicted by the model. It is the derivative of the mean value
function, 1. e.

A(t) =du(t)/ dt

Z(At|t,_,) Hazard rate of the software, which represents the probability density of
experiencing the i failure between t_,and ¢, + At given that (i-1)*.
failure occurs at 1;.;.

z(1) Per-fault hazard rate, which represents the probability that a fault, that had
not been activated so far, will cause a failure instantaneously when
activated. This term is usually assumed to be a constant (¢ ) by many of
the models.

N Initial number of faults present in the software prior to testing.

Table 3-1 Terminology Common to Black Box Reliability Models

Data that are generally supplied to SRGMs are either the times at which failure
occurs {t, =0,1,,t,,..1,} or elapsed time between failures {x,,x,,..x },x, =1, —t_,.
There is an assumption common to all the models presented in this section, i.e., the
failures are independent of each other. Though, there are frameworks [TrivOl] that
incorporate statistical dependence between failures, they are not covered in this review.

Four classes of black box reliability models are briefly reviewed here: failure rate
model, error seeding model, curve fitting model, and Bayesian model. In the following

subsections, each class is described briefly followed by an example model within that

class.
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3.4.1.1.2. TFailure Rate Model Class

The failure rate models emphasize the per fault failure rate during the failure
intervals. The models in this group try to capture the how the failure rate changes as
more faults are detected and corrected. Estimations on the total number of errors in the
software and failure rate arc made based upon the data collected during the testing
process. Predictions about the performance of the software in the future are made
according to the underlying failure rate function and the estimated parameters.

One of the earliest software reliability models, the Jelinski-Moranda (J-M) model
(Jelinski, 1972) is representative of the failure rate model class. Many existing software
reliability models are variants or extensions of the J-M model.

The elapsed time between failures is taken to follow an exponential distribution

with a parameter that is proportional to the number of remaining faults in the software.

With a constant per fault hazard rate ¢ after detection of the (i - 1)""failureé, the mean
time between failures at time ¢ (¢, , <f<¢,) is 1/o(N—(i—1)). The figure below

illustrates the impact that finding a fault has on the overall hazard rate. As each fault is

discovered, the hazard rate is reduced by the proportionality constant ¢, the per fault

hazard rate. The impact of each fault removal on the hazard rate Z(¢) is the same.

Z()

ey
.

? )

Time Between Failures

® We assume a one to one relationship between faults and failures while presenting the existing software
reliability models. Thus, failure and fault will be used interchangeably throughout this section.
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Figure 3-8 Hazard Rate of J-M Model

The assumptions in this model are:

+ The data to estimate software reliability are collected while the software is
operated in a manner similar to that for which the reliability estimation is to be
made.

« Each fault in the program has the same chance of being encountered.

« The failures, when the faults are detected, are independent.

« The program contains N initial faults, where N is unknown but finite and
fixed constant.

. Time intervals between occurrences of failures are independently and
exponentially distributed random variables.

« The fault that causes a failure is instantaneously removed and no new faults
are introduced when the detected faults are removed.

« The software failure rate, during a failure interval, is constant (@) and is

proportional to the number of faults remaining in the program.

The above assumptions lead to the hazard rate Z(At|¢, ), after removal of the

(i-1)" fault, being proportional to the number of faults remaining in the software

N —M(t, ) and the per fault hazard rate ¢. That is:

ZAt[t ) =p[N-M(@,_)]=p(N-i+]) Eq. 3-1

If the time-between-failure occurrences are X, =7, -7, ,i=1,...,n, then the

X,’s are independent exponentially distributed random variables with mean

1

—— . Thatis:
PN —-(i-1)
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FOX, T2y = 4N — (= D]exp(~g[N — (i DY) Eq. 32
The mean value function and the failure intensity function for this mode] are

u() = EIM ()] = N(1-e™) Eq. 3.3

A(t) = Noe™ = (N — u(r)) Eq. 3-4

This is clearly a finite failures model as lim,__ x(f) = N. Software reliability obtained

from this model can then be expressed as

— PN,
R(t)=e Eq. 3-5

The data requirements to implement this model are: the elapsed time between

failures x,,x,,...,x, or the actual times that the software failed ¢,¢,,...¢

LR} n?

wherex, =¢, —1,_,. There are two unknown parameters in the model, the initial number

of faults present in the software, N, and the per fault failure rate ¢. Using the
Maximum Likelthood Estimation (MLE) method, we can estimate these parameters from

the joint density of the X,’s as:

- n
¢ = " n
N(Zx,] =D (i-Dx,
= i=l and Eq. 3-6
< 1 B n
- Y e - " !l on n
izl i=1 Eq. 3-7
where,
L. Total number of failures encountered during data collecting process
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X, - The time interval between i" failure and (i —1)™
N s MLE estimated total number of faults in the software

? i MLE estimated constant per fault hazard rate

First value of N is estimated by the second equation. Then, the solution is put

into the first equation to find the MLE of ¢. The reliability measure in Eq. 3-5 can be

derived by replacing the quantities N and ¢ with the corresponding MLE of N and §.
Though the J-M model has now largely been replaced and the importance of the J-
M model is mainly in setting the framework for future work in this modeling area.

Other reliability models in this failure rate category are:

o Schick and Wolverton model (Schick, 1978)

o Jelinski-Moranda geometric model (Moranda, 1979)

e Moranda geometric Poisson model (Littlewood, 1979)

e Negative-binomial Poisson model

e Modified Schick and Wolverton model (Sukert, 1977)

e Goel and Okumoto imperfect debugging model (Goel, 1979)

3.4.1.1.3. Error Seeding Models

This class of reliability estimating models estimates the total number of errors in
the given software by intentionally introducing bugs. Tests are performed on the
software, which contains both inherent errors and induced errors. As testing goes on,
faults from both groups will be discovered. The estimation of the total number of
inherent faults is made from the number of seeded errors and the ratio of the two types of
errors encountered.

The assumptions made in this model are:

. The data to estimate software reliability are collected while the software is
operated in a similar manner as that for which the reliability estimation is to

be made.
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» Each fault (either inherent or seeded) in the program has the same chance of

being encountered.

+  The failures, when the faults are detected, are independent.

« The program contains N initial faults, where N is an unknown but finite and

fixed constant.

. The fault that causes a failure is instantaneously removed and no new faults

are introduced when the detected faults are removed.

Mill’s error seeding technique (Mills, 1970) is a method to estimate the total

number of errors in software under consideration by inducing seeded errors into the

program. Assume there are N inberent errors in total and », seeded errors in the

software. If the probabilities of detecting both types of errors are the same, the

probability that there are k induced errors among the » errors corrected can be

calculated according to hypergeometric distribution as:

(HI][ i J

k\r—k

P(k,";”x,N)—'*[W:n—]—
-

where,

Nig the total number of inherent errors in the program,
g the total number of seeded errors in the program,
ris the total number of seeded errors corrected,

ki the total number of errors corrected,

r—k js the total number of inherent errors corrected.

Eq. 3-8

In equation (3-7), the only unknown value is N . It can be estimated according to

MLE as:
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N=[N,]+1 Fq. 3.9

_ rzl(r—k)_1

N,
k Eq. 3-10

If N, is an integer, both N, and N, +1 are MLE estimates of N .

Unlike the failure rate model, this model does not estimate reliability in a time-
dependent manner. The only information obtained is the total number of errors in the
software. The important assumption made in this model is that there is equal opportunity
to encounter either an inherent or an induced error. This makes the error seeding process
very difficult. If no data have been collected about any of the inherent errors, how can
we create some errors that are similar to the inherent errors?

The other models within this category include:

e (Cai’s model (Can, 1998)

e Hypergeometric distribution model (Tohma et al., 1991)
3.4.1.1.4. Curve Fitting Models

Curve fitting models use statistical regression methods to study the relationship
between software complexity and the number of errors in the program, the number of
changes and the failure rates, etc. The form of relationship function is proposed and the
corresponding coefficients in the function are estimated by regression methods or time
series analysis. This category of model can be divided into several groups based on the
software reliability parameter that is sought, e.g. total number of errors in the software,
the complexity measure of the software or the failure rate of the software, etc.

The data required within this model group are very different depending on the
proposed relationship function type. Because this group of models is based more on the
experimental observations than on the underlying physics, emphasis is on the patterns
noted from the data. Therefore, certain techniques are only applicable to a specific type

of software.
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3.4.1.1.5. Bayesian Models

Both of the two reliability models used in this project are fundamentally Bayesian
models. This group of models views reliability growth and prediction in a Bayesian
framework rather than in the traditional ones considered in the previous sections. The
power of the Bayesian updating strategy is that it can include various forms of
information, both subjective expert judgments and objective experimental results, in one
model.

The previous models allow changes in the reliability estimation only when an
error occurs. In a Bayesian model, the reliability can be updated even after some error-
free tests, reflecting the growing confidence in the software by the user. The reliability is
therefore a reflection of both the number of faults that have been detected and the amount
of failure-free operation.

Most of the traditional models also look at the impact of each fault as being of the
same importance. The Bayesian model reflects the belief that different faults have
different impacts on the reliability of the program. If we have a program that has several
faults in seldom used code, the program is not necessary less reliable than the one that
has only one fault in the part of code that is used very often. The number of faults
becomes less important in the Bayesian model compared to the actual impact made by the
faults to be implemented.

The prior distribution, reflecting the view of the model parameters from past data,
is an essential part of this methodology. One can incorporate past information, projects
of similar nature, for example, in estimating reliability statistics for the present and
future. This distribution is simultaneously one of the Bayesian’s framework strengths
and weakness. Specifying a meaningful full prior distribution over all variables
sometimes would make the model too difficult.

Most other models view the value of the hazard rate to be a function of the
number of faults remaining. In contrast, the L-V model takes it as a random variable. All

the information on hand could be used to update the distribution of that random variable.
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As a result, the reliability or hazard rate estimation can be expressed in a statistical
manner.
The basic idea on the mathematics behind this theory is as follows. Suppose we

have a distribution for our reliability data that depends upon some unknown parameters,
5 , that is, f,(F | E ) and a prior g(f ,@) that reflects our view on those parameters f ,
from historical data. Once additional data have been gathered through the vector [, our

view of the parameter 5 changes. That change is reflected in the posterior distribution,

which is calculated as

£@189)8E.0)__ _ fr(F1£)g(E.P)
J- 101 5eE.pas S0P Bq. 311

hE|T,p) =

Various estimates of 5 can be obtained using the posterior distribution, thereby
leading to reliability estimates involving £ . As the testing continues, the distribution of

£ could be updated again and again by using the previous posterior distribution as

current prior distribution.

Another strong point of this model is that it can account for fault generation in the
fault correction process by allowing reliability to decrease. Because of uncertainty, after
each fault removal, the new version could be better or worse than the predecessor. Thus,

another source of variation is introduced.
3.4.1.2. White Box Reliability Models

The white box software reliability models consider the internal structure of the
software in reliability estimation as opposed to the black box models which only model
the interactions of software for the system within which it operates. The contention is
that black box models are inadequate to be applied to software systems in the context of
component-based software because the increasing reuse of components and complex

interactions between these components in a large software system. Furthermore,

63



proponents of white box models advocate that reliability models that consider component
reliabilities, in the computation of overall software reliability, would give more realistic
estimates.

The motivation to develop white box or architecture-based models includes the
development of techniques to analyze the performance of software built from reused and
Commercial-Off-The-Shelf (COTS) components, to perform sensitivity analyses, (i.e. to
study the variation of application reliability with variation in component and interface
reliability, and to identify of critical components and interfaces.

The first step in white box reliability models or architecture-based software
models is to decompose the software. A component of the software is conceived as a
logically independent unit of the system that performs a well-defined function. The level
of decomposition depends on the tradeoff between the number of components, their
complexity, and the available information about each component. Besides components,
the interfaces among components should be identified through the software architecture.
Interactions oceur only by transfer of execution control. When the possible interactions
are specified, non-zero transition probabilities should be assigned to each interaction by
analyzing the program structure and using operational profiles. The next step, failure
behavior, is defined and associated with the software architecture. Failure can happen
during execution of any component or during a control transfer between two components.
The failure behavior of the components and of the interfaces can be specified in terms of
their reliabilities or failure rates. Software reliability growth models are applied to
estimate reliability for each software component by exploiting components’ failure data
obtained during testing. Interface failures happen separately from component failures,
and can be observed through integrated testing.

The final step in this reliability group is to combine the software structure
together with its components’ failure behaviors. According to the methods to make the
combination, there are two types of white box reliability models: the state-based model
group and the path-based model group. They are presented separately in the following

subsections.
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3.4.1.2.1. State-Based Model

In this model class, a control flowgraph is used to represent the software
architecture. Software teliability is estimated analytically. These models assume a
control flowgraph has a single entry and a single exit node that represents components at
which execution begins and terminates, respectively.

The Cheung model is one of the earliest models that relate software reliability to

component reliabilities. The transfer of control among components is described by a
transition probability matrix P =[p;], where p; is the probability that the program
transits from component i to component j. Each component is assumed to fail
independently with probability 1-R,, where R, is the probability that component i

performs its correct function. In order to relate the overall reliability with the component

reliabilities, two absorbing states C and F are added, representing the correct output and
failure. The transition probability matrix is modified to P as follows. Each element Dy
is replaced by R, p,, which represents the probability that the component i produced the
correct result and the control is transferred to component j. From the exit n, a direct
edge to state C is created with probability R, to represent to correct execution. The

failure of component i is considered by creating a direct edge from i to F with
transition probability (1-R,). The reliability of the program is the probability of
reaching the absorbing state C of the Discrete Time Markov Chains.

In this type of model, it is assumed that component failure will eventually lead to

system failure and every of component fails independently.
3.4.1.2.2. Path-Based Model

Similar to state-based models, path-based models examine the software
architecture explicitly and assume independent component failure. But instead of
combining software architecture and software behavior analytically as in state-based

models, experimental methods are utilized. Different execution paths that can be taken
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are considered in path-based models. In contrast, components or nodes are examined in
state-based models.

Though named as “Component Based Reliability Estimation”, Krishnamurthy
And Marthur’s model is a typical path-based model. They experimentally investigate a
method for estimating the reliability of a system given the reliabilities of jts components
and of their interfaces with other components. Specifically, sequences of components
along different paths are observed during the testing. The component trace of a program

P for a given test case fc, denoted by M(P,tc), is the sequence of components m

executed when P is executed against fc. A sequence of components along a path
traversed for test case #c is considered as a series system, and, assuming that components

fail independently of each other it, follows that the path reliability is:

Rlc = HRm Eq 3-12

YmeM (P 1)

This is to say that the reliability of the path in P traversed by test case fc is the product
of the component reliabilities. The reliability estimation for program P with respect to a

test set 7' is given by the average of all the path reliabilities as:

R= ZVI(‘ET R"'

T Eq. 3-13

3.4.1.3. Reliability Model Conclusion

From the literature, the black box models are the ones traditionally used to
quantify reliability for less complex software system. Compared to the white box
models, they are simpler because no structural information of the software is needed. As
a result, the black box approaches provides very little information indicating the
completeness of the test. Almost no significant software features can be revealed by this

group of reliability estimation models.
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In the white box models, the architecture of the software is identified, not in the
sense of traditional software engineering architecture but rather in the sense of
interactions between components. The interactions are defined as control transfers,
essentially implying that the architecture is a control-flow graph where the nodes of the
graph represent modules and its transactions represent transfer of control between the
modules. The failure behavior of these modules (and the associated interfaces) is
specified in terms of failure rates or reliabilities (which are assumed to be known or are
computed separately from SRGMs). The failure behavior is then combined with the
architecture to estimate overall software reliability as a function of component
reliabilities. Compared to the black box models, they are better approaches to answer the
completeness question and reveal important software feature. But because this group of
methods is designed for more complicated, modulated software systems, its basic
assumption is that the component reliabilities are known. Such models simply ignore the

issue of how these values could be determined, which is still an open research issue.

3.4.2. Two Reliability Estimation Methods Overview

In this project, we tend to design reliability estimation methods that combine
strengths of both black and white box approaches. We want keep the simplicity of the
black box methods and the software feature indication capability of the white box
methods.

We have developed and demonstrated two reliability estimation methods: nodal
coverage based reliability estimation model and flowpath coverage based reliability
estimation model. Both models are structure based models. No manual architecture
identification process, as in the white box models, is needed. The nodes and flowpaths
that have already existed in the program when testing starts serve as software components
naturally. The component reliabilities are estimated via Bayesian updating method. It is
the most proper method for our purpose because it works perfectly even when no failure
case has been revealed and such no failure tests will dominate the entire testing process

for the safety-critical software systems.
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The nodal coverage based reliability estimation method is a simpler version of the
flowpath coverage based method. It can be used as a quick and approximate substitute of

the flowpath coverage based method.

3.4.3. Complete Nodal Coverage Reliability Estimation

3.4.3.1. Method General

Because of the safety-criticality of the software on which we are working, the
goal of reliability estimation is to provide a more precise software reliability
measurement technique. It should be able to take advantage of all the available
information can provide. Also, it should be able to produce constructive feedback for the
development process of the software. These objectives apparently lead us to white box
approaches, which consider the internal structure of the software. As a natural extension
of the first testing technique that we discussed before, the first software reliability
estimation method developed in this work is nodal coverage reliability estimation
method. Instead of cutting the whole program into smaller modules, we take the natural
elementary components of the software under consideration, the nodes, to estimate the
software reliability. First, complete nodal coverage testing is achieved. Testing results
for each node and also its visiting frequency during testing are recorded. Unreliability of
each node is estimated either after a reliability estimation terminating point or following
modification and retesting of a node due to error detection. The unreliability of the
software is calculated as a visiting frequency weighed average of all nodes multiplied by
the average number of nodes visited per execution.

In the subsequent portions of this section, the initial motivations, the assumptions

and method itself are presented in more details.
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3.4.3.2. The Initial Incentive for Nodal Coverage Based Approach

The nodal coverage-based reliability estimation method i1s a by-product on our
evolution toward a path-coverage based reliability estimation method. It is relatively less
demanding to achieve so that it can be applied to more complicated software than the
programs that we studied in the work reported here. We notice from our demonstration
work that, although the nodal approach is not an accurate formulation and does not use as
much information as the path approach, it still gives us a reasonable approximation of the
software’s reliability.

There used to be a draft design on testing and reliability estimation process before
the work described in this report was done. While we tried to implement the original
design onto the real software sample, many problems concerning feasibility and
automation appeared very quickly. The method of our work presented in this report is
much different compared to the original design of our work for this reason. It is the
influence of the demonstration work that directs us toward the final estimation
approaches that are described in this report. This complete nodal coverage reliability
estimation technique is one of those ideas that were brought about in this way.

In some sense, the nodal coverage reliability estimation is a simplified version of
path coverage reliability estimation approach. At the starting point of this project,
because of the safety-critical feature of the target software used in nuclear power plants,
we chose the goal of testing the software as completely as possible and to maintain
feasibility at the same time. These goals lead us to work toward a complete path
coverage testing approach, which implies the reliability estimation technique is based on
the paths also. When we were working on programs that were relatively simple and
testable, we believed that we could cover most of the paths in the program under
question. But those thoughts tumed out to be too idealistic when we encountered the
situation of getting new paths steadily. New paths are the paths that we have not met
before during the testing process. We do not identify any paths before testing. The way
we recognize, or identify a path is through testing. Every time a test 1s done, its flowpath
is recorded. If we cannot find the same path in the group of paths that we have tested

before, it is announced as a new path. At this stage, we had to answer a fundamental
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question. Namely how many paths in total do we have in the target program? We have
to say that we do not know. There are lots of existing paths that may not be reached by
real input data.

We decide to make our task simpler at first by trying to test all of the nodes at
least once. After we manage to complete a branch coverage testing, it seems a good time
for us to look at reliability of the software from the branch or node point of view.

In this reliability estimation approach, unreliability is estimated for every node.
The estimation is based on how many tests have been applied to a node and how many
errors have been detected on that node. The overall software unreliability is
approximated by the weighted summation of unreliability of every node in the software.
Because we assume that we are using input data with the same statistical properties as
those that would be experienced in real operational use, the visiting frequency of every
node during the testing process is used as the weight of that node when calculating the
overall software unreliability. The reliability of the software is unity minus the software
unreliability. We are using unreliability instead of reliability during the calculation only
for convenience. In the literature of safety-critical software, unreliabilities are very small
such that less significant numbers are nceded to describe the same level of software

quality by using unreliability than reliability.

3.4.3.3. Methodology Details of the Nodal Coverage Based Reliability Estimation

3.4.3.3.1. Assumptions

In this section, the assumptions in the complete nodal coverage testing based

reliability estimation method are listed and explained. They are as follows:

1) Testing is representative of actual use.
2) Faults are of the same severity.
3) Detected faults are fixed with certainty immediately.

4) Visits to the same node are statistically independent Bernoulli trials.
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Assumption 1):

Testing is representative of actual use. The assumption says that the testing is
performed in a manner that is similar to intended usage. We want to estimate the
software reliability by taking account of the importance of every node. What is the
importance of a node? There are two values behind the concept of importance. The first
one is how often a node is visited, or used, during operation. The more frequently a node
is executed, the more important that node is. Because in this nodal coverage reliability
estimation approach, we assume that any error in a node is not path dependent. That is, 1f
there is an error in a node, all the paths that pass through that node will fail. Thus the
first importance factor of a node is very simple. The more often it is visited, the more
important the node is. Now, if we try to perform a test as close to the true usage situation
as possible, the first importance factor for every node can be approximated by the visiting
frequency of each node during the testing process. This assumption ensures that the
estimates that are derived using data collected in the testing environment are applicable to

the environment in which the reliability projections are to be made.

Assumption 2):

Faults are of the same severity. Another importance factor attached to each node
concerns how bad the result would be should a node fail. That is the severity of a failure.
This part of the importance of a node, unlike the visiting frequency of the node, which is
an intrinsic feature of the code itself, it is related to the more fundamental phase of the
software. We have to analyze the user requirements, the software specifications and the
code simultaneously and relate each of the actual functions to a node, or to a group of
nodes. What we know directly is how hazardous it is if some function fails. Apparently,
this information is very software specific. Every program has to be analyzed manually to
make some importance assignment. By taking into account the feasibility requirement in
this study, we are not attacking this problem because of its hard-to-be automated nature.
Also, because our software under question is relatively small and simply structured, there
are not many functions involved. This leads to a very small number of different
importance levels in terms of nodal failure consequences. For the above reasons, we

assume that every node has the same failure consequence severity.
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Assumption 3):

Detected faults are fixed with certainty immediately. This is an assumption taken
by all the software reliability growth models. In this project, rather than an assumption, it
is a requirement to the development process of safety-critical software. As discussed in
the testing section previously, the software used in the nuclear industry has very high
safety criterion that demand all detected faults be removed. We ensure the realization of
this requirement by full retesting. 1f an error is encountered, immediate correction should
be made and all the previously used input data should be used to test the modified

software.

Assumption 4):

Visits to the same node are statistically independent Bernoulli trials. This
assumption is about the testing process. It is certainly true that the probability of
encountering an error on a less reliable node is much higher. What the assumption means
1s that every test, or reliability measurement to a node is independent of all the other tests
or reliability measurements to that node. The result of one measurement is not going
affect the result of any future measurement. We update the reliability of each node by
applying each reliability measurement result of that node independently to the updating
model.

In summary, almost all the other reliability estimation models make the first three
assumptions applied to this nodal coverage reliability estimation approach. The last one
assumptions are very nodal related and are specific to this reliability estimation
technique. Both of them have very solid foundations for their existence.

Rather than inherit all the popular assumptions adopted by most of the software
reliability models, this method has relaxed two standard assumptions made by most of the
software reliability models.

The number of potential faults is fixed and finite. This assumption is not needed
in our modal coverage based reliability estimation technique. In this approach, we
predict the chance of encountering an error during the next execution on the software

under study based only on the facts that we have observed during the testing process.
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The feature that our reliability estimation model does not need an upper limit for the
number of total errors is a result of the Bayesian updating method. Only facts about how
many times that a node has been tested with or without failures are used to estimate the
reliability of that node.

Another relaxation to one of the traditionally used assumptions in software
reliability models is about the possibility of introducing new errors while correcting the
detected ones. That is, new faults can be introduced as a result of fixing existing faults.
As opposed to many reliability estimation methods, we do take into consideration the
possibility of introducing new errors because of the modification action. That is not to
say we expect it to happen. In fact, we do our best to decrease of the possibility of
bringing new errors by checking all the testing data used before discovery of the latest
error. But it is not totally sure to say there are no new errors brought about by the
modification to the untested part of the software. We still believe that software reliability
grows because of the modification. Instead of expressing the reliability growth in terms
of total number of faults in the software reduced by one, we express it in a probabilistic
manner. If an error is detected during the k™ visit to that node and modified immediately,
we put the new information that we have tested the node k times without an error, rather
than (k-1) times without an error, into the Bayesian updating model used to update
reliability of that node. By doing so, we do not exclude the possibility that we may
encounter an error on this node during (k-+1)™ visit to this node as a result of some other
input data because of the modification to this node. We do not exclude the possibility of
detecting an error on another node in the future due to modification of this node. This
different view that we take on the error-modification consequence from most of the other
known software reliability growth models makes this reliability estimation method based

more on the facts than the assumptions.
3.4.3.3.2. The Formulas

This nodal coverage has a pre-requirement that all nodes be tested. This means
complete branch coverage should have been achieved and every direction of each

decision option within the program be tested at least once. Upon completing that testing
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process, unreliability is estimated for each of the nodes in the program based on Bayes
theorem. As testing goes on, unreliability is updated using the Bayesian updating method
for every node. The overall unreliability of the software is approximated by the weighted
summation of that of all of the nodes within the software multiplied by the average
number of nodes visited per test. In other words, the software rehability is the product of
an average unreliability considering all nodes and an average number of nodes reached
per execution. The weight for each node, used while calculating the average
unreliability, is proportional to the visiting frequency of that node during testing. If we

use the arithmetic average formula, the unreliability of the software is:

Nn —_ Nn —
Z p vESit i, 9:’,, Z \f‘l’i.\'il_i" 91',,
i, =1 — _ l‘,‘ =1 -
8, ="y, XIN,=27———xiN, Eq. 3-14
Z Plisivj, Z f\-isn i
i,=l i<l
where,
8, is the software unreliability estimated by complete nodal coverage
reliability estimation approach,
N, is the total number of nodes in the software,
Pusi, 5 the probability of node i, being visited during real operation,
S, i the visiting frequency of node i, during testing process,
5,. " the mean unreliability of node i, , estimated by Bayesian updating
"1
method,
X is the average fraction of nodes visited per test.

If instead, the geometric average formula is used, the software unreliability can be

estimated as;

Bh = exp[fviyil,in Ln(e_ln )JX an Eq' 3-15
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The average nodal unreliability is the geometric average of all the node unreliability, 1.e.:

‘gnz}'wm.-‘,, — l—[gi,,f‘n Eq 3-16

Due to the relation between £, and 6_?, , we choose the arithmetic average formula shown

in Eq. 3-14. See the Appendix for the details.

Among the above parameters,

i,
Pisii, = ﬁvi.\-il,in =

Ne Eq. 3-17
where
e, is the number of test cases that bypass node i,
N i the total number of test cases.

The only unknown within the above formula is the average unreliability for each

node, 9_, . which is updated according to the Bayesian updating method as tests proceed.

Nodal unreliability is defined in the same manner as unreliability of the software.

Unreliability of node i,, &, , is the probability that node i fails if it is reached during the

next execution.

We assume cach visit to node i is a statistically independent Bernoulli trial.
Thus, given &, , the number of failures on node i, out of n visits, R, , has a Bernoulli

distribution:

PR, =r)=C,0, "(1- 6, )" Eq. 3-18

H i,
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Within the Bayesian framework one represents one’s prior knowledge about the

parameter of interested, in this case 8, , by the prior distribution. There are advantages to

using a prior distribution from the conjugate family: it has the property that both prior
and posterior distribution will be members of the same parametric family of distributions
and thus represents a kind of homogeneity in the way in which one’s belief changes as
one receives additional information. Here, the conjugate distribution chosen is the

Beta(a,b) distribution:

0, (1-6,)"
[ )=— Ba b)" Eq. 3-19

where B(a,b)is the Beta function and a>0,b>0 are chosen by the observer to

represent his belief about &, prior to seeing any test results.

In some cases it might be possible to use information about the node and its
development process to give numerical values for @andd. If no such information is

available, the “ignorance” uniform prior with of @ =5 =1 can be used:

f0,)=1 Eq. 3-20

If the node has been visited n times, and we have seen r failures on this node, the

posterior distribution of 6, is Beta(a+r,b+n—r):

Hi a+r-1 (1 _ 9[ )b+ntr—1
f(gi") =— -

Bla+r,b+n-r)

Eq. 3-21

Ifa=b=1,ie. f(6,)=1, it reduces to the form:
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0, Q- 0, )"
Bl+rl+n-r)

f6,)= Eq. 3-22

There is a non-obvious assumption behind the Bayesian updating method. The
underlying parameter or parameter distribution is fixed while being updated by use of the
Bayesian framework. Though this assumption is satisfied easily within most Bayesian
updating applications, it is non-trivial in our project. In our safety-critical software case,
it is required to remove all known faults. If a fault is detected and corrected, the
underlying unreliability is changed, reduced in most cases. In this case, we cannot
continue Bayesian updating method. Instead, we should re-construct the unreliability
distribution from the very beginning, or, use all the information about the new
unreliability and do Bayesian updating from the first prior distribution.

