
INTERACTIVE CONTROL OF LINKED RIGID

BODY SIMULATIONS

by

JONATHAN JONG-HO LEE

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL
ENGINEERING AND COMPUTER SCIENCE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF

MASTER OF ENGINEERING IN COMPUTER SCIENCE AND
ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2003

@ Jonathan Jong-ho Lee, MMIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis and to

Author ............
Department

Certified by..,

Accepted by ......

nt others the right to do s. MASSACHUSETTS INSTE
OF TECHNOLOGY

JUL 2 0 2004

LIBRARIES

ofJectrical Engineering and Computer Science

August 21, 2003

Jovan Popovi6

Assistant'PofResor, Comput&rP-mphics Group
ti s,,Se visor-

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

BARKER

gr



2



Interactive Control of Linked Rigid Body Simulations

by

Jonathan Jong-ho Lee

Submitted to the Department of Electrical Engineering and Computer Science
on August 21, 2003, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

Numerical simulation of linked rigid-body motion generates realistic motion auto-
matically. Simulation alone, however, prevents intuitive direction. In the worst case,
an artist repeatedly tweaks a variety of simulation parameters until she achieves the
desired effect. Because of the complexity of the dynamics of linked rigid bodies, the
tweaking becomes tedious, even for the simplest animation goals.

This thesis describes an interactive technique for direct control of linked rigid-body
simulation with a click-and-drag interface. It uses numerical simulation to preserve
the physical realism of the motion. Differential control, an interactive form of gradient
descent, provides the basis of the interface. This thesis extends differential control to
edit the motion of linked rigid bodies connected with passive joints in an open-loop
topology. The linked object can collide for an instantaneous or sustained time period
at a single point of contact.

Thesis Supervisor: Jovan Popovid
Title: Assistant Professor, Computer Graphics Group

3



4



Acknowledgments

This thesis would not have been possible without the generosity and kindness of

my advisor, Professor Jovan Popovi6, to whom I am thankful for providing me the

exciting opportunity to work with him on this project. I must thank him for his

patience and willingness to help me when the math just did not make any sense, and

for helping me understand the big difference between graduate and undergraduate

life.

I also thank my brothers at Sigma Nu who have given me support throughout my

undergraduate and graduate years. Thanks to Stephen Larson for convincing me to

take more time. Pavel Gorelik and Eric Konopka were kind enough to read my thesis

and provide useful revisions and comments. Special thanks to Doug Quattrochi and

Farid Jahanmir for their extensive feedback and interest.

Thank you to Adnan Sulejmanpasid from the Graphics Group for his thoughts

and feedback.

I thank my parents, Jean and David, for giving me the opportunity to attend this

school. I thank them and my sisters Allison and Christine for their support.

5



6



Contents

1 Introduction

1.1 Animation Issues and Overview . . . . . . . . . . . . . . . . . . . . .

1.2 Problem Statem ent . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.3 Example: Shooting a Basketball . . . . . . . . . . . . . . . . . . . . .

2 Previous Work

3 Simulating Motion

3.1 Generalized State and Control

3.2 Simulation . . . . . . . . . . .

3.3 Changing Object Dynamics

4 Interface

4.1 Layout and Camera Controls.

4.2 Object Selection . . . . . . . .

4.3 Key Frame Constraints .

4.3.1 Basic Algorithm .

4.3.2 Point Constraints

4.3.3 State Constraints

4.4 Adjusting the Control Vector

Vectors . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .

5 Editing Motion

5.1 Jacobian of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2 Scaling Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

13

15

17

19

23

27

29

31

33

37

39

41

41

43

44

47

49

55

56

57



5.3 Finding Optimal Change . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Changing Control Vector Format . . . . . . . . . . . . . . . . . . . . 60

5.4.1 M asking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4.2 Re-parameterizing Quaternions . . . . . . . . . . . . . . . . . 62

5.5 Residual Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.6 Editing Across Configuration Changes . . . . . . . . . . . . . . . . . 63

5.7 Creating Plausible Motion . . . . . . . . . . . . . . . . . . . . . . . . 67

5.8 Re-Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Results 71

6.1 Example Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7 Conclusion 81

A Re-parameterization of Quaternions 85

A.1 Basic Quaternion Notation . . . . . . . . . . . . . . . . . . . . . . . . 85

A.2 Quaternion Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.3 Exponential and Logarithmic Maps . . . . . . . . . . . . . . . . . . . 88

A.4 Calculation of Derivatives . . . . . . . . . . . . . . . . . . . . . . . . 89

A.5 Dynamic Re-parameterization . . . . . . . . . . . . . . . . . . . . . . 90

B Camera Controls 91

8



List of Figures

1-1 A ball's motion determined by key frames . . . . . . . . . . . . . .

1-2 Estimating the initial velocity of a ball . . . . . . . . . . . . . . . .

1-3 Diagram of process flow . . . . . . . . . . . . . . . . . . . . . . . .

1-4 Motion of basketball created by initial control vector . . . . . . . .

1-5 Artist-directed gesture moving the basketball to desired location . .

1-6 Calculation of needed change to initial control vector . . . . . . . .

1-7 New control vector fulfills artist's intentions . . . . . . . . . . . . .

3-1 Two configurations of a double pendulum, with sample trajectories

3-2 Chart with Illustrations of Joints . . . . . . . .

3-3 Changing dynamics from free-flight to clamped

4-1 Screenshot of LRBME . . . . . . . . . . . .

4-2 Key Frame Constraint Types . . . . . . . .

4-3 Constraint Strength Group Box . . . . . . .

4-4 Point constraint . . . . . . . . . . . . . . . .

4-5 Translational constraint . . . . . . . . . . .

4-6 Arcball constraint . . . . . . . . . . . . . . .

4-7 Control Vector Attribute Mass Group Box .

4-8 Toggling Control Vector Parameters . . . . .

5-1 Comparison of system behavior with residual

5-2 Residual check prevents editing . . . . . . .

6-1 Example 1 - Free-falling three-link object .

calculation

9

14

16

18

20

20

21

21

28

. . . . . . 30

. . . . . . 34

. . . . . . . . . . . . . . 4 0

. . . . . . . . . . . . . . 4 4

. . . . . . . . . . . . . . 4 5

. . . . . . . . . . . . . . 4 6

. . . . . . . . . . . . . . 4 8

. . . . . . . . . . . . . . 5 0

. . . . . . . . . . . . . . 5 2

. . . . . . . . . . . . . . 5 3

58

64

72



6-2 Example 2 - Clamped 4-link chain . . . . . . . . . . . . . . . . . . . 74

6-3 Example 3 - Clamping Collision . . . . . . . . . . . . . . . . . . . . 76

6-4 Graph of time taken per editing loop during re-simulation . . . . . . 78

6-5 Graph of time taken per editing loop by the solver module . . . . . . 80

6-6 Graph depicting overhead of editing . . . . . . . . . . . . . . . . . . . 80

B-i Camera Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

10



List of Algorithms

4.1 General Editing Process . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Ray Intersection Algorithm . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Arcball Constraint Algorithm . . . . . . . . . . . . . . . . . . . . . . 51

B.1 Cam era Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

B.2 WINDOWTOSPHERE(mwin) ....................................... 94

B.3 Cam era Panning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

B.4 Cam era Zoom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

11



12



Chapter 1

Introduction

Animation is an expressive, visually compelling art form. Its creation, however, is

complex and tedious. Traditional techniques require every frame of the animation

to be meticulously drawn by a skilled animator [30]. Fortunately, with progressing

technology, more sophisticated tools and animation creation techniques are available

for artists to use. Now they can draw a sparse set of key frames and have a computer

generate the remaining frames in the animation. This technique gives the artist the

greatest control over the object's motion, while saving her the tedium of drawing the

many in-between frames.

Although a quicker process, key framing does have its disadvantages, especially

for non-artists. Firstly, the technique requires a talented artist to draw the important

key frames. Secondly, the initial key frame set may not provide enough detail to

produce an appropriate motion. Additional key frames may be needed to clarify the

motion's overall trajectory or the transitions from one gesture to another. Often this

requires a precise intuition of timing.

Figure 1-1 illustrates key framing using a popular graphics production tool.1 The

artist intends to animate a ball bouncing and arriving at a desired location. In Figure

1-1[a] the artist naively sets up two key frames-frame 1, where the ball begins, and

frame 48, where the ball should arrive. The key frame set is insufficient because

interpolation generates an animated ball which does not bounce. To correct this, the

'Maya 4.5 Personal Learning Edition. http: //www. aliaswavefront . com.

13



. ...... .... ....
..........

....... ..

.. ............ . ... .......... ........ .... .. ...... ------
P I , I I I . I - - 2,..- ........... ...... ........ ...... .............. ......... ... ...........

...... .......... . .............. ...... .... ............................ .............. ... ......... ......... ..... . -

......... . ............. ......... ..........

................ -

.......... . ............. ................. ....... .... ........... ...

...........

IF Irl" I" in a

[a]

-A-

.......... ... .... .......... .. ........ ... ................ ... ....... ....... ......... . ....... .. .. ..... ... .... ...... ............................. ..... ..
.... .... .. .... ... .... ...

-1- -/ .......... . ............... ........ .
............. .............

r4k -.Waft MM
W "W ,N*,W MP

F .......... ....... ... ... ........ .... ........ .... ....... -- ------- ----------8 ev. 060-1
KW . ... ......... ............. .... ... .................. .... ............. -----------

......... ... . .... .... ........ .. ........ ........ ........ L ............. J

.......... .. ... . ........ ... ..........
... .......... ....

F go iD 34

lie "-I.r____

[b] [c]

Figure 1-1: A ball's motion determined by key frames. For simplicity, most of the controls

are removed from the image and individual frames of animation are composited into one image. The

darker balls refer to the key frames, whereas the lighter balls refer to interpolated frames. Frames

shown in the scene have their corresponding frame indices displayed as a black bar in the timeline

below. [a] The two key frames provided by the artist is insufficient because interpolation generates

an animated ball which does not bounce. [b] The artist provides more detail with the addition of

three new key frames. The horizontal axis on the position graph below represents the key frames,
and the vertical axis represents the ball's y-axis coordinate. The ball's position at each key frame

acts as a control point on an interpolated Bezier curve; the handles on each key frame denote the

tangent of the curve. The curvature clearly does not mimic the expected trajectory of a bouncing

ball. [c] Here the tangents of the control points have been altered on the position graph to make

the ball's behavior more realistic.

14



artist adds three key frames as shown in Figure 1-1[b], two for the peaks of each of

the free-flight trajectories (frames 9 and 40) and one for the location of the bounce

(frame 32). Even with the additional key frames the motion is still incorrect. The

system assumes the key frames are control points of a Bezier curve and interpolates

the position of the ball on the curve. For the ball to exhibit correct behavior, the

artist needs to tweak the tangents of the control points (Figure 1-1[c]).

Physical simulation generates the frames of the animation automatically. The

simulator uses the parameters, which are specified by the artist, to compute the

motion. The automation of the animation process makes this technique particularly

appealing. However, when the artist has particular goals for the motion, she must

manually tweak the simulation parameters, a process that can become tedious. This

reliance on tweaking the parameters is inadequate because a small change in one

parameter can produce a drastically different animation.

In Figure 1-2 the artist wants the ball to depart from its first location and land

on the 'X' after a specified period of time. If the physical simulator computes the

motion from any initial value (Figure 1-2[a]), the ball will not reach the location of

the 'X'. The artist must make many adjustments before an acceptable animation is

found (Figure 1-2[d]).

In this particular example the correct velocity can be derived analytically. How-

ever, finding the correct initial parameters for more complex motions would not be

as simple.

1.1 Animation Issues and Overview

The previous examples reflect several challenges to creating easy-to-use animation

tools. Firstly, the artist must animate both the fine details and the overall gesture.

Instead of letting the artist add levels of details as necessary, she must pay close

attention to every aspect of the motion. Although physical simulation can create a

motion quickly, simulation lacks any type of control that allows the artist to refine

the motion. Only the simulation parameters are available for the artist to adjust.

15



[a] [b]

x = 450,00 x = 460.00

y = 15.00 y = -90.00
z = 170.00 z = 195.00

[c] [d]

Figure 1-2: Estimating the initial velocity of a ball. The upper right-hand corner of each frame

denotes the ball's initial velocity along each of the coordinate axes. The entire trajectory and the

first and last frames of the simulation are shown.

