
Tree Pattern Inference and Matching for Wrapper

Induction on the World Wide Web

by

Andrew William Hogue

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2004

© Massachusetts Institute of Technology 2004. All rights reserved.

A uthor
Department of Electrical Engineering anc uomputer -cience

May 13, 2004

Certified by......
David R. Karger

Associate Professor
Tbc'coo Qiiervisor

Accepted by........
Artnur u. Smith

Chairman, Department Committee on Graduate Students

BARKER

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 2 0 2004

LIBRARIES

2

Tree Pattern Inference and Matching for Wrapper Induction

on the World Wide Web

by

Andrew William Hogue

Submitted to the Department of Electrical Engineering and Computer Science
on May 13, 2004, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

We develop a method for learning patterns from a set of positive examples to re-
trieve semantic content from tree-structured data. Specifically, we focus on HTML
documents on the World Wide Web, which contain a wealth of semantic information
and have a useful underlying tree structure. A user provides examples of relevant
data they wish to extract from a web site through a simple user interface in a web
browser. To construct patterns, we use the notion of the edit distance between the
subtrees represented by these examples to distill them into a more general pattern.
This pattern may then be used to retrieve other instances of the selected data from
the same page or other similar pages. By linking patterns and their components with
semantic labels using RDF, we can create semantic "overlays" for Web information
which are useful in such projects as the Semantic Web and the Haystack information
management environment.

Thesis Supervisor: David R. Karger
Title: Associate Professor

3

4

Acknowledgments

I would first like to extend my deepest gratitude to my advisor, David Karger, without

whose insights, advice, extensive feedback, and financial support this work would have

been impossible.

The members of the Haystack research group have been an invaluable resource

for ideas and assistance. In particular, Karun Bakshi, David Huynh, Dennis Quan,

and Vineet Sinha deserve my gratitude for both their insights for and patience with

someone learning the Haystack system.

My roommate and friend, Jaydeep Bardhan, deserves my thanks not only for the

services of his whiteboard, but for being a sounding board for ideas and for redirecting

me towards (or away from) the task at hand as necessary.

My family has always been there for me, supporting my interests no matter where

they took me, and I have them to thank for setting me along this path in life. Mom,

Dad, Paul, Greg, and John, thank you. My "second" family, as well, has always been

there for me the last seven years, even when times got rough, and I would not have

made it here with out them.

Finally, words cannot express the love and gratitude I have for my wife, Tiffany,

although it doesn't stop me from trying. For supporting me this year and all the

years before, for being my best friend and closest confidant, I thank you from the

bottom of my heart. All of this is done for you.

5

6

Contents

1 Introduction 15

2 Related Work 19

2.1 Information Extraction . 19

2.2 The Semantic Web . 21

2.3 Tree Data Structures and Algorithms 23

3 Pattern Characterization 25

3.1 Repeated Instances . 25

3.2 Internal and Leaf Nodes 27

3.3 Subtree Structure 29

3.3.1 Single Siblings . 29

3.3.2 Multiple Siblings . 30

3.3.3 Sibling Repeats . 31

3.3.4 Non-sibling Repeats . 32

4 Wrapper Induction and Matching 33

4.1 D efinitions . 34

4.2 Path Labels . 34

4.2.1 Path Functions . 36

4.3 Best Mapping . 36

4.3.1 Tree Edit Distance . 37

4.3.2 Skeleton Patterns . 39

7

4.4 Other Improvements . 43

4.4.1 Repetitive M atching . 43

4.4.2 List Collapse . 45

4.4.3 Sibling M atching . 46

4.4.4 Context . 49

4.4.5 URL Prefixes . 50

4.5 Variables . 51

4.5.1 M aximum Example Size . 52

4.5.2 List Collapse Cost Threshold 53

4.6 Algorithm Summary . 54

4.6.1 Induction . 54

4.6.2 M atching . 55

5 Semantic Wrappers 57

5.1 Ontologies . 57

5.2 Labeling W rappers . 59

5.2.1 Classes . 60

5.2.2 Properties . 61

5.2.3 M atching Considerations . 62

6 User Interface 65

6.1 W rapper Creation . 66

6.2 Additional Examples . 67

6.3 Assigning Properties . 69

6.4 Using W rappers . 71

6.5 Direct M anipulation . 73

7 Experimental Results 75

7.1 W eb Site Survey . 75

7.2 Successful W rappers . 76

7.3 Failure M odes . 78

8

8 Conclusion 81

8.1 Contributions . 81

8.2 Future Work . 82

8.2.1 Wrapper Improvements. 82

8.2.2 User-Side Improvements . 84

8.2.3 Applications . 85

A Surveyed Sites 87

B Wrapper Results 91

C Implementation Details 95

C.1 Java Interfaces . 95

C .2 Issues . 96

C.2.1 Internet Explorer . 96

C.2.2 Other Issues . 101

9

10

List of Figures

3-1 A sample search on the Google search engine (http: //google. com). 27

3-2 Two pages from the Internet Movie Database (http: //imdb. com). . 28

3-3 An example of semantic content grouped under a single node. 30

3-4 An example of semantic content grouped under several sibling nodes. 31

4-1 An example tree labeled with - and r, the two types of root-to-node

paths. 35

4-2 Generating a skeleton pattern with wildcards from the best mapping

between two examples. 41

4-3 Examples of aligning two lists of child nodes. (a) shows a valid align-

ment. (b) shows a pair with no valid alignment. (c) shows a valid

alignment using the repetitive matching scheme. 42

4-4 Generating a pattern with repetitive matching. The pattern on the

left will only match lists with exactly three A tags, while the repetitive

pattern on the right will match any number of A tags. 44

4-5 The two cases of multiple, sibling subtrees comprising a selection. In

(a), the user has selected all children of an element, so the selection

is moved up to that element without changing the meaning. In (b),

the user has only selected a subset of children, so we cannot move the

selected node. 47

4-6 The incorrect alignment of a pattern generated from a partial selection. 48

11

4-7 Capturing the context of a selection. In this case, the user has selected

a single "Actor" node. We move the root of the pattern up the tree to

capture context such as "Cast:" and other actor nodes. 49

5-1 An example of mapping the properties of the class Book to a page from

http://bn.com/ 59

5-2 Mapping a pattern with wildcards to content. 60

5-3 A semantically labeled pattern. 61

6-1 Creating a wrapper on the CSAIL Faculty page. 66

6-2 The UI continuation for creating a wrapper. 67

6-3 Feedback during wrapper creation by highlighting matched elements. 68

6-4 The confirmation dialog for wrapper creation. 68

6-5 Adding an example to a wrapper. 69

6-6 Adding a property to a wrapper. 70

6-7 Visual feedback after a user has added several properties to a wrapper. 71

6-8 Interacting with an existing wrapper on a faculty directory page. . . . 72

6-9 The interface for directly manipulating a pattern. 73

7-1 The SearchResult wrapper on http://google.com. 76

7-2 The LongRangeForecast wrapper on http://weather.com. 77

7-3 The Movie:actor wrapper on http://imdb.com. 78

7-4 The Book: author wrapper on http: //bn. com. 78

12

List of Tables

A.1 Surveyed web pages. 88

A.2 Surveyed web pages (continued) . 89

A.3 Surveyed web pages (continued) . 90

B.1 Results of wrapping surveyed sites. 92

B.2 Results of wrapping surveyed sites (continued). 93

B.3 Results of wrapping surveyed sites (continued). 94

C.1 Required DOM interfaces. 96

C.2 Extended interfaces. 97

C.3 Extended interfaces (continued). 98

C.4 Extended interfaces (continued). 99

13

14

Chapter 1

Introduction

The promise of the Semantic Web is to "bring structure to the meaningful content of

Web pages, creating an environment where software agents roaming from page to page

can readily carry out sophisticated tasks for users." [7] Information which is currently

prepared only for humans to read will be richly labeled, classified, and indexed to allow

intelligent agents to schedule our appointments, perform more accurate searches, and

generally interact more effectively with the sea of data on the Web.

These advances, however, rely on the accurate semantic labeling of data that

currently exists only in human-readable format on the World Wide Web. Normally,

this labeling would be a task for content providers, as they have easy access to the

relational data which makes up the pages, as well as the ability to alter the existing

published content. Several tools, such as browsers and distributed search engines for

ontologies, have been developed explicitly with the goal of making it easier for content

providers to add semantic markup to their existing World Wide Web pages.

Unfortunately, providers often have little or no incentive to mark up their existing

documents. In this work, then, we take a different approach. Our goal is to provide

a tool which allows end-users, rather than content providers, to author and utilize

their own semantic labels for existing content. In particular, we aim to make the

extraction of semantic content accessible to non-technical users, modifying existing

user interfaces to provide them with the ability to label web pages with semantic

meaning. By giving these users control over semantic content, we hope to reduce the

15

reliance of the Semantic Web on content providers and speed its adoption.

Our system allows users to create semantic patterns, also called wrappers, by sim-

ply browsing to a web site, highlighting its relevant semantic features, and providing

semantic labels for them. From these positive examples, a flexible, reusable pattern

is induced.

The patterns described here are created by a powerful algorithm which takes

advantage of the inherent hierarchical structure of HTML. We utilize the technique

of tree edit distance to find the best mapping between the given examples. This

mapping allows us to highlight and extract only the structural elements that the

examples have in common, discarding any instance-specific content. What is left is a

generic pattern, capable of recognizing other instances of the same type.

Once a wrapper is created, the user may then give it semantic meaning by overlay-

ing it with statements about the classes and properties it represents. These descrip-

tions are created through a simple user interface, but are underlaid by statements in

RDF, the language which is the framework for the Semantic Web. By drawing these

classes and properties from an existing ontology appropriate for the page in question,

the user gives the wrapper a general meaning compatible with other sites of the same

type.

On subsequent visits to the same page, or to similar pages on the same site, the

predefined wrapper is reevaluated. When matches are found, instances of the semantic

classes represented by the pattern are created on the fly. The semantic predicates

which the user has bound to the pattern are then used to "fill in" the properties of

this instance with data from the page.

We then give the user the ability to interact with these new objects by "overlaying"

them on the browser window. The area of the page which has been matched by the

pattern now also has the contextual meaning of the matched object. This process

allows us to reify the matched items into first-class objects in the user environment,

rather than flat text.

By integrating this tool into the Haystack [24] information management environ-

ment, these semantic overlays create a rich environment which allows the user to

16

interact with content on the Web. Semantic content on the web goes from being flat

text to having full semantic meaning and context. For instance, a pattern defined on

a page containing upcoming seminars would allow the user to right-click and add an

interesting talk to their calendar. Patterns defined on news sites would allow the user

to create, modify, and subscribe to their own RSS feeds.

Wrappers also provide a powerful means for importing, exporting, and manipu-

lating the unstructured data on the Web. Once wrapped, the information is in a

structured, relational format, RDF, that can be easily managed and queried. Dis-

parate sources of similar data can be easily brought together. For instance, wrappers

created on several news web sites can be integrated into a single RSS feed. Alterna-

tively, wrappers of the same semantic type allow us to reformat and integrate data.

A user could integrate all their news sites into a single page, formatted in whatever

way is best for that user.

By creating wrappers, users are, in effect, creating a bridge between the syntac-

tic structure and the semantic structure of the web page. In general, this parallel

structure has always existed, abstractly, in the intentions of the page's creator and in

the interpretations of the page's reader. In our system, however, the act of building

a wrapper for this content makes the connection explicit on the user side. It is from

this syntactic-semantic bridge that our wrappers get their power.

We begin by surveying related work in several fields in Chapter 2. Chapter 3

characterizes the types of semantic and syntactic structure we expect to see on the

World Wide Web. We then describe the main hierarchical wrapper induction and

matching algorithm in Chapter 4, and show how to apply semantic meaning to these

wrappers in Chapter 5. The user interface for wrapper induction and matching is

described in Chapter 6. We next give our experimental results in Chapter 7. Finally,

we propose several avenues of future research and give our conclusions in Chapter 8.

Three appendices describe the web sites and types of semantic content that were sur-

veyed in creating our algorithms (Appendix A), the results of running our algorithm

on several of those sites (Appendix B), and several details of our implementation

(Appendix C), including both programming interfaces and issues which arose.

17

18

Chapter 2

Related Work

2.1 Information Extraction

Our approach to pattern induction and matching is one case of the larger task of

information extraction. This field, especially in relation to documents on the World

Wide Web, has received much attention in recent years. Information extraction covers

the automated retrieval of data from both structured and unstructured documents.

Various approaches, using both supervised and unsupervised learning, have been

tried, with varying degrees of success.

The subfield of information extraction dealing with documents on the World Wide

Web is called wrapper induction, defined by Kushmerick [20] as the task of learning a

procedure for extracting tuples from a particular information source from examples

provided by the user. Kushmerick defined the HLRT class of wrappers, implemented

in the WIEN (Wrapper Induction ENvironment) system. These wrappers were re-

stricted to locating information which is delimited by four types of flags, the "head,"

"left," "right," and "tail." Because of this limitation, this class was found to success-

fully wrap only 48% of relational data in HTML documents in a 1997 Web survey.

A related approach, the STALKER system [23], attempts to capture some of the

hierarchical structure of HTML and its semantic data. The embedded catalog (EC)

formalism consists of lists of k-tuples, with each element of the k-tuple being either

information of relevance to the user or another k-tuple. The EC description of a

19

page is therefore a hierarchy similar to the subject-predicate-object description used

by RDF for the Semantic Web. The SC of a page allows the STALKER system

greater flexibility with fewer examples in locating information in a page than HLRT

wrappers. However, despite the hierarchical nature of the EC, STALKER's matching

algorithm still treats the underlying HTML source of pages as a linear string, ignoring

its hierarchical structure.

Several other approaches to information extraction utilize probabilistic models.

Hidden Markov Models offer the opportunity to learn not only the the probabilities

but the state structure to represent information in various types of documents [12, 27].

These approaches also treat the document as a linear set of objects, first parsing

it into tokens such as HTML tags and text. The state structure of the HMM is

either hand crafted, or is learned from the set of training examples using stochastic

optimization. These models have been quite successful at extracting information from

semi-structured documents, such as academic papers, but their usefulness on HTML

documents is unproven.

Other models learn to classify data by assuming that "nearby" elements in a

hierarchy should be classified similarly [28]. For instance, the document tree on a

filesystem or web site is useful for inferring which documents are related. If most

documents in a certain directory subtree have been classified in a certain way, new

documents appearing in nearby subtrees are more likely to be similarly classified.

Probabilistic Context Free Grammars, or PCFGs, are a statistical technique for

semantically tagging semi-structured data [9]. When used to extract semantic content

from English sentences, a probabilistic model is learned by parsing tagged training

examples and noting the frequency of occurrences of certain context-free rules among

the training data. This model may then be used to tag new sentences by finding

the most likely set of rules which could have created that sentence in the model.

With the addition of "semantic" tags to the training examples, PCFGs may be used

to label phrases with semantic meaning, the first step in higher-level information

extraction. For example, PCFGs have been successfully used to extract the post,

company, person entering and person leaving the post from newspaper texts describing

20

corporate management successions.