To be more specific, we update or re-construct the unreliability distribution of

node i, as below:
* Prior Distribution of g, :

Before seeing any test results, express our belief about the unreliability of node /, as:

0, a-6,)"

fo (9;'" )= B(a.b)

,a>0,b>0 Eq. 3-23

If there is no information about 6’% ,a=b=1
fol€, ) =1 Eq. 3-24

¢ Bayesian Updating 0, after As, failure-free tests on node i:
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)2} u-1 (1 _ gj" )b+As'l—l

.)Y=C,(1-8 ) £(8.)=" Eq. 3-25
-ﬂ( 1") I( In) f(]( 1") B(a,b-l»ASl) q
Ifa=5bh=1
£00,) a=6)™ Eq. 3-26
ST B+ As)) 4>

 Re-construct distribution of @, after one failure on As, ™ visit to node I,
Now, the underlying distribution of unreliability of node i has changed because of the
correction made to the node. We denote the new unreliability of node i, as 6, . Since we

do not assume perfect correction in our safety-critical software case, the modified
program is put on test again with all the previously used testing data. It is required that
all known errors are removed. As the result of this requirement, after the modification
and complete-retest process, we should observe As, failure-free visits to node #, if no
new testing data are applied. This piece of information should be used as our only

knowledge about the distribution of ¢ . This means we should update g, from its very

first prior distribution, which is the same as the first prior distribution of g, .

g ! (-6 )h+As‘1—1
lll rﬂ

6')Y=C(1-60' )" £.(8' )= Eq. 3-27
ﬁ( In) l( In) f()( I") B(a,b+Asl) q
And with a = b =1, we have
£00)) a-g)" Eq. 3-28

ST B Ay 4
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The physics behind it is totally different though the formula is exactly the same as the

result of As, failure-free test.

e Bayesian 6, after As, further failure-free tests on node 7,
Assume the distribution of &, becomes £1(8, ). The underlying unreliability of node

i has not changed and can be updated as follows:

9,-" a-1 (1 _ 0,'" )b+m,+A\'z—l 91" a-] (1 B 9,-" )b+_~;2—l

0.)=C,(1-8 )" £,(0.)= = Eq. 3-29
fZ( I”) 2( I") fO( r") B(a,b+ASl+ASZ) B(a,b-{-sz) q
Ifa=56=1
£6) (1-6,)" Eq. 3-30

2T B+ 8,) A

e Re-estimate 6, after As, further tests on node 7, with an error found on the last test:
Assume the distribution of &, becomes f,(8, ).

Assume that on test number s, = As, +As,, an error is found. Correct this error and
retest all the s, sets of input data until no error is found. Now, we can say that we have
tested the program s, times without an error. The resulting new unreliability &, has the

same distribution as if the node had not been modified, but instead tested s, times without
finding an error. The probability distribution of the unreliability of the modified node

can be estimated as below. Because &, is not the same as 6, , we cannot use f,(6, )as

our prior distribution for &, . Instead, we update it from the very first prior distribution.

0’: a-1 (1 _ 0’; )b+As,+As'z—] 9’; a-1 (1 _ 9:" )b+sz—l
B(a,b+As, +As,)  Bla,b+s,)

[(8)=C,(1-6, )" f,(8] ) = Eq. 3-31
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Ifa=56=1

(1-8,)"

26,0 = B(l+ts,)

Eq. 3-32

* Average value of node unreliability, 8,

Among all tests done on node i,, after k stops, either due to an error or due to an

intermediate estimation, the posterior distribution of its unreliability is:

g a-1 (1 _ 9," )b+A\,+A\‘2+...+A¢k—I 9,-" a-1 (1 _ gin )b+.vk—1

6,)=—" =
£:(8,) B(a,b+As, +As, +...+ As,) B(a,b+s,)

Eq. 3-33
Among them,
As, : The number of test cases processed between (k-1)*
and k'™ stops.
5, = As, +As, +...+As,: Total number of test cases until k™ stop.
Again,if a=b=1
£ )= 20 Eq. 3-34
T B+ s,) T
The average of ¢, is:
- a
8, = [0,/,(0,0, < —2— Eq. 3-35
- g 7 atb+s,

fa=5b=1
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1
2+,

51,, = Igi"fk(gin)dgin = Eq. 3-36

3.4.3.4. Nodal Coverage Based Reliability Estimation Method Conclusion

Nodal coverage reliability estimation approach is more approximate than
flowpath coverage reliability estimation. But by looking at this method more carefully,
we can observe several advantages to it because of its simple nature.

First, it helps us to achieve a balanced test. By examining the coverage status of
each node, the un-tested nodes are picked out and input data is created manually to cover
them. As shown in our demonstration work, in doing this, errors on those scarcely visited
nodes are detected much sooner than they would have be by using simple random input
data. Also, this process can help us to detect those nodes that can never be reached and
should be removed from the program. This cannot be achieved by the more precise
flowpath coverage-based approach that will be discussed later. There are flowpaths
existing in the program because of the usefulness of all the nodes on them, but can never
be reached by any input data set. Though it is feasible to find the surplus components of
the software by examining nodal coverage status, it is impossible in the flowpath
coverage approach. Furthermore it is not practical to examine the huge number of
flowpaths within a typical program and pick certain input data to reach certain flowpaths,
even for a testable case studied in this project.

Second, the nodal coverage estimation approach is still practical even if the size
of the software in question becomes much bigger and its structure much more
complicated.

Third, the visiting frequency of each node gives us the importance information of
that node. This is also a piece of information that cannot be obtained through analyzing
the flowpaths of a program. With the critical parts of the program identified, more
thorough testing can be applied to them. Although we can tell which flowpath is the
most important one by its visiting frequency; we cannot test those important flowpaths
individually. While nodes are exclusive components of the program, flowpaths are not.

It is very hard to identify those input data that lead to a particular flowpath.
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In summary, nodal coverage examination is very important. It helps to achieve a
balanced test before any of the estimations is done. Some errors are more readily
detected and surplus components of the software are more easily captured. Under the
situation of relatively complicated software, nodal coverage estimation would be the
substitute solution for the more precise path coverage estimation approach, discussed

later in this report.

3.4.4. Refined Feasible Flowpath Coverage Reliability Estimation

The first reliability estimation design in this project is based on flowpath
coverage, not on nodal coverage, as we described in previous section. That was the result
of the completeness criteria, both in terms of testing and reliability estimation, required
by the safety-critical nature of the software that we are working on. When we face the
problem of feasibility, we relaxed our goal from a flowpath coverage based to a node
coverage based method. After completing the nodal coverage based reliability estimation
methodology demonstration, we wonder if we have taken advantage of all the
information that we have obtained through the testing processes and if we can possibly
acquire more constructive feedback to the testing process. Shall we stop the testing
process right after we have achieved a complete nodal coverage on the program? The
answer is no. Given that we have recorded all the tested flowpaths, we should be able to
do some analysis based on these flowpaths. The stopping rule should be constructed in
terms of flowpaths rather than nodes. The most fundamental questions are the percentage
of flowpaths that have been tested, how reliable the tested flowpaths are, how reliable the
untested flowpaths are, and the odds that they are going to be executed upon next
execution, etc. All these questions are addressed in this refined feasible flowpath
coverage reliability estimation methodology and exemplified in the sample software
presented in the next chapter of this thesis, which has proved the practicality of the

methodology.
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3.4.4.1. Method General

In the refined feasible flowpath coverage reliability estimation approach,
flowpaths of the software in question are divided into two groups, the tested flowpaths
and the untested flowpaths. The overall unreliability of the software is estimated by the
weighed average of the unreliability of the tested flowpath-group and the unreliability of
the untested-flowpath group. The unreliability of the tested flowpath-group is
approximated by a weighed average of the unreliability of every flowpath in this group.
The unreliability of each tested flowpath is estimated using the testing results of that
flowpath via the Bayesian updating method. While we do not have any direct testing
information of the untested flowpaths, we take advantage of the results obtained from the
tested flowpaths and assume they are at the same unreliability level if no modification is
made to either part of the software because these two parts are designed and programmed
by the same software developing team under the same environment. The weight given to
a flowpath or a group of flowpaths during the average calculation mentioned above 1s
proportional to the probability that the flowpath or that group of flowpaths will be visited
during an execution of the program. For a tested flowpath, its visiting frequency during
testing can be used as an approximation of its relative visiting probability within the
tested group, or its weight within the tested group. For the untested flowpaths, itisa
different story. There is no theoretical or experimental method that we can use to
calculate or measure how many flowpaths that have not been visited and which of them
will be visited more often than the others. Fortunately we do not need to the relative
visiting probability of each of the unvisited flowpaths because only a group-unreliability
of the untested flowpaths can be deduced from the information that we obtained of the
tested flowpaths. But we do need to know the chance of visiting one of them upon next
execution of the program, which is anticipated by experimental curve fitting.

In the following parts of this section, the assumptions and detailed formulas of

this method are discussed.
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3.4.4.2. Method Details

34421 Assumptions

1} Testing is representative of actual use.

2) Faults are of the same severity.

3) Detected faults are fixed immediately with certainty.

4) Visits to the same flowpath are statistically independent Bernoulli trials.

5) If no modification has been made to the tested flowpaths, on average, they are at the
same reliability level as the untested flowpaths.

6) There are two possible types of errors on a flowpath, type I and type II. If an error is
of type L, it is always detected during the first visit to the flowpath. If an error is of

type II, it has an equal chance of being detected during any visit to the flowpath.

The first assumption is the same as that which we have used in the nodal coverage
based reliability estimation approach. This assumption is made so that we can use the
visiting frequency of each tested flowpath as its weight while calculating the average
reliability of the tested flowpaths.

The second and third assumptions are exactly the same as in the nodal coverage
approach. These have been discussed and are not repeated here.

The forth assumption is almost the same as what have been practiced in the nodal
approach except that rather than talking about different visits to a node, the issue is
different visits to a flowpath. We take advantage of this assumption when updating
reliability of a tested flowpath based on the testing results.

The fifth assumption says that if we have only tested some flowpaths in the
program and not corrected any of the identified errors, then on average, the tested
flowpaths are at the same reliability level as the untested flowpaths. This is a fairly
reasonable assumption based on the fact that there is no distinction between these two
parts of the program when they were developed. They are developed by the same group

of people in the same environment. This assumption is made so that we can use the
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testing result obtained from the tested flowpaths to estimate the reliability of the untested
flowpaths.

In our work, we have divided all software errors into two categories from the
testing point of view. Type I errors are always detected during the first time the
flowpaths are visited. Type Il errors have the same opportunity of being identified during
any visit to those flowpaths. The error belongs to a flowpath or to a group of flowpaths.
Because an error has to be within one node in order to belong to one or several flowpaths,
it is important to note that an error does not necessarily cause all the flowpaths that
contain this node to be at fault. The reason is obvious. In our context, we have defined a
node to be a group of statements. It is very possible that some statements within a node
do not affect some of the flowpaths that go through that node. As a result, type I error is
not necessarily to be identified during the first visit to the node that has that error.

Until now, we have mentioned completeness in this report several times. Can we
actually achieve complete testing in terms of a perfect program? No, we are never one
hundred percent sure that the program under testing is free of error. Even if complete
flowpath coverage were performed on a piece of software, that is, if every possible
flowpath were tested, it would be still possible that an undetected error would remain on
one of the tested flowpaths. Thus, in this study, we do not assume that a flowpath is free
of error regardless of whether it has been tested one time or one hundred times.
Otherwise, it is definitely true that the flowpath that has been tested one hundred times is
much more likely to be error free than the flowpath that has been tested only once. If we
compare our approach on the possibility of an error existing with the traditional
approaches, ours is a more conservative one. Also, as can be seen in later sections, the
probability of an error existing in a flowpath decreases very quickly as the number of

tests performed on this flowpath increases.
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3.44.2.2. The General Formula for Flowpath Coverage Based Reliability Estimation

The overall unreliability 4, is calculated as the average of the average
unreliability of the tested flowpaths gp_.,.and average unreliability of the untested

flowpaths 6, as:

9p = pw’.s-ir,TH_p,'I' * Puvicw gva Eq. 3-37
where
8, s the software unreliability estimated by feasible flowpath coverage

based reliability estimation approach

Pusit i the probability that one of the tested flowpaths is visited on next
execution
Posatr - the probability that one of the untested flowpaths is visited on next
U s
execution
9—’7)], s the mean unreliability of the tested flowpaths
*,, U the mean unreliability of the untested flowpaths
Vs

The mean unreliability of the tested flowpaths is defined as the probability that an
error will be activated if one of the tested flowpaths is chosen upon next execution. It is a
little different from the probability that there exists an error on the next chosen flowpath
if this flowpath has been tested before. The mean unreliability definition for the untested
flowpaths is the same. It is the probability that we will observe a failure instead of the
probability that an error exists that matters in this study.

Before we finish complete flowpath coverage testing, in the sense that every
feasible flowpath has been tested at least once, we are not able to calculate either

Puisir OT Py - The same obstacle needs to be overcome here as in the complete

flowpath coverage testing task. Theoretically, we can count how many flowpaths exist
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from the flowgraph of a program. However, we may never reach some of them because
of the relationships among input data. Thus, when talking about complete path coverage
testing, instead of saying all the paths should be tested, a more correct goal is to test
every possible path throughout the flowgraph. There is not any analytical solution for the
number of feasible flowpath yet. Therefore, we instead provide two strategies to estimate
the total number of possible flowpaths and the probability that one of the tested flowpaths
is going to be visited based on the experimental results obtained through the testing

process.

3.4.4.2.3. Estimate the Average Unreliability of the Tested Flowpaths

This estimation is carried out in exactly the same way as is done to estimate the
overall software reliability in the nodal coverage based reliability estimation approach.
Every flowpath in this group is tested as least once, so that we can take tts visiting
frequency during testing as its relative visiting frequency within the group under a real
operating environment. The estimation of unreliability of every tested flowpath depends
on the percentage of type I and type Il errors and the probability that a type II error can
be identified during a single test to that flowpath. The average unreliability of the tested
flowpaths is:

Np.T -
Z pvi.w'l,ip gip
o)

0,1 = Nor Eq. 3-38
Z pvi.yir,ip
iy=l

where

4, is the average unreliability of the tested flowpaths,

N,; s the total number of tested flowpaths in the program,

Puisis, the conditional probability of flowpath i , being visited during real

15

operation given that one of the tested flowpaths is visited,
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the unreliability of flowpath 7, estimated by Bayesian updating

method.

According to the first assumption in this methodology, we are performing
operational testing. That is the sequence of test cases that are used during the testing
process has the same statistical properties as those that would be experienced in actual

operational use. Thus p,, is simply approximated by the visiting frequency of

flowpath 7  during testing.

'

visi i,

Prisii, =N Eq. 3-39

where

Vst - the number of visits to flowpath i ,

18
3.4.423.1. Two Types of Software Defects

Software defects occur all the way through the life cycle of software development
— from conception of product to end of life. The vemacular of development
organizations tends to name and treat defects as different objects depending on when or
where they are found. Some of the more common names are bug, error, comment,
program trouble memoranda, problem, and authorized program analysis report
(APAR)[Lyu96]. When a customer calls with a problem experienced with a product, it
might be because of a software failure caused by a fault. On the other hand, not all
problems experienced arise from the classical software-programming bug that causes a
failure. More often than not, a customer calls experiencing difficulties because of poor
procedures, unclear documentation, poor user interfaces, etc.

So what is the definition of defect that we shall use in this study and how do we

categorize the type of defects? To answer this question, we have to make it clear what 1s
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our purpose of making such definition and classification. We want to define and classify
the defects that we found during our testing process in a way such that the reliability of
the software can be more precisely and easily estimated. In order to make this clear, we
define a failure in the traditional way. That is, “a failure is a deviation of the delivered
service from compliance with the specification”. To make it more straightforward, in the
context of this study, a failure is an output deviation of the delivered service from the
output given by the oracle program with the same input data. Thus, the specification here
is a broader concept than the actual plain language written design document. Once
failure is defined, a defect is the cause in the software product that triggers a failure. In
this report, the terms, error, fault and defect are used interchangeably. It is apparent that
a defect can cause more than one failures if we do not correct it. It is also true that a
failure can be caused by several defects. A failure is a result of a defect or several defects
and a defect is a cause of a group of failures if no changes are made to correct those
defects. If we are always able to correct any defects behind any observed failures, one
defect can only cause one failure and we will not be able to observe it more than once.
This situation is true in the tested flowpaths. As we have emphasized before, it is
required that all known software defects be removed in the case of safety-critical
software, as used in nuclear power plants.

Now comes to the question of how we classify the problems experienced during
the testing process. The method should be able to help us estimate the software product
reliability. This objective leads us to the resulting defects classification technique
adopted in this study. Should an error exist within a flowpath, for a type 1 error / defect /
fault — the probability of encountering such an error during the first execution of its host
flowpath is equal to or very close to unity and for a type II error / defect / fault — the
probability of encountering such an error during any single visit to its host flowpath is the
same and independent of all the others. There is one point that needs to be emphasized,
i.e., both types of errors are associated with particular flowpaths instead of certain nodes.
If the errors are believed to connect with nodes, very few errors can be encountered
during the first visit to a node during the integrated testing process because all nodes
should have passed some level of modular testing. Here, both types of defects are

believed to relate to some data flow that bypasses their control flows — flowpaths. For
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the type I defects, almost all the input data, which lead to the flowpath where the error
occurs, can trigger that error. For the type II defects, only part of the input data where
leads to the flowpath can trigger the error. Because the input data are sampled randomly,
both the input data that can trigger the error and those that cannot trigger the error have
non-zero opportunities to be chosen during any single sampling process to that flowpath.
The possibilities depend on the fraction of the data that can activate the error and the
fraction that cannot activate the error out of all the input data that can lead to that
flowpath. Because each input data sampling process is independent of all the others and
there are only two possible results, the input data belong either to the error-triggering
group or to the non-error triggering group. Also, if the input data can lead to the
execution of a flowpath where a type 1 error occurs, then each process is an independent
Bernoulli process. An obvious example of a type 1l error is a boundary-condition error,
which is only activated when a particular boundary condition is satisfied. Even though
there are lots of other input data that can lead to execution of the same tlowpath, they are
not able to help the tester to detect boundary type errors.

In order to incorporate this two-error-type scenario in our reliability estimation
process, two important probabitity values should be available. The first one is the
probability that an error chosen is of type I if it is randomly chosen from a pool of errors
from the target software or similar software systems. In other words, the first item that
we need to know about this error category scenario is the percentage of errors or defects

that belong to error type I. Let us denote this probability as p,;. It is obvious that the
probability that a randomly chosen error belongs to the second type, is then py=1-p,.
The second item that we need to know is the probability that we will encounter a type I
error on next execution of the flowpath if there is a type II error on that flowpath. This
probability should be the same for every single visit to a flowpath given that the flowpath
in question has a type II error since each input data set is chosen independently and in the
same manner. Let us denote this probability as p .- Foratype I error, according to the
error classification mechanism, the probability of finding a type I error during the first

visit to a flowpath, given that there is a type I error on that flowpath, is plf‘, =1.

Because it is required that all the errors be removed upon detection, we will not again
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encounter this error during further visits to the same flowpath, which means p}+ ;=00 It
is true that p,, p, and p,, are different for different programs, even for different

flowpaths in the same software system. But because the average unreliability of the

software is used as an estimation, p, p, and p,, can be taken as constants in an
average sense. That is the average p,, p, and p,, arc constants in the same program

or similar programs. Thus, only the failure data in the same program or similar programs

are used to update the probability distribution of p, and p,, according to the Bayesian

framework. With the distributions on hand, the mean values or median values could be
applied in order to estimate reliabilities / unreliabilities of the flowpaths, hence to

estimate the reliability of the software.

In this section, a brief review on the Bayesian updating method is presented,

followed by two approaches to update probability distributions of p,, the fraction of
errors that are of type I, and p, ,,, the probability of encountering a type II error during a

single test on a flowpath given there is a type Il error on that flowpath.

Before use of the Bayesian method, there have been several classical statistical
approaches, such as point and interval estimation to estimate the distribution parameters.
These approaches assume that the parameters of interest are unknown constants and that
the sample statistics are used as estimators of these parameters. Because the estimators
are invariably imperfect, errors of estimation are unavoidable. In the classical
approaches, confidence intervals are used to express the degree of these errors. Accurate
estimates of the values of parameters in these approaches require a large amount of data.
The Bayesian framework addresses the estimation problem from another point of view.
In this case, the unknown parameters of a distribution are assumed (or modeled) to be
random variables. In this way, the uncertainty associated with the estimation of the
parameters can be combined formally through Bayes’ theorem with the inherent

variability of the basic random variable. With this approach, subjective judgments based
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on Intuition, experience, or indirect information arc incorporated systematically with
observed data to obtain a balanced estimation. The Bayesian method is particularly
helpful in cases where there is a strong basis for such judgments as well as where the

available data are sparse.
Bayes’ theorem is stated as follows. Consider n mutually exclusive and

collectively exhaustive events EE,,..E,, thatis, E, UE,U..UE, =§5. Then,if 4

1s an event also in the same sample space (see the following picture), we have:

_PUAIE)P(E) _ P(A|E)P(E)

P(E, | 4) i
PO S pae )

Eq. 3-40

Figure 3-9 Venn diagram with events 4 and EE,..,E

7

The Bayesian updating method is based on Bayes’ theorem. Suppose that the

possible values of a parameter 6 are assumed to be a set of discrete values8,,i =12,....n,
with relative likelihoods p, =P(@=0,). © is a random variable whose values

represent possible values of the parameter @. If additional information becomes
available (such as the results of a series of tests or experiments), the prior assumptions
concerning the parameter @ may be modified by Bayes’ theorem as follows.

If we denote & as the observed outcome of the experiment, then applying Bayes’

theorem, we obtain the updated PMF of © as:

92



P@=0, |5)-LE1OZOO=0) 1y Eq. 3-41

Y Pe|®=0,)PO=6))

J=1

The terms in the above formula are interpreted as:

Ple|@=6) The likelihood of the experiment outcome ¢ if ® =&, ; that is the

conditional probability of obtaining a particular experimental

outcome assuming that the parameter has value &,

PO=0) The prior probability of © = 6, ; that is, prior to the availability of the
experimental information &

POG=6 ¢ The posterior probability of @ = £, ; that is, the probability that has

been revised in the light of the experimental outcome ¢

If we denote the prior and posterior probabilities as P'(®@=6,) and P'(® =6,)

respectively, we have:

po=g)-_[E10=0)P©=0)

Y Pe|©=6)P©O=6)

J=1

Eq. 3-42

The expected value of ® is commonly used as the Bayesian estimator of the

parameter, that is,
0"=E®|&)=) 6,P"(@©=6,) Eq. 3-43
J=l

The continuous formulas for Bayesian method are:
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P(£16)/'(9)

10 =—
[Pc16)f(0)d0

Eq. 3-44
o = [:af"(e)da Eq. 3-45

Based on our knowledge of the nature of each failure encountered during the
testing process, there are two approaches to update the two probability values in which
we are interested.

If we are able to distinguish the type I and type II errors, that is, if we can divide

all the encountered errors into the two error groups, then we can update p, and p, ,

separately. If an error is detected during the first visit to a flowpath, it is either a type I
error or a type II error because the type I error is always detected during the first visit to a
flowpath and the type II error also has some opportunity ( p ;. ) 1o be detected during the
first visit. Thus, for all the errors detected during the first visit to a flowpath, the causes
behind the error should be examined and categorization is made manually. If an error is
detected during a later test to the host flowpath, it is a type II error. After separating the
errors detected on the first visits, the number of visits to a flowpath that it takes to detect

an error is the only information or fact that we need to use to update p,, p, and p, ;.

The steps are as follows.
Let’s assume we only use error data from the testing results of the program under
test to update the error-related probabilities. First, use all available error data to update

p,. Assume the prior probability distribution of p, is f,(p,). If there is no prior

knowledge about p,, we can use the default uniform probability distribution:

Sfolp)=1 Eq. 3-46

Alternatively, we can use a prior reflecting typical software quality obtained using
modern development methods. [f the first encountered error is of type 1, then f,(p,) is

updated as:
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_fl(pl)zclp[.f()(pl) Eq. 3-47

This is because given p,, the conditional probability that an error is of type [ is p,. C|

is the normalization constant that can be obtained by:

If](pl)dpl = chlp[fo(p/)dp, =1
1 Eq. 3-48

[ 2 fotp )b,

=C, =

If the second error encountered is of type II, the probability density function of p, can be

further updated as:
fp)=C0-p)fi(p)=Cop, 1= p)fo(p) Eq. 3-49
C,= !

[ p,0=p)f(0))dp,

In general,
C.p fp) €= j: PITSY typelerror
pifa(p))dp
fp)= R Eq. 3-50
C,A-p)fia(p)) C,= typellerror
_E(l - p ) (p))dp,

Note that we have been taking [0, 1] as the integral range of p,. This is because p, 152
probability, which implies that it is equal or greater than zero and equal or less than one.

After all the error data have been used to update probability density function of p,, that
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1s, f.(p,), the mean value of p, can be used as the estimator of the fraction of errors

that belong to the first category:

P = jjp[f,.(p,)dp, , Eq. 3-51

where N, is the total number of errors detected on the program. The fraction of errors

that belong to the second category, p,, , is estimated as:
py=1-p, Eq.3-52

Now we need to update the probability that a type II error is encountered during

any single visit to a flowpath, p,,. As mentioned before, this probability should be

different for different flowpaths and different errors even if they are within the same
program. But because only the average effect matters to us, the average probability can

be taken as a constant and updated based on the Bayesian method. We use all available

type II error data to update p,,. Assume the prior probability distribution of p s 18

fo(p; ). If there is no prior knowledge about p ;s We can use the default uniform

probability distribution:
Jolpyu)=1 Eq. 3-53

If the first type II error is detected on the 4™ visit to a flowpath, then f,(p, ) is

updated as:
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A (Pf‘u) =C(1- Pru )3 p/_ufo (pf,H )
1 Eq. 3-54

l —_
f(l —Pru )3 p/,ufo (pf,n )dpj,ll

C

This is because, given p, ,, the probability that a type II error is detected on the

4" visit to a flowpath is the product of the probability that the error is not detected during

the first three visits, which is (1-p, )® and the probability that the error is detected on

the 4™ visit, which is p, .
If a second type II error is detected on the 2" subsequent visit to a flowpath, then

f,(p, ) is further updated as:

/s (Pf,u) =Cy(1- Pru )pf,uf1 (p/,n) =C,(1- Pru )4 p_f,112f0 (pf,u )
1 Eq. 3-55

C, = . ;
_E(l_pf,u) P fo(pf,ll)dpf,ll

If the s™ type II error is detected during the ks”" visit to the flowpath, the

probability density function of p, , is updated the s™ time as:

/s (pj,ll) =C,(1- Pru )kﬁ_] pf,!lfs—l (pf,ll)
1 Eq. 3-56

_ﬁ(l —Psu )k_] P Fa (p_/,u )dpj,n

C, =

After all the type II error data have been used to update probability density

function of p,,, that is, fy (p,,), the mean value of p,, can be used as the

estimator of the average probability that a type II error is detected on a single visit to the

error hosting flowpath. That is:
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Py = '[pf_u.f:vy Py )dpf,u Eq. 3-57

to detect an error.

The prior joint distribution of pyand p . is:

JolPrsp, ) = Folp ) f, (Pru), 0<p, <1, 0< Dyy <1 Eq. 3-58

Jolp)= fu(p, )= folprp, ) Eq. 3-59

If the first error jg detected during the ond Visit to a flowpath, Jokpiip, ) is

updated as:

98



f](pnp/,u) =C,(1-p,)(1- Pru )pf,llfo(pl =p,f,u) Eq. 3-60

1
_”(1 -p, 1= Pra )p,/,nfo (p; Pru )dpldpf,u

PiPyu

v

The probability that an error is encountered during the 2" visit to a flowpath is the sum
of the probability that it is a type ] error and detected during the 2" visit to a flowpath
and the probability that it is a type II error and detected during the 2" visit. The first
probability is equal to zero because of the definition of the type I error. The o
probability is product of the probability that this error is of type I and the probability of

finding the error on the 2" visit given it is a type II error.

If the second error is detected during the 1* visit to a flowpath, f,(p,,p, ) is
p P> Py

once more updated as:

5 (Pppf,u) =Cylp, +(-p, )P_/,H 1/ (p, an,u)

Eq. 3-61
S o0 ) =Colp, +A=p)p, o 10-p, Y =p )P ruto(PrsPyy)

1
”[P/ +(0=-p)o 0= X=p, IO u fo PPy Ydp,dp,

PPy it

C,

In general, if the s” error is detected during the 1% visit to a flowpath, the updated joint

probability density function of p; and p, , is:

Jprprn)=Clp, + (A-p)prry 1/ (o, Pra)
1

_”f; (p;s Pru )dpldp_f,ll

Pi1:-Pru

C, = Eq. 3-62
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If 5" error is detected during the k" visit to a flowpath (k, >1), the updated joint

probability density function of p, and p, , is:

fi(p, 5pf__ll) =C,(1-p,)1- Pru )k‘\'_l pf,!]fw—l (p, Pry)
1

_”f\ (p,, Py )dpldpf,ll

Pi-Pru

C, =

The mean value of p, serves as the estimator of p, as:

131 = J'jf:\‘ (P;apf,”)p,dp]dpf'”

Pr.Pru

Also the mean value of p, , is utilized as the estimator of p, , as:

i)f,lf = _“.f;v (P1sPru)Pra dpldpj,ll >

PPy

where N, is the total number of errors encountered during test.