16

x50.00

y= 20.00
100.00

V .



Secondly, animation techniques often lack immediate feedback. An artist drawing key

frames needs to draw all if not most of the key frames before she can judge the quality

of the motion. Likewise, an artist simulating an object must tweak parameters and

wait for the simulator to finish re-calculating the motion every time she is unsatisfied

with the result. To be interactive, a procedure must provide immediate feedback

to the artist. To be intuitive, the procedure must behave predictably, giving results

that the artist expects. Thirdly, animating natural movement requires a good sense

of timing and, in many cases, physics. Even when making cartoon-style movement

where physics is exaggerated or completely discarded [20], the "squash and stretch"

of an object must be timed well to convey the appropriate message to the viewing

audience.

This thesis describes a semi-automatic technique that combines the benefits of

key framing with that of physical simulation by addressing several important issues.

The technique employs physical simulation to generate the motion, and provides the

artist an interface that allows her to edit the motion by essentially key framing the

important time instants. Consequently, the artist can add as much detail as she

deems necessary to make a satisfactory animation. She may adjust in real-time the

paths of all the objects by manipulating the object directly. The objects in the model

are rigid bodies connected by joints in a tree structure. Collisions with the external

environment are allowed.

1.2 Problem Statement

The artist first determines whether a physically-based simulation, initialized by a

control vector, satisfies her animation goals. If not, she scrubs through the simulation

and finds the time instants where important poses or aspects of the motion must be

preserved or changed. At these instants she may place key frame constraints that

dictate how the control vector should be altered. The ideal control vector initializes

a simulation which satisfies all the artist-specified key frame constraints.

Calculation of this ideal control vector is difficult to solve. In fact, a solution

17



CONTROL

VECTOR

SIMULATOR SOLVER

USER
INTERFACE

USER

Figure 1-3: Diagram of process flow.

may not necessarily exist if too many constraints are placed. The domain of possible

simulations is high-dimensional, and the simulation itself is non-linear and not neces-

sarily continuous. To cope with these difficulties, a differential approach is taken to

manipulate the control vector.

The key frame constraints placed by the artist represent desired aspects of the

motion. The difference between the desired and the current aspects denote wanted

changes to the motion. For example, a certain point on the object must be at a specific

location in the surrounding environment at a specific time. The difference between

the desired location and current location of the point represents a wanted change to

the motion. Such changes help determine an incremental shift to the control vector.

After the control vector takes a small step along the direction of the shift, a new

simulation is calculated using the adjusted control vector. This simulation should

better satisfy the artist's key frame constraints by reducing the differences between

the desired and current aspects. The differences are re-calculated, and the process,

or editing loop, repeats until the ideal control vector is found, or the artist is satisfied

with the current simulation. The loop occurs very quickly, so that the artist may

receive and in turn provide immediate feedback.

18



This interactive procedure is manifested in an application called Linked Rigid

Body Motion Editor, or LRBME. The application contains three modules: the sim-

ulator module, the solver module, and the graphical user interface. Given an initial

control vector, the simulator module calculates the object's motion and stores the

data. The user interface relies on the stored data to correctly render the object and

its behavior on the monitor. Since the initial resulting motion will most likely not

satisfy the artist's intent, she can edit the motion by directly manipulating it. Any

mouse or keyboard inputs are passed on to the solver. The solver computes the

changes needed to accommodate the edits while still maintaining a physically correct

motion. Once the simulator module incorporates the changes and re-simulates the

motion, the user interface updates the motion displayed on the monitor. Figure 1-3

provides a graphical overview that will be referenced throughout the thesis.

1.3 Example: Shooting a Basketball

An illustration of the process is shown in Figures 1-4 through 1-7. Here the artist

wants the basketball to begin at its initial location at time to and land in the hoop

at time tf. The control vector is set to an initial guess and is given to the simulator

module, which outputs the motion the artist can view through the user interface

(Figure 1-4). Clearly the initial guess is insufficient since the basketball does not

reach the hoop at the final frame. The artist grabs with her mouse the ball at time tf

and drags it to the hoop (Figure 1-5). The dragging motion creates a desired change

in motion. From this change the solver module determines the proper shift to the

control vector (Figure 1-6). The new control vector incorporates the shift with its

previous value. It passes through the simulator module again, and the revised motion

is displayed to the artist (Figure 1-7). This entire loop occurs very quickly so that

the artist can immediately see how her dragging the basketball to the hoop affects

the overall motion.

19



SOLVER

-E

Figure 1-4: Motion of basketball created by initial control vector. The highlighted portions

of the flow chart (from Figure 1-3) represent the parts of the process shown in the adjacent figure.

The arrow on the initial frame of the ball represents the control vector. The initial guess is inadequate

because the basketball does not reach the hoop in the final frame.

SIMULATOR soLE

USER

Figure 1-5: Artist-directed gesture moving the basketball to desired location. The artist

drags the basketball using her mouse in the final frame toward the hoop. The difference of the

basketball's desired location (in the hoop) and its current location represents an adjustment to the

motion.

20



CONTROL
VECTOR

SIMULATOR SOLVE

USER

INTERFACE

USER

Figure 1-6: Calculation of needed change to initial control vector. The needed motion

adjustment leads to a shift in the control vector, represented by the small arrow above the original

control vector.

1(

Figure 1-7: New control vector fulfills artist's intentions. The control vector takes a step in

the direction of the shift, leading to a new control vector. The adjusted control vector initializes a

new simulation that successfully fulfills the goal of the animation.

21

11

I

I

,4-

SOLVER



22



Chapter 2

Previous Work

Computer animation techniques rely heavily on physical simulation to generate an-

imation for complex dynamics such as rigid bodies [15], deformable bodies [23, 1],

fluids [8], smoke [7, 31], and cloth [29, 2]. These techniques aim to create mechanisms

for simulating complex physical processes and to find effective means of controlling

simulation.

Control of simulations has often led to optimization problems. The spacetime-

constraints method formulates a finite-dimensional optimization problem that com-

putes a character's motion over a time period. The solution is constrained to meet

the artistic animation goals, which are stated as constraints to the optimization prob-

lem. The original spacetime method successfully determined coordinated motions of

a virtual actor [33]. Finding a suitable solution, however, took long periods of time.

This thesis aims to provide the artist immediate feedback, necessitating a formulation

of the spacetime problem that can be quickly solved.

Machine learning techniques have been used to compute controllers which generate

desired motions. Neural networks can be trained to learn an approximate simulation

function from simulated motions [14]. With the trained, analytically differentiable

neural network, a fast gradient descent optimization algorithm computes the con-

troller that generates the user-defined motions. Simulated annealing algorithms can

also produce efficient low-level locomotion for animals whose skeletons contains many

degrees of freedom [13]. The low-level motion controllers become abstract constructs

23



which the user concatenates to produce higher-level behaviors. The spacetime frame-

work can employ genetic algorithms to globally sample the controller space [22]. To

create active locomotion of a 2-D character, a set of functions represents instinctive

reflexes for the character in response to environmental stimuli. Physical simulation

along with the stimulus-response mechanism provides a motion that is evaluated quan-

titatively. The genetic algorithm searches through the stimulus-response parameter

space to maximize the distance the object's center of mass travels.

In the context of parameter estimation, Chenney and Forsyth proposed a Markov

Chain Monte Carlo technique that iteratively samples the space of simulation param-

eters to determine the fitness of the generated animations by a set of artist-specified

criteria [5]. A proposal function provided by the artist instructs the algorithm how

to tweak the parameters of an animation sample. Although this technique is the

most general solution to date, the process does not allow interactive exploration and

depends heavily on the quality of the user-provided proposal function. A flawed

proposal function could lead to slow convergence.

Off-line techniques provide the advantage of sampling the solution space globally,

leading to optimal or near-optimal controllers that are capable of producing com-

pelling and complex motion. Due to the iterative nature of these techniques, however,

they cannot lead to interactive applications, and do not pertain directly to this the-

sis. In situations where artist creativity is a priority, researchers have developed more

interactive techniques that provide interfaces artists can use to specify their intent.

Cohen designed a process where the spacetime problem is solved with user assistance

[6]. Using conjugate gradient methods, the system provides the user the opportunity

to modify the functions and parameters of the optimization problem as the solution

converges. Moreover, division of the animation into smaller spacetime "windows"

helps focus the solution process. Gleicher simplified the spacetime formulation to

achieve interactive performance for real-time editing [9]. The system provides an in-

terface that hides the underlying equations, and constraints are specified by script or

by direct manipulation of the character.

Witkin et al. provided a flexible framework of interactive dynamics which allows

24



constraints, added or removed by the user at will, to dynamically rephrase the linear

system of equations [32]. The constrained dynamics formulation has led to a broad

range of applications such as drawing applications [11], interactive camera control

[10], and geometric modeling [32].

The interactive physically-based modeling framework has been expanded to per-

mit both continuous and discrete changes in the spatial relationship between objects

[16]. Mouse gestures are modeled as physical forces that modify state variables for the

object. A mass matrix represents the relative difficulty of change among the param-

eters. When making a discrete change in the object's configuration, the user triggers

a search for a new object state whose parameters are minimally and locally altered

from the current object state. This infrastructure has been successfully applied to

the interactive designing of architectural, circuit board, and page layouts.

Popovi6 et al. described a differential-based technique which relies on the com-

putation of derivatives for faster convergence for parameter estimation methods [25].

Using the interactive dynamics framework proposed by Witkin and colleagues [32],

this approach uses a differential control to manipulate passive rigid-body simulations

with an interactive click-and-drag interface. Although unable to detect motion dis-

continuities automatically, the interface permits the user to guide the object to the

desired collision sequence.

Differential control tries to find the best animation by taking the current control

mechanism and changing it slightly with the hopes of finding a better animation.

Since convergence depends on gradient information, the solution reaches only local

optima. In an interactive setting finding local optima is acceptable-an artist's edit,

denoting the intended state, effectively guides the motion out of undesired optima.

The parameter estimation paradigm is difficult to control since the parameters

only affect the system's initial state. To find optimal simulation parameters, a re-

lationship between all user-provided constraints and the parameters must be found,

which can be difficult to develop. Multiple shooting methods provide better control by

dividing the entire simulation into smaller and more manageable subproblems. Once

the subproblems are solved, they are merged either by enforcement of continuity

25



constraints or by solving overlapping subproblems which implicitly seam boundaries.

The extra control in these techniques stems from the artist's ability to adjust pa-

rameters that affect the simulation at various times throughout its duration. This

technique has been used successfully to control simulations of both rigid-body and

smoke simulations [24, 31].

Since multiple shooting methods often lead to large objective functions and con-

straint matrices, the search for the ideal parameter values is done off-line. However,

Popovi6 provided an appealing production pipeline called motion sketching that pro-

vides the artist the benefit of specifying her intents interactively, then querying the

system to optimize the controller [24]. Controlling simulations through use of multiple

shooting techniques in an interactive setting still remains an unsolved problem.

This thesis, using single shooting methods, provides the artist a click-and-drag

interface for interactive control of linked rigid-body simulations. The interface allows

an animator to select the simulated object and drag it to the desired location at any

point in the simulation. This direct and intuitive approach is superior to straight-

forward parameter tweaking. The only overhead comes from the computation of

sensitivity matrices, which are the derivatives of the simulated state with respect to

the simulation parameters.

A numerical simulator can detect collisions with the external environment that

change the object's dynamics [15]. At the time of collision, an impulse force may be

applied [21]. Popovi6 et al. showed that differential control is possible for a small

number of instantaneous collisions [25] but a sustained contact may need many mi-

crocollisions. To solve this problem, LRBME switches the object's dynamics at each

transition to and from a sustained contact. This thesis does not address multi-point

contacts or contacts with non-holonomic constraints. LRBME does not automatically

detect collisions, and instead expects the user to define the appropriate time instants

at which the object collides with the external environment. If the location of the

collision is incorrect, the user may manipulate the object to correct the motion.

26



CONTROL

VECTOR

SIMULATOR SOLVER

USER

Chapter 3 INTERFACE

Simulating Motion USER

A linked rigid body consists of several bodies connected together by joints. Each

body is rigid because its shape does not deform. A joint can attach only two bodies

together, and the total structure of the object must be in the form of a tree-that

is, no loops are allowed. The body that is at the top of the joint hierarchy is called

the root body. A joint connects an outboard body to an inboard body. Structurally an

outboard body is a child of the inboard body. Any rigid body that is not the root

body must be connected to one inboard body.

