Automated Auscultation: Using Acoustic Features to Diagnose Mitral Valve Prolapse

by

Marcia Yeojin Jung

S.B., Electrical Engineering and Computer Science
Massachusetts Institute of Technology (2003)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2004

©Marcia Y. Jung, MMIV. All rights reserved.

The author hereby grants to MIT permission to reproduce and publicly distribute paper and electronic copies of this thesis document in whole or in part.

Author ..

Department of Electrical Engineering and Computer Science

Certified by

Dorothy W. Curtis
Research Scientist, Computer Science & Artificial Intelligence Laboratory
Thesis Supervisor

Accepted by

Arthur C. Smith
Chairman, Department Committee on Graduate Theses
Automated Auscultation: Using Acoustic Features to Diagnose Mitral Valve Prolapse

by

Marcia Yeojin Jung

S.B., Electrical Engineering and Computer Science
Massachusetts Institute of Technology (2003)

Submitted to the Department of Electrical Engineering and Computer Science on May 20, 2004, in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science

Abstract

During annual physical examinations, a primary-care physician listens to the heart using a stethoscope to assess the condition of the heart muscle and valves. This process, termed cardiac auscultation, is the primary means of diagnosing cardiac disorders, the most common of which is Mitral Valve Prolapse (MVP). Yet, the practice of auscultation is highly fallible with reports of more than 80% of MVP referrals to cardiologists being unnecessary.

The overall goal is to develop an inexpensive, easy-to-deploy software application to detect Mitral Valve Prolapse. Using an electronic stethoscope, audio and EKG data were simultaneously recorded for 51 subjects. The data was then manipulated and a prototypical beat, representative of an individual's pathology, was generated based on Z. Syed's work.

This thesis presents a method for analyzing this prototypical beat. We extract 31 features from the prototypical beat, focusing on systolic activity. We then use the feature set as input to a radial-kernel support vector machine (SVM), which gives a binary classification of the subject as an MVP or non-MVP patient. We support our decision with a visual time-frequency decomposition of a patient's prototypical beat and relevant features.

Of the 51 subjects in our test set, we report three false negatives and five false positives. We achieve 82% sensitivity while reducing the false-positive rate to 15%.

Thesis Supervisor: Dorothy W. Curtis
Title: Research Scientist, Computer Science & Artificial Intelligence Laboratory

1Zeeshan Syed (MIT '03) developed an algorithm to generate a prototypical beat as part of his M.Eng. thesis work.
Acknowledgments

My personal thanks to all the people that have been a part of this project. I am indebted to all the researchers and doctors who have contributed to this work, particularly Dorothy Curtis, who provided indispensable guidance and inspiration. I am deeply grateful for the endless amounts of time and insight she so generously contributed. Also, my thanks to Professor John Guttag, Dr. Robert Levine and Dr. Francesca Nesta for their efforts and support.

I would also like to thank my family and friends for their untiring support and encouragement, especially my parents who have been so understanding and selfless with me. To my friends, thanks for all the good wishes and caring.

Finally, I’d like to thank MIT for having given me such a tremendous opportunity. My experience at MIT has been long and grueling, but also incredible. The things I’ve learned and the relationships I’ve forged, I will carry with me for the rest of my life. Thank you.
Contents

1 Introduction 13
 1.1 Problem Statement 14

2 Background 17
 2.1 Review of Cardiac Functions 17
 2.1.1 Heart Physiology 17
 2.1.2 Cardiac Cycle 18
 2.2 Mitral Valve Prolapse 20
 2.3 Heart Murmurs 21
 2.3.1 Murmurs caused by Mitral Valve Prolapse 22

3 Prototypical Beat Construction 25
 3.1 Beat Segmentation 25
 3.2 Time-Frequency Decomposition 26
 3.3 Median Filtering 27
 3.4 Band Aggregation 28

4 Prototypical Beat Analysis 29
 4.1 Normal Cardiac Event Detection 29
 4.2 Feature Selection 32

5 Classification 39
 5.1 Support Vector Machines 39
 5.2 Data 40
5.3 Testing Methodology .. 41

6 Evaluation ... 43
6.1 Quantitative Performance ... 43
6.2 Qualitative Analysis .. 45
6.3 Performance Comparison to Previous System 48
6.4 Per Dimension Analysis .. 50

7 Related Work .. 53
7.1 Z. Syed and D. Curtis ... 53
7.2 W.R. Thompson et al. ... 54
7.3 C.G. DeGroff et al. ... 55
7.4 T.R. Reed et al. ... 56
7.5 I. El-Naqa et al. ... 57

8 Summary, Future Work and Conclusions 59
8.1 Future Work ... 59
8.2 Conclusions .. 60

A Detailed Results ... 61
A.1 Table of Results .. 61
A.2 False Negative Figures ... 61

B Supplementary Figures .. 67
B.1 Per-Dimension Plots of MVP and non-MVP Samples 67
List of Figures

2-1 Chambers and Valves of the Heart .. 18
2-2 Typical EKG Waveform ... 19
3-1 Simultaneously Recorded Audio and EKG Signals. Courtesy of Z. Syed. 26
4-1 S1, S2, and Floor Value Demarcation in a Prototypical Beat 32
4-2 S1, S2, and Floor Value Demarcation using 20% Default 33
4-3 S1, S2, and Floor Value Demarcation with High-frequency Content ... 33
4-4 Murmur Demarcation in Prototypical Beat of an MVP File 35
4-5 Murmur Demarcation in Prototypical Beat of a Normal File 35
6-1 Example of False-Positive with a Benign Murmur 44
6-2 False-Positive File C15S0 ... 45
6-3 Example of False-Negative File ... 46
6-4 Example of Succinct MVP Murmur 47
6-5 Example of Holo-systolic MVP Murmur 48
6-6 Example of Quiet S1 Sound in MVP File 49
6-7 Example of Corrected False Positive 50
6-8 Plot MVP vs. non-MVP Values for Murmur Duration in 350-550 Hz Frequency Band ... 52
6-9 Plot of MVP vs. non-MVP Values for Slope of Murmur in 350-550 Hz Frequency Band ... 52
A-1 False-Negative I ... 64
A-2 False-Negative II ... 65
B-1 Per-Dimension Plots (i)peakmag_2 (ii)peakmag_3

B-2 Per-Dimension Plots (iii)peakmag_4 (iv)peakdur_2 (v)peakdur_3 (vi)peakdur_4
(vii)peakslope_2 (viii)peakslope_3

B-3 Per-Dimension Plots (ix)peakslope_4 (x)peakonset_2 (xi)peakonset_3 (xii)peakonset_4
(xiii)peaktobandenergy_2 (xiv)peaktos1energy_2

B-4 Per-Dimension Plots (xv)peaktos2energy_2 (xvi)peaktobandenergy_3 (xvii)peaktos1energy_3
(xviii)peaktos2energy_3 (xix)peaktobandenergy_4 (xx)peaktos1energy_4

B-5 Per-Dimension Plots (xxi)peaktos2energy_4 (xxii)s1tobandenergy_1 (xxiii)s2tobandenergy_1
(xxiv)s1tobandenergy_2 (xxv)s2tobandenergy_2 (xxvi)s1tobandenergy_3

B-6 Per-Dimension Plots (xxvii)s2tobandenergy_3 (xxviii)s1tobandenergy_4
(xxix)s2tobandenergy_4 (xxx)s1width (xxx)s2width
List of Tables

6.1 Summary of Overall Results ... 45

A.1 Table of Results for Normal and Benign Subjects 62
A.2 Table of Results for MVP patients 63
Chapter 1

Introduction

During annual physical examinations, a primary-care physician listens to the heart using a stethoscope to assess the condition of the heart muscle and valves. This process, termed cardiac auscultation, is the primary means of diagnosing cardiac disorders, the most common of which is Mitral Valve Prolapse (MVP). Mitral Valve Prolapse is considered to affect up to 5% of the general population [10]. However, the practice of auscultation is highly fallible with a substantial number of unnecessary referrals to cardiologists. This is because detecting relevant symptoms and forming a diagnosis based on heart sounds is a skill that can take years to acquire and refine.