Eq. 3-63

Eq. 3-64

Eq. 3-65
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3.4.4.2.3.3. Estimate Reliability of a Tested Flowpath

Now, we have categorized the errors in a software program into two groups. With

the estimation of p,, p, and p, , , we are able to estimate unreliability of every single

tested flowpath. So, what is the unreliability of a flowpath? The unreliability of
flowpath i,is the failure probability if flowpath i, is executed. Then, what is the

information we can use to estimate or update unreliability of flowpath i,, &, ? Itis in
P

the same form as in the nodal coverage based approach. For every tested flowpath, it is

number of failure free tests ¢, that have been performed on the flowpath because it is
P

required that all known faults in the software program be removed.
Now, let’s estimate the unreliability of a flowpath, &, given that it has been tested
t times without an error. It equals the probability that there is an error on the flowpath

times the probability that the error is met upon next execution. That is,

@=p,xp; Eq. 3-66
where

P. i the probability that there is an error on the flowpath

P the probability that the error is encountered upon next execution given

there is an error on the flowpath

From above formula, it seems that the probability that there is more than one error on one
flowpath is ignored. This is not the case. When updating the probability density
functions of p, and p, ,, if there are more than one error on the same flowpath, they
will be treated as multiple errors on multiple flowpaths, which makes the calculations
simpler and maintains the resulting unreliability estimates so as to indicate the testing

results correctly. Let’slook at p, and p, separately.
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There are two ways to estimate p,, the probability that there is an error on a
flowpath based on the fact that it has been tested ¢ times error free. The first method is
to assume p, has a continuous probability distribution between 0 and 1. If we have
tested a flowpath without any error, according to the Bayesian updating framework, p, is

the conditional probability that there is an error on the flowpath given that we have tested

the flowpath once without any error.

_PW.F) _ P(Flp)fy(p)

L(p)=P(p, | F) = — ,0<p, <1 Eq. 3-67
PUEY [P p) 1y, )dp,
P(F,E|p,)+P(F.E|p, .
Fpy=—L g | p.) (__Ip)]fo(p) Eq. 3-68
[LPCF.E| p)+ PCFE| p 1Sy (p, ),
P(F|E,p,)P(E| p)+P(F|E,p)PE | p))f,(p.)
[LP(F | E.p)P(E| p)+ P(F | E.p)P(E | p )L, (p, e,
where
F s the flowpath has been tested once without any error,
E is there is an error on the flowpath,
E is there is no error on the flowpath,
P. g the probability that there is an error on the flowpath,

folp) is the prior probability density function of p,

Li(p) is the posterior probability density function of p,
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The probability that we do not observe a failure given there is an error op a flowpath is
the sum of the probability that we do not observe a failure and there jg a type I error on
the flowpath given there is an error on the flowpath and the probability that we do not
observe a failure and there is a type II error on the flowpath given there is an error on the

flowpath, which can be written as:

P(FIE,pe)=P(fIEpE:PE)P(E/ | E.p.)+P(F | E, E, p )P(E, l€.p.)  Eq.3-70

The quantity P(F|E,,E, p.) is the conditional probability that we do not

encounter a failure during a test given that there is a type I and only a type I error on the
flowpath. According to the definition of a type I error, this is cqual to zero because a
type I error is always found during the first visit to a flowpath. Stated otherwise, if there

is an uncorrected type I error on a flowpath, the flowpath always fails during an
execution. Thus, P(F | E, £, 2.)=0.

The quantity P(E,|E,p,) is the probability that a randomly selected error
belongs to type I, or, the fraction of type I error among all errors, This is exactly the
definition of p;- Thus, P(E, | E, P.)=p,.

The quantity P(F |E,,E.p,) is the conditional probability that we do not
encounter a failure during a test given that there is a type Il and only a type II error on the

flowpath. According to the definition of p,,, which is the probability that a type 11
error is encountered during one test, the probability that a type Il error is not encountered
is (1-p,,). Thus, P(F | EnEp)=(-p,,).

P(E, | E,p,) is the probability that a randomly selected error belongs to type II,

or, the fraction of type II error amount all errors, Because we only have two types of
crrors, we have P(E, lE.p.y=p, =1 -p;.

To sum up, we have:

P(F,E:pe)=(1—pf‘n)(l—p1) Eq. 3-71
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It is apparent that if there is no etror on the flowpath, we will not encounter any

error during any test. Thus, we have the result:
P(F|E,p,)=1 Eq. 3-72

Also, P(E|p,)=p, and P(E | p.)=1-p,. Thus, an update of the probability

density distribution of p, can be written as:

SHp)=Clp.A-p)A=-p,,)+A-pINf(p.)

, L 0<p <1 Eq. 3-73
C, = [[p.(= )= p, )+ (A= pI1fi (p.)db,

After the second test, still without any error, the probability density function is

updated again as:

H(p)=Clp.A=p)A-p, N+A-pIf(p.)
L) =Clp A-pX1-p, )+A=p)] fo(p,), 0< p, <1 Eq. 3-74

C; = [1p.(=p)U=p, )+ (U= p T fo(p.)dp,

After ¢ tests without detection of any failure, the probability density function is

updated as:

Sp)=Clp,(A-p)X1-p,)+A=p) fi(p,)

’ 0<p, <1 Eq. 3-75
C, = [Ip.(=p )= P, + (= pY fo(p.)d.

¢
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The average of p, for every flowpath is used as the estimator of the probability of an

error existing on that flowpath. Thus, for a flowpath that we have tested ¢ times without
any error (this is the case for all the tested flowpaths because of the perfect error removal

requirement), its probability of containing an error is estimated as:

b =C, (1.0~ p)XU~pyu)+ A= P p.So(p ),

Eq. 3-76
C, = [[p.=p)XU=p )+ (= p I fy(p)dp,

The distribution f,(p,) is chosen based on our prior confidence about the program
before any test has been performed.

Sometimes, the above discussed Bayesian updating technique can be very
difficult to implement depending on the form of prior distribution f,(p,). Therefore, we

want to introduce a simplified method of estimating p,. Assume that p, is a value and

not as in the Bayesian updating, a distribution. After we have performed ¢ tests on a

flowpath without any error, p, can be written as:

| = P(E,F' P(F' | E)P(E
p.=PE|F")= (_l): — (F | )(_,)_ = Eq. 3-77
P(F'"Yy P(F'\E)P(EY+P(F'|E)P(E)

where

F'is the flowpath has been tested ¢ times without any error,

E is there is an error on the flowpath,

E s there is no error on the flowpath,

p. s the probability that there is an error on the flowpath after ¢ error free test
on the flowpath.
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As discussed above, the following relationships are obtained:

P(F’ |E):(1_p1)(1_pf,u)’

P(F'|E)=1
PE) - pf Eq.3-78
P(E)=1-p]

where, p! is the prior value of the probability that there is an error on the flowpath. The
mean value of f (p,) used in the previous Bayesian updating method should be used as
p., although the resulting p’ is not necessarily the same as P, . To sum up, this simpler

method to estimate p, is:

_ (l—ﬁj)(l_[n’f,u)lpg
(l_f)l)(l_ﬁf,ll)’pf +(1_p3)

p. Eq. 3-79

For both methods, the estimators, p, and p, , obtained from the error data of the

same program or similar programs are substituted into their respective formulas to obtain

the probability of error existing in each tested flowpath.

In order to estimate the unreliability of a tested flowpath, €, besides p., which
can be solved either by Eq. 3-76, or Eq. 3-79, we have to solve p + » the probability that a

failure will be encountered upon next execution on the flowpath given that there is an
error on the flowpath according to Eq. 3-66. Here another assumption is made. Unlike

P.> which is unique to every tested flowpath, an average value is used for p, for every

flowpath. This is because we have sparse error data from the software that we are testing

and this assumption is a natural extension of the single value assumption for p 4.4 » Which
will become very clear after the method to estimate p ;18 discussed. Let us use a divide

and conquer strategy to estimate p +» which can be divided into two parts, the probability
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that we will detect an error upon next execution if there is a type I error on the flowpath,

P(F) E,) and the same probability if there is a type II error on the flowpath, P(F | E,).

Following this logic, p, can be written as:

p=PF|E)p; +P(F|Ep)py Eq. 3-80

where

Prig the probability that a failure is encountered upon next execution given
there is an error on the flowpath,

P(FVE;) i the probability that a failure is encountered upon next execution given
there is a type I error on the flowpath,

Piig the probability that an error 1s of type I, given it has been tested ¢ times
failure free, r > 1 X

PFIEL) i the probability that a failure is encountered upon next execution given
there 1s a type II error on the flowpath,

Pu i the probability that an error is of type I, given it has been tested ¢

times failure free, ¢t 21

We need to be aware of the fact that the flowpaths with which we are dealing are those
flowpaths that have been tested at least once without any failure. Where there is a type |

error on any of these flowpaths, it should have been encountered during the first visit

according to the definition of type I error. This is to say p) =0. Thus, there is no need
to calculate P(F'| E,) for the purpose of estimating p,. Also, because p; + p;, =1, and
because there are only two types of errors, p;, =1—p; =1. The last term is P(F | E,),
which 1s the definition of p, ,, the probability that an type Il error is encountered upon a

single execution given there is a type Il error on the visited flowpath. Plug all the four

terms into Eq. 3-80, we get:
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Pr=Psu Eq. 3-81

3.442.3.4. Summary — Estimate Unreliability of Tested Flowpaths

According to Eq. 3-38, the unreliability of the tested part of the software is a

weighted average of the unreliability of all the tested flowpath, with visiting frequency to

N

rr n
Z pvi.\'il,ip gip
each flowpath during testing as its weight: 0, = '~

N,,.,

Z P Visit,ip,

ip=l

According to Eq. 3-66, unreliability of each tested flowpath is estimated as: & = P.XP,.

The probability that there is an error in the flowpath, p,, is unique for each flowpath and
can be estimated by Eq. 3-76, assuming continuous distribution for p, or Eq. 3-79, only
caring about the average value of p,. The probability that a failure is encountered during
the next execution on a flowpath given there is an error on the flowpath, p, is equal to

the probability that a failure is encountered during the next execution on a flowpath given
there 1s a type II error on the flowpath in light of the fact that none of the tested flowpaths

can have any type I error, i.c. Pr=Psy.

During the above mentioned calculation, the two-type-error model is used. The

relative probabilities, p, , the probability that an error is of type I and p,,, the

probability that a failure is encountered during a single visit to a flowpath because of a
type Il error can either be estimated separately or jointly. If the tester is able to separate
all the encountered errors during testing into the two groups, separate distribution
updating can be performed according to Eq. 3-50, Eq. 3-51, Eq. 3-52, Eq. 3-56and Eq.
3-57, which is easier in terms of calculation. If the tester cannot distinguish type I errors

from type II errors, a joint probability distribution of p, and p, . can be carried out and

estimations obtained according to Eq. 3-63, Eq. 3-65.
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3.4.42.4. Estimate the Average Unreliability of the Untested Flowpaths

For most of the software programs, even the fully testable and substantially
testable ones, it is seldom the case that all possible flowpaths are tested. Furthermore, we
do not even have a method to count how many possible flowpaths that exist in a program.
(This topic is discussed in detail in the next section). The only information that we obtain
after the testing is that from the tested flowpaths. Our task now is to estimate the
unreliability of the untested flowpaths based on the information we have obtained from
the tested flowpaths. In order to complete this task, moving from the information of the
tested flowpaths to the unreliability of the untested flowpaths, we have to know the
difference between these two parts of the same software as well as the similarities. We
need to take advantage of the common features that are shared by them and bridge the
differences. Thus, in this section, we start with the characteristics of the tested and
untested parts and continue with how to deal with them in order to obtain average
unreliability estimation for the untested flowpaths from the testing information that we

have obtained from the tested flowpaths.

3.4.42.4.1. Similarities And Differences between Tested and Untested Flowpaths

First, the tested and untested flowpaths belong to the same software program.
They share many common nodes. They would share all the nodes if complete nodal
coverage testing has been performed on the underlying software. Both are designed and
programmed by the same group of people under the same development environment. [t
is reasonable to assume that they are at the same reliability level if neither has been tested
or modified. That level is the average reliability of the software before testing. Now
suppose we test some parts of the software, without any correction to any of the detected
errors? Are they still the same? The answer is yes. It is mistakenly thought that the
reliability of a software program should be improved through testing the software. But it
is not true. Only if the detected errors are removed so that at least some of them are

successfully and perfectly corrected, does the reliability increase. This is because testing
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does not change the software if we do not modify it. The software is still the same after
pure testing. The real effect of testing is not on the software itself, Rather, the testing
process improves our knowledge about the software. If we are able to update software
reliability based upon the pure testing results, it is not because the underlying reliability
has changed. Rather it is because we have more knowledge about the software and can
obtain a more precise estimation of its reliability. Testing provides information of the
tested flowpaths and permits error removal from the tested flowpaths. Thus, we can say
that the tested and untested software flowpaths are at the same reliability level before and
after pure testing process. By pure testing, we mean testing without any modification.
For the same reason, if both parts are under the same testing and correction process, they
should be at the same reliability Ievel. In that case, we do not have two parts any more
and all the flowpaths would have been tested and modified. All the flowpaths of the
software become tested flowpaths.

But what if we test and modify the program at the same time. In this case, we test
the software and always perfectly correct any error that is detected during testing. We
increase the reliability of the tested flowpaths if we only care about the average reliability
of the tested and untested flowpaths. And we here introduce a difference between the
tested and the untested flowpaths in terms of reliability by modifying the tested
flowpaths.

Now, we believe that the reliability of the tested flowpaths is higher than the
reliability of the untested flowpaths. But is the untested part as unreliable as the software
before any test and modification was performed on the software? Does the modification
of the tested flowpaths improve the quality of the untested flowpaths? Yes, because they
share many nodes. It is possible that if an error on a node is corrected because of testing
of a tested flowpath, some potential failure observations from the untested flowpath are
removed too. In other words, because of the error being found on the same node shared
by different flowpaths belonging to both the tested flowpaths and to the untested
flowpaths, we will observe fewer failures on the untested flowpaths than if we do not
make any modification to the tested flowpaths.

To sum up, the reliability of the tested and untested flowpaths are at the same

level before testing and modification. If the same testing and modification process is
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performed on both parts of the software, they will be at the same reliability level. The
fact that both parts of the software are designed and developed by the same group of
people under the same environment is the reason for these similarities. But because we
cannot manage complete flowpath coverage on the underlying software, the tested
flowpaths are modified while the untested flowpaths are not. This causes the difference
to develop between these two parts of the software in terms of reliability. Then the
question we need to answer is how big the difference is. The difference 1s smaller than
the difference between the current reliability level of the tested and modified flowpaths
and the initial reliability level of the software without any modification because of the
common errors on common nodes shared by both parts of the software. This is the

beneficial effect on the untested flowpaths derived from modifying the tested flowpaths.

3.4.4.2.4.2. Unreliability of Untested Flowpaths

There are two versions of reliability because of the difference between failures
and errors. Before we get into how to estimate the reliability of the untested flowpaths,
let us take one more look at which version of reliability is the one in which we are
interested. The similarities and differences described in the previous section then are
used to estimate the desired reliability. Again, the unreliability is the feature we estimate
directly. The reliability is simply one minus the unreliability.

One error may cause several failures if we do not perfectly correct it immediately.
The reason is that there is normally more than one flowpath sharing the faulty node and
this node therefore may cause more than one path to fail. Even though the error only
affects one path, the error can still be triggered by different inputs that lead to the same
faulty path. To put it in a simple way, a single faulty node may be associated with
several faulty paths and a faulty path may be associated with several unique input data
sets. In Figure 3-10, one faulty node, node 5 can cause two flowpaths, 1-2-5-10 and 1-2-
5-11 to fail. If input data set 1, 2, 3, 4, 5 and 6 lead to either of these two flowpaths, at

most six test cases may fail because of the error on node 5. From the perspective of the
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program, only one error exists (assuming all the other nodes are correct for this example)

while from perspective of failures observed, there might be six at most’.
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Figure 3-10 Six Failure Observations Because of One Error

U

Now, let us define two terminologies, the observed reliability and the basic
reliability. The reliability estimated using the number of errors encountered during the
testing and perfect correcting process is termed the observed reliability because this is
what we see when we test the tested flowpaths and perfect correct any detected errors.
The reliability estimated from the number of errors encountered during a pure testing
(test without error removal) process is terms as the basic reliability. If none of the errors
are shared by more than one test case, the basic reliability is equal to the observed
reliability. The observed reliability is always equal to or greater than the basic reliability.
We term this phenomenon a shielding effect because the perfect correction of a detected
error on a tested flowpath shields our further observations of the same error from other
tests. The shielding effect is measured by the ratio of the observed reliability to the basic

reliability, R,/ R, which is always greater than or equal to one.

Note that neither the observed reliability nor the basic reliability estimated from

the number of errors encountered during testing of the tested flowpaths can reflect the

7 Because an error may not cause all the six tests that lead to the faulty node, node 5, fail, the actual failure
number may be less than six. Six is the maximum number of failures that could be caused by node 5.
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true reliability value of the tested flowpaths. Both estimates are made upon the fact that
some failures are observed during a certain number of tests. Because of the perfect-error-
removal requirement, no error should be observed by applying all the existing input data
to the software under question. The reliability estimated for the tested flowpaths should
always be higher than both the observed reliability estimate and the basic reliability
estimate. The observed and basic reliability of the tested flowpaths that are estimated
from the testing information obtained from the tested flowpaths are not used to estimate
reliability of the same part of software.

Then why do we want to estimate the observed and basic reliability of the tested
flowpaths? We want to deduce reliability of the untested and unmodified flowpaths from
these two reliability estimates. As mentioned above, there are lots of similarities between
these two parts. Thus the error data from the tested portion should give us some hint

about the untested portion.

Figure 3-12 Tested Flowpaths, Part A
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Figure 3-13 Untested Flowpaths, Part B

The first question we want to ask ourselves is whether the observed reliability or
the basic reliability is the reliability value we want to estimate for the untested flowpaths.
It is the basic reliability. At any testing stage, we always want to decide if we can stop
testing and put the program into unlimited operation when no modification will be made
in the future. This situation is the same as the pure testing process. It is the basic
reliability level that will be experienced during this process. To estimate basic reliability
of the untested flowpaths, our approach starts from the known, the observed reliability of
the tested flowpaths, from where the observed reliability of the untested flowpaths is
deduced. Then the relationship between basic reliability and observed reliability of the
untested flowpaths (shielding effect within the untested flowpaths) is established by
examining the relationship between the basic reliability and observed reliability of the
tested flowpaths (shielding eftect within the tested flowpaths).

Assume we can divide the program into two parts. For the example shown in
Figure 3-11, four out of seven flowpaths have been tested. The software can be divided
into two parts as in Figure 3-12 and Figure 3-13. If these two parts were independent, the
reliability level of the untested flowpaths under unlimited operating use would be the
same as the basic reliability estimated for the tested flowpaths provided the similarities
these two parts are sharing. The problem is that the tested flowpaths and the untested
flowpaths are not independent at all. In the example plotted in Figure 3-11, part A and
part B share node 1, 3, 6 and 8. Through the shared nodes, modifications made to the
tested flowpaths also benefit the untested flowpaths. Thus if we were to use the basic

114



reliability of the tested flowpaths assuming no modification have been made to estimate
reliability of the untested flowpaths, we have underestimated the reliability, which makes

our estimation more conservative. If we use a multiplication correction factor C; to

denote this effect, we have

R, (untested) = C\ R (tested), C, 21 Eq. 3-82

The true reliability is always higher or equal to our reliability estimation value.

Considering the safety-critical nature of the software in question, we can ignore C), or
assume C, =1. By ignoring the benefit brought to the untested flowpaths by correcting

the errors detected on the tested flowpaths, we obtain a more conservative reliability

estimation result for the untested flowpaths. This is expressed as:

R, (untested) = R, (tested) Eq. 3-83

Now let us estimate reliability of the untested flowpaths ignoring C,. The
question becomes how to estimate the basic reliability of the untested flowpaths,

R, (untested), from the observed reliability of the untested flowpaths, R, (untested) .

This is when the shielding effect comes into play. Again the shiclding effect is the
reduction of error observations as a result of prompt error removal. To account for the

shielding effect, we define a correction multiplication factor similar to C, as:

Cy =Ry /Ry, Cg 21 Eq. 3-84

This is a factor affect the reliability estimation in a different direction from C,. If we
ignore Cg , we will over-cstimate reliability of the untested flowpaths. This is not

acceptable for the safety-critical software in question.
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Note that Cy, is not a constant throughout a program. It is a variable whose

value associated directly with certain errors. If a node hosting any error is shared by
more flowpaths and the flowpaths are the popular ones (more probable to be visited), it is
more possible that the error will cause more failures if it is not removed immediately
from the program. To put it in a simple way, such errors will bring bigger shielding
effect to the program. If we denote the average shielding effect brought by the errors left
in the untested flowpaths as Cy, (untested), the basic reliability of the untested flowpaths

of the untested flowpaths can be written as:

Ry (untested) = R, (untested)/ Cy,. = C\R, (tested)! Cy,. = R, (tested)/C,, Eq. 3-85

Because R, (tested) can be estimated directly from information obtained from the tested
flowpaths, the only unknown becomes C., (untested) .

By intuition, Cy, (untested) is much smaller than C, (fested) because the errors

have bigger shielding effect should also be easier to detect. Suppose the program has
been tested many times and there is an error undetected, that error should be very little
affect. Otherwise, we would have found it through previous testing.

Keep the above analysis in mind; we can associate a shielding effect value with
each of the errors in given program. The earlier detected errors always have bigger
shielding effect value associated with it than the later detected ones. The shielding effect
factors of the detected errors can be plotted as a function of the time (the index of the
flowpath under testing when the error is detected) when the errors are identified. Refer to
Figure 3-14 for illustrations of such a plot. The vertical axis is the ratio between
observed reliability and the basic reliability calculated for each of the detected errors, its
shielding effect factor, R, /R,. The horizontal axis, n, is the indexes of the flowpaths
under testing when the errors are detected. According to the discussion in the above
paragraph, the curve is monotonously decreasing. As the more commonly shared faulty
nodes are more easily to reach, they tend to be gotten rid of at earlier testing and

modifying stages. As a result, the curve decreases dramatically as the number of total
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tested flowpaths increases. To start, we suggest a function format between R,/ R, (n)

and » as:

R,/R, =1+ae™ Eq. 3-86

R, is  the observed reliability
R, is  the basic reliability

nis the flowpath index when the error is detected
ais the first function parameter

b is the function parameter, indicating the decreasing speed of R /R, as

number of tested flowpaths increases

RES

Figure 3-14 Ratio of Observed Reliability over Basic Reliability

Experiments on the software under consideration or similar programs should be
performed to get approximation for ¢ and ». This experiment can be performed after
some number of tests. For each of the error detected and removed, first assume there is
only one failure caused by this error plus there is no other failure out of the passed test

cases. Calculate the reliability of the tested flowpaths according to the method described
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earlier. This gives us the observed reliability associated with this error, R,(n). Then put
back this error and test all the already passed test cases again. Presumably more than one
failure will be observed because of the shielding effect. Use this testing result and re-
calculate reliability of the tested flowpaths. We get the basic reliability associated with

this error, R,(n). Divide R,(n) by R,(n), we get the ratio we want. We do the same

experiment for every error that has been found and estimate ¢ and ». As shown in
Figure 3-14, if a lot of tests have been done and most of the etrors have been removed,

the shielding effect is gone. Cj, of any of the errors left in the software, if there is any,

can be approximated by one, which means no shielding effect exists with them. In this

case, we have:

R, (untested) = C\ R, (tested)/ C, (untested) ~ R, (tested) Eq. 3-87

Then how to calculate the basic reliability and observed reliability associated with
an error given all the information we need. Let’s look at a simple example. If we have
tested a program 20 times and have identified 8 unique flowpaths. There is one type Il
error that was detected on flowpath number 2 and has been removed. Refer to Table 3-2

for the example.

Flowpath Index i 1 2 3 4 5 6 7 8
No. of Visits ¢ 5 3 4 3 2 1 1 1
Error Detected 0 1 0 0 0 0 0 0

Table 3-2 Example for Observed Reliability Estimation

118



From the above prompt error removal process, we can estimate the observed
reliability as follows. For flowpath number 2, the probability that there is a type II error
is unity, that is Pe, =1. Its unreliability is estimated as:

~

O,=Peyxp,, =Py Eq. 3-88

where, p, , is the probability that a type II error is detected during a single visit to the

hosting flowpath.

For all the other flowpaths, the unreliability can be estimated as:

b = (1_Pf,11)’pupeo

, §1#2 Ea 3.89
’ (1_pj~”)lp”PeO+(1_Peo)pf,[[ q

where,
¢ is the number of visits to flowpath i during testing;

P, is the probability a type I error is detected during a single visit to the hosting

flowpath.

p,; is the percentage of type Il error among all errors.

Pe® is the average prior probability that there is an error on a single flowpath.

Then the observed unreliability of the 10 tested flowpaths 1s:

6= ) Egq. 3-90

Now let’s estimate the basic reliability of the 10 tested flowpaths. Assume we put back
the removed error, repeat the 20 tests and observe the testing data as follows:

119



Flowpath Index i 1 2 3 4 5 6 7 8

No. of Visits ¢ 5

(9%
=y
J
bo
—
—_
_—

Error Detected 2 1 1 1 0 0 0 0

Table 3-3 Example for Basic Reliability Estimation

To estimate the overall basic unreliability, we can estimate basic unreliability of node 1,
2, 3, 4, 5 according to Eq. 3-88 and estimate basic unreliability of the other nodes
according to Eq. 3-89. The overall basic unreliability can be calculated according to Eq.

3-90. The basic/observed reliability is one minus the basic/observed unreliability.

If we were only to approach the point when the shielding effect disappears, we

can apply a simpler version of the above experiment. Instead of calculating R 5 and R,

for each error that was encountered, the total number of failures that was encountered
when testing the error-embedded program is recorded. As discussed already, the later
detected errors will cause fewer failures then the errors detected earlier. Again, we can
plot the number of failures caused by each error as a function of the index of the flowpath
that is under testing when the error was found. When we reach the point where one error
only affects that single flowpath, we know that this is when the shielding effect

disappears,

3.4425. Estimate the Number of Possible Flowpaths, p,,. , and Poisic 7

We have discussed how to estimate the reliability of the tested and untested
flowpaths. But we should not forget one very important presumption, that is, the total
number of executable flowpaths, N, is unknown. Without N, we do not know what
percentage of the program has been tested. It is obvious that the tested and modified
flowpaths are more reliable than the untested ones. And we can estimate reliability for

both parts. What is also very important and we do not know is the chance that one of the
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untested flowpaths will be executed upon next execution, p,,;,, and what is the chance
for one of the tested flowpaths p,,. Apparently they have such relationship:

Pusint = 1= Puisayy - Until now, we have not addressed this problem. Will this question be

answered if we can estimate the total number of flowpaths?
In this section, two experimental approaches are presented to solve these

problems, before which the unfeasibility of a theoretical solution is stated.

3.4.42.5.1. Unfeasibility of Theoretical Solution

Recall the definitions of the control flowgraph of a program and flowpath. The
control flowgraph is simply a tree made up of nodes and links and a flowpath is a
sequence of nodes and links on the flowgraph. It is the decision nodes that determine
how many possible flowpaths there are in a program. Starting from a decision node, the
number of its direct successor nodes is the number of ways that the program execution
can go from that point. Theoretically, if we traverse from the bottom nodes on the
flowgraph and keep going backward, we can calculate the number of possible flowpaths

in a program.

Figure 3-15 Calculate Number of Flowpaths Theoretically
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Consider the flowgraph in Figure 3-15 as an example. The theoretical number of
flowpaths in a program can be calculated using the depth-first traversal method from its
flowgraph. In the example, there are 14 nodes, with node 1 as the top node, ot starting
node in the program. Node 4, 9, 10, 12, 13, 14, 8 are possible exit nodes. According to
the depth-first traversal method, suppose we have just reached node v, and let Wi, Wa, ...,
wi be its successor nodes from left to right. We shall next visit w; and then wy,....w;, and
go back to visit node v. Here, to calculate how many flowpaths there are in the
flowgraph, we start from the top node, node 1. For every node, there is a recorder,
storing the number of sub-flowpaths that lead to this node. In the beginning, we are at
node 1. We first read the number saved in its first left successor node’s, node 2’s,
recorder. Because we have not calculated the sub-flowpaths for node 2, there is no
number saved there. Thus, from node 2, we go to node 4, the first left successor node of
node 2. There is nothing saved there either. But for every bottom node, we assign 1 to
its recorder. As every bottom node is an exit node of the program, there is only one way
to go forward from there, i.e., exit the program. We put 1 into node 4’s recorder and go
back to node 2. From node 2, we visit its second left successor node, node 5. There is
nothing recorded there. We go one step further and reach node 9. A value 1 is put into
both node 9 and node 10’s recorder because they are exit nodes. From node 10, we go
back to node 5. Now, all successor node of it have some number recorded. The total
number of sub-flowpaths of node 5 is the total number of sub-flowpaths of its successor
nodes, node 9 and node 10. Thus, we save 1 plus 1, 2, into node 5’s recorder. This
process 1s repeated until the top node, node 1 is reached again with the total number of
flowpaths in the program recorded in node 1’s recorder. Refer to Table 3-4 to see the
whole traversal and calculation process for the example flowgraph. There are 10 possible

flowpaths in this program.