Each individual body of an object has several properties, all of which are assumed

to be known prior to simulation: mass, inertia tensor, location of the inboard joint,

type of joint, and inboard body. Mass is simply the mass of the individual body. The

inertia tensor is a 3 x 3 matrix denoting the body's moment of inertia in its resting

state. Each body knows its parent body, the type of the inboard joint that connects

the body to its parent, the joint's location with respect to the body's local reference

frame, and how the joint is oriented with respect to the body's reference frame.

An object is allowed to contain pin, universal, or ball joints. The pin joint has

one degree of freedom (DOF), and is described by one parameter denoting the angle

about the joint's axis of rotation. The two-DOF universal joint is described by two

numbers denoting the angles about each of the joint's two known axes. Exhibiting

three DOFs, the ball joint is described as a unit-normalized quaternion vector.

An object can use a gimbal joint instead of a ball joint. The gimbal joint also

27



[a] [b]

Figure 3-1: Two configurations of a two-body arm, with sample trajectories. A black dot

in the middle of a circle represents a joint at that location. [a] The arm is in free-flight. [b] The first

body of the arm has a point clamped in space. The arm has the dynamics of a double pendulum.

provides three DOFs and consists of three hinges, one for each rotation axis. Because

the performance of the interactive editing process largely depends upon the size of the

state and control vector (Chapter 6), using three-parameter gimbal joints to represent

free rotations would appear to be a better choice over the four-parameter ball joint.

Gimbal joints, however, suffer from gimbal lock, a singularity that occurs when the first

and third axes are aligned, reducing the joint from three to two degrees of freedom.

Since unrestricted rotation is desired, the ball joint is used.

An object may exhibit different configurations during an animation. A configu-

ration represents the dynamics of the object as dictated by its relationship with the

external environment. For example, a two-body arm consists of two cylinders con-

nected at their ends by a pin joint (Figure 3-1). This arm can relate to the external

environment in two main ways. Firstly, the arm's configuration can be free-falling as

shown in Figure 3-1[a], where the arm flies through the air. Secondly, the arm can

have any point on it fixed in space-in this case its configuration is clamped. Figure

3-1 [b] illustrates the arm clamped at the end of one of its bodies. The dynamics of

the arm differ between the two configurations. In the free-falling configuration, the

arm has seven DOFs: the root body contains three rotational and three translational

DOFs, and the joint has one rotational DOF. In the clamped configuration, the arm

exhibits the dynamics of a double pendulum, losing its three translational DOFs.

28



3.1 Generalized State and Control Vectors

The state of a mechanical system of one or more rigid bodies linked by joints can be

described by a generalized state vector y which consists of two smaller vectors:

q
y =

where vectors q and u (= q) represent the generalized coordinates and velocities of

the object, respectively. More explicitly, the vector q contains information regarding

the positions and orientations, and the vector u the linear and angular velocities of

the object. Particular groups of elements in y describe the parameters regarding each

individual rigid body that comprise the entire object.

Since the root body is the ancestor of all the other bodies in the object, only

one set of position and linear velocity parameters exist in the state vector. All other

parameters are related to angles and angular velocities. A chart describing the joints

and the number of parameters they represent in the state vector is shown in Figure 3-

2 on the following page.

Regardless of the object's configuration, the root body is related to the external

environment by a joint. If the object is free-falling, a free joint containing three

translational and three rotational DOFs "connects" the root body to the environment.

If the object is clamped, the root body is connected by the proper rotational joint.

The control vector p consists of parameters that initialize the object, such as

initial position and velocity. In most cases, the format of the control vector assimi-

lates that of the object's state vector. Additional elements which parameterize other

controllable aspects of the motion can be appended to the control vector. Examples

include body masses, wind forces, or additional velocities added at important times

during the animation (Section 5.7).

29



Number of

Type of Joint Description Rotation Angle Angular
Axes angle Velocity

Parameters Parameters

Pin a 1 1

Universal a1 , a 2  2 2

Ball quaternion 4 3 (along x, y,
z axes)

Figure 3-2: Chart with Illustration of Joints. The state vector does not encode the axis or axes about which the pin or universal joint revolve.
That information is implicitly encoded in the physics equations used to simulate the object. The vectors :k, S, and i represent the unit vectors
pointing along the positive x-, y-, and z-axes in the world frame, respectively.



3.2 Simulation

An object's behavior can be described by a set of ordinary second-order differential

equations:

-y(t) = F(t, y(t), p) (3.1)
dt

where p is the control vector and F(t, y(t), p) is derived from Newton's laws. Inte-

grating Equation 3.1 and solving for y yields the simulation function S:

S(ti, p) = yti = yt0 (p) + J F(t, y(t), p) dt (3.2)

t=to

For clarity, the subscript t on yt denotes an evaluation of the object's state vector

at time t, whereas the notation y(t) indicates the state vector's dependence on time

variable t.

The artist may wish the object to perform a combination of free-flight and clamped

motion. In this case the object collides instantaneously with the external environment,

changing the object's dynamics. Upon switching configurations at the time of collision

t., the object's post-collision behavior may be governed by a different set of physics

equations. A collision transfer function C converts the state of the object immediately

prior to collision, y--, to a corresponding state after collision, y+:

C(y-) = (3.3)

To calculate S after the collision time te, the simulator module uses the post-

collision state as the initial state vector and integrates new dynamics equations g:

Yt = C(y--) + Jg(t, y(t), C(y-)) dt, where t' > tc (3.4)
t=tc

The object can change configurations as many times as the artist wishes. Running

from time to to time tj, the object changes configurations at known times t' E

{tc,..t},whereto = t < tc< t < ... < tc< tf.

31



A clip represents a continuous length of time in which the object runs in a partic-

ular configuration. Each clip can be considered to be a complete simulation by itself.

As such, each clip has its own initial state vector and its own dynamics equations.

So, a clip i simulates the object from time Vf to time tc 1 , and the object's behavior

during this period is governed by the set of Newton's equation F, where i = [0, m].

Equation 3.2, then, is rewritten as:

yt0 (p) + f Fo(t, y(t), p) dt if t E [to, if)
Cfy- ) 7 +4 1(t, y (t),7 C(y,- ))d if t E [tc, tc)

yt =S(t, p) = C(y-) + f Y 2 (t, y(t), C(y-)) dt if t E [tc, tc) (3.5)

C(y7)+ ± F.(t,y(t),C(y -)) dt if t E [tc,tf]

Obviously, the object does not need a unique configuration for each clip. The

configurations between adjacent clips, however, are assumed to be different. For

example, an artist wishes to create a motion where a linked rigid body character

jumps off a ledge, grabs onto a bar, swings around the bar once, releases, then lands.

This motion can be decomposed into three clips: the character begins in free flight,

transfers to a clamped configuration when it grabs the bar, and then returns to free-

falling during dismount. Since the first and third clips use the same set of dynamics

equations, only two sets of equations are needed for simulating the entire motion.

For LRBME, the simulator module generates frames of the motion by calculating

Equation 3.2 at discrete time intervals using an adaptive fifth-order Runge-Kutta

method. The computation of the appropriate accelerations is complex, but for acyclic

objects they can be computed in linear time with generalized coordinates [18, 26].

Given a description of an object composed of linked rigid bodies, the SD/FAST

software package [17] produces FORTRAN subroutines that compute the function

F(t, y(t), p).

32



3.3 Changing Object Dynamics

The collision transfer function C, mentioned in Section 3.2, converts the object's state

immediately before a change in dynamics. The function changes the joint hierarchy

and replaces the current system dynamics in three steps (Figure 3-3). Firstly, the

new joint hierarchy is rooted at the contact point. This step expresses the current

joint positions and velocities with respect to the root joint of the new hierarchy.

Secondly, the impulse force instantaneously changes the linear and angular momenta

of the body. The impulse for both elastic and inelastic collisions can be computed

from empirical laws which relate relative velocities of a contact point before and after

contact. In this case, a clamped point would have zero velocity immediately after

impact. Finally, the impulse adjusts the generalized state of the colliding body. This

step converts the object's old configuration to the new one. With a clamped point, the

impulse cancels the velocity of the new root in preparation for parameterization with

the new state vector, which cannot modify the position or velocity of the clamped

point. Use of basic mechanics properly re-parameterizes the state vector from the

old to the new configuration [18]. The transition from sustained contact to free-flight

follows a similar process with the exception of the impulse computation, which does

not apply.

Suppose a clamping collision occurs at time tc, where clamp point x on the root

body stays fixed after collision. An impulse force is applied such that the velocity of

that point 5 after collision is zero:

5(t+)= (q ) + A* = 0 (3.6)

where *(te) represents the velocity of the point before collision.

This impulse force J has two effects on the root body. Firstly, it instantaneously

33



W~tt

[a] [b] [c] [d]

Figure 3-3: Changing dynamics from free-flight to clamped. [a] Initially the object is rooted on the bottom arm. The object will clamp on

the end of the top arm. [b] Re-rooting expresses the current joint positions and velocities with respect to the root body of the post-impact joint

hierarchy. [c] An impulse J is applied to the center of mass to cancel the linear velocity of the clamp point. [d] The impact may also change the

angular velocity of the point to w(tC+).



changes the velocity of the body at the center of mass c:

(t) = (t;) + An
J

= 6(;) + -
m

where m is the mass of the root body. Secondly, J changes the body's angular

momentum:

w(t+) = w(t;) + AW

= o(t; C)+I- 1 . { (x-c) xJ}

where I is the body's inertia tensor in the world frame, and (x - c) is the moment

arm from the center of mass to the clamp point.

To solve for J, the linear velocity of clamp point x is expressed in terms of the

velocity at c:

5,(t) = 6(t) + W(t) x (X -C)

Expressing this equation at the moment after impact, the equation becomes:

5,(t+) = (t+) + LL(t+) x (x - C)

J
= 6(t;) + - + (L(t;) + AL) x (x-c)

m
J

6(t;) + w(t;) x (x - c) + - + AO x (x - c)
M

= (t;-) ± - i+ AW x (x - c)

= *(t;) ± ++ {I-1- { (x - c) x J } x(x - c)m (3.7)

The cross product between two vectors a and b can be written as a x b, or a can

35



be turned into skew-symmetric matrix [a]x such that a x b = [a]xb:

ail

axb= a2

a3J

bl

X b2

b3J

0 -a3  a2  bl

= a3  0 -a b2 [a]xb

-a 2 a, 0 b3

To isolate J, Equation 3.7 is re-written and manipulated using this operator:

,(t+) = k(t-) + J
m {

= k(t-) + -+

I-i. { (x-c) xJ }} x(x-c)

I-1 [X - C] -J} x (x - c)

(x - c)x I-1 [x - C] J

{ [x - c] -I-1 - [x - C] - J }
I-1 - [x - C] J

where i] represents a 3 x 3 identity matrix.

Since i(t+) = 0 from Equation 3.6, the following linear system is used to solve for

.- .- [xc]}J =-(t )

36

J

m= C- + -

= c(t c ) + 1-[x - C] -

1 -[x - C] X



CONTROL

VECTOR

SIMULATOR SOLVER

USER

Chapter 4 INTERFACE

USER

Interface

The simulation computes the motion for a given set of simulation parameters. Ini-

tially, the parameters result in a motion that does not satisfy artistic goals. For

example, the initial pose may be wrong or the object may not be in a correct location

at a later time. The initial pose can be corrected by resetting the initial values for the

simulation. But, as the number of constraints increases, the problem becomes more

complicated, making parameter tweaking less intuitive.

When the artist edits the motion, she has the option to preserve or change certain

aspects of the motion at any time instant. For example, a certain point on the object

must be at a specific location in the surrounding environment at a specific time. An

aspect vector k represents a controllable feature of the object that the artist wishes to

preserve or change; in this example, the aspect vector would represent the location of

the point on the object in the world reference frame. An aspect function C(y) defines

the aspect vector as a function of the object's state y:

k = C(y)

The artist modifies the object's behavior by providing a set of desired aspect vectors

ki at times ti = {to, . . . , t,}. These aspect vectors serve as key frame constraints on

the object's motion. Note that K can change for each ki, and not all constraints need

37



to preserve the same aspects of the GSV:

Vi, ki = Ki(yt)

The click-and-drag interface implements a differential technique that iteratively

adjusts control vector. In contrast to parameter tweaking, which forces animators

to adjustment parameters directly, differential control computes the adjustment from

click-and-drag interactions with a simulated object. The interaction yields an aspect

vector change 6k, which describes a desired adjustment in the simulated motion:

AC(Ynew) = C(YoId) + 6k

where 6k = k - k. Differentiation with the chain rule reveals a linear relationship

between the change in control vector 6p and 6k:

Vi, 6k = Ki (S(ti, p)) aS(ti, p) 6  (4.1)
aS(ti, p) ap

The system updates the control vector from Pold to Pnew by taking a small step E in

the direction of 6 p:

Pnew = Pold + 6 -p (4.2)

The simulator module uses the new control vector Pnew to provide an updated

motion that the user interface can display. Algorithm 4.1 shows pseudocode of the

process.

