
Tools for End-User Creation and Customization of Interfaces for
Information Management Tasks

by

Karun Bakshi

B.S. Electrical Engineering
University of Maryland, College Park, 1996

B.S. Computer Science
University of Maryland, College Park, 1997

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2004

© 2004 Massachusetts Institute of Technology
All rights reserved

Signature of Author.......

Certified by

Ass

MASSACHUSETTS INSTnTTE

OF TECHNOLOGY

JUL 2 6 20041

LIBRARIES

- I--- -- --- -... - - . ..- -- .. ---------..
Department of Electrical Engineering and Computer Science

May 24, 2004

sociate Professor of Elect Engineering and
David R. Karger

Computer Science
Thesis Supervisor

Accepted by

(hairman, Departmenf Committee on

Arthur C. Smith

Graduate Students

BARKER

-- ---- ----

Tools for End-User Creation and Customization of Interfaces for Information
Management Tasks

by

KARUN BAKSHI

Submitted to the Department of Electrical Engineering and Computer Science
on May 24, 2004

in Partial Fulfillment of the Requirements for the Degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

Information based tasks rely on software applications that allow users to interact with
information in some pre-defined manner deemed appropriate by the application developer
or information/content provider. Whereas such an approach facilitates one way of
working with the information, it does not (and cannot) take into account the unique needs
of the user, e.g., the particular content of interest given the specific task being performed
and expertise of the user, information visualization and interaction preferences of the
user, etc. As a result, users must perform additional overhead information management
activities in working with the software tools in order to accomplish their particular tasks.

In this thesis, we advocate breaking the "rigidity" of such applications by allowing users
to create and customize their own task-oriented interfaces (information spaces) that
aggregate and present task-specific information and tools on the same screen.

In developing a system that allows users to tailor an information space in a manner that
suits their particular task and preferences, we recognize a set of desirable properties it
must have, and the need for it to provide the user customization control over three
primary aspects of information in their information space: content, presentation and
manipulation. Haystack, a generalized information management system, encompasses
many of the desirable properties at the system level and also provides many of the
building blocks that are required to give users greater customization control. We thus
approach our ultimate goal of enabling users to build and configure a personalized task-
oriented interface by providing them with tools situated in Haystack that allow
manipulating various primitives that control the three aspects of information spaces. A
discussion of the design and implementation of each of the tools is provided.

The above solution allows users to develop information spaces that better match their
unique conception of the task and eliminate much of the overhead resulting from "rigid"
information management tools, resulting in productivity gains in recurring or long-
running tasks.

Thesis Supervisor: David R. Karger
Title: Associate Professor of Electrical Engineering and Computer Science

Acknowledgements

This goal has been a long time coming, and I have many people (and beings) to thank for
their patience and support.

First and foremost, I would like to thank Professor Karger for giving me the freedom to
choose a topic and his guidance in developing the idea.

Thank you God, for the opportunity to complete this goal, in this fashion. I never
dreamed this would happen.

Thank you also to my parents and brother for their patience, support, encouragement and
inspiration not just for this academic achievement, but in all my endeavors over the years.
I cannot repay it.

Thank you also to all my teachers and friends over the years who invested time and
patience in helping me get this far. In particular, thank you to Prof. Sidiropoulos who had
faith in me and told me to "take it [GRE] again" so I could do better.

Thank you to all my friends in Haystack, who have helped me along in this program.
Thanks Dave for always answering my questions, always fixing bugs promptly (with a
smile, no less!) and ensuring the road was clear for me to make progress. I owe you.
Thanks also to Dennis for answering many questions on Haystack's current design and
implementation.

Thanks to the MIT CSAIL Oxygen Project and the Simile Project for their funding in
conducting this research.

Finally, I am sure I've missed some people. So, thank you as well for helping me achieve
this goal.

6

Table of Contents

Chapter 1 Introduction .. 13
1.1 U se Cases .. 14

1.1.1 M anaging a Softw are Project .. 14
1.1.2 Catching Up O n N ew s... 15

1.2 Current Nature of Information Management Solutions 16
1.2.1 Fixed Structure and Granularity of Inform ation 16

1.2.1.1 Relevant Subset Specification... 16
1.2.1.2 A ggregation Specification.. 17

1.2.2 Fixed Presentation of Inform ation... 17
1.2.2.1 H igh Level Layout Specification .. 18
1.2.2.2 A spect and A spect V iew Specification ... 18

1.2.3 Fixed O perations on Inform ation ... 19
1.3 Problem D efinition..19

1.3.1 Problem Scope... 21
1.4 Thesis O utline ... 21

Chapter 2 Related W ork.. 23
2.1 Task-based Inform ation Spaces .. 23

2.1.1 Taskm aster ... 24
2.1.2 Kubi Softw are .. 25

2.2 U ser Configurable Inform ation Spaces ... 27
2.2.1 Im plicit Configuration... 28

2.2.1.1 W eb M ontage .. 28
2.2.1.2 Personal Inform ation Geographies.. 28
2.2.1.3 M icrosoft O ffice Suite... 29

2.2.2 Explicit Configuration... 30
2.2.2.1 E-M ail Filtering .. 30
2.2.2.2 SH riM P.. 31
2.2.2.3 Toolglass and M agic Lenses ... 31
2.2.2.4 Q uickSpace... 32
2.2.2.5 W eb Brow sers .. 32
2.2.2.6 M icrosoft O ffice Suite... 34

2.3 U ser Creatable Inform ation Spaces.. 34
2.3.1 W W W Portals and N ew s Sites.. 35
2.3.2 V irtual Desktops... 36
2.3.3 U ser-D efined D atabase V iew s ... 37

2.3.3.1 W eb Content Collection.. 38
2.4 Conclusion.. 40

Chapter 3 A rchitecture.. 41
3.1 D esirable A ttributes... 41
3.2 A rchitecture.. 42

3.2.1 H aystack .. 43
3.2.2 Context Custom ization Tools.. 45
3.2.3 Channel M anager .. 46
3.2.4 Inform ation Space D esigner.. 46

7

3.2.5 Inform ation V iew Designer.. 46
3.2.6 Supporting Tools.. 46

Chapter 4 Channel M anagem ent.. 47
4.1 Techniques of Inform ation Specification.. 47
4.2 Channels.. 48
4.3 D esign.. 50

4.3.1 Channel G eneration Infrastructure .. 50
4.3.1.1 Channel O ntology ... 51
4.3.1.2 Channel Definition Language ... 52
4.3.1.3 Channel M anager A gent... 57

4.3.2 Channel M anager U ser Interface... 58
4.3.2.1 O ntology Brow ser ... 58
4.3.2.2 Channel M anager ... 60
4.3.2.3 Channel V iewer.. 63
4.3.2.4 Set Transform Instance V iewer... 65

4.4 Im plem entation.. 66
4.4.1 Channel M anager A gent Im plem entation ... 66
4.4.2 Set Transforms and Condition Tests' Implementation 67
4.4.3 Channel M anager Im plem entation.. 68
4.4.4 Supporting Tools' Im plem entation .. 70

4.5 Conclusion.. 71
Chapter 5 Inform ation Spaces.. 72

5.1 Basic Capabilities... 72
5.2 Design..73

5.2.1 Inform ation Space .. 73
5.2.1.1 U nderlying O ntologies .. 73
5.2.1.2 Inform ation Space Designer V iew .. 74
5.2.1.3 Inform ation Space U sage View ... 79

5.2.2 Inform ation Spaces M anager ... 81
5.3 Im plem entation.. 82
5.4 Conclusion...84

Chapter 6 U ser Creatable V iew s.. 85
6.1 V iew D esigners ... 85
6.2 D esign.. 88

6.2.1 U nderlying O ntologies ... 88
6.2.2 M etadata Lens V iew Part Designer View ... 89
6.2.3 M etadata Lens V iew Part U sage V iew ... 90
6.2.4 M etadata Lens View Parts M anager .. 92

6.3 Im plem entation.. 93
6.4 Conclusion.. 95

Chapter 7 Conclusion and Future W ork .. 96
7.1 Contributions.. 96
7.2 Future W ork ... 97

7.2.1 Evaluation.. 97
7.2.2 N ew A venues for Research.. 98
7.2.3 N ew Features for Current Im plem entation... 99

8

Appendix A - A vailable Set Transform s .. 101
Appendix B - A vailable Condition Tests ... 104
References ... 107

9

List of Figures
Figure 1 Kubi Client U ser Interface... 26
Figure 2 Microsoft Word Application in the Microsoft Office Suite of applications

customizes menus based on recent user actions.. 30
Figure 3 M icrosoft Outlook Rules W izard.. 31
Figure 4 Microsoft Office interface allowing users to customize the operations available

from toolbars 34
Figure 5 A sample customized MyYahoo! news portal... 36
Figure 6 Screenshot of Ontology Browser .. 59
Figure 7 Screenshot of Channel Manager User Interface .. 61
Figure 8 Screenshot of Channel Viewer Tool...64
Figure 9 Screenshot of Set Transform Instance Viewer Tool..66
Figure 10 Screenshot of Information Space Designer ... 75
Figure 11 Design view of the "My Info Space" Information Space 79
Figure 12 Usage view of the "My Info Space" Information Space...............................80
Figure 13 Screenshot of Information Spaces Manager ... 82
Figure 14 Screenshot of Haystack showing various aspects of the entity Karun Bakshi .87
Figure 15 A Metadata Lens View Part shown using the Designer View...................... 90
Figure 16 An information space that allows the user to inspect three people using the

Friends V iew 9 1
Figure 17 Screenshot of Metadata Lens View Parts Manager 93

10

List of Tables

Table 1 Available Set Transforms...101
Table 2 Available Condition Tests..104

11

12

Chapter 1 Introduction

Advances in processing, storage and networking have made enormous amounts of
information accessible to people via the Internet (e.g., World Wide Web, e-mail, etc.).
Also, users can now rapidly create new information using sophisticated software
applications. Although a lot of information has become readily accessible and necessary
for daily work, the current infrastructure for managing information is ill-suited for
information-oriented activities.

The general information based task generally requires users to not only use diverse bits of
information obtained from these various sources, but many times also requires them to
use the same information in multiple tasks: the same information may need to be
visualized and used in different ways depending on the task. The primary means that
users have to manipulate the available information is software applications that generally
have a well defined domain of application, and hence only deal with information deemed
relevant to that particular domain. Inevitably, since there is no universal agreement on
what constitutes a domain, many applications overlap in their functionality. Furthermore,
the means of visualizing and interacting with information is also predetermined by the
application. Whereas applications may be designed to support a number of well known
tasks, they cannot be easily adapted to the user's notion of a task which may be different
than that anticipated by the application developer. Accordingly, since the information is
not organized and presented in a manner that matches the task and user preferences, it
becomes difficult to use and users must expend additional time and effort in collecting
and extracting information relevant to the task at hand.

In this thesis, we outline a means for users to have greater control in defining how to
interact with information relevant for their tasks by providing appropriate tools that allow
them to create and customize information management interfaces.

13

The remainder of this chapter is devoted to understanding some examples of the above
problems, and a closer look at what the underlying causes are. We then identify the
problem we wish to solve, followed by a discussion of a high level approach to its
solution.

1.1 Use Cases
We illustrate the above observations on information usability further by considering two
examples of information-oriented tasks. As demonstrated by these examples, a significant
divide exists between the user's conception of information and task, and that of the
supporting information management solution. It is not always possible for the user to
impose her mental model onto the information in order to make it easy to assimilate and
use. As a result, she is forced to manually or mentally bridge this gap.

1.1.1 Managing a Software Project
Consider a software project manager who needs to manage the tasks her team does, as
well as the budget and schedule for the project. She might need various kinds of
information for the various tasks involved in managing the project, e.g., contact
information for team members, to-do list and assignment of action-items to individuals,
e-mails corresponding to the project, outstanding bug reports, a budget spreadsheet and a
schedule.

The current information management architecture supports the project manager's tasks
through various applications modifying "their" data using proprietary formats. For
example, in order to react to a customer e-mail about a software bug, she must switch
from the e-mail client to the bug tracking software to enter a bug report. Then, she must
switch back to the e-mail client, recall which software developer would be best suited to
fixing the bug, look up his/her contact information, and send him/her a bug report
number. The project manager may also need to meet with the developer, and hence
negotiate a meeting time via e-mail, and update her personal calendar. After the meeting,
the project manager will need to switch to the scheduling application to update the project
schedule to reflect the time that will be consumed in fixing the bug. Another application
switch may be needed to update the developer's outstanding tasks if the scheduling
software does not support to-do lists for team members. Finally, she must switch to the
spreadsheet software to update the budget on the project to take into account the
resources consumed by the bug fix.

As can be seen, a significant amount of user effort is spent in finding information,
mentally collating it and switching from application to application to perform various
subtasks, not to mention possibly re-entering it in various applications, thereby
duplicating data and potentially introducing a data integrity violation. In the ideal
scenario, the user would not be subjected to context switches as he/she reviewed the
project status or performed related tasks by having to go to different applications that
managed different aspects of the project.

14

Thus, whereas the current information management infrastructure ficilitates information
oriented tasks (by allowing it to be accessed and manipulated), it leaves room for
improvement in terms of ease of use from the user's task perspective. Whereas, a single
application could be developed that included functionality for all project management
tasks, it would still not solve the problem:

" What if the project manager also wanted to use the new application's
functionality, such as calendar and e-mail, outside of the project management
application, e.g., to see when her dentist's appointment is, or to receive mail from
her spouse? Tracking such information in the project management application
would not make sense, and tracking it separately would require duplication of
stores as each application only maintains "its" data, thereby making it difficult to
have a consolidated personal calendar view.

" What if the project manager's responsibilities changed, and he/she now had to
also track news about a competitor's products? If this possibility had not been
foreseen by the application developer and captured in the new application, the
manager would have to return to "hopping" from the project management
application to the news tracking application.

* What if the project manager did not use all the functionality in the new enhanced
project management application? She would have to consciously and repetitively
ignore parts of the functionality and buttons and widgets that expose it.
Alternatively, she could be forced to use certain functionality unnecessarily: if the
only way to access bug reports view was based on specifying a bug severity level,
she may have to associate severities with bugs even though it was not required by
the company's software process. Thus, there would be no way to customize her
view of the information.

We can conclude that building another "super" application does not resolve the problem.

1.1.2 Catching Up On News
Consider another example of a user interested in the task of catching up on the news.
Clearly, the notion of what does and does not constitute "news" is unique to the
individual. One person (e.g., an Indian immigrant from New Delhi) may be interested in
world headlines, business news, technology news, and New Delhi politics, whereas
another (e.g., a baseball fan residing in Maryland who happens to be a stock analyst for
the pharmaceutical industry) might be interested in Maryland state politics, baseball
news, and business and technology news from the pharmaceutical industry. Whereas, the
first person might be satisfied with CNN's website for the first 3 items, it is unlikely that
he will get information on New Delhi politics from CNN. More than likely, he will need
to visit an Indian or Delhi-based newspaper's website to get that kind of information. By
extension, we can view the general activity of getting information as one corresponding
to hunting and gathering; we must manually seek out what we need, since those providing
it do not (and presently cannot) cater to individual needs.