Node index, in order of sub-flowpaths calculation | Number of sub-flowpaths

4 1 (bottom node)

10 1 (bottom node)

11 1 (bottom node)

5 2 =1 (nodel0) + 1 (nodell)
12 1 (bottom node)
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13 1 (bottom node)

14 1 (bottom node)

9 3 =1 (nodel2) + 1 (nodel3) + 1 (nodel4)
6 3 =3 (node9)

2 6 =1 (node4) + 2 (node5) + 3 (nodeb)

7 3 =3 (node9)

8 1 (bottom node)

3 4 =73 (node7) + | (node8)

1 10 = 6 (node2) + 4 (node3)

Table 3-4 Iilustration of Calculation of

Number of Flowpaths of Program Shown in Figure 3-15

As shown in the above example, if we do not take into account the relationship
among input data, theoretically, the total number of flowpaths of a program can be
calculated from depth-first traversal algorithm for graph structures. But, very often,
because of special relationships among different input variables, some theoretically
existing flowpaths may not be reached in practice. This has already been mentioned
when we talked about the white box testing strategies. A simple example would be two
adjacent if/else selection structures whose decision making conditions include duplicate
variables. In such a case, some input data that lead to the if-block of the first if/else
structure would not be able to reach either the if- or the else-block of the second if/else
structure.  Again, let us take the flowgraph in Figure 3-15 as an example. If the input
data that leads the program to node 2 can only lead the program to node 12 but neither to
node 13 nor 14 while the input data that leads the program to node 3 can only lead the
program to nodes 13 and 14, but not to node 12. And assuming that all the other
flowpaths are reachable, there are only 7 possible flowpaths. Flowpaths 1-2-6-11-13, 1-
2-6-11-14 and 1-3-7-11-12 cannot be reached. In reality, there are many similar
situations that make the theoretically calculated total number of flowpaths almost useless.
Furthermore, performing a depth-first traversal with a real software control flowgraph is
anything but an easy task, considering all the looping structures and multiple-use
functions blocks, even though the software structure is very simple and clear as in the

example shown in Figure 3-15.
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Now, let us look at the probability that an untested flowpath is going to be

. . N JV“ .
executed during the next trial, p,.,. Note that Doisit 17 a&—N—’ because different

flowpaths have different probabilities of being accessed during operation. It is almost
always true that after many tests have been performed on a program, the tested flowpaths

always have a better chance to be visited on the next trial if the test data sampling process

follows the same underlying distribution. This means that p

visit [

N-N.,
, <<——2. But how
N

small is the actual number? The total number of flowpaths in a program can be estimated
from the program structure even though nothing can be obtained through any theoretical

method.

Disappointed by the theoretical means of estimating N , Puar-and p. , itis

very natural for us to turn to experimental approaches. In the following two sections, two
experimental methods to estimate the total number of possible flowpaths in a program, as

wellas p,,  and p . . are discussed.

3.4.4252. First Experimental Solution

In this, and the following sections, two empirical solutions to the total number of
flowpaths problem are provided. They appear naturally as the demonstration work,
discussed in the next chapter, proceeds and generates a huge number of data points.
Though they are derived from observation of the pattern obtained from experimental
data, there are intuitive reasons that support them. Both are black box methods, meaning
that in order to obtain the solution, we do not need to examine the inner structure or the
control flowgraph of the software. But, as a result, a relatively large number of testing
data points is needed in order to obtain a satisfactory solution. This process is exactly the
same as the ant-in-maze problem. One input data set is like an ant. Every time, we let an
ant go through the maze, with colored paint dropped along the path by the ant, one path is
identified. If there are many possible paths from the entry to the exit of the maze, many
ants are needed to map them all, account for the fact that several ants may end up

traversing the same path. Furthermore, the solution will vary if the input data distribution
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changes to some extent, depending on the size of the input data set. But as long as we are
close enough to the operating profile, the estimation result will be proper for the final
reliability estimation task because the hard-to-reach flowpaths during testing are also the

flowpaths of less importance under real operating situation.

inp ata

Figure 3-16 Identify Possible Flowpaths

We have seen the saturation effect in an earlier section when we discussed
complete white box testing. According to the input data distribution, some flowpaths are
visited very often while some are rarely touched though they are possible to be reached.
As more and more tests are performed on a piece of software, it becomes more and more
difficult to visit an untested flowpath. We call this phenomenon the “saturation effect”
because although many new input data are applied, the speed of identifying new

flowpaths is very slow. We can plot a diagram with the horizontal axis representing the
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cumulative number of unique tests performed®, the vertical axis representing the

cumulative number of unique flowpath identified through testing. While tests continue,

the curve grows longer and longer with its slope becoming flatter and flatter. Imagine

that at one point, we have tested all of the reachable flowpaths, the slope becomes equal

to zero and stays zero after that point because whatever input data we apply after that

point, no new flowpaths will be identified. But in practice, it is almost impossible to

reach this point. An easy solution is to use an analytical curve, e.g. a polynomial curve,

to fit the experimental diagram and to extend the analytical curve to the saturation point,

that is, to the point where the slope reaches a value of zero.
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Figure 3-17 Estimate Total Number of Flowpaths, Experimental Approachl

In Figure 3-17, the program has been tested x, times’, out of which, N ; unique

flowpaths are identified. The irregular curve is the experimental one. The smooth curve

is the fitted curve obtained from the experimental one. Based upon the shape of the

% If at least one input variable of the current input data set has a different value from any of the other input
data sets, the test caused by this input data set is called a unique input data set.

9 .
X, tests are not necessary to be unique.
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experimental curve, several functional forms can be used for the analytical fitted curve.

A simple example would be a second order polynomial function,
y = f(x)=a+bx+cx’. The value of the parameters, a, b and ¢ can be estimated from

the experimental data. We call the point where the slope of the fitted curve becomes
equal to zero the saturation point, after which, no new flowpaths will be identified

because every flowpath has been tested at least once. If the function chosen only has one

inflection point, that point is the saturation point. If we choose y = f(x)=a+bx+ ex?,

the total number of tests needed to cover all possible flowpaths, or the x coordinate, x,

of the saturation point can be obtained by:

af

E;(x:x*)=b+2c:x*=0 Eq. 3-91

We obtain the result:

x* = —2i Eq. 3-92
c

The total number of flowpaths can be estimated as:

. T g2 2
N:y*=f(x*)=a+b(—i)+c(—£)2=a—b—+b— a—b
2c 2c

=—q—— Eq. 3-93
2¢  4c 4c

Take the fitted curve as an approximation of the real experimental curve, the probability

of visiting a tested flowpath next time can be estimated as:
Pusir = 4 Eq. 3-94

and pvi.w'l,U = ]' - p\hiu’l.’[' -
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Up to this point, we have described the first experimental method used to estimate

values of the three important parameters, N, the total number of flowpaths that can be

reached, p,. ., the probability that a tested flowpath will be executed upon next

operation and p,, ., the probability that an untested flowpath is going to be visited.

They are essential in estimating the reliability of a program based upon its structure. It is
a very simple approach with limited and simple calculations involved. The experimental
data required are the number of tests made and the number of unique flowpath identified
through the test data. There is one concern about this method. For some cases, when the
last testing point is very close to the saturation point, the estimated total number of
flowpaths may be smaller than the total number of flowpaths identified, which is

certainly wrong. This happens because the difference between Nand N, is so small,

that the noise of the fitted curve is much bigger than the difference. If this happens, this
approach cannot be used to estimate the value of N, in which case, the second
experimental approach has to be utilized. But the first approach is still useful in
estimating the value of p,. , and p
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Figure 3-18 Predicted Total Flowpath Number N Smaller than Tested Flowpath Number N,
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3.4.4.2.5.3. Second Experimental Solution

The first experimental solution to N, p,, and p,, is definitely the most

straightforward answer. But if the N < N, problem occurs, it becomes useless in
estimating the value of N, the total number of flowpaths, although, from the result, we
can say that N is very close to N, and we have almost tested all of the possible

flowpaths. But neither “close” nor “almost” is a good or scientific answer. We wish to
be able to answer how close we are from the complete flowpath coverage testing point
with what probability. Because N is not a precise number, there should be a range
around it with a likelihood value. In this section, we will try to address these questions
by using almost the same group of data points as in the first experimental approach.
Though the reasons behind this approach are not as obvious, they are as solid as the first
approach.

Again, a necessary assumption used for the application of this method is that the
input data are sampled randomly according to some distribution, in most cases,
preferably, the operating profile. Some flowpaths are more easily visited than others.
The ones that are easily reached will typically be identified earlier. Let us look at the
same phenomenon from another perspective. If the underlying probability distribution of
the input data does not change over time during testing, the earlier identified flowpaths
are the ones that will have more visits to them. We can sort the flowpaths according to
the order in which they are identified. After many random tests, the number of visits to
each flowpath can be plotted. We can imagine that there is a trend going through all the

data points.
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Figure 3-19 Ilustration Ideal Number of Visits to

Flowpaths According to Identification Order

In Figure 3-19, an extreme situation is shown. The horizontal axis is the index of
identified flowpaths lined up according to their order of recognition time. The vertical
axis is the number of visits to each flowpath. The flowpaths with smaller indices always
have better chances of being visited during testing. If the input data follow the same
distribution as the actual situation, the flowpath visiting time distribution would be the
same as can be seen during testing. In this extreme example, if the curve follows a
perfect analytical function, the point where the curve crosses the horizontal axis indicates
us the total number of flowpaths in the software. It is also possible that the curve does
not intersect the horizontal axis, e.g. it has an exponential or asymptotic form. In this
case, if we can connect this experimental curve with the visiting probability density
distribution function of the flowpaths, some very useful results can be obtained.

For now, let us assume that we know the analytical form, y = f(x), of the curve

shown in Figure 3-19, where x is the flowpath index and y is the number of visits
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during testing. If we have performed a large number of tests such that the curve is
statistically significant, the number of visits to each flowpath y is proportional to the
probability of it being visited during a single execution of the program. The only

difference between f(x) and the probability density function P(x) is a normalization

constant. Thus, we have:

Jx) ™) Eq. 3-95

P(x)= ~
[ roa [ rood

Where, N is the total number of executable flowpaths in the software.
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Figure 3-20 Tlustration of Estimation of

the Untested Flowpath Visiting Probability p, .,

If we have tested N, flowpaths, the probability that a non-tested flowpath will be visited

upon next execution can be estimated as:
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Py = _[Dr P(x)dx Eq. 3-96

All the discussions in this section until now are based on the assumption that we know
such an ideal analytical function that connects the flowpath index and its number of visits
during testing. But unfortunately, in reality, this is never true. We need to approximate
such a function from our experimental data. In reality, although the trend is that earlier
identified flowpaths tend to have more visits during testing, there are many variations
among contiguous flowpaths regarding their number of visits. To put it another way,
there exists considerable noise. Our last task in this section is to get rid of the noise and
abstract a curve with a known analytical form. If this is achieved, Eq. 3-96 can be used

to make the estimation for p, -

There are two steps in going from the noisy experimental curve to the desired
smooth function. First, we can divide the tested flowpaths into contiguous groups. If
N, —mod(N, /k)

k
Within each group, the numbers of visits to all the flowpaths should be relatively close to

each group contains k£ flowpaths, then we have n=

+1 groups.

each other because they are identified around the same order of discovery. For each

group #, we calculate the average number of visits to each flowpath as:

1 k
—Zyj i<n
o k45 o
Yi = 1 Ny —koc(n-1) Eq. 3-97
. i=n
N, —kx(n-1) =

Now, we can plot a new diagram (x,,y,), where, for each group i, Xx,is the

middle value:
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% - f%u Eq. 3-98

The new plot has only rn=~ N% data points with less noise. The proper value of £

should be chosen according to the real experimental condition. If & is too big, the
number of data points n will be too small and the resulting curve will not have enough
statistical significance. If k is too small, then each group will contain only a very small
number of data points to average and hence the noise-reduction effect will be very small.
We have talked about the first step. By taking an average, we get a much
smoother curve. But, still, it is an experimental curve. In order to satisty our purpose, an
analytical form is needed. Again, the second step is to use curve fitting. First a suitable
functional form is chosen and then the values of the parameters involved are estimated
using the data points obtained from step one. For the function form, a simple example 1s

the exponential function:
y=ae™ Eg. 3-99

where, b can be estimated from (x,,y,) and a is obtained through normalization as:

—bx —
[ae av=1 Eq. 3-100

=>a=5b

Then, the probability that an untested flowpath will be visited upon next execution is

obtained as:

Puns = [ bedx=e " Eq. 3-101
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4. Demonstration

4.1. Introduction

This chapter presents the results of a case study in which the designed testing and
reliability estimation strategy described in Chapter3 is applied to a program, SVA, used
in nuclear power plant’s reactor coolant system. The generic Signal Validation
Algorithm (SVA) is used to calculate and validate the values of parameters in the reactor
coolant system. 001 CASE tool is adopted to facilitate and automate the methodologies.
And it is not the only tool available for the desired purpose. The work described in this
thesis is a continuation of work from an earlier Ph.D. thesis [Ouya95], where all the
details about why 001 was chosen for this study were presented. The experiment

reported here is aimed at investigating the feasibility of the proposed methods.

4.1.1. General

In this experiment, the original specification of SVA, written in plain English, is
developed into C code using the 001 CASE tool following DBTF methodology described
in Chapter2.  After completion of building the models, variable and functional
consistency as well as completeness is checked during the developments cycle. Ccodeis
automatically generated by 001 CASE tool. We call this code as sample code. The
program then is tested against previously developed and tested software, obtained from
our industrial collaborator, which is called oracle code. Test input data are sampled
according to reasonable probability distributions obtained by examining the nature of the
program. Should any discrepancy between the outputs from sample code and oracle code
corresponding to the same input data occur, a failure of the sample code is assumed. The
sample code is debugged. Retesting is performed for all the exploited input data in order
to make sure that no new error has been introduced. During testing, the nodes and

flowpaths are identified and recorded. Testing results and the identified flowpaths are
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utilized to quantitatively estimate unreliability of the sample code, #. Two Bayesian
techniques are applied to make the estimation: the quick and approximate nodal coverage
based method and the more precise refined feasible flowpath coverage based method.

The detected errors and identified flowpaths are analyzed in the end.

4.1.2. Working Path Flow

In this section, the flowpth of the demonstration is presented. Details of each

working step will be discussed more thoroughly later in this chapter.

Sample Correct Continue Testing
Dracle SvA ‘——b{ Oracle I—-
. Cimpare
[ SVA Spacs ] I input Data Same\\
i SWA in QO1 Qutput
Spets Capture & Check utoy ‘

i Wrong. Debug

i
1 Link Identify & Record

|

AT ‘ N
SVYA Trees Code Gorarai SVA Modules J FFluwna!hs ]'——' 8 Estimation
mbtained frorm Collabarator ( LConstructed during Project I

Figure 4-1 SVA Demonstration Flowpath

42. Sample Software — Signal Validation Algorithm (SVA)

In the nuclear power industry, many efforts have been developed to improve plant
performance and availability. An important factor for the success of these efforts is

improved access to reliable information for the entire plant, especially for safety critical
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systems. Many nuclear utilities are installing or upgrading their plant computer systems
to provide such a capacity to handle plant data and provide operators with data
interpretations that are accurate, extensive, reliable, and useful. The application of these
computer systems provides operators with ready access to a variety of sensor signals. It
permits operators to use an increased number of redundant, independent measurements in
the decision-making process during both normal and emergency operations. However, to
simply display all these redundant measurements is not desirable because to do so may
adversely complicate the operator’s mental processes, especially data evaluation and
analysis. One way to reduce the operators’ workload in comparing, analyzing, and
evaluating sensor signals is to apply automatic signal validation algorithms as a pre-filter.
This reduces the amount of information passed to the operator.

The Signal Validation Algorithm (SVA) employed in this case study is a generic
algorithm that performs signal validation for the plant processes that contain multiple
sensors that measure the same or closely related process parameters. The algorithm is
called generic because it is generally applicable to all types of parameters. Only slight
modifications need to be made for each particular parameter according to different

number of the sensors used.

4.2.1. SVA — the Algorithm

SVA is a generic validation algorithm that reduces unnecessary information. The
algorithm takes the outputs of all sensors that measure the same parameter and generates
a single output representative of that parameter, called the “Process Representation”. A
generic validation approach is used to ensure that it is well understood by operators. This
avoids an operator questioning the origin of each valid parameter.

SVA averages all sensor readings and checks all sensor deviations against the
average. If the deviation checks are satisfactory, the average is used as the “Process
Representation” and the output is considered to be a “valid” signal. If any sensor
readings do not successfully pass the deviation check, the reading with the greatest

deviation from the average is deleted and the average is recalculated with the remaining
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sensor readings. When all sensors used to generate the average are deviation-check-
satisfactory against the average, the average is used as the “valid” “Process
Representation”. This valid “Process Representation” is then deviation-checked agaimst
the Post-Monitoring System sensors. If the second deviation check is satisfactory, the
“Process Representation” is displayed with the message “Valid PAMI” (Post-Accident
Monitoring Indication), indicating that this signal is suitable for use during emergency
conditions, because it is in agreement with the value as determined by the PAMI sensors.
As long as agreement exists, this indicator may then be utilized for post-accident
monitoring rather than utilizing the dedicated PAMI indicator. This provides a Human
Factor Engineering advantage of allowing the operator to use the indicator that is

normally used for day-to-day work and with which the crew is most familiar with.

4.2.2. Original Design Document of SVA

Thete is an original SVA design document upon which this demonstration is
based. It is a pseudo-program structure in English text that provides definitions of terms,
functions, description of the data calculations, and logical connections between functions
and calculation. The text occupies 14 pages. This is the document that we used as a

specification and from which the demonstration software is built with 001 CASE tool.

422.1. Oracle

Whenever a software testing task appears, there should be an independent
mechanism, an oracle that is able to determine whether or not the results of test
executions are correct. There is a large literature that addresses the question of how to
generate an oracle automatically from both formal specification of the target software and
tabulated values of the input variables. This is, by itself, a big topic in software
engineering community. Oracle generation has not been a focus of the underlying works

here. Thus, as in many software test and research practices, we assume that we have the
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mechanism, an oracle that determines if the output from the software under testing is
correct.

For our demonstration work on SVA, we have obtained a previously developed
and tested program from our industry collaborator. This is a “quick C” program of a little
more than 3000 lines that is implemented onto IBM/PC. We term this piece of software
“oracle SVA” from now on. During testing, for any given input data, if any output from
the software under consideration (we term this piece of software as 001 SVA from now
on because it is developed under 001 CASE tool) is different from the output of oracle
SVA, we claim a failure case. If this happens, debugging and retesting are performed on

001 SVA until all the outputs corresponding to all the tested input data are correct.

4.2.2.2. A Testing Document of SVA

The final document that we obtained from our industry partner is the test
evaluation report for SVA. The purpose of this document is to provide a record of the
evaluation of the generic SVA program that is used as the oracle in the work we describe
in this chapter. This evaluation was performed prior to algorithm implementation as the
mockup to ensure that the validation algorithm in the mockup is based on a sound design.

The testing purpose, scope, background, algorithm definition, software
implementation, etc. are covered briefly in the document. Ten test cases were designed
and the desired outputs of the algorithm for the cases were identified prior to testing.
Both the test cases and the correct outputs were based on operational requirements during
both normal and emergency conditions that require the monitoring processes to contain
multiple “like” parameters. Such redundancy is a prerequisite for signal validation. The
snapshots of the testing screens, including both input and result screens were shown in
the report. For the failures that occurred during testing, causes were analyzed.

According to the methods described in last chapter, this document is not essential
for the purpose of demonstration. In this respect, the present document differs from the
prior two documents, the software specification and the oracle program. Furthermore,
the approach to select software input data in the report is not applicable to the approaches

that we have described. As required by our thorough testing objective, automation of

138



every step is crucial to the success of the work reported here. But still, this document 1s
very useful. This software evaluation document complements the software specification
document in that it provides a more detailed picture about the types of input data that
most normally showed up to SVA. In the specification, there are only descriptions about
the input variables, their functions in the algorithm, etc. It is the testing document that
provides some numbered examples about what the input data look like. With little
knowledge about the input domain, the input data probability distribution functions are
the joint product of both the input variable definitions in the specification document and

this testing report.

4.3. 001 CASE Tool

The 001 CASE Tool is an integrated system and software development
environment. It is an automation of the Development Before The Fact (DBTF) approach.

It is used to define and generate itself.

4.3.1. DBTF

As already discussed in Chapter 2, the Development Before The Fact (DBTF)
approach is the formal software development technique that we have chosen for this
study. It is a software development methodology marketed by Hamilton Technology
Inc., of Cambridge. DBTF has been successfully applied in many large industrial
projects and is being marketed commercially.

What makes DBTF different is that it is a preventative paradigm instead of a
curative one. Problems associated with traditional methods of design and development
are prevented "before the fact” by the way a system is defined. That is, DBTF
concentrates on preventing problems of development from even happening rather than
letting them happen "after the fact”, and fixing them after they have surfaced at the most

inopportune and expensive point in time.
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4.3.2. 001 System

4.3.2.1. General

001 (pronounced "double oh one") is a fully integrated systems engineering and
software design and development environment. It is the application of DBTF
methodology. 001's motivation is to facilitate the "doing things right in the first place”
development style and to avoid the "fixing wrong things up" traditional approach. To
automate the theory, 001 is developed with the following considerations: error prevention
from the early stage of system definition, life cycle control of the system under
development, and inherent reuse of highly reliable systems. It can be used to define,
analyze and automatically generate complete, integrated, and fully production-ready code
for any kind or size of software application with a significantly lower error rate and

significantly higher usability than traditional approaches.
4.3.2.2. 001 Features
4.3.2.2.1. System Oriented Objects (SOO)

All 001AXES models are defined and developed as System Oriented Objects
(SO0s). A SOO 1s understood the same way without ambiguity by all other objects
within its environment-including all users, models, and automated tools. Each SOO is
made up of other SOOs. Every aspect of a SOO i1s integrated not the least of which is the
integration of its object-oriented parts with both its function-oriented and its timing-
oriented parts. The approach adheres to a philosophy which supports the theory that to
integrate all the objects in a system you need be able to integrate all aspects of each

object in the system.

140



4.3.2.2.2. Reusability

Every SOO 1is a candidate to be reusable and is inherently integratable within the
same system, within other systems, and within all of these systems as they evolve. This
is because every object is a system and every system is an object.

Capturing inherent and recursive reuse is provided by the formal definition
mechanisms within the 001 AXES, as discussed later. Not only does 001 have properties
in its definitions to find, create, and use commonality from the very beginning of the life
cycle, it also has the ability to ensure commonality simply by using its language. This
means that the modeler does not have to work at making something become object-
oriented. Rather he or she models the objects and their relationships, as well as the
functions and their relationships. The language inherently integrates these aspects as well
as takes care of making those things that should become objects become objects.

Object oriented-like features such as polymorphism, encapsulation and
inheritance-persistence formally reside both on the function side as well as the object side
of a system where the functional side is defined in terms of the object side and vice versa.

This provides the ability to trace within and between levels and layers of a system.

4.3.2.2.3. Traceability

001 provides traceability from requirements to design to implementation thereby
rendering the system under development both manageable and maintainable. Systems
being managed are objects from the viewpoint of 001. Objects in one phase, say,
requirements, are traceable to objects in the next phase of development, the specification
phase. This feature is helpful for large, complex software systems, for which maintenance
in traditional environments is even more time-consuming and labor intensive than

development.
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4.3.3. 001 AXES Language

A formal systems specification language based on DBTF's foundations,
001AXES, is used to define a DBTF system. Based on a theory that extends traditional
mathematics of systems with a unique concept of real-time distributed control, 001 AXES
has embodied within it a natural representation of structured relationships of objects and

their interactions as events.
4.3.3.1. TMap and FMap

001 AXES language includes two main components, FMaps and TMaps. Every
model in 001 is defined in terms of functional hierarchies (FMaps) to capture time
characteristics and type hierarchies (TMaps) to capture space characteristics (Figure 4-2).
A map 1s both a control hierarchy and a network of interacting objects. FMaps and
TMaps guide the designer in thinking through concepts at all levels of system design. All
model viewpoints can be obtained from FMaps and TMaps, including data flow, control
flow, state transitions, data structure and dynamics. Maps of functions are integrated with

maps of types.

Functional Map {FMap) Type Map (TMap)

Constraints —’— Constraints -~ -
.J/

Control
< Siructure . FMap  ----- Members of
Data Type

% Thap _ Relations
Figure 4-2 Functional Map and TMap in 001
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On an FMap, there is a function at each node, which is defined in terms of and
controls its child functions. For example, the function, “build the table”, could be
decomposed into and control its child functions “make parts” and “assemble”. On a
TMap there is a type at each node that is defined in terms of and controls its child types.
For example, type “table” could be decomposed into and control its child types, “legs”

and “top” (Figure 4-3).

Tabie {tupleof) THap
- mydeling “Table”
Top (tupleof) Legs (tupleof)

T Leg1 (nat)
Length (nat)

Leg?2 (nat)

L)

Width (nat) Lea3 (nat)

Leg4 (nat)

Figure 4-3 TMap Modeling the Concept of a “Table”

Every type on a TMap owns a set of inherited primitive operations. Each function
on an FMap has one or more objects as its input and one or more objects as its output.
Each object resides in an object hierarchy (OMap) and is a member of a type from a
TMap. FMaps are inherently integrated with TMaps by using these objects and their
primitive operations. FMaps are used to define, integrate, and control the transformations
of objects from one state to another state (for example, a table with a broken leg to a table
with a fixed leg). Primitive operations on types defined in the TMap reside at the bottom
nodes of an FMap. Primitive types reside at the bottom nodes of a TMap.

When a system has its entire object values plugged in for a particular performance
pass, it exists in the form of an execution hierarchy (EMap).

Once a TMap has been agreed upon, the FMaps begin almost to fall into place for

the designers because of the natural partitioning of functionality (or groups of
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functionality) provided to the designers by the TMap system. The TMap provides the
structural criteria from which to evaluate the functional partitioning of the system. With
FMaps and TMaps, a system and its viewpoints is divided into functionally natural
components and groups of functional components which naturally work together. A
system 1s defined from the very beginning to integrate inherently and make

understandable its own real world definition.

4.3.3.2. Control Structures

All functions, or FMaps, that are not primitive are ultimately defined in terms of
three primitive control structures: a parent controls its children to have a dependent
relationship, an independent relationship, or a decision-making relationship. A formal set
of rules is associated with each primitive structure. The behavior of the parent function is
determined by the children functions that support it as well as by the control flow of
information that the parent function imposes on its children.

The three primitive control structures are Join (J) for defining dependency
between children, Include (I) for defining the independence of the children, and Or (O)
for defining the children as alternatives that the parent function may invoke to perform its

intended function. See Figure 4-4 for the control structures and their data flow rules.

Primitive Control Structures Data Flow Rules

JOIN The input variable lists of the Parent and Right
child functions are identical including order;

output = Parent(input) J The output variable list of the Right and the input

/ variable list of the Left functions are identical
including order;

output = Left(localyd— local = Right(input

P ( ght(input) The output list of the Left child and Parent

functions are identical including the order.
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The rightmost part of the input variable list of the
INCLUDE Parent and the input list of the Right child
function are identical;

output1,output2 = Parent(input1,input2) | The leftmost part of the input variable list of the

\ Parent and the input list of the Left child function
f are identical;

Output1 = Left(input1 Output2 = Right(input2
P (Inputt) P onht(input2) The children functions only receive their inputs

from Parent's input variable list;

The rightmost part of the output variable list of
the Parent and the output list of the Right child
function are identical;

The leftmost part of the output variable list of the
Parent and the output list of the Left child
function are identical;

Parent receives its outputs only from its children

functions.
OR
output = Pareni(input) O: Partition(iriput) The input variable list of the Parent, Partition,
w Y- e Right and Left functions are identical;
S KT T ‘_-—“
output = Left(input) output = Right(input) The output variable list of the Parent, Partition,

Right and Left functions are identical.

Figure 4-4 Primitive Control Structures in 001

4.3.3.3. Parameterized Data Types

In 001, there are a number of pre-defined fundamental data types, e.g. int, nat, str,
etc. More abstract data types are defined through parameterized data types. A
parameterized data type 1s a defined structure that provides the mechanism to define a
TMap without its particular relations being explicitly defined. Also, each parameterized
data type assumes its own set of possible relations for its parent and child types. Each
parameterized data type has a set of primitive operations associated with it for its use.
Abstract data types which decompose with the same parameterized data type in a TMap

inherit the same primitive operations.
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There are three parameterized data types in 001. They are TupleOf data type,
OneOf data type and OSetOf data type. The TupleOf data type is a collection of a fixed
number of possible different types of objects. The OneOf data type is defined as a
classification of objects of different data types from which only one data type is selected.

The OSetOf data type is a collection of a number of variables of the same type of objects.

4.3.4. Software Life Cycle in 001

001 breaks the development life cycle into a sequence of stages, including:
requirements and design modeling by formal specification and analysis; automatic code
generation based on consistent and logically complete models; test and execution; and
simulation. The process is described briefly in the following sections.

The first task is to define the model. Specification of the software is captured into
FMaps and TMaps in either graphical or in textual form. Then the maps are submitted to
the Structure Flow Calculator to automatically provide the structures and an analysis of
the local data flow for a given model.

At any point during the definition of a model, it may be submitted to the
Analyzer, which ensures that the rules for using the definition mechanisms are followed
correctly.

When a model has been both decomposed to the level of objects that are
designated as primitive and also successfully analyzed, it can be handed to the Resource
Allocation Tool (RAT), which automatically generates source code from that model.
RAT is generic in that it can be configured to interface with language, database, graphics,
client server, Jegacy code, operating system, and machine environments of choice. The
Type RAT generates object type templates for a particular application domain from a
TMap(s).