One example of an interactive system for learning patterns on various types of doc-

uments is LAPIS [26]. Similar to our approach, this system provides an interactive

interface where users may specify examples relevant to a pattern by highlighting them.

Patterns are constructed using a language called text constraints, which includes op-

erators such as before, after, contains, and starts-with. By using a pre-defined library

of parsers which tokenize and label the document, users can create patterns of arbi-

trary complexity, or allow the system to infer them from examples. This inference

is performed by constructing a dictionary of region sets, which describe areas of the

document which match certain tokens from the parsers. By analyzing the overlaps

and repetitions of these region sets, LAPIS extracts its structured text constraints

patterns. The results of matching these patterns are then displayed for the user, al-

lowing them to perform such tasks as simultaneous editing and outlier finding. While

it currently has no ties to the Semantic Web, LAPIS is a powerful pattern induction

system, and our system will take advantage of its parsing abilities in cases where our

tree edit distance algorithm is not applicable.

2.2 The Semantic Web

As mentioned in Chapter 1, the Semantic Web is a tool which promises to "bring

structure to the meaningful content of Web pages, creating an environment where

software agents roaming from page to page can readily carry out sophisticated tasks

for users." [7] These advances, however, rely on the accurate semantic labeling of

data that currently exists only in human-readable format on the World Wide Web.

Existing Semantic Web projects have tended to focus on enabling content-providers

to produce this semantic content, and end-users to consume it, whereas few have had

our goal of allowing end-users to create their own metadata.

The MIND SWAP project [13] has created a suite of tools which enable users to

author, search, and browse Semantic Web documents. These include a program for

converting tab- and comma-delimited files to RDF, an editor for creating HTML and

21

RDF documents at the same time, an interface for labeling non-text content with

RDF, and an ontology manager for search and browsing. The most relevant tool

to our work is the Web Scraper, which allows users to extract semantic information

from structured HTML documents. To use the Web Scraper, a user must analyze

the HTML source of a document and provide explicit delimiters for relevant informa-

tion. Once the data has been extracted, an ontology browser is provided, allowing

the user to choose appropriate semantic labels from existing Semantic Web ontolo-

gies. While the patterns created by the Web Scraper tend to be more powerful than

those described here because of their explicit declaration, the interface for defining

them is complex, requiring a knowledge of HTML and the low-level structure of a

page. Our system has been designed with the non-technical user in mind, and allows

pattern induction through a standard web browser interface, using operations such

as highlighting and right clicking on a document.

The XPath [4] standard is another useful language for extracting data from hi-

erarchical documents such as XML and HTML, and several tools such as xpath2rss

[6] have been built with it. Similar to the Web Scraper, though, these require the

user to have a detailed knowledge of the document and of the language for describing

patterns, and few tools have been developed to allow intuitive induction of useful

patterns.

The Annotea project [17] is a Web-based system which allows users to add de-

scriptive metadata to individual pages. The system is implemented using current web

standards, and allows users of an Annotea-enabled browser to create annotations and

associate them with text within a given document, or with the page as a whole. Sim-

ilarly, the concept of Sticky Notes for the Semantic Web [18] has been proposed, also

allowing users to add annotations to existing documents. Both of these applications

are interesting in that they give non-technical end users the ability to annotate and

supply semantic information for any web document. However, these annotations must

be provided on a page-by-page basis, as no underlying pattern scheme is learned to

make the annotations more widely applicable. Our system aims to generalize these

types of annotation, allowing a user to utilize them with every occurrence of the same

22

semantic data on that web site.

Our work extends the Haystack [24] information management client. This system

has strong ties to the Semantic Web, in that it is based on the RDF standard [3]. The

main benefit to the Haystack interface is that every object is semantically "alive" to

the user. This means that the system can provide relevant context menus for any

element displayed on the screen. For instance, in the interface for composing an

email message the "To" and "CC" fields not only provide context menus for adding

additional recipients, but also provide menus to interact with the actual "Person"

objects behind existing recipients. These semantically-driven context menus will be

important to our implementation of semantic wrappers on the Web.

2.3 Tree Data Structures and Algorithms

Tree pattern matching algorithms have been well studied in fields such as compiler

optimization and molecular biology [8, 11, 15]. Traditional approaches have focused

on queries that are hand-crafted by users, requiring intimate knowledge of both the

pattern matching semantics as well as the underlying structure of the data being

queried. Most approaches focus on matching structures in unordered trees with either

limited or no wildcards.

As mentioned earlier, the problem of locating nodes in a structured document

tree by specifying the path from root to node is addressed by the XPath standard

[4]. XPath allows users to specify path-structured queries which return sets of nodes

from an XML document's tree. Once again, XPath is designed for technical users,

and little work has been done on inducing XPath queries from examples provided by

novice users.

A related problem is that of subtree isomorphism [16, 21], which attempts to find

similarly shaped structures in trees. These algorithms generally treat the structure

of the given tree without regard to node labels or sibling order. They are most often

specializations of the more difficult task of graph isomorphism [22], whose complexity

is unknown, but may lie between P and NP-complete [30]. Our approach attempts

23

to avoid the complexity issues involved with these algorithms by making assumptions

about the structure, ordering, and labeling of the pattern and document trees we are

considering.

The problem of pattern matching on strings also has a long history. The edit

distance between strings may be computed in polynomial time using dynamic pro-

gramming [10]. This technique is used by the agrep program [31] to find approximate

matches to a query string. The tree edit distance algorithm [32] upon which our ap-

proach is based is an extension of string edit distance. Both algorithms find the

least-cost method for turning one object into another using operations such as insert,

delete, and change.

24

Chapter 3

Pattern Characterization

To attack the problem of learning patterns for information extraction, we must first

characterize the types of structures we expect to see when looking at semantic data

on the web. These characterizations are the result of a survey of a wide variety of

structured semantic content across several popular web sites.1

In the discussions below, we will denote semantic classes and properties using

typewriter font. Classes are generally capitalized, while properties will be lowercase.

For example, the class Movie has the property director.

3.1 Repeated Instances

The first general characteristic of interesting data on the web is that it tends to

"repeat" itself. This is not to say that the content is the same, but that the structure

that displays this content is the same or similar.

There is an underlying reason for this repetitive nature which is based in the way

web pages are written. Page authors tasked with presenting relational data generally

use CGI [1] scripts to automatically generate these web pages. These scripts retrieve

relational data from a database and dynamically publish it to the web using HTML

templates. Each template has slots for a certain subset of the data, and the script

simply fills this template from its database query before sending the response to the

'See Appendix A for details of the sites and content surveyed.

25

user's browser.

These templates give web pages their syntactic structure. They provide elements

for formatting, presentation, font, and other visual elements. The relational databases

that provide the data for the templates give pages their semantic structure. The

slots in the templates are filled with the same type of semantic data every time. In

this work, we will attempt to "invert" this process, inferring the structure of these

templates and the semantics of their contents from examples given by the user.

It is important to notice that this templating process manifests itself in two ways.

The first is multiple occurrences of the same semantic type in the same page. In this

case, several rows from the relational database are being displayed at once. Because

they have the same semantic type, the page author has used the same template to

format them. For example, when a user performs a search on Google,2 they get back

a page like that in Figure 3-1, containing several instances of the type SearchResult.

Note that each instance is syntactically formatted in the same basic way, with a link

to the result page, a summary of the result, the hostname and size of the page in

green, and a link to the cached page and to similarPages.

The other way that templates are used is to format an entire page. In these cases,

the full page generally represents a single semantic class, and the slots in the page

contain its properties. This allows the user to consider a single object at a time

along with all of its attributes. As an example, two pages from the Internet Movie

Database3 are shown in Figure 3-2. Here we see two examples of the type Movie,

served on two different pages, which show the same underlying structure. Each has a

title, a year, a director and writers. Other items such as the plotOutline and

rating are also structurally similar.

The syntactically and semantically repetitive nature of relational data suggests

a format for our patterns. Each pattern should form a "template" for the general

class of data we are trying to match. This template should capture the elements that

are common between different instances, but leave "slots" where instance-specific

26

2http://www.google.com/
3http://imdb.com

Web Images Groups News Froogler"*'^' more a

Go ogle erh
1haystack. Search

Web Results I - 10 of about 57r

Haystack Home
Haystack is a tool designed to let every individual manage all of their information in the
way that makes the most sense to them. ...
haystack.ls. mit edu/ - 4k - Cached - Similar pages

Haystack Mountain School of Crafts
Haystack Mission and Background. Haystack was founded in 1950 as a research and
studio program in the arts. Its founding mission ...
wwv. haystack-mtn.org/ - 5k - Cached - Similar pages

MIT Haystack Observatory
The MIT Haystack Observatory is an interdisciplinary research center engaged in radio
astronomy, geodesy, atmospheric sciences, and radar applications.
wvAhaystack.edu/ - 9k - Cached - Similar pages

Millstone Hill Radar
The Millstone Hill Observatory is a broad-based atmospheric sciences research-
owned and operated by MIT as part of the Haystack Observatory.
vrqav.haystack.edu/homepage.html - 5k - Cached - Similar pages
[More results from viww haystack edu]

Figure 3-1: A sample search on the Google search engine (http: //google .com).

properties are located. When we match a pattern, we will effectively "fill in" these

slots, allowing us to use the semantic data for other applications.

3.2 Internal and Leaf Nodes

Data formatted in HTML has an underlying tree structure which describes how el-

ements of the document are formatted. Working down from the document's root,

each node in the tree provides more specific information to the browser about how

elements should be formatted. Many display elements, including text and images,

may only appear at leaf nodes.

Because of the way HTML is rendered, nodes in the same subtree of the document

are displayed in the same contiguous block in the browser. Importantly, this relation

27

Citizen Kane (1941)
Directed by
Orson Welle s

Writing credits
Herman J. Mankiewicz and

Orson Welles

Add to Photos
Nymovies *

Genre: Drama / Mystery (more)

Tagline: It's TerrificI (more)

Plot Outline: Powerful newspaper owner Charles Foster
Kane was many things to many people, both in life and, as

seen in retrospective here, in death. (more) (view trailer)

User Comments: Certainly ONE of the best (more)

User Rating: g j 8.7/10

(50,397 votes) top 250: #11

Casablanca (1942)
Directed by
Michael Curtiz

Writing credits

Murray Burnett (play) and
Joan Alison (play) ...

ooisIAdd to *~Phots
Genre: Drama Romance (more)

Tagline: They had a date with fate in Casablanca! (more)

Plot Outline: Rick Blaine, a callous nightclub owner in a
wartime waystation, has his world turned upside down when
his lost love, Ilsa, returns. (more) (view trailer)

User Comments: As time goes by, it's still one of the all-time
greats... (more)

User Rating: 4 *' x 8.8/10

(54,306 votes) top 250: #8

Figure 3-2: Two pages from the Internet Movie Database (http: //imdb. com).

works both ways - neighboring elements in the browser are backed by nodes in the

same subtree of the page's HTML. Thus, an instance of a semantic type displayed in

one section of a page is represented by a subtree of nodes in the document tree. This

relationship may also be thought of as a result of the templating process described in

the previous section. Page authors using templates to format their data tend to group

that data together structurally. This grouping makes it easier to "glue" templates

together into a full page, as well as to reuse templates for similar data on separate

pages.

Along with the general repetitive nature of semantic types, we also notice that

there is a pattern to which parts of these subtrees actually change between examples.

In almost all cases, the nodes that differ between examples are leaf nodes, or entire

subtrees at the lowest level. The "upper" structural elements, or the internal nodes of

the subtree, tend to be consistent among instances of the same type. For example, in

the Google SearchResult instances depicted in Figure 3-1, only the text of each result

changes. The internal nodes, which affect layout, font selection, and link structure,

are identical between the instances.

28

This idea that the text of the semantic instances is different, but the internal

structure is the same, suggests a way to formalize the "template/slot" idea mentioned

in the previous section. We will take the common, internal structure of the instance

subtrees as our template, but discard the instance-specific leaf nodes. These discarded

nodes will later form the "slots" which bind to semantic data.

3.3 Subtree Structure

In this section, we attempt to classify the distinct types of syntactic structure we

have observed in our survey of web pages containing relational semantic data. We

have categorized these types of structure along two axes:

Spanning Elements The nodes that comprise a single example may either be grouped

under a single node, or be spread across multiple sibling nodes.

Semantic Siblings Examples of the same class or property may either be siblings,

sharing a parent node, or be located in separate parts of the document tree (or

even on separate pages).

We now proceed to investigate these axes in more depth, and give examples of their

occurrence in practice.

3.3.1 Single Siblings

As mentioned above in our discussion of HTML templates, one of the most common

types of syntactic structure for semantic content is within a single subtree of the

document. All semantic information is grouped syntactically under a single node.

Formatting elements are children or descendants of this root node.

This structure is beneficial from both the author's and the user's perspectives, as

HTML content in the same subtree is rendered together in the browser. This means

that properties of the same instance of an object are kept together on the page, which

is important from the standpoint of a simple and consistent user experience.

29

SDIV)

P P

A (TABLE}

TR
B Home

TD

Haystack
FONT

Haystack is... FONT A A

haystack.lcs.mit.edu Cached Similar Links
-~~~~~__ -

Figure 3-3: An example of semantic content grouped under a single node.

Many examples of this type exist. For example, a simplified version of a Google

SearchResult is shown in Figure 3-3. In this figure, the dashed lines group instances

of a single class. Note that all semantic properties for each SearchResult object are

grouped under their own root node.

This type of structure will work well with our tree edit distance approach, as we

can simply calculate the edit distance between the example subtrees.

3.3.2 Multiple Siblings

In other cases, the content for a single semantic class spans several neighboring sub-

trees. These instances often appear similar to the user when rendered in the browser

because sibling subtrees are displayed next to each other, just as the contents of a

single subtree are.

One example of this type of structure is the NewsStory type on the New York

30

TD

A BR FONT BR FONT A BR FONT BR FONT

President By David... The President 'U.S. Begins... By Edward... The U.S.
Bush... vowed today.. Military...I

Figure 3-4: An example of semantic content grouped under several sibling nodes.

Times web site,4 as shown in Figure 3-4. Once again, nodes which represent single

NewsStory instances are outlined with dashed lines. Note that each NewsStory spans

several nodes with the same parent, but that there are also other nodes with that

parent that are part of other instances.

This type of structure will be more difficult to form patterns for, as the tree edit

distance algorithm is not defined for forests.

3.3.3 Sibling Repeats

Another consideration when dealing with repetitive semantic content is where the

repeated structure occurs. In one case, several repeated instances of the same con-

tent occur with the same parent node. These repeats will prove important when

we attempt to generalize our patterns from a single user example. If we find that

neighboring subtrees have similar structure, we can automatically generalize them in

our pattern without the need for user interaction.

An example of this structure is the set of Google SearchResult instances shown

in Figure 3-1, with the structure shown in Figure 3-3. Note that all SearchResults

have the same parent node in Figure 3-3. This means that if the user indicates one of

these results, we can easily find other subtrees with the same type by simply looking

at the siblings of the initial example.