Had the problem been restricted to news personalization, it would have been considered
solved to some extent as evinced by the general purpose "information portals" such as

15

Yahoo! that aggregate multiple information sources and provide a table of contents and
other options for managing and customizing the portal. In fact, in recognition of the
varying information needs of people, Yahoo! has different web sites for different
countries. Nevertheless, even for news, some problems remain:

* The user cannot aggregate information in case the content he is interested in is
spread across the various Yahoo! sites.

" The information may not be organized in a way the individual user sees it (i.e., his
world view), e.g., he may want to receive pharmaceutical industry news - both
business and technology related, rather than business news and technology news,
and having to sift it for information related to the pharmaceutical industry. The
news provider may not cater to individual industries or organize information in
such a manner as to easily allow the user to manually impose a different structure.
As a result, the level of customizability that is available to the user is limited.

* People's information needs run deeper than conventional news. Even if CNN
allowed the user the complete flexibility to specify the subset of information
needed from the web site, clearly it cannot satisfy all of his needs, e.g., if he is
interested in the IEEE signal processing electronic magazine to stay abreast of
latest developments in the field as part of the "news" task, he still has to visit the
IEEE website and log in separately to access the content.

1.2 Current Nature of Information Management Solutions
We argue that the above problems in managing various aspects of information and tasks
fundamentally stem from the current static nature of information and the supporting tools;
In essence, information is "bottled up" by the application. Information producers have
most of the control over how information is packaged, presented and can be manipulated.
The information consumer whose productivity these decisions significantly affect has
little say in these decisions. We briefly discuss some of these decisions and the impact
they have.

1.2.1 Fixed Structure and Granularity of Information
The "pure" information that users require, devoid of its presentation, is perhaps the most
critical ingredient of the task that the user is attempting to accomplish. Yet, users lack
the ability to easily select what information to show and manipulate in a given context.
Much of this work is mentally done by the user by selectively remembering, revisiting,
focusing and ignoring information as appropriate. This method, however, does not scale
well in the face of growing corpora of information. We investigate the various
dimensions of this deficiency below.

1.2.1.1 Relevant Subset Specification
Clearly, not everyone is interested in all available information. Furthermore, at any given
time, a user is probably only interested in a further subset of items of general interest to
him/her depending on the task at hand. However, applications currently make it difficult
for a user to specify a subset of information of interest since the view of information has
been predefined, and is always completely populated. It might contain more information
than necessary, or the relevant information may be scattered across various views in the

16

application. For example, in order to access information about all songs from a particular
artist, a user may visit the web site of the recording label that produces the artist's
albums. However, instead of providing a listing of artists and their songs, the recording
label may provide information organized as albums it produced each year. For each
album, it also lists the artist as well as the songs. In this case, the user cannot impose a
structure on this information to aggregate and expose only the information of interest to
her. Instead, she must manually go through the information to select relevant
information. This process becomes problematic and inefficient when the corpus to be
accessed is large and the result set may be relatively very small, or when the same query
must be performed periodically. Part of the difficulty arises from the fact that in HTML-
based web sites (and in many other cases), the presentation is tied to the content, and
hence the semantics of the information are not exposed. In other cases, the information
may simply not be semantically tagged to support queries that extract only relevant
information.

Thus, the user cannot specify the subset of information of interest by specifying a
condition it must satisfy in order to be relevant; he/she is forced to view the entire corpus
even though the information set of current relevance is much smaller.

1.2.1.2 Aggregation Specification
Information is currently fragmented because of representation (e.g., different file formats)
or storage (e.g., different web sites), making it difficult to bridge gaps and place sets of
information adjacent (physically or logically) to each other. Thus, users cannot arbitrarily
aggregate or mix information from different sources, and co-locate it. The scenario
outlined earlier with the software project manager hopping several applications to access
information and operations is one example of this problem. Had the manager been able to
specify the necessary information required from various sources, she would have been
able to co-locate it to easily manage the project from a single UI. Furthermore, she could
easily respond to the challenge of additional tasks, such as tracking competitors'
products. Due to the fragmented nature, users are forced to collect information from one
tool, and enter it in another. Alternatively, if the same information is maintained by
multiple tools, the user must ensure that it is consistent across tools.

1.2.2 Fixed Presentation of Information
User control over information presentation is crucial, and in fact a significant portion of
the functionality in many applications is devoted to allowing users to modify the
presentation of the information in a manner consistent with how they want to manipulate
it. Generally, however, the subset of functionality available in this respect is limited to
that which is deemed useful by the application developer for the task at hand, leaving the
user unable to make these decisions based on personal preferences. Users should have
first class support (applicable to any information) for customization of information
presentation. We consider the problem of information presentation as consisting of two
parts: specification of high level layout and specification of the view of the aspect of
interest.

17

1.2.2.1 High Level Layout Specification
Related to the problem of lacking the ability to aggregate arbitrary content, is the lack of
the ability to specify the layout of content. That this is a powerful and useful capability is
demonstrated by the ability of many modern software applications to allow docking of
content panes in different parts of the main application window. An example of such

capability would be the Microsoft Developer Studio software development platform

which allows docking of the compiler output pane, debug pane, source code browser, etc.

However, this capability is not supported uniformly in applications. Another example of

this capability resides in window managers that help users tile, cascade and otherwise

organize their windows in the available real estate. Thus, layout capability is not only
important in managing a set of related content within an application, but will also be

important for a priori, unrelated content that the user has juxtaposed and related for

his/her task.

1.2.2.2 Aspect and Aspect View Specification
Developing the previous idea of subset selection further, not everyone is interested in all

facets of the information being used. For example, in the case of contact information for

friends, even though the user may have information on the job title and place of work of a

friend, she may not be interested in seeing it listed in her address book; she may only

want the phone number and e-mail address listed. (Such a capability is currently allowed

in Microsoft Outlook.) Thus, the user may want to specify a particular aspect of the

underlying information to work with [21]. This idea can be employed for example to

keep information synchronized, where different parties view and/or modify different

aspects of the information, e.g., the software project manager can update the skill set

aspect of her team member, while the HR department may update the team member's

employment status. Furthermore, shared information e.g., employee name may only be

modifiable by one, both or neither parties. Interestingly, the notion of aspects in this

sense is very similar to the notion of database views. However, aspects need not
necessarily be a subset of properties of the underlying entity. They can be some

computational closure on the entity, e.g., the age of the underlying entity based on its date

of birth and the current date, or the size of the underlying collection of items [21].

Currently, little information manipulated by users is amenable to this type of control. We

argue that the notion of aspects is sufficiently universal and should be available

uniformly across data stores.

Subset and aspect specification together can determine the content of the information, but

require a corresponding presentation specification to allow user interaction. Haystack

currently has the notion of classes of views based on view size that can be applied to
aspects as well [21]. However, as it stands currently in Haystack, all aspects are simple
collections of properties that show the value of the underlying property.

We take the ideas presented by Quan, one step further by advocating the need for

different styles of views for an aspect based on criteria other than size [21]. That is,

whereas, Quan has identified one axis of variation of views for aspects, i.e., size, we

suggest that the axes of type, and semantics of information are equally important, and

18

other such axes may exist. For example, the items aspect of a list of coordinates may be
viewed as coordinate pairs, or drawn as a curve. Furthermore, users should have the
ability to select/create appropriate views for the aspect.

We posit that an extension of the document/view architecture used in software
application development should be available as presentation customization capability to
the user: any aspect can have multiple views as determined by the type and semantics of
the aspect. Users can be given control over these preferences via tools that understand the
semantics of the underlying aspect. Furthermore, for a given view, the user should have
control over the rendering preferences based on the presentation primitives used for that
view. For example, a view showing textual information should allow specifying font and
color preferences, and order and/or layout of the information, whereas a view showing
coordinate data rendered as curves should allow line style specifications such as color,
thickness, style, etc. Another example would be one where the tool for designing the
view provides particular widgets to interact with properties, e.g., a Boolean property can
be controlled via a check box (if it can be changed), a slider widget may make sense for
property having discrete values, or radio buttons may make sense if the property
semantics require only one value (from a set of valid values) can be specified.

Since content customization is not available uniformly to the user, the idea of view
specification of an aspect is missing to a large extent in current applications. Once again,
this capability is present in some applications, but only partially. For example, Microsoft
Outlook, in addition to allowing the user to select fields, allows the user to specify the
order of the fields and font/color preferences for contacts [9]. We argue that users should
have first class control over the presentation of an aspect, including its layout, rendering
and other appropriate preferences.

1.2.3 Fixed Operations on Information
Similar to the case in presentation, many decisions about operations associated with the
information are made by information producers: certain operations may only be available
in certain views, and users must thus adapt how they perform a task based on the fixed
views. Although there are exceptions to this (e.g., MS-Office), the user cannot add other
operations available elsewhere to a view, nor remove unused operations to reduce clutter
[8]. Furthermore, the application developer also generally decides which operations
should have which means of access, e.g., menu, toolbar, shortcut, etc. Thus, the user who
actually determines the task or the frequency of the operation invocation based on his/her
task has little say in this important decision.

1.3 Problem Definition
Based on the above discussion, we can conclude that information management tools that
the user needs to accomplish his tasks are rarely organized in a manner that matches how
the user thinks about the task and supporting information (either because of personal
preferences, task needs, etc.): the information is scattered across applications and is
presented as a one size fits all. Users are limited to how the information has been
packaged and their experience of it from the author's vantage, rather than being able to

19

impose their own world view on it; they are passive recipients of information rather than
active molders of it. As a result, users are forced to:

* manually collect information by opening various applications
* mentally select and associate items of interest, and reason with them, since they

cannot be juxtaposed
* Reenter the data elsewhere, acting as the glue between applications because they

do not understand each other's native information format.

Productivity is lost as users are forced to work with the tools and not able to configure the
tools for the task at hand and their personal preferences.

Consequently, it makes sense for users to be able to aggregate the information needed for
the task into a single task-oriented interface in order to minimize the overhead associated
with preparing the information for the task. This capability becomes even more important
for tasks that are long-lived or recurring such that the user must access the relevant pieces
of information on multiple occasions.

What we have been arguing for is, in effect, task oriented interfaces. Current software
does not always match the task or the user's current state-of-mind. Task-oriented user
interfaces (as opposed to functionally oriented interfaces that group related operations
and information irrespective of user tasks) recognize that information content,
presentation and manipulation control should be relevant to the task at hand. As a result
of recognizing this shift in UI design paradigms, researchers have attempted to study
common tasks in order to reformulate user interfaces to better correspond to the user
activities (some of which we discuss in the next chapter).

We take this idea one step further by advocating that a user should have the freedom to
define the task, and the ability to configure a set of content, presentation and
manipulation primitives required to create a corresponding task-oriented UI which
maintains up-to-date content that a user can return to. As a result, the user requires the
ability to perform such customization in a general manner, independent of the task,
domain, etc., since the user's formulation of the task and supporting information and
operations is unique, based upon his/her personal preferences, conception of information,
skill level and other factors.

We define an Information Space as a user interface that serves as a single home
base/console/workspace that co-locates information and operations that are relevant and
related to each other somehow based on the user's view, and presents them in a way that
is easy for the user to work with. Thus, the problems we discussed above occur because
the user has no means of creating and working with an information space. Our goal then
becomes to find a way to break the application abstraction barrier, so that information can
flow freely into information spaces designed by users for their tasks.

20

1.3.1 Problem Scope
The problem we pose above can be solved by developing appropriate tools for the user
that allow customizing which content is relevant to the task, how it should be presented,
and which operations are applicable. We posit that in order to provide such computational
support, the problems of fragmented information (due to storage location or
representation) need to be resolved, so that information can be modeled and treated in the
same way for use by the tools. Thus, it is critical that all information be rendered equal in
terms of representation and semantic specification.

The set of technologies corresponding to XML, the Semantic Web and Web Services
allow us to unify information in how it is represented and shared and render it amenable
to user customization. XML as a semantic markup technology removes the burden of
manually distilling a lot of information by rendering information machine processable
[1]. Furthermore, XML marked up information is stored as text, removing the problem
of proprietary formats. Thus, using XML, the problem of automation can be tackled, as
the semantics of information are rendered machine understandable. Widespread adoption
of web services, a means of exposing software functionality programmatically, should aid
in alleviating the segmented nature of information, and make it easier to federate stores
and aggregate information based on preferences [2]. Finally, the Semantic Web (metadata
annotated web content) will exploit XML and web services in exposing information
structure for machine processing, and allowing widespread programmatic access to it [3].

With these supporting technologies providing a common basis for all information, we can
begin to tackle the higher level problem: the domain independent tools and framework
required for user customization of context. The above mentioned technologies continue to
support us in this endeavor. For example, the semantic markup using XML exposes
information structure and can be used as labels to assist users in label-based queries that
can be quickly resolved over large corpora, thereby helping he user to selectively work
with information ("mold" the information).

Relying on the above technologies to solve the problem of information fragmentation, we
limit the scope of our problem to developing an information space customization
framework and supporting tools.

1.4 Thesis Outline
The rest of the thesis is organized as follows:

* Chapter 2 discusses related work in order to understand different solutions to the
problem we pose.

" Chapter 3 uses the knowledge gained from related work to come up with a set of
requirements and desirable features and outlines an architecture that satisfies these
needs. It also discusses the Haystack platform, how it helps us achieve our goal,
and capabilities in it that are currently missing.

" Chapters 4, 5 and 6 discuss the tools and framework that constitute a solution to
the above problem, and discuss the principles, concepts, design and
implementation behind each of the tools.

21

0 Chapter 7 concludes this thesis and discusses avenues for future research.

22

Chapter 2 Related Work
In the previous chapter we identified a number of current weaknesses in the information
management tools, and motivated the need to increase the level of usability of
information from a user's perspective. To this end, we advocated the use of information
spaces: task oriented interfaces that capture and appropriately present the information and
tools a user requires for an information related activity. Furthermore, we supported the
need for users to be able to define the task, and have appropriate control over customizing
the corresponding information context.

In this chapter, we examine previous related work that collectively points to this
conclusion and justifies the existence of the problem. Furthermore, we argue that in
situations where the problem of context customization may not have been explicitly
identified, the problems that have been uncovered are in fact symptomatic of this
underlying problem and could be solved by solving it. In the process of reviewing prior
art, we also inspect the solutions that have been employed in tackling it. As a result, we
obtain insights into designing a solution that allows general creation and customization of
interfaces for information-based tasks.