The human heart produces sounds having low frequency (20–1000 Hz), large dynamic range and rapidly changing content. And, the human ear can often be fooled by many of the subtleties of heart sounds. Part of the difficulty stems from the fact that heart sounds are often separated from one another by less than 30 ms [17]. Compounding the matter, the energy in the most relevant part of the signal is often far less than (at times, less than a thousandth of) the total energy. The analysis of heart sounds consequently remains a challenge for many physicians.

Improved cardiac auscultation could have a significant impact on the quality and cost of medical care. The contemporary “gold standard” tests are expensive and often unnecessary. As many as 87% of patients referred to cardiologists have only benign heart murmurs [17]. The resultant inefficiency is substantial, as the cost of a visit to a cardiologist (including associated echocardiography) runs anywhere from $300
to $1000 in the United States [17]. In addition, there are also many forms of heart disease that remain asymptomatic and, therefore, undetected until they eventually deteriorate into serious medical disorders.

The goal of the auscultation section of the Patient Centric Network project at MIT’s Computer Science and Artificial Intelligence Laboratory is the design, implementation and evaluation of an inexpensive-to-deploy and easy-to-use software application system that can be used, in the office of a primary-care physician, to determine whether further examination, by means of an echocardiogram and consultations with cardiac specialists, is appropriate. The system aims to make a recommendation and support its decision with visual diagnostic aids, such as images of a prototypical heartbeat and relevant features. In addition, the system should present its recommendations in a transparent manner that can be validated in light of physiological knowledge. By doing so, the group hopes to demystify auscultation, and thereby improve the quality of its practice.

1.1 Problem Statement

The research presented here is part of an ongoing project of the aforementioned Patient Centric Network group. In particular, our work builds heavily upon the thesis work of Zeeshan Syed, who developed a preliminary system to detect Mitral Valve Prolapse through automated auscultation [22]. This project aims to extend and improve Syed’s work in this area.

Several aspects of Syed’s technical approach to the problem of automated auscultation are preserved in this work. Specifically, Syed’s concept of a prototypical beat, generated from raw recordings of audio and EKG signals, as representative of a patient’s pathology is fundamental to our work. This project seeks to gain a better understanding of the prototypical beat, and thereby fully leverage the information present in it. We do so by computing a feature set, characterizing different diagnostic features present in the prototypical beat. Using this feature set, we employ a support vector machine as a binary classifier in a new multi-dimensional feature space [11].
Finally, we extend Syed's library of visual aids, used to support the findings of the system, to include these new features in the display of the prototypical beat.
Chapter 2

Background

In this section, we offer a brief review of relevant cardiac terminology, followed by a discussion of heart murmurs with particular emphasis on murmurs associated with Mitral Valve Prolapse.

2.1 Review of Cardiac Functions

2.1.1 Heart Physiology

The heart consists of four chambers: the right and left atria and the right and left ventricles. The two atria act as collecting reservoirs for blood returning to the heart while the two ventricles act as pumps to eject the blood to the body. De-oxygenated blood returns to the heart via the major veins (superior and inferior vena cava), enters the right atrium, passes into the right ventricle, and from there is ejected to the pulmonary artery on the way to the lungs. Oxygenated blood returning from the lungs enters the left atrium via the pulmonary vein, passes into the left ventricle, and is then ejected to the aorta.

In addition, the heart has four major valves, which ensure the unidirectional flow of blood throughout the system. The atria are separated from their respective ventricles by the atrioventricular (AV) valves. More precisely, the tricuspid valve separates the

\footnote{This information comes from medical literature and is the widely accepted view of cardiac anatomy and functions [4, 13, 16].}
right atrium from the right ventricle while the mitral valve separates the left chambers of the heart. Two more valves, the semilunar (SL) valves, close off the ventricles from the arteries to which they lead. The pulmonary valve separates the right ventricle from the pulmonary artery and the aortic valve separates the left ventricle from the aorta. Collectively, these four valves prevent the back-flow of blood in the heart.

2.1.2 Cardiac Cycle

The cardiac cycle refers to the sequence of events in the heart from the beginning of one heart-beat to the beginning of the next. Physiologically, an electrical impulse originates at the Sinoatrial node (SA node) and is conducted through the heart muscle, causing the atria to contract and then the ventricles, and, finally, causing the unidirectional flow of blood throughout the human body.

The cardiac cycle is comprised of two phases: systole and diastole. Systole is surrounded by two major heart sounds, commonly referred to as a “lub-dub” pair. The first heart sound (S1) corresponds to the shutting of the atroventricular (AV) valves (i.e. mitral and tricuspid valves). The second heart sound (S2) indicates the
closing of the aortic and pulmonary valves.

The electrical activity which causes the heart's chambers to contract can be recorded and expressed by an electrocardiogram (EKG). In analyzing the heart's electrical signal (EKG), the QRS complex reflects depolarization of the ventricular membrane, which directly causes ventricular contraction. The contraction of the ventricles then causes a rapid increase in intra-ventricular pressure, causing the AV valves to shut. As mentioned, closure of these valves results in the first heart sound (S1).

Furthermore, in the EKG signal, the T-wave indicates repolarization of the ventricles, causing them to relax. The timing of the T-wave in the cardiac cycle corresponds to a decrease in intra-ventricular pressure due to the outflow of blood. When the ventricular ejection rate reaches zero, the aortic and pulmonary valves shut, causing the second heart sound (S2). Thus, we conclude that S2 occurs in a small time window following the T-wave in the corresponding EKG signal.

It is important to note that both S1 and S2 correspond to the shutting of two separate pairs of valves. Thus, both S1 and S2 are not instantaneous events, but
rather they persist for some small duration of the cardiac cycle. The first heart sound with its mitral and tricuspid components, lasts for an average period of 100–200 ms, its frequency components lie in the range 10–200 Hz [8]. As for S2, the closure of the aortic valve and the pulmonary valve can often be separated by 20 ms and each component is approximately 10–30 ms in duration. The entire second heart sound contains frequencies in the range 10–400 Hz. The second heart sound usually has higher frequency content than the first heart sound because of the lesser mass of blood present in the cardiac chamber at the end of systole. The first and second heart sounds are separated by approximately 300–400 ms [8].

In our work, we define systole to be from the R-wave in the QRS complex, as found in the EKG signal, to the peak of the second heart sound (S2) in the audio signal.

2.2 Mitral Valve Prolapse

Mitral Valve Prolapse (MVP) is the most common condition affecting the valves of the heart [10]. The mitral valve is composed of two triangular flaps, which billow up to close off the channel between the chambers on the left side of the heart. Mitral Valve Prolapse refers to a malfunction where the two leaflets bulge (or prolapse) into the left atrium, preventing the mitral valve from closing properly. As a result, rather than a unidirectional flow of blood, some blood may leak back into the atrium. Mitral Valve Prolapse is thought to affect 2–5% of the adult population in the United States.

In spite of its prevalence, many people with MVP never exhibit signs or symptoms of the condition. When symptoms do occur, they can vary widely. More common signs of MVP include an irregular heartbeat (arrhythmia), dizziness, difficulty breathing, fatigue and anxiety [5]. However, no unique set of physical symptoms exists to diagnosis Mitral Valve Prolapse. Most frequently, a primary-care physician detects MVP during a routine examination of the heart using a stethoscope, a procedure termed auscultation. If an individual suffers from MVP, abnormal heart sounds, including a characteristic clicking noise or murmur, will be often be present. To con-
firm the diagnosis, a specialist often conducts an echocardiogram. An echocardiogram uses high-frequency ultrasound waves to create a visual image of the heart, including the mitral valve and the flow of blood through it. By analyzing the sonar image, a cardiologist can make a more definitive diagnosis. In some cases, further tests may be necessary, including chest X-rays, color Doppler ultrasound and/or cardiac catheterization. However, echocardiograms are widely considered the “gold-standard” in diagnosing MVP.

Complications associated with MVP are rare. Still, in instances of severe regurgitation, there is an increased risk of developing bacterial endocarditis, an infection affecting the mitral valve and/or the heart’s lining. Consequently, many doctors prescribe prophylactic antibiotics to individuals with moderate to severe MVP. In more serious cases, surgery to repair or replace the faulty valve is recommended to prevent complications associated with further deterioration. Yet, for the vast majority of people with MVP, no special treatment is necessary and simple monitoring of the condition is sufficient [5].