4 http://nytimes.com

31

3.3.4 Non-sibling Repeats

The other type of repetitive structure we must consider is that in which instances of

the same semantic type do not share a common parent. This structure most often

occurs between web pages. Because we have no way of heuristically finding additional

examples of the same type of content, this type of structure will usually require at

least two examples from the user to form a general pattern.

An example of this structure is the IMDB Movie class. Because each Movie is

on its own page, the user must often specify an example from two different Movie

instances to form a general pattern. For instance, to wrap the property director,

the user would have to visit two different pages, highlighting the text of the property

on each one.

32

Chapter 4

Wrapper Induction and Matching

In this chapter we build up a method for creating patterns, or wrappers, from users'

examples. We start with basic types of patterns using root-to-node paths, and proceed

to generalize them to handle more complex structures often seen on the web.

The common ground between all the pattern induction methods we present in this

chapter is the desire to locate certain nodes in a document tree that have semantic

meaning for the user. A user forms a pattern by indicating a set of nodes in the

document as examples. This chapter is about how to form a pattern based on those

nodes.

We will consider two main ways of capturing the properties of nodes in the doc-

ument tree. First, we consider the root-to-node path of the node. This "extrinsic"

property allows us to capture and compare the location of the node in the tree as

compared with other nodes. Second, we will attempt to generalize the structure of the

subtree rooted at the node. This "intrinsic" definition allows us to link the syntactic

structure of the node with other nodes and with its semantic meaning.

As noted in Section 3.2, because of the way HTML is rendered in a browser,

when a user selects a contiguous block of a web page, they are, in effect, selecting

a subtree' from the page's DOM. Thus, by providing highlighted examples in the

browser, the user is indicating that several subtrees in the DOM have both similar

syntactic structure and similar semantic meaning. In the discussion below, then, we

10r a set of sibling subtrees. See Section 4.4.3 for heuristics dealing with this case.

33

reference the selection and the selected subtree interchangeably.

4.1 Definitions

We will be working with trees T indexed in preorder as T[i]. The size of a tree is

denoted ITI, and the size of the subtree rooted at node v is denoted jvj.

Each node v in a tree has a label, denoted label(v). In the case of an HTML

document, the label is either the tag name for a markup node, or the actual text of

the node in the case of text nodes. We will also index each node in terms of its position

among the children of its parent, sibling-num(v). We define sibling-num(T[0]) = 0

for the root.

Finally, two nodes are considered equal if their labels are equal2 . In talking about

patterns we will create special wildcard nodes, denoted with the label "*". Wildcard

nodes are considered to be equal to any other single node.

4.2 Path Labels

The most basic way to uniquely locate a node in a tree is by its labeled path from

the root. We define the path of a node to be the sequence of nodes from the root of

a tree to a node v. In particular, we define two "flavors" of path. The first is the

sibling path, a, containing sibling-num(w) for each node w along the path to v. The

second is the tag path T, representing the sequence of tag names label(w) for each

node w along the path to v. As an example, in Figure 4-1, each node is labeled with

both u and T.

Both types of paths have benefits for pattern matching. First, the sibling number

path, a, uniquely identifies a node within the tree, whereas T does not. For example,

there are two nodes with T = A. B. C in Figure 4-1, each with a different o (0.0.0

and 0. 1.0).' This ability to uniquely identify a node's location within the document

2 We currently do not consider DOM attributes, such as the src of an IMG tag or the href of an
A tag, for the purposes of node equality. We discuss this enhancement in Section 8.2.1.

3We will find it convenient to refer to paths either as arrays (indexed starting from the root down

34

0
A A

0.0 0.1
B A.B B A.B

C 0.0.0 D 0.0.1 E 0.0.2 C 0.1.0
A.B.C A.B.D A.B.E A.B.C

Figure 4-1: An example tree labeled with - and T, the two types of root-to-node
paths.

tree makes - useful for locating similar nodes between different documents, or for

reidentifying the same node across multiple visits to the same page.

On the other hand, for the purposes of pattern matching on a single page, finding

multiple nodes with the same T will be beneficial. As we described in Section 3.1,

similar semantic content is often found in similarly structured parts of a page. Nodes

with identical formatting (for instance, the rows of an HTML table), have the same

T. Thus, finding all nodes in a page with the same T is often a good heuristic for

finding other matches for the same semantic content.

One extension to these definitions is important to handle user selections that span

multiple sibling nodes. The last (most specific) element in - or T may be a range of

elements, rather than a single element. For instance, the user might select both nodes

0.0.1 and 0.0.2 in Figure 4-1, resulting in a = 0.0. [1-2] and T = A.B.{D,E}.

Paths which contain ranges may still be used as described above to locate similar

nodes both within and between pages.

Our most basic form of pattern induction, then, is to simply use the sibling and

tag paths of the selection made by the user. We utilize two tactics, depending on

whether the semantic content repeats many times on the same page or only occurs

once on the page. When the user selects a node, we first look for semantically similar

to the leaf), or as strings, concatenated by "." characters.

35

nodes using the tag path, T. If we find them, we store T as the pattern. When the

user returns to that page (or a similar one), we simply find all nodes in the page with

that T. If, on the other hand, we do not find other nodes with the same T, we store

the sibling path, -, as the pattern. On future visits to this or similar pages, this will

allow us to locate and match the same node in the document.

4.2.1 Path Functions

We now define two functions on node paths that will be useful in our subsequent

discussions. The first is the contains relation, defined for sibling paths. Formally, a

node w is contained by another node v if either v = w (they are the same node), or if

w is a descendant of v in the tree. In terms of paths, contains(a-, u-w) iff a-,[i] = -, [i

for all nodes in a-. A similar relation holds for the tag path, T.

Another useful function will be the ability to convert an absolute path (from the

root of the tree to a specific node) to a relative path, rooted at another ancestor of

the specific node. To turn o-, into a path relative to o-,:

relative-path(a,,o-,) = {0,orv[|ow|..o - 1]}

For instance, relative-path(0 .1.2.3.4.5, 0. 1.2.3) = 0.4.5. As with contains, relative-

path also holds for the tag path, T.

4.3 Best Mapping

Locating nodes using the root-to-node path has several restrictions. For instance,

while two nodes might have similar semantic meaning, one might be offset by an extra

formatting element to emphasize it, thus changing its T. Also, semantic content on

similar pages may be located in slightly different locations (for instance, if it is offset

because of advertising content), thus changing its -. Only considering nodes' path to

the root would make it very difficult to form consistent, flexible, reusable patterns.

In addition, because paths do not capture any information about the structure of the

36

subtree rooted at the selected node, they risk missing important features that may be

important for pattern matching.

Instead, in this section, we consider utilizing the structure around and below the

selected nodes in the tree to form patterns. By making the assumption that two

nodes with similar semantic meaning also have similar syntactic structure, we may

form patterns by finding their common syntactic elements. We may then use that

syntactic pattern to attempt to find other nodes with the same semantic meaning.

To do this, we will consider the best mapping between two subtrees in the docu-

ment. This mapping, a byproduct of finding the edit distance between two trees, will

allow us to extract only those nodes which the two subtrees have in common. Nodes

which are not in common between the two trees remain unmapped, and thus are not

included in our patterns.

We first develop the notions of the edit distance and the best mapping between

two trees, and then show how these can be used to form general patterns. We then

extend these basic algorithms with other heuristics which allow us to form more

general patterns, often from only a single example subtree.

4.3.1 Tree Edit Distance

The tree edit distance between two trees T and T2 is defined as the cost of a sequence

of edit operations which transform Ti into T2. The possible operations include insert-

ing a node, deleting a node, and changing one node into another, each of which have

an associated cost, -y. The best mapping, M, is the lowest-cost set of edit operations

to turn T into T2 . M is defined as follows (based on Zhang's algorithm [32]):

* M is a set of pairs of integers (i, j) satisfying:

1. 1 I i Ti, 1 _j T2 1

2. For any pair (ii, ji) and (i2 , 3 2) in M,

(a) 4I = i2 iff Ji = j2 (one-to-one),

(b) T1[ii] is to the left of T1 [i 2] iff T2[ji] is to the left of T2[j 2] (sibling order

preserved),

37

(c) T [ii] is the parent of T1[i2] iff T2 [ji] is the parent of T 2 [j2] (parent-child

relationships preserved) 4 .

" If T[il is an ancestor of T[j], and M contains the pair (i, A), where A is the

empty node, then M also contains (j, A). Similarly, if M contains (A, i), it also

contains (A, j). Intuitively, if we insert or delete a node, we must also insert or

delete all nodes in its subtree.

" The cost 'y(M) of a mapping M from T to T2 , is defined to be

-y(M) = 1 y(TI[i] -± T2[j]) + E 7(T1[i] -a A) + 1: -/(A -+ T2 [j])
i,jEM igM jM

where A is the empty node.

For our problem, we define the cost of an individual operation to be

(V -+ W)= 1 if vA #w
0 otherwise.

Intuitively, the cost of inserting or deleting a node is the cost of inserting or

deleting the entire subtree rooted at that node. Changing a node is equivalent to

a delete and an insert. Note that, due to the second condition above, inserting or

deleting a node costs as much as inserting or deleting the entire subtree rooted at the

node.

Note also that this cost definition is symmetric for subtrees T[i] and T[j]:

-y(v -+ w) = 7(w -+ v).

We can calculate the least-cost tree edit distance between v and w using a dynamic

programming approach, similar to the calculation of the edit distance between strings.

We first check whether v = w (as per our definition of equality in Section 4.1). If

4 Note that this is not the same definition as Zhang's algorithm, which only requires that ancestor
relationships be preserved. Our restriction is stronger, and allows for a significant improvement in
speed.

38

they are not equal, we add delete(v) and insert(w) to our mapping M, as well as the

appropriate inserts and deletes for all nodes in their respective subtrees, and return.

If the two nodes are equal, we attempt to recursively find the best mapping be-

tween their child nodes. Let A = children(v) and A = children(w). Let m = IM 1

and n = IM1. We create an m + 1 by n + 1 matrix c. c[k][l] contains the least-cost

mapping Mkj between M[k] and Af[l], for 0 < k < m + 1 and 0 < I < n + 1. We can

calculate the entries of c by noting that

c[k][l - 1] + delete(M[k])

c[k][l] = min c[k - 1][l] + insert([1])

c[k - 1][l - 1] + best-mapping(M [k],V[1]).

c[0][0] is defined to be an empty mapping. c[m][0] and c[0][n] represent mappings

where all nodes of A are deleted and all nodes of M are inserted, respectively. best-

mapping(M[k],A[l]) is calculated recursively.

Once the full matrix c has been calculated, we may simply read off and return

c[m][n] as the best mapping between A4 and K.

The running time of this algorithm is O(jvjjwj) in the worst case, where both

v and w have a depth of 2, all nodes are children of the roots, and all nodes have

different labels. In practice, two items reduce this running time drastically. First, the

algorithm is actually dependent on the branching factor at each node of the two trees,

as the size of c is dependent on the number of child nodes being compared. Second,

we only construct c for nodes which are equal (that is, which have the same label). If

two nodes have different labels, we immediately return a mapping which deletes one

and inserts the other. This greatly reduces the number of recursive calls required to

populate c.

4.3.2 Skeleton Patterns

We now describe a method for generating tree-structured patterns given the best

mapping M between two example trees T and T2. We begin by using T as our

39

template pattern P. We then remove any nodes from P which are deleted or changed

in M, replacing them with wildcard nodes. If an entire subtree is deleted or changed,

we replace it with a single wildcard. We term the remaining tree a "skeleton pattern,"

because it contains only the structural elements which the examples have in common,

with none of the specific properties of either. Another perspective is that P is the

largest subtree that "matches" both T and T2.

An example of this process is shown in Figure 4-2. Two subtrees, taken from a

site containing upcoming talks and seminars, 5 are mapped. Looking at the generated

pattern, we note that the structural nodes of the trees remain intact, while the specific

text describing each talk is unmapped. When we generate the skeleton pattern, the

text is removed, and only the structural elements remain.

Skeleton patterns prove to be very useful in finding semantic content similar to the

original examples. To match, we attempt to align the pattern P with some subtree

of the document. An alignment is essentially a mapping, M, as described above,

which contains no delete or change operations. To find these alignments, we could,

in theory, use the same edit distance algorithm we used above, or a tree matching

algorithm such as that described by Cole, et. al. [8].

Instead, because of the size of the patterns being considered, we utilize a simple

greedy algorithm for finding alignments. In essence, at each level of the pattern, we

attempt to align each child node in the pattern with the leftmost possible child node

in the document. We continue this process recursively until every node in the pattern

is aligned with one node in the document, constituting a match, or no alignment is

found.

In more detail, we begin by trying to align the root, P[O], of the pattern with each

node in the document to be matched. If we find a node v such that P[O] and v match,

we recurse, attempting to align the children of P[O] with the children of v. We take

the list of children of P[O] and of v, and attempt to find an alignment. An alignment

is a mapping from the children of P[O] to the children of v where every child of P[0]

maps to at least one child of v, and if P[q] maps to T[r] and P[s] maps to T[t], and

'http://www.csail.mit.edu/events/eventcalendar/calendar.php

40

* Bioinformatics
Seminar
Series Spring * CSAIL Student

E2 4ntl Seminar -

computing the Spring 2004:
landscape of How Puzzles
locally optimal Can Dilute A
RNA secondary D oS Attack
structures (4:15 PM)
(11: 30 AM)

TD TD

A A "(11:30 AM)" A A "(4:15 PM)"

B "Efficiently B "How Puzzles
computing..." Can Dilute..."

"Bioinformatics..." "CSAIL Student..."

TD

A A *

B

*

Figure 4-2: Generating a skeleton pattern with wildcards from the best mapping
between two examples.

P[q] is a left-sibling of P[s], T[r] is also a left-sibling of T[t]. That is, sibling order is

preserved in the alignment.

Figure 4-3(a) shows a valid alignment between the a list of pattern children and

a list of document children. Figure 4-3(b) shows a pattern-document pairing with no

valid alignment. Note that the ''Text'' and B nodes do not align in Figure 4-3(b)

41

Pattern: A "Text" A

Document: A "Text" A

(a)

Pattern: "Text"

Document: ® "Text"

(b)

Pattern: A "Text" A

Document: A A A "Text" A

(c)

Figure 4-3: Examples of aligning two lists of child nodes. (a) shows a valid alignment.
(b) shows a pair with no valid alignment. (c) shows a valid alignment using the
repetitive matching scheme.

because sibling order must be preserved.

Wildcard nodes are treated specially for the alignment process. Because they may

represent information that existed in one example, but not in another, we allow them

to align with either zero or one document nodes during matching. This allows our

patterns to be flexible enough to match the full set of given examples.

We continue to recurse down the trees P and v as long as a alignment is found for

the children at each depth of the trees. For each pair of aligned nodes P[j] and T[k],

we attempt to align children(P[j]) against children(T[k]). We recurse until P[j] has

no children. If we successfully find a mapping from every node in P to a node in v

under these constraints, we consider the pattern matched.