We organize the related work into three main sections that represent a logical progression
of thought; a spectrum capturing the shift in control from developer-defined to shared, to
user-defined (and developer exposed) information interfaces.

2.1 Task-based Information Spaces
In this section, we discuss two examples of previous work that have clearly identified the
need for a task-based interface that captures and co-locates appropriate resources when
faced with an information-based task. The first example below is a research project,
whereas the second one is a current commercial effort. Both examples are situated in e-
mail (the canonical information management task), and interestingly tackle the same
problem via different implementations, reinforcing our prior assertion that no perfect task
interface exists, and hence the power to create and customize it should be in the hands of

23

the ultimate user. Nevertheless, they both seek to exploit the power of a task based
interface by providing a single, convenient interface that co-locates appropriate
information and tools.

Both examples below rely on the feature of e-mail as a receptacle of various kinds of
information, and provide information management functionality integrated into the mail
client. Since e-mail offers a generic information sharing medium and related software is
inevitably involved with some type of information management, we can safely consider
e-mail management as a proxy for the general information-based task. Thus, by extension
of the above argument, we assert that task-based interfaces are useful for information
management in general.

2.1.1 Taskmaster
Bellotti et al. argue that e-mail users feel "overwhelmed and daunted by the time it takes
to deal with all the work coming in through this medium." [4] As a result, they argue, the
e-mail interface must be overhauled as it has been "co-opted ... as a critical task
management resource" and "e-mail tool features have remained relatively static in recent
years, lagging behind users' evolving practices." They cite existing solutions to the
problem as merely addressing some subset of the problem or amassing uncoordinated
features. For example,

" Projects such as Re:Agent and MailCat only support with filing and
organizational aspects of e-mail/project management.

" The Microsoft Outlook e-mail client smears the project context across the inbox,
outbox and calendar which can all, only be viewed separately.

Hence, realizing that simply providing the ability to manage information does not imply
that managing information is easy, they advocate re-designing the e-mail interface for
project management by "embedding task-centric resources directly in the client." As
such, they reach a conclusion similar to ours: unless the mismatch between users'
changing needs and task conceptualization and that of the tool is alleviated, users'
difficulties and feelings of overload will continue. Furthermore, the problem should be
rectified by a task-based interface that makes relevant resources easy to access "at a
glance, rather than scrolling around inspecting folders," i.e., the current UI must evolve to
handle the evolving user tasks (from e-mail to project management).

The solution to the aforementioned problems, proposed by Bellotti, et al., is Taskmaster,
a Visual Basic add-on for the Microsoft Outlook client designed based on a field study of
the nature of task management activities in mail clients. Taskmaster primarily takes
advantage of the heuristic that items in the same e-mail thread generally correspond to the
same task, i.e. are the same thrask. Thus, (incoming, outgoing and draft) messages are
grouped into project context thrasks based on such message data. However, users are
allowed to adjust such automatic categorization by manual intervention. As a result,
users see lists of thrasks, and can select a thrask to see a list of associated items, one of
which can be previewed. Furthermore, realizing the first class status of other entities such
as attachments and web page links in the task of project management, it allocates a
(separate) thrask entry for each such items, thereby not only co-locating relevant content

24

within the thrask collection, but also allowing more granular control over the project
context's content. The attachments can be viewed in-place, without launching separate
applications. Finally, Taskmaster allows the user to view summary information computed
based on underlying data, e.g., nearest deadline for a thrask, contact information for
people involved in related messages, etc.

The Taskmaster system was evaluated by users in another study and found to be useful
on all three fronts. Certainly, the notion of creating a collection of related content is a
powerful one that minimizes searching for relevant content by users, thereby increasing
the usability of the information. Also, equality of content status bestows simplicity of
interaction with the information, and selecting an aspect for it simplifies assimilation of
information and reduces time spent on the task.

Although the ideas embodied by Taskmaster do increase usability of information from
the perspective of content customization, users have little control over the layout or other
presentational or manipulation capabilities. Even for content, the task is assumed to be a
single project generally captured by a message thread or messages sharing a subject; an
implicit assumption that that is the primary granularity of work that users will use. Thus,
it relies on heuristics based on well known user behaviors for its advantage. As a result,
it falls into the same kind of trap that the earlier e-mail interface faced: lack of flexibility.
Although the proposed task interface solves the problem at hand (managing individual
tasks), it would not work well if the user's primary collection of interest had different
semantics, e.g., messages that were by anyone on the project team, who works for a
different company. In such a case, the user would need to manually create and maintain
the collection. Given one set of default semantics for collections, it is difficult to capture
sets of items into a context that share a different relationship. Furthermore, multiple sets
of related information cannot be related or viewed simultaneously. A similar argument
can be made for the ability to specify the computation on the information. Users are
limited in the types of content customization that are expressible.

2.1.2 Kubi Software
Collaboration software tends to exemplify task-based interfaces. The primary purpose of
such software is to allow a single point of access to aggregated content and tools with
respect to a common goal/project/task in order to minimize the context switch overhead
experienced by users when gathering the relevant information. Such tools rely on stores
that co-locate related information of pre-defined types, and provide some level of
integration with the user by notifying him/her via e-mail of changes to the collaborative
workspace/workflow information. A recent, more market driven, effort by Kubi
Software takes this idea one step further by attempting to create "collaborative email";
collaborative project workspaces using the stores of popular e-mail clients (Outlook,
Lotus Notes) that employ the extant e-mail messaging substrate and thereby further
minimize the context switch overhead between the collaboration software and e-mail, for
people who "live in email." Here, the fundamental motivation for the product is to co-
locate the event notification facility of the collaborative software (e-mail) with the other
capabilities and further simplifying the user's task.

25

Similar to Taskmaster, Kubi Software is pursuing a commercial effort to simplify project
management in e-mail [5]. Even though Kubi's product, Kubi Client (see Figure 1),
tackles the same problem, it treats the problem as one of collaborative project
management in a business setting, as opposed to a single user's project. Thus, it hides and
simplifies data replication. Nevertheless, from the perspective of any single e-mail user,
the problem is still one of supporting efficient project management by making the
relevant content and tools readily accessible.

Unlike Taskmaster, Kubi employs a different ontology for project information. The
primary abstraction is one of a project, which has associated contacts, discussion,
documents, events and tasks. This information is then co-located on the same canvas in
little portal-style windows, in order to provide a task oriented console for the project. A
screenshot of the Kubi user interface for MS-Outlook is provided below.

Figure 1 Kubi Client User Interface

Like Taskmaster, Kubi Software's solution also tends towards a task based interface that
aggregates and displays relevant content and tools in a useful manner to the user.
Although Kubi attempts to solve the same problem as Taskmaster using a similar task
based approach that aggregates and presents relevant content to the user, its solution is

26

significantly different; the data model and user interface share little in common.
Interestingly, however, it suffers from the same types of defects that Taskmaster suffers
from: the developer decides what is relevant and useful, i.e. developer imposed, single
task ontology and model.

A Kubi Software enhanced e-mail client provides only pre-packaged types of information
that can be used in fixed manners, thereby rendering the collaborative software usable in
a single, or perhaps several closely related domains. For example, the Kubi Software
solution is limited in the types of information that can be used in a project via folders:
contacts, discussion (threaded e-mail), documents (attached files), events (calendar), task
list (To-Do items), participants (contacts) and user-defined folders. Notably, all
information corresponds to the inherent types pre-defined in the Personal Information
Manager (PIM) like e-mail clients by a different vendor, albeit allowing dynamic
selection of actual folder contents based on metadata that defines project context. The
only way other information can be made available in the project context is if it is
packaged in an appropriate file that the user explicitly specifies in a user-defined folder.
Thus, Kubi Software's solution provides limited content customization in the
collaborative task of team-based business projects; if a project required a blog or the real-
time stock price of a company to be a critical knowledge input to the project, it could not
be easily supported with the current project ontology since the underlying e-mail client
does not support these notions of information. The software vendor(s) would have to
make appropriate changes for this to be possible, and the user would have to wait for
someone to "develop" software for his/her needs.

Furthermore, Kubi Software's presentation customizability is generally minimal: the UI
views used to render this information reuse existing views (supplied by the e-mail client)
in a fixed layout scheme. What if different people in the team want to have different
views corresponding to their role in the team, e.g., marketing executive vs. engineering
lead? Surely, these people would be more interested in certain aspects of the project's
progress than in others.

2.2 User Configurable Information Spaces
It is not sufficient to simply present aggregated information and tools in a task-based
interface with appropriate presentation to the user. Due to personal preferences,
situational demands or varying task demands, users require the ability to further
configure their information environment with simple interaction. Thus, a superior
solution to the users' task needs would be to allow interfaces that can be configured. In
this section, we discuss several examples of user configurability in information based
tasks drawn from various domains. Although not all examples we consider below are
comprehensive task-based interfaces that make all relevant resources for the activity
readily available, they all attempt to provide some level of task support for users'
information activities by providing appropriate customization and control over some
aspect of information content, presentation or manipulation. (In fact, we argue that they
solve problems that are symptomatic of the problem of context customization.) The
examples are organized into two categories: Implicit Configuration and Explicit
Configuration, and are discussed further below.

27

2.2.1 Implicit Configuration
Implicitly configurable information spaces adapt to the needs of the user without
requiring manual specification by the user. Thus, they adapt based on user behavior to
better support the task. We discuss a few of these adaptive user interfaces here, while
realizing that a lot of work has been performed in this important area.

2.2.1.1 Web Montage
Inspired based on the observation that world wide web access generally follows repetitive
patterns, Web Montage is a system that was developed to aid the user in such "routine
web browsing" (the task of regularly viewing particular web content, e.g. news, online
documentation, comics) by making the most relevant information readily available during
routine web excursions [6]. It accomplished this by automatically building a new
personalized portal for the user based on his or her predicted context. Thus, if the user
was predicted to be in the "developing software" context, online documentation was
more likely to be available, as opposed to the "lunch" context, when news and comics
might be available. The user context, in turn, was predicted based on a user model relying
on various features extracted from web access logs including "time of day, the time since
last access, and the recent pattern of topics."

Both the content and the layout of the portal were based on a prediction of the user's
current context and the predicted value of previously accessed information or topics in
that context. As a result, the user would not have to go seek out the information using
fixed patterns of web access. Instead, Web Montage would aggregate and present the
most relevant information in the most relevant form. For example, if the information was
highly relevant, it would be coalesced into the montage directly. On the other hand, if it
was less useful, or the overhead of navigation was acceptable, then only a link would be
embedded. Of course, not all prior information was necessarily a candidate for inclusion,
nor did it need to have been previously accessed (e.g., it could be the same topic as
previously accessed content).

In some sense, by using a start page for the browser along with the Web Montage system
adapting the page to suit the task it felt the user was currently involved in (within the task
of browsing the web), the web browser appeared as an implicitly configurable
information context. As a result, the user implicitly adapted the web browser to the task
at hand: the user behavior was used to predict utility of content, as well as best
presentation and layout of the content.

2.2.1.2 Personal Information Geographies
For the task of researching and learning about a new topic over an extended period of
time by issuing multiple search engine queries, Bauer has proposed the use of an
"information map" to help not only aggregate relevant results from multiple, semantically
similar queries on a single map canvas (highlighting the importance of organizing some
knowledge with respect to other knowledge), but then also to allow its presentation to be
personalized as the user's "sensemaking process" unfolds over time, by highlighting
'mountains' of information deemed relevant and diminishing areas of the map considered

unimportant [7]. Hence, this approach attempts to implicitly support both content and

28

presentation customization for the user's information space pertaining to the research
task. Furthermore, Bauer points to the need for a repeatable "reference frame" that a user
can return to over time when working on the same research task (an information space)
and the fact that it is the user's use of information (i.e., task) that defines its reference
frame. As a result, we realize the need for presentation that is both session (i.e., is
updated based on previous manipulations or changes since previous interaction) as well
as person specific (i.e., the same information is presented differently based on how a
person interacts with it, e.g., different nodes in the information map are highlighted
differently based on how the user's sensemaking process unfolded).

2.2.1.3 Microsoft Office Suite
Office document authoring software applications have evolved over the past decade and a
half to provide significant capabilities to their users. The additional functionality has
resulted in ever growing menus and toolbars placing a significant cognitive burden on
users to navigate and learn this complex maze of functionality. Depending on where they
are in the learning curve, users may only use a subset of the available functionality, or
prefer one way of accomplishing a goal even though multiple means of accomplishing it
are available. As a result, much of the remaining interface is useless as far as the user is
concerned, and just gets in the way. Realizing that this is an undesirable cognitive burden
on the users, these applications have incorporated adaptive features such that only what is
deemed relevant to the user is shown.

Microsoft Office is one such suite of software applications that present the user with
tremendous document authoring power [8]. In order to make the user experience in
accessing functionality simpler, it incorporates many "intelligent" features that support
the user in his task of editing an office document, presentation, spreadsheet, etc. by only
showing those operations that the user has used recently. For example, when a menu is
opened, the recently used operations are shown aggregated at the top, with an affordance
to view all items in the menu (see Figure 2). In this manner, users are not distracted by
menu options they presently do not need or understand. Similarly, given limited screen
real estate, toolbars available in the applications reconfigure themselves to ensure that the
items the user has used in the past will be visible, i.e., rather than always hiding the
rightmost items, they hide the ones the user has not used, in order to move items the user
has used to the left, thereby increasing their chance of remaining visible. As a result, the
applications "conform" to the user and the task at hand, aggregating relevant
functionality to effectively transform an application supporting multiple tasks to become
focused on supporting the user in his or her current task.

29

DocumyenO2 -ic rosoft Word

Ffle Edit View Insert Format Tools Table Window Help

5pelling and Grammar.. F7 3 90% Q

4 Normal Times New Rom Word Count..

'i~ rack Changes Ctrl+Shift+E
Final Showing Markup Show s

Customize.,.

Figure 2 Microsoft Word Application in the Microsoft Office Suite of applications customizes menus
based on recent user actions

2.2.2 Explicit Configuration
We define explicitly configurable information spaces as those that allow the user to
explicitly specify his or her preference about some aspect of predefined or pre-
implemented functionality in the information space, rather than deducing the preference
based on user behavior. Explicit configuration is widely available in applications, and is
indicative of the users' need to personalize their interface to provide resources that better
support their task. We discuss work that can be characterized as allowing the user to
customize the content, presentation or manipulation afforded by the interface. In the
process, we understand how seemingly unrelated problems can be cast into the need for
context customization as well as ideas and techniques to employ in such a solution.