Implemented using a cross-platform front-end software package1 , the user interface

provides the artist a connection to the simulator and solver modules. This chapter

discourses the interaction with LRBME, and the procedural and mathematical im-

plications of the interactions.

1Qt 3.1.1 Educational Edition. http://www.trolltech. com.

38



Algorithm 4.1 General Editing Process
Inputs:

po - initial guess for the control vector

1: pne, t= initial guess po
2: Simulate S(t, po), t E [to, t1]
3: Artist places n constraints ki, i E [1, n]

// BEGIN EDITING LOOP
4: repeat
5: Pold * Pnew
6: Calculate 6k
7: Calculate 6p
8: Pnew 4 Pold + E - 6P
9: Re-simulate S(t, Pnew)

10: until Vi, Ci(yt,) = k, i E [1, n]
// END EDITING LOOP

4.1 Layout and Camera Controls

LRBME consists of two major widgets-a render window which displays the motion,

and a control panel (Figure 4-1). The artist sets up preferences and specifies options

through the control panel, but interacts with the object directly in the render window.

While not in the editing mode, the simulator module samples and saves the ob-

ject's motion at uniform discrete time intervals. The artist can use the time slider

to see a snapshot of the motion at a particular time instant. The artist has the op-

tion of seeing the object's beginning pose, its ending pose, or the motion trajectory.

Standard stop and play buttons allow the artist to view the entire motion.

The artist may adjust the camera view by clicking in a space not occupied by

the object in the render window. As the mouse is dragged, the camera changes view

accordingly. The artist has the option of rotating the camera freely, rotating about

the J-axis2 , panning, or zooming in or out (Appendix B).

2A hat over a vector represents a unit vector.

39



I-

Figure 4-1: Screenshot of LRBME.

40



4.2 Object Selection

Ray tracing algorithms are used to determine whether the artist clicked on a body.

Although more sophisticated algorithms could have been implemented, for simplic-

ity the render window transforms the ray to the object's frame before determining

whether the ray pierces the objects's bounding box. This is particularly convenient

since the planes defining the bounding box volume are aligned with the axes of the

objects's reference frame.

The camera center (or eye) e, and the ray direction d compose the ray. The

camera's center is its location in the world frame: e = Tc-a - 00,o0, 1 , whereM] T

Tcam is the viewing matrix of the camera (Appendix B). The difference of the three-

dimensional projection of the window coordinate at the near plane and the camera

eye determines the ray direction.

Any point x on the ray can be described by a scalar a such that x = e + ad.

Since a point can be effectively represented by a, pairs of parallel bounding planes

are used to iteratively update two scalar values representing the intersection of the

nearest and farthest bounding planes with the ray. If the nearest plane scalar is larger

than the farthest plane scalar, then the ray does not hit the volume. The algorithm,

whose details are shown in Algorithm 4.2, is performed on all bodies in the scene to

determine which one is closest to the camera.

4.3 Key Frame Constraints

The artist describes the desired motion with an interface that constrains the positions

and orientations of the simulated object. She first scrubs through the motion to select

the appropriate simulation time and then describes the constraint by either selecting

a point on the body and dragging it to the desired location or by using an arcball

widget to change the orientation of the body. In these cases the artist imposes a

mouse constraint on the motion, since she provides continuous feedback through the

mouse to properly describe the constraint. The editing loop is triggered when a mouse

41



Algorithm 4.2 Ray Intersection Algorithm
This algorithm is performed for each rigid body in the scene.
Inputs:

e - camera eye transformed into reference frame of primitive
d - ray direction transformed into reference frame of primitive
1, r - left and right planes (parallel to yi plane) of primitive bounding box
t, b - top and bottom planes (parallel to ki plane) of primitive bounding box
f, k - front and back planes (parallel to ky plane) of primitive bounding box

1: anear = -oo {scalar for which e + aneard reaches the furthest bounding plane}
2: afar = oc {scalar for which e + afard reaches the nearest bounding plane}
3: if d is not parallel to yi plane then
4: #near <= min(1-e*, re*)

5: !far -= max(l-e* r-e*)
6: anear z= max(anear, /near)
7: afar -# min(afar,/3 far)
8: end if
9: if d is not parallel to *i plane then

10: Ynear e min(-e& , )-eS,)
(t-e- b-e-

11: Yfar e= max( dY )

12: anear t= max(anear, 7Ynear)
13: afar t= min(afar,) far)
14: end if
15: if d is not parallel to xy plane then
16: (near -<= min(f i, k-ei)

17: (far - max( d ' di
18: anear = max(oanear, (near)
19: afar -= min(afar, (far)
20: end if
21: if anear < afar then
22: The ray hits the bounding box volume
23: else
24: The ray does not hit the bounding box volume
25: end if

42



constraint is placed on the motion.

The artist can also add nail constraints, which enforce a particular state, and

allow her to manipulate the motion at several different simulation times. Because

nail constraints are off-line, they usually are not enforced when the artist does not

engage the editing loop with a mouse constraint. It is possible, however, that after

modification of the motion through a mouse constraint, the objects will drift from

the positions described by the nail constraints. The user interface provides a simple

button that engages the editing loop for all nail constraints, thereby not requiring

the artist to add a mouse constraint.

The artist uses tools that emulate key framing techniques to specify the con-

straints. These techniques can be enforced by use of either a mouse (on-line) or a nail

(off-line) constraint. Point constraints allow the artist to select a point on a body

and drag it to its desired location in the world frame. Even though LRBME does not

actually use inverse kinematic (IK) techniques, this type of constraint emulates IK

since the artist, only moving the end-effector, expects the system to solve for the joint

angles [34]. State constraints allow the artist to specifically fix or alter parameters

in the state vector. These constraints emulate forward kinematics tools, where the

artist dictates the desired location and angles of the object.

In the case of the point and translational state constraints, the artist selects a point

on or in a body and drags it to its desired location. Since she is trying to specify

a three-dimensional point on a two-dimensional screen, the point is constrained to

move in a plane. In LRBME, she may select to move the point on the plane which

contains the point and is parallel to either the camera view or the ki plane.

The rest of this section describes the basic algorithm and mathematics for each

tool.

4.3.1 Basic Algorithm

Each constraint i is placed at some unique time instant ti during the animation.

During the editing loop, the user interface iterates through all the key frame con-

straints and obtains from each of them the aspect vector change 6ki and the Jacobian

43



Constraint Type |CK(y)II

Body surface point 3
Joint location point 3
Body center-of-mass point 3
Translational state 3
Translational, fixed quaternion state 3 + no
Arcball state 1, 2, or 4

Figure 4-2: Key Frame Constraint Types. The number no represents the number of angle
parameters in the state vector. The number of elements in an arcball key frame constraint depends
on the type of joint being manipulated (see Figure 3-2).

aci /as (ti, 7P).

The size of each 6ki depends on the aspect being changed. If the artist wants a

point on the object to be located at a specific point in the world frame, KC returns a

three-element vector. If the angle of a pin joint should be at a specific value, IC is a

vector of one element. Figure 4-2 shows a chart of the key frame constraints available

for use.

Scaling factors are associated with each type to give a uniform feeling of change

across all key frame constraint types during interactive editing (Figure 4-3). The

artist using her mouse to enforce a point constraint, for example, should have as

much of an effect on the motion as enforcing an arcball constraint. While mouse

constraints of the same type have the same scaling factor, each nail constraint has

its own individual factor. Consequently, the artist may change these scaling factors

to make some nail constraints more important than others. For example, if the

artist places nail constraints on the beginning and end frames, but decides the latter

constraint was more important to enforce, she could increase its scaling factor.

4.3.2 Point Constraints

A point constraint allows the artist to adjust the location of a point on or in the

object. She may select a body's center of mass, a point on its surface, or the location

of its inboard joint. The aspect function Pos(-) computes the world coordinate cW of

44



Figure 4-3: Constraint Strength Group Box. The relative strength of each constraint type is

listed on the right-hand side. Center-of-mass and body joint location constraints have the same

weight as the body surface constraint, since all three are point constraints.

a point with body coordinates cB:

Pos(y, CB) = Cw

The artist can use this constraint to drag the point through a mouse constraint or

to nail it in place with a nail constraint. The aspect vector change k is the difference

of the desired world point Ew and the current world point location of cB:

k = spc (ZW - Pos(y, CB))

where spc is the scaling factor of the point constraint. The aspect function's depen-

dence on only the generalized coordinates q leads to a Jacobian matrix a9K/OS where

sub-matrix aPos/Ou is [01:

aK [Pos(y)
as(t, p) L q 3[0]

where nu represents the number of generalized velocities.

Since this constraint is concerned with only a point, LRBME is left to find the

appropriate changes to the control vector and the generalized state that gets the

point to the desired location. Point constraints are most useful in a situation when

45



[a] [b]

[c] [d]

Figure 4-4: Point constraint. The artist simplifies the motion of a chain by adding a point

constraint. [a]-[c] The center of mass of the last link is selected, and dragged toward the floor.

Sampling the motion at only certain designated frames during the editing loop makes the trajectory

appear incorrect (Section 5.8). [d] Once the constraint is released, however, the simulation samples

the motion at uniform intervals.

46



an end-effector is selected and the artist does not wish to explicitly constrain joint

angles (Figure 4-4).

4.3.3 State Constraints

The state constraint manipulates specific elements of the generalized coordinates,

which are extracted from the state vector by the aspect function. State constraints

can isolate the root position of the joint hierarchy or the orientation of each joint.

The benefit of this constraint is that it separates the kinematic task, which computes

joint configurations from desired positions of the end effector, and the dynamic task,

which computes the simulation parameters.

Translational Constraint

The translational constraint allows the artist to alter the root position, shifting the

entire object to the desired location. When using this constraint, she has the option of

omitting or locking the joint angles of the object (Figure 4-5). Omitting angles implies

that during editing the solver is free to alter the joint angles as needed to satisfy the

translational constraint. If the artist chooses to lock the joint angles during editing,

LRBME attempts to preserve the object's spatial configuration.

The aspect function simply returns the appropriate elements of the state vector

to be preserved or altered:

With omitted joint angles: K(y) = IC ([xI, 7' T T T) = x

-T
With locked joint angles: IC(y) = [xT, 7TI

The artist selects a point c on the surface of the root body, and drags it to

the desired location -E. The difference becomes k for translational constraints with

omitted joint angles:

6k = c - c

For locked joint angles, k is extended with zeros, to indicate that the desired

47



[a] [b]

Figure 4-5: Translational constraint. The artist fixes the object's location and joint angles

at the initial frame, and attempts to move the object further to the right in the last frame. [a] A

translational constraint with omitted quaternions is placed on the motion. Although the object does

approach the desired position, the joint angles change, as expected. [b] A translational constraint

with fixed quaternions is used. Here the joint angles are preserved, and only the location of the root

point changes.

48



changes in all the joint angles are 0:

no elements - T

k -c)T ,

Since the aspect function merely extracts the proper state vector elements to

constrain, OK/OS maps the elements of KC to their counterparts in the state vector:

(9C a~ ~cac[~ ny -3
For omitted angles. 3 1 3 0as ax ao av awLIL I
For locked angles. [1] n ]0

Arcball Constraint

The arcball constraint can only be applied online. After the artist selects a body

to rotate, a form of Shoemake's arcball appears over the joint [28]. If the joint is a

ball joint, three arcs appear on the arcball, one for each principal axis in the body's

reference frame. If the joint is a pin or universal joint, arcs for each rotation axis

are displayed. The artist can select an arc, and rotate the object along the are.

Mouse movements are modeled as torque forces on the arcball, and the joint's rate

of rotational change depends on the torque as well as the arcball's scaling factor.