The code generated by the Functional RAT is automatically connected to the code
generated from the TMap as well as to code for the primitive types in the core library,

and, if desired, libraries developed from other environments.
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The generated code can be compiled and executed on the machine on which the
tool suite resides; or, it can be ported to other machines for subsequent compilation and
execution. User-tailored documents and metrics, with selectable portions of a system
definition, implementation, description, and projections can also be configured to be
automatically generated by the RAT. Once a system has been RATted, it is ready to be
compiled, linked and executed.

The next step is to execute/test the system. One tool to use in this step is
Datafacer, a run-time system that automatically generates a user interface based on the
data description in the TMap. In the development of systems, Datafacer can be used in
two major ways: as a general object viewer & editor and as a full end-user interface. The
tool suite automatically generates a unit test harness incorporating Datafacer as a default
test data set and data entry facility for the subsystem functions that are being developed.
Datafacer chooses appropriate default visualizations for each data item that is to be
displayed.

The Xecutor executes directly the FMaps and TMaps of a system by operating as
a runtime executive, as an emulator, or as a simulation executive. As an executive, the
Xecutor schedules and allocates resources to activate primitive operations. As an
emulator of an operating system, the Xecutor dispatches dynamically bound executable
functions at appropriate places in the specification. As a simulator, the Xecutor records

and displays information.

4.4, Capture SVA Specification into 001 TMaps and FMaps

4.4.1. Formal Structures Building

In our experiment with SVA, we omitted the process of requirement definitions in
the form of a user’s English document. Rather, we used the same specification from out
of which the oracle SVA program was built in order to compare outputs from both
programs. Our first task was to transfer the specification of SVA into 001 TMaps and

FMaps. Then FMaps and TMaps were analyzed, continuing with the automatic
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generation of production ready code in C. Before C code for each function or FMap is
linked together, modular testing was performed, with special emphasis on key FMaps.
There are a total of 21 TMaps defined for SVA program. They can be subdivided
into two major groups. TMaps in the first group are data types associated closely with
SVA, e.g. sensor readings, criteria data, sensor status, etc. TMaps 1n the second group
are data types defined for testing purposes, e.g. test case data structures, node and
flowpath recorders, etc. Based on the 21 TMaps, FMaps are defined from SVA
specifications. There are a total of 156 independent FMaps used to specify the main

operation of the algorithm and the supporting modules.

4.4.2. Specification Incompleteness and Inconsistency Captured

During the formal specification capturing process within 001, 6 classes of

problems in the original SVA specification document were found. Refer to Table 4-1 for

details.
Class Number Problem Description Number of Errors in Class
1 Ambiguities in using words or terms 16
2 Inconsistencies in defining and using words or 11
terms at different places in the document
3 Ambiguities in defining operations and functions 10
4 Inconsistencies in defining operations and 1
functions at different places in the document
5 Incompleteness of the logic design of operations 6
and functions, based on the data type structures of
the input variables
6 Incompleteness of output state definition of 4
operations and functions, based on the data type
structures of the input variables

Table 4-1 Classes of Problems Raised in Mapping SVA Specification
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4.4.3. Modular Testing

The testing of the captured specification is performed in two stages: a modular
testing stage in which each of the modules is tested partially or completely based on its
importance and an integrated testing phase in which the entire program is tested. Though
both of them are testing procedures, they are quite different because of the size of the
system under consideration. Because every module, or FMap in 001, is very small and
simple, it is not very hard to perform a complete flowpath testing if it is necessary.
However for the whole software, it is much more complicated and instead of a complete
flowpath testing, some compromise is needed depending on the size of the program under
question. In our experiment, we applied two very different strategies. In this section, the
modular testing, the easier one is discussed briefly. The integrated testing task is left
until the next section.

To perform modular testing, the Executor of 001 Tool Suite is frequently used to
simulate behavior of a section of the whole program (a module or FMap) in order to
capture all potential failures at an early stage.

For very important modules, feasible complete flowpaths testing can be
performed. For a detailed description of complete feasible flowpath coverage testing,
refer to [Sui98]. The process is summarized as follows. First, the flowgraph of the given
module is constructed. In 001, it is merely a simplified FMap. Second, the looping
structures within the flowgraph are expanded, to zero repetition, one repetition, and two
repetition. Third, all the flowpaths are identified on the expanded flowgraph. For each
flowpath, in order to improve the error-revealing capability, multiple test cases are
generated for each path whenever possible. In the end, testing is performed on the
module. The tester should decide whether or not a test is a success or a failure based on
his knowledge about the functionality of the underlying module. As mentioned in
[Sui98], the whole process has to be performed manually. Because every module is
relatively small and therefore has a small number of possible flowpaths, the above
described process can be done on some key modules of the given software.

Besides the formal flowpath testing method, another loosely constructed test

strategy could be performed as well. Based on the functionality of the module, from the
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specification, different operational scenarios of the module could be identified. For each
scenario, several input data sets of the module could then be created to test the underlying
FMap. The correct output for each set of input data set is recognized manually. In this
respect, the technique is the same as the complete feasible flowpath testing method.

Given the nature of the above two modular testing methods, the programmer who
has created the module has to be the examiner of the module because refined knowledge
about both the functions and the structures of the modules under testing is required.
Though this is a contrary to a widely accepted rule for testing, i.e. different groups of
people should be involved in the development and test procedures, as an intermediate
checking step, modular testing is still very useful for early detection of possible errors in

the program.

4.5. Integrated Testing on SVA

Until now, each module has been extensively tested and is expected to have a
fairly low failure rate. All the modules have been linked with 001 and are ready for an
integrated test. Although modular testing is very important, the integrated test is
indispensable. Because even if all the modules are performing perfectly according to
their specifications, interface errors may still exist, which can never be detected until
integrated testing is performed. It is almost never feasible to conduct complete flowpath
coverage testing as practiced in modular testing. The reason is simply that the whole
program is too complicated to be traced. Even though the flowgraph can be expanded,
for most of the software system, the task of identifying input data corresponding to
certain flowpaths is too intricate. If we do not have any automatic tools and have to do
all the flowpath and input data identification manually, which unfortunately turns out to
be true in our case and even if all the constraints combine linearly, the undertaking is
never trivial. In order to reduce the task, as already discussed in Chapter 3, we will
reverse the step order. Instead of specifying a path and trying to find input values that
cause the path to be traversed, we specify some input values and try to identify the

traversed flowpaths. This can be done automatically. The overall effect of using this
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approach is the same as identifying the paths first and choosing the input data later. This
is what was described in Chapter 3 as grey box testing.
In the following subsections, the achievement of grey box testing on SVA 1is

discussed in much more detail.

4.5.1. Test Data Generation

We have applied three different strategies for generating test data for integrated
testing upon SVA 001 program. They are manual design of input data from operational
profile / software specification, random sampling of input data based on functionality and
software logic of SVA and manual identification of input data to cover un-visited
software nodes. We use the three techniques accordingly, i.e., we manually pick some
input values first to test the best known and mostly experienced scenarios; generate a
huge amount of input data according to some distribution thereby trying to cover most of
the nodes; finally some input data again needs to be selected carefully to test the untested
nodes. If we can discrete from the test results that, even though we have exercised a lot
of tests on the program, the existence of untested flowpaths i1s un-ignorable. The more
random sampling of the input data can be practiced to achieve a more complete result.
Among the techniques to use, are two input data generation processes that are done by
hand. As a consequence, they only contribute a tiny percentage of input data compared
to the random sampling method. But still they are very important, especially the last one,
without which, some portions of the software (those nodes that have not been covered

after quite a large amount of test cases are performed) would not be tested.

4.5.1.1. Input Identification from Operational Profile

Because we do not have any direct information about the operational profile of
SVA, we have to refer to some auxiliary document. In this case, we choose the
specification because most of the major logics are described clearly. The first step

toward detection any failure involved with the most frequently occurring scenarios is to
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design test cases to check these scenarios. All the input data in this category are selected
manually. We developed about 300 test cases according to this technique. 2 failures
happened. For more details about the encountered failures and detected errors, see the
test results section 4.5.4.

None of the test cases created from the specification were tricky in the sense that
none of them can help the tester find unexpected errors if the program has done a perfect
job in following the specification. Still this traditional way of generating test cases is
very important and should always be practiced before all the other approaches. If the
errors found using the input data generated under this technique were left in the program,
the impact would be much worse than that from errors that can only be detected by

unusual input data, which are not as likely to be encountered during field use.

4.5.1.2. Random Sampling

The technique that we use to generate the majority of the test cases we apply to
SVA 001 program is described here. In total, we generated 198,321 test cases, out of
which, 133,093 were unique. Except the 300 or so input data sets picked up in line with
the specification document and 84 test cases chosen specifically to cover the untested
nodes after 38,717 tests, all the input data were generated in accordance with the method
described in this section. Though the efficiency of detecting errors is not as high as the
other two techniques, the method is essential in discovering the failures triggered by
unanticipated operating conditions.

First, let us clarify what the SVA input variables are. SVA is a dual range
application where values of two similar sets of variables, one for narrow range and one
for wide range, need to be specified to perform one test. The input variables or
parameters are as follows.

Narrow range parameters:

e Four similar but independent sensor readings; denoted by “s17, “s27, “s3”

and “s4” respectively;

2

e [nstrument uncertainty for the above sensors; denoted by “iu™;
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e Expected process variation for the process containing the four sensors;
denoted by “ev”;
e Narrow range, including both narrow higher and lower bound; denoted by

“Ib” and “ hb ” respectively;

Wide range parameters:

s Two similar but independent PAMI sensor readings; denoted by “ pl” and
13 pz ’7;
e Instrument uncertainty for the PAMI sensors; denoted by “iu _ p™;

e Expected process variation for the process containing the two PAMI sensors;

denoted by “ev_p”’;

e Wide range, including wide higher bound and lower bound; denoted by

“Ib _p”and “hb_ p” respectively;

Additionally, a variable exists for an operator selected sensor value, denoted by

op , which may be selected during algorithm execution in the event that a validation fault

or a PAMI fault occurs.

Tests are to be accomplished by specifying values for each of the above
parameters. Upon execution, the SVA 001 program runs through the algorithm and
presents the result, which will be compared with the output from the oracle program for
the same input data set. These parameters all appeared, superficially at least, to be
independent of each other. If this is the truth, our task would be much more
straightforward. We would only need to work out the range and construct a reasonable
distribution for every input variable independently. Unfortunately, this is not true. The
input variables are real world physical parameters, which should make solid physical
sense in terms of their relative magnitudes.

The input variables have been divided into two groups, the narrow range
parameter group and the wide range parameter group. Variables within both groups have

identical relationships within their respective group. We will first present the technique
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by which we generate input data for the first narrow range group and then transfer it to
the second wide range group by identifying the difference.

We start with the narrow range group by opting for a domain. This is done
manually based on the specification. Because it seldom needs to be changed, the manual
work is not a major effort for the tester. This domain will be the main play ground for the
mput data within the first group. Let us represent the lower bound of this domain as
“MIN” and the upper bound as “MAX . The range between “ MIN > and “MAX ” is
symbolized as “R™; and R = MAX — MIN . First, a lower bound of the narrow range is
sampled uniformly between MIN and MIN + ¥R, i.e.,

IR = uniform(MIN, MIN + ¥, R) Eq. 4-1

And then an upper bound is generated from the lower bound as:

ubR = uniform(IbR, MAX) Eq. 4-2

Notice that we do not use /b and ub because they are still not the actual narrow range
we shall use during testing. The generation of the narrow range boundaries is connected
with wide range boundaries and is covered a little later.

A 40x4 array of independent numbers is randomly sampled between /AR and

ubR ,ie.,

si, = uniform(ibR,ubR),i =1,23,4 k=1.2,..40 Eq. 4-3

These 40x4 numbers are treated as forty sets of input sensor readings. Each set includes

4 readings corresponding to the 4 narrow range sensors. In Eq. 4-3, si, means the value

of sensor 7 in the kth sensor reading set.
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The sampling process for the two narrow range criteria variables iu and ev is

very simple. Two domain boundary constants are chosen in advance, CRI _MIN and
CRI MAX . Both narrow range criteria variables are sampled randomly within the

domain (CRI MIN,CRI _MAX), i.e.,

iu,ev = uniform(CRI _ MIN,CRI _MAX) Eq. 4-4

The input value sampling process for the wide range parameters is the same as for

the narrow range parameters. MIN P <MIN and MAX _P > MAX are chosen. We
obtain /bR P and ubR _P as:

IbR P = uniform(MIN P,IbR)

, Eq. 4-5
ubR P = uniform(ubR, MAX _P)

Again, a 40x 2 array of random numbers is generated for the forty sets of wide range
sensor readings. Each set includes two sensor readings corresponding to the two PAMI

sensors or wide range sensors.

pi, = uniform(IbR _P,ubR _P),i=12 k=12,.,40 Eq. 4-6

CRI _MIN P and CRI _MAX P are chosen so that the criteria parameters for the

wide range can be sampled as,

iu_p,ev_p=uniform(CRI _MIN P,CRI _MAX P) Eq. 4-7

Now, we have forty sets of input data, ten numbers for each set, except the range
parameters. Within each set, we have six sensor readings, four narrow range sensor

readings, s1,52,53,54, and two wide range sensor readings pl, p2; as well as four
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criteria parameter values, iu,ev,iu _p,ev_ p. The only inputs that we have not created

are the range boundaries, for which we Thave already obtained

IBR P <IbR <ubR <ubR_P. We shall use these four numbers to get the range

boundaries. Four range settings can be obtained out of one set of
IbR _P,IbR,ubR,ubR _P depending on the relative arrangement of the wide and narrow

range. They are,

Ib_pl=1IbR P,Ibl =[bR,ubl =ubR,ub _pl=ubR P Eq. 4-8

This means that the wide range is truly wider than the narrow range at both ends. That is,

Ib_pl<Ibl <ubl <ub_pl. The second arrangement is,

Ib_p2=IbR_P,Ib2 =1bR,ub2 = ub_p2=ubR Eq. 4-9

In this setting, the upper boundaries for both the wide and the narrow range are the same
while the lower boundaries are different, i.c., [b_ p2 <162 <ub2 =ub_p2. We also

have,

b p3=1b3=IbR,ub3 =ubR,ub p3=ubR P

Eq. 4-10
Ib_pa4=1b4=IbR,ubd =ub_pd=ubR
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__________ 1
Four range settings
—————————— 2 4 lb_p<ib<ub<ub_p
2. _pxib<ub=ub_p
3 _p=lb<ubcub_p
e 3 4. 1b_p=ib<ub=ub_p
—— Wide range
L o e e e~ .
= =~  Narrow range
IBR_P R ubR ubR_P

Figure 4-5 Four arrangement settings for one SVA input data set

Figure 4-5 shows the four arrangement settings used during SVA testing. Every one of
the above generated forty ten-random-number input data sets was put into test against the
four arrangement settings described.

Do we have all the required input data for testing? If we were to do interactive
testing, then we require one person to behave like an operator. When the SVA program
prompts the operator to choose a representative sensor reading, this person responds
according to the instructions. In order to save time, as we will mention in the next
section, we have excluded all the human-computer communication. Except a few cases
where we want to test if the program performs the correct function under erroneous
sttuations, we use a random number generator to choose a number from zero to six. This
action simulates human behavior. Because we have six sensors (four normal or narrow
range sensors and two PAMI or wide range sensors), if a number from one to six is
chosen, our SVA program believes the sensor reading corresponding to that number has
been chosen. If the number zero is chosen, it means that the operator does not want to
choose and the SVA program will try further to find the representative signal value.

To sum up, there are 13 numbers generated for each test. They are four normal

sensor readings s1,52,53,54 (4); two PAMI sensor readings pl, p2 (2); two normal
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sensor criteria numbers iu,ev (2); two PAMI sensor criteria numbers ix_ p,ev_p (2);
two narrow range boundaries /b,ub (2); two wide range boundaries /b p,ub p (2) and

one operator selected sensor (1). Out of the above described input data generating
process, we can get 40x 4 input data sets.

In generating test cases for the SVA 001 program, besides the above random
sampling method, we have also used another approach, which is only a little different.
We employ a Gaussian distribution instead of a uniform distribution for all the parameter
values obtained through the random sampling process. In reality, the Gaussian
distribution method was the first method that we adopted in our test data generation
process. After some tests, we concluded that a more diversified input data was more
effective in testing untested flowpaths and hence changed all the underlying distributions
from Gaussian to Uniform. See Table 4-2 for the parameter random sample methods that

we used in this study.

Parameters Uniform Distribution Method Gaussian Distribution Method

Given values MIN,MAX,MIN _P,MAX P | MIN,MAX,MIN _P,MAX _P
CRI _MIN,CRI _MAX -
CRI_MIN _P,CRI_MAX_P | "-eviu_p.ev_p

Calculated values R =MAX — MIN IbR = MIN

ubR = MAX

cen = uniform(MIN , MAX)
var = (ev+iu/2)x2

IbBR P=MIN P

ubR P =MAX P

cen_ p = uniform(MIN _P,

MAX P)
var p=ev_p+iu_pl/2)x2
Random | /bR IbR = uniform(MIN ,MIN + ¥ R) | GIVEN
f{iﬁi’:d ubR ubR = uniform(IbR, MAX) GIVEN
si si = uniform(IbR,ubR) si = Gaussian(cen, var)
iu,ev iu,ev = uniform( GIVEN
CRI _MIN,
CRI _MAX)

IbR_P | IbR_P =uniform(MIN _P,IbR) | GIVEN
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ubR P | ubR _ P =uniform(ubR,MAX _P) | GIVEN

pi pi =uniform(lbR P, pi = Gaussian(cen _p,var_p)
ubR _P)

iu_p, |iu_pev_p=uniform( GIVEN

ev_p | CRI_MIN _P,
CRI _MAX P)

op op = uniform(0,6) op = uniform(0,6)

Table 4-2 Random Sampling Input Data for SVA

The above random input data generation process permits a huge number of input

data sets to be created in very little time.

4.5.2. Automatic Testing Process

We want to test our program as thoroughly as possible because of its safety-
critical feature. The repetition of a large number of trials requires testing automation,
which includes automated test case generation, automated input data feeding to the oracle
and target software, automated oracle output and test output recording as well as
comparison and automated flowpath keeping and analysis, etc. Except the random input
data sampling process discussed in 4.5.1.2, all of these automation strategies are

presented in this section.

4.5.2.1. Input Data Reading

This section describes how to achicve automatic input data reading for both the

oracle generating program and the sample software program.

4.5.2.1.1. Oracle Input Reading
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The original SVA program in quick C that is used as our oracle software is a
human-computer interactive program. The sensor readings, criteria parameter values,
range boundaries, etc. are input from the algorithm testing screen by the tester. The
initial and resulting sensor status, alert messages, resulting representative signal values,
etc. are displayed on the same testing screen. The original interface can be seen in
Appendix 7.3. This I/O process is extremely time-consuming, and this impedes large
number of tests. In order to develop a thorough but practical testing regimen for the
sample software, SVA, we modified the original SVA software to omit the portions
concerned with input and output readings from the screen, thereby concentrating efforts
on interrogating the logical operations of the program. The oracle software after
modification reads the randomly sampled input data directly from input data files. For

the format of input data file, refer to Appendix 7.4.

4.5.2.1.2. 001 SVA program Input Reading

In SVA, the evaluations are conducted continuously. That is, if no terminating
command is received, the next set of input data is evaluated using the values of all the
parameters obtained from the last evaluation process. In order to ease flowpath record
keeping for each test case, we purposely broke the continuous process in the 001 SVA
program into single processes. But because of the continuity in the oracle SVA program
and because we have to compare results from both programs for correctness checking, we
have to make sure that both programs are under the same initial condition before any
single evaluation process starts. To achieve this goal, we record all the intermediate
parameter values after each single evaluation process done by the oracle SVA program.
The 001 SVA program will read the same input data as the oracle SVA program, plus all
the intermediate parameter values recorded during execution of the oracle SVA program.
This was achieved is that during execution of the oracle SVA program by generating a
new input data file, including both the actual input data and the intermediate parameter
values that is ready to be converted to 001 SVA readable input data file. Refer to
Appendix 7.5 for the format of such files (“oo#.dat™).
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In 001, the data structures are formulated by TMaps. Thus, in order for the 001
SVA program to understand the input data, the files containing input data and
intermediate parameter values have to be converted to OMaps, where the TMaps are
stored. The  conversion is completed by a  program, named
“make_complete _ins_from_file” constructed under 001 CASE Tool. The TMaps created
for this purpose are described in Appendix 7.6. The resulting input files for the 001 SVA
program are named as “#.#.complete in.omap”.

In the 001 Tool introduction section, we mentioned Datafacer, a run-time system
that automatically generates a user interface based on the data description in the TMap. It
is a very helpful tool during normal testing and simulation exercises. But in this study,
when we are dealing with a huge number of test cases, this graphic interface that is
provided automatically by the 001 Tool Suite takes much more time than could be
afforded. After about one thousand test cases, it becomes a bottleneck. So this graphic
interface was removed. Some work is done within 001 Tool in order to avoid the
interface generating step, which leads to the 001 SVA program’s direct reading of its
input data files.

4.5.2.2. Output Recording

In order to automate the checking of test results, the results from both oracle and
001 program are documented as output files instead of using a screen to display the
results. This is done by keeping the formats of both types of output files uniform, making

it very easy to compare test results from 001 program with the corresponding oracle.

4.5.2.2.1. Oracle Output Recording

The original oracle SVA program displays results on screen as described in
Appendix 7.3. With the aim of automatic checking of the test results, the outputs are
directed to output files named “oracle#.dat”. Each “oracle#.dat” file corresponds to one
“i#.dat” file (the input data file). Every output screen has a section in “oracle#.dat” file.

Each section includes warning and information messages, name, value and status of all
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sensors (normal sensors and PAMI sensors). Later on, these files will be used as
standards to check if those output files from the 001 SVA program are correct. Refer to

Appendix 7.7 for the format of the “oracle#.dat” files.

4.5.2.2.2. 001 SVA program Output Recording

The 001 SVA program reads the input data sets directly from
“##.complete_in.omap” files. The resulting outputs are directed into files named
“output#.#”, which have exactly the same format as “oracle#.dat” presented in Appendix
7.7.

There is yet another problem in comparing “oracle#.dat” and “ouput#.#” even
though they are of the same format. For the oracle SVA program, the algorithm runs
continuously. It processes all the input data sets in one input file “i#.dat”, with all the
corresponding results to all the input data sets from one input file recorded in a single
output file “oracle#.dat”. But for the 001 SVA program, it evaluates one input data set
each time. This means we have to merge all the output files from 001 SVA program
corresponding to one oracle SVA program into one file so that we can easily compare
two output files of the same format and corresponding to the same group of input data
sets. This work is done with a program written in PERL, “output2o.pl”. The merged
output files from the 001 SVA program are named as “o#.dat”. The “o#.dat” files from
the 001 SVA program can be compared directly to the “o#.dat” files from oracle SVA

program.

4.5.2.3. Automatic Output Comparison

Now, we have obtained output files from both programs with the same format. A
simple program written in C under DOS named “com_sva.c” helps us to complete the
automatic testing process. This program compares oracle and experiment output files
line by line. The output of this program is named “result#.dat”. If there is no difference,
which means the tests are successful, the message “There are totally 0 differences.” in

“result#.dat” will be displayed. Otherwise, the differences are listed in “result#.dat”.
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4.5.3. Regression Testing

In most of the Software Reliability Growing Models (SRGMs), it is assumed that
all the detected errors are removed immediately without introducing new defects. In this
software testing and reliability estimation study, because of the nature of the software
under consideration, perfect error removal becomes a requirement instead of an
assumption. It is irresponsible to say that we assume that we have eliminated the
encountered error without introducing any new error. We have to prove that this is true.
The technique we apply here is a very simple and a traditional one. Namely, after each
modification, we test the modified software again by feeding all the previous used input
data to it. Unless the modified software behaves exactly the same as the oracle software
in terms of all the input data, we will keep modifying the software toward satisfaction.
As all the testing process is automatic, the regression testing process is very easy to
perform as all the input data files (for both oracle SVA program and 001 SVA program),
oracle output files are already available. We only need to rerun the 001 SVA program

with all the existing input files and compare the output files with oracle files again.

4.5.4. Testing Results

We generated 198,321 test cases in total, out of which, 133,093 are unique. 12
errors were detected throughout the entire testing process. All of the errors were
corrected immediately and regression testing was performed. In other words, for all the
133,093 unique input data sets, the 001 SVA program behaves exactly the same as the
oracle SVA program, which, under our standard, means the 001 SVA program is
perfectly correct in terms of the 133,093 unique input data sets. For details of all the

encountered errors, refer to Appendix7.8.
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4.6. Reliability Estimation

4.6.1. Required Information

It 1s very important to make good approximations about the underlying software
reliability after completing some tests on it Otherwise, we will not know when the
software is safe enough so that we can Stop testing.  Only by comparing the reliability
estimation result with the safety requirement of the target software, are we able to decide
if further action is wanted. Before we make the reliability estimation for 001 sva
program, let us make a Summary about the information that is needed.

For the nodal coverage based reliability estimation approach, we need:

* A list of unique nodes on the SVA program'’;

* Visiting frequency of each node during testing:

For the flowpath coverage based reliability estimation approach, we need:

¢ Alist of unique flowpaths that have been tested;
* Visiling frequency of each flowpath during testing;

® Error information from the tested flowpaths;

001 SVA program. Though, in this thesis, only the final reliability estimation results are

presented, the same reliability techniques can be applied to the target software at any

_—

“ It is required, in the nodal coverage reliability estimatjon approach, that all the nodes are tested at least
once.
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point during the testing process. In reality, the testing and reliability estimation tasks
should be applied to the underlying software interchangeably and continued until the

estimated reliability level meets the requirement.

4.6.2. Flowpath Recording in 001

As has been previously defined, a flowpath on a program is an ordered sequence
of nodes on the control flowgraph of the software. Thus, only those decision-making
statements in a program are necessary to identify which flowpath of the control
flowgraph has been taken upon an execution. Those processing statements, which make
no decision, are surplus in terms of differentiating flowpaths. Within 001, in order to
save storage space and processing time, most of the processing or functional statements
or nodes are ignored while recording flowpaths during software execution. Minimum

information sufficient to identify the tested flowpaths is retained.

4.6.2.1. The Nodes in 001 (two types: functional/decision-alternative)

In 001, all the functions are defined as FMaps. For this reason, we use nodes
instead of statements in this section. All the nodes within 001 can be divided into two
types: decision nodes and functional nodes. To use 001 language, all the decision nodes
should have at least two child nodes. The fundamental control structure between a parent
decision node and its child nodes are OR (O). After executing a decision node, one and
only one of its child nodes (called alternative nodes of their parents) will be executed. A
path is uniquely recorded only by remembering all the decision nodes and their chosen
alternative nodes along that path. For all the other nodes, because there is no decision to
be made, or, there is only one way to go from one such node, we always know that they
are executed as long as their most recent previous alternative nodes have been executed.
We designate these nodes as functional nodes, meaning there is no decision-making

involved.
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Though, there is no need to record any of the functional nodes, we feel it essential
to record a special group of them. Except decision nodes and their chosen alternatives,
we also record the first node of every FMap along the execution path. The reason is that
if we only record the name of the decision-making nodes and their alternative nodes that
are triggered by a test case, we will not know to which FMap they belong. This is the
same as whenever a decision node is recorded. That is, besides its name, its residing

subroutine name is also recorded. Thus, the information we get for one flowpath is:

FMap headl
[decision node 1 - alternativel

decision node 2 = alternative2

......

FMap head2
[decision node 1 = alternativel

decision node 2 = alternative2

The recorded flowpaths are named as “#.#.decpaths.omap”.

4.6.2.2. Feasible Paths — Cuiting Extra Iterations of Loop Structures

In order to ensure complete path coverage, it is necessary to expand the program
flowgraph so that every distinct execution path is tested. In the event of looping
structures, this expansion of the flowgraph structure may be unfeasible because of the
complexity of the graph. In such a case, only limited testing may be practical. For this
reason, we formulated a feasible version of flowpath coverage testing, which is limited to
two passes through each loop. We have found that this approach will reveal many of the

errors in a program. A program named “cut_iterations” using 001 CASE Tool is built to
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serve this purpose. It cuts extra looping structure iterations from flowpaths recorded out
of testing process. The input of this program is a text file containing the directory and
names of the flowpath files (“#.decpaths.omap™) that need to be processed. Every
flowpath file will be scanned by “cut_iterations” and the extra iterations cut. The
simplified flowpaths files with at most two iterations of each looping structures are
named “#.decpaths.omap.cut”. A new text file including all the simplified flowpath file

names is output as a result.

0N © ®..  ®., ®..
Flowpath, k =10 o o o
‘© ) :
A Loop Structure @ {J_;) . @_)‘
Flowpath, k =1 o o
;
o) b
We stop here Flowpath, k = 2
©
Flovspath, k = 3

Figure 4-6 Cut Extra Iterations of a Looping Structure

4.6.3. Reliability Estimation Process Overview

In this section, we present the 001 SVA program reliability estimation process as
well as results from both the complete nodal coverage and the feasible flowpath coverage

approaches.

4.6.4. Complete Nodal Coverage Approach
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In this approach, it is required that all the nodes'! be tested at least once so that
each node has some testing evidence upon which the unreliability of each node can be
estimated. In this project, the sample program 001 SVA is tested randomly in the
beginning. Then a tool is made in 001 to estimate the visiting frequency of every node
within the 001 SVA program. When it is found that there are only a small amount of
nodes that have not been visited, for each of the nodes that has a zero visiting frequency
during the passing tests, special investigations are performed. Eventually all the existing
nodes that do not belong to the 001 built-in library are tested to some extent and the

unreliability is estimated accordingly.