2.2.2.1 E-Mail Filtering
Most e-mail clients today feature some functionality to support automatic filing of
messages and/or spam filtering. Microsoft Outlook is one such mail client that supports
user-defined rules that trigger based on message arrival or message sending events [9]. A
user may define a rule (see Figure 3) to check a set of (conjunctive) conditions based on
message properties, and then perform one or more (conjunctive) actions based on
whether the message satisfies the condition clause. Among the possible actions, the user
can specify that the message be placed in a particular folder. As a result, the user is able
to create a collection of messages that are related to each other by virtue of the fact that
they satisfy a particular condition (the rule's condition clause). Thus, the user is able to
customize the information content of a folder, and create a rudimentary context
containing related information each time he/she switches to view the folder.

30

Start creating a rule from a template
r Start from a blank rule

\ Notify me when important messages arrive
Move messages based on content
Delete a conversation
Flag messages from someone
Assign categories to sent messages
Assign categories based on content
Move messages I send to someone
Stop processing all following rules

1 Rule description (click on an underlined value to edit it):

Apply this rule after the message arrives
- from people or distribution list

move it to the specified folder

Cancel <e Next > Finish

Figure 3 Microsoft Outlook Rules Wizard

2.2.2.2 SHriMP
SHriMP (Simple Hierarchical Multi-Perspective) Views is a research effort directed at
enhancing information visualization for large and hierarchical information spaces such as
software design, knowledge management and flow diagrams [10]. It makes available
tools to visualize information at various granularities within otherwise high resolution
information spaces, e.g., it provides animated zooming and panning capabilities to
"provide continuous orientation and contextual clues for the user" and to select
information of interest. In addition to controlling content, SHriMP goes one step further
by also allowing the user to determine which perspective he/she wants to use when
viewing the detailed information. That is, it allows the user to customize the presentation
of the information to the particular task at hand, e.g. viewing the source code for a class
versus its documentation. Furthermore, the user can change between views as necessary
with low context switch overhead.

2.2.2.3 Toolglass and Magic Lenses
A similar idea was embodied in the Toolglass and Magic Lenses See-Through Interface
developed at Xerox PARC that allowed the user to interactively change his/her view of
the information (space) by placing a see-through widget/lens on some underlying
information entity to "reveal hidden information, to enhance data of interest, or to
suppress distracting information" as needed for the low level manipulation task at hand
[11]. Such an interface allowed the user to easily customize the presentation of the
underlying information depending on the serendipitous change of operation he/she

31

wanted to invoke or how he/she wanted to conceptualize the underlying information,
resulting in quicker, easier and less error prone task completion.

2.2.2.4 QuickSpace
Users evidently require control of not just additional relevant information, but also its
presentation in an information space to make effective use of it to complete their tasks.
Several research efforts have focused on providing users greater control along this axis of
their information space. One example of this is the QuickSpace project at the Georgia
Institute of Technology, which implements simple window management operations to
allow users to quickly allocate greater space to their primary operating window while
maintaining the overall layout of the desktop [12]. Interestingly, this solution is provided
in response to the problem of not being able to "efficiently display all of the information
available in ... applications" on the desktop (all presumably opened to complete a task
requiring information distributed across application boundaries); another instance of the
need to aggregate relevant information. Furthermore, the solution attempts to do so while
avoiding disturbing the user context as partially captured in the relative locations of the
windows and their visible content, i.e., maintaining "information preservation." Future
work recommended for the project includes other features that maximize the amount of
space dedicated to relevant content for the task at hand, while minimizing irrelevant
content; molding the physical space to conform to the relevant information.

2.2.2.5 Web Browsers
In certain cases, where the tool used to view information is third party and unaware of the
domain of the information, it is difficult for it to provide the right means of specifying
content of interest, i.e., it cannot provide powerful/useful query primitives since it is not
aware of the structure and semantics of the information (or the structure and semantics
are not regular). In such cases, the best the tool can provide is presentation
customizability to support individuality of tastes. Web browsers constitute one such
example. Web browsers may be familiar with the structure of the information they
present, but not the semantics thereof. In fact, HTML, the World Wide Web's lingua
franca, was intended to capture semantics of the underlying documents. Nevertheless,
the semantics it captured related to document structure and were intimately related to
(and subsequently interpreted as) its presentation (e.g., tables, paragraphs, lists, etc.) not
semantic structure. Thus, current web browsers are in the rare category of software that
only understands presentation structure, not the semantic structure, of the information and
hence primarily supports presentation customization for the task at hand, i.e., browsing
information having unknown semantics. Examples of this type of software include
Internet Explorer and Netscape Navigator. Both browsers allow the user to specify fonts
and colors for text and hyperlinks, although only Netscape Navigator allows the user to
override the web page author's presentation settings. Both browsers also allow the user
to open a hyperlink in a new window and hence co-locate (likely semantically related)
information. In addition, each browser supports additional presentation capabilities that
are not necessarily shared, e.g., coloring visited hyperlinks, smooth scrolling, playing
animations, etc.

32

The browsers' presentation capabilities are limited, apply uniformly and do so only at the
highest granularity (MIME type or a webpage). For example, a color specification for
hyperlinks applies to all hyperlinks on the web page, a specification to automatically
playing a sound or video clip applies to all clips, regardless of where or how they are
encountered and a user cannot specify that all names in the web page be shown in bold.

Presentation customizations that support individual viewing preferences and distinctions
at a level of granularity lower than a web page currently are not widely supported
because of lacking semantics (e.g., the browser does not know which pieces of text are
names). Browsers could be made capable of supporting other presentation
customizations, related to the semantics it does understand (e.g., paragraph, hyperlink
coloring, etc.), but those are mostly structural semantics, not domain semantics. Most of
these possibilities are not implemented, precisely because structural semantics do not
necessarily (in fact, rarely) correspond to domain semantics and hence users gain little by
being able to customize them. The majority of the presentation decisions in any web
page are made by the author since he/she best understands its semantics. Thus, lacking
semantics force end users to not only use and experience the information content as the
author conceived it rather than as they do, but also its presentation.

It is interesting to note that the failure of users to shape their information space and
experience due to lacking semantics is significant enough to spur major areas of research
in capturing or assigning additional semantics to the content on the World Wide Web.
Two efforts are notable in this respect: the Semantic Web and wrapper induction. The
Semantic Web seeks to allow authors to annotate information with metadata such that it
is rendered machine understandable in terms of domain semantics and not just structural
semantics, thereby allowing the browsing tool to offer the user greater control over the
content and presentation of the information (in addition to other benefits such as agent-
based automation) [3,13]. In wrapper induction, software or the end user associates
presentation and structure currently specified by the content provider on web pages as a
proxy for semantic structure which is used to infer additional underlying domain
semantics thereby enabling greater user control over both content and presentation. An
example of wrapper induction would be attempting to infer from a webpage listing
movies that all items in bold followed by a comma separated list correspond to a movie
title in bold, followed by principal actors in the movie, thereby allowing the user to
specify that only movie titles from the webpage are to be shown, and all other
information is to be suppressed [14].

Thus, we realize that an understanding of semantics is crucial to allow exposing
presentation customization functionality insofar as understanding them allows specifying
what the presentation specification applies to. However, specifying what a presentation
specification applies to is equivalent to specifying a subset of the content, and thus
reduces to the problem of content customization - a means of specifying content of
interest. Thus, information semantics are crucial to meeting our goal of allowing the user
to create and customize an information space by controlling both the content and
presentation of information.

33

2.2.2.6 Microsoft Office Suite
Similar to the idea of implicitly modifying menu items and toolbars, the Microsoft Office
Suite of products also provides the user with the ability to explicitly configure various
aspects of the applications [8]. For example, users can create/manage their own toolbars
by specifying a set of most frequently used task-specific operations to aggregate that may
not otherwise be implicitly co-located since they reside on different menus or toolbars
(see Figure 4).

Toolbars Commands QOptions

To add a command to a toolbar: select a category and drag the
command out of this dialog box to a toolbar.
Categories: Commands:

Edit D New...

View New
Insert
Format -- New
Tools New web Page
TableNe
Web J New E-mail Message
Window and Help
Drawing

5ave in: Normal.dot .KJeyboard. Co

Figure 4 Microsoft Office interface allowing users to customize the operations available from
toolbars

Furthermore, the user can specify which toolbars to show at any given time. Finally,
users can save these (and other) preferences in document templates. As a result, starting
with a particular document template reconfigures the application to be task focused for
that type of document. For example, the user can specify which toolbar should be
available in a particular template by default, thereby placing the corresponding operations
within easy reach upon application start up.

2.3 User Creatable Information Spaces
Having surveyed previous work that supported the notion of developer specified task
centric interfaces as well as user configurable interfaces, we look at some information
spaces that combine the two ideas where the developer exposes primitives that a user
employs to create the context as he or she sees fit. Thus, the user is explicitly aware of a
creation phase for the information context requiring relatively complex interaction, which
is separate from a usage scenario. These examples acknowledge the need to give the user

34

control of information context creation when he/she really is the best person to be
creating it.

2.3.1 WWW Portals and News Sites
Content portals on the World Wide Web and news organization web sites nowadays
provide a rich set of primitives that can be used to create personalized web pages that
allow the user to filter and/or aggregate the content provided by the underlying
organization(s). Many examples of such personalizable web pages are available, and we
discuss one of them here: the MyYahoo! portal (see Figure 5) [15].

Yahoo!, a popular news, information, communication and e-commerce web portal, offers
individuals the ability to configure the available information resources on the portal based
on their personal needs (see figure below). Thus, the user has the ability to specify the
content and presentation settings for MyYahoo!. Yahoo! offers modules of information
that can be selected and grouped together to create contexts of related (as the user sees it)
information or activities, e.g., a user defined personal information page consisting of
mail, calendar, address book, and weather. The user may also select from pre-configured
contexts roughly corresponding to newspaper sections that subscribe to certain modules
of information, e.g., Finance, Technology, Entertainment, Travel, Sports. Furthermore,
the user may specify parameters for the modules of information, e.g., which news sources
to get information from, which companies to track, which zip code to get weather for, etc.
Finally, each context can be configured to have a refresh rate, name, etc.

In addition to allowing user sophisticated control over information content and
organization, MyYahoo! also allows the user significant latitude in its layout and
presentation. For each context, the user may choose between a two (one narrow, one
wide) or three column (two narrow, one wide) layout. The user may specify the order of
the columns, the content of the columns, and the order of the contents of each column for
a given layout scheme. Finally, the user has the ability to specify the background
color/wallpaper, and the text font and color for the headings, sub-headings, text and
hyperlinks, etc. for the sections. Oddly, the user can also "detach" certain information
modules, so that another browser window showing just that module appears in order to
allow the user to select a link on the new window and have it appear in the original
window. However, this window management technique is not consistently available for
all information modules.

35

File Edit View Favorites Tools Hlelp

Back L Search Favorites Mdj

A;droIm ttp:jmy.yahoo.comfpll html GO ins

G~ge< ~ SorcWeb - SerdSe 0 P190 0 Otos~ -

Newy F saser Ne Page monday - may
2 4

Chaeea Colors Choarse Content Changqe Layout Adsifl~elete Pages

M4essage MMI F3 My Front Page Headlines 2.1 E3
Top Stories from Reutps~ Aby24 e1:a ErT

Check Email
C Bush Speech to Try to Assure Americans on Iraq

Check Caend * Supreme Court: Inmate Can Challenge Execution Procedure

a U.N Iraq Draft Gives No Exit Date for Foreign Force

Your pivacy as importantto us. In Entertainment News from El Online May 24 2f.J0a ET
order to view youreportfolio and
access otherYahool financial . Eninem Wants to Bruise Apple
produets and sevices, please * Moore Crowned Cannes Kmgacknowledge thsat youhave received
Yahoo! Privacy Infon ationfor * Ellen Earns Daytime Emmy Cred
users of Yeahools fmancie products
and services. By clicking "I Agree"
below, you acknowledge receipt of Sports News from Rleuters Way 24 1 I.O~am E
this notice and agree to receive
required administrative and legal * Agass Knocked Out of Open by French Rookie
notices such as this electronically. * Timberwolves Crush Lakers to Tie West Finals 1-1

1 Aaree . NL Wrap: Glavine's One-Hitter for Mets a Personal Best
b> QUotsEi

US Markets close rn3hr22min
Get Quotes TVLa g

Loo&O s er s Oe Oio pe p9Je 1tlo e p

Quote data provided by Reuters T7VLstvngs are temporanly unavailable.
Quotes are delayed20 minutes. - - -

Get Slrqmidaa Real-Tie Q5tes Search upcoming listings Gu
news i the last 24hrs - - -

H roope
WAshin~gqrk n-
ationrlAirport, 69..91 F Gemini

VA* Daily exiesded (by Astrelegycom)
Washminon You're in the mood for family, right? Say yes, be cause you don't have any choice. You're the one who ends up playing chauffeur,
NationalAiror, 69.91 F chaperone or troubleshooter. With backhanded flattery, loved ones assume that you're an expert and leave the whole thing in your lap.
VA* Take your role seriously even when it requires thatyou keep a smile on your face and a song on your lips. Humoris powerful when

1 you see howit brings all parties to the table. Lighten up the mood to get people talking again. If you play your cards right, the problem
Baltimore, MD 67.90 F might even solve itself. - Horoscopes by Email - Celebrity Compatibility - Dating Do's and Dosits

iihttp://usgrd.yahoo.com/mnmd/hcinfrtlstyl*http:i/story.newvs.yahto~comrnews7tmpl-storyed-786e-3&u-lnmf2004o524/ts~nmfiraq~un _ irktemet

Figure 5 A sample customized MyYahoo! news portal

2.3.2 Virtual Desktops
Given the application driven nature of information management today, users generally
have various applications open in order to access relevant content and presentation when
accomplishing a task. It is not difficult to imagine computer desktops as capturing the
notion of an information space that capture the content, tools and presentation aspects of
the task. Not surprisingly, previous work has attempted to define the granularity of a user
task at the desktop level, and shared a similar goal of allowing a user to be able to specify
the required information content, presentation and tools separately for each task.

Card et al. propose such a virtual desktop workspace interface based on a Rooms
abstraction [16]. Each room (or virtual desktop) corresponds to a separate user task
workspace and specifies which tools are open, as well as the layout and presentation of
their windows. Rooms may share windows, but the window presentation and/or location
may be specific to the room. Furthermore, rooms that capture common tools and

36

information may be included in multiple other rooms to serve as common "control
panel[s]". The rooms also support a type of tool clipboard that allows users to switch
between workspaces, while carrying their tools with them. Finally, just as tasks may
have subtasks, or other relationships to other tasks, rooms can capture these relationships
via the notion of Doors. A door allows a user to exit one workspace, in order to enter
another (either forward, or backwards). In order to support easy orientation and
navigation in such a connected environment, the system provides miniaturized
renderings/previews of workspaces for easy identification, as well as a means of
inspecting the graph connectivity of the rooms. Finally, rooms or subsets of rooms may
be saved, and shared with others.