The speed of this greedy algorithm for finding alignments is dependent on two

factors: the size of the document and the size of the pattern. For each node in the

document, we potentially attempt to match every node of the pattern against one of

its descendants, resulting in a running time of O(IT1 PI), where T is the document

42

being matched.

We can improve the performance of this simple matching algorithm in practice by

maintaining the height of the pattern, or the length of the longest path from the root

of the pattern to a leaf. If we also maintain the height of each node in the document

tree, we can skip matching on any tree node v whose height is less than the pattern's

height, as it would be impossible to find an alignment with these subtrees.

4.4 Other Improvements

The patterns formed in the previous section are surprisingly effective at matching

certain types of structure on the Web. For instance, an effective pattern for the talk

announcements shown in Figure 4-2 can be generated from just two examples.

There are many types of structure, however, which do not respond well to this

type of straight best mapping approach. For instance, these skeleton patterns do not

handle pages with variable-length lists of semantic items well because of their rigid

matching structure. On other pages, it requires several examples from the user to

generate useful patterns.

To deal more effectively with these issues, we introduce several other heuristics in

this section which allow for more general patterns, or for generating useful patterns

with fewer examples from the user.

4.4.1 Repetitive Matching

As defined above, skeleton patterns do well at matching single instances of a given

structure, but often fail when the structure is a variable-length list of elements. This

results from the inflexible nature of the best mapping procedure. For example, in

Figure 4-4(a), we see a skeleton pattern which was created from two example lists of

links, each with three items. While this pattern is correct, in that it generalizes both

examples, it will only match other lists with exactly three elements. In fact, even if

we provided an example with four elements, the extra list item would be removed by

the best mapping procedure, because no nodes in the length-three list would map to

43

TD TD

"Links:" AA A "Lns"A A A

"CNN" "Slashdot" "NY Times" "Football" "Baseball" "Basketball"

(Best Mapping)

TD TD

"Links:" A A A "Links:" A

(a) (b)

Figure 4-4: Generating a pattern with repetitive matching. The pattern on the left
will only match lists with exactly three A tags, while the repetitive pattern on the
right will match any number of A tags.

it.

To resolve this issue, we will adopt a scheme which allows individual nodes to

match more than one element. We augment our matching algorithm from the previous

section to allow a single pattern node to align with multiple document nodes at a

time, as long as sibling order is still preserved. Figure 4-3(c) shows a valid alignment

under the repetitive matching scheme.

A pattern built in this method is shown in Figure 4-4(b). The A nodes in this

pattern have been combined to form a single pattern node. When we match against

a new document, this single node will be allowed to match against more than one A

node which is the child of a TD node, with a preceding sibling labeled ''Links: ''.

In this way, we can form more general patterns which can match a variable number

of listed items.

With this modification, we introduce the possibility that our patterns will over-

44

generalize and match items which the user did not intend. While in theory this is

true, we have found, in practice, that this scheme is extremely effective and rarely

overgeneralizes. We discuss this in more detail in our experimental results in Chap-

ter 7.

4.4.2 List Collapse

As mentioned above, this repetitive matching heuristic turns out to be an effective

representation for many types of semantic data. We now formalize this idea of com-

bining neighboring nodes using a list collapse heuristic to automatically collapse nodes

throughout the tree.

To do this, we first introduce the notion of the normalized cost, i, of a mapping

M between two trees T and T2:

ry(T 1 -+ T2)
(T1 -+ T2) = .YT - 2

|T 1| + IT 2 |

Because the most expensive cost for any mapping is to delete T[0] and insert T2 [0]

(that is, swap the roots), for a cost of |T1 + T2 1, and there is no negative cost, we

know:

0 < <1

We can now utilize ' to automatically collapse nodes. We first choose a threshold

cost, 'Y. We then collapse any pair of neighboring nodes in the pattern which (1)

have the same tag name and (2) where the mapping between them has a normalized

cost less than 1T. Note that the our requirement that two siblings have the same

tag is equivalent to ensuring that they have the same T, because they share the same

parent node. As mentioned in Section 4.2, this is a good heuristic for finding nodes

with similar semantic content.

To collapse two subtrees rooted at nodes v and w with a mapping Mw, we first

remove any nodes from the subtree v which are deleted in Mw, replacing them with

wildcard nodes. We then delete the entire subtree rooted at w, including w itself. By

45

doing this, along with our repetitive matching algorithm of the previous section, we

are allowing the newly collapsed subtree at v to perform the matching function for

both v and w.

This heuristic is beneficial for several reasons. First, as mentioned above, it allows

us to match variable-length lists of semantic content. In addition, it results in more

compact patterns. Because we have only collapsed neighboring subtrees with a low

normalized cost, we have effectively represented the same information with fewer

nodes. The result is smaller, more flexible patterns.

4.4.3 Sibling Matching

The algorithms and heuristics in the preceding sections deal entirely with examples

that span a single subtree in the document. A contiguous selection in a web browser,

however, may span several neighboring subtrees.

If the selection spans all children of a single parent node, we may represent it by

moving the selection up to that parent without loss of generality. On the other hand,

if the selection only spans a subset of the children of the parent node, we cannot move

the root of the selection without effectively changing the nodes selected. Figure 4-5

shows an example of these two types of selections. In particular, Figure 4-5(b) shows

a simplified tree from a news site, where the components of the main headlines are

all lined up as siblings of the same node. If the user wishes to create a wrapper for a

single story, they select only a subset of those siblings.

Unfortunately, our edit distance heuristic does not apply well to the types of

unrooted or "forest" selections shown in Figure 4-5(b). Edit distance can only be

computed for pairs of rooted trees. One approach is to add the parent of the selection

as the root, ignoring the other sibling nodes which are not part of the selection.

This makes an effective pattern which matches each instance of the semantic content.

Unfortunately, because of our greedy algorithm for finding alignments, it also aligns

in several other ways with the document, each of which is incorrect. Notably, the

number of incorrect alignments grows exponentially with the number of valid matches,

swamping our patterns with bad matches. Figure 4-6 shows an example of these

46

TD

F A A "Time"

B "Title"

"Series"

(a)

TD

A "Bylinel""Summary 1" A "Byline2""Summary2

"Headlinel" "Headline2"

(b)

Figure 4-5: The two cases of multiple, sibling subtrees comprising a selection. In (a),
the user has selected all children of an element, so the selection is moved up to that
element without changing the meaning. In (b), the user has only selected a subset of
children, so we cannot move the selected node.

d

incorrect alignments. The first document tree shows the desired alignments, while

the bottom two show incorrect alignments resulting from the repetitive matching

scheme.

Currently, we have not been able to extend our algorithm to deal with these cases,

although we discuss several potential approaches in Section 8.2.1. Instead, to deal

with partial selections, we have tied the LAPIS [26] pattern API into our system.

Given a document and one or more selections, LAPIS generates a set of hypotheses,

each representing a possible pattern for the selection. These hypotheses, written in

a language called text-constraints, are linear in nature, parsing the document into

tokens and learning patterns based on these tokens.

We integrate LAPIS into our wrapper induction system at the lowest level, and

47

S "Bylinel"Summaryl "Byline2""Summary2"

eadline 1" "Headline2"

TD

A * *

(a)

TD

A "Byline 1'"Summary" A "Byline2""Summary2"

"Headlinel' "Headline'

TD

A"Bylinel '"Summary l" A "Byline2 ' "Summary2"

"Headlinel" "Headline2"

(b)

Figure 4-6: The incorrect alignment of a pattern generated from a partial selection.

only where the user's selection covers a subset of sibling elements. In this case, we

pass LAPIS only the HTML source of the parent element of the selection, as if it

were the entire document. LAPIS then generates a text-constraints pattern based on

this restricted portion of the document and the user's selection.

Later, when we match the pattern against a new document and reach the part

of the pattern that is represented by text-constraints, we simply pass this part of the

new document back into LAPIS and have it retrieve the matches for us.

By restricting the execution of LAPIS to only the portion of the document where

there is a partial selection, we can retain the power of our skeleton patterns and list

collapse, combined with the flexibility of LAPIS's text-constraints system in dealing

with partial selections.

48

"1H

(TABLE

TR

TD TD TD

"Cast:" A "Characterl" A "Character2'

"Actori' "Actof"

Figure 4-7: Capturing the context of a selection. In this case, the user has selected a
single "Actor" node. We move the root of the pattern up the tree to capture context
such as "Cast:" and other actor nodes.

4.4.4 Context

Beyond inducing a pattern for the text the user has actually selected, it is often

important to capture the context of the example. This is especially important to avoid

overgeneralization in cases where the wrapped text is only a few elements in size (for

instance, a single hyperlink or image). If we did not capture the example's context,

we would end up matching every hyperlink or image on the page indiscriminantly.

To capture this context, we simply move the root of the example up the tree. For

each ancestor v included, we gain the context of the other children of v. An example

of this process is shown in Figure 4-7.

We can place a limit on this context by restricting the size of the tree we are willing

to accept to a maximum size Smax. Each time we move up to another ancestor, we

add to the size of the example JEJ. We continue as long as IEJ smax-

Capturing context is important for several reasons. First, as mentioned, it enables

us to match very simple structures such as single images without overgeneralizing.

In addition, once we have gathered context, we can apply the list collapse heuristics

described in Section 4.4.2 to the entire context. For example, in the case of Figure

4-7, we would not have been able to collapse any nodes in the user's original selection.

However, once we have moved the root of the pattern up to get the context, we see

that we can collapse the neighboring TD nodes. Later, when we match the pattern,

49

we will match all actors in the list, rather than just the first.

4.4.5 URL Prefixes

Once wrappers have been formed, it is important to match them against the correct

subset of pages. On many sites, semantic information of the same type is spread

across multiple pages, all formatted in the same way, and thus all amenable to the

same wrapper developed with our system. For instance, two different searches on

Google have similar syntactic formatting, but have different URLs:

* http://www.google.com/search?q=haystack

" http://www.google.com/search?q=wrapper*/20induction

Similarly, pages for two different movies on the Internet Movie Database also have

different URLs:

* http://www.imdb.com/title/tt0033467/

" http://www.imdb.com/title/tt0034583/

If we attempted to tie wrappers solely to the exact URL on which they were

defined, we would lose much of the benefit gained from the patterns we have generated.

The user would be forced to create separate (but effectively equivalent) patterns for

each page on a site with a different URL.

Instead, we have developed heuristics to make the reuse of wrappers possible.

First, we note that wrappers are often applicable across all pages on a single host

(such as www. google. com or www. imdb. com). Our first heuristic, then, is to associate

wrappers with the hosts on which they were created. We then simply run all wrappers

for the host on every page that the user visits on that host.

However, this process is inefficient and often incorrect. For instance, a wrapper

created for Google's web search is not necessarily applicable for their newsgroup

search. A wrapper developed for IMDB's movie pages is not necessarily applicable

for their actor pages. Evaluating all of a host's wrappers on every page wastes time

and may provide incorrect or mislabeled results to the user.

50

To adjust for this, we take note of the fact that most pages on a site with similar

semantic content have a similar URL prefix. For instance, all Google result page

URLs begin with http://www.google.com/search?. All IMDB movie pages have

the URL prefix http: //www. imdb. com/title/.

Thus, to determine which wrappers to execute on a given page, we simply compare

the prefix of the current URL against the prefixes of the URLs of existing wrappers.

When we find wrappers with the same prefix, we execute them on the current page.

We currently generate these prefixes manually, by removing either the query (the

text after the "?" character) or the final directory (the text after the second-to-last

"/" character). We then query the wrapper database for existing wrappers with the

same URL prefix, and run only those wrappers on the current page.

In the future, we plan to maintain a suffix tree data structure [29] built from the

URLs of all wrappers currently in the system. A suffix tree is useful for determining

similar prefixes of a set of strings, and may be built in time linear with the size of

the data set, and queried in time linear with the size of the query string. We plan

to augment the suffix tree to maintain the wrapper (or wrappers) associated with a

given node. We will also need to restrict our queries so they do not return results

which are too general (for instance, every URL begins with the prefix "http://".

This system will allow us to quickly and easily retrieve existing wrappers which have

a common URL prefix with the current page.

4.5 Variables

The heuristics described above to augment our basic wrapper induction algorithm

introduce several variables. The effectiveness of our system depends on our choice

of these variables, and we describe various factors which led to our choices of two of

these variables below.

51

4.5.1 Maximum Example Size

To improve the effectiveness of our wrappers, as well as allow them to often be formed

from fewer examples, we described a method for gathering the context of the user's

selection in Section 4.4.4. There are several trade-offs in the process of obtaining this

context which center around the size of the example being considered.

The size of an example, JEJ, is defined as the number of nodes in the example

subtree. It is important to consider JEj in forming wrappers because the running

time of the tree edit distance algorithm, as described in Section 4.3.1, is directly

dependent on the size of the two trees being considered. If we attempt to generalize

examples which are too large, the user will notice an unacceptable lag in the system

as it attempts to calculate the edit distance'. The system resources (memory and

processor) required for this calculation are also dependent on the size of the trees

being considered.

If we form a wrapper without gathering context for the examples that the user

has selected, the size of the pattern being generated is uniquely determined by the

nodes in the selection. In this case, without context, we can only maintain a hard

limit on the maximum size of the example, and reject any examples that exceed this

size.

On the other hand, if we decide to gather context, our system has more control over

the size to which the wrapper grows. This process can be extremely important, as it

often prevents overgeneralization, especially for small patterns. If we move far enough

up the document tree, the context we find will allow us to more effectively "zero in"

on appropriate content during matching. However, we must also place a limit on this

process, or we will incur the time and system resource penalties mentioned above.

We have settled on a two-part system for limiting the size of examples and wrap-

pers. First, we have placed a hard limit, sa, on the absolute maximum size of

examples allowed. This limit helps prevent us from accepting examples which en-

6There may be cases where this lag is acceptable - for instance, if we are attempting to create a
pattern encompassing an entire page. We will not provide for this here, but do discuss it further in
Section 8.2.1.

52

compass the entire page, which would require a large amount of time to process. If

the user attempts to specify an example with size greater than smax, we simply alert

them that it is too large and ask that they make another selection. We have found

that the value smax = 250 is large enough to form good wrappers from few examples,

but small enough to prevent unnecessary delays caused by performing the tree edit

distance calculation on excessively large trees.

In addition to smax, we have also provided the user the ability to set their own

maximum size value, suser* suser is utilized in a similar way to smax, to limit the size

of the example to a reasonable size. It is useful on certain sites where the context of

the wrapper is of a specific size, but growing the context too large would result in an

overgeneralized pattern. This feature is mostly useful for expert users, and as such

is kept hidden unless a user specifically requests to specify it. The user may create a

pattern with a certain Suser by selecting the menu option "Create Wrapper (Specify

Size)." Once selected, wrapper induction proceeds in the normal fashion, with the

exception that the user is prompted for a value for suse, before the wrapper is formed.

If the user selects the standard "Create Wrapper" option, we take the default value

Suser = 40, which was also determined to be effective during our survey of relevant

web sites.