2.3 Heart Murmurs

Heart murmurs are irregular sounds produced by the heart, often described as a swishing or whistling noise. Murmurs may be innocent or indicative of a more serious heart pathology. Benign murmurs, also called functional murmurs, are a result of turbulent blood flow, causing the walls of the heart to vibrate. Murmurs may also be caused by malfunction or malformations of the heart valves. Such a condition causes a regurgitation of blood (backwards across the valve), which accounts for the murmur.

Heart murmurs are characterized according to intensity (loudness), frequency (pitch), configuration (shape), quality, duration, direction of radiation, and timing in the cardiac cycle [2]. Establishing these features is the basis for drawing diagnostic conclusions about the murmur. Classification of murmurs is critical in distinguishing innocent murmurs from pathological murmurs, as well as identifying the various
2.3.1 Murmurs caused by Mitral Valve Prolapse

Murmurs caused by Mitral Valve Prolapse have a unique acoustic signature. Following a normal S1 and a brief period of quiet, the valve suddenly prolapses, at times producing an audible, mid-systolic click. This click is sufficient to diagnose MVP, even without the presence of a subsequent murmur. Yet, often times, the click is succeeded by a crescendo-decrescendo murmur, which peaks at some point between mid to late systole [23]. Specifically, the murmur is a result of the turbulent backflow of blood across the prolapsed mitral valve. As the left ventricle contracts, pressure increases in the chamber. Eventually, the pressure forces blood back into the left atrium. The flow of blood through a small orifice, between the faulty flaps of the mitral valve, produces a high frequency murmur spanning 200–1000 Hz. In the case of significant mitral regurgitation, MVP may reveal a holosystolic murmur. The mitral valve, in such cases, is so compromised that it permits the backflow of blood over the entire systolic period, in contrast to the more typical late-systolic murmur.

The murmur is usually most audible at the apex of the heart, between the fifth and sixth intercostal spaces. This area is known as the mitral region of the anterior chest during auscultation and, as such, is particularly relevant to diagnosing MVP. In addition to the location at which to listen for the murmur, physical maneuvering of the patient is significant. Physical maneuvers may enhance the quality of the murmur. In particular, dynamic maneuvers, including Valsalva and prompt standing, decrease left ventricular volume. And in doing so, they cause earlier prolapse of the mitral valve and a longer associated murmur. Having the patient in supine position (i.e. lying on his/her back) produces similar results to the Valsalva maneuvers [2].

Other possible indicators of Mitral Valve Prolapse include a quiet S1 and a widely split S2 [15]. As previously noted, S1 corresponds to closure of the AV valves, with the mitral valve dominating. Since valve closure is faulty in individuals with MVP, S1 may be noticeable quieter. Also in cases of severe regurgitation, the decreased resistance to left ventricular ejection may cause the aortic valve to close prematurely.
Recalling that S2 indicates shutting of the aortic and pulmonic valves, early closure of the aortic valve results in a widely split S2 sound.

This information related to the timing, frequency, and location of heart murmurs is the basis for our approach to diagnosing cardiac pathologies using acoustic signals.
Chapter 3

Prototypical Beat Construction

As discussed in Section 2.3.1, Mitral Valve Prolapse can be identified by examining the latter half of systole for abnormal cardiac activity. In order to make a diagnosis, the MAAS algorithm, developed by Zeeshan Syed, creates a prototypical beat [22]. A prototypical beat will lose some information related to the variations among beats but has the benefit of suppressing some noise.

This section reviews the construction of a prototypical beat from the acoustic and EKG data. The progression from raw data to a prototypical beat can be seen in the following subsections. First, the audio signal is segmented into individual beats using the synchronously-recorded EKG signal. Next, a time-frequency decomposition is applied to the individual beats, separating each beat into 16 frequency bands. A prototypical beat is then constructed from the separate beats using median filtering. Finally, the 16 frequency bands of the prototypical beat are aggregated into 4 bands to be further analyzed.

3.1 Beat Segmentation

The recorded audio and EKG data are first processed to extract beats considered to contain the most diagnostic information [22]. The program begins by reading in the raw audio and EKG signals, sampled at rate of 44,100 Hz, and produces indexed vectors. The next task is to segment the audio signal into individual beats. This is
done by using the synchronous EKG signal to find the indices associated with the onset of the QRS complex and the T-wave. The R-wave of the QRS complex indicates the onset of electrical activity associated with a given beat. These indices are used as preliminary reference points. Using a window about the T wave indices, a search is conducted to locate the peak of the S2 sound of each beat in the audio data. Thus, we have indices of the R-wave, T-wave and S2 peak for each beat.

Having segmented the audio signal into individual beats, the algorithm now selects beats for analysis based on a “Length-biased Admission of Noise-free Beats” criterion. That is, the program omits those beats considered to be too noisy for useful analysis while it is biased to admit beats of suitable length [22].

3.2 Time-Frequency Decomposition

As mentioned in Section 2.3.1, the acoustic signature of Mitral Valve Prolapse consists of energy at higher frequencies during the latter half of systole. Therefore, both the frequency composition and the timing of cardiac events are important in diagnosis, so a time-frequency decomposition is applied to the audio data.
To precisely analyze the frequencies in the selected beats, the program uses a filter bank that analyzes each heart-beat using a series of sharp frequency filters. As a special note, the filters must have narrow transition bands so minimal blurring of information occurs between adjacent frequency bands. This proves to be critical to the solution because the magnitude of lower frequency energy is often far greater than that of higher frequencies; so trends at higher frequencies will be masked otherwise [22].

In all, the filter bank consists of sixteen bands, each spanning a 50 Hz interval from 50 to 850 Hz. By opting to use such a filter bank, the algorithm maintains high fidelity to the timing of cardiac events while revealing trends at different frequencies. Now, a time-frequency analysis provides us with the frequency components in sixteen bands for each selected beat.

3.3 Median Filtering

In order to observe trends persisting amongst the majority of the beats, a mechanism to merge information from multiple beats to create a single representative heart-beat for the patient is developed. In other words, the program assimilates information from the selected beats to generate the time-frequency decomposition of a hypothetical “typical” beat for the patient. Such a time-frequency decomposition will be organized into the same sixteen frequency bands as mentioned in Section 3.1.

The prototypical beat is constructed as follows. The algorithm begins by taking the absolute value of the audio data and lining up selected beats in time for each of the sixteen frequency bands. Next, for each of the frequency bands, it finds the median four amplitudes of the beats at all time instances. The program then computes the means of the four median values at every time instance for each of the bands and makes them the associated values of the prototypical beat.

Although the construction of the prototypical heart-beat loses some variations between beats, it does not result in a significant loss of relevant information. Patients suffering from Mitral Valve Prolapse exhibit pathological signs in the majority
of recorded beats. Therefore, the median values are believed to correspond to four beats, all possessing the MVP acoustic signature. In addition, noise may cause normal patients to have one or more beats with energy at high frequencies, but it is improbable that the median four beats will include these outliers. And so, the program generates a time-frequency decomposition of a prototypical beat, representative of a patient’s physiologic condition.

3.4 Band Aggregation

As a final step, the sixteen frequency bands are combined into four frequency bands, spanning 50–150 Hz, 150–350 Hz, 350–550 Hz, and 550–850 Hz. The bands are aggregated in such a way that energy at lower frequencies does not drown out higher frequency content, i.e. higher frequency bands are weighted more heavily [22]. Thus, we have a four-band frequency decomposition of a prototypical beat for a patient.
Chapter 4

Prototypical Beat Analysis

Previous work by Z. Syed describes the construction of a prototypical beat from audio and EKG data [22]. Syed’s analysis of the prototypical beat is detailed in Section 7.1. This chapter outlines our analysis of the prototypical beat. First, we begin with the topic of normal cardiac event detection and discuss the method of locating normal cardiac events in a prototypical beat. The following section elucidates the feature selection process, which generates a feature set to be used later in the decision mechanism.

4.1 Normal Cardiac Event Detection

After constructing a prototypical beat for a given patient, our program must identify the following normal cardiac events as reference points: R-wave position, peak of S1 position, beginning of S1, end of S1, peak of S2 position, beginning of S2 and end of S2 sound. These events are calculated in the baseband and serve as reference times in the higher frequency bands. We also calculate a floor value for each frequency band of the prototypical beat.