The Rooms system is interesting in several respects. Some aspects of the system are
implicitly determined. For example, when a user moves or resizes windows in the course
of the task, these settings are captured automatically, i.e., the user need not be aware that
he/she is setting up the room. Nevertheless, other aspects such as included rooms or
connecting doors must be explicitly specified. Also, the ability to link tasks is powerful
as it allows easy access to related workspaces, thereby facilitating hierarchical task
subdivisions (or other task conceptualizations) that make it simpler to accomplish and
think about a complex task.

2.3.3 User-Defined Database Views
Database querying and view definition has been a long standing research area in
Computer Science. Earlier databases, primarily relational in nature, required database
administrators to be proficient in the database query language and appropriate schemas in
order to retrieve relevant information or set up pre-defined views for other users. With
the advent of the World Wide Web and other queryable multi-media repositories that
require direct user access, being able to shape the result set of information via a good
query/result interface has steadily gained more attention. Delaunaymm (mm stands for
multi-media), a querying framework for distributed, heterogeneous multi-media data
stores developed at the Worcester Polytechnic Institute, is one such attempt at allowing
user configurability in result viewing [17]. DelaunayMM basically addresses the problem
we pose, i.e. how can a user customize his/her information space. Hence, it answers both
the questions of how to customize content (via query specification) and presentation (via
layout/presentation specification).

However, in considering the ability of users to customize content with Delaunaym , it is
important to keep in mind that it is primarily a database querying tool. Thus, defining the
content of the information via a query is the task itself, not a step in achieving the task.
Hence, it may be argued that it is not representative of the types of information spaces we
wish to create, where specifying the content is one step in achieving the task, not the task
itself. Furthermore, given the nature of querying, the information space that is generally
created is transient (not returned to by the user), and hence probably not one a user would
want to invest significant time in specifying the presentation of. Thus, the information
spaces that generally result from its use are unlike the type of user-centered information
spaces we have been describing that allow the user to amortize the set-up time and come
back to become (re)situated in their context.

37

Nevertheless, Delaunaymm embodies some interesting ideas that we feel should be
explored since they provide inspiration for some of our work. First, like Yahoo!, it
acknowledges the need for an end-user to determine both the content and presentation of
information. Also, whereas the act of querying is not new, allowing untrained end-users
rather than database administrators to query complex relational data stores that use SQL
(Simple Query Language) without a priori knowledge of the underlying schema or query
language is indeed compelling, since it relates directly to our work of allowing users to
specify content for their information spaces in a similar situation. Furthermore, since the
queries can be saved and re-executed, and yield large result sets, the user may consider
reviewing the results as a long term research task and hence we may consider the result
set as a returnable context that he/she would spend time specifying the presentation of,
thereby justifying its discussion as it relates to our work for specifying presentation of
information by the end-user.

In order to query using Delaunaymm , the user must first specify the data store. The
system then dynamically queries the store for its underlying schema which is then
presented to the user so he/she can specify the select, from and where components of the
query. A similar abstraction is provided for querying the web via an object oriented data
model and conversion of the query to WebSQL. The query is then translated to the
appropriate SQL syntax and dispatched to the store. Although Delaunaymm does not hide
the data model for the relational stores (i.e., the user must understand what select, from
and where mean) to avoid introducing implementation complexity, it does avoid the
intricacies of SQL syntax (especially different flavors thereof) and does not require
detailed knowledge of the schema. Such an approach yields significant progress in
simplifying the content customization for an end-user by creating a unified abstract data
model for the disparate data sources and simplifying the query specification.

Delaunaymm also allows the user to specify the layout and format of the results of a query
by specifying a "virtual document" for the result set, and corresponding style sheets for
the pages of the document that bind to the query result. Users can customize the style
sheets by dragging and dropping type specific widgets (e.g., image, text block, audio and
video) that bind to particular components of particular queries, directed at a particular
store. All such widgets inherit from an icon widget that specifies the data binding,
physical location on the layout and the corresponding query. Users can then configure
not just the layout of the results, but also the low level presentation specifications on the
widgets, such as fonts for textual results. Finally, Delaunaymm supports the use of
presentation templates as starting points for naive users, while facilitating sophisticated
rules based layout functionality for advanced users. Thus, Delaunay supports an
intuitive and interactive UI for allowing the user to configure information presentation by
specifying overall layout as well as low level rendering specifications of particular
components (e.g., fonts, etc.).

2.3.3.1 Web Content Collection
The advent and rapid adoption of the World Wide Web as the single largest, publicly
accessible information store has led to an increasing realization that how users use

38

information does not always match how information providers organize it (granularity of
information) or envisage its usage context (domain of application). Also, there is the
realization that information is widespread and incomplete at any single resource, and
hence a sophisticated user will require the ability to collate information from various
locations in pursuit of a single goal. Thus, many avenues of research have started to ask
the question, "How do we allow the user to collect and organize relevant information
(i.e., customize information content) for the task at hand while minimizing manual
overhead in related information management activities that dilute the time spent on the
task and result in unnecessary context switches?"

Hunter Gatherer is a recent system developed at the University of Toronto that targets
this question [18]. In particular, it simplifies the ability to capture parts of a web page
into a contextualized collection - a collection wherein all elements share something in
common with each other, as determined by the collection's creator. Furthermore, it
allows the user to "preview" the contents of the collection by having them rendered in a
single webpage - a means to visually co-locate relevant information and in effect, allow
the user to impose his/her world view on the information and reify it according to his/her
needs. Some limited functionality in determining presentation in Hunter Gatherer resides
in the ability to change the order of elements in the collection, and hence their order in
the layout. Otherwise, the selected bits of information appear in their original rendering
(including the embedded link behavior) on the preview page. The success of the tool
(with field users insisting on using it after the 4 week field study ended) provides further
validation to the realization of the need to allow users to gather information from
disparate sources at an arbitrarily determined granularity to support a task not envisaged
by the original information publisher; in other words, to create and mold their
information space by customizing its content.

Hunter Gatherer contributes several key ideas as they relate to user information spaces.
First, it acknowledges that users require multiple distributed/disjoint bits of information
to accomplish a single task. Second, it realizes that information needs of users do not
necessarily match the granularity of the supply; that is, often times, users need multiple
bits of information and that they want to capture only a part of a web page where the
relevant content resides (e.g., capturing different parts of an academic conference website
such as deadlines, location, guidelines, etc., to create a conference paper submission
workspace). Also, Hunter Gatherer allows provides a simple UI for accomplishing the
aggregation task such that lay users (the World Wide Web's user base) can use it as well.
Finally, Hunter Gatherer gives the user the ability to create a new context in which the
information that he/she has collected is situated. Currently existing bookmarking
functionality as a means of co-locating several related web pages in a folder only operates
at web page granularity, leaving the user to re-scan the page each time it is referred to, in
order to get the subset of content of interest. Alternatively, users can attempt to copy the
information, but then must spend additional time and attention labeling it, and/or saving
its URL for future reference to its original context.

39

2.4 Conclusion
Having reviewed prior work in the area of interfaces oriented towards users' tasks, we
can conclude that such interfaces that aggregate and co-locate relevant information and
tools are indeed useful. Collectively, the corpus of related work also argues that the user
generally requires some level of control over his or her information space. However, we
note that prior work tends to have one or more of the following problems:

1. The interface leverages domain specific insights and is generally inflexible when
created by a developer, i.e., the user cannot configure it.

2. The interface does not give complete control to the user over his/her information
context, i.e., only a few aspects of it are exposed to the user for configuration.

3. An interface that lets the user build his/her context generally provides primitives
geared for a particular domain and hence is not generally applicable.

What is needed is a set of context creation primitives that are applicable to information,
regardless of its domain such that users can rapidly create new contexts using information
from multiple domains. Combining these insights with the understanding that information
is increasingly amenable to machine processing in a general manner by virtue of
metadata markup, we argue that it is possible to design and develop a general solution
consisting of domain independent tools for creating and customizing all aspects of
information contexts.

40

Chapter 3 Architecture
The previous chapter discussed several examples of prior efforts seen as attempts at
providing the user with an interface and content tailored (or tailorable) to her task. We
also identified several weaknesses in prior approaches. In this chapter, we draw upon this
survey to determine a set of desirable properties of a general solution to the problem of
context customization and the resulting functional requirements. We then propose an
architecture that fulfills these requirements, followed by a discussion of some of its
strengths and weaknesses.

3.1 Desirable Attributes
Based on the strengths and weaknesses of existing work, we propose that a general
solution to the problem of context customization should have the following desirable
properties:

1. Domain Independent - The user should be able to apply the solution to any
information in any domain; the ability to customize a task context should not be
limited based on the domain of the information, e.g., news. In other words, an
appropriate data model should be used so that information of any type can be
modeled.

2. Domain Interoperable - The user should be able to aggregate and co-locate
information from various domains.

3. User Editable - A lay user should be able to create the task context by having
control of appropriate domain independent primitives for specifying the content,
tools and presentation of the context. The user should be able to interact with the
context, independently of designing and creating it.

4. User Maintainable - The user should be able to "re-factor" an information
context by changing any of its aspects as the task evolves, e.g. including or
removing information, etc.

5. Persistent Returnable Habitat - A task-oriented information context should be
like a habitat for the user, to which she returns to find all necessary resources to

41

handle the associated task. That is, the time the user invests in setting it up should
be amortized over the number of times she returns to it; it need not be re-
created/re-configured each time the task must be accomplished. Furthermore, the
context should be persistent, i.e., up-to-date, showing the latest relevant
information. As such, some level of automatic updating will be required.

6. Low Overhead Task Switching - We anticipate that the user will be involved in
multiple recurring tasks, and hence will create multiple contexts. Given that users
frequently switch between tasks for various reasons (a sub-task, interruption, etc.),
it should be easy for the user to switch to a new, related or sub-task [16].

7. Task Shareable/Synchronized Content - The user should be able to share
content across tasks, and it should remain synchronized (live) in all contexts, no
matter which contexts the updates take place in.

8. Extensible Framework - Whereas we may not be able to address all aspects of
user context customization, our initial solution should establish a framework to
support adding other aspects of the solution as they are identified. Also, the
solution should support domain specific extensions, on top of the domain
independent tools initially available.

9. Shareable Contexts - The user should be able to share a description of a context
that he/she has set up with another user, thereby resulting in further savings of
effort.

10. Semantic Web Interoperability - As metadata annotated information is crucial
to a successful solution to general information space customization and the
Semantic Web is anticipated to become a large repository of such content,
employing web services for information sharing, it should be easy to import
information from the Semantic Web.

3.2 Architecture
In this section, we propose a solution to the general problem of user information space
customization. Our challenge as developers is to provide usefully packaged functionality
that allows users to easily specify content, presentation and manipulation that can be
combined to create simple yet powerful contexts.

The primary focus of our solution is on an explicit means of information space
customization by the user. Although we have seen examples of implicit customization,
we avoid this approach in an initial solution for simplicity. Consequently, we also avoid
the problem of less expressive user customization that an implicit solution would entail;
the user would not be able to easily convey her known preferences and would instead
have to hope that the system learns them correctly and quickly.

Our architecture for an initial solution to the problem of information space customization
relies on building a set of tools on top of an existing information management
environment (Haystack) that provides many of the building blocks required for our
solution, in addition to encompassing many of the above desirable properties at the
system level. We first discuss what Haystack is, and what it provides in terms of building
blocks and desirable properties. We then discuss the set of tools that we seek to build on

42

top of it to create a framework that will aid the user in customizing various aspects of her
information space.

3.2.1 Haystack
Haystack is a generic information management platform that provides a set of
cooperating technologies and tools supporting end-user browsing and application
development for the Semantic Web. It encompasses and makes available several key
ideas and components that support creating, visualizing and manipulating Semantic Web
content, which we describe further below [19].

1. RDF Data Model - At its core, Haystack employs a single data model consisting
of a semantic network expressed using the Resource Description Framework
(RDF), the standard for knowledge representation for the Semantic Web [3, 20].
A semantic network allows knowledge to be captured as a set of relationships
between entities and is commonly represented as a graph with nodes (entities) and
arcs (relationships).

2. Adenine - Haystack provides a domain-specific language (Adenine) for
simplifying expression, manipulation and querying of RDF data. Furthermore,
imperative Adenine code that manipulates the data can be compiled into
declarative data using a target, portable, runtime ontology akin to Java bytecodes,
thereby rendering a majority of the Haystack system declaratively specified.
Adenine serves as the lingua franca of the system, enabling communication
between (and implementation of) its various components via the generic
blackboard-like RDF store.

3. Haystack Services - Haystack has a service manager that can host services that
perform various tasks, including managing the RDF store, populating it, and
performing other manipulations and analyses on the information, e.g.,
categorization, summarization, extraction, learning, recommendation. In essence,
the service manager and the set of services it hosts comprise the component that
delivers on the promise of automation on the Semantic Web.

4. User Interface - Haystack provides a user interface framework (Ozone) that
provides interaction primitives and renders views of information entities. It
consists of the Slide Ontology, an extensible, HTML-like, ontology for content
layout and rendering that is used to create views of information entities. A view
for an entity is automatically selected by Haystack based on the entity's type, and
the context of use (e.g., available UI real estate).

Furthermore, the framework supports context sensitive manipulation such as
context menus and drag-and-drop operations that are sensitive to the type of the
underlying information entity.

Finally, imperative code in Adenine can be exposed to and invoked by the user
via operations. Operations are parameterized Adenine methods that perform a
(pre-specified) task for the user using the specified parameters. Relying on
metadata annotations on the operations themselves, Haystack employs an
automated technique (UI Continuations) for collecting the parameters required for

43

the operations from users. Also, operations may be curried, i.e., the user may
customize an operation by specifying values for certain parameters, but not all.
The resulting curried operation can be saved, and used as a template for applying
the operation in new contexts, that all share the same value for the saved
parameter.

Given our goal of creation of custom information spaces, whose content and nature of use
are determined by the user and unknown a priori, a general information environment that
allows working with a variety of information equally well is an ideal first step in
achieving that goal. Haystack constitutes such an information environment. It provides a
number of benefits which we discuss below, and supplies facilities for building additional
tools on a powerful substrate that the user can employ to specialize her information
space. Together, these features allow us to meet many of our objectives for general
information spaces outlined earlier and facilitate easily supporting others.

" Semantic Network Data Model - Due to its simple and generic data model, a
semantic network (and hence RDF) allows capturing a broad range of knowledge
from various domains simultaneously. Furthermore, although the Haystack data
model supports schemas, it does not necessarily enforce them, yielding a semi-
structured data model capable of easily accommodating and modeling exceptional
situations. Finally, the relationships captured by the semantic network provide a
rich set of metadata that the user can utilize to better specify information of
interest. This property of Haystack allows us to meet desirable attributes 1, 2 and
part of 3, as mentioned earlier.