Algorithm 4.3 provides pseudocode for finding 6k, and Figure 4-6 shows a typical

session using the arcball constraint. The projection matrix &aC/&S is similar to that

of the translational constraint.

4.4 Adjusting the Control Vector

Before the control vector is adjusted by 6 p, the artist can specify how the system

should change the parameters. To do this, she specifies the relative scaling between

attributes before commencing the editing loop (Figure 4-7). The four main attributes

are position, linear velocity, rotation, and angular velocity. Changing the relative

49



[a] [b]

[c] [d]

Figure 4-6: Arcball constraint. The artist fixes the location and joint angles of the object in the

initial frame. [a] She changes the orientation of the object in mid-flight by manipulating the 3 DOF

joint on the root body. [b]-[c] Because the location of the root point is omitted from 6k, the object

drifts during editing. The arcball does not move with the joint during editing because the rotational

change desired is dependent on the mouse's relative location with the arcball. [d] When the artist

releases the mouse button, the arcball is re-located to the proper position.

50



Algorithm 4.3 Arcball Constraint Algorithm
Returns aspect change 6k
Inputs:

Ot - the current body rotation in world frame (quaternion)
sT- arcball constraint scaling (torque) factor

1: WI ' = [0, 0, 0] {w, represents direction of rotation change}

2: while mouse button is down do
3: 0 = desired quaternion rotation, obtained through arcball
4: AO 0 6 o t
5: if joint is pin or universal joint then
6: Express 6 and AO in body rather than world reference frame
7: end if
8: if AO is not close to the identity quaternion then
9: if IlVector(AO)I is close to 0 then

10: O J= IVector(A)J -Vector(AO)
11: WO - |IVector(AO)JJ -Vector(AO)
12: else

2 cos 1 (AO,)
13: LO4 IlVector(A) -Vector(AO)

-2 cos-1 (-A~r)
14: wO0 4 Vector(AO) {6 and -0 are the same rotation}

II Vector(A0) 1I
15: end if
16: if 11w, - wil < 11w - w,11 then {wl is iteratively updated}
17: W1 -W

18: else
19: L 1 WO

20: end if
21: if joint is 3 DOF ball joint then
22: 6k t= (swi) o Ot

23: else {joint is described by angle about axis rather than quaternion}
24: 6 #= angle about body axis of rotation of current state
25: 0 - angle about body axis of rotation of arcball

26: A6 - 0
27: AO* * -sign(AO) 127r - 1A61 I {rotation in opposite direction}

28: if w, = axis of rotation then

29: 6k = s, max(AO, AO*)

30: else {w, is opposite to the axis of rotation}
31: 6k = s, min(AO,,A*)

32: end if
33: end if
34: end if

35: end while

51



Figure 4-7: Control Vector Attribute Mass Group Box. Here the artist can specify relative
weights of attributes by pressing the '.5x' and '2x' buttons, which halves or doubles the attribute's
weight, respectively. The weight assigned to an attribute affects all elements in the control vector
related to that attribute. Step size c is determined by the slider on the left-hand side, used for
differential update. The "Enforce Residual" box on the lower right-hand side provides a threshold
of error above which the editing loop halts. More about the residual is discussed in Section 5.5.

scaling of an attribute affects all elements in the control vector associated with that

attribute. Section 5.2 explains how the relative scales are incorporated into solving

for 6p.

To leave a parameter in the control vector unchanged, the artist has two options.

She can scale the parameter's attribute down to a very low value such that it hardly

gets altered. Alternately, she can turn the parameter off completely, effectively mak-

ing its relative scale 0. Turning a parameter off reduces the control vector size, which

can help the editing loop maintain interactive speeds. At the same time, fewer DOFs

are available for the solver module to change, and finding a suitable adjustment to

the control vector to satisfy the key frame constraints may become more difficult.

Section 5.4 discourses how these changes affect the editing process.

On each body, small icons are overlayed on a silhouette of the object's initial state

to denote which attributes of that body may be altered during editing (Figure 4-8).

The artist toggles alteration of attributes by holding down modifier keys and directly

clicking on the body. This interface allows her to dictate which attributes of which

bodies to change visually.

52



[a] [b]

Figure 4-8: Toggling Control Vector Parameters. Icons denoting attributes associated with
each joint are overlayed on top of the inboard body. In this example, the bottom body is clearly

the root body since it contains all four attributes (left). The other connected bodies can only have
orientation and angular velocity attributes. The artist decides that she wants to keep the root body's
orientation fixed during editing, so she clicks on the body to turn that attribute off (right).

53



54



Chapter 5

Editing Motion

CONTROL

VECTOR

SIMULATOR SOLVE

USER
INTERFACE

U SER

For a set of aspect vectors, differential control computes the corresponding parameter

adjustment as a solution to a quadratic program:

min 1 pTM6
jP 2

p such that

6ki = a p
0 p

k 2 = 2 6P
app

(5.1)kn = "n J
ap

where n is the number of key frame constraints, and the diagonal matrix M scales

the units of simulation parameters [25, 16] (Section 5.2). While still satisfying the

key frame constraints, the objective function seeks the smallest change to the con-

trol vector and the current state of the object. The linear constraints require the

computation of sensitivity Jacobian matrices 4P = OS/Op, which define locally linear

approximations of the relationship between the state vector y and the simulation

parameters p. The solution of the quadratic program computes the parameters for a

new simulation, after which the system displays the simulated paths and repeats the

entire process.

55



5.1 Jacobian of Motion

Formulating the quadratic program first involves calculating the sensitivity matrix 4D

of the simulation function:

DS(ti, p) _t

PYto (P) + F(t, y(t), p) dtap ap tt
ti

dyt. (p) + .F(ty(t),P) dt (5.2)
dp ap

t=to

When simulating a passive object without non-conservative forces, yto = p, and so

dyto /dp = [ (the identity matrix). To derive the linear constraints for the quadratic

program shown in Equation 5.1, the matrix a§/C/y is obtained from each constraint,

as discussed in Section 4.3.

The differential approach hinges on the efficient computation of 4). A straight-

forward approximation with forward differences is insufficient, as errors compound

throughout numerical integration to yield unstable convergence with the differential

technique. Instead, automatic differentiation is used to avoid making any compro-

mises.

Differentiating the equations of motion shown in Equation 3.1 with respect to p

yields a system of differential equations that describe the evolution of the sensitivity

matrix:

- (D(t) = 49F(t, Iy(t), 7 )(t), 7p) (5.3)
dt ap

Since no closed-form expression exists for F, the most difficult term to compute in

Equation 5.3 is the derivative O.F/Op. Fortunately, automatic differentiation simpli-

fies this task even for complex equations of linked rigid-body dynamics. In imple-

mentation, the ADIFOR software package [4] computes the derivatives of complex

FORTRAN subroutines generated by SD/FAST. As such, the simulation module in-

tegrates Equations 3.1 and 5.3 simultaneously during simulation.

56



5.2 Scaling Attributes

In Equation 5.1, the incorporation of a mass matrix allows the artist to instruct the

system to favor changing one attribute of the control vector over another. Without

it, all elements of the control vector, regardless of attribute, will equally reduce the

value of the objective function. Generally, with no mass matrix (or one that is equal

to the identity matrix), the solver module ends up changing angle-related parameters

more drastically than position-related parameters. This happens particularly when

the artist uses point constraints (Figure 5-1).

Two factors contribute to this behavior. Firstly, the state and control vectors of a

linked rigid body generally have more angle-related parameters than position-related

ones. Since the solver module treats all parameters equally when minimizing the

objective function, the larger percentage of angle-related parameters already implies

that most of the adjustments made to the control vector will be angle-related. Sec-

ondly, linear and angular units are incomparable. One radian or one radian per second

change in the initial parameters has much larger effect on the motion than one linear

unit or one unit per second change. Since smaller adjustments to the angle-related

parameters have greater influence over the entire motion and lead to smaller objective

function evaluations, the solver module will tend to change those parameters.

To compensate for the different units, the artist specifies weights which denote the

importance of attributes through the interface discussed in Section 4.4. The higher

the weight number, the more volatile the attribute becomes and the more likely the

solver module will alter the attribute. The values of the weights are mapped onto a

nP x nP mass matrix M 1 which has along its diagonal the weight attributed to the

'Although M 1 is used to find the optimal Lagrange multipliers (Section 5.3), M itself is never
used. In the implementation, the relative weights specified by the artist represent the values in M-
to avoid the cost of inverting M.

57



[a] [b]

Figure 5-1: Comparison of system behavior with residual calculation. Keeping the initial

frame fixed, the artist wants the figure to arrive at a location further to the right. [a] The artist

edits without the mass matrix. Consequently, many different attributes are changed all at once,

adding motion that the artist may not necessarily want. [b] Before editing, the artist sets the linear

velocity scaling factor much higher (256:1), indicating that the system should try to change the

linear velocity more than the other attributes.

58



corresponding elements of the state vector:

Mil

0

0

0

0

M22

0

0

0

0

0

0

0

0 Mnp

Since only attributes can have weights and not individual elements, all position-

related elements have the same weight, and all angular elements, regardless of whether

they are part of a quaternion, have the same relative weight.

5.3 Finding Optimal Change

To find the optimal change to the control vector, 6p*, the objective function in Equa-

tion 5.1 is converted into the Lagrangian L(6p, A):

L(Jp, A) =-pTMSp - A1 ( (6ki - OpP -

A2 -Jk2 - p -) - --- n -.. k a n JP
M p ) ap

=-pTMjp - A.- (6k - Aop)
2

(5.4)

where A = AT AT ... AT 6k = [6k k T...

of all the Oki/&p Jacobian matrices:

I[al~ci apl
A - &K?2/&P]

[aK?/ap1

6k T and A is the juxtaposition

To find the local optimum, VL(6p, A) is set to 0. To clarify derivation of the gradient,

59



Equation 5.4 is rewritten in summation notation:

L(6p, A) = -6pTM6p - A. (Jk - A6p)
2

fp lk nk np

= (Zmijp2 - E Aokj - E Ai 1 aijpj (5.5)
i=1 i=1 i=1 j=1

where aij refers to the (i, j)th element of the Jacobian matrix A, nk is the sum of the

sizes of all aspect vectors, and nP is the size of the control vector.

The gradient of the Lagrangian in Equation 5.5 becomes:

m 116p1 - Z Ajasi

VL(6p, A) = m 22 Jp2 - Z_=1 A ai 2

mnnnppp -- n 1a Ajaink

-Mp - ATA

Setting VL(Jp, A) to 0 leads to the minimal change Jp* and optimal Lagrange

multipliers A*:

P* = M--ATA* (5.6)

To find 3p*, Equation 5.6 is incorporated into Equation 4.1:

*= AJp* = AM-'ATA* = Jk (5.7)
ap

5.4 Changing Control Vector Format

Some artist-driven settings may necessitate altering the format of the control vector

before calculating the optimization problem discussed in Section 5.3. Changing the

format of the control vector changes little of the actual editing process as long as the

Jacobian of the control vector with respect to the re-formatted control vector can be

calculated.

60



5.4.1 Masking

As mentioned in Section 4.4, the artist may decide to not alter certain elements of

the control vector. To reflect this mathematically, those elements are eliminated from

the control vector before the control problem is derived. In particular, the control

vector p is converted to a masked version of itself, pm:

PT dp)T = PM
dpm

Masking matrix dp/dpM is created dynamically when the artist toggles the attribute

of a body.

Containing only the elements that are allowed to be changed by Equation 4.2, the

masked control vector replaces the complete control vector in the editing process, and

thereby modifies the optimization problem stated in Equation 5.1 to:

1 T BKM (1
min -JpIMM6pM, such that JpM = ak (5.1a)
6

PM 2 apM

where MM = (dp/dpM)TM(dp/dpM).