Let Z_i be the one-dimensional array containing the time-frequency content of a prototypical beat in the i-th frequency band. Specifically, Z_1, Z_2, Z_3 and Z_4 correspond to content in the 50–150 Hz, 150–350 Hz, 350–550 Hz, and 550–850 Hz frequency bands, respectively.
As described in Section 3.3, the prototypical beat was constructed by lining up the selected beats in time. Specifically, the R-wave in the EKG signal associated with each beat was indexed at 4410 samples. We consider this point, i.e. the peak R-wave of the QRS complex, as the proposed onset of systole in our prototypical beat. We label this point \(q \).

Next, the peak of the S1 sound is chosen by searching, in the baseband, for the position of the maximum amplitude in a window 100 ms before to 150 ms after the onset of the QRS complex. That is,

\[
s_1\text{peakpos} = \maxpos[Z_1(q - 100 \text{ ms} : q + 150 \text{ ms})]
\]

and \(s_1\text{peakamp} \) is the associated amplitude.

Now, designating the position of the S2 peak requires some backtracking. From the original audio signal, we calculate the median S2 peak position of the selected beats. We call this value \(m \). After doing so, we search a 1600 sample window centered at this median value. So,

\[
s_2\text{peakpos} = \maxpos[Z_1(m - 800 : m + 800)]
\]

and, similarly, \(s_2\text{peakamp} \) is the corresponding amplitude.

At this point, the floor value for each band is computed. We do so by, first, dividing systole (as defined in Section 2.1.2) into ten equal intervals and, then, averaging the points in each interval.

\[
systoliclength = s_2\text{peakpos} - q
\]

\[
\text{interval}_{avg_{i,j}} = \frac{\text{avg}[Z_i(q + j \ast \frac{systoliclength}{10} : q + (j + 1) \ast \frac{systoliclength}{10})]}{10}
\]

The floor value is determined as the minimum of the ten averages.

\[
\text{floorval}_{i} = \min[\text{interval}_{avg_{i,0}}, \text{interval}_{avg_{i,1}}, \ldots, \text{interval}_{avg_{i,9}}]
\]

The next defined reference point is the end of the S1 sound. This is designated as the first point to the right of the S1 peak where the baseband component hits the band's floor value.
slend = minpos \left[Z_1(s1peakpos : s1peakpos + \frac{systolic\text{ length}}{3}) < \text{floorval}_1 \right] \]

If no such point exists within the first third of systole, the program, by default, marks the farthest right point, in the same window, where the data is below 20% of the peak S1 amplitude as the end of S1.

\[\text{slend} = \text{maxpos} \left[Z_1(s1peakpos : s1peakpos + \frac{systolic\text{ length}}{3}) < 0.2 \text{s1peakamp} \right] \]

In contrast, the beginning of the S1 sound is defined to be concurrent with the R-wave of the associated EKG signal. This is because, physiologically, we know that the onset of the QRS complex precedes S1 by an instant, as mentioned in Section 2.1.2. Furthermore, we have previously defined this point for the prototypical beat and labeled it "q".

Finally, the S2 sound must be isolated in a similar fashion. The first points to the left and right of the S2 peak where the data hits the floor value mark the bounds of S2. And if no left bound is found within a window of one third of systole before the peak S2 sound or if no such bound exists to the right, then the bounds are established at 20% of peak S2 magnitude. These points are labeled s2begin and s2end, respectively.\footnote{Later modifications to the system look for a dip in S2 in the baseband and redefines the beginning of S2 to be at that point if the dip is sufficiently low (i.e. below 1.5 times the baseband floor value).}

Figure 4-1 illustrates the above result of detecting normal cardiac events. The solid yellow line indicates the peak of the S1 sound in the baseband (s1peakpos). The dotted yellow lines mark the bounds of the S1 sound. Likewise, the solid red line represents the peak of the S2 sound, with the dotted red lines marking the edges. The horizontal green line represents the floor value for each band. Notice that the dotted lines representing slend, s2begin, and s2end are found to be at the points where the signal hits the floor value in the base band. By contrast, Figure 4-2 shows an example where the signal does not hit the floor within the first third of systole and, therefore, the default 20% is used to mark the end of S1. Also, the figures show that the demarcation of S1 and S2, as found in the baseband, is directly extended to the higher frequency bands. The significance of doing so is apparent in Figure 4-3, which corresponds to an MVP patient. By using the baseband to determine the
Figure 4-1: S1, S2, and Floor Value Demarcation in a Prototypical Beat

bounds of S2, it is evident that much of the high frequency content visible in bands 2, 3, and 4 is not due to harmonics associated with the S2 sound but rather mitral regurgitation.

4.2 Feature Selection

Having defined the above reference points, our program now generates a feature set, characterizing systolic activity in a prototypical beat. Specifically, the program calculates the following features: \(\text{peakmag}_k, \text{peakonset}_k, \text{peakdur}_k, \text{peakslope}_k, \text{peaktobandenergy}_k, \text{peaktos1energy}_k, \text{peaktos2energy}_k, \text{s1tobandenergy}_i, \text{s2tobandenergy}_i, \text{s1width} \) and \(\text{s2width} \); where \(i \in \{1,2,3,4\}, k \in \{2,3,4\} \). The following section defines these features and details the derivation of each. In order to make valid comparisons between patient files, the calculation of many features includes a normalization step.

As discussed in Section 2.3.1, the acoustic signature of Mitral Valve Prolapse consists of energy at higher frequencies during the second half of systole. Therefore,
Figure 4-2: S1, S2, and Floor Value Demarcation using 20% Default

Figure 4-3: S1, S2, and Floor Value Demarcation with High-frequency Content
we begin by searching for a peak between the midpoint of systole to the beginning of S2 in each of the three higher frequency bands. The position of this peak is defined as follows,

$$\text{peakpos}_k = \maxpos \left[Z_k \left(q + \frac{systolic_length}{2} : s2_begin \right) \right]$$

and the related amplitude is called peakamp$_k$.\(^2\)

The first feature, peakmag$_k$, describes the magnitude of the mid-systolic peak with respect to the floor value of that band. Specifically,

$$\text{peakmag}_k = \frac{\text{peakamp}_k}{\text{floorval}_k}$$

We hypothesize that the mid-systolic peak is the crest of the murmur caused by MVP. Consequently, we proceed to search for the beginning and end of the murmur. We define the bounds to be the first points to the left and right of the peak where the signal is below 25% of the peak magnitude. If the signal does not go below the 25% level, the end of S1 and the beginning of S2 are set as the default ends of the murmur.\(^3\)

$$\text{peakbegin}_k = \maxpos \left[Z_k(s1_end : \text{peakpos}_k) < 0.25 \text{ peakamp}_k \right]$$
$$\text{peakend}_k = \minpos \left[Z_k(\text{peakpos}_k : s2_begin) < 0.25 \text{ peakamp}_k \right]$$

Figures 4-4 and 4-5 illustrate how the program searches for a late-systolic peak, as indicated by the solid magenta line, in each of the three higher frequency bands. The dotted magenta lines mark the bounds associated with this peak, while the horizontal cyan line represents the 25% threshold used to determine the bounds. In addition, the figures demonstrate the differing results produced by the program when processed over files corresponding to a physiologically normal subject versus an MVP sufferer.

The feature, peakonset$_k$, determines the onset of the proposed murmur in the cardiac cycle.

\(^2\)If the position of the peak is found to be concurrent with the beginning of S2, the program backs off 10 ms and re-searches for a peak in systole.