4.5.2 List Collapse Cost Threshold

Another important factor in our ability to effectively create wrappers is the threshold

at which we collapse neighboring nodes throughout the pattern tree. As described in

Section 4.4.2, we utilize a list collapse heuristic, by which we combine similar subtrees

in the pattern into a single subtree. This procedure provides us with several benefits.

First, it gives us more compact patterns. In addition, these patterns are more flexible,

allowing us to match variable-length lists of semantic content, rather than having to

form a separate wrapper for each possible size of list.

To decide which nodes to collapse, we first calculate the normalized edit distance

cost, ', between the two subtrees. We then employ a threshold cost, YT, and collapse

the two nodes if their normalized cost is less than this threshold.

53

The choice of rT also involves a set of trade-offs. If we set the value too low, we

run the risk of not collapsing subtrees which actually contain similar content. If we

set the value too high, we will collapse subtrees which are not very similar, and risk

overgeneralizing our patterns.

Noting that the normalized cost is restricted to 0 < I 1, we have found that

the value YT= 0.25 is a good compromise between under- and overgeneralization of

patterns. In effect, this choice requires the two trees under consideration to share at

least 75% of their nodes to be collapsed. In practice, we have found that this is a

good cutoff point for predicting when syntactic similarity implies semantic similarity.

4.6 Algorithm Summary

We now pause to summarize the algorithms and heuristics presented above and piece

them together into a full pattern induction and matching routine.

4.6.1 Induction

To create a pattern, we first gather examples from the user in the form of subtrees

from the document. For each of these examples T, we gather context by moving the

root of the example up the tree as long as Ti smax, where smax is the maximum

example size. If specified by the user, we utilize user for gathering context instead of

smax-

Beginning with the first example T as our pattern template P, we map P to each

other example T using the tree edit distance algorithm described in Section 4.3.1.

Each edit distance operation produces a mapping Mi containing inserts and deletes.

For each deleted node in Mi, we delete the corresponding node in P, replacing it with

a wildcard node. This series of mappings and deletions creates our skeleton pattern.

Once all examples have been merged into P, we next collapse neighboring nodes

within the tree using the heuristics of Section 4.4.2. We walk through the nodes of the

tree in preorder, skipping the root. At each node P[i], we consider its right sibling,

P[i + 1], if it exists. If P[i] and P[i + 1] have the same tag name, we map them

54

using the tree edit distance algorithm. If the normalized cost ' of this mapping is

less than a predetermined threshold iT, we collapse the nodes as follows. We first

delete any nodes from the subtree P[i] which are deleted in M, replacing them with

wildcards. We then delete the entire subtree rooted at P[i + 1] (without replacing

it with a wildcard). This allows the P[i] subtree to match multiple times in our

repetitive matching scheme.

Finally, to deal with partial selections, we create LAPIS text-constraints pattern

for the affected subtree. We pass LAPIS the HTML source of the parent of the

selection, along with indices indicating the extent of the user's selection. The text-

constraints pattern generated by LAPIS is then stored at the parent node for later

use in pattern matching.

4.6.2 Matching

Given a pattern P constructed as described in the previous section, we now provide

a simple algorithm for finding matches in a new document tree T.

We begin by taking the nodes of T in preorder. For each node v, we check whether

it is equal to the root of P, P[0] (see Section 4.1 for our definition of node equality).

If P[O] is equal to a node v, we recurse. We take the list of children of P[O] and

of v, and attempt to find an alignment as described in Section 4.3.2. To allow for the

repetitive matching strategy of Section 4.4.1, we also allow individual nodes of P to

align with more than one node of T, as long as the sibling order constraint is met.

We continue to recurse down the trees P and v as long as a alignment is found for

the children at each level. If we reach a node where a LAPIS text-constraints pattern

is stored, we pass the node's HTML and the pattern into LAPIS, which returns a set

of matches for that node.

If we successfully find a mapping from every node in P to a node in the subtree

rooted at v under these constraints, we consider the pattern matched. We record the

set of alignments that make up the match for later use. We then continue through

the preorder listing of T to find other matches.

When we have attempted to match against each node in T, we return the array

55

of matches, or an empty array if no alignments were found. These matches will be

used along with the semantic labels described in Chapter 5 to map semantic meaning

onto pages for the user.

56

Chapter 5

Semantic Wrappers

In the previous chapter we outlined a powerful wrapper induction system which al-

lows us to create compact, reusable patterns for information stored on the Web. To

integrate these wrappers into the framework of the Semantic Web, we now develop

a means for asserting semantically meaningful statements about the features they

represent.

5.1 Ontologies

In the context of the Semantic Web, an ontology is a description or framework used to

describe the relationships between semantically meaningful concepts. An ontology is

comprised of descriptors for a single category of semantic information, such as News,

Search, or Cinema. Ontologies on the Semantic Web are described and applied using

the RDF standard [3].

For our purposes, we will be concerned with two main ontological types: classes

and properties. Classes are used to categorize or classify instantiable "objects." Ex-

amples of classes on the Web include a Book, NewsStory, SearchResult, Movie, and

Actor.

Properties are used to describe and differentiate the values of class members.

Properties can, themselves, be instances of a class, or may be "primitive" types such

as integers or strings. For example, a Book has an author, title, publisher, and

57

numberOfPages. Some classes may have more than one instance of a single property.

For example, a JournalArticle may have more than one author.

We will use the convention of representing semantic classes and properties with the

syntax Ontology: Class and Class: property. Classes will be capitalized and proper-

ties lowercase. For example, the News: NewsStory class has the property NewsStory: author.

When the meaning is unambiguous, we will abbreviate by leaving out the name of

the ontology, for example, the NewsStory class and the author property.

Where classes and properties abstractly describe objects, an instance of a semantic

class is a specific occurrence of that class. An instance of a class has its property slots

"filled in," differentiating itself from other instances. For example, one instance of

the Book class has the title "Cat's Cradle" and the author "Kurt Vonnegut," as

well as many other properties, filled in.

In RDF, these instance bindings are stored as statements, described by {subject,

predicate, object} tuples. The subject of a statement is a reference to the resource

that the statement is about. The predicate is a descriptor which declares a certain

property of the subject. The object is another reference which is the value of the

property. For example, the following is Adenine [25] code for the properties of the

book from the last paragraph:

add { :myBook

Book:title ''Cat's Cradle''

Book:author ''Kurt Vonnegut''

Book:price ''$12.95'' ;

Book: image <http://images.barnesandnoble .com/images

/1220000/1220677.gif> ;

Book:publisher ''Dell Publishing Company, Incorporated''

Book:ISBN ''038533348X'

}

Interestingly, RDF statements may be chained by making the object of one state-

ment the same resource as the subject of another. For instance, the author "Kurt

58

Cat's Cradle

Papehdk,:._-tvite rh. _

L1Pin $1C95

$U11 i
Book : t i tle +0 19

Book:author

Book:price

Book: image People who weht this book ake hought
* Sla ~rerht. Or, he C irdniCrus ada A

Book:publisher .igrc. ew D tv veg
+ Qreakfat d xarnparer Kut VcnnagA

Book: ISBN * The Sira I T Ku Vnnegt

Rv P :) nc Ku r owgul

Prduct Dwtaidr

ISBN Q38533348X P.lWkher: DEII Pubkshmg Cornpany,
F ofto "; n hopoae
334rpp Bpanos & Mfhla Salos Rak 3,45t
Pub. Date: SelIs: Henry HakCIassict Librar
septete 1990

Figure 5-1: An example of mapping the properties of the class Book to a page from
http://bn.com/

Vonnegut" is actually a full-fledged instance of the class Person. This class be the

subject of its own statements, asserting its name, address, and email, for instance.

While our semantic labeling scheme will not handle this type of "recursive" class

structure, it is interesting to think of extending our wrappers to handle these cases,

as discussed in Section 8.2.1.

Our goal will be to map the properties of ontological classes to the features of

World Wide Web pages describing them. An example of a page describing an instance

of a Book is shown in Figure 5-1. Here, we see abstract properties such as author

and title mapped to the concrete features shown on the Web.

5.2 Labeling Wrappers

The patterns described in Chapter 4 provide an excellent opportunity to formalize

the types of mapping shown in Figure 5-1. By comparing and combining several

similarly-structured instances of the same semantic content, our wrappers capture

59

* SAIL Student
A A *Seminar -

Sprinq 2004:
How Puzzles
Can Dilute A

B * DoS Attack
(4:15 PM)

*

Figure 5-2: Mapping a pattern with wildcards to content.

their common syntactic structure. At the same time, the mapping process leaves

empty "slots" precisely where the variable semantic properties are in the structure.

For the purposes of describing semantic content, we can think of each example

as an instance of a semantic class which the user is attempting to generalize. When

we created the patterns, we began by taking a single, specific instance, example T1.

We then mapped this instance to other instances, removing nodes that the instances

did not have in common. In semantic terms, what we did by removing these specific

instance nodes was turn the instances into a generic description of the structure of

the semantic class they represent.

When it finds nodes which differ between examples, our pattern induction algo-

rithm changes these nodes into wildcards. These wildcards provide a natural binding

location for our semantic properties, as they directly map the wrapper's structure

to the variable features contained in the web page's structure. In this way, we can

think of the wildcards as mapping back onto the page when the pattern is matched.

For example, Figure 5-2 shows this mapping for the pattern we originally derived in

Figure 4-2.

5.2.1 Classes

Based on these observations, we describe our method for binding RDF statements

to our wrappers. First, we note that by selecting an "object" on a page to wrap,

the user has, in effect, stated that the selected region represents an instance of some

60

TD <TalkAnnouncement>

A A <time>

B <title>

<series>

Figure 5-3: A semantically labeled pattern.

semantic class. For example, in creating a wrapper for the CSAIL events calendar

page, the user selects the text of a single Talk instance from the page.

We can thus form a link between the syntactic page structure and the semantic

ontology structure by binding the class resource to the wrapper itself. For instance,

we bind the Talk class to the entire wrapper shown in Figure 5-2. When the wrapper

is later matched against a page, each match represents an instance of this class.

5.2.2 Properties

Once the wrapper has been classified, we also need to label its wildcard nodes with the

properties they represent (if any). These bindings are effectively asserting semantic

statements of the form {Class property ?x}. Here, Class is the semantic class of

the wrapper, described above, and ?x is an unbound variable containing the value

of property. ?x is represented in the wrapper by a particular wildcard node. This

statement is effectively saying that the wrapper's class has some unknown property

located at the wildcard node.

For example, one of the wildcards shown in Figure 5-2 is bound to the title prop-

erty of the Talk class represented by the wrapper. Abstractly, we have the statement

{Talk title ?x}. When the match is found in Figure 5-2, the wildcard is bound

to the actual text containing the title. We now have the concrete statement {Talk

title ' 'How Puzzles Can Dilute A DoS Attack''}. For each labeled property,

another statement is created when the pattern is matched.

61

Thus, by binding abstract statements of the form {Class property ?x} to the

wildcard nodes of our wrappers, we can build up a full semantic description of the

classes they represent. These abstract statements can be stored by binding the se-

mantic class to the root of the pattern, and binding the property descriptors to the

wildcard nodes. For instance, an example of the fully labeled TalkAnnouncement

semantic pattern is shown in Figure 5-3.

When the pattern is matched, we dynamically instantiate a new instance of the

type represented by the wrapper's class. We then add RDF statements about the in-

stance's properties based on the text of the document nodes matched by the wrapper's

wildcards. 1

5.2.3 Matching Considerations

There are a few minor modifications to this description necessary to accommodate the

pattern enhancements described in Section 4.4. First, adding context to an example,

as described in Section 4.4.4, changes the location of its root node. If we moved

the semantic class label along with the root, we would be changing the syntactic-

to-semantic mapping that the user had defined, thus changing the meaning of the

wrapper. Instead, we choose to bind the class to a specific node in the example,

and thus to a specific node in the wrapper. Initially, this is the root of the user's

selection. When we add context, we keep the class bound to that node, even when

the root changes.

This method of binding the class to a specific node is important when we consider

the repetitive matching scheme of Section 4.4.1. For example, if we gather context

for the pattern and end up collapsing the node containing the semantic class, we may

end up creating a whole list of semantic objects during matching, rather than just

one. Keeping the class bound to the true semantic root of the pattern allows us to

instantiate one object for each document node to which the class is bound.

'As defined in Section 4.3.2, a wildcard may match zero or one nodes in an alignment. If
a wildcard does not match any document nodes, we simply do not add the corresponding RDF
statement.

62

An example of this type of class binding occurs for the pattern generated for the

list items in Figure 4-4. This pattern might contain objects with the class Link. Each

time the branch of the pattern containing the A node and the wildcard is evaluated,

we create a new instance of type Link, separate from the other matches.

A similar repetitive matching strategy holds for property nodes. If the semantic

root matches multiple times, the wildcard nodes within that subtree will also match

multiple times. We keep these matches separate, allowing us to bind the correct

properties to each instance of the class. For example, the Link objects described

above would each be bound to their own title property based on the node to which

the wildcard was bound.

63

64

Chapter 6

User Interface

The algorithms for wrapper induction, matching, and semantic labeling outlined in

the previous chapters provide a powerful tool for describing semantic information on

the World Wide Web. To be useful, however, this tool must be outfitted with an

easy-to-use, intuitive user interface.

To provide this interface, our algorithms have been implemented within the Haystack

information management client [24]. Haystack provides users with a rich set of tools

for creating, modifying, categorizing, and sharing semantic information. It is tightly

integrated with the RDF standard [3], a powerful language for describing and struc-

turing the semantic links between objects and information. This integration allows

us to provide simple interfaces for labeling patterns as described in Chapter 5.

Our interface has five main parts, described below. The first allows for the cre-

ation of wrappers from an initial example on a web page, while the second allows

the user to add additional examples. Once wrappers have been created, a similar

interface allows users to label them with semantic properties. We also provide visual

feedback and context-sensitive menus through Haystack on pages that have existing

wrappers. Finally, we describe our interface which allows more advanced users to

directly manipulate the structure of a wrapper.

65

(opy URI

CSAI L F Create Weblog (RSS) connection
Create a Wrapper

Create a Wrapper (Speci ize)

Export to file

Locate additional
information

Q* Recommend

Remind me to prepare for this

Remind me to read this

Rename

Send this item to someone

Use in pending tasks...

i 2- Show summary...

adelson@csail.mit.edu
Web Site

Figure 6-1: Creating a wrapper on the CSAIL Faculty page.

6.1 Wrapper Creation

Inside Haystack, the wrapper induction functionality is always available to the web

browser through the context menu - the user does not need to do anything to enable

it. A user begins the wrapper induction process by simply navigating to a page

containing semantic information.

Once there, the user initiates wrapper induction by highlighting the relevant con-

tent using the browser's standard mouse selection interface. They then right-click,

and choose "Create a Wrapper" from the context menu that appears.1 This menu

selection is shown in Figure 6-1 on the CSAIL faculty directory page, where the user

is attempting to create a wrapper which will match each Person in the directory.