4.6.4.1. Node Visiting Frequency and Uncovered Nodes

A tool 1s developed under 001 to find out both the nodes that have not been
covered and the visiting frequency of the already tested nodes. The name of the tool is

“search_uncovered_simple”'?

. It takes in both the static un-expanded 001 FMaps of the
target software and the recorded flowpaths of every test case as inputs. The methodology
of the tool program is described in Chapter3. The output of the program is a list of the
nodes of the target software with the number of visits and visiting frequency attached
after the name of the nodes.

We used the tool program “search uncovered simple” after 78,717 test cases'.
Before that, we kept track of the speed of increase of new detected flowpaths. 78,717
itself is a big number, nevertheless unique flowpaths were still showing up at a steady
rate. So we decided to check if all the nodes had been covered and if the newly detected
flowpaths were only new combinations of already tested nodes. As result of the node
visiting frequency calculation, we found 16 unvisited nodes after the 78,717 test cases.
Because 16 is not a big number, we managed to investigate each of them. They were

divided into two groups after the investigation. The nodes in the first group are the nodes

"' If the software is developed under 001 Tool Suite environment, it is not required that all the 001 built-in
library nodes be tested to achieve complete nodal coverage. The reason is that all the 001 built-in nodes
have been through thorough tests when 001 Tool was built, plus all the built-in FMaps within 001 are very
simple.

"? For details about “search_uncovered simple”, refer to Appendix7.9.

"’ Test case number 0.1 to test cases number 1999.40.
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that can only be reached by very special input data sets. They are designed to deal with
very special cases, e.g. a wrong operator input value. It is almost impossible to reach
those nodes by randomly sampled data. The logic behind each node in this group is
studied carefully and purposely designed input data was applied to 001 SV A to test these
nodes. We found that 14 out of the 16 unvisited nodes belong to this group. There were
2 uncovered nodes left. They were extra nodes which we decided can never be reached
by any input data and thus do nothing of benefit to the program. They were deleted from
the 001 SVA program. For details about all 16 unvisited nodes that were found after
78,717 tests on the 001 SVA program, refer to Appendix7.10. We found 2 errors from
the 14 nodes in the first uncovered node groups tested by the 84 test cases. Compare with
10 errors that were found from the previous 78,717 tests, the error detection efficiency is
very high. Thus, this is a very effective method to identify errors. For details of the
errors, see the next section, where the software reliability is estimated based on flowpath
coverage. The error information is not needed to estimate software reliability because
any detected error should be fixed immediately under the safety-critical requirement.

In 001 SVA program, there are 432 SVA nodes in total. Look at Figure 4-7 for

number of visits to SVA nodes.
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Number of Visits to SVA Nodes
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Figure 4-7 Number of Visits to SVA Nodes after 198,321 Tests

4.6.4.2. Testing Results, from Nodal Coverage Point of View

Overall, we tested the 001 SVA program 198,321 times, out of which 133,093
tests were unique. There were 1063 nodes, among which 432 nodes were created by the
programmer. In total, the 1063 nodes have been tested 38,013,756 times by unique tests
(133,093); 27,007,494 tests hit the 432 SVA nodes and (38,013,756 - 27,007,494) =
11,006,262 tests hit SVA built-in nodes. The average number of visits to SVA nodes is
(27,007,494/432) = 62,517 .35.

12 errors were found during the whole testing process. 2 of them, as described in
the last section, were detected by the input data designed to cover the untested nodes
(testcase2000.1 ~ testcase2010.20, 84 test cases, inputs generated manually); 10 of them
were identified before the process (testcase0.0 ~ testcasel1999.40, 78,717 test cases,
inputs generated manually and automatically); No error was found after the 84 specially

designed test cases.
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4.6.4.3. Reliability Estimation from Nodal Coverage Approach

We have already discussed the formulas to estimate software reliability based on
nodal testing results. By using the results presented in the previous section, we can
estimate SVA reliability at the end of the 198,321 tests. The same reliability estimation
method can be performed at any moment during the testing process. If there have been
any modifications since the last reliability estimation, the reliability estimation is a re-
calculation because the underlying reliability level has been increased because of the
perfect removal of errors. [f no new error has been found since the last estimation, the
reliability estimation process is an update. The underlying reliability has not been
changed. It is our knowledge about the target software that has been changed because of
the additional tests performed on it.

According to the derivation given in Chapter3, the unreliability probability

distribution of node i,, which has been tested s times without any failure, based on a

uniform prior unreliability distribution for the node, is given by:

(1_9/') 14
8 )y=——"— Eq. 4-11
1. B(1,1+5) a

The average of the unreliability 6, can be calculated as:

b

g = | f6,)de, = Eq. 4-12
L= [r@)ae; - — q

' This probability is obtained through Bayesian updating method with uniform prior probability
distribution for &, ,i.e. f,(6)=1. Itis definitely true that a much better informed prior distribution can

be used. But in this study, no solid prior distribution has been found for & .
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where s i1s the number of tests applied on node i,. For each of the unique SVA nodes,

we calculated its unreliability in accordance with Eq. 4-12. The unreliability values are

shown in the following figure.
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Figure 4-8 SV A Unique Node Unreliability

As seen in Figure 4-8, the geometric average unreliability of all the SVA nodes is

1.10188E-05. The average number of SVA nodes visited per execution in SVA is the

total number of visits to all the SVA nodes, i.e., 27,007,494, divided by the number of

total tests performed, i.e., 133,093. Thus,

27,007,494
133,093

Xsva

=202.93

Eq. 4-13

The overall unreliability of the SVA nodes is:
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B,isv0) = 202.93x1.101882x10° = 2.23596x107 Eq. 4-14

The overall unreliability of 001 SVA program is the average unreliability of the SVA
nodes and the average unreliability of the built-in 001 nodes. We assume that all of the

001 nodes are perfectly reliable. Thus,

27,007,494

9 27,007,494
" 38,013,756 O

I Pdiatdinind
38,013,756

)% 0,001y =1.5886x107 Eq. 4-15

According to nodal coverage reliability estimation method, the unreliability of 001 SVA

program is:
R, =1-0,=1-1.5886x10" =0.9984 Eq. 4-16

So far, we have presented the process and result of unreliability estimation for the
SVA program. It is very straightforward to understand and simple to perform. But, we
still have not found a good technique to incorporate any prior distribution for any of the
nodes unreliability within the program. Thus, the result shown above is not comparable
with the result obtained from the flowpath coverage based reliability estimation method.

Despite the weakness of the nodal coverage based reliability estimation method, it
is still a useful technique when a large program is under consideration, in which case, the
following demonstrated flowpath coverage based approach is far too difficult to perform.
By observing the visiting frequency to every node during testing, we can decide which
node is more important in terms of its probability of being visited during an execution.
Thus, more attention can be given to those more important nodes. It is more efficient to
put more energy into the more significant nodes. Furthermore, as can be seen from the
error data, searching for the input data to cover those nodes that have not been tested after
a lot of testing makes it easier to capture unexpected errors in the software. Also surplus

nodes that may serve no purpose in the software can be spotted during the process.
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In the end, we want to present a quick way to estimate software unreliability
incorporating nodal coverage testing information and the average prior unreliability
value.

We do not have enough information to formulate a prior density distribution for
the unreliability of a single SVA node in this study. The only prior testing piece of
information we know about SVA program is that similar software system has an average
unreliability value of 0.01. As discussed in the flowpath coverage based reliability
estimation approach, we can directly use this prior average value to perform Bayesian
updating process. But what if we only have the average value and the nodal coverage
information about a software program and we want to these only two pieces of
information to get a better approximation than what we can get by assuming a uniform
prior distribution for software unreliability?

Recall the formula to estimate the unreliability value of a flowpath with a prior
average value of an error existing probability Pe. If the flowpath has been tested s times

failure free, its unreliability can be updated as:

P (l—pf‘”)”PeO
Pu(l—Pf,u)xPeo +(1-Pey)

g:

Pruy Eq. 4-17

Now let us look at the software as made up only by one flowpath (with its unreliability

value the average of all the flowpaths). First, if we update the unreliability value of this
one flowpath software based on a uniform prior distribution, §p,0.5 ,with average value of
0.5, we should obtain about the same unreliability value as we can get from the nodal

coverage based approach based on a uniform prior, 6, This can be written as:

n0s5-

7 p,,(l—pf'”)“' x 0.5 b, = P,r/(l_pf,u)ypf.ll
P pa=p, ) x05+(1-05""" " p,d-p, ) +1

911,0.5

Eq. 4-18

11

174



0,,s in our SVA example is equal to 1.5886E-3. From Eq. 4-18, some flowpath

information can be backed out. We use x to simplify Eq. 4-18:

x=p,0-p; ) Eq. 4-19
— xp ) —
05 LY = 6,05 Eq. 4-20
x+1
Use the condition that x << 1 and plug into Eq. 4-20, we get:
Eq. 4-21

9,;,0.5 =XPrg = 9",0.5

Now let look at how the reliability estimation result is going to change if we use a prior

average that is much less than 0.5. Substitute Eq. 4-19 into Eq. 4-17, we get:

— xPe
5. - 0 Fq. 4-22
PP = Pe. +(1-Peg) g
Use Pe, <<1 and x << 1, we get:
8, = ad =7 —xp,, xPe Eq. 4-23
P S (= Pey)l Pey L0 T 0w 1/ e, L1 T P T T

Compare Eq. 4-21 and Eq. 4-23, we get:
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I

Peot_i,:o_s Eq. 4-24

From Eq. 4-24, if we only know the average prior unreliability value and the nodal
coverage information, we can use the product of the average prior and the average
unreliability value obtained from nodal coverage based Bayesian updating process to get
an approximation. In the SVA example, the posterior average unreliability estimated via.

Such approximation is:

IH

Pe,d,,. =0.01x1.5886x107" =1.5886x 107" Eq. 4-25

p.Pey

The corresponding reliability value is:

=1-6,

p.Pe

R - =1-1.5886x107" =99.99841% Eq. 4-26

p.le,=0.01

This result is comparable with the result estimated from the flowpath coverage based

unreliability estimation result in next section,

4.6.5. Refined Complete Feasible Path Testing Approach

Now, consider the second reliability estimation method, the refined complete
feasible flowpath based reliability estimation method. This is a finer approach, which
gives a better estimation, but also requires more information from the software under
consideration. For safety-critical software, which is often relatively simplels, this method

is recommended compared to the nodal coverage based approach.

'S For “relatively simple software”, it should be possible to test a significant percentage of all feasible
flowpaths.
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4.6.5.1. Truncate Extra Iterations of Looping Structures

With the aim of making the complete flowpath testing method practical, we need
to limit the number of loop iterations. If we were to expand the control flowgraph first
and identify the input data to each tflowpath, we would expand the looping structures to at
most two repetitions and choose input data according to each expanded flowpath.
Because we now adopt the opposite way to achieve the flowpath coverage objective, i.c.,
we randomly sample the input data first and identify the triggered flowpaths during
execution, we have to accept whatever flowpaths are recorded during the testing process.
Instead of cutting the extra loop repetitions in the first place, now we have to cut the extra
loop iterations after they get recorded.

Figure 4-6 shows how different expansions of the same looping structures are
treated. The zero, one and two-repetition of a looping structure are treated as unique
expansions of the structure. Any flowpath that contains more than two iterations of a
loop is treated as though it has only two iterations of the loop.

With the intention to cut extra iterations of every looping structure for every
recorded flowpath, a tool program named “cut_iterations” under 001 was built. [t takes
in the file that contains the directory and names of the recorded flowpath files
(“#.#.decpaths.omap™) that need to be checked for extra iterations. Each of the flowpaths
is scanned by the program and all the extra repetitions within the flowpath are truncated.
A new smaller flowpath file (“#.#.decpaths.omap.cut”) is produced by the tool with all of
the extra iterations cut. After this step, unique flowpaths will be identified from these
new cut flowpath records. For details about the “cut iterations” tool, refer to

Appendix7.11.

4.6.5.2. Distinct Feasible Flowpath Identification

Once the surplus repetitions have been cut, it is time to identify the unique
flowpaths that have been tested. Originally, a 001 tool was built to perform this function.
Every flowpath is compared by the tool with all existing recorded flowpaths. The basic

idea 1s to go through the structure of every two flowpaths and compare every
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corresponding node from both flowpaths. If there is any difference, the two flowpaths
are believed to be different. If a flowpath is different from all of its previous flowpaths, it
is recognized as a unique flowpath. Because every flowpath requires about 40Kb and
because of the overhead of 001 for its safety features, the process turns out to be both
time and memory intensive. The process of comparing only 1597 flowpath files causes
the available memory to be exceeded. In order to solve this problem, two changes are
made.

First, instead of comparing all the flowpath files once through, we divide the files
into several groups. From each group, a distinctive set of flowpath files are identified.
Then, some of the groups are combined, after which, we have a fewer number of groups.
Again, a distinctive set of flowpath files are identified from each group. This process is
continued until only one distinctive group of flowpath files is left.

The second method we use to solve the time and space problem is to switch from
a 001 tool to Linux system tool. All flowpaths are remembered according to the same
format. As a result, it is not necessary to compare every two flowpaths node by node. As
long as the two files are different, their structures must be different. The Linux shell
commands and several programs written in PERL are used for the file comparison task.

Refer to Appendix7.12 for details.
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Figure 4-9 Number of Test Cases vs. Number of Flowpaths, SVA

Figure 4-9 shows the flowpath identification result. We test 198,321 input data
sets on the 001 SVA program and 9,870 unique flowpaths were identified.

4.6.5.3. Count Visiting Frequency of Flowpaths

To estimate the unreliability of every tested flowpath, we need to know the group
of unique flowpaths and how many times each flowpath has been tested. Again, in order
to make better usage of the system resources, we turn to PERL instead of 001. Also,
because of the number of flowpaths we were dealing is very big, 198,321, the visiting
time counting task is attacked step by step. The details of the count process are discussed
in Appendix7.13. The following figure shows the visiting frequency of all the tested 001
SVA flowpaths.
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Visiting Frequency of SVA Tested Flowpaths
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Figure 4-10 Visiting Frequency of Unique 001 SVA Flowpaths

4.6.5.4. 001 SVA Reliability Estimation Based on Feasible Flowpath Coverage

We have collected all the testing data for the 001 SVA program. The reliability
estimation method based on software feasible flowpath coverage has been demonstrated
for SVA. The unreliability of the tested flowpaths and that of the untested flowpaths are
different, and hence are estimated separately. Then the two unreliability values are

averaged based on their anticipated probability of being visited during an execution.
4.6.5.4.1. Estimate Unreliability of the Tested Flowpaths
For the tested flowpaths, we first estimate their unreliability one by one. Then the

mean value of all the unreliability values is calculated. Different weights are given to

different flowpaths based on their visiting frequency during the testing process.
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4.6.5.4.1.1. Percentage of Type | Error in 001 SVA

Before estimating reliability, the probability values associated with the two error
types are estimated. In this project, these values are approximated from the target
software itself. It is also possible that they could be evaluated from a similar program,
which in turn, provide more error data points.

12 errors were detected and corrected in the 001 SVA program as a result of 19the
8,321 test cases. There were 9 type I errors and 3 type Il errors. Look at Figure 4-11 for
a summery of error data cumulated in the 001 SVA program. For details of the errors

found, refer to Appendix7.8.
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Figure 4-11 Errors Detected in SVA 001 Program

There are 9 type I errors and 3 type Il errors detected and removed. The uniform

distribution is used as the prior distribution for p,, the probability that an error belongs
to type I, ie., f,(p,)=1. With the 1" error, which is of type L the distribution is

updated as:
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1

S =p,fo(p)=Cp,, C

1 =
d]

_£pl P Eq. 4-27

Since the 2" and 3™ errors are of type [, we get:
3 1
Hp)=Cp,~, G = 5 Eq. 4-28
J:Pl dp,
The 4™ error is of type II. The distribution is updated as:
, 1

Falp)=Ci(1=p,) fi(p,) =C,( _pz)piza C, = Eq. 4-29

[a-pp dp,

The same process continues until the last error is used to update the distribution. At this

point, we obtain:

1
2=
j:(l -p) pJdel

fulp)=C,(0-pY'p’, C Eq. 4-30

The mean value calculated from Eq. 4-30 will be used later to estimate flowpath

unreliability. The mean value is:

_ U-p)'p dp, 911 10
p, = ffu(p,)p,dp, = ": T T T iyag 13074 Eq. 4-31
ﬂ(l—P,) P, dp,
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Because there are only two types of errors, the average probability that an error belongs

to the second group p,, is:

Py=1-p, = % ~ 0.2857 Eq. 4-32

We have p, =0.7143 and p, =0.2857.
4.6.54.1.2. Probability of encountering Type II Error in 001 SVA

This probability is related only to type II errors. For p, ,, the probability that an

type II error is encountered during an execution given that there is a type II error on the
flowpath. There are only 3 data points for use in this estimation.
The 4" error is the first encountered type I error and is detected during the 4

visit to the flowpath. Assuming a uniform prior distribution for p , , , its distribution can

be updated as:

fl(pll,f) =C (- Pru )3p/‘,!!f0 (Pf,n) =Ci(1-p,y )3Pf.11
1 Eq. 4-33

C, = ;
_E(l - Pf,u) pf,udpf,u

The 2™ and 3™ type II errors are detected during the 2" and 4" visit respectively. Thus,

L, )=C=-p,) Pru

Sipyy)= C, (l—pf,ll)7 pf,n3 Eq. 4-34
1

C, = - ;
I(I_P/,u) DPrn dpf,ll
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Now we can obtain the average value for p, , as:

7 1

B 'E(l ‘p/,u) Pru dp/,l/ 4 1

Prn = _Efs(pf,u )pj,ﬂdpf,ll = ; ) = E = 5
_g (I- Prn ) Prn dpj,l[

~0333  Eq 4-35

P,y =0333 Eq. 4-36

4.6.5.4.1.3. Estimate Tested Flowpath Unreliability by Mean Value in 001 SVA

In this section, we will use a simpler method to estimate unreliability for each
tested SVA flowpath as that used in nodal coverage approach. Only the average
unreliability value is considered and updated as the test proceeds. For a flowpath that has

been tested ¢ times and found to be error-free, the formula to use is:

1-p)1=p, ) Pl
pl= A=-p)1-p, ) p, Eq. 4-37

(l_ﬁf)(l_ﬁ’/_u)’PS +(1_peu)

We need to get a proper prior distribution for the probability that there is an error

within a flowpath and take its average as p.. Efforts made to search for a proper prior

distribution for p] turned out to be not very satisfactory. As a result, some rough

historic data that were obtained from the U.S. software industry are used in this study.
The purpose of presenting this prior distribution here is to give an idea of how to apply
realistically this flowpath coverage based reliability methodology.

In Caper Jones’ “Applied Software Measure, Assuring Productivity and
Quality”[Jone91] published in 1991, valuable software quality data are collected from
some 4000 software projects that were developed between 1950 and 1990. The fact that

we use data from his report tends to be too conservative because our target software was
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developed under the 001 CASE tool and has been through thorough modular testing
before this final integrated testing stage, etc. in contrast, all the reported data in the book
are based upon average software systems.

In Jones’ book, the size of a software program is always expressed in the form of
function point rather than code lines or statements. Function points are a measure of the
size of computer applications and the projects that build them. The size is measured from
a functional, or user, point of view. It is independent of the computer language,
development methodology, technology or capability of the project team used to develop
the application. This is apparently a more effective means for comparison software
applications from different origins. Because we do not want to go into the details of

function points, we use the following table, also obtained from [Jone91], to estimate how

many function points are within our 001 SVA program.

Production

rate, func-

Size, Effart, Assignment | tion points

function staff- | Schedule, scope,func- [ per persan-
points month manth Staff tion points month
40960( 81920 96 853 43 050
20,480 30,118 73 413 50 DE8
10,240 8,192 55 149 69 125
5,120 2994 42 71 72 1.71
2560 1,089 32 34 78 233
1,280 405 24 27 75 3.16
640 149 18 8 80 430
320 55 14 4 80 585
160 20 11 2 80 795
80 8.1 ] 1.35 64 982
40 435 4 50 1.0 40 919
20 256 256 1.0 20 7 81
10 150 150 1.0 10 664
5 089 0B8S 1.0 10 564

Table 4-3 Table3.11 on [Jone91]

Effort, Schedule, Staff, Assignment Scopes, and Production Rates for Selected Sizes of

Software Projects
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In Table 4-3, the line with 40 function points describes the 001 SVA program the best:
only one person is involved in developing the software and that person spent about 4
months or 50 on it. Then, from figure 3.21 in the same book, the U.S. average software
defect potentials, if checking the case with 40 function points, we get a potential defect
number of about 100. Given that the 001 SV A program has about 10,000 flowpaths'®, we
conclude that about 10,000/100=100 flowpaths have one defect. In other words, the
probability that one flowpath has a potential error in it is about 1/100=0.01. The potential
defects here include all major sources that will be encountered in a software system:
requirements bugs, design bugs, coding bugs, user documentation bugs, and bad fixes or
bugs accidentally injected while repairing another defect. As can be seen, the potential
number of defects considered into this 0.01 probability is more than might exist within

the 001 SVA program and hence gives relatively conservative reliability estimation.
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Figure 4-12 U.S. Average Software Defect Potentials

Now through the above described approximate reasoning, we get the average prior

probability that there is an error on one flowpath as:

pl =0.01 Eq. 4-38

'® This estimation is described later.
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Upon substituting Eq. 4-38 and p, =0.7143, p,, =0.333 into Eq. 4-37, we get:

L (1-0.7143)(1 - 0.333)' x0.01 _0.2857x0.666'
P S 120.7143)(1-0.333) x0.01+ (1-0.01)  0.2857x 0.666' +99

Eq. 4-39

Eq. 4-39 is applied to every tested flowpath to get the probability that there is an error
(must be type 1) on that flowpath. The unreliability of a flowpath can be calculated as:

0'=p,xp,, =0333x

0.2857 % 0.666' x 0.333

Eg. 4-40
0.2857 x 0.666" + 99

The following graph depicts the unreliability of all the tested 9870 flowpaths that were

tested.
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Figure 4-13 Tested Flowpath Unreliability in 001 SVA Program, Average Value

Approach
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The visiting frequency plotted in Figure 4-10 is utilized to average the
unreliability values that are depicted in Figure 4-13, we get the average unreliability

value for the tested flowpath as:

8,, =4.043x10” Eq. 4-41

4.6.5.4.2. Estimate the Number of Possible Flowpaths, p,.., and p,.,, for 001 SVA

We have explained why there is no theoretical solution to this problem in
Chapter3. Two experimental solutions were provided. In this section, results from the
two approaches are presented. As we will see, the first approach does not work for our

problem. It is the second method that gives us the final answer.

4.6.5.4.2.1. Unfeasibility of the First Experimental Solution

We have two methods to determine the total number of existing flowpaths. The

first is the simpler and more straightforward. The number of unique flowpath vs. the

number of test cases plot is drawn as follows.
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Figure 4-14 Flowpath vs. Test Case of 001 SVA Program

Both the experimental plot and the fitted plot are shown in Figure 4-14. It is
evident from the figure that the anticipated total number of cases needed to test every
flowpath at least once is smaller than the total number of tests that we have performed on
the target program. This is exactly the weakness of this method that we discussed in
Chapter3. When the number of tests carried out is very close to the total number of tests
needed to test all flowpaths, the roughness of this approach may results in such a

paradoxical outcome.

4.6.5.4.2.2. Estimate from the Second Experimental Solution

This method becomes the only possible solution for this problem. The number of

visits vs. flowpath index plot is needed for the target software.

189



Number of \/isits to Flowpath (0 ~ 4999}, All Test Cases

U Tovd Numbér of Test Cases: 198221
Totd Wamber of Flowpaths: 9870
Average Number of Visis: 20,1
Group Avera
1000 4 P ge
= o/
/
2z L/
@ SR W
= ho
- 3t i .-
5 1000 e,
o ! ‘J( ARHal
L BRERS 4 : S
£ §] g _ _Fitting Curve
= i A i e

y = 58,1738 900

0 2000 4000 6000 3000 10000
Fiowpath Index (0

Figure 4-15 Number of Visits vs. Flowpath Index for 001 SVA

According to Figure 4-15, the probability that a flowpath whose index number is

among (x,x + dx) will be visited upon the next execution is:

P(x)dx = 0.0004e " dx Eq. 4-42

The probability that a flowpath whose index is greater than 9,870, or that an

untested flowpath will be visited upon the next execution 1s:
P(X >9,870) = ¢ %98 ~ 0.01929 Eq. 4-43

Thus, we get:
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Doy =0.01929, p. . =1-0.01929 = 0.98971 Eq. 4-44

With the purpose of demonstrating the stableness of the results obtained from this
method at different testing stages, we carry out the same estimation at different points
along the testing process. Each time, plots similar to Figure 4-15 are drawn. The
probability that a flowpath whose index number is beyond x will be visited upon the

next execution always has the form:

P(X>x)=e™ Eq. 4-45

The results are listed in Table 4-4.

Total Test Case No 30717 38717 58717 787171 118321 1568321 198321
Total Flowpath No 716 4305 5378 6324 7655 8759 9870
a 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0004

P(x>98670)] 07190%| 0.7190%| 0.7190%| 0.7190%| 07190%| D7190%| 19293%
P(X=1000 06738%| DB6738%| 06738%| 06738%| 06739%| D6738%| 18316%
PredictiongP{X>1200 02479%| D.2479%| 0.2479%| 0.2473%| 0.2479%| 02479%| 0B230%
P(x>1300 0.1503%| D.1503%| 0.1503%| 0.45603%| 0.1503%| 0.1503%| 045517%
P{x>14000] 00912%| 00912%| D0912%| 0.0912%| D0912%| D0912%| 03699%

Table 4-4 Predict Flowpath Visiting Probability along the Testing Process

The data in Table 4-4 shows the persistency of the estimation results. Before the last

column, the estimations of a are the same throughout the testing process.

4.6.5.4.3. Estimate Unreliability of the Untested Flowpaths

From the estimation result for p,. , above, we note that the probability that a

flowpath that has not been tested will show up in a random execution of the software is
less than two percent, or we have tested the majority of the software. This says that we
could assume that the observed reliability is the same as the basic reliability. With this

on hand, rather than going through the complicated process of estimating the unreliability
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of the software, we can take a much shorter approach. The unreliability of the untested
flowpaths can be approximated by the observed unreliability of the tested flowpaths
without removal of the detected defects. More specifically, we set the unreliability of the

flowpaths that have type I errors on them to unity; and that with type Il errors to Pru

and re-estimate unreliability value of the tested flowpaths as before. The new
unreliability value, with unreliability of all the faulty flowpaths unmodified, for the tested
flowpaths, can be used to approximate the unreliability of the tested flowpaths.

The unreliability value estimated by average value is 2.2023E-04.

1.00E_D1 ’:\.\ P R Y ‘\.\ R e - b e e e v i st e ‘
1.00E-04 = o
1.00E-07 { ~
—~ 1.00E-10 1  Type Il ermor Type I error
]
T 1.00E-13
)
o 1.00E-16 -
= 1.00E-19 - Total test cases: 198321
£ 1 .00E-22 J Total unique test cases: 133093
3 ’ Total unique flowpaths: 9870
2 1.00E-25 A Total number of errors:
g 1.00E-23 A Type Lerrors: 9; Type II errors: 3
1.00E-31 4 pr = 0.7143; pyy = 0.333;
1.00E-34 4 Average Unreliability of Tested Paths: 2,2023E-4
1.00E-37 A
1.00E-40 ; ; : r \
0 2000 4000 6000 8000 10000

Flowpath Index

Figure 4-16 Unreliability of Untested Flowpaths by Average Approach

4.6.5.4.4. Estimate Average Unreliability of the Whole Software

Finally, we can put the tested and untested parts together and estimate the overall
unreliability of the target software. Unreliability values from the two parts are combined
to a weighted average with their respective probabilities of being visited during an

execution as the weights. The total unreliability is:
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Hp = pw.\'ir,Tgp,'l' + pvisil,(,l'gp,U Eq 4'46

The data are listed in Table 4-5.

Method Name Puisinr 6 P Puisny ‘9;:1/

Average 98.071% 4.043E-5 1.929% 2.2023E-4

Table 4-5 Unreliability Data from Flowpath Coverage Based Approaches

Use the above data, the 001 SVA program unreliability estimation obtained from the

average approach is:

8, =98.071%x 4.043x10 * +1.929%x 2.2023x10™* = 4.3895x107 Eq. 4-47

The corresponding reliability value is:

R, =1-6,=1-43895x10" =99.99561% Eq. 4-48

4.6.6. Results Summary

Manually and automatically (by means of random sampling), we have performed
198,321 tests on the 001 SVA program. Among these tests, 133,093 unique input data
sets were used. 12 errors were detected and removed during the process, among them
there were 9 type I errors and 3 type II errors.

432 SVA (non-001-built-in nodes) nodes were identified in the program. With a

uniform prior distribution, the average nodal unreliability of SVA nodes is

0, g4 =2.2360x 107 and the overall SVA unreliability from nodal coverage approach is

193



8, =1.5886x107. By comparing nodal coverage based approach and flowpath

coverage based approach, we can get an approximate value by combing the nodal

coverage based estimation result with the prior average unreliability value and get

(7’,7,,% =1.5886x107", which gives a reliability value of R, ., =99.9984%.