Three adjustments are made to the editing process as a result of using the masked

control vector. Firstly, the rows and columns of the Jacobian associated with the

unaltered elements are eliminated, quickening computation. To conform to the La-

grangian, the matrix <P which originally contained the OaC/&p matrices is instead

populated with OKi/&pM. An expansion of the term via the chain rule shows that

calculating a/&pM requires only post-multiplying the masking matrix:

akP M & dp
apm a dpm

Secondly, the mass matrix M is replaced with MM in Equations 5.6 and 5.7 when

solving for Jp* . Finally, once 6 p* is found, the masking matrix is used again to

61



convert 6pM to 6p, which Equation 4.2 can use to alter the complete control vector:

Pnew = Pold -+ p ' PMdp6

5.4.2 Re-parameterizing Quaternions

Modifying the control vector through linear gradient descent becomes problematic

when dealing with ball joints, since they are represented by quaternions. To address

this, the quaternions 6 of 6 pM are logarithmically-mapped to three-element vectors

vo, resulting in a re-parameterized control vector 6 PR. The modifications made to

the quadratic program to accommodate solving for 6 PR are similar to that done by

the masked control vector Jpm. The quadratic program stated in Equation 5.1a is

modified to:
1 01K

min -6p TMR6PR such that a PR = ak
6

PR 2 R 0 PR

where MR = (dpM/dpR)TMM(dpM/dpR). Expanding &K/OPR leads to:

aC C dpM
0 PR -pm dpR

Since the only difference between 6 pM and JPR is the quaternion parameters,

the Jacobian matrix dpm/dpR is mostly an identity matrix, with the matrix 06/8vo

inserted in the appropriate rows and columns.

The logarithmically-mapped quaternions are stored and updated with each succes-

sive iteration of the editing loop. To prevent singularities, the logarithmically-mapped

quaternions are checked to see if they are within an acceptable range of values. If

not, they are dynamically re-parameterized to represent the same rotations that ex-

hibit better derivative values [12]. More details on the logarithmic map and dynamic

re-parameterization are discussed in Appendix A.

62



5.5 Residual Check

With an under-constrained system a solution will always be available. The artist,

however, may over-constrain the optimization problem by placing too many key frame

constraints. This can happen especially if the desired motion requires external joint

torques, a force not addressed in this thesis. Since no solution will completely satisfy

the linear constraints in Equation 5.1, the system tries to find a Jp* that minimizes

the residual error (Aop* - Jk)T (Aop* - k).

Yet even the minimized error may be too great, leading to erratic system behavior.

To monitor the system's response, an extra step is taken to ensure that the residual

is below a certain threshold. In the implementation, the default value is 0.1. If the

residual is greater than this threshold, then the control vector is left unedited. To

provide feedback, the widget displayed, whether a pole or an arcball, turns to a red

color (Figure 5-2). The artist has the option to turn off the residual calculation or

change the threshold value.

5.6 Editing Across Configuration Changes

Initially free-falling, an object is animated from time to to time tf and clamps at time

t., where to < t, < tf. This animation can be decomposed into two clips, or segments

where the object exhibits the same dynamics. The first clip simulates the object in

free-flight, while the second simulates the object in a clamped configuration. Let F

represent the equations of motion of the first clip, and g that of the second clip.

Extrapolating from Equation 3.5, the simulation function is:

S yt(p) + A F(t, y(t), p) dt if t E [to, tc)
S(t, p) = t P)+t (5.8)

C(y-) ± A g(t, y(t), C(y -)) dt if t E [tc, tf]

The Jacobians of analytically differentiable functions F and ! compose sensitivity

matrix 1D = OS/Op via the chain rule. Editing the motion of the object at a time

t where to < t < t, uses Equation 5.2 to find <D. To edit the motion at t > tc, the

63



Figure 5-2: Residual check prevents editing. The artist constrains the position and the rotations

of all the joints in both the beginning and end frames. The artist then tries to enforce an arcball

constraint to make the object twirl during free-flight (top, center). The arc turns red to tell the

artist the edit is not possible (bottom).

64



second case of Equation 5.8 is differentiated with respect to p:

Oyt OC(y-) + g(ty(t),C(yy ))±1 dt
ap ap ap

tc

To decompose the right hand side, consider how the simulation is calculated. The

first clip is simulated until collision time t,. The object is then re-rooted at the

clamp point, leading to state vector y-. An impact force is applied to the free-falling

object and the post-impact state vector C(y-), re-parameterized to the clamped con-

figuration, becomes the initial state vector of the second clip. Finding the object's

generalized state during the length of the second clip depends only on g and C(y-).

In general, the composition of the simulation function includes functions that are

contained independently within each clip, with the collision function C connecting

the motion between clips. The previous equation expands using the chain rule:

t
ayt aC(y-) 8~,ytCy)= ' + aPtYtC(t))dt
Op Op +p

tc

aC(y() ay tg(t,y(t),C(y-)) aC(y ) OyZ7d
= dt

ay- Op aC(y-) Oy7 Op
tc

An arbitrary number of configuration transitions can be composed using similar meth-

ods.

Since numerically integrating Equation 5.3 derives 4D, the computation required

to calculate OS/Op remains independent of how many configuration transitions exist

between the beginning of the animation and the editing time instant. Numerical

integration and cumulative application of the collision function cause the initial state

vector and Jacobian of each clip to include past chain rule multiplications. Thus,

finding OS/Op will always require multiplying OS(t, p)/OC(y-) with OC(yj-)/Op.

When a clamping collision occurs, translational degrees of freedom are lost since

a point on the object's root body is held fixed in space. Any edits made within a clip

where the object is clamped will deny adjustment of the clamp point's location, since

65



the location of the object has no influence on the object's movement. This situation

is undesirable, especially if the initial control vector guess leads to a motion where

the clamp point is not at the desired location.

A glance at the format of the Jacobians substantiates this argument. Analytically,

the Jacobian oyt/Op can be broken into four parts:

axt/Op

ayt o6/ap

OP &ve/Op

LOwt/aP]

where x represents the location of the root body, v the root body's linear velocity,

and 6 and w refer to the angles and angular velocities of all rigid bodies, respectively.

With a clamped model, Oyt/ 0 p reduces to:

since the location of the root body does not influence its motion, and the clamp

point's linear velocity is zero.

To allow the artist to specify a displacement of the clamp point, the Jacobian is

extended to include Ox/Op at the time of collision from the previous clip, assuming

the object was previously free-falling:

axtr/ap
ayext Iot/Op
ap

If the object is clamped in the previous clip, then Oxt'/p is found while calculating

the transfer function. However, if the object begins its animation in a clamped state,

Oxt/op is taken directly from Op/Op, which is the identity matrix.

Since the location of the clamped object does not affect the dynamics equations,

66



changing the position of the object is independent of changing its motion. The state

vector contains only angle-related attributes, necessitating external storage of xtr and

&xtc/&p.

5.7 Creating Plausible Motion

Some motions are simply impossible to accomplish with an object whose joints are

passive. Consequently, the range of possible motions are limited to the artist, some-

times preventing her from being able to guide the motion to its desired trajectory

(Section 5.5). A possible solution extends the description of the control vector such

that it contains additional DOFs not explicitly contained by the simulated object.

These DOFs may specify properties of the environment, such as surface normals or

body masses. Their addition makes the motion physically plausible, where numerical

accuracy can be sacrificed without affecting the perceived realism of the animation [3].

Even though its presence may go unnoticed by the artist, these factors can improve

the system's response to the artist's interactions.

As an example, a three-link chain which clamps onto a bar at a time t, could

have additional parameters added to the control vector to denote an extra change in

angular velocity at the clamp point. The state vector of the object in free-flight is:

x
x

6
e

Y- V

V
V O R

where wR represents the angular velocity of the root body and WR represents the

angular velocity of all other bodies. The format of the extended control vector consists

of the free-flight state vector appended with three additional velocity parameters:

p = [yT, (wR+)T]T

67



where the three-element vector wR+ represents the angular velocity added to the

clamp point at the time of collision tc. At time tc, the root body's angular velocity is

changed to equal the sum of the post-impact angular velocity and the added angular

velocity:

- etc6te

where Ot, and wt represent the post-impact angles and angular velocities of the

object.

When the artist edits the motion at a time t > tc, the Jacobian OS/op extends

to:
1S OC(y -)

aC(y-) Op

Since the extra angular velocity is added at the time of collision, only OC/Op is

altered:2

- [ 1 [ [Oec/Oy] [o
OC(y;-) [C(y-) 0C(y;-) J [Ow iy] [1

ay (9/ y 1 _

5.8 Re-Simulation

Once 6p is found, the change is incorporated into the existing control vector as

expressed in Equation 4.2:

Pnew = Pold + J -p (4.2)

where c is the step size. For a large gradient step size, the gradient descent method

may diverge. Although line minimization would be the preferred method to finding an

appropriate step size, its high computation requirement prevents the editing process

from completing at interactive speeds. In practice, a small fixed step size has decent

convergence properties while also enabling interactive update rates.

2 0f course, the Jacobian is also extended with ax/Op as discussed in Section 5.5. The extension
is not reflected here since it is not pertinent to discussion.

68



The new control vector is used to re-simulate the entire motion. To keep the

editing loop interactive, further optimizations are made by simulating the motion at

times needed by the solver module, rather than sampling the motion at discrete time

intervals. These times include:

e The beginning and ending frames. The beginning frame initializes the

entire motion, and the ending frame, while unnecessary, helps complete the

visualization of the motion.

9 Key frame constraints. The Jacobian at the time of the key frame constraints

help compose the constraints to the objective function.

* Transfer frames. The time instants at which the transfer function C is calcu-

lated to transition from one clip to the next are needed for efficient calculation

of the Jacobian.

Since only a select subset of time instants is simulated, the trajectory displayed

on the screen will look ragged and simplified. Even so, the simplified trajectory can

provide sufficient visual cues to the artist about the evolving motion.

69



70



Chapter 6

Results

This chapter shows some example sessions using LRBME and benchmark statistics

measuring the rate of feedback and the overhead incurred by editing.

6.1 Example Sessions

Each of the sessions shown in this section took less than 5 minutes to create.

In Figure 6-1, the artist controls the motion of a three-link object with two pin

joints. At first, the object is dragged across the screen to its desired end state. Once

this location is enforced with a nail constraint, the artist adjusts the orientation of

the body in mid-flight to create a more interesting spinning motion.

In Figure 6-2, a clamped chain with three universal joints and arbitrary initial

state bounces around the clamped point. The artist uses the point constraint to

create a swinging motion by pulling the chain apart. In this example, the artist uses

a mass matrix in Equation 5.1 to state a preference for changing the angular velocities

instead of orientations between the links.

Figure 6-3 demonstrates the switch between free-flight dynamics and clamped

dynamics at a prescribed simulation time. Here, a three-link object with two pin joints

becomes clamped. The artist uses techniques similar to the first example to place the

clamp point of the object correctly on the bar. Although editing the orientation of the

clamped model, the system is able to properly alter the control vector to accommodate

71



[a]

[b] [c]

[d] [e]

Figure 6-1: Example 1 - Free-falling three-link object. Each link of the object is connected

by a pin joint. [a] Initial motion. [b]-[d] With the first frame held fixed by a nailed translational
constraint with locked joint angles, the artist drags the object at the last frame to the desired

location. [e] A nail constraint is placed on the last frame to fix translational components but omit
angles.

72



[f] [g]

[h] [i]

U]l

Figure 6-1 (continued): [f]-[i] An arcball constraint is used to rotate the object mid-flight. [j] Final

motion.

73



[a] [b] [c]

Figure 6-2: Example 2 - Clamped 4-link chain. The root body is clamped to a point in space by a pin joint. The chains are linked together
by 2-DOF universal joints. [a] Initial motion. [b]-[e] The artist uses a point constraint and pulls the chain apart.



[d] [e] [f]

Figure 6-2 (continued): [f] Final motion.



[a]

[b] [c]

[d] [e]

Figure 6-3: Example 3 - Clamping Collision. The model is similar to that in Figure 6-1. [a]
Initial motion. [b] With the first frame fixed, the object is dragged to the desired location using a
translational constraint. [c] The artist adds a nail constraint at the time of impact. [d]-[g] With
the arcball, each body's rotation is adjusted.

76



[f] [g]

[h] [i]

[j]

Figure 6-3 (continued): [h]-[i] The artist makes

[j] Final motion.

adjustments post-collision using a point constraint.

77



Figure 6-4: Graph of time taken per editing loop during re-simulation. The data was

collected by recording the time it took the simulation module to re-simulate the motion at every

editing loop. One interesting feature of this graph is the high variability of the data as the number of

links increase. This behavior can be attributed to the varied solution space of higher-DOF motion.

the artist's edits.

6.2 Benchmarks

Benchmarking was performed on a dual Pentium Xeon 1.7GHz computer with 512

MB of RAM.