Using Haystack's UI continuation framework, the user is then prompted to provide

several arguments necessary for wrapper creation, as shown in Figure 6-2. This

framework treats missing function arguments (such as our semantic class) as tasks

which the user may complete whenever they wish. These continuations appear as

modeless dialogs on the right pane of the Haystack interface.

Using the continuation, the user is asked to specify a semantic class for the wrapper

'If the user has not selected any text in the browser, they are prompted to do so at this point.

66

Figure 6-2: The UI continuation for creating a wrapper.

which describes its type. They may specify this class using Haystack's built-in search

functionality, or type the name of the class manually. The user may also provide a

name for the wrapper to help them to identify it later.

Once the user clicks "OK" from the UI continuation, the wrapper induction algo-

rithm of Chapter 4 is run in the background, and an initial pattern is generated from

this single example. This pattern is then matched against the current page, and vi-

sual feedback is provided for the user by highlighting the matched items in yellow, as

demonstrated in Figure 6-3. We note here that the user has created a fairly effective

pattern for the faculty members from only a single example.

At this point, the user is prompted to confirm the pattern, or may choose "Cancel"

to remove it from the system, as shown in Figure 6-4. This final dialog allows the

user to "back out" of pattern creation if the wrapper has been overgeneralized or has

failed in some other way.

6.2 Additional Examples

While semantic objects may often be wrapped using a single example, there are many

cases where more than one example is necessary. For instance, in our faculty directory

67

Create a Wrapper X

The following information is required:

Pattern None specified; click h.,.
Class:

Wrapper None specified; cli... Edit
Name:

Wrapper j!J CSAIL Principal Edit 3
Source Investigators
Page:

Kancel Help

CSAIL Principal Investigators

Figure 6-3: Feedback during wrapper creation by highlighting matched elements.

Figure 6-4: The confirmation dialog for wrapper creation.

example several faculty members do not have a "Web Site" link in their listing. An

example of one such entry is shown in Figure 6-5.

To generalize the existing wrapper to include this type of entry, the user first

highlights the new example, right-clicks, and chooses "Add an Example to a Wrapper"

from the context menu. The user is then prompted to choose to which wrapper they

wish to add the example, as shown on the right side of Figure 6-5. Once they click

68

Confirm Wrapper X

Wrapper for:

:ij CSAIL Principal Investigators

Please confirm the highlighted pattern
in the browser and click OK, or click
cancel to remove the wrapper.

OK Cancel

Figure 6-5: Adding an example to a wrapper.

"OK," the pattern is generalized, re-matched against the page, and the new matches

are highlighted. In the case of the CSAIL Faculty page, this second example is

sufficient to generalize the wrapper to match every faculty member on the page.

Of particular interest for additional examples is semantic content which spans

more than one page. Many semantic items only appear once on a page, so they

often cannot be generalized from a single example. Because our wrappers are stored

in RDF, and accessible to the browser for every similar page via the URL prefix

heuristics of Section 4.4.5, the user can provide their multiple examples from a series

of pages. To do this, they simply provide the first example on one page, navigate to

another similar page, and provide a second example for the same wrapper using the

interface outlined above.

6.3 Assigning Properties

Once the user is satisfied with the matches the wrapper provides, they may assert

statements about the wrapper's semantic properties. To do this, the user selects a

portion of one of the matches on a page which represents a property. They then

right-click to bring up the context menu and select "Add a Property to a Wrapper."

69

Modify a Wrapper Task X

Choose Wrapper for:

_if1 CSAIL Principal Investigators

Wrapper:

K Faculty

OK Cancel

CSAIL Principal Investi(

Figure 6-6: Adding a property to a wrapper.

The user is then presented with a UI continuation where they are asked to select

from a list of properties appropriate for the given wrapper. This list is generated

by querying Haystack's database for properties which have the current wrapper's

semantic class as their rdfs: domain. General properties that apply to all classes,

such as dc:title, are also listed. Once the user has selected a property, it is bound

to a wildcard node in the pattern as described in Section 5.2. Figure 6-6 shows the

interface being used to add the name property to the wrapper created for the CSAIL

faculty page.

Once the property has been added, the visual feedback is augmented with addi-

tional highlighting to indicate that properties have been matched. Figure 6-7 shows

an example of this highlighting once several properties have been specified for our

faculty wrapper.

70

Add to a Wrapper Task X

Add to Wrapper for:

j| C5AIL Principal Investigators

Semantic Class:

t Person

Property:

^ Manages
^ Mobile

kW Name
/ Photo
/v Relation
em Resource Type

OK Cancel

CSAIL Principal Investigators

Figure 6-7: Visual feedback after a user has added several properties to a wrapper.

6.4 Using Wrappers

Wrappers become most useful once they are fully induced, labeled, and matched

against a document. Every time a user browses to a page with a wrapper, we exe-

cute the matching algorithm for the wrapper. Any elements in the document which

match the pattern are "overlaid" with dynamically generated semantic objects. These

objects are fully-functional semantic instances, with properties supplied by the state-

ments assigned in Section 6.3. Because Haystack provides content-specific context

menus for semantic data, the user may now interact with semantic content on the

web as if it were a first-class RDF object.

For example, in Figure 6-8, the user has right-clicked on one of the faculty mem-

bers on the CSAIL directory page. Because a Person semantic wrapper has been

defined for this page, the user is presented with a context menu relevant to that

class. This includes such items as "Remind me to contact this party" and "Compose

Email Message." Because the properties of these objects are drawn from the page,

commands like "Compose Email Message" will have the appropriate information (in

this case, an email address) to execute their actions.

71

cipal Investigators

Phoner - "
Person: Edward Adelson

Web Si Wrapper: Faculty
HTTP Content, Web Page, Wrapped >
Page: CSAIL Principal Investigators

Person: Edward Adelson

Add to Address Book

] Annotate

Apply tools to

Browse to

Chat

2 Compose e-mail message

Copy URI

Export to file

Locate additional
information
Recommend

Remind me to contact this part

Remind me to prepare for this

Remind me to read this

Rename

1 Send this item to someone

Use in pending tasks,.

Show summary..

Web Site

Figure 6-8: Interacting with an existing wrapper on a faculty directory page.

To provide consistency for the user between visits, we utilize a heuristic when

creating objects to overlay on a page. Given the properties that are bound to the

wildcard nodes for a specific match of the wrapper, we query the Haystack database

for objects with those properties. If we find an object with those properties, we use

that object as our contextual overlay, rather than instantiating a new one. Note

that the object is only required to have the properties specified by the wrapper -

it may also have additional properties. This heuristic solves several interface issues.

First, it prevents us from creating extra instances of objects that represent the same

underlying item. In addition, utilizing an existing object means that a user can add

additional markup to an object created by a wrapper match, and that markup will

still exist the next time the user visits a page. For instance, a user could add one of

the faculty members to their address book straight from the web page. When they

revisit the page, that same wrapper match will still point to the object currently in

72

m in.L"I ~I L ~PatternNode: BR

Add Semantic Property

W rapper: tg Annotate
Class: Person Apply tools to
URL: http:i/www.csailmit.edulbiographiesPI/bio A

TD [http:/ihaystacklcs.mit.eduIschermatawr I Browse to

IMG Copy URI

BR Export to file
SPAN [http:I/purl.org/dcelements1. 1titI Locate additional

nformation

B Make Wildcard
Off ice: [1 Recommend

BR Remind me to prepare for this
B Remind me to read this

Phone:
* Rename
BR

AN v Send this item to someone

* Use in pending tasks...

A PatternNode: BR um
List
Wrapper: Faculty

'1

Figure 6-9: The interface for directly manipulating a pattern.

their address book, rather than being an entirely new object.

6.5 Direct Manipulation

The interfaces described in the previous sections are designed to allow users to create

useful wrappers without having to know the underlying mechanics or data structures

used for wrapper induction, as described in Chapters 4 and 5. While these methods

are easy to use, and in most cases are powerful enough to create appropriate wrappers,

advanced users may wish to manipulate the underlying patterns directly.

For this purpose, we provide an auxiliary interface for the display and modification

of wrappers. This advanced view gives the user a much greater amount of control over

the low-level structure of the wrapper. We currently provide operations for turning

an existing node into a wildcard as well as adding semantic properties directly to a

node.

73

This pattern manipulation interface is shown in Figure 6-9. In this case, the user

is modifying the pattern for the CSAIL faculty directory, as created earlier in this

chapter. Note that by right-clicking on an existing pattern node, a context menu

is displayed which allows the user to perform operations directly on the given node.

These operations include making the node into a wildcard ("Make Wildcard") and

adding a property to it ("Add Semantic Property").

74

Chapter 7

Experimental Results

The wrapper induction system described in the preceding chapters has been demon-

strated with examples from several web sites, such as the CSAIL faculty page. In this

chapter, we will describe several other experimental results for the system. We begin

by reviewing several successful wrappers created on a variety of sites, highlighting

important features relevant to our algorithms. We then describe several of the failure

modes for our system, and suggest possible improvements to correct them.

7.1 Web Site Survey

The development of our wrapper induction system was based on a survey of popular

web sites, enumerated in Appendix A, containing a variety of semantic information.

We have attempted to create a set of algorithms and heuristics which will enable the

user to create reusable patterns for this content. In this section, we try to evaluate

the effectiveness of our system on the same sites for which it was developed.

Appendix B gives several tables containing the results of applying our wrappers

to some of the surveyed sites. The tables list the number of examples necessary to

wrap a given semantic class or property. They also specify if the wrapper utilized the

LAPIS system for partial selections, as noted in the "Wrapper Type" column, as well

as brief comments on the wrapper.

75

Haystack Home
Haystack is a tool designed to let every
individual manage all of their information
in the way that makes the most sense
to them. ...
haystack.lcs.mit. edu/ - 4k - Cached -
Sirr1Lar ~pa es

Millstone Hill Radar
The Millstone Hill Observatory is a broad-based
atmospheric sciences research facility owned and
operated by MIT as part of the Haystack
Observatory. ...
www haystack edu/homepage. html - 5k - Cached
- Simridar pages

P

[TABLE

TR

TD

FONT

* B (FONT) A - A

* * Cached Similar Page

*

Figure 7-1: The SearchResult wrapper on http: //google .com.

7.2 Successful Wrappers

Overall, our experiments validate our hypothesis that edit distance can create flexible

patterns from few examples. On numerous sites, as few as one or two examples are

enough to create a useful pattern. In this section we will review in more detail a

selection of patterns from several of these sites.

Figure 7-1 shows the wrapper that was induced for the SearchResult class on

http: //google. com. We were able to create this wrapper from a single example on

the search results page through the addition of context as described in Section 4.4.4.

One interesting feature of this wrapper is the appearance of "double" wildcards in

several locations (that is, a wildcard node with another wildcard node as its child).

These double wildcards are created because of search results where the query term

does not appear in the title of the page. For instance, the result for the "Haystack

Home" page has the word "Haystack" in bold in its title. Structurally, there is an

additional B element in the pattern. On the other hand, the result for the "Millstone

Hill Radar" does not have this bold element. Thus, when the two results are collapsed,

an additional wildcard node is created.

A wrapper for the LongRangeFore cast class on http: //weather. com is given in

76

Toda g Partly Cloudy 60*/45* 0 %May 08 ,

Sun Sctee -trm 0/S 0May 09 ~ ctee -trs 7~5O 4 e TD TD TD TD TD

A BR * IMG * B *

Figure 7-2: The LongRangeFore cast wrapper on http: //weather. com.

Figure 7-2. While structurally similar to the Google SearchResult wrapper discussed

above with respect to context, this wrapper required two examples to create. This

is because the large number of differences between the context examples means that

the normalized cost, i, between them exceeded our threshold cost, T. Thus, our

system did not automatically collapse these nodes. Rather, we were required to

provide a second example to successfully generalize the pattern. In one respect, this

is unfortunate, as the examples are clearly similar in structure and perhaps our system

should have automatically collapsed them. On the other hand, we have decided to

err on the side of not overgeneralizing our patterns by choosing a low i'. Because

our system only handles positive examples, this limit is important, as it ensures that

the user has more control over how general the wrappers become.

The wrapper for the Movie: actor property on http: //imdb. com is interesting as

an example of the effectiveness of our list collapse heuristic, described in Section 4.4.2.

This pattern was created with a single example, by highlighting one of the cast

members. Our system successfully wrapped the full list by moving the context up

from the originally selected TR node to the TABLE node. The list collapse heuristic

then collapsed the list of actors into a single pattern subtree, shown inside the dashed

line in the figure. This occurred because the roots of these subtrees all had the

same tag name (TR), and the normalized edit distance between them was below the

threshold 'T. We also note that the subtree containing the words "Cast overview,

first billed only:" was not collapsed, despite having the same tag name at its parent

node. This subtree had a higher edit distance cost, and because of this our algorithm

correctly inferred that it did not contain the same type of semantic content. Instead,

77

Cast overview, first billed only: TABLE

Joseph Cotten Jedediah Leland - - - - - - - -

Dorothy Susan Alexander TR TR

Corningore Kane

Agnes Mary Kane
Moorehead

B A

Cast overview, *
first billed only: 1,*

Figure 7-3: The Movie: actor wrapper on http: //imdb. com.

Cat's Cradle
Kurt Vonnegut

Paperback,
Other Formats: I
Paperbacd I Lib

List Price:
Our Price:

Figure 7-4: The Book: author wrapper on http://bn. com.

this subtree serves as a "flag" which allows our pattern to match only the list of actors

and exclude other elements which do not begin with the text "Cast overview..."

Finally, we consider the wrapper generated for the Book: author on Barnes and

Noble, as shown in Figure 7-4. This wrapper is interesting in that there is not enough

information on a single page to effectively generalize the pattern. There is only one

author listed on a page, so there is no way for our algorithm to know which nodes

should be made wildcards. Instead, we provide another example from a different page

containing a Book on the same site. These two examples are then merged and the

appropriate wildcards are filled in, giving the pattern shown here.

7.3 Failure Modes

Despite the successes outlined above, there were several sites where we either failed

to induce a wrapper, the wrapper was incorrect, or generating a valid wrapper took

numerous examples. We reason about several of these failures below:

78

I . - - -T!T= - - -- - - - -. 7

TR

TD

(FON'f B A B IMG

Full-page Classes Many of the semantic classes we wrapped were "full-page." For

example, on http: //imdb. com, each page represents a single instance of the

Movie type. Because we restrict the allowable size of examples, it becomes im-

possible to wrap the entire class. Instead, we were able to create wrappers for

the properties of the full-page class. These properties are often classes them-

selves, as in the case of an actor on the IMDB Movie page, which is an instance

of type Person. These wrappers are still useful in and of themselves, but our

system cannot tie them together at the level of the top level, full-page class. The

issue of extending our system to accommodate full-page wrappers is addressed

in Section 8.2.1.

Selection Inconsistencies Our system depends on reliably extracting the user's

selection and finding the related subtree in the page's DOM. In several cases,

the inability to do this resulted in failed wrappers. We address this issue more

closely in Appendix C.2.1.

Wrapper Size In most cases, our default choices of suser and smax were appropriate.