9870 unique flowpaths were recognized on the 001 SVA program. The
probability that an error belongs to the type I group is p, =0.7143 and that it belongs to

type I group is p, =0.2857. The probability that a type I error is encountered during

one execution is p,, =1 and that for a type Il error is p s =0.333. The probability
that an untested flowpath is encountered upon the next execution is Py =1.9293%;
and for a tested flowpath, it is p,,, , = 98.0707% . From the average flowpath coverage

approach, with 0.01 average prior unreliability for each flowpath, the unreliability of the

tested flowpaths is 6,, =4.043x10” and that of the untested flowpaths is
0,, =22024x10"". The overall unreliability value is 6, =4.390x10" with the
corresponding reliability value R, =99.9956%. This is very close to the value obtained

from nodal coverage approach, R pre, =99.9984% .

Uniform prior distribution 0.01 average prior Unreliability
Nodal Coverage 1.589E-3 1.589E-5
Flowpath Coverage - 4.390E-5

Table 4-6 Unreliability Estimation Results for the 001 SVA Program
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5. Discussions

From the SVA testing and reliability estimation results, we have observed several
interesting features of this type of software. They are presented and discussed in this

chapter.

The plot of flowpath indices versus their number of visits during the random
testing process is utilized to estimate the probability that a certain flowpath will be
executed upon demand. The observation that leads us to this experimental technique is
that the earlier a flowpath is identified during the random testing process, the more visits
it receives during the random process. There is a linear relationship between the
flowpath index and the logarithm of its number of visits. Apparently, this is very
intuitive because the higher the probability that a flowpath will be visited, the earlier it
should be identified. As was mentioned earlier, the probability density functions that
have been used in this study to sample input data randomly are normal distribution and
uniform distribution. In contrast, the numbers of visit to different flowpaths are very
different. The majority of the dispersed input data were mapped to a small group of
flowpaths. This was not a coincidence. As in many other software systems, the nodes
and flowpaths of SVA can be divided into two parts depending on their functions. There
is always one part of the software that is dealing with routine process tasks and another
part that is built to handle various abnormal situations. In SVA, the routine processes
include averaging sensor readings, sensor reading deviation checking against the average,
sensor status checking, sensor status marking, sensor range checking, asking the operator
for inputs, etc. The abnormal situations include wrong operator input, wrong sensor
reading range, all-bad-sensors, etc. Obviously, the first part of the program is dealing
with the majority of the input data while the second part of the program which tends to
have longer code tharks to the various abnormal scenarios, is dealing with far less input
data. For this reason, the majority of the input data hit a relatively small group of

flowpaths (the routine task handling flowpaths) in the software.

One of the two most important criteria used when we chose our testing method
was the completeness of the method. The safety-critical nature of the software that we
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are studying requires we test the software as completely as possible. Given this criteria, a
reasonable question to ask is how complete is complete enough. Is there a point at which
we are onc hundred percent sure that we have tested the software completely?
Theoretically, such a point can only be reached from a black box point of view. That is,
it is obtained when we completely tested every possible input data set without any
failures. The reality is that we never know what the complete data universe is. From the
white box point of view, there is no such a thing as complete situation. First, we do not
know the complete set of possible (input data reachable) flowpaths in the software.
Second, even if we have tested every possible flowpath in the system, we cannot
guarantee they will not cause a failure from the fact that they have not caused any failure
corresponding to the tests that have been applied to them. This can be seen from the

definition of type II error. No matter how many tests (t) have been performed on a

flowpath, there is always a non-zero probability ((1— p +n) #0) that there is an un-

discovered type II error left on it. As a practical matter, this may be not true because
once we have applied all the possible input data sets that can lead to execution of this
flowpath; the probability is equal to zero. But because of the limitation of our
knowledge, we can never say there is no error on a flowpath, which leads to the
introduction of type II error. In our study, no error from any of the flowpaths on the 001
SVA program was found after 4 visits. To conclude, although, we never say that we have
completely tested a software system, the probability of an error still existing on a

flowpath that has been tested t times (in SVA, 4 is a typical value of t) is very small.
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Figure 5-1 Uneven Flowpath Hitting Rates

The experimental method used to estimate the probability that an untested
flowpath will be visited during the next trial is an important tool that was developed in
this study. Thus, it is imperative to show the consistency of its estimating results. The
probability that a flowpath numbered 10,000 will be executed on the next trial is
estimated from this method at different testing stages. As can be seen from Figure 5-2,
the estimated probability that a flowpath numbered 10,000 will be visited upon next
execution is consistently 0.674% based on information obtained from 30,717 tests,
38,717 tests, 58,717 tests, 78,717 tests, 118,321 tests, and 158,321 tests. Based on data
from 198,321 tests, we obtained an estimate, 1.832%, that is greater because of the long
and persistent tail formed by the last few identified flowpaths. Consider the following.
First, the percentage that we are estimating is very small. Thus, it will not affect the
overall reliability estimation very much. Second, the exponential distribution is
asymptotically decreasing to zero as the total number of flowpaths increases to infinity.
But the smallest number of visits to a flowpath, if it has been tested, is one. Thus, the

exponential function obtained is weighted more towards its tail. Refer to Figure 5-3 for
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this effect.
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6. Conclusions and Future Work

60.1. Conclusion

There are two major tasks in this project. Both were driven by the safety-critical
feature of the software system in nuclear industry. They are: (1) Improve software
quality — develop a systematic method to test the software as complete as possible; and
(2) Assess software quality — develop a standard approach to quantify software
reliability. They are two elements of the last stage of the formal software development
cycle — verification. There is always one constraint that has played an important role in
all of the methodology development process, i.e., feasibility. However sound an
approach is theoretically, it has to be automated in order to be rendered of real use. For
this reason, we have been working on the design of the methodology itself and
demonstrating every step on a typical nuclear safety-critical software application, SVA,
at the same time.

Grey box testing method is initiated. It not only takes advantage of the
knowledge that we have about the internal structure of given piece of software and but
also overcomes the difficulty of identifying input data that can activate specific structures
in the software. The probability density distributions of the input variables are obtained
from the operational profile. A Monte Carlo method is utilized to generate software input
data. Flowpaths that are visited are identified and recorded, and this information is in
turn used to judge the coverage speed and percentage of the testing process. A software
tool is developed to examine the percentage of nodes in the software under question that
have been tested at any stage during testing. It was contrary to previous claims that the
Monte Carlo sampling was too slow in terms of testing coverage speed, it was shown to
have a very reasonable flowpath discovery efficiency thanks to the simplicity of the
nuclear-related software. Furthermore, the main purpose of testing the software is to
detect all the errors in the most reachable flowpaths in the software. Thus it is essential
to make sure that the flowpaths with the highest probability to be visited during real

operating situation are the ones that have been tested the most thoroughly. This is
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preferable to achieving a uniform coverage speed on every flowpath of the software. In
this approach, we also required that all the nodes in the safety-critical software be tested
at least once. Our experiment has shown that those nodes that are very hard to reach tend
to have a higher probability to contain errors (though this is not the case for flowpaths).
And they may very possibly be surplus nodes that cannot be reached by any input data.

Two Bayesian-based white box reliability quantification methods were proposed
and demonstrated in this work. The nodal coverage based method is the more
approximate but is much quicker and easier to achieve. The flowpath coverage based
method is more precise and thus give us more insights into the special features of the
target software. Both methods have the great advantage of Bayesian methods, i.e., they
can systematically include any subjective and objective information of the given software
at any stage.

In developing the flowpath coverage based method, we divided the software
errors into two classes, type I and type 1. This helped us achieve a better knowledge
about reliability of the software. Type I errors are very easy to be found because they can
be detected during any visit to their host flowpaths. In contrast, there is always a small
possibility for a type Il error to exist on a flowpath regardless of how many times the host
flowpath has been tested. Because of the existence of this error type, we can never claim
that a piece of software can never fail (except for the special case where we are able to
complete an exhaustive black box testing, by examining every output corresponding to
every possible input of the give software).

Because of the impossibility of theoretically calculating the total number of
reachable flowpaths in a piece of software, an experimental method was created and
implemented to estimate the probability that an untested flowpath will be visited upon
next execution of the software. After some research in this area, we noted that it was not
important to know how many flowpaths have been tested and how many have not been
tested. The essential thing to know is how important those untested flowpaths are, which,
in this project is expressed as the probability that each of them is visited during any
execution of the software.

There is no obvious information upon which we can rely to obtain estimates of an

untested flowpath. Our approach is always to start from what we know, bridging the gap
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between knowns and unknowns with their similarities and correcting the inaccuracies at
the end.

As pointed out in previous work, it is essential to automate the proposed
methodology. To do so was a major hurdle for this research. At this point, this concern
has been mainly resolved. All the methodologies discussed in this thesis have been
automated and implemented on the sample nuclear safety-critical software, whose level
of complexity is typical of the nuclear industry.

The work in this research has provided a framework for thorough software testing
and systematic reliability quantification. The method has been demonstrated on a nuclear
safety-critical software program and it is applicable to all testable [Sui98] software

projects.

6.2. Future Work

Future work could proceed in a variety of directions. This section is written to
present ideas for potential directions of future work.

In this work, the flowpath coverage state is a function of the probability density
function (PDF) of the input data. The estimated reliability value is specific to the PDF
that has been chosen for input data sampling process. Under no circumstances, can we
have a PDF which precisely reflects the most likely service pattern of the given software.
Thus, it is very important to know the sensitivity of the resulting flowpath coverage to
different input PDFs. We want to know how good the reliability estimation result 1s
when some amount of error or some amount of uncertainty exists in the PDF. From the
experience obtained from the experimental work on the sample software, it is very
possible that PDFs that differ significantly from one another may give very similar
flowpath coverage results. The possible reason could be that flowpaths that deal with
normal operating situations always have a higher probability of being visited while
flowpaths designed to handle abnormal situations have a much less visiting probability.
If this sensitivity feature could be captured quantitatively, or even qualitatively, the tester
will have a better idea of how precise the PDF is required for a reasonable reliability

estimation result.
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The Monte Carlo method was chosen for its simplicity and manageable effort.
But it is believed that there are drawbacks to this method. The most significant one was
its slow flowpath coverage rate because it may provide a large amount of input data that
concentrates on some portion of the given software. If the underlying PDF is very close
to the real situation, it is truly the feature that we want. As described in previous chapters
of this thesis, because of the existence of type II errors, it is never proper to say there is
no error on a flowpath. Thus, we do want the more frequently visited flowpaths to be
tested more thoroughly. But it is also important that those not-so-frequently visited
flowpaths be covered during the testing with a manageable amount of testing effort made.
Some flowpath coverage efficiency analysis of the Monte Carlo technique is performed
to address this need.

One important input to the Bayesian updating method is the prior distribution
function of the parameter in question. A good prior distribution function can
significantly increase the speed of result convergence. In this work, because of the lack
of prior knowledge of given software system, a simple average value was used to serve as
a prior distribution. More effort is needed to search for better prior reliability distribution
functions.

While demonstrating the methodology on SVA in the research work, the
probabilities associated with type 1 and type II error were uniformly estimated from the
error information itself. Because we had a very small amount of information from the
software (the error in the software developed according to a formal development process
has very small number of errors even before any integrated test has been done on it), the
uncertainty was relatively large. The only way to decrease such uncertainty is to provide
more data. It would be very helpful if error data from similar software systems could be
accumulated and applied to the Bayesian model to update the probabilities associated
with type I and type Il errors.

As described earlier, the shielding effect concept was introduced to address the
difference between tested and untested portions of the software in order to estimate the
reliability of the untested flowpaths from the information obtained from the tested
flowpaths. Intuition suggests that the shielding effect decreases exponentially as the total

number of flowpaths that have been tested when an error happens. This conclusion is
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only supported in this research by a very limited amount of experimentg] data. Thig
effect can and needs to be studied in more detail. The approach is to seed more errors
that have been removed back into the software one at 5 time and observe the total number
of tests that will faj] because of that error. Experimental datq could also be obtained from
similar software systemns as wel|.

A very strong and important assumption used in thig research was the availability

of an existed oracle. In reality this is not true.  More rescarch needs to be done to

206



7. Appendix

7.1. Arnthmetic Average Vs. Geometric Average

Definition of arithmetic average:

wia, + wia, ..+ w,a

— nn -

as= - - , Eq. 7-1
w o+ w) o+ w

Definition of geometric average:

—  (wEeeand) Wt ¥

g:(1+2+ +Wn)g] 1 X g, zxmxgnwn Eq7'2

How do we decided which average value should be used and what is the
difference between the above two formulas? The arithmetic average is relevant anytime
several quantities add together to produce a total. It answers the question, “if all the
quantities had the same value, what would that value have to be in order to achieve the
same total?” In the same way, the geometric average is relevant any time several
quantities multiply together to produce a product. The geometric average answers the
question, “if all the quantities had the same value, what would that value have to be in
order to achieve the same product?” With the intention of deciding which method we
should use in the nodal coverage based software reliability estimation process, we must
know whether the product or the summation is relevant to our problem.

Assuming an independent reliability value for each node on one path, the overall

path reliability can be expressed in terms of reliability of each node on the path as:

f=R xR, x..xR, Eq. 7-3
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Expressed in unreliability, Eq. 7-3 becomes:

Q:I_R:I_(I_Hl)(l_HZ)(1—911) Eq 7‘4

If 6 <<1,i=12,..,n,

n Eq. 7-5

For each input data set, whether the program will fail or not only depends on the path it
will trigger within the program. Thus, from the point of view of each input data set, the
software unreliability is roughly'’ the summation of the unreliability of the nodes on that
path. Thus what we care about is the unreliability summation. According to the
difference between the arithmetic average and geometric average, the arithmetic average
is apparently the proper formula that we should use to calculate the software unreliability

based on its nodal coverage.

'” “Roughly” is because we assume an independent relationship among the nodes on each path, which is not
true in reality.
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7.2.  SVA Input Data Sets Description

System_parameters (file name: “GS_VALID.H”). The values in this category rarely

changes over testing process. Only several sets of purposely-chosen numbers are chosen
by the tester at the beginning and read by SVA program before the algorithm starts

executing. There are three such parameters:

e System name,
e Total number of normal sensors;

e Total number of PAMI sensors;

There are only three numbers corresponding to the above three parameters in
“GS_VALID.H” file. A typical “GS_VALID.H” file looks like: “0 4 27, which means
that the system name is “0”, there are “4” normal sensors and “2” PAMI sensors. The
system name only has two possible values with “0” standing for “DPS system” and “1”

standing for “DIAS system”. System name only affects the output format.

SVA process input parameters (file name: “i##.dat”). The values are generated randomly

for algorithm testing purpose.

e Values of normal sensor readings'® ( s1,52,...5n);

e Values of PAMI sensor readings19 (plL, p2,..., pm));
e Lower boundary for narrow range (/b );

s Upper boundary for narrow range (ub ),

e Expected variation for normal sensors (ev),

s Instrumental uncertainty for normal sensors (iu);

'* How many values for normal sensor readings are needed for one input set depends on the “Total number
of normal sensors” specified in “GS_VALID.H”.

' How many values for PAMI sensor readings are needed for one input set depends on the “Total number
of PAMI sensors” specified in “GS_VALID.H”.
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¢ Lower boundary for wide range (/6 _p);

* Upper boundary for wide range (ub p);

¢ Expected variation for PAMI sensors (ev _ p);

* Instrumental uncertainty for PAMI sensors (iu_ p);

e Operator selection (op ),

All the above numbers are sampled randomly according to section 4.5.1.2. The programs
performing the random sampling, “data_sva.c”, “d sva2.c” and “d_sva3.c”, are written in

C.
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7.3. Original Oracle SVA Interface

Running Generic Signal Validation Program ...

Entering the input (RETURN: next_item, ESC: run, DEL: delete, Q: quit)

N_NAME VALUE STATUS
1.SENSOR_1: 0 GOOD
2.SENSOR_2: 0 GOOD
3.8ENSOR_3: 0 GOOD
4 SENSOR_4: 0 GOOD

Signal_Average:
Last_Valid_Signal:

P_NAME
5P SENSOR_1:
6.P_SENSOR_2:

VALUE
0
0

STATUS
GOOD
GOOD

INST_UNC:
EXPE_VAR:
N_MAX_RANGE:
N_MIN_RANGE:
P_INST_UNC:

P EXPE_VAR:
P_N_MAX_RANGE:
P_N_MIN_RANGE:

Figure 7-1 Oracle SVA Program Initial Screen

Running Generic Signal Validation Program ...

205 NORMAL_RANGE

Entering the input (RETURN: next_item, ESC: run, DEL: delete, Q: quit)

VALID
PAM!

N_NAME VALUE STATUS
1.SENSOR_1: 209 GOOD
2.SENSOR_2: 207 GOOD
3.SENSOR_3: 205 GOOD
4 SENSOR_4: 202 GOOD
Signal_Average: 205
Last_Valid_Signal: 0

End of Signal Validation

P_NAME
5P_SENSOR_1:
6.P_SENSOR_2:

VALUE
200
198

STATUS
GOOD
GOOD

INST_UNC:

N_MIN_RANGE:
P_INST_UNC:
P EXPE_VAR:
MAX_RANGE:
MIN_RANGE:

P_
P

N_
N

Figure 7-2 Oracle SVA Program Output Screen

[0l el oo B e B e o S e e J

400
200

1000
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7.4. Oracle SVA Input Data Set Files

Each row in input data file (“input#.dat” or “i#.dat”) is one set of input data for
SVA testing purpose. If in “GS _VALID.H", it is specified that there are four normal
sensors and two PAMI sensors, the numbers within one row of the input data file give

values of the following parameters accordingly, starting from the first number on the left:

3 4 400 200 6 B 400 200 195 200 197 207 187 201 O« one set of input
numbers, a row in input data file “input#.dat” or “i#.dat"

e 3: Expected variation for normal sensors;

4 : Instrumental Uncertainty for normal sensors;
¢ 400: Upper boundary of narrow range;

e 200: Lower boundary of narrow range;

e 6: Expected variation for PAMI sensors;

e 8: Instrumental Uncertainty for PAMI sensors;
e 400: Upper boundary of wide range;

®* 200: Lower boundary of wide range;

* 195 200 197 207: Four normal sensor readings;
e 187 201: Two PAMI sensor readings;

¢ 4: Operator selection;
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7.5. Input Data File Including Intermediate Parameter Values

Each row in input data file (“ool #.dat” or “oo#.dat”) is one set of input data for

001 SVA program. The following is a typical row in such a file.

3 4 00 200 202 1 196 1 203 1 206 1 202 1 205 1 201
201 0111

400 200 6 8
101000 201 0O

0
e 3: Instrumental uncertainty for normal sensors;

4 : Expected variation for normal sensors;

e 400: Upper boundary for narrow range;

e 200: Lower boundary for narrow range;

¢ 6: Instrumental uncertainty for PAMI sensors;

e 8: Expected variation for PAMI sensors;

e 400: Upper boundary for wide range;

e 200: Lower boundary for wide range;

e 202: First normal sensor reading;

e 1 : First normal sensor statuszo;

e 196: Second normal sensor reading;

e 1: Second normal sensor status:

e 203: Third normal sensor reading;

e 1: Third normal sensor status;

e 206: Fourth normal sensor reading;

e 1: Fourth normal sensor status;

e 202: First PAMI sensor reading;

e 1: First PAMI sensor status;

e 205: Second PAMI sensor reading;

e 1: Second PAMI sensor status;

e 201: Process representative;

e 201: Calculated signal;

e 1: Validation;

: Valid_operator permissive;

: Valid pami;

: pami_operator_permissive;

: operator_select;

: selected sensor by op;

: fault_select;

L
o OO0 O Rr O

2% Sensor status recording notations: 1 for GOOD, 2 for BAD, 3 for SUSPECT, 4 for DEVIANT.
213



: selected_sensor_by_fault;

: range status (5 types);

: current_range (normal/wide);
: pre_range (normal/wide);
201: last valid value;

- RO

0 : operator selection;
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7.6. TMaps Constructed for SVA 001 Input Data

Complate_in
citefia (plec) critenum (tuelesf]
crteia [ohtena ]
- - . @ _wey (int]
ranges {frangss.] ¢ [eriterium.}
$_cn [eriternom ) un_cer (int)
NIENSOr [valkses.)
ranges (uoleof
piensors fiales. | pleol) range (uoleot)
et
nrengsE {rnge.)
operctor_sal (irt) max | (int)
rrin_| {ird)
rlrasuits. ) pranges (range.)
sersors (osefof) Resuitfiupiect]
sensor (tupleot
[ ] T Procren(ng
name {sr) \o'" o
N o )
vadoe (int)
\‘ n_skahus [ch_status.)
stabus (oneof)
AN
stctus (e siatus,
2500 \ b_stctus {dev_status.)
Vo
y \“‘\ N
\ BAD" ! \ ‘op_sel {sel_skaius.)
SUSPECT . fordt_sal [sel_status )
DEVIANT \ \rc:nnge_ﬁcﬁus nt)
outof | ooleon)
dev_stctus Lose
velidhate oolean] \
cur_onge (range_type.)
2p_pamm oolean) lr.~rxﬂ.»_m:nr*»gse {ronge_type )

lesst el _wease (int)

sel_status (hapleof] range t [ene of)
N 58l [boclean) NORRMAL
hY
\’sel _irvclex {int) Wi

frorn_ppaami flooolean |

Figure 7-3 TMaps Storing Input Data for 001 SVA Program
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7.7. Output Files from Oracle SVA Program (“oracle#.dat™)