The most important concern of this technique is the overhead incurred by using

the editing loop instead of simulation alone. The editing loop was divided into three

individually timed parts: the differential solver which finds 5 p, the simulator which

re-calculates the motion, and the GUI update which displays the updated motion. To

time each phase of the loop, linked chains of various lengths were edited with a point

constraint at various time instants. Figure 6-4 shows the time taken by the simulator

module and Figure 6-5 shows that by the solver module.

As the time duration increased, re-simulation time grew polynomially, as shown

78

Simulation Module Calculation Time

5000

4500

4000

3500
0.
0

-2 3000 32-link chain
CL A 4-link chain

j 2500 X 6-link chain
a 8-link chain

. 2000 10-link chain

1500

1000

500

0
0 0.2 0.4 0.6 0.8 1

Simulation time length (sec)



in Figure 6-4. The more variable loop rate data exhibited by the longer chains ex-

emplified the effect the complexity of the simulated motion had on response time.

Consider editing the motion of a 10-link chain. A very simple dropping motion tends

to make the time of the editing loop shorter than a motion where the chain jiggles

around. The difference in editing time occurs simply because the numerical integra-

tor, attempting to stay within a given tolerance of error, takes adaptive step sizes.

Higher frequency motion causes the integrator to take smaller steps, and therefore

more iterations to simulate the motion.

While the differential solver roughly took the same amount of time regardless of

simulation time length, its time did grow polynomially with respect to the number

of DOFs in the object (Figure 6-5). This behavior is expected since both the sizes

of the Jacobian matrices and the number of computations needed to solve the linear

system are polynomial functions of the number of DOFs in the object.

When considering the percentage of time taken by each phase, the re-simulation

stage took anywhere from 60-80% of the editing loop with fewer DOFs, and 95-99%

of the editing loop with more DOFs. The solver module and GUI update contributed

only 5-7% to the editing loop's time combined. So among the three phases, the

re-simulation stage took the most time.

As discussed in Section 5.1, both the simulation function S and the sensitivity

matrix 4D are numerically integrated and stored during simulation. To determine

the overhead of calculating the sensitivity matrix, two times were recorded-the time

taken to complete the gesture via the editing loop, and the time taken to only simulate

the motion, thereby ignoring time taken for the calculation of <D. Each time record

was divided by the number of iterations to get the average time per re-simulation. The

difference between the two numbers was considered to be the overhead of editing the

motion. The results are shown in Figure 6-6. With increased DOFs, the additional

time required to compute the sensitivity matrices quickly became the performance

bottleneck, taking as much as 1-2 orders of magnitude more time than was required

to calculate the simulation function.

79



Solver Module Calculation Time

0.
0
0
C-

0)0.

16

14

12

10

8

6

4

2

0
2 7 12 17 22

Number of DOFs

Figure 6-5: Graph of time taken per editing loop by the solver module. The solver module's
time grows polynomially with the number of DOFs in the model. Despite the increase, the time the
solver module takes pales in comparison to the time taken by the simulation module.

Figure 6-6: Graph depicting overhead of editing. As the number of DOFs increases, the cost
of calculating the sensitivity matrix becomes the bottleneck of the editing loop's performance. Both
regression curves are polynomials of degree 2.

80

Comparison of Editing Overhead

10000

C. 1000
0
0

x Simulation with Editing*~100
A Simulation Only

0
U
CD

10

0 5 10 15 20

Number of DOFs



Chapter 7

Conclusion

With the differential technique described in this thesis, an artist can rapidly prototype

complex passive linked rigid-body motions. Simple, intuitive click-and-drag gestures

translate into constraint equations that the system attempts to satisfy through gradi-

ent descent. Although the applicability of this technique is restricted to simulations

with acyclic joint hierarchies and single-point contacts, it is a significant improvement

over naive parameter tweaking.

This click-and-drag interface can easily be extended to improve system behavior

or the animation pipeline:

* With parameter estimation techniques, the artist must have an accurate sense

of timing in order to make the character perform as desired. Specifically, mo-

tions requiring switches in dynamics would require the artist to know how long

the character is in a particular configuration before transitioning to the next.

Under the current framework, the task reduces to tweaking the timings between

clips. Previous work has shown that use of error metrics can be utilized to pro-

vide additional constraints to change the time of clips as well as the object's

simulation parameters [25]. Extending the technique to allow proper timing

adjustments among clips could greatly improve system response.

o Automatic detection of collisions could also improve the system's functionality.

A discrete search similar to that used by Harada et al. could be performed to

81



find minimal and local changes in current animation state [16]. For example,

an animator could direct a trapeze artist to grab onto a bar automatically once

he gets sufficiently near. This type of control assimilates that of an avatar, in

which the artist directs a character who knows what to do within the context

of its environment. For a less experienced artist, controlling a character in this

manner transforms her into a director, and may enable her to express intent

with broader, more abstract gestures.

* The motion sketching paradigm described in Chapter 2 could benefit from use of

LRBME. A complicated motion can be divided into smaller subproblems, each

of which can be manipulated using LRBME. This effectively splits the motion

into the spacetime windows used by Cohen [6]. Initially, the artist sketches

the desired motion by placing key frame constraints at proper times. Off-line

optimization would then enforce continuity constraints as well as adjust the

timing of the subproblems so that the overall motion becomes plausible.

" The control vector could also be extended to include parameters for articulated

characters. Although the artist would have no mechanism for directly control-

ling these parameters (Section 5.7), the addition of active joints can make the

solution space smoother, improving system response and reducing the need of

residual enforcement (Section 5.5).

One challenge this approach faces, however, is constructing an effective param-

eterization of the muscle force function, especially if this is to be generalized to

any type of motion. If an efficient parameterization is known for certain types

of motions, such as jumping or running, an entire corpus of motion "primitives"

could be compiled, whereby each primitive is designed by the artist using the

differential technique. These primitives could then be concatenated to create

more complex motions. This technique has been successful in active controllers

[13] and motion capture [19].

" Replacing the numerical integrator with a neural network to approximate rather

than simulate motion may allow an artist to interactively edit motions of com-

82



plex animals with many DOFs. Previous work has already shown that neural

networks can produce effective and realistic locomotion, even with inputs they

have never seen [14]. Since the simulation is never numerically integrated and

gradient computations can be quickly derived, use of a neural network may also

improve the overhead of motion editing.

In general, the technique described in this thesis could be appended to any motion

creation pipeline involving physical simulation. By this point in the pipeline, the

created motion will more or less satisfy the artist's intents. An application such as

LRBME could then be used to refine the motion. With computation power rising

in both the CPU and GPU processors, the bottleneck of numerically integrating the

sensitivity matrices will become less of a hindrance, allowing the artist to create

complex and realistic motion effectively for characters with many DOFs.

83



84



Appendix A

Re-parameterization of

Quaternions

The non-Euclidean space that describes quaternions prevents solvers from interpolat-

ing between two quaternions linearly. Several approaches can address this issue. One

solution could later enforce the unit-length constraint on the linearly interpolated

quaternion. Although this technique would work, the size of the control problem in-

creases, slowing performance. Another solution could map quaternions to vectors that

belong to a space that is Euclidean. The thesis uses this technique. Although other

sources discuss the mathematics of quaternions and the process of mapping quater-

nions more thoroughly [27, 12], a quick overview of the process and mathematics is

explained here.

A.1 Basic Quaternion Notation

Quaternions lie within a four-dimensional vector space (R 4 ). A special subset called

unit quaternions (S3) define all possible rotations in three-dimensional space. The

quaternion q = [0, 0, 0, 1]T corresponds to the identity rotation, and a rotation of 0

85



radians about the unit axis i = [a*, aS, aj]T can be encoded into quaternion qo,& as:

o,= [qi, qj, qkqr a, sin , aS, sin , a, sin , ,cos

[ sin 2 , 2o (A. 1)

The length of a quaternion is defined as:

q s q + qj2+ q + q2

A unit quaternion's length is 1.

A quick example illustrates the problem with linear interpolation of quaternions.

Imagine two frames of animation, where the body is rotated 0 degrees about the y axis

in the first frame, and rotated 180 degrees about the y axis in the second frame. These

original rotations map into quaternion vectors qi = [0, 0, 0, 1 ]T and q2 = [0, 1, 0, O]T

respectively. An additional frame is added in between these two frames to make the

animation of the body smoother. In this frame the body should be rotated 90 degrees

about the k axis. Linear interpolation between the original two quaternions leads to

quaternion q' = [0, .5,0, .5]T, the length of which is (.5)2 + (.5)2 = .5 -$ 1.

A few more functions and notation details are mentioned here for later use. The

Vector(-) and Scalar(-) functions operate on quaternions thus:

Vector( qi, qj, qk, qI [q- , qj, qj

Scalar qj, gj, qj, q-]T q

A tilde over a vector v E R3 extends it to a quaternion:

S= V,0T

86



Finally, a quaternion with an exponent of -1 denotes its conjugate:

q-1 =-qi, -q, -q, q]

A conjugate quaternion can be thought of as the inverse rotation of the original

quaternion. Following a rotation expressed by q by conjugate q-1 (or vice versa)

always leads to the identity rotation.

A.2 Quaternion Manipulation

Manipulating a reference frame by a series of rotations can be accomplished "tra-

ditionally" by multiplying 3 x 3 matrices representing those rotations. Matrix mul-

tiplication, however, is expensive and excessive since the rotation matrix includes

redundant information. Since quaternions can represent rotations with fewer pa-

rameters, they significantly reduce the number of computations needed to rotate a

reference frame.

Rotating a reference frame or vector by a quaternion involves use of a multiplica-

tion operator o, defined as:

p o q [ap,r] 0, [ q,] = [lp X aq + Praq + qrip, prqr - ap - aq

where p, q C S3. Rotating a three-dimensional vector v to v' via the rotation de-

scribed by qOj E S3 employs this operator:

V' = Vector (qo,i o o iqoj)

The scalar component of the resulting quaternion always equates to 0; the Vector(-)

operator extracts the rotated vector from the quaternion.

87



A.3 Exponential and Logarithmic Maps

The exponential map correlates a vector in R' describing a three-DOF rotation with

a quaternion in S3 describing the same rotation. Conversely, the logarithmic map

correlated unit quaternions into three-dimensional vectors. As shown in Equation

A.1, all unit quaternions can be decomposed into an angle and an axis of rotation.

The exponential map essentially reduces the four-element quaternion by coding the

angle of rotation into the length of the axis of rotation:

[0, 0, 0, I]T for v = [0, 0, O]T

= - icos () for v # [0, 0, O]T

where v E R', 0 = lvi, and ' = v/|vl. Calculation of ' becomes numerically unstable

as lvi reaches 0. Reorganization of the Vector term fixes this problem:

Vector (ev) = sin (0) v = sin (0/2) v sin (0/2) v 1 s
2 vI 0n() 2 2

Luckily, the sinc function is computable and continuous at and around zero. Since

this function is not included in most standard math packages, the Taylor expansion

of the sinc function provides a means for calculation:

sin (6/2) 1 0 (0/2)3 (0/2)5
0 0 2 3! + 5!

1 02 04

= 2 48 +25-5!

Because computers have limited machine precision, the sinc function can be computed

with only a few terms of the expansion, without any error. More precisely, when

101 <; cmachine precision:
sin (0/2) _ 1 02

0 2 48

otherwise the actual value can be acquired by computing the sine and dividing by 0.

Computation of the logarithmic map is a simple two-step process. Use of the

88



inverse cosine function leads to 0, which is the length of the mapped three-dimensional

vector:

0 = 2 cos- 1 qr

The vector component of the quaternion is normalized, then multiplied by 0.

Due to small numerical imprecision at the asymptotes of the inverse cosine func-

tion, a "clamped" inverse cosine function [cos- 1 ](-) is used instead:

[cos- 1] a = cos-1

0

if a < -1

if - 1 <a < 1

if a > 1

A.4 Calculation of Derivatives

Derivation of the Jacobian matrix &q/av, where v E R3 and q = ev, is as follows:

2

+202
so

0
Vg S,+ voVSc,

03 202

+ VS2,CO + S

200_ 0

vos + vico

03 202

VS-so +vgico
3 202

v~vi ~so v~vco VL 0 3 202

20

where co = cos(0/2) and so = sin(0/2).