" Declarative System Specification - All system components in Haystack are first
class; that is all of them can be manipulated in the same manner since they are just
data, captured in the RDF store. This allows a majority of the system (e.g.,
Adenine code, Ozone slide presentation, ontologies, operations, views, etc.) to be
represented in the same fashion as data, and hence renders them amenable to
similar user or programmatic manipulation. Furthermore, portions thereof can be
easily shared between users or updated via data transfers. Thus, properties 3, 4
and 9 above can be supported.

* RDF Store - Using RDF as the standard for representing data allows Haystack to
be compatible with the Semantic Web, thereby allowing information from the
Semantic Web to be directly imported into its store, without the need for data
translation. This property simplifies semantic web interoperability as mentioned
in property 10 above.

" Adenine - Haystack supplies a built in RDF manipulation language that also
provides query primitives. As a result, with appropriate UI support, the user can
easily manage the specification of content, as properties 3 and 4 above require.

" Agent Infrastructure - Haystack services provide a critical extension point to
facilitate automation of repetitive tasks. Also, they allow web services to be
written to collect relevant information (possibly from the Semantic Web) for
users. With this feature, Haystack makes it simpler to maintain content up to
date, and thereby support desirable property 5 above.

44

* Blackboard Architecture - A blackboard style store architecture that allows
various computations to communicate by using a single store allows content to
remain synchronized across multiple accessing information spaces. As a result, it
becomes simpler to meet the requirement of keeping the content across contexts
synchronized and up to date as in 5 and 7 above.

" Browsing UI Paradigm - All information in Haystack is addressable, and can be
visualized using various views, depending on the context in which it appears.
Thus, Haystack's user interface paradigm is based on browsing to various entities
(addresses), for which the UI infrastructure automatically selects a view to render.
This allows meeting property 6 mentioned earlier.

" Direct Manipulation - Pervasive use of context menus and drag and drop within
Haystack, provides a uniform user interface that increases usability across various
information spaces.

* View Architecture - The notion of context-sensitive, per-entity views is a
powerful one. As a result, Haystack provides the infrastructure for users to be able
to specify how to view and/or interact with content in particular situations,
thereby supporting properties 3, 4 above. Also, since views can be nested, they
can be reused in defining other views - a capability, if appropriately exposed,
would allow the user to control how to view a complex entity.

* Operations - Since operations can easily be curried (see section 5.2.1.2) and
associated with various widgets, the user has significant control over configuring
operations, as well as how they can be accessed (properties 3 and 4 above).

3.2.2 Context Customization Tools
As indicated by the description of the Haystack system and its benefits, many of the
features we desire in user contexts are completely supported at the system level in a
general information management environment like Haystack. Other features are present,
but only available to the developer. Since our goal is to allow users to have some level of
control over the specification of their information space, what is required is a means of
exposing capabilities to users that allow them to "author" their own information contexts.
Finally, the remaining features can be satisfied by developing the appropriate
infrastructure. Thus, our primary task becomes to address property 8 (extensible
framework).

Thus, we propose to provide the user with context customization control by providing the
requisite infrastructure and a set of tools in Haystack that expose relevant abilities to the
user. The set of tools we seek to provide should, in addition to providing the desirable
features and capabilities outlined in this chapter, also address the flaws in existing
information management solutions (as discussed in Chapter 1). The tools and
infrastructure primarily fall into four categories:

* A set of tools that provide the user with a means of selecting information of
interest, and the underlying infrastructure that keeps it current.

" A tool for visually aggregating and laying out selected information and operations
using particular views in order to design the task interface (information space).

" A tool for creating custom views for information.

45

0 Supporting tools required to work with the other tools.

3.2.3 Channel Manager
The Channel Manager is a tool that allows users to define channels of information; a
channel of information is simply a set of information the user considers useful and
comprises a collection of items related in some respect. The relationship between the
items can be articulated by specifying in closed form (via a query or computation).
Alternatively, the user may consider the items related in some manner that cannot be
expressed or captured through a query, and thus can explicitly specify the collection by
placing items in it. A channel of information is always maintained up-to-date by the
system and can supply content to the various portions in various information spaces.
This tool is described further in Chapter 4.

3.2.4 Information Space Designer
The Information Space Designer allows the user to specify space in a visual manner, by
defining a high level layout of information. The user can use this tool to determine what
is shown by specifying an information entity or channel (described below), as well as
how to view such information. Furthermore, the user may specify which set of operations
are to be made available in the context for particular entities. This tool allows the user to
specify information space level behavior and/or presentation information, such as a title
and description. Other context level customization should be made available to the user
through this tool (e.g., such as the wiring of preview windows to selections of particular
collections). The user may preview how the context will look and behave via the
dynamic preview at design time. This tool relies on integrating other components
specified by the user (e.g., channels and views) to yield the final user configured
information context. This tool is described further in Chapter 5.

3.2.5 Information View Designer
The Information View Designer allows the user to create a view for an information
entity. A view captures the layout and rendering preferences used to present a particular
entity. It serves a lot of the same functions as the Information Space Designer, but at a
lower granularity. The user designates the views designed here for use in the Information
Space Designer (as well as recursively, as explained later).

A simple domain independent view designer is implemented to allow the user to inspect
any property of any information object and to lay them out in two dimensions. Like the
information space designer, it allows the user to preview how the view will look and
behave. The Information View Designer is discussed further in Chapter 7.

3.2.6 Supporting Tools
The above tools require a set of supporting tools that supply additional functionality or
information for the user. They are discussed further in the various chapters related to
these main tools, as necessary.

46

Chapter 4 Channel Management
The previous chapter outlined the basic architecture of our solution for user customizable
information spaces. In this chapter, we discuss the Channel Manager tool for Haystack
that addresses the issues surrounding one aspect thereof: content specification. We focus
here on describing the content of interest, and combine this capability later (Chapter 5)
with the notion of information space creation to understand how users can specify content
of interest within a particular information space.

4.1 Techniques of Information Specification
Fundamentally, user specification of information of interest may be segmented based on
the size of the information. The information of interest may either be a single entity, or a
collection of items. This criterion is easy to understand; many times, users are able to
specify particular information objects (singletons) of interest, e.g., the project manager's
schedule. In other cases, users are more interested in "interesting" sets of information,
e.g., all people working on a particular project. (Of course, in a general sense, one may
conceptualize all information as consisting of collections, with singletons corresponding
to collections having a single item. Nevertheless, little is gained by enforcing this
ontological efficiency, and much is indeed lost in the additional complexity introduced by
an abstract treatment of content in this manner; a singleton is a sufficiently common
occurrence to warrant separation as a first class means of specifying content.)

In addition, information may also be segmented based on style of specification. This
second criterion distinguishes information the user is interested in based on whether it is
obtained by explicit specification (e.g., the entity corresponding to Karun Bakshi, David
Huynh, etc.) or implicitly specified based on a description of the information of interest
(e.g., people working on the Haystack project).

Single entities are often specified directly (as opposed to described, e.g., Karun's
brother). (Indirect specification of content by describing it cannot necessarily guarantee a
single item matching the description as in the case of Karun's brother. This is only

47

possible if the schema enforces a unique value (e.g., John's Mother). Since Haystack
supports a semistructured store that does not enforce schemas, in the general case, an
indirect specification results in a collection.) On the other hand, collections of items may
be specified explicitly by enumeration of the members, or implicitly via a description. It
is important that these notions of information specification be supported by any
environment seeking to allow the user greater control over his information space.

Haystack naturally supports the ability to explicitly specify items of interest (either single
entities or collections) by identification. We briefly discuss the notion and
implementation of identity/addressing in Haystack. In Haystack, all entities are referred
to via the same naming convention: Uniform Resource Identifiers (URIs), the standard
RDF naming mechanism which is natively available in Haystack. Thus, each addressable
entity, whether it comprises a single item, a collection of items, or each of the members
of a collection, has a unique URI. A URI is generally system generated, and meaningless
to a user. A user is expected to associate a human-readable title or label for the entity.
(Of course, a user is free to assign the same name to two nevertheless distinct entities.)
Henceforth, when we discuss information objects or entities and the ability of users to
refer to them, we assume the user specifies the entity via some means that allows the
system to unambiguously infer the corresponding unique URI being referred to (e.g.,
using drag and drop). Thus, Haystack makes it simple to explicitly refer to items since
every information object has a corresponding unique identifier.

In this chapter, we address user specification of collections of items since specifying a
single item generally does not amount to more than identifying an information object
explicitly (i.e., somehow identifying the exact URI of the object), and allows little
additional user customization or automation.

4.2 Channels
Although Haystack allows users to explicitly construct collections by enumerating their
members, what is missing is the capability for the user to describe the collection of
information of interest (specifying information implicitly). Defining a means for users to
implicitly specify collections would result in two distinct methods of specifying
collections: either completely explicitly specified or completely implicitly specified.
However, we realize that these alternatives are special cases of a single, more powerful
abstraction: collections that can be cooperatively maintained by the user and the system.
We coin the term Channel to refer to such an abstraction. With this abstraction, explicitly
specified collections only require user input, and implicit collections are computed solely
by the system. However, we retain the ability to let the user and the system to
cooperatively build a collection: parts of the collection can be specified directly, and
other parts can be computed.

We define a channel as consisting of a collection of information entities that satisfy
certain properties specified by the user using a set of description primitives (as opposed
to a collection whose members are explicitly specified by the user). A channel's contents
are maintained automatically. The primitives used to define channels and the user
interface used to configure those primitives is the primary topic of the rest of this chapter.

48

The notion of a persistent query of information is not entirely new. For example, RSS
feeds or blogs can be considered persistent and fixed queries resulting in a collection of
information related to a particular, predefined topic (controlled by the content provider)
that is always up-to-date [22]. Unlike RSS and blogs however, with channels users can
change/specify what constitutes the collection by changing the description primitives to
select a subset of the available content, i.e., they need not rely on the "packaged" RSS
feed or blog, but can rather choose a logical partition of the entire available content. E-
mail rules (e.g., MS-Outlook) and information portals like Yahoo! constitute a better
example of channels, where the user does have some level of control as to which set of
information is desired [9, 15].Thus, users can impose their world view on the information
corpus. However, these latter examples are situated in a particular domain (mail, news)
and the capability for selecting appropriate content is lacking for arbitrary information. In
contrast, channels in the context of a generalized information management tool (such as
Haystack) that can represent and maintain information from myriad domains can allow
users to aggregate otherwise scattered information into a single collection, thereby
minimizing the overhead of "hunting and gathering" to collect it.

Because a channel allows naming and manipulating a collection whose membership may
be unknown, it constitutes a flexible and abstract unit of content that can serve to supply
underlying content in various contexts. It can also be used as a primitive for
manipulation, e.g., using an algebra that combines information in useful ways. Channels
provide several additional benefits:

" The modularity of channels lets users define information properties in a virtual
manner ahead of time, without knowing what they will apply to. This is possible,
because the nature of the channel's content is known a priori based on the
channel's description. Thus, each individual item need not be annotated with
certain properties; the fact that an item has certain properties that allows it to be a
member of a channel, also allows it to (virtually) "inherit" the properties of the
channel dynamically, e.g., security. For example, a channel can be designated as
being secure and only accessible by certain users, without knowing the actual
members of the channel. This decision can be made because the description for
the channel indicates that it should consist of all items marked "Classified." If an
item ceases to be marked "Classified," it ceases to belong to this channel and thus
also ceases to have the corresponding security restrictions.

" Modularity also allows information channels to become reusable and redirectable.
They can be used in different contexts and redirected to different portions of the
UI (within, or outside an information space) where the corresponding subset of
information is useful. Or, the information corresponding to a channel may be
redirected to a different device altogether, e.g. if an employee becomes sick or
seeks to work from home, the channels appropriate to the work project can be
subscribed to from the home computer. In effect, channels allow us to irrigate our
tasks with the necessary information.

" Channels as an abstraction are also useful in hiding the distributed and segmented
nature of information by allowing aggregation of information from multiple

49

stores. For example, the notion of viewing e-mails related to a particular topic
regardless of which e-mail account it may have arrived in is a powerful one.

" As an indicator of the current user task focus, channels allow an information
management platform a simple but useful technique to perform gate-keeping
actions by minimizing users' interruption with events or information unrelated to
the current task. For example, a user working on a task requiring information
from a set of channels need not be interrupted by newly arrived (or created)
information that does not fall into any of the channels. When he/she switched to
the context that requires the channels that those items did fall into, he/she will
become aware of them.

" The persistent nature of channels ensures that they are always up-to-date, and thus
eliminates the need to manually review a potentially large and dynamic corpus of
information in order to appropriately organize it.

Channels are primarily a self-maintaining organizing mechanism for dynamic corpora of
information; they allow the user to impose his/her world view on an otherwise raw and
changing set of information by defining a set of persistent indices of relevant information
that are then maintained up-to-date by the system. (An alternative view of channel
definition is to view it as the act of defining a simple agent whose output is the collection
of interest.) Thus, given a store being modified by the user, agents and incoming
information, the user can create a stream of information that is important to him/her
independent of the source or creation method of the information. For example, channels
can be used to segment communication via e-mail, instant messaging and other content
delivery web services into a social channel, work channel, bills channel, news channel or
high-priority channel. As a result, the user can impose the semantics of "social" onto a
collection of information, regardless of whether it consists of IM, e-mail, or both.
Channels can also be used to maintain a list of to-do items which may include not just
those the user has specified, but perhaps also those that a supervisor has assigned.
Additionally, a channel may consist of a list of the people working on a project that is
automatically updated as the underlying information changes. Finally, a channel can be
the result of a combination of other channels: to-do items of all people working on a
project.

4.3 Design
In this section we discuss the design of the infrastructure that supports channels in
Haystack. It consists of two main components: infrastructure that computes and maintains
the channels, and a set of user interfaces that facilitates channels definition and viewing.

4.3.1 Channel Generation Infrastructure
The channel manager agent is responsible for keeping channels current. As a result, it
periodically updates all channels based on their descriptions. In this process, the channel
manager agent relies on the channel ontology (described below) and a simple, extensible
channel definition language that allows composing computational primitives into
descriptions of channels.

50

4.3.1.1 Channel Ontology
The channel ontology describes the attributes a channel can have. A class named
channel: Channel is declared as a type to be used to annotate channels. In addition to the
title and description accompanying most entities in Haystack, channels have four main
properties: channel: active, channel: targetCollection,

channel:updateSpecification and channel: setTransformInstance (STI).

The channel: active attribute is a boolean valued property that allows toggling the
current status of the channel. If it is set to off, the channel is not kept current. The
channel: targetCollection attribute specifies the underlying collection that receives
the items that match the channel description. The channel:updateSpecification

property identifies an update specification object that in turn stipulates how and when the
channel is to be updated, e.g. fixed times, periodic, event driven, etc. This property is
currently not exposed to the user. Finally, the channel: setTransf ormInstance
property points to an item of type channel: SetTrans formInstance that represents a
computation closure that specifies the description of the channel.