\(^3\)If the 25% value is less than the band's floor value, then the floor value is used to mark the ends of the murmur instead.
Figure 4-4: Murmur Demarcation in Prototypical Beat of an MVP File

Figure 4-5: Murmur Demarcation in Prototypical Beat of a Normal File
peakonset\(_k\) = \frac{\text{peakbegin}\(_k\) - \text{peakpos}\(_k\)}{\text{systoliclength}}

In addition, two other features, peakdur\(_k\) and peakslope\(_k\), are calculated using the bounds of the murmur. The former quantifies the duration of the murmur with respect to systolic length. The second estimates the ascending slope of the murmur, using the peak point and the point found as the start of the murmur. As mentioned in Section 2.3.1, murmurs associated with MVP exhibit specific morphologies. And so, we attempt to quantify the shape of the murmur using the feature, peakslope\(_k\).

peakdur\(_k\) = \frac{\text{peakend}\(_k\) - \text{peakbegin}\(_k\)}{\text{systoliclength}}

peakslope\(_k\) = \frac{\text{peakamp}\(_k\) - Z_k(\text{peakbegin}\(_k\))}{\text{peakpos}\(_k\) - \text{peakbegin}\(_k\)}}

Next, our program computes the energy of the murmur with respect to three different cardiac events. First, the energy of the murmur is calculated as a fraction of the total energy in the related frequency band. We call this feature peaktobandenergy\(_k\). Second, the murmur's energy is found with respect to the energy associated with S1 in each band (peaktos1energy\(_k\)). Finally, the energy of the murmur is derived as a fraction of the energy of S2 (peaktos2energy\(_k\)).

peaktobandenergy\(_k\) = \frac{\sum[Z_k(\text{peakbegin}\(_k\):\text{peakend}\(_k\))]}{\sum[Z_k]}$

peaktos1energy\(_k\) = \frac{\sum[Z_k(\text{peakbegin}\(_k\):\text{peakend}\(_k\))]}{\sum[Z_k(\text{slbegin}:\text{slend})]}

peaktos2energy\(_k\) = \frac{\sum[Z_k(\text{peakbegin}\(_k\):\text{peakend}\(_k\))]}{\sum[Z_k(\text{s2begin}:\text{s2end})]}

Having collected a set of features describing systolic activity, our program proceeds to compute statistics about other cardiac events. Now including the baseband \((Z_1)\), the energy associated with the S1 sound in each band is calculated as a fraction of the total energy in the frequency band. The bounds of S1 remain constant across the frequency bands and are given by the beginning and end times of S1 found in the baseband. This feature is labeled sltobandenergy\(_i\). Similarly, the relative energy associated with S2 is calculated for each band (s2tobandenergy\(_i\)).

sltobandenergy\(_i\) = \frac{\sum[Z_i(\text{slbegin}:\text{slend})]}{\sum[Z_i]}

s2tobandenergy\(_i\) = \frac{\sum[Z_i(\text{s2begin}:\text{s2end})]}{\sum[Z_i]}
Lastly, two final features, s1width and s2width, describe the duration of the S1 and S2 sounds with respect to systolic length.

\[
\begin{align*}
\text{s1width} &= \frac{s1end - s1begin}{\text{systolic length}} \\
\text{s2width} &= \frac{s2end - s2begin}{\text{systolic length}}
\end{align*}
\]
Chapter 5

Classification

After compiling a feature set describing a patient’s cardiac activity, our final step is to make a diagnosis based on the information. Specifically, we use an off-the-shelf, radial kernel Support Vector Machine as a binary classifier [11]. We start with a brief overview of support vector machines, followed by a discussion of our dataset and our testing methodology.

5.1 Support Vector Machines

The support vector method is a recently developed technique designed for efficient multi-dimensional function approximation [3]. The basic idea of support vector machines (SVMs) is to determine a classifier that minimizes the empirical risk, i.e. the training set error, and the confidence interval (corresponding to the generalization, or test set, error). Effectively, the method tries to find a hyperplane that separates the multi-dimensional data perfectly into two classes.

In SVMs, the idea is to fix the empirical risk associated with a kernel’s architecture and, then, to use a method to minimize the generalization error. The primary advantage of SVMs as adaptive models for binary classification is that they provide a classifier with minimal Vapnik-Chervonenkis (VC) dimension, which implies low expected probability of generalization errors [3].

In using the support vector method, it is important to consider the following
issues. First, an appropriate architecture, or model type, must be selected according to the sample space. Otherwise, even with zero empirical risk, it is possible to have a large generalization error. Next, to avoid over-fitting, it is necessary to minimize the VC dimension of the model when training on large, high-dimensional datasets. However, in doing so, we sacrifice some margin of empirical risk. A final concern is determining the parameters of our learning algorithm. Such parameters include generalization and kernel parameters.

SVMs can be used to classify linearly separable data and nonlinearly separable data, depending on the kernel function. The kernel function refers to the formula used to calculate an inner-product in some feature space. A radial basis function automatically determines centers, weights and thresholds that minimize an upper-bound on the expected generalization error, drawing non-linear boundaries in the multi-dimensional feature space [3].

After experimenting with our dataset, we determine that our problem is well-suited to using a radial-kernel support vector machine as a binary classifier, where each of the features calculated in Section 4.2 are used to create a multi-dimensional feature space.

5.2 Data

This work is made possible through the efforts of our collaborators at Massachusetts General Hospital. In particular, Dr. Francesca Nesta collected data, using an electronic stethoscope, from patients referred for echocardiograms. In addition, data was gathered from families with one or more members diagnosed with MVP. The data collected from the latter group was recorded on-site, in the homes of the subjects. This is significant to understanding the poor quality-control environment in which the data was collected.

More specifically, our dataset consists of simultaneously-recorded audio and EKG signals for fifty-one patients. Of these patients, seventeen suffer from Mitral Valve Prolapse, and the remaining thirty-four have normal heart sounds or benign murmurs.
For each patient, multiple recordings were taken at different sites on the body, in different positions. In general, we find the audio signal taken from the apical region of the heart with the patient lying down on his/her left side to contain the most diagnostic information, as confirmed by Dr. Nesta. Other recorded sites and positions include the second intercostal space with the patient sitting, squatting and lying on his/her left side.

Finally, in evaluating the performance of our system, it is important to note two other aspects of our dataset. First, many of our non-MVP test subjects were originally referred for an echocardiogram by their primary care physicians. That is, an early diagnosis flagged them as potentially having MVP. The significance of this is that a correct negative classification of any of these files is an improvement on the performance by the primary-care physicians. Another important point to consider in evaluating our system is that all files were labeled according to the results of an echocardiogram examination. Echocardiograms are widely considered the gold-standard for diagnosing MVP. Therefore, we trust these labels and compare our system’s results in relation to them.

All data was sampled at 44.1 kHz with 16-bit quantization. Each data file is approximately 30 seconds long. In addition, all data is de-identified with files assigned labels of the form CxxSxx (where x∈N).

5.3 Testing Methodology

To test the performance of our system, we use a leave-one-out cross-validation scheme. For each patient, we train the SVM on the other 50 patients’ files to create a test model. The model is then used as the basis for classifying the given patient. Therefore, we generate 51 different test models, one corresponding to each patient.

As mentioned, our dataset consists of 51 patients with multiple files for each. Through experimentation with each MVP patient’s data, we decide upon a “best” file, which corresponds to the file with the most diagnostic information. For physiologically normal patients or those with benign murmurs, we include all files associated with
the patient. We choose this selection of files as our test set to ensure that every MVP sample point contains physiological evidence of MVP and, therefore, representative features of the condition. In order for the SVM to create an accurate model from its training set, each sample point must be indicative of its corresponding classification. Therefore, we include only a single file per MVP patient while admitting all files of a non-MVP patient.

We then proceed to classify each patient, on a per-patient basis using his/her file set, as suffering from MVP or not. More precisely, after the SVM conducts a binary classification of each file associated with a patient, our program aggregates the results of the patient's files and positively classifies the patient if any of his/her files were considered to exhibit MVP characteristics. Therefore, we justify including a solitary file per MVP patient because only one of the patient's files needs to be positively classified to correctly classify the patient. In contrast, correct classification of non-MVP subjects requires accurate classification of all the corresponding files.

Finally, through experimentation, parameters for the SVM are optimized to obtain the best results. In general, we find the SVM to be surprisingly insensitive to parameter changes. Specifically, we examined different values of the parameter C and gamma. The parameter C controls the trade-off between training error and margin, where lower values signify greater tolerance of training error and, therefore, better generalization [12]. Establishing an upper bound on C prevents over-fitting of the model. The parameter gamma relates to the radial-basis kernel function. Testing values of C from 1 to 1000 and values of gamma from 0.1 to 2, results show minimal variation in performance over a wide range of parameter settings. Best results were achieved with values of C from 10–1000 and gamma from 0.8–1.8. We select C=1000 and gamma= 1.0 as a representative configuration of the SVM classifier for the rest of this study.
Chapter 6

Evaluation

This chapter presents the results obtained by our system. We begin with a quantitative assessment of the detector's performance on a per-patient basis. This is followed by a qualitative analysis of our program, as revealed by the visual feature set and the SVM models that were generated. Also, in this chapter, we compare the performance of our classification system to Syed’s system.