However, on a handful of sites, it was necessary to adjust these parameters using

the "Create Wrapper (Specify Size)" option. Although this option is meant for

advanced users, it seems to be necessary for some content.

Frames One site (the Java API Reference) utilized HTML frames, which divide the

page into several smaller sections. Unfortunately, our system does not deal well

with these types of pages because the DOM model does not provide easy access

to them. This caused our wrappers to fail unless the user displays only the

frame containing the relevant content.

Large Numbers of Semantic "Slots" On one site (ESPN's scoreboard page) our

system required 5 examples to successfully generalize, and when it did, the

wrappers took a long time to match. This resulted from the nature of the

content being wrapped. The BaseballGame instances contained two variable

semantic "slots" for each inning of play, in addition to several other slots for

79

statistics and team information. To successfully generalize, the examples had to

differ in every slot, which meant finding examples with different scores in each

inning for each team. Later, when matching, the large number of wildcards

meant that matching took longer than normal. This occurs because wildcards

can bind to zero, one, or more document nodes, which can create an exponential

blow-up in the number of possible alignments during matching.

80

Chapter 8

Conclusion

8.1 Contributions

In this thesis we have described a system which gives non-technical end users the

ability to describe, label, and use semantic content on the World Wide Web. Previ-

ous work on labeling content on the Semantic Web, as outlined in Section 2.2, has

always focused on either content providers (in the form of page authoring tools) or on

technically proficient end users who know HTML and RDF. The tools described here

rely on interfaces and user actions already present in existing web browsers, such as

highlighting and right clicking on content.

In addition, we have provided a powerful algorithm for creating patterns from

tree-structured data using the edit distance between examples. Along with several

heuristics to improve its efficiency and accuracy, this method allows us to create

reliable patterns with as little as a single example of the relevant content.

Finally, we have drawn out an important connection between the syntactic and

semantic structures that appear on the Web. Page authors create an implicit connec-

tion between the semantics of the content they are displaying and the syntax with

which they display it. Related classes and properties are grouped together on a page,

certain properties are offset or highlighted, and lists of similar classes are formatted in

the same way. By basing our patterns on this repeating syntactic structure, and then

labeling them with the corresponding semantic information, we are making explicit

81

these underlying connections.

8.2 Future Work

The algorithms and interfaces described here are only a first step towards building

an easy-to-use, intuitive system for end users to create and manage content on the

Semantic Web. Several avenues for future research have suggested themselves, which

we outline below.

8.2.1 Wrapper Improvements

This section describes future research and general improvements relating to the un-

derlying wrappers in our system:

Recursive Wrappers Much semantic information on the web is presented in a syn-

tactically nested manner. For example, in a TalkAnnouncement, the speaker is

not just a text property but a Person class. We would like give users the ability

to define and associate these items recursively, instead of just as a single level

of RDF class associated with a set of properties.

Document-level Classes Many times an entire web page represents a single se-

mantic class, with items on the page detailing the properties of that class. For

example, each instance the IMDB Movie class is displayed on its own page, with

its properties (such as director, actor, and character) laid out throughout

the page. Our current wrappers are only able to wrap pieces of pages, making it

difficult to interact with semantic information that spans a full page. It would

be useful to extend our system with the ability to label predicates throughout

a page, which are mapped to the page-level class when matched.

Labeling Across Pages Some semantic labels transcend page boundaries. For in-

stance, on the CSAIL events calendar, only the talk series, title and time are

listed on the calendar page, while more information is available by clicking on

82

the title link. We would like to develop a system which allows semantic classes

and properties to span multiple pages.

Negative Examples There are often cases where our system creates wrappers that

are too general in nature based on the positive examples provided by the user.

We would like to allow the user the ability to make wrappers more restrictive

by giving negative examples.

Wrapper Verification Web pages are constantly in flux, making methods for val-

idating wrappers important [19]. We would like to develop an efficient way to

verify that the semantic content being returned by the wrappers is still accurate.

Full DOM Use There is much interesting semantic content associated with the at-

tributes of HTML tags, but our current implementation only utilizes the tag

names of structural elements and the text of the page. By utilizing the full

DOM tree, including attributes, we can form wrappers that capture items like

the url to which an anchor tag points, or the source of an image.

Partial Selection Heuristics The wrapper algorithm described here currently makes

use of the LAPIS pattern matching system when the user only selects a subset

of the children of a node. Instead, it should be possible to extend our system

to utilize the linear edit distance between two arrays of child nodes. This oper-

ation could be based on the edit distance algorithm between two strings, but in

our case would use DOM nodes rather than characters as its base unit. Using

this edit distance, we could generate "template/slot" patterns similar to the

tree patterns described here, but useful for partial selections.

Automation and "Curious" Wrappers With some modifications and enhance-

ments to our edit distance schemes used for pattern induction, it should be

possible to automate the location of structures on the web which have the po-

tential for semantic meaning. These structures could be recognized by their

repetitiveness and location on the page, as suggested in Chapter 3. We can

imagine performing edit-distance calculations on entire pages or on subtrees of

83

pages and locating sets of subtrees with a low-cost edit distance automatically,

without user interaction. When repetitive structures are found, the system

could present them to the user already generalized, and ask the user to fill in

the wildcards with semantic meaning. In this way, the system could become

"curious" about the semantic meaning of repetitive structures on the web.

8.2.2 User-Side Improvements

In addition to improving the underlying wrappers, there are several improvements

that might be made on the user-facing side of our system:

Ontology Creation and Browsing To create interesting and useful patterns, it is

essential that the user has clean, intuitive interfaces for creating and browsing

ontologies. The Haystack client has some current interfaces for this task, but

they should be more tightly integrated with the wrapper induction tool. This

applies not only to the ontology level, but also to the methods for selecting

semantic classes and properties to be assigned to wrappers and their wildcards.

Wrapper Management Tools Section 6.5 describes our initial interface for the di-

rect manipulation of wrappers by advanced users. This interface is very basic,

and it would be beneficial not only to provide more powerful tools for advanced

users, but to provide simple tools for non-technical users to modify and manip-

ulate existing patterns more effectively.

"Push" Wrappers The wrappers defined here are laid out in a context of pulling

information off of the web. However, many sites work both ways, also allowing

the user to fill out forms or submit other types of information. These form

entries also have semantic types associated with them, such as a Person class,

with properties such as name, address, and email. One can imagine wrappers

that grab information from the user's personal RDF store and automatically fill

out web forms that have been labeled with semantic type information.

84

8.2.3 Applications

Several of the most exciting avenues of future work involve applications of the working

wrapper induction system presented here:

Page Reformatting When two pages are wrapped using the same ontology, the

user has implicitly specified that they contain objects of the same semantic

type. The "slots" in the page where these types reside then become somewhat

"interchangeable," in that other objects of the same semantic type may also be

inserted or appended into the slots. This gives us the opportunity to reformat

and consolidate semantic information which has been similarly labeled.

For instance, the user may have created wrappers for several sites, such as

CNN, the New York Times, and the BBC, using the News ontology. Each of

these wrappers specifies the class Story, with the properties title, author,

and body. We can execute these wrappers, gathering objects of the type Story.

Interestingly, we can also fill in, or exchange the semantic content of a page with

other content of the same type. For instance, if the user likes the formatting of

the New York Times' web site, we could insert stories from the BBC and CNN

into the semantic slots created in the New York Times page. The user could

then browse stories from all their news sites at once, using the same formatting.

Custom RSS Feeds A related idea involves the RSS standard [5], which is designed

for easy syndication of news feeds. RSS contains information of a certain seman-

tic type, specifically, the Story class of the News ontology. We could imagine

combining wrappers of this type with an autonomous agent designed to execute

these wrappers on a regular basis. The results from these wrappers could be

serialized into the RSS format, to be incorporated into news readers compatible

with the standard.

Autonomous Agents The concept of autonomous agents interacting with wrap-

pers has broad applications in other areas, as well. One could imagine agents

that monitor wrappers of the type BankAccount to alert the user of negative

85

balances, or to automatically update tax or accounting software from web-based

financial sites. Wrappers defined on sites with events calendars or seminar an-

nouncements could be automatically aggregated into a central calendar. On

a travel information site, agents could monitor flights for delays or even book

vacations for the user.

Wrapper Sharing Because they are defined and backed by the RDF language, the

nature of the wrappers defined here allows them to be easily serialized. Our im-

plementation uses this feature to store and retrieve wrappers to disk in between

sessions, and to interface wrappers with the Haystack framework. However,

this serialization also suggests other interesting applications. Once semantic

patterns have been created for a page, they may be shared between users. One

can imagine downloading a full set of wrappers for a given site and instantly

enabling a full Semantic Web experience for users without the need for each

user to author their own wrappers. A distributed, peer-to-peer-type network

for sharing wrappers could aid not only in the adoption of the Semantic Web,

but in validating wrappers for our system and in creating more useful shared

ontologies.

86

Appendix A

Surveyed Sites

During the design and development of the wrapper induction algorithms presented

here, the sites below on the World Wide Web were surveyed and used for testing

purposes. They represent 29 semantic classes with 127 properties across 19 sites.

87

Site URL Prefix Class Properties

Google http://google.com/query SearchResult title, summary,
category

SponsoredLink title, summary, url

Yahoo! http://search.yahoo.com/search SearchResult title, summary,
catetgory, url

SponsoredLink title, summary, url

Internet Movie http://imdb.com Movie title, director, writer,
Database (IMDB) character, actor

Actor name, birthday, role

New York Times http://nytimes.com NewsStory headline, byline,
date, summary

http://nytimes.com/2004/... NewsStory headline, byline,
date, storyText,
relatedArticles

CNN http://cnn.com NewsStory headline

http://cnn.com/2004/... NewsStory headline, date, storyText

CNet News http://news.com.com NewsStory headline, summary, date

Slashdot http://slashdot.org NewsStory headline, poster, date,
icon, summary, link

http://slashdot.org/article.pl Comment comment, commenter,
commentNo, commentScore

Weather.com http://www.weather. com Forecast conditions, temperature, dewpoint,
/weather/local/ humidity, visibility, pressure,

wind, radarImage

LongRangeForecast date, conditions, temperature,

precipitation

Table A.1: Surveyed web pages.

00
00

Site URL Prefix Class Properties
CSAIL Directory http://www.csail.mit.edu Person name, office,

/biographies/PI/biolist.php phone, email,
webSite

CSAIL Event Calendar http://www.csail.mit.edu TalkAnnouncement series, title, time

/events/eventcalendar/calendar.php

TalkAnnouncement title, speaker, date, time,
location, host, abstract

MIT Course Catalog http://student.mit.edu/catalog/ Course title, prerequisite, time
summary, professor

Mozilla Bugzilla http://bugzilla.mozilla.org Bug bugNumber, status,
/show-bug. cgi assignedTo, reporter,

dependsOn

Citeseer http://citeseer.ist.psu.edu/ Paper abstract, citedBy, bibtexEntry,
relatedDocument, citation,
coCitation, similarDocument

Java API Reference http://java.sun.com JavaClass package, classname, superclass,
/j2se/1.4.2/docs/api implementedInterf ace, method,

description, field, constructor,
JavaMethod name, declaration, returnType,

description, returns, throws,
seeAlso

Table A.2: Surveyed web pages (continued).

00

Site URL Prefix I Class Properties

ESPN http://sports.espn.go.com/**/scoreboard Game homeTeam, visitingTeam,
homeTeamScore, visitingTeamScore,
gameTime

http://sports.espn.go.com/**/clubhouse Team name, scheduledGame, headline,
teamLeader, teamNote

50 States http://50states.com/ State statehoodDate, bird, borderStates,
flagImage, flower, governor,
motto, nickname, population,
capital, tree

EBay http://cgi.ebay.com/ws/eBayISAPI.dll Auction title, itemNo, startingBid,
timeLeft, startTime, history,
seller, description

Barnes & Noble http://search.barnesandnoble.com Book title, author, listPrice,
/booksearch/isbninquiry.asp salePrice, image, isbn,

format, publicationDate, publisher,
salesRank, summary, review

Amazon.com http://www.amazon.com Book title, author, listPrice,
/exec/obidos/ASIN/ salePrice, availabilty, image,

alsoBought, publisher, isbn,
salesRank, editorialReview

Table A.3: Surveyed web pages (continued).

Appendix B

Wrapper Results

The following tables give our experimental results for a subset of the web sites listed

in Appendix A. For more detail on the reasons for the successful wrappers and failure

modes of our system, please see Chapter 7.

91

Site Class or Property Wrapper Type No. of Comments

Examples
Google SearchResult Standard 1 Context allowed for a single-example pat-

tern.
Yahoo! SearchResult Standard 1 Context allowed for a single-example pat-

tern.
IMDB Movie:character Standard 1 Wrapped full list from single example.
IMDB Movie:director Standard 2 Examples on multiple pages required.
IMDB Movie:writer Standard 2 Examples on multiple pages required.
New York Times NewsStory LAPIS 2 Failed to match last headline.
Slashdot NewsStory LAPIS fail Inconsistencies because of selection.
Slashdot NewsStory: icon Standard 1 Individual property of NewsStory wrapped

easily.
Slashdot NewsStory: poster Standard 1 Individual property of NewsStory wrapped

easily.
Weather.com Forecast:conditions Standard 2 Examples on multiple pages required.
Weather.com LongRangeForecast Standard 2 List collapse cost threshold too high for

single example.

Table B.1: Results of wrapping surveyed sites.

Site Class or Property Wrapper Type No. of Comments
Examples

CSAIL Directory Person Standard 2 Second example necessary for peo-
ple without a "Web Page" listing.

CSAIL Event Calendar TalkAnnouncement Standard 2 Second example necessary for talks
without a "series"

MIT Course Catalog Course Standard 1
Mozilla Bugzilla Bug:bugNumber Standard 2 Examples on multiple pages re-

quired.
Mozilla Bugzilla Bug:status Standard 2 Examples on multiple pages re-

quired. Specified ser = 50 to cap-
ture appropriate context.

Mozilla Bugzilla Bug:assignedTo Standard 2 Examples on multiple pages re-
quired. Specified suser = 50 to cap-
ture appropriate context.

Citeseer Paper: abstract LAPIS 1 Slight overgeneralization dependent
on exact selection.

Citeseer Paper:bibtexEntry Standard 2 Examples on multiple pages re-
quired. Specified suser = 50 to cap-
ture appropriate context.

Java API Reference JavaClass Standard fail Page uses frames, and wrapper in-
duction could not find selection

Java API Reference (one frame) JavaClass:method Standard 2 Second example necessary for vari-
able number of arguments

Table B.2: Results of wrapping surveyed sites (continued).

Site Class or Property Wrapper Type No. of Comments
Examples

ESPN BaseballGame Standard 5 Several examples necessary because of box
score entries. Resulting wrapper has many
wildcards, causing matching to be slow.