We digress here briefly to explain certain concepts in Haystack whose current
implementation significantly affected the design and implementation of Channels related
infrastructure. A computation closure captures the "instance of a method call". For
example, a method that computes the maximum of two numbers, Max(n 1, n2), can be
called with various parameters. In order to capture a particular call instance having
particular parameters, say 3 and 4.5, the computation closure would specify the method
being called (Max) as well as the values for the parameters (nl = 3, n2 = 4.5). In
Haystack, methods that can be invoked by users (e.g., send e-mail) are called operations.
In order for the user to invoke them, he/she may need to specify certain parameters such
that the operation closure can be determined so that the operation can be invoked with
the specified parameters. In order to collect parameters from the user to create a closure,
Haystack uses the notion of a User Interface Continuation (UI Continuation). When a
user attempts to invoke an operation, a UI continuation is displayed to prompt the user for
the required arguments. Although, such a continuation may be specialized for the
operation, Haystack can also display a default UI continuation based on what it knows
about the nature of the parameters.

An object of type channel: SetTransf ormInstance represents a custom operation
closure that was created for two main reasons. First, and most importantly, the current
operation closure ontology requires closures to directly point to the values of the
parameters using the argument name as the predicate. As a result, the current operation
closure ontology does not allow annotating the arguments' values in a closure as to how
they are to be interpreted - a capability we needed (as discussed with the topic of
argument vectorization later).

Second, the parameter collection user interface for operation closures in Haystack, UI
continuations, was too powerful in what it allowed users to accomplish, and thus was too
lax in what it allowed/expected from users. For example, it allowed users to specify
collections of values for a given argument, when the underlying operation's semantics

51

only understand a single value for an argument, thereby confusing the user as he/she is
unsure of exactly how many values are required, whether they need to be ordered, and
how they will be used. In addition, although UI continuations for operation closures not
only allow argument values to be created in place but also dragged and dropped, the
affordance on the UI is unclear as it directed users to "click here to add" for resource
arguments. Also, the user interface was not type safe, i.e. it allowed any resource to be
specified for a daml: Obj ectProperty, when in reality, a resource of a particular type
was expected by the operation. Finally, the operation closure presented to the user was
uninitialized, thereby yielding an interface that came up blank for all parameters, when it
would make sense to have the values be some reasonable defaults. Due to these reasons,
the UI available for operation closures was lacking from a usability perspective.

An object of type channel: SetTransformInstance has two properties
channel:setTrans form and channel: hasArguments. The first property specifies the
computational primitive of type channel: SetTrans form (a subclass of adenine: Method
that only returns a set of RDF resources corresponding to information entities) that
generates a collection of items representing the channel contents. The second property
denotes a collection of named arguments to the primitive. (The term Set Transform is
meant to imply that some set(s) of information is (are) manipulated to yield another set.
Either the set(s) are explicitly specified as arguments, or the entire store(s) from which
information is being extracted constitute(s) the set being transformed.)

The arguments for a Set Transform Instance (STI) consist of two types,
channel: SetTrans formActualResourceArgument and
channel: SetTrans formActualLiteralArgument.

Both argument types have four properties: channel: argumentURI,
channel:argumentValue, channel:vectorizedArg and channel:vectorSource. The
first property points to the named parameter for the set transform, whereas the second one
captures the current value for the parameter to be used in the STI. The last two properties
allow specifying whether the argument is a collection (vector) of values that is supplied
by another object of type channel: SetTransformInstance. In retrospect, the distinction
between the two types of arguments is not strictly necessary, but differentiating between
resource and literal arguments at this high level made it simpler from an implementation
perspective to create appropriate views, without a complicated query that had to
determine the type of the argument (resource vs. literal) pointed to by
channel: argumentURI. Also, in retrospect, the distinction between
channel: argumentValue and channel:vectorSource could have been removed, and a
single predicate could be used to capture the value of the argument, which may be used
directly, or evaluated before use, based on the boolean channel:vectorizedArg
property.

4.3.1.2 Channel Definition Language
From the description above, it is clear that all channel descriptions are specified in terms
of a single type of building block: a set transform. All primitives are known as Set
Transforms since they are used to transform an initial corpus of information into
something interesting, i.e. a channel. Our goal from the onset was to have a robust

52

architecture that facilitated extension by only having one type of abstraction. A set
transform is a simple computational abstraction that may take arguments, and always
produces a set of items. We chose not to return a bag of items that allows duplicates as it
would make the semantics of operations with returned items more complex than simple
set operations understood by most people. Also, we decided not to return ordered lists,
since that would also increase the user's burden, as he/she would need to specify a means
of ordering the results for each set transform. An order for the items is also only
generally useful in specifying the display of information, not in the specification of the
information itself. Thus, in the interest of simplicity, we traded off the benefits of order,
and duplicate elements. Nevertheless, these capabilities are meaningful, and may be
added in the future.

The simple set transform abstraction makes it possible to extend the language of
primitives and add to the user's toolkit for channel definition by annotating any
imperative code that satisfies the definition, i.e., code that always returns a set of items.
Also, allowing the results of set transforms to be re-directed as inputs to other set
transforms using the channel: vectorSource property in vectorized arguments makes it
possible to compose set transforms and increase the expressive power available to users.

Using the set transform abstraction, we defined a number of primitives that together
constitute the channel definition language. In designing the set of primitives, our
fundamental objective was to provide a few well chosen primitives that could form a
basis set that allowed the user to richly express the description for a channel. We
identified several categories of primitives that would achieve this objective. However, a
set of transforms that do not interact together have minimal expressive power for the user
and are of limited utility. Thus, several of the set transforms are provided specifically to
allow composing set transforms and/or channels. The categories are as follows:

* Set Operators - Set transforms that compute the set intersection, union and
difference of the collections resulting from the set transforms provided as
arguments. These operators are equivalent to AND, OR and NOT (with an
appropriately specified universal set to be used in set difference). These operators
facilitate a simple algebra for results from any set transform (including other set
operators) and are similarly closed over sets.

" Query Primitives - Set transforms that allow users to query RDF triples in order
to extract either the subject, predicate or object, given a fixed value for one of the
elements in the triple, and a condition on another element in the triple.

* Identity/Null Primitives - Set transforms that return an empty set (for creating
default instances of channels or default arguments to set operators), or wrap an
hs: Collection or channel's elements. These primitives allow reuse of existing
channels or explicitly specified collections in creating other channels, i.e.
channels may be piped into other channels to derive new channels.

* Others - Set transforms that perform arbitrary computations to return a set of
items.

53

Using these primitives, a channel is no longer limited to just be described by a simple set
transform (e.g., items of type person); rather, it can consist of a composition of several of
them that can be combined in various ways. An interesting combination of set transforms
is one that is a union of a computed channel and a fixed collection. The resulting channel
is one that is cooperatively maintained by the user and the system, where the system
allows the user to add items to the computed set. Similarly, a channel consisting of a
difference of a computed channel and a user specified collection simulates allowing the
user to veto certain results computed by the system. Finally, using both a union and
difference, users can manually mold the information computed by the system. Thus, the
set operators, along with the ability to wrap existing channels or collections and use them
as arguments, allow us to create various flavors of channels.

Although a detailed listing of the available set transforms is provided in Appendix A, we
delve into the set of query primitives here as they are all designed in a regular fashion,
mimicking the triples nature of RDF.

4.3.1.2.1 Query Primitives
All query primitives available to the user wrap a simple Adenine (native Haystack
language for RDF manipulation and querying) query consisting of three variables and
having the form ?subject ?predicate ?object [21]. The user is assisted in the query
building process by a tool that presents the structure of the information in the store - the
ontology browser (discussed later). The user can fix the value of one of the three
variables, specify a condition on the value of another variable, and the query returns the
values bound to the third variable for all matching triples. For example, if the subject is to
be returned by the query, than either the predicate or object must be fixed by the user.
Thus, a valid query would return a set of pairs. The specified condition is then applied to
the appropriate member of each pair, and if it is satisfied, the other member is added to
the result set. As a result, all query primitives require two arguments, the value for the
fixed variable, and the closure for the condition test to apply to values bound to the
conditioned variable.

Similar to the Set Transform Instance, which represents a computational closure of a
particular set transform, a condition test closure specifies the computational closure for a
user specified condition test. In fact, the closure has the same general structure as the set
transform instance. A condition test closure is a class named,
channel: ConditionTestClosure which has two properties, channel: conditionTest,
and channel: hasArguments. The first property points to objects of type,
channel: ConditionTest (a subclass of adenine:Method) which are adenine methods.
The second argument, like set transform instance, points to a collection of arguments, of
the same type that Set Transform Instances point to.

In the case of condition tests, we once again felt a need for a different type of closure
whose semantics could not be fulfilled by pre-existing classes of closures. As already
mentioned in the case of Set Transform Instances, we wanted to preserve the ability to
specify not one value for an argument, but several values, possibly the result of a
computation. For example, a future condition test might allow the user to test for

54

equality with any of the members in a computed set of values (e.g., a channel), rather than
a single explicitly specified value. This was not possible with the current operation
closure class in Haystack, which only allows explicitly specifying a collection of values.
Also, the existing closure class had additional UI drawbacks mentioned above, which
could be mitigated to some extent by using the same types of underlying arguments (and
views) as set transform instances. However, although the argument types to the condition
test closure were the same as Set Transform Instances, we could not use the Set
Transform Instance closure class, as the semantics of Condition Tests were such that only
some, not all, of the arguments are collected from the user; the rest are supplied by the
results of the base adenine query using the fixed variable. These are compared to the user
specified values to compute a boolean return value indicating whether or not the
condition has been satisfied. In fact, Condition Test Closures represent an interesting new
type of closure, where the user and system cooperate to complete the task, and present an
avenue for future research, e.g. who specifies which arguments, whether this is a static
choice, or negotiable, etc. The set of condition tests that are currently implemented are
listed in Appendix B.

The query primitives were deliberately designed to be simple to work with, and as a
result, do not allow specifying complicated Adenine queries with multiple existentials
(variables) that are used for "joins" that allow traversing the RDF graph. An example of
such a query with multiple existentials would be ?x :brother ?y :name "Barney".

Here, the return set of interest corresponds to ?x and the user must specify multiple
variables (?x, ?y) and condition on those variables ("has brother whose name is Barney",
"has name Barney"). Although powerful, such a capability was primarily not made
available as it would probably be too complex for a user to work with (see below). Also,
in the general case, all variables being used to perform the join would require conditions
to be specified (assuming, the user does not want to always use an equality condition),
yielding a more complex user interface and underlying infrastructure for evaluating these
queries, for which we lacked implementation time.

Nevertheless, we avoided the concomitant loss of expressive power by incorporating the
concept of vectorization. By vectorizing an argument, the user may specify not one
value, or an explicit set of values, but a set transform instance that computes a set of
values (which can also wrap an explicitly specified collection if needed). As a result, the
user can specify that the values for the fixed argument of a query primitive are to be the
results from another query primitive, thereby simulating the notion of a join. For
example, in the above query, the user might create one query primitive
Firs tQueryPrimitive consisting of the query corresponding to ?y :name "Barney".

The user can then specify that another query consists of ?x :brother <Vectorized
Argument - VectorSource: FirstQueryPrimitive>. The last parameter in the second
query is specified as a vectorized argument, whose values are returned by
Firs tQueryPrimitive. The set corresponding to Firs tQueryPrimitive is dynamically
bound to the first query as would be done in the single expression above, and hence
performs the join.

55

Finally, the resulting experience for the user should also be better as he/she incrementally
specifies the join and thus can build the expression in parts in a modular fashion and test
each part (using tools discussed in the UI section), without having to specify and debug
one large expression at one time - a much more complex undertaking. In effect, by
specifying sub-queries and piping their results into other queries one step at a time, the
user binds their results to each existential in the larger expression being built.

Compared to existing query languages, e.g., SQL and Adenine, it may be argued that
there exists no way for the user to specify a return set consisting of tuples. However, the
channel abstraction was meant to provide a single set of items, not tuples of items. Even
for a single set of items, one may ask why it is the case that users cannot select (project)
the properties of interest, and thus receive tuples of properties of the items rather than the
items themselves. Such an approach would return information without its context: for
example, the tuple <age, height> is meaningless to the user, unless he or she knows
whom it refers to. Thus, if the user wanted to later see a different set of properties, or see
properties based on the type of the underlying item (e.g., if it is a dog, show the hair color
also), he or she would not be able to since only one set of statically specified properties
had been specified. In general, much flexibility is lost in making the decision on which
properties are of interest at this stage. Finally, from our perspective, usability was
important, and forcing users to specify tuples during the querying phase seemed
unintuitive; users would more easily understand that after obtaining a set of entities
matching a particular set of criteria, they are allowed to choose which properties to show
for those entities, when designing/selecting a view for it.

The decision for our query model may seem arbitrary. Whereas it makes sense to only
return values bound to a single variable since the semantics of Set Transforms require
returning a set of items (not tuples), why can only one of the remaining two variables be
conditioned? Fundamentally, this design decision was driven by the fact that the
underlying database has impoverished support for conditions on queries. Specifically, the
only condition that can be applied is equality. For example, ?x : age "21", returns all
items whose age exactly matches "21-. Thus, for example, one cannot express a query
that returns people whose age is greater than "21." Of course, this would not be a
problem if there was an infrastructure in place for evaluating conditions on queries, and a
mechanism for adding condition primitives to the database to enhance the expressive
power of the query language. However, such support is currently lacking.

Thus, the conditions that set transforms support are evaluated after the query results are
returned from the database. As a result, unconditioned queries must be dispatched to the
database. If set transforms allowed conditions tests on both remaining variables (other
than the return value), then a completely unconditioned query would have to be
dispatched to the database, and the condition tests would need to be evaluated based on
the returned results. However, a completely unconditioned query of the form ?x ?y ?z
would return the entire database. Such an operation would be very expensive not just in
returning the data, but then also in applying the conditions to each of the triples. As a
result, we force the user to specify a value for at least one of the variables in the query, so
that the database can return a more tractable result set. Note however that there is no loss

56

in expressive power, since the user can specify the two conditions using different queries,
and then combine the results.

In the process however, we enhance the query power available to the user as compared to
the Adenine expression evaluator alone. A set transform allows arbitrary conditions and
the user can more accurately specify the information of interest. For example, the user
can choose the condition in the first query primitive above to be that the name begins
with "B" rather than it be equal to "Barney."