6.1 Quantitative Performance

As discussed in Section 5.3, we conducted leave-one-out cross-validation tests for 51 patients. Of the 51 patients, we incorrectly classified eight patients, three false negatives and five false positives. A false negative corresponds to the misclassification of an MVP patient. On the other hand, a false positive signifies that at least one of the files associated with a normal (or benign) subject is incorrectly classified. And so, the patient is falsely flagged as an MVP candidate.

Our false positive rate of approximately 15% is a significant improvement from the previously quoted 87% found in some primary-care settings. Of the five false positives we obtained, we found that four of the patients suffer from benign murmurs with trace or mild regurgitation. And the prototypical beats of these patients show a non-trivial systolic murmur such as that seen in Figure 6-1. We consider these patients to be acceptable false positives as they exhibit significant, abnormal cardiac
activity and merit further examination of their condition. Also, we believe that with more samples of early-systolic benign murmurs such as that found in Figure 6-1, the SVM will be better able to distinguish between MVP and benign murmurs.

Our remaining false positive corresponds to the file in Figure 6-2. This file (and therefore patient) is incorrectly classified because harmonics associated with S2 at higher frequencies are left-shifted, occurring prior to the dominant harmonics of S2 in the baseband. Consequently, our system considers the high-frequency energy as part of an MVP murmur. We consider this an anomalous case.

Of more serious consequence, our system fails to correctly classify three cases of MVP. In these cases, the telling murmur occurs so closely to S2 that our system fails to distinguish it from the second heart sound. This could be a reflection of real physiological circumstances, where MVP murmurs of brief duration occur just prior to S2. Alternatively, in constructing the prototypical beat, the algorithm may have blurred some of the information due to varying beat lengths. Figure 6-3 illustrates the difficulty of one such case. See Appendix A for details on the other false negatives.
Also, refer to Tables A.1 and A.2 in Appendix A for individual results obtained per patient.

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>False Negative</th>
<th>False Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Results</td>
<td>82%</td>
<td>85%</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 6.1: Summary of Overall Results

6.2 Qualitative Analysis

In Syed’s work, classification was based on the timing of the murmur in the three frequency bands spanning 150–350 Hz, 350–550 Hz, and 550–850 Hz. As discussed in Section 2.3.1, murmurs associated with Mitral Valve Prolapse have a unique acoustic signature with many well-documented characteristics. In order to make more thorough use of this medical information, we generate a fuller feature set to better capture
Figure 6-3: Example of False-Negative File
the qualities of the murmur. This section discusses the performance of our system in characterizing cardiac activity associated with Mitral Valve Prolapse.

Among our system's contributions, our work measures the intensity of the murmur by calculating its associated energy. In doing so, we better equate MVP-related murmurs of varying morphology. For example, loud, click-type murmurs and relatively quiet, persistent murmurs report comparable energy measurements, and both are indicative of MVP. Compare, for instance, the energy of the murmur found in Figure 6-4 to that found in Figure 6-5.

Now, expanding on Syed's description of timing, we calculate features designating the onset, peak and duration of the murmur. This is particularly relevant to characterizing holo-systolic murmurs such as that found in Figure 6-5. Here, it is evident that our system is capable of capturing the entire murmur.

Finally, we include features to gauge the energy and duration of the S1 and S2 sounds, as medical information suggests that Mitral Valve Prolapse may cause an unusually quiet S1 and/or a widely split S2 sound. Figure 6-6 demonstrates one
such case of MVP where the S1 sound is uncommonly muted in comparison to other cardiac activity.

6.3 Performance Comparison to Previous System

In the figures found in this chapter, the dashed, vertical cyan lines indicate the points that are used by Syed’s system to classify the same file.\(^1\) While the difference in quantitative performance is marginal, closer examination of the results reveals important differences between the two systems. The following section details these differences.

First, Syed’s approach is better able to handle cases where MVP murmurs occur very close to the second heart sound. In the false-negative example shown in Figure 6-3, Syed’s program captures part of the narrow murmur occurring just prior to S2 and correctly classifies the file.

Yet, in Figure 6-4, consider the dashed cyan lines in the 350–550 Hz and 550–850 Hz

\(^1\)Refer to Related Work Section 7.1 for details on Syed and Curtis’s classification system.
Hz frequency bands. In these bands, Syed’s system misses the evident murmur by simply using the points, demarcated by the cyan lines, to classify the file. Fortunately, Syed’s system catches the murmur in the 150–350 Hz frequency band and ultimately classifies the file correctly. However, this case demonstrates the potential loss of information that Syed’s approach risks.

Also, in Figure 6-6, it is possible that Syed’s system correctly classifies the file for the wrong reason. That is, Syed’s system misses the low amplitude, persistent, late-systolic murmur and classifies the file based on the location of the dashed cyan lines. This point may indeed be part of a sharp murmur immediately preceding S2. However, Syed’s program may instead be catching part of an S2 harmonic and considering it an MVP murmur. More importantly, Syed’s program fails to identify the more apparent MVP murmur in the file. This suggests that Syed’s system is using the wrong feature to correctly classify the file while our system more accurately delimits the murmur as shown by the dashed magenta lines.

Finally, Syed’s system is more susceptible to false-positives because it does not
consider variability in duration of S2 among subjects. As detailed in Section 7.1, classification is based on a comparison in timing of the maximum amplitude of the baseband in the latter half of systole and the location of the dashed cyan lines. By only considering a single point of S2, Syed’s program is prone to flagging early harmonics associated with S2 as MVP murmurs, and therefore misclassifies some normal patients. In contrast, our system first demarcates the bounds of S2 in the baseband and then proceeds to search for a peak outside of that range in the upper frequency bands. Figure 6-7 illustrates one such example where our system correctly classifies the normal patient but Syed’s reports a false positive.

6.4 Per Dimension Analysis

Although each of our features is based on physiological knowledge of MVP murmurs, we found some features to be more critical and formative to the classification process. Employing an SVM approach to classification enables us to use a high-dimension
feature space, yet we lose some transparency as a consequence. In order to gain a better understanding of the decision mechanism, we produce plots of sample points along each dimension. A radial-kernel SVM undoubtedly combines these dimensions and formulates decision boundaries in a complex manner, but our hypothesis is that certain dimensions show distinct clustering of negative and positive sample points, suggesting that the corresponding feature is a strong indicator of Mitral Valve Prolapse.

Figure 6-8 plots the values obtained for the feature corresponding to the duration of the murmur in the 350–550 Hz frequency band. The red points represent MVP patients and the green points represent non-MVP patients. As can be seen, the graph suggests that murmurs of duration less than 5% of systolic length indicate normal or benign conditions. Conversely, murmurs of longer duration are a strong indicator of Mitral Valve Prolapse. However, it is important to note that this feature, alone, is an imperfect indicator as there are non-MVP points occurring above the 0.05 value and MVP points present below. Nonetheless, the graph exhibits fairly strong clustering of MVP and non-MVP sample points along this dimension.

By contrast, Figure 6-9 shows a similar plot for the feature describing the slope of the murmur found in the 350–550 Hz frequency band. Along this dimension, values of MVP and non-MVP files do not show any real separation. Such a plot suggests that the feature is not a strong indicator of MVP and is, therefore, not as germane to classification as the other features.

Refer to Appendix B.1 for equivalent plots of remaining features. While definitive statements on the significance of specific features are not possible, a qualitative analysis of the plots lends some insight into the matter. Verification of findings is conceivable by omitting irrelevant features and evaluating the performance of new SVM models.
Figure 6-8: Plot MVP vs. non-MVP Values for Murmur Duration in 350-550 Hz Frequency Band

Figure 6-9: Plot of MVP vs. non-MVP Values for Slope of Murmur in 350-550 Hz Frequency Band
Chapter 7

Related Work

7.1 Z. Syed and D. Curtis

As previously mentioned, Zeeshan Syed created an automated auscultation system to detect Mitral Valve Prolapse [22]. In that system, Syed first builds a prototypical beat and then, based on this “average beat”, he uses a decision mechanism to classify patients based on band-specific time thresholds. For a given beat, in each of the three higher frequency bands (i.e. 150–350, 350–550, 550–850 Hz), the program searches for the earliest maximal point in the latter half of systole. The time of this position is then normalized by dividing by the beat’s systolic length. Next, if this point occurs sufficiently prior to time of S2 in the base band (i.e., 50–150 Hz), then it is concluded that this peak in energy is due to MVP and not S2. If any of the three bands passes this criterion, then the beat and the patient are classified as having MVP.