ESPN Team:headline Standard 2
50 States State: capital Standard 2 Examples on multiple pages required.
EBay Auction:title Standard 2 Examples on multiple pages required.
EBay Auction:startingBid Standard 2 Examples on multiple pages required.
EBay Auction:timeLeft Standard 2 Examples on multiple pages required.
Barnes & Noble Book Standard fail Issues with getting correct user selection.
Barnes & Noble Book:title Standard 2 Examples on multiple pages required.
Barnes & Noble Book: salePrice Standard 2 Examples on multiple pages required.
Amazon.com Book:title Standard 2 Examples on multiple pages required.
Amazon.com Book: author Standard 2 Examples on multiple pages required.

Table B.3: Results of wrapping surveyed sites (continued).

Appendix C

Implementation Details

In developing the user interfaces and algorithms described in this thesis, we have built

several useful programming interfaces as well as encountered several issues which are

important for future developers. This appendix details these items.

C.1 Java Interfaces

The system described here has been implemented using the Java [14] programming

language. While our initial implementation has used Microsoft Internet Explorer as

the browser component, we have designed our wrapper induction system to be easily

ported to other browsers or HTML parsers.

The implementations of our algorithms interact with interfaces which extend the

DOM standard [2] for parsing HTML documents. Table C.1 lists the Java interfaces

from package org. w3c. dom which our system requires.

In addition to these methods, we have implemented additional interfaces of our

own which extend the base DOM interfaces. These provide additional functionality

not specified in the DOM standard. Tables C.2, C.3, and C.4 briefly describe these

interfaces, the superinterfaces they extend, and their key methods.

We have designed these additional interfaces with two important facets in mind.

First, they must provide the required functionality to our algorithms and user in-

terfaces, including the ability to retrieve highlighted text, add and remove elements

95

Interface Description

org.w3c.dom.Node Top-level interface for all DOM nodes.
org.w3c.dom.Document Root node of an HTML document.
org.w3c.dom.Element A structural node within a document
org.w3c.dom.Text A text node
org.w3c.dom.NodeList A list of Node objects

Table C.1: Required DOM interfaces.

from the document, and highlight portions of the page. Second, we attempted to

keep the required methods within the facilities provided by most modern browsers.

We hope that our algorithms may be easily ported to other potential browsers, such

as Mozilla or Konqueror2 .

C.2 Issues

In this section we will describe several issues which arose during the implementation

of the algorithms and interfaces described here. This is meant as a reference for future

developers who may utilize our tools.

C.2.1 Internet Explorer

Many of the issues that arose during implementation were related to our choice of

Microsoft Internet Explorer as the browser for our system. This choice was made for

several reasons:

* The Haystack system is built on the SWT toolkit3 , which utilizes Internet Ex-

plorer for its web browser component on Windows operating systems..

" A large percentage of the Haystack user base uses Windows.

" Internet Explorer's DOM interfaces are mature, and fairly well documented.

lhttp: //mozilla. org
2http: //konqueror . org
3 http://eclipse.org

96

Interface or Method Description
ITree extends org.w3c.dom.Document Methods for dealing with tree structures

int getSizeO Returns the size (number of nodes) of the tree.
INode [getNodes() Returns the nodes of this tree, in postorder.

IDOMDocument extends ITree Extended methods for querying or modifying DOM doc-
uments.

String getURL() Returns the URL of this document.
String getTitle() Returns the title of this document.
String getDomain() Returns the domain, or server, of this document.
String getPathname 0 Returns the path of this document on its respective

server.
IDOMElement getActiveElement 0 Returns the currently active element (the last element

clicked on by the user).
IDOMElement getElementAtPoint (int x, int y) Returns the element at the given point.
DOMSelection getSelection() Returns an object representing the current selection.
void write (String input) Appends the given string to the document.

DOMSelection Represents the currently selected portion of the docu-
ment

boolean isEmpty() Returns true if this selection is empty (contains no ele-
ments).

boolean isActiveElementSelection() Returns true if this selection was generated from the ac-
tive element, rather than from an actual selection.

boolean isPartialSelection() Returns true if this selection covers a subset (of size
greater than one) of the parent element's child nodes.

String getHtmlText 0 Retrieves the underlying HTML of the selection.
IDOMElement getParentElement 0 Retrieves the parent element of the selection
IDOMElement [getSelectedElements() Retrieves the subset of children of the parent element

contained by this selection.
NodeID getNodeID(throws NodeIDException Generates a NodeID, or root-to-node path, for this selec-

tion.

Table C.2: Extended interfaces.

Interface or Method Description
INode extends org.w3c.dom.Element

NodeID getNodeID()

int getSize()

int getHeight()

INode [getPostorderNodes()

INode [] getPreorderNodes(

int getSiblingNo ()

void setSiblingNo(int siblingNo)

boolean isOnlyChild()
INode getChild(int index)
INode [getChildren(String tagName)

INode getAncestor(int generation)

void setParent(INode parent)
NodeList getSiblings(

INode removeNode(
List removeChildNodes 0

Methods for dealing with individual nodes in a tree.
Returns the NodeID, or root-to-node path, representing
this node's position in the tree.
Returns the size (number of nodes) of the subtree rooted
at this node.
Returns the height of this node, or the length of the
longest path from this node to a leaf. A leaf is defined to
have height 1.
Retreives the nodes in the subtree rooted at this node
using a post-order traversal.
Retreives the nodes in the subtree rooted at this node
using a pre-order traversal.
Returns the sibling number of this child (i.e. which index
child it is of its parent).
Sets the sibling number of this child (i.e. which index
child it is of its parent).
Returns true if this INode is the only child of its parent.
Returns the child of this node at the given index.
Returns all immediate children of this node with the
given tag name.
Retrieves the Nth ancestor of this node. N=0 returns
this node, N=1 returns its parent, N=2 its grandparent,
etc. Returns null if that ancestor does not exist.
Sets the parent of this node to the given node.
Retreives an array containing the siblings of this node,
including this node.
Removes this node and all its decendents from the tree.
Removes the children of this node, returning them as an
ordered list.

Table C.3: Extended interfaces (continued).

00

I

IInterface or Method Description

IDOMElement extends INode (continued)
boolean equals(INode other)

String toString(int depth, String indent)

int getDeleteCost()

int getInsertCost()

int getChangeCost(INode other)

IDOMElement extends INode

String
String

String
String

getTagName o
getNodeText 0

getOuterHTML 0
getInnerHTML (

String startTagHTML(

String endTagHTML 0

IDOMElement highlight (String highlightColor,
String textColor)

void unhighlight 0

String getAttribute(String attributeName)

Returns true if the node given is the same as this node
for the purposes of editing distance between trees.
Returns this node recursively as a string, with the spec-
ified indentation
Returns the cost to delete this node.
Returns the cost to insert this node.
Returns the cost to change this node to the given other
node.
Extended methods for querying or modifying DOM ele-
ments.
Returns the tag name of this node.
Retrieves all text (i.e. non-markup) from within this el-
ement and its descendents.
Returns all HTML for this node and its children.
Returns all HTML for this node's children (not including
this node).
Retrieves the text of html representing the start tag of
this object. If this is a TEXT-NODE, returns the text
of this node.
Retrieves the text of html representing the end tag of
this object, or "" if this object does not have a closing
tag (e.g. iBRZ). If this is a TEXTNODE, returns the
empty string ("").
Highlights this element.

Returns this element to its original, un-highlight ()-ed
style.
Returns the value of the given attribute.

Table C.4: Extended interfaces (continued).

Unfortunately, this choice required us to deal with several bugs, some of which

often seemed nondeterministic. We outline these below, for the benefit of future

developers.

Inconsistent Sibling Numbers We heavily utilize the notion of a node's sibling

number, as defined in Section 4.1. We often found it very difficult to determine

a node's sibling number in practice, and sibling numbers occasionally differed

on subsequent visits to the same page.

Selection-to-DOM Translation The DOM standard does not deal with the notion

of a user's "selection" in the document at all. Microsoft has extended the DOM

interfaces, though, to allow for the retrieval of the current selection. However,

the selection interface only returns the HTML source of the selection, in flat

text format. It does not provide any interfaces for translating between this text

and the underlying DOM model. We went to great lengths to work around this

missing functionality in implementing the DOMSelection interface.

Inconsistent Selections The ability to consistently gather the user's intended se-

lection and turn it into a wrapper is central to our work. However, we found

that selecting certain elements in the browser was difficult, or often impossi-

ble. At other times, identical-looking selections returned different underlying

HTML. Also, the HTML returned by the selection is often inconsistent with

the HTML returned by Internet Explorer's getOuterHTML method. This made

it very difficult to consistently determine the user's intent when gathering the

selection.

As mentioned earlier, our hope is that our abstract wrapper induction model,

because it makes generous use of Java interfaces, will be easy to port to other web

browsers which may have a more consistent user experience.

100

C.2.2 Other Issues

Several other issues occurred which were unrelated to our choice of browser. These

are outlined below, along with our solutions or intended future work:

LAPIS We chose to interface with the LAPIS system [26] to handle cases where

the user has only partially selected the children of a node (see Section 4.4.3).

In many cases, LAPIS generalized effectively given only one or two examples.

However, there are several cases where the pattern was overgeneralized, or where

no LAPIS pattern could be found. We are working with the authors of the

LAPIS system to improve its effectiveness in our use case.

Semantic Roots When gathering context for a wrapper, as described in Section 4.4.4,

we move the root of the pattern up the DOM. During this process, it is necessary

to keep track of the initial root, as this is the node with semantic meaning. To do

this, we tag this node with the semantic predicate <wrapperinduct ion: semanticRoot>.

Later, when we match, we look for this predicate and use it to generate a unique

resource representing the semantic class of the object.

Caching Results Our initial implementation re-matched all wrappers on the page

every time the user right-clicked or in some other way interacted with the

wrapped content. This proved to be slow, and unnecessary, as the page had not

changed since the initial matches were made. We have implemented a caching

system within Haystack's browser part which stores these results and allows

them to be accessed as long as the page is displayed.

Instantiating Objects Each time the user clicks on a matched portion of the page,

an instance of the wrapped class is created and populated with the semantic

information from the match. Currently, a new object is instantiated every time

the user clicks on an object. This creates issues not only with redundant data,

but also with the user's expectation that every click is interacting with the same

object. To fix this, we plan to augment our result caching system to include the

101

instantiated objects as well, and to retain pointers to these objects for future

visits using a hash of the matched document subtree.

102

Bibliography

[1] The CGI specification, Version 1.1. http://hoohoo.ncsa.uiuc.edu/cgi/interface.html.

[2] Document Object Model (DOM). http://www.w3.org/DOM/.

[3] Resource Description Framework (RDF) specification.

http://www.w3.org/RDF, 1999.

[4] XML Path language (XPath) specification. http://www.w3.org/TR/xpath,

1999.

[5] RDF Site Summary (RSS) 1.0 specification.

http://web.resource.org/rss/1.0/spec, 2001.

[6] xpath2rss HTML to RSS scraper. http://www.mnot.net/xpath2rss/, 2003.

[7] T. Berners-Lee, J. Hendler, and 0. Lassila. The semantic web. Scientific Amer-

ican, 284(5):35, May 2001.

[8] R. Cole, R. Hariharan, and P. Indyk. Tree pattern matching and subset matching

in deterministic O(n log3 n)-time. In SODA: A CM-SIAM Symposium on Discrete

Algorithms (A Conference on Theoretical and Experimental Analysis of Discrete

Algorithms), 1999.

[9] M. Collins and S. Miller. Semantic tagging using a probabilistic context free

grammar. In Proceedings of 6th Workshop on Very Large Corpora, Montreal,

Canada, 1997.

103

[10] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms.

MIT Press, second edition, 2001.

[11] M. Dubiner, Z. Galil, and E. Magen. Faster tree pattern matching. J. Association

of Computing Machinery, 41(2):205-213, March 1994.

[12] D. Freitag and A. McCallum. Information extraction with HMM structures

learned by stochastic optimization. In AAAI/IAAI, pages 584-589, 2000.

[13] J. Golbeck, M. Grove, B. Parsia, A. Kalyanpur, and J. Hendler. New tools for

the semantic web. In Proceedings of 13th International Conference on Knowledge

Engineering and Knowledge Management, Oct 2002.

[14] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification

Second Edition. Addison-Wesley, Boston, Mass., 2000.

[15] C. M. Hoffmann and M. J. O'Donnell. Pattern matching in trees. J. Association

of Computing Machinery, 29(1):68-95, January 1982.

[16] J. HopCroft and R. Tarjan. Isomorphism of Planar Graphs, pages 131-152.

Plenum Press, 1972.

[17] J. Kahan and M. Koivunen. Annotea: an open RDF infrastructure for shared

web annotations. In World Wide Web, pages 623-632, 2001.

[18] D. Karger, B. Katz, J. Lin, and D. Quan. Sticky notes for the semantic web. In

Proceedings of the 8th International Conference on Intelligent User Interfaces,

pages 254-256, 2003.

[19] N. Kushmerick. Wrapper verification. World Wide Web, 3(2):79-94, 2000.

[20] N. Kushmerick, D. Weld, and R. Doorenbos. Wrapper induction for information

extraction. In Intl. Joint Conference on Artificial Intelligence (IJCAI), pages

729-737, 1997.

[21] D. Matula. An algorithm for subtree identification. SIAM Rev., 10:273-274,

1968.

104

[22] B. McKay. Practical graph isomorphism. Congressus Numerantium, 30:45-87,

1981.

[23] I. Muslea, S. Minton, and C. Knoblock. A hierarchical approach to wrapper

induction. In Oren Etzioni, J6rg P. Miller, and Jeffrey M. Bradshaw, editors,

Proc. of the Third International Conference on Autonomous Agents, pages 190-

197, Seattle, WA, USA, 1999. ACM Press.

[24] D. Quan, D. Huynh, and D. Karger. Haystack: A platform for authoring end user

semantic web applications. In Proc. 2nd International Semantic Web Conference,

2003.

[25] D. Quan, D. Huynh, V. Sinha, and D. Karger. Adenine: A metadata program-

ming language. In Student Oxygen Workshop, 2002.

[26] R.Miller and B. Meyers. Lightweight structured text processing. In Proc. of

USENIX 1999 Annual Technical Conference, pages 131-144, Monterey, CA,

USA, June 1999.

[27] K. Seymore, A. McCallum, and R. Rosenfeld. Learning hidden Markov model

structure for information extraction. In AAAI 99 Workshop on Machine Learning

for Information Extraction, 1999.

[28] L. Shih and D. Karger. Learning classes correlated to a hierarchy. Technical

report, MIT Al Lab, 2001.

[29] P. Weiner. Linear pattern matching algorithms. In Proc. of the 14th IEEE

Symposium on Switching and Automata Theory, pages 1-11, 1973.

[30] E. Weisstein. Graph isomorphism complete. From MathWorld - A Wolfram Web

Resource, http://mathworld.wolfram.com/GraphIsomorphismComplete.html.

[31] S. Wu and U. Manber. Agrep - a fast approximate pattern-matching tool. In

Proceedings USENIX Winter 1992 Technical Conference, pages 153-162, San

Francisco, CA, 1992.

105

[32] K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between

trees and related problems. SIAM J. Computing, 18(6):1245-1262, December

1989.

106