Here is a typical output file from oracle SVA program.

~~~~~~~~~~~~~~~~~~~~~~~~~ SVA output ~~marvrmsvssssan
Out Of Range in Normal Range «-Werning information

SENSOR 1 202 GOOD =< Name, valuz and status of normal, sensor i

SENSOR 2 200 GOOD

SENSOR_3 200 GOCOD

SENSOR 4 200 GOOD

P SENSCR 1 209 GOOD

P SENSOR 2 199 GOOD

204 WIDE RANGE < Result of the 17 sets of inputy

End of Signal Validation < £nd of prozessing of the 1%, sets of inpuis
SENSOR__ 202 GOOD

SENSOR 2 200 GOOD

SENSOR 3 200 GOOD

SENSOR 4 200 GOOD

P SENSOR 1 209 GOOD

P SENSOR 2 199 GOOD

Out Of Range in Normal_ Range <- & Sets of inputs starts to be processed
SENSOR_1 200 GOOCD

SENSOR 2 204 GOOD

SENSCR 3 203 GOOD

SENSOR 4 200 GOOD

P_SENSOR 1 208 GOOD

P SENSOR 2 189 GOOD

PAMI

198 WIDE RANGE

End of Signal Validation «- End of processing of the 2% Sets of inputs
SENSOR_1 2C0 GOOD

SENSOR_2 204 GOOD

SENSOR 3 203 GOOD

SENSOR 4 200 GOCD

P SENSOR . 208 GOOD

P SENSCR 2 188 GOOD

B I T T T N N T VR U U

¢~ Starts to process the 3™ inputs sets
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7.8. SVA Error Details

_Typell Error . © .

Node Deleted - - " -

Error Details Test Cases 0.1 ~ 4999.40

ml;maps Until Error svaTest_: s-->svaGUItest s-->RunMenu _s-->SVA _process s~>va|id sig from _psensors_or_not-->

..FPIDXNO e 12

DX 1.4

Number of Visits Until

Error Descrlptlon _In "max_dev" of 001 program, the conditions used to find the maximum deviation arewrong.
Correction In "max_dev", use the following conditions to find the maximum variation from the average:

For each sensor value, [current variation} = | [current sensor valug] - [average] |.

If [current variation] > [current maximum variation], mark current sensor as the sensor with the

current greatest variation. If [current variation] == [current maximum variation], compare variations

of these two sensors (current sensor and the sensor currently recorded as the sensor with maximum

variation) from [last_valid_signal], mark the sensor with greater variation as the sensor with current
maximum variation.

Error Type Ambiguity in Spemfucat:on unexpected detalls that not deflned in the specification, hence

interpreted differently in different implementations.

Fmaps Unm Error svaTesl_s—>svaGUItest_s-->RunMenu_s-->SVA_process_s-->fault_select-—->failed_validation-->
o op_sel_is_false
_FPIDX NO 16
DX L 1~ U e et
" Number of Visits Until
Failure 1 ) i
Error Description In the oracle program, [result.pre_range] could be modified only when the process representation

is the average of current good sensors (which means the average has satisfied the deviation check},

or, the eperator has selected a sensor value as the process representation. In another word,

[result.pre_range] is only modified when [satisfied_deviation] or [op_sel_is_true] is true.

In ©01 program, [result.pre_range] is modified even when the process

representation is selected by fault.

Note: [result.pre_range] is the variable whose value decides whether or not [average] is declared
__as "Out of Range in Normal Range".
Correcti _In"op_sel_is_false", do not change [result.pre_ range]

Error Type Ambiguity in Specification: unexpected details not defined in the specuflcatlon hence
interpreted differently in different implementations.
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__;Error TC o
Fmaps Until Error

IDX

Number of Visits Until

Failure .
Error Description

...Jsel_from_pami-->last_valid_check2 =~

| B

svaTest s——>svaGUItest s——>RunMenu s-->SVA process s——>fau|t 5elect—->falled valldatlon——> o

9.
1.10

A

In "Iast_valid_checkZ"ynf 00Ot pfogram, when trying to'find.é répresentati\v/eﬂvéld‘é}rdrn PAMIsensors \
the value of last [fault_selected] sensor should be used instead of [last_valid_signal], i.e. find the
PAM! sensor whose value minus the value of last [fault_selected] sensor value is the mininum.

Correction

In “last_valid_check2", choose the PAMI sensor value that is closest to value of last [fault_selected]
- ..sensor instead of closet to value of [last_valid_signal] as the representative value.
Error Type Ambiguity in Specification / MI.S_!.I”I']_I.‘I_e"@@.QQI_ng of the Specification Logic
Error TC 9.8

Fmaps Untll Error o

svaTest_s-->svaGUltest_s-->RunMenu_s-->SVA_process_s-->valid_sig_from_nsensors1-->
valid_sig_from_nsensors-->devcheck_satisfy-->range_check-->
high_limit_check-->calculate_margin-->margin

FPIDXNO 112 )
Number of Visits Until
_Failure 4

Error Descnptlon

Correction

This mismatch between oracle output and OO1 program output happens during range check of
the normal value average is done.
In the oracle program, since [range_status] is "2", "low_limit_check1()" is called. It says:
If ( value >= normal_min_range+(normal_max_range-normal_min_range)*0.02) (A)
return ( IN_RANGE );
else
return { OUT_OF_RANGE ),
In testcase8.8: int value=204  // [value] is the average of current normal sensor readings
int normal_min_range = 200
int normal_max_range = 400
{A) becomes if { 204 >= 200+(400-200)*0.02 ) in oracle (developed with C), which is equivalent to
if ( (int 204) >= (float 204.0000000))<=>if ( FALSE ), yielding the result of (OUT_OF_RANGE).

In "margin” and "calculate_margin” of OO1 program, the above comparisons are made between ints.
This means:
if ( 204 >= 200+(400-200)*0.02 ) is equivalent to

if ( (int 204) >= (int 204) )<=>if ( TRUE ), yielding the result of (IN_RANGE).

In "margin” and "calculate_margin" of ©O1 program, use "rat" (rational number) mstead of "lnt" to
make comparasons. But in 001, value "204.0" is still equal to "204". Thus, we made one more
modification within "margin”. We added "0.00001" to the calculated margin, |.e. make the margin
a little larger to achieve the same result as in the oracle program.

" Errdr‘ Type

Why is ii é type 1l

Different computer languages or software development tools yleld dlfferent results when
silent data type conversions are made.

The above phenomenon happens only when the boundary condltlon is met Whenever the mput data
are chosen so that the following satisfied:

[value] >= (normal_min_range+{normal_max_range-normal_min_range)*0.02), it is possible that
exactly the same flowpath is executed. But only the input data have been selected so that

[value] == (normal_min_range+(normal_max_range-normal_min_range)*0.02), we can find the above
phenomenon.

The error can only be detected when the boundary condition is met.
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L2004

_ Fmaps Until Error

svaTest s-->svaGUItest s-->RunMenu_s-->SVA_ process s-->output—->output op_and_| range-->

FP IDX NO 174
IDX B 20.11
Number of Visits Until

Failure 1

Error Description

Thié is a format difféfenée;
In the oracle program, when the operator has selected a sensor, its name is displayed.
In the OO1 program, when the operator has selected a sensor, its value is displayed.

Correction In "output_op_and_range", change "op_str=merge:str("<".op_str_label,value_str)" to
"op_str=merge:str("<",op_str_label,name_str)".
o Add a new fmap “fault_select_name” in OO1 program to find the corresponding sensor name.
Error Type Ambiguity in Specification: the output format is not described in the specification.

. 20,15

Fmaps Until Error

FPIDXNO

svaTest s-->svaGUItest s-->RunMenu s-—>SVA process s-->after _Op_| fault se|1-->

_ after_op_fault_sel

178
IDX 20. 16
“Number of Visits Until
Failure 1

Error Description

This is a codlng error

Correction In "after_op_fault_sel" of OO1 program, [result cur_range] should be modifed according to
e [result.op_sel.from pami] rather than [result.op_sel.sel].

Error Type Carelessness of the programer.

- Error 7€ 14

Fmaps Until Error

svaTest s-->svaGUItest s-->RunMenu s-—>SVA process s-->fau|t select-->fa|led valldatlon-->
op_sel_is_false

FPIDXNO 260
X i ~31.14
Number of Visits Until

_ Failure 1

Error Descrlpllon

In the oracle program [result pre range] could be mOdIerd onIy when the process representatlon

is the average of current good sensors (which means the average has satisfied the deviation check),
or, the operator has selected a sensor value as the process representation. In another word,
[result.pre_range] is only modified when [satisfied_deviation] or [op_sel_is_true] is true.

In ©O1 program, [result.pre_range] is modified even when the process

representation is selected by fault.

Note: [result.pre_range] is the variable whose value decides whether or not [average] is declared

as "Out of Range in Normal Range".

Correction In "op_sel_is_false", do not change [result.pre_ range]

Error Type Ambiguity in Specification: unexpected details not defined in the specmcatlon hence
... interpreted differently in different implementations.

Note This node has been deleted from the OO1 program Iater in order to achleve automatlc

random operator select. This error information won't be used to do reliability estimation.
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Error TC O
Fmaps Until Error

47.14
svaTest_s-->svaGUltest_s-->RunMenu_s-->SVA_process_s-->valid_sig_from_psensors_or_not-->

__calculate_sig from_psensors

FPIDXNO. . A3

IDX I 71

Number of Visits Until

_Ermar Descrlptlon In "calculate_sig_from_ps ”rget to modlfy [result p_status]
Coriection _In"calculate_sig_from_psensors” of C 01 program, ‘add fmap "mod_p_status".

Emor Type Carelessness of the programer.

Why is it a type Il

This program runs continously. The status of every varlable stays the same as in the prewous run -

if no modification is made. If the program forgets to modify status of some variable and the value of
that variable left from last run happens to be correct for current run, this error cannot be found. Only
when [result.p_status] should be different from last run, this error could be noticed.

Error TC :

_f _sel_from_pami—>last_valid_check2

e 8618
Fmaps Until Error

svaTest s-->svaGUItest s-->RenMenu s-->SVA process 5-->fau|t select >fa||ed valndatron-->

_FPIDXNO 776
ox 95.18
Number of Visits Until
_Failure 1

Error Descrrptro o

_In "last_valid_check2" of 001 program, ignored the fact that the iniial value of [mindev] was setto 1.

Correction In “last_valid_check2" of OO1 program, ad one more condition so that the deviation of the first sensor
R __.is always given to [mindev] for futher comparison.
Error Type Programer's ingorance of a coding detail (the |n|t|al value of some vanable)
<NODAL ERROR>
Error TC . 702, 8

Fmaps Untrl‘ ‘Error

svaTest_ s-->svaGU|test s-->RenMenu s-->SVA process 5—~>val|d sug_from nsensors1-->
vaI|d_5|g_frqm_[_1§gns_or_s_--?.qqyﬂcheqk__satlsfy—->rgr_rge___check—»hlgh_llmlt_pheck

FPIDXNO
DX

" Number of Visits Until

_Failure
Error Descrlphon

__[fault_selected value]

3436

028

1

In "high_limit_check” of OO1 program, [fault_selected_value] should be compared with
[high_limit] - ( [high_limit] - [Iow imit] ) * 0.02. But before modification, the program compared
i imit] + ( [high_limit] - [low_limit] ) * 0.02.

Comection In "high_limit_check" of program, compare [fault_selected_value] W|th
e (high_timit] - { [high_limit] - [low_limit] } * 0.02.
Error Type Programer's typying error. <NODAL ERROR>
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* Fmaps Until Error

20001

svaTest_s-->svaGUItest_s-->RunMenu_s-->SVA_process_s-->operator_select-->

e OREYAYOE TNPUG from file e e
FP IDX NO 6291
.1Dx

Number of Visits Until
Failure

Error Descri;{ion

v-.1

operator as his selection,

Correction

'Ifrthere are 6 sensors in total, the operator 6an only choose numberi to Ggs" 'hié selection. o
The program should deal with the situation when a negative number is accidently input by the

In "operalor_input_from_fil-é"';"‘c;vf“001 progur;m, add "t;é;i{:int(o_sel,"O")" to deal with the accident

negative input by the operator.

Error Type

Undefined situation by the specification. <NODAL ERROR>

ErrorTC -
Fmaps Until Error

120072

svaTest_s-;>5vaGUItest_s-->RunMenu_s-->SVA_process_s-->fauIt_seléct--$

_ failed_validation-->last_valid_check1

_FP IDX NO 20072

DX 1651.2 } i
Number of Visits Until
Failure 5

_Error Description

Correction

This is a coding error concerning initial value of a helping variable [mindev].

In "last_valid_check1" of OQ1 program, instead of using the initial value "2000" for [mihdev], use -1,
In "sel_min_dev", if given/input initial value for [mindev] is "-1", use the deviation of the first good

sensor as the intial value for [mindev).

Error Type

Coding error. The programming is loose when dealing with initial value. <NODAL ERROR>

Table 7-1 SV A Error Details
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7.9. Calculate Node Visiting Frequency

“search uncovered simple” under QO1 is built to calculate how often every node
of a given function map is visited throughout a set of test cases. The inputs to this
program include the static function map and the flowpaths of the test cases. The static
function map is marked by the flowpaths. Every node of the map has a register. With
one flowpath on hand, we find the corresponding register for every node on it, increase
that register by one. After we finish processing all the flowpaths, every node on the
function map should have a number greater than or equal to zero. If the register of a node
has zero value, it means that its corresponding node has not been visited. If it has a value
greater than zero, it has been visited. The visiting frequency is calculated as visiting
times over total number of test cases. The output of this program is a set of strings. Each
string starts with the path from the top node of given function tree to the node being
considered. Each string ends with the number of visits to this node and the visiting

frequency of this node.

[search_uncovered_simple]

Inputs:

FNO: Directory and name of the output file. The name of the file has an
extension “strset.omap’.

PATH: Directory under which the static function map is located.

LIBNMO: Name of the library under which the static function map is built.

MAPNMO: Name of function map. For example, we can put in “svaTest s”

TCSIDX: Name of the file that contains information of where to find all the flowpaths
files.

Quiputs:

A "* strset.omap” files contains visiting time and frequency of every node under given
function map.

Example inputs:

FNO: fusr2/ool/mtl/new_coveragedb/uncovered/svaresults/try/0_499.

PATH: Jusr2/ool/mtl/sva_project/sva_simple_for_single_input/

LIBNMO: sva_simple_for_single_input

MAPNMO: svalest_s

TCSIDX: Jusr2/ool/mil/new_coveragedb/uncovered/svaresults/iry/0_499.svatcsidx
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in

[0_499.svatcsidx.in]

6

Jusr2/ool/mtl/sva_project/sva_simple_for_single_input/svatest_s.coveragedb/decpa
ths_ofter2000/decpathsO/

0_38*

Jusr2/ool/mtl/sva project/sva_simple_for_single_input/svatest_s.coveragedb/decpaths_after2000/decr
40_99

fusr2/ool1/mtl /svo_projeci/svo_simplejor_single#inpu1/svo’re51_s.coverogedb/decpo*hs_of’rerQOOO/ decy
100_199

fusr2/oo1/mtl /svcn_projecT/svo_simpIe__for_single__input/svotest_s.coverogedb/decpoThs_of’rerQOOO/decp
200_299

Jusr2/oo)/mitl fsva_project/sva_simple_for_single_input/svatest_s.coveragedb/decpaths_after2000/decr
300_399

Jusr2/oo1/mtl /sva_project/sva_simple_for_single_input/svatest_s.coveragedb/decpaths_after2000/decr
400_499

Qutputs:

A file named "0_499 strset.omap” under directory “.../try". This file looks like:

[0_499 strset.omap]

svaTest s-->svaGUltest_s-->k(DEC:input_suc_or_not | ALTNO:2)22 TIMES: 12023 FRE:
0.00666778%

svalest s-->svaGUltest_s-->D0OsvaGUI[DEC:input_suc_or_not | ALTNO:1) TIMES: 17877 FRE:
0.993332

svaTest s—>svaGUlitest_s-->RunMenu_s--

>SVA_process_s(DEC:outof_range_or_not | ALTNO:2) TIMES: 17877 FRE: 0.993332
svalest_s—>svaGUltest s—->RunMenu_s-->range_emor(DEC: cutof_range_or_not | ALINO:1)
TIMES: O FRE: 0%

2 “search uncovered_simple” will try to find a file named “0_38.coveragedb.omap™ under directory
“.../decpathsQ”

22 path from the function map’s top node to this node.

Z Number of visits to this node.

* Visiting frequency of this node.

> This node has not been covered yet.
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7.10. Untested Nodes on 001 SVA Program after 78,717 Tests

There are 16 untested nodes after 78,717 tests (testcase0.0 ~ testcase1999.40) on
001 SVA program.

7.10.1. Nodes Needing to Be Tested, But Not Tested

There are 14 untested nodes that should be tested in the 001 SVA program. 84
specially designed test cases (testcase2000.1 ~ testcase2010.20) are applied to 001 SVA
program to test these nodes according to their logic. This input data picking is achieved
manually, which means that only a small number of nodes can be tested in this way. If
we applied “search_uncovered simple” tool to the 001 SVA program at a much earlier
stage and found more leftover nodes that need to be covered, we have to perform more
random tests and check out the uncovered nodes at a later stage when the number of
nodes that have not been covered is small enough to handle manually. The 14 uncovered
nodes that need to be tested are listed below. Each is followed by the logic in the SVA
001 program that leads to that node and the index(es) of the test case(s) that cover that

node. Finally, the test result of that node (if any error is found on that node) is presented.

1 svaTest_s—->svaGUltest_s-->RunMenu_s
—->range_error(DEC:outof range_or_not | ALTNO:1)

If there are range error(s) from one or more of the input sensor values (greater than
the upper limit or lower than the lower limit, which give a range type of 5 from
‘range_comparasion”), this node is called.

2 svalest_s—->svaGUltest s-->RunMenu_s
—->range_comparison->k(DEC:type4 or not | ALTNQO:2)

Under the same situation as in 1, this node is called.

3 svalest_s-->svaGUltest_s-->RunMenu_s-->SVA_process_s—->output
—->output_op_and range-->k(DEC:out_of range or_notl | ALINO:1)

This node is used to output the “out of range" warning message when a sparsely
touched type of output format is used (We have two types of output format for SVA,
one of them is almost used all the time and this one is seldom used). There is not a
test case using this output format under the “out of range” situation.
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svaTest_s-->svaGUltest_s—->RunMenu_s-->SVA_process_s-->operator_select
-->op_check-->output-->output_op_and_range
-->k(DEC:out_of_range_or_notl | ALTNO:1)

This node is called under the same situation as in 3.

svaTest_s-—->svaGUltest_s-->RunMenu_s-->SVA_process_s-—->output
-->output_op_and_range-->k(DEC:opsel_or_not1 | ALTNO:1)

This is another warning message "operator select” output node. There is no test
case using this format under the operator selected situation.

svalest s-->svaGUltest_s—->RunMenu_s-->SVA_process_s—->operator_select
-->op_check-->output-->output_op_and_range-—->k(DEC:opsel_or_notl | ALTNO:1)

This node is called under the same situation as in 5.

svaTest_s-—->svaGUltest_s-->RunMenu_s-->SVA_process_s-->operator_select
—>operator_input_from_file—->clone 1 {DEC:overflow_or_not | ALTNO:1)

When operator has selected a sensor which does not exist, this node is called. For
example, if we have 2 normal sensors and 4 pami sensors(their code names should
be from 1 to 6, which means a valid input should be from 0, meaning no selection,
to 6) and the operator selects sensor number 7, this node is called.

svaTest s—->svaGUltest_s—>RunMenu_s-—->SVA_process_s-->valid_sig_from_nsensors]
-->valid_sig_from_nsensors-->devcheck_fail
-->more _than_one{DEC:one_maxdev_or_more | ALTNO:2)

When there are 2 or more normal sensors having the same greatest deviation, this
node is called.

svaTest_s—>svaGUltest_s-->RunMenu_s-->SVA_process_s-—->valid_sig_from_nsensors|
-->valid_sig_from_nsensors-->devcheck_fail-->unsatisfied_deviation1
-->clonel(DEC:one_or_more | ALTNO:2)

The same logic as that described in 8 would cause this node to be called.

svaTest_s-->svaGUltest_s-->RunMenu_s-->SVA_process_s
-->valid_sig_from_psensors_or_not-->calculate_sig_from_psensors
-->pami_devcheck_fail-->unsatisfied_deviation]
—>clonel[DEC:one_or_more | ALTNO:2)

This is the same node as that in 9, except called from a different node.

11

svaTest_s-->svaGUltest_s-->RunMenu_s-->SVA_process_s
-->valid_sig_from_psensors_or_not-->calculate_sig_from_psensors
—->pami_devcheck_fail-->more_than_one(DEC:one_maxdev_or_more | ALTNO:2)

When there are 2 or more pami sensors having the same greatest deviation, this
node is called.

svaTest_s—->svaGUltest_s—->RunMenu_s—->SVA_process_s-->valid_sig_from_nsensors]
-->valid_sig_from_nsensors—->devcheck_fail
-—->clonel (DEC:less_than_three_pass | ALTNO:2)

If “pass==3" when trying to select representative value from normal sensors, this
node is called.
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13

svalest_s-->svaGUhest_s-->RunMenu_s-->SVA_process_s
->valid_sig_from_psensors_or_not-->calculate_sig_from_psensors
—->pami_devcheck_fail-->clonel{DEC:less_than_three_pass | ALTNO:2)

If "pass==3" when trying to select representative value from pami sensors, this node
is called.

14

svaTest s--=svaGUNest_s—->RunMenu_s—->SVA_process_s-->fault_select
-->fagiled_validation-->clone 1 {DEC:fault_sel_or_not2 | ALTNO:2)

This hode is called when no valid sensor can be found through “last_valid_check1".
It seems not necessary since “last valid_checkl” can always find a sensor whose
value has a deviation from “last_valid_value” less than 2000.

7.10.2. Unnecessary Nodes

We found two uncovered nodes in the 001 SV A that are of no use and could not

be reached at all. They were deleted from 001 SVA program.

svalest_s-->svaGUltest_s-->RunMenu_s-->label_pause1--
>clonel (PEC:label_pausel | ALTNG:1)

When “reverse==-1", this node is called. It seems “reverse” does not need to be “-1"
in any circumstances.

svalest_s--=svaGUltest_s-->RunMenu_s-->SVA_process_s-->fault_select--
>failed_validation-->f_sel_from_pami-->last_valid_check2--
>last_fault_selected_sensor_value-->fault_select_value(DEC:pami_or_not | ALTNO:T)

If fault selected wvalue s from pami, this node s called.
This is a surplus node, since if “fault_selected” sensor is from pami,
"last_valid_check2” cannot be called.
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7.11. Cut Extra Loop Repetitions

In order to make the Complete Path Testing feasible, we keep at most two
repetitions for one loop structure. In this section, the process to cut extra tepetitions for

loop structures is illustrated.

7.11.1. Working Principle of “cut_iterations”

Figure 7-4 A Static Unexpanded 001 FMap Containing Looping Structure

The FMap shown in Figure 7-4 contains a looping structure3-6-7-8-3. There is
only one decision node, node3. Each time node3 is reached, a decision is made. If node7
is chosen as the next executed node after node3, the loop is entered. If node6 is chosen as
the next execution node after node3, the loop is exited. We call node3 the loop entrance
node and node6 the loop exit node. As in any 001 FMap, the static FMap is executed
according to the order from top to bottom and from right to left. If there is no decision

node in the program, every node will be executed according to this order.
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Figure 7-5 A Flowpath with Three Repetitions of a Looping Structure

An execution flowpath of the FMap shown in Figure 7-4 is presented in Figure
7-5. At the decision node, also the loop entrance node, node3, node7 is chosen for three
consecutive times, which means the loop is repeated three times in this execution. At the
fourth time, the loop exit node, node6 is chosen and the loop is exited. When
“cut_iterations” notices the third repetition of the loop within the given flowpath, it cut
all such repetitions beyond the second one. In Figure 7-5, this means that the shaded part

1s cut from the original flowpath.
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7.11.2. Inputs and Outputs of “cut_iterations”

inputs:

FN: Name of the file that includes names of the flowpath files
“# # decpaths.omap” to be scanned by “cut_iterations”.
Directory: Directory of FN.

“# #.decpaths.omap” example:

20:

Jusr2/O01/mtl /sva_project/sva_simple_for_single_input/svatest_s.coveragedb/
0.1.decpaths.omap

0.2.decpaths.omap

0.20.decpaths.omap
Qutputs:
Fn.out: Name of the file that includes names of all the output flowpath files

“# #.decpaths.omap.cut”.

“# #.decpaths.omap.cut” example:

20:

Jusr2/O01/mtl fsva_project/sva_simple_for_single_input/svatest_s.coveragedb/
0.1.decpaths.omap.cut

0.2.decpaths.omap.cut

0.20.decpaths.omap.cut
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7.12. Steps to Identify Unique Flowpaths

7.12.1. The Steps

Put all the flowpath files (“#.#.decpaths.omap.cut™) under current directory. List
all the concerning files sorted by their size under this directory and pipe this information
into a file — F1.

Use a program written in PERL, “size.pl” to process the resulting file from step 1,
F1. “size.pl” gives output file F2. F2 only contains file names from F1. Each line of F2
only contains names of files that have the same size. Two file names within one line are
separated by a blank space.

Use a program written in PERL, “diff3.pl” to process the resulting file from step
2, F2. “diff3.p]” groups the files listed in F2 into different flowpath groups. There are
two output files from “diff3.pl”. One is “F2.diff* and the other is “F2.diff.idx”. In
“F2.diff.idx”, every line includes a group of flowpath files, separated by blank spaces. In
“F2.diff”, every line has only one file, which is flowpath of the earliest test case26 among
its flowpath group. In “F2.diffidx”, every line contains all the flowpath file names
belong to the same flowpath group.

If there are too many flowpath files, we can put them into different directories and
repeat the same steps from 1 to 3 under each directory. After a distinct group of
flowpaths are extracted from each directory, they can be mixed and step 1 through 3
repeated again. Eventually, a distinct group of flowpaths are extracted for all the

recorded flowpaths.

** How early a flowpath was recorded can be decided from its name. For example, a flowpath file named
“4.1.decpaths.omap” must be recorded earlier than “20.3.decpaths.omap” and “4.2.decpaths.omap” must be
recorded earlier than “4.10.decpaths.omap”.
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Figure 7-6 Identify Unique Flowpaths Step by Step

7.12.2. An Example

We have flowpath files “0.0.decpaths.omap”, ‘“0.1.decpaths.omap.cut”,

H

99.39.decpaths.omap.cut”, “99.40.decpaths.omap.cut” under directory “../decpaths0/”

and flowpath files “100.0.decpaths.omap.cut”, “100.1.decpaths.omap.cut”,

b

“199.39.decpaths.omap.cut”, “199.40.decpaths.omap.cut” under directory “../decpaths1/”.

We want to find out a group of distinct flowpaths out of the files under these two

dircctories. The series of commands required to perform in order to achieve this goal is

listed as follows.

Under "../decpaths0”

Commands

Qutput files

Is =S -1 *.cut > index0_99.in
perl size.pl index0_%9.in index0_99.out
perl diff3.pl index0_99.out

[index0_%9.in]
[index0_%99.out]
[index0_99.out.diff] [index0 99.cut.diff.idx]
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awk '{print $1}' indexC_99.out.diff | xargs—icp {} ../0_199

Under “../decpathsl”

Commands Output files

Is =S - *.cut > index100_19%.in [index100_199.in}

perl size.pl index100_199.in index100_199.out [index100_199.out]
perl diff3.pl index100_199.out [index100_199.out.diff]

[index100_199.out.diff.idx]
awk {print $1}" index100_199.out.diff | xargs-icp {} ../0_199

Under "../C_199"

Commands Qutput files

Is =S -1 *.cut > index0_199.in [index0_199.in]

Perl size.pl index0_199.in index0_199.out [index0_199.0ut]
Perl diff3.pl index0_199.out [Index0_199.out.diff]

lindex0_199.out.diff.idx]

232



7.13. Count Visiting Frequency of Flowpath

7.13.1. The Steps

Put all the flowpath files (“*.decpaths.omap.cut™) under current directory. List all
the concerning files sorted by their size under this directory and pipe this information into
afile —F1.

Use a program written in PERL, “size.pl” to process the resulting file from step 1,
Fl1. “size.pl” gives output file F2. F2 only contains file names from F1. Each line of F2
only contains names of files that have the same size. Two file names within one line are
separated by a blank space.

Use a program written in PERL, “diff3.pl” to process the resulting file from step
2, F2. “diff3.pl” groups the files listed in F2 into different flowpath groups. There are
two output files from “diff3.pl”. One is “F2.diff” and the other is “F2.diff.idx”. In
“F2.diff.idx”, every line includes a group of flowpath files, separated by blank spaces. In
“F2.diff”, every line has only one file, which is flowpath of the earliest test case27 among
its flowpath group. In “F2.diff.idx”, every line contains all the flowpath file names
belonging to the same flowpath group.

If there are too many flowpath files, we can put them into different directories and
repeat the same steps from 1 to 3 under each directory. After a distinct group of
flowpaths is extracted from each directory, they can be mixed and step 1 through 3
repeated again. In addition, the new “*.diff.idx” file has to be expanded since it only
contains the names of flowpath files within the new directory. A complete index file 1s
needed in order to count how many times a flowpath is visited. We have built a program
named “expandl.pl” in PERL to do this job. Eventually, a distinct group of flowpaths is
extracted out of all the recorded flowpaths.

The lines of final index file “FINAL.diff.idx” needs to be sorted according to

when the first test case in this line being visited. To achieve this, we have to sort the final

¥ How early a flowpath was recorded can be decided from its name. For example, a flowpath file named
“4,1.decpaths.omap” must be recorded earlier than “20.3.decpaths.omap” and “4.2.decpaths.omap” must be
recorded earlier than “4.10.decpaths.omap”.
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“FINAL.Jiff” file which contains only the first test case in the final index file in one line.
This is done by “sort.pl” in PERL. Then the sorted version of “FINAL.diff”, which is
“FINAL.diff sort”, is expanded using the final index file “FINAL.diff.idx” and becomes
“FINAL.diff.sort.exp”.

Finally the complete index file “FINAL.diff.sort.exp” is used to count the number
of visits to every tested flowpaths. The counting job is done by “pathfre.pl” in PERL.

If we want to know how the total number of distinct flowpaths increases as the

total number of test cases increased, “count_diff.pl” can be used.

7.13.2. An Example

We have flowpath files “0.0.decpaths.omap”, “0.1.decpaths.omap.cut”, ... ,
“99.39.decpaths.omap.cut”, “99.40.decpaths.omap.cut” under directory “../decpaths0/”
and flowpath files “100.0.decpaths.omap.cut”, “100.1.decpaths.omap.cut”, ,
“199.39.decpaths.omap.cut”, “199.40.decpaths.omap.cut” under directory “../decpaths1/”.
We want to find out how many distinct flowpaths exist under these two directories and

the number of visits to each distinct flowpath.
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»

»

Is =5 ~i *.ctt > indext_99.in

[index0_99.in} -
reerwerw- 1y ooltool 40623 May 31 14:44 55.30.decpaths.omap.cut
-rwerw-rw- 1yl noltool f‘”iﬁSEU‘ﬁay 31 14:45 63.1 1. decpaths.omap.cut
rverw-rw- 1yl opltool -4B558'May 31 14:47 71.11 decpaths.omap.cut
-rw-rw-rve- 1yl ooltool 39983 May 31 14:44 53.30.decpaths. omap.cut

o Files of The Same Size

perl size.pt index0_99.in index_99.0ut

- Files of The Same Size
[index0 9%.0) . S '
56.30. decpaths.emap. Clt-—"" v A

<£3.11.decpaths.omap, ot 71,11 dec paths omap. cU

5330 dea:paﬂﬁ omap.cut

perf diff3.pl index0_89.0ut
The Representative File

findex0_99.out.diff] ath Gr
55.30. decpaths.omap.cut / of tha Flowpath Group

63.11.decpaths. omap. cut
53.30. decpaths.omap.cut
=", Files Representin
{nniexﬂ 99.out.diff.idx] e 7 g
55.30. decpaths. omap, cut-"
i 63”‘7"“1 decpaihs omap :;Bt?‘l“ﬁ 'Hécpaths umap et
£330, deTpaths omap.cut

awk fprimt $13" index®_99.out.diff | xargys —i cp {} 0_199
Copy files listed in “index0_99 out. diff" to directory *./0_ 199"

cp indexd_99.out.diff.idy ../0_199
Copy file “index0_99.out. diff.ich" to directory *./0_199"

Under " /decpaths]”

s =8 1 “cut > index100_134.in

[index190_199.in} o
-rwerwerw- 1yl ooltool 39750 May 29 15:31 119.1. decpaths. omap.cut
sty ooltool '39885 ay 29 15:30 103.1.decpaths.omap.cut
-rwrw-tw- 1y oottool S%SQMay 29 15:31 1156.1 decpaths.omap.cut
-rw-rwrwe )y oottool 38679 May 29 15:30 111.1.decpaths.omap.cut

......

s Files of The Same Size

perl size.pd index100_199.in index100_199.0ut

I

[index100_19%.0w7) e R
119.1.decpaths.omap.cut "

<1031 decpaths omap U451 d"'i:paths omag Scars
111.1 decpaths.omap.cut

......

Files of The Same Size
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perl diff3.pt index 100_189. 00t
The Replesentative Fils

{index100_199.our.diff] — of The Flowpath Group
119.1. decpaths, omap, cut_ e

103.1. decpaths. omap. cut
111.1_decpaths amap cut

------ Files Repiesenting The
[index100_199.outdiftidx] ., o= Tabiiee it T
119.1. decpaths.omap, 'LL" - _M.,./ .

<1031 decpaths. pmap.x;umdsjl.,decpaths omaacm

111.1.decpaths. omap.cut

awk {peint $1§° index 100_190.0ut.diff | xargs —i cp {} ../0_199
Copy fites listed in "index100_99.out diff” to directory " /0_159"

op fddex 100190 out.diff.idy .. 0_T09
Copy file "index100_1939 out oiff idx” 1o directory *./0_199"

Under” A0_133" Fites fiom

I8 =5 ~1 ".cur > index®_199.in

[}im“mw R S
Files nf The Same Size o -

[index0_199.in] Files fiom

Twrwerwe 1y aoltool 31352f .Ju| 11 20:37 114.9, decpaths. orhap cut . o Ditgctory =,

“rw-rw-re 1y ooltool 30642 Jul 11 20:34 53.27 decpaths. ognap. cur*”
wrwerwe 1y ooltool [ 30610 .Jul 11 20:37 173.6. decpaths omag, cut
-reerw-rwe 1y ooltoal ~30610.Jul 11 20:34 85.31. decpaths. Dmap'cul
-reerw-rw- 1 i ooltool 30582 Jul 11 20:37 175.3 decpaths.omap. cut

perl size.pd index®_199.in index® 1990t

[indexd_199.0uy] Files of the Same Size
1149, decpaths. omap. cut T A

53.27. decpaths.omagesut " N

8631 decpaths 0map.auf~@?3&denpa1hs_nmap St

175.3 decpaths omap. cut

pert diff3,pl index(_199.out

o

[index0_199.our.diff}

114 9. decpaths.omap.cut
53.27 decpaths.omap.cut
85.31 decpaths. omap.cut
175.3. decpaths.omap.cut

; oy s Files Representing
sl;‘;;igx,;?e g;?:t ﬁ;';’;g; l;llet] /,./; / the Same Flowpath
53 27 decpaths omagouf ¢

-_ssaiiaecpat hs omapuriZI6 decpaths. Grmap tit:>

175.3. decpaths omap. cut

L) 89T
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perl expandi.pl index_19%.outdiff.fidx index0_99%.outdiffithy index1 00_199.cutdift.idx

li:n4!ex0_199.out.diﬂ.idx.exp] s Eutgipdnd Tost Cone Hames
114 9 decpaths.omap.cut P
5327 decpaths.omap.cul B
85.13. decpaths.omap.cut 173.8:decpaths.omap.cut 173.14 decpaths.omap.cut
175.3. decpaths.omap, cut 175.17 decpaths.omap.cut 175.21.decpaths.amap. cut
175 25 decgallis omap.cut - S

perl sort.pl index0_199.0udiff

[imlex(t_’lfl@.out.diff.smt)
5327 decpaths.omap.cut
85.13. decpat hs.omap.cut
114 9. decpaths.omap. cut
175.3.decpaths.omap.cul

Didered Accotding 1o Time of Testing

petl expandi.pd index{_99.outdiff.sort index0_ 199,00t diff.idx. exp

[imlexﬂ_‘l%.out.diff.soﬂ.exp[

5327 decpaths omap.cul dered According to Time of Testing

85.13. decpaths, omap. cut 17 6.dec paths.omap.cut 173.14.decpaths.omap.cut
175.3. decpaths. omap.cut 17 17 decpaths.omap.cut 175 21.decpaths.omap.cut
175.25.decpaths.omap.cut

perl pathfre.pl index?_ 199, out.diff, soIT.exp

ﬁm!exﬁ_wﬁ.om.tliﬁ.smt.exp.pﬂ

NAME: index0_199 out.diff sort.exp pf
BASE: indexQ_193.out diff. sort.exp
TOTAL TESTCASES: 6717

TOTAL PATHS: 1709

£3.27.decpaths omap.cut'1 ™, . Time of Visits
85,13.decpathalomap.cui 3 ‘f" “““““

175.3. decpaths amap.cutd /

pett count_diff.pl totald_199.in.sort index 0_199%.0turdiff.sort index0_19%.count

[diff0_199.co unt]
A
(!

Ws e Total Himber of Gistinct Flawpaths
X‘j”‘a{““““» Total Humbes of Test Lases
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