In subsequent related work, Dorothy Curtis analyzed some potential algorithm refinements. This work looked at several time-based threshold conditions. The leftmost time in the latter half of systole of 60%, 70%, 80%, and 100% of the maximum amplitude in each of the three upper bands was considered. The time of this maximum was compared to the time of S2 in the baseband and to the time of the maximum amplitude in the baseband. (The point of maximum amplitude in the latter half of systole in the baseband was not necessarily co-incident with S2 in the baseband.) The best combination found compared the time of the earliest occurrence of 60% of the
maximum in an upper band \(^1\) to time of the maximum value in the baseband in the latter half of systole. This resulted in 0 false negatives and 6 false positives out of 50 patients.

While effective, Syed and Curtis’s use of the time-based feature of normalized peak-offsets omits much of the information present in the data. Most importantly, information about the MVP murmur, including morphology, duration and volume, is not reflected in such a feature set. As discussed extensively in Section 6.3, Syed and Curtis’s system better handles some MVP cases, but its limited feature set is prone to false positives and speculation on the legitimacy of certain MVP classifications.

7.2 W.R. Thompson et al.

In a related study, Thompson et al. designed a system for automatically detecting systolic murmurs due to a variety of conditions and examined the correlation between relative murmur intensity and likelihood of pathology [24]. Cardiac auscultatory examinations of 194 children and young adults are recorded, digitized, and stored along with corresponding echocardiographic diagnoses. Automated spectral analysis using continuous wavelet transforms is performed on each subject’s data. Patients without heart disease and either no murmur or an innocent murmur are compared to patients with a variety of cardiac diagnoses and a pathologic systolic murmur present at the left upper sternal border. The reported sensitivity and specificity of the automated system for detecting pathologic murmurs with an intensity grade of 2 or higher are both 96%, and for grade 3+ murmurs they are 100%.

A major difference between our system and Thompson et al.’s is the specificity of pathology. We focus on detecting Mitral Valve Prolapse, where Thompson et al.’s system seeks to detect the general category of pathological murmurs. Due to the difference in problem definition, Thompson et al. system does not need to identify distinguishing features between pathologies. Instead, a spectral analysis searching

\(^1\)The location of this 60% value in each upper frequency band is denoted by the dashed, vertical cyan lines in the figures of Chapter 6.
for irregular energy levels suffices. In addition, Thompson et al.’s test subjects are children and young adults, concentrating on pediatric patients as opposed to the general population. In contrast, our system aims to detect MVP, using distinctive acoustic features, in an adult population.

7.3 C.G. DeGroff et al.

The aim of the study by DeGroff et al. was to train an artificial neural network (ANN) to distinguish between innocent and pathological murmurs effectively [7]. Using an electronic stethoscope (frequency range, 40 to 600 Hz) and a personal computer (sampling at 44 kHz), heart sounds are recorded from 69 patients (37 pathological and 32 innocent murmurs). Two heart sound recordings for each patient of approximately 8 heart cycles in length are recorded. Subsequently, one sound sample of 3 representative consecutive heart cycles is chosen from these 2 recordings by one of the investigators for all 69 patients. The investigator chooses the optimal sound sample by listening to the entirety of the 2 recordings and qualitatively determining the sound sample (of 3 consecutive heart cycles) with the least amount of extraneous noise, such as breathing, talking, motion artifact, and room noises. This optimal sound sample is then processed using digital signal analysis.

A normalized energy spectrum of the sound data is obtained by applying a Fast Fourier Transform to the heart sounds. Various spectral resolutions (1, 3, and 5 Hz) and frequency ranges (0 to 90, 0 to 150, 0 to 210, 0 to 255, and 0 to 300 Hz) are used as input into the ANN to optimize these parameters to obtain the most favorable results. In this study, 100% sensitivity and specificity are obtained for the ANN distinguishing between the 69 innocent and pathological heart murmurs presented to it using a spectral resolution of 1 Hz and a spectrum of 0 to 210 Hz. DeGroff et al. employ a leave-one-out cross-validation scheme for testing the 69 patient files.

A major limitation of DeGroff et al.’s system is the manual selection of optimal beats to be analyzed. Also, the system has not yet been tested with the addition of noise factors and, therefore, requires relatively optimal recording conditions. And, in
contrast to our system, DeGroff et al.'s work aims to distinguish between innocent and pathological murmurs, yet does nothing to differentiate between varying pathologies. Lastly, the system developed by DeGroff et al. does not consider murmurs that occur at frequencies above 300 Hz, whereas our system accounts for frequency content up to 850 Hz.

7.4 T.R. Reed et al.

In this study, Reed et al. developed a heart sound analysis system to differentiate between heart pathologies, based on a wavelet decomposition of the sounds and a neural network-based classifier [19]. Heart sounds (sampled at an 8kHz sample rate, 16 bits/sample) are first hand segmented into 4096 sample segments, each consisting of a single heartbeat cycle. Each segment is transformed using a 7-level wavelet decomposition, based on a Coifman 4th order wavelet kernel. The resulting transform vectors, 4096 values in length, are reduced to 256 element feature vectors by discarding the 4 levels with shortest scale. In addition to substantially simplifying the neural network in the classifier that follows, this step also reduces noise. The magnitudes of the remaining coefficients in each vector are calculated, then normalized by the vector's energy. Finally, each feature vector is classified using a three layer neural network (256 input nodes, 50 hidden nodes, and 5 output nodes).

The system was evaluated using heart sounds corresponding to five different heart conditions: normal, mitral valve prolapse (MVP), coarctation of the aorta (CA), ventricular septal defect (VSD), and pulmonary stenosis (PS). The classifier was trained using 10 shifted versions (over a range of 100 samples) of a single heartbeat cycle from each type. The system was then presented heart sounds with varying degrees of additive noise for classification. Because the sample set available for this study was small, (one patient per heart condition, four heartbeat cycles per patient) the heartbeats used in generating the shifted training exemplars were also used as part of the basis for the evaluation set. Using this dataset, Reed et al. report 100% accuracy in classification.
As in DeGroff et al.'s work, Reed et al. rely on manual segmentation of the audio file for each patient, instead of an automated approach to segmentation such as that found in our system. Also due to the limited dataset and the overlap of the training and test set, the evaluation of the system is incomprehensive.

7.5 I. El-Naqa et al.

In this study, El-Naqa et al. proposed the use of a support vector machine for detection of micro-calcification (MC) clusters in digital mammograms, comparing SVMs to other existing techniques [9]. Also, El-Naqa et al. examined parameter optimization of the SVM model in their work. In the proposed method, an SVM classifier is trained through supervised learning to test at every location in a mammogram whether an MC is present or not. The dataset includes 76 clinical mammograms. Disjoint subsets of 38 images each are used as the training set and the test set. The SVM is trained on the 547 MC examples present in the training set as well as 1094 MC-absent examples. El-Naqa et al. use free-response receiver operating characteristic curves to evaluate detection performance, and compare the proposed algorithm with several existing methods. More specifically, performance of the SVM is compared to the following four methods of MC detection: image difference technique, difference-of-Gaussian method, wavelet-decomposition (WD)-based method, and a two-stage multi-layer neural network method. These methods are representative of two main approaches that are widely used: template-matching techniques and learning-based methods. The WD method and the neural networks are both learning-based. Experimental results demonstrate that the SVM approach yields the best performance of the different classifiers. In particular, a sensitivity as high as 94% is achieved by the SVM method at an error rate of one false-positive cluster per image.

In El-Naqa et al.'s study, the ability of the SVM to outperform several well-known methods suggests that the support vector method is a promising technique for detection in medical applications. Also of relevance to our study, El-Naqa et al.'s results show that their proposed framework is very insensitive to the choice of model.
parameters.
Chapter 8

Summary, Future Work and Conclusions

8.1 Future Work

Our work here provides the foundation for further research to be done in the area.

First, our feature set includes 31 features in total. However, as mentioned in Section 6.4, some features are stronger indicators of Mitral Valve Prolapse than others. Although the support vector method is capable of handling irrelevant features, future work can be done to test the sensitivity of the system to specific features and perhaps pare down the feature set. This would help decrease the VC-dimension and improve generalization of the model.