!S + VVSC
03 202

Vs 8
~ +93

V2 0
20

2

202
+0

viso

20

If 101 /machine precision the sine and

cosine terms are replaced with their respective Taylor expansions, and terms with

89

v? sO

03

-Vkv*so + VyVco V So

03 202 - 3



powers of 4 or greater in the numerator are discarded:

Vi 62 1 02 /2 VnVs /02
+ - (--1 - 1

24 (40 2 48 24 40 24 (40

vsv: (0 0'N2 1 02 Vy( 2

--- 40 + 24 4
24 4 24 40 2 48 24 4

z 1 + 2

24 40 24 40 24 40 2 48

o g C 2 ) Vo k 1 2 ) V:, 2 )2 2 48) 2 2 48 2 2 48

A.5 Dynamic Re-parameterization

As stated in Section 5.4.2, the exponentially-mapped quaternions are stored and

maintained during the editing cycle. One more step must occur, however, before new

exponentially-mapped quaternion values can be stored. The space of exponentially-

mapped quaternions contains singularities when the length of the vector is a multiple

of 27r. This makes sense since a rotation of 27r radians about any axis is equiva-

lent to no rotation at all. Restricting the vectors to within a sphere of radius 27r

would prevent reaching a singularity. Before storage, the length of the exponentially-

mapped quaternion is checked to be no larger than a buffer value. In implementation

this buffer value is 1.77r. This prevents the new exponentially-mapped quaternion

from approaching the singularity region during gradient descent. If over the buffer

value, the exponentially-mapped quaternion is dynamically re-parameterized to keep

it within the allowed region. To do this, the exponentially-mapped quaternion v is

replaced by an equivalent rotation with better derivatives:

27r
V -1 -v

|vi

90



Appendix B

Camera Controls

The interactive camera knows the world point on which it is focused (ccam), how far

away it is from the focus point (Zcam), and the rotation at which it is viewing the

point (Ocam) (Figure B-1). From these parameters the ii and vC directions are derived,

which represent the 'x' and 'y' directions of the camera view plane. Within the

camera's reference frame, the focus point is at the origin, and the camera is located

at [0, 0, Zcam], facing the -i direction (Figure B-1[a]). The quaternion rotation Ocam

rotates the entire frame. Thus, calculation of the homogeneous modelview matrix is

as follows:

T0[ -zcam [Ocam] 0] [H -ccam

Team =

oT 1 oT 1 oT 1

where 0 = [0, ,] 0 , 10 is a 3 x 3 matrix of zeros, [ocam] is the rotation matrix

derived from 6 cam, and zcam = [0, 0, Zcam ] T

To rotate the camera about Ccam, the window coordinates are mapped onto a hemi-

sphere of canonical length 1. Coordinates outside of the sphere radius are constrained

to its surface. The quaternion difference between the rotations denoted by the cur-

rent and original mouse points is applied to a temporary camera rotation. Once the

artist is satisfied with the new view, Ocam is set to the new rotation. To constrain

the rotation about the y-axis, the spherical coordinates of the mouse points are first

91



Vcam

Zcam 

ca
f=~caca

viewing Ccam
volume

[a]

Vcam

Ucam

Figure B-1: Camera Properties. [a] Model of the camera within its own reference frame. The axes
nicam and - cam represent the axes aligned with the camera view plane. The origin of the reference
axes represents the point on which the camera is focused. [b] An example of the camera in the
world frame. It is rotated by quaternion Ocam. Vector ccam represents the location of the camera
focus point relative to the world origin.

92



projected onto the ci plane before the quaternion difference is found. Algorithm B.1

shows pseudocode of how the camera rotation is accomplished.

Camera panning simply moves the focus point ccam along the fv- plane, while

zooming alters the scalar Zcam. Algorithms B.3 and B.4 provide pseudocode that

moves the camera along these directions.

Algorithm B.1 Camera Rotation
Moves camera along surface of sphere with center Ccam and radius zcam
Pseudocode for WINDOWTOSPHERE( listed in Algorithm B.2
Inputs:

mwin- current window coordinates of mouse (in pixels)

1: Vold 4 WINDOWToSPHERE(mnwin)
2: while mouse button is down do
3: Vnew -= WINDoWTOSPHERE(mwin)

4: AG 0 [Vold X Vnew, Vold Vnew] {change from original rotation}
5: 0 temp e AO 0 Ocam
6: Use 6 temp instead of 6 cam to compute camera matrix

7: Update camera view

8: end while

9: 6 cam -# 6 temp

93



Algorithm B.2 WINDOWTOSPHERE(mwinf)

Returns unit vector v, the spherical projection of window coordinate Mein
Inputs:

Mwin = [m1f, m.] - window coordinates of mouse (in pixels)
w, h - width and height of render window (in pixels)
Ocam - current rotation of the camera (quaternion)

1: yocam = 0 cam 0 y 0 cam {y-axis in camera space}
2: r - .9 min(w, h) {radius of sphere in pixels}
3: v 4- [m1  - , m , -i, 0] {distance from center of sphere to mouse}
4: if |vii < 1 then
5: Vi 4- V1 - ||V|1|
6: else
7: Normalize v{restrain to surface of sphere}
8: end if
9: if rotating about y-axis then

10: v I- v - (v * yOcam)yOcam {project onto plane denoted by ykam I
11: Normalize v
12: end if

Algorithm B.3 Camera Panning
Moves camera focal point along plane parallel to camera view plane
Inputs:

Mwin - window coordinates of mouse (in pixels)
w - width of render window (in pixels)

1: Am <= Min - mold {Am = [Amri, Amr] }
2: i <= [Ocam]- [1, 0 , 0 ]T {i-axis in world frame}

3: <- [Ocam] T [0, 1, 0] T {-axis in world frame}
4: Normalize i, 'r

5: while mouse button is down do
6: Ctemp <= Ccam + (-Zcam"m )n + (-Zcam )$
7: Use Ctemp instead of Ccam to compute camera matrix
8: Update camera view
9: end while

10: ceam <= Ctemp

94



Algorithm B.4 Camera Zoom

Alters distance from camera to focal point

Inputs:

min -- window coordinates of mouse (in pixels)

sz - zoom speed

1: Am - Min - mold {Am - [Amf, Amp]}

2: while mouse button is down do

3: Ztemp 4 Zcam + szAm-
4: Clamp Ztemp to near and far plane values

5: Use ztemp instead of Zcam to compute camera matrix

6: Update camera view

7: end while
8: Zcam I-- Ztemp

95



96



Bibliography

[1] David Baraff and Andrew Witkin. Dynamic simulation of non-penetrating flex-

ible bodies. In Siggraph 1992, Computer Graphics Proceedings, pages 303-308,

1992.

[2] David Baraff and Andrew Witkin. Large steps in cloth simulation. In Siggraph

1998, Computer Graphics Proceedings, pages 43-54, 1998.

[3] Ronen Barzel, John F. Hughes, and Daniel N. Wood. Plausible motion simulation

for computer graphics animation. In Computer Animation and Simulation '96,

Eurographics Workshop Proceedings, pages 184-197, Poitiers, France, September

1996.

[4] Christian Bischof, Alan Carle, Peyvand Khademi, and Andrew Mauer. Adifor

2.0: Automatic differentiation of fortran 77 programs. IEEE Computational

Science and Engineering, 3(Fall):18-32, 1996.

[5] Stephen Chenney and D. A. Forsyth. Sampling plausible solutions to multi-body

constraint problems. In Siggraph 2000, Computer Graphics Proceedings, pages

219-228, 2000.

[6] Michael F. Cohen. Interactive spacetime control for animation. In Siggraph 1992,

Computer Graphics Proceedings, pages 293-302, 1992.

[7] Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. Visual simulation of smoke.

In Siggraph 2001, Computer Graphics Proceedings, pages 15-22, 2001.

97



[8] Nick Foster and Ronald Fedkiw. Practical animation of liquids. In Siggraph

2001, Computer Graphics Proceedings, pages 23-30, 2001.

[9] Michael Gleicher. Motion editing with spacetime constraints. In Proceedings

1997 Symposium on Interactive 3D Graphics, pages 139-149, 1997.

[10] Michael Gleicher and Andrew Witkin. Through-the-lens camera control. In

Siggraph 1992, Computer Graphics Proceedings, pages 331-340, 1992.

[11] Michael Gleicher and Andrew Witkin. Drawing with constraints. The Visual

Computer, 11(1), 1994.

[12] F. Sebastian Grassia. Practical parameterization of rotations using the exponen-

tial map. Journal of Graphics Tools, 3(3):29-48, 1998.

[13] Radek Grzeszczuk and Demetri Terzopoulos. Automated learning of muscle-

actuated locomotion through control abstraction. Siggraph 1995, Computer

Graphics Proceedings, pages 63-70, 1995.

[14] Radek Grzeszczuk, Demetri Terzopoulos, and Geoffrey Hinton. Neuroanimator:

Fast neural network emulation and control of physics-based models. In Siggraph

1998, Computer Graphics Proceedings, pages 9-20, 1998.

[15] James K. Hahn. Realistic animation of rigid bodies. In Siggraph 1988, Computer

Graphics Proceedings, pages 299-308, 1988.

[16] Mikako Harada, Andrew Witkin, and David Baraff. Interactive physically-based

manipulation of discrete/continuous models. In Siggraph 1995, Computer Graph-

ics Proceedings, pages 199-208, 1995.

[17] Michael G. Hollars, Dan E. Rosenthal, and Michael A. Sherman. SD/FAST

User's Manual. Version B.2. Symbolic Dynamics, Inc., Mountain View, Califor-

nia, September 1994.

[18] Thomas R. Kane and David A. Levinson. Dynamics: Theory and Applications.

McGraw-Hill, New York, New York, December 1985.

98



[19] Lucas Kovar, Michael Gleicher, and Fred6ric Pighin. Motion graphs. In Siggraph

2002, Computer Graphics Proceedings, pages 473-482, 2002.

[20] John Lasseter. Principles of traditional animation applied to 3d computer ani-

mation. In Siggraph 1987, Computer Graphics Proceedings, pages 35-44, 1987.

[21] Matthew Moore and Jane Wilhelms. Collision detection and response for com-

puter animation. In Siggraph 1988, Computer Graphics Proceedings, pages 289-

298, 1988.

[22] J. Thomas Ngo and Joe Marks. Spacetime constraints revisited. In Siggraph

1993, Computer Graphics Proceedings, pages 343-350, 1993.

[23] John C. Platt and Alan H. Barr. Constraint methods for flexible models. In

Siggraph 1988, Computer Graphics Proceedings, pages 279-288, 1988.

[24] Jovan Popovi6, Steven M. Seitz, and Michael Erdmann. Motion sketching for

control of rigid-body simulations. ACM Transactions on Graphics, 22(4), Octo-

ber 2003. In print.

[25] Jovan Popovi6, Steven M. Seitz, Michael Erdmann, Zoran Popovi6, and Andrew

Witkin. Interactive manipulation of rigid body simulations. In Siggraph 2000,

Computer Graphics Proceedings, pages 209-218, 2000.

[26] Dan E. Rosenthal. An order n formulation for robotic systems. Journal of

Astronautical Sciences, 38(4):511-529, October 1990.

[27] Ken Shoemake. Animating rotation with quaternion curves. Computer Graphics,

19(3):245-254, 1985.

[28] Ken Shoemake. Arcball: A user interface for specifying three-dimensinal orien-

tation using a mouse. In Graphics Interface 1992, Conference Proceedings, pages

151-156, May 1992.

99



[29] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elastically

deformable models. In Siggraph 1987, Computer Graphics Proceedings, pages

205-214, 1987.

[30] Frank Thomas, Ollie Johnston, and Cllie Johnston. The Illusion of Life: Disney

Animation. Hyperion, revised edition, October 1995.

[31] Adrien Treuille, Antoine McNamara, Zoran Popovi6, and Jos Stam. Keyframe

control of smoke simulations. In Siggraph 2003, Computer Graphics Proceedings,

pages 716-723, 2003.

[32] Andrew Witkin, Michael Gleicher, and William Welch. Interactive dynamics.

In Proceedings of the 1990 symposium on Interactive 3D graphics, pages 11-21,

1990.

[33] Andrew Witkin and Michael Kass. Spacetime constraints. Computer Graphics,

22(4):159-168, 1988.

[34] Jianmin Zhao and Norman I. Badler. Inverse kinematics positioning using nonlin-

ear programming for highly articulated figures. ACM Transactions on Graphics,

13(4):313-336, October 1994.

100