Also, currently our system focuses on analyzing a single prototypical beat. Further research can be done to compare results using a beat-by-beat approach. That is, evaluation of the system's performance using the same feature extraction algorithm and SVM classifier on a per-beat basis is a possible avenue to be pursued.

Furthermore, our research could be extended to differentiate between other pathological heart murmurs. Our method of feature extraction aims to characterize systolic activity as a whole. Therefore, it is conceivable that our feature set can be used as the basis for further detection and differentiation of pathological murmurs, particularly systolic murmurs. Moreover, given the proper training set and features, the SVM is
capable of characterizing, generalizing and classifying such cases.

Finally, our end goal is to test the application in an office setting to evaluate performance and feasibility for mass deployment.

8.2 Conclusions

In this work, we developed a software application to detect Mitral Valve Prolapse using acoustic features. With an electronic stethoscope, audio and EKG signals are simultaneously recorded for 51 subjects. Based on Z. Syed’s algorithm, the data is manipulated and a prototypical beat, representative of the patient’s pathology, is generated. For our work, we extract 31 features from the prototypical beat, concentrating on systolic activity. We then use the feature set as input to a support vector machine, which gives a binary classification of the patient as demonstrating MVP characteristics or not. Of the 51 patients, we report three false negatives and five false positives.

We also demonstrated that SVMs show significant potential in their use as an accurate diagnostic tool for the classification of heart sound data into MVP and non-MVP classes. Furthermore, we found the SVM to be rather insensitive to parameter setting, achieving equivalent results over a wide range of values for C and gamma.

We believe our system can become a useful tool to primary-care physicians in diagnosing Mitral Valve Prolapse and, more generally, in assisting cardiac auscultation. Also, by supporting our findings with a time-frequency decomposition of a patient’s prototypical heartbeat and its relevant features, we are able to lend critical insight into the quality of heart murmurs. Taken as a whole, our findings convey the value of applying digital signal processing techniques to the task of cardiac auscultation.
Appendix A

Detailed Results

The following section contains detailed information regarding the results of our system.

A.1 Table of Results

Tables A.1 and A.2 present the results of the SVM, having trained on the best file per MVP patient (as indicated by an asterisk next to the file name) and all the files associated with normal and benign subjects. Recall from Section 5.3 that correct classification of an MVP patient requires only a single file in his/her file set to be detected of MVP, whereas normal and benign subjects require all associated files to be accurately classified.

A.2 False Negative Figures

Figures A-1 and A-2 correspond to the remaining two false negatives reported by our system. Two files were processed for each of these patients. The figures contain the prototypical beats generated for each.

First, file C36S5 exhibits a similar murmur to that found in false-negative file C73S11, discussed in Section 6.1. The problematic MVP murmur is narrow and occurs just prior to the second heart sound. Consequently, the system fails to identify
<table>
<thead>
<tr>
<th>Files Per Patient</th>
<th>Correct MVP</th>
<th>Correct non-MVP</th>
<th>False Negative</th>
<th>False Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C29S0, C29S1</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>C37S0, C37S1</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>C21S0, C21S1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C35S25, C35S26</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>C63S21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C63S25, C63S26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C63S9, C63S10</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>C74S0, C74S1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C13S1b, C13S0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C35S33, C35S34</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>C37S8, C37S9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benign</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C37S6</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C70S3</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C22S0</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C24S1, C24S0</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C35S18, C35S17</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>C35S5, C35S4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C20S1, C20S0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15S1, C15S0</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C17S1, C17S0</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>C29S3, C29S4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C25S2, C25S0</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>C33S1, C33S0</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>C63S5, C63S6</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>C46S1, C46S0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C63S14, C63S15</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>C27S1, C27S0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C69S1, C69S0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C34S0, C34S1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C35S31, C35S30</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>C31S2, C31S0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C80S1, C80S2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C86S1, C86S2</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>29</td>
<td>5</td>
</tr>
</tbody>
</table>

Table A.1: Table of Results for Normal and Benign Subjects
the peak in energy as independent of S_2. Subsequent modifications to the system to account for the case included searching for a secondary peak within the S_2 bounds in the upper frequency bands. Three new features, describing the location of the secondary peaks with respect to the location of the peak of S_2, were computed and presented to the SVM. Even so, the SVM failed to classify $C36S5$ correctly. However, this may be due to the lack of training samples with murmurs of a similar type. More data is required to make a definitive statement on the effectiveness of the code modifications. File $C36S6$ corresponds to the same patient as file $C36S5$, and our system has difficulty identifying the murmur as separate from S_2 in this file as well.

Our last false-negative is shown in Figure A-2. In the files of this patient, the energy of the murmur with respect to other cardiac events is too small for the SVM to classify them as MVP. Notice that the program does identify a murmur in file $C46S2$. Later work attempted to capture trends between frequency bands by calculating interband energy ratios. However, these new features did not improve quantitative results. Collecting more samples of similar murmurs may be beneficial here as well.

Table A.2: Table of Results for MVP patients

<table>
<thead>
<tr>
<th>Files Per Patient</th>
<th>Correct MVP</th>
<th>Correct non-MVP</th>
<th>False Negative</th>
<th>False Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVP := best file</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C23S1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C28S0</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C67S1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C68S1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C19S1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C22S3</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C28S3</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C30S0</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C32S0</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C42S0</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C36S5, C36S6*</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C46S2, C46S4*</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C47S1*</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C63S0</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C73S11, C73S12*</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C65S1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C65S0</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>14</td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

63
Figure A-1: False-Negative I
Figure A-2: False-Negative II
Appendix B

Supplementary Figures

The following section contains supplementary information previously related in this work.

B.1 Per-Dimension Plots of MVP and non-MVP Samples

Figure B-1: Per-Dimension Plots (i) peakmag$_2$ (ii) peakmag$_3$
Figure B-2: Per-Dimension Plots (iii)peakmag$_4$ (iv)peakdur$_2$ (v)peakdur$_3$ (vi)peakdur$_4$ (vii)peakslope$_2$ (viii)peakslope$_3$
Figure B-3: Per-Dimension Plots (ix) peakslope4 (x) peakonset2 (xi) peakonset3 (xii) peakonset4 (xiii) peaktobandenergy2 (xiv) peaktos1energy2
<table>
<thead>
<tr>
<th>Band</th>
<th>Peak to S2 Energy</th>
<th>Energy (15)</th>
<th>MVP</th>
<th>NOT MVP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Band 2</td>
<td>Peak to S2 Energy (15)</td>
<td>MVP</td>
<td>NOT MVP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Band 3</td>
<td>Peak to S1 Energy (17)</td>
<td>MVP</td>
<td>NOT MVP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Band 4</td>
<td>Peak to Proto Energy (19)</td>
<td>MVP</td>
<td>NOT MVP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure B-4: Per-Dimension Plots (xv) peak to s2 energy 2 (xvi) peak to band energy 3 (xvii) peak to s1 energy 3 (xviii) peak to s2 energy 3 (xix) peak to band energy 4 (xx) peak to s1 energy 4
Figure B-5: Per-Dimension Plots

- (xxi) peaktos2energy
- (xxii) s1tobandenergy
- (xxiii) s2tobandenergy
- (xxiv) s1tobandenergy
- (xxv) s2tobandenergy
- (xxvi) s1tobandenergy
Figure B-6: Per-Dimension Plots (xxvii)s2tobandenergy3 (xxviii)s1tobandenergy4 (xxix)s2tobandenergy4 (xxx)s1width (xxxi)s2width
Bibliography

(http://www.cardioconsult.com/Anatomy/)

(http://www.cnn.com/HEALTH/library/DS/00504.html)

(http://www.consciouschoice.com/holisticmd/hmd093.html)

(http://svmlight.joachims.org/)

[14] MATLAB is a trademark of The Mathworks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, USA.
(http://www.mathworks.com/)

[15] Murmurs & Other Abnormal Heart Sounds
(http://www.nurspeak.com/tools/docs/murmurs.doc)

[16] Dr. Francesca Nesta, Private Communication.

(http://w4.siemens.de/FuI/en/archiv/pof/heft2.01/artikel19/)

[23] Systolic Murmurs- Mitral Valve Prolapse
 (http://www.wilkes.med.ucla.edu/MVPmain.htm)