4.3.1.3 Channel Manager Agent
The channel manager agent behaves like an interpreter for the Channel Definition
Language; it periodically evaluates the top level set transform instance for the channel,
which may in turn invoke other transforms, and then places the results in the channel's
target collection (replacing the earlier "out-of-date" collection). As a result, changes to
the store are not immediately reflected. In implementing the update method for channels,
we decided to poll the store periodically. This was primarily done to avoid the
performance degradation that would accompany an event based implementation; the store
dispatches lots of event since it is being used as a blackboard for communication between
all components in Haystack. In the future, perhaps we will allow the user to select for
each channel, its update preferences (periodic vs. event based). Currently, the update
specifications of channels are ignored (and thus not shown to the user).

We briefly discuss here the notion of vectorization. As was briefly discussed earlier,
vectorizing an argument to a set transform allows specifying a set transform whose result
supplies a collection of values (a vector) to the transform for that particular argument.
Thus, the transform is invoked multiple times, once for each argument value. Since the
user may arbitrarily vectorize any of the arguments, the channel manager must have well
defined semantics for handling multiple vectorized arguments. One approach would be to
assume that all vectors of arguments to a set transform are of the same size, and hence
constitute parallel arrays from which tuples of argument values may be removed and used
until the arrays have been consumed. This assumption however is not safe since the
vectors of argument values may not all be the same size. A safer approach (that we have
chosen to use) would be to perform a Cartesian product, and use the resulting tuples to
invoke the set transform multiple times.

A second decision that the channel manager agent must make is what to do with the
results of multiple invocations of the set transform with various arguments. Clearly,
some set operation would make sense. Again, to minimize the complexity of defining
channels, this decision is not exposed to the user, and the agent by default computes a
union of all the result sets which we felt would generally be the semantics the user would
want applied.

It may be argued that our earlier reasoning for not using existing operation closures no
longer applies as we are now allowing multiple values for arguments as well. However,
the current scenario is different from explicitly specifying a collection of values as
operation closures currently allow since the items in the collection are the result of

57

computing a set transform. Also, the user is explicitly requesting vectorization, and is
aware of how various arguments will be combined. Accepting this argument, it may
further be suggested that all arguments to set transforms be set transforms, which happen
to wrap collections of single items if the corresponding arguments are to have single
values. However, we reject this design alternative, as it adds a significant amount of
overhead to the user for understanding this esoteric abstraction just for uniformity of
implementation. The associated negative impact on usability and simplicity in the
common case for the user may not be justifiable.

4.3.2 Channel Manager User Interface
Four primary user interface components are provided for the user to interact with
channels. These include: the ontology browser, the channel manager, the channel viewer,
and the set transform instance viewer. Each is discussed further below.

4.3.2.1 Ontology Browser
The ontology browser is a tool implemented in Haystack that allows users to explore the
set of ontologies that are currently declared in Haystack. The ontology browser is meant
to be used by users to understand the structure of information and learn more about the
classes and properties in Haystack, e.g., which classes are available to model information,
their associated properties, domain/range of properties, description, parent/subclasses of
classes and properties, comments, etc. Figure 6 shows a screenshot of the ontology
browser where the user is currently inspecting the Address class in the VCard Ontology.

The browser consists of three main panes: the ontology selection pane, the class/property
selection pane and the preview pane. Selecting an ontology of interest from the list on the
left populates the list in the right pane with corresponding classes and property defined by
the ontology. The preview pane then displays the information about the selected
ontology. Selecting a class or property from the list of ontology elements on the right
then populates the remainder of preview pane, showing information about the selected
item. Users can use drag items (classes or properties) from the Ontology Browser and
drop them on the right pane. These can later be used to specify parameters for queries in
the channel manager.

The ontology browser was designed to be an exploration tool that made it simple to
browse information structure in Haystack. Thus, instead of having a single collection of
all classes and properties, which would require a user to know the name of the class or
property, it allows the user to select an ontology to quickly narrow down the domain of
interest, and the corresponding items. Another important decision in this tool was
whether to just show two different collection views, one for ontologies, and another for
its elements, each having a separate preview pane. This alternative was rejected as it
would have reduced the amount of horizontal space available to the ontology elements'
preview pane, and thus required the user to scroll horizontally or vertically (if the
information were oriented vertically). Thus, the decision to have two collection views
would not have been space efficient. The current design allows the user to see everything
at one glance.

58

P Information Portal Ontology
o Information Space Ontology

F Instant Messaging Ontology
o Language Ontology
o Mail Ontology
D Media Ontology
a Metadata Lens View Part Ontology
A Note Ontology
o Operation Ontology
E Ozone Base Ontology
O Ozone Slide Ontology
o Property Lens Ontology
A Style Ontology
A Talk Announcement Schema
R Task Ontology
F Travel Ontology
F Two Dimensional Layout Ontology
o Vcard Ontology
o Xenon Ontology

A |C Address A

L

C American
C European name
C Home
C Japanese
C Japanese name
C Location
C Mobile
C Name
C Work
^ Address
^ City

/ Company
^ Family name
/ Family name 5
^ Fax
^ Full name

/ Given name
^ Given name 0

Ontology: VCard Ontology
Publisher: Haystack Development Team

Contributor: Dennis Quan

Version:

Class: Address

Summary

Parent Class(es)

No items in list

SubClasses

American
Japanese

Properties

City:
City

Map:
Picture

Postal code:
http://wwww3,orgJ200 I IXMLSchema#string

Figure 6 Screenshot of Ontology Browser

Perhaps the most important design decision in the implementation of the Ontology
browser was whether the ontologies presented were statically declared or dynamically
generated. Unlike the Lore project at Stanford which presents the user with a dynamic
summary of the structure of the information in a semistructured database based on actual

59

usage via DataGuides, we chose to implement a browser that presents only statically
declared (appropriately annotated by developers) ontologies [23]. As a result, our
browser does not capture undocumented use of classes and predicates. This was
primarily done for performance reasons, in order to avoid the overhead of regenerating
the DataGuide periodically. Unlike structured databases, schemas in semi-structured
stores can easily exceed the size of the actual content stored with the schema.
Nevertheless, since most ontologies are declared in Haystack, an ontology browser
presenting a static structure of information in Haystack was a satisfactory solution.

4.3.2.2 Channel Manager
The channel manager is the primary tool used to work with channels. It allows the user to
create, copy, delete and toggle channels on and off. It also allows the user to edit the
properties of any individual channel including the underlying set transform instance.
Figure 7 illustrates, the Channel Manager.

The channel manager consists of a standard collection view, showing the set of available
channels in the top portion, and a preview pane for the selected channel in the bottom
portion. It supports pervasive use of context menus and drag and drop to make
functionality available to users. Users may right click on the collection to add channels
by selecting the "Add new item" operation, as is possible in the Haystack collection view.
However, only channels can be added to the collection, as other types of items will be
removed from the underlying collection (see the Channel Manager Implementation
section for a full discussion). Also, the user may invoke the context menu on any channel
in the collection, and gain access to common channel management operations that allow,
copying, deleting, or toggling the underlying channel.

Any individual channel may be edited via the preview pane which is split into two main
sub-panes. The channel's set transform instance can be edited in the right pane, and all
other channel properties are accessible via the left pane. Since STIs may be nested, the
right pane provides a collapsible interface for specifying the arguments for the set
transform instance. Like other operation closures, an expanded STI attempts to collect
arguments from the user. Resource arguments can only be specified by drag and drop,
whereas literal arguments may be entered via an edit box. Unlike current operation
closures, all resource arguments specified for set transforms support type-safe drag and
drop. That is, even though the closure user interface is general purpose and can be used
for any set transform, it adapts to the underlying set transform to enforce type safety of
the arguments. If the dragged item is not of the type expected by the set transform, the
drag and drop operation does not succeed. If the "Argument Vectorized?" checkbox is
checked, then the user must supply a set transform instance that computes the vector of
values to be used for that particular argument.

60

Type Title '

rj Channel Adenine Services (Enabled)

Date

No items in list

Channels (Enabled) No items in list

Classes (Enabled) No items in list

Collections (Enabled) No items in list

Condition Tests (Disabled) No items in list

Information Space Channel (No items in list
Enabled)
Metadata Lens View Part Cha... No items in list
RIpim rhAnA. FnApiNi Min &Pm< in lkc

I-e Active

Name

denine Services

Description

So Description

Target Collection

A Channel Target Collection

Set Transform Instance

E Subject Query
(Fixed
Predicate,
Resource
Object)

Has Arguments

Condition Test:

= =(Resource)

Has Arguments

Fixed Value (Resource):

Adenine Service

E] Argument Vectorized?

Predicate:

type

E] Argument Vectorized?

Figure 7 Screenshot of Channel Manager User Interface

Of special note are the semantics for drag and drop for the two types of closures
discussed earlier. In Haystack, an operation closure is created when the user clicks on an
operation, and completes the resulting UI continuation that collects the requisite
parameters. In the case of set transform instances and condition test closures, the existing
means of creating a closure are not used (as previously discussed) and thus, some means

61

Channel

Channel

Channel

Channel

Channel

Channel

channel

must be specified to do so. In both cases, the default construction mechanism of channels
and set transform instances automatically create default closures where needed, e.g., a
new channel always has a null transform instance created. In order to specify a different
transform, users can drag any set transform to the target closure, and underlying closure
updates itself to become a default instance of that particular set transform. The same
means of specifying condition tests is used, e.g., all query primitives have a default
condition test closure, and the user may drag a new condition test to it. The system
handles creating default instances of new closures as needed, and thus need only worry
about configuring them.

Finally, as is visible from the figure above, condition tests, like set transform instances,
also collect arguments from users. However, condition test closures do not seek values
for all their arguments, as some are supplied by the system based on the results of queries
(as discussed in the Query Primitives section). (Also, the ability to vectorize arguments
for condition tests is currently not supported.)

Several design decisions were made to enhance usability of the channel manager. First,
default channels have been specified that produce collections of information useful in
specifying set transform instances when the user defines his/her own channel, e.g.,
classes, properties, condition tests, etc. The user may use the channel viewer tools, to
keep the information readily available when working with channel description. (The other
default channels are defined for supporting the implementation of various managers,
including the channel manager.) Also, all information objects used in defining the
channel, from channels down to condition test closures, are always auto created and
initialized with default values. Furthermore, the user interface, attempts to keep the
information valid at all times. For example, a channel is always initialized with a valid
null set transform instance that does not produce any results, a newly specified condition
test such as the numeric <= is initialized with a default comparator value of 0.0 and
replaces the previous condition test, etc. As a result, all information items are
immediately valid and useful, and the user need only focus on the subset of information
that is important. In the same spirit, the interface also provides a means for users to copy
channels, in order to avoid creating and configuring them from scratch. As a result, users
can leverage previous work, and only make incremental changes to define new channels.
Unlike the current Haystack philosophy, destruction is made available as an operation to
allow users to completely remove channel descriptions from the store (as opposed to
deletion of an item from a collection). This is done in order to avoid channels that the
user may have created that are of no use anymore, but that keep reappearing in the
channel manager even after deletion since they still are of type Channel. Thus, the user is
needlessly forced to contend with clutter in the channel manager. However, if a user
wants to create a channel template that is of no use by itself, but is to be used for copying
as a starting point for defining new channels, he/she can create a channel and disable it

The most important design decision made in the channel manager is that of the contents
of the right sub-pane of the preview pane: the interface for editing set transform
instances. Admittedly, an interface can quickly become complex if it attempts to collect

62

parameters from a user, where the parameters themselves collect additional parameters.
The current user interface design for editing set transforms consists of nested arguments.
It allows collapsing some or all arguments thereby letting users focus on a particular
portion of the channel description, e.g., users can hide the arguments for one set
transform instance being used in a set union operation, so that more space can be
allocated to the other argument. Whereas this approach is better than a user interface
where both arguments to set union are always fully expanded, it is nevertheless lacking in
usability. A better design than nested set transforms would be a graph editing interface,
which intuitively highlights the ability of users to "pipe" channels into others. However,
including such an interface was a complex undertaking requiring significant custom
integration and possibly additional coding effort with existing graph editing tools to
enforce the desired interconnection semantics and user interaction. As a result, this design
alternative was not pursued in favor of a more functional design that could be completed
quickly.

Another design decision related to the set transform instance specification was that of the
query interface. Querying is anticipated to be used often in defining channels, and as a
result, would benefit from a more intuitive interface than the current STI specification
interface. Query interfaces have been well studied in the past, and many flavors are
possible. These range from very simple command line interfaces that allow users to
directly specify the query in the query language (e.g., SQL), to highly sophisticated and
correspondingly more usable natural language systems (e.g., START, PRECISE)
[24,25,26,]. A natural language interface, although powerful, would require significant
effort to implement and deploy in Haystack. Somewhere between these extremes lie
query-by-example (e.g., use of DataGuides for QBE in the Lore project, Filemaker Pro),
wizards (e.g., MS-Access) and query designer (e.g., MS-Access) interfaces [27,28,29].
Our current interface tends towards the lower end of the spectrum just above a command
line interface. Of these alternatives, query-by-example and wizards also seem sufficiently
complex (and limited in applicability i.e., best suited to conjunctive queries) such as to
merit a separate research project. However, a query designer interface to the set
transforms based implementation of the query primitives, would benefit the channel
manager's usability without significantly impacting our current research goals. Users
would be able to intuitively specify a query rather than worry about selecting the right
primitive. This capability will be added in the future.

4.3.2.3 Channel Viewer
The Channel Viewer tool was developed to allow users to monitor the set of items in the
channel when it is not being used in an information space, without detailed information
on the items themselves in order to have a minimal UI footprint. Thus, for example, a
person may want to monitor any urgent e-mails that come from home, while working on
some task. The channel viewer tool always appears in the right pane of Haystack, and is
shown in Figure 8. In this case, it is monitoring the channel that keeps track of the
channels currently defined in the system.

63

Channel Viewer Tool X

Channel: Channels

Channels (Enabled)
Tasses (Enabled)
Collections (Enabled)
Condition Tests (Enabled)
Information Space Channel (Enabled)
Properties (Enabled)
Set Transforms (Enabled)

Description: Items of type Class

Figure 8 Screenshot of Channel Viewer Tool

The top of the tool specifies the channel being monitored, followed by a list of the
members in the channels. The bottom of the tool shows a description of the selected item
in the channel.

The user can simply drag any channel that needs to be monitored, and drop it on the
channel viewer. The channel viewer then shows the members in the channel, and
continues to keep them up-to-date. (Note, the channel is not copied.) The channel viewer
behaves like any other applet element in the right pane, i.e., it can be collapsed, removed,
etc.

We felt it important to develop the channel viewer for a number of reasons. When items
are currently dragged to the right pane, they are always rendered using a view part of type
ozone:AppletViewPart. However, in the case of channels, it is unclear whether the
channel's properties are to be shown, or the items that have been computed to be its
members? Although multiple view parts could be developed, one showing the channel's
properties, and the other its contents, the problem would not be solved since Haystack
non-deterministically selects from multiple view parts having the same view part class.
Also, in the case where multiple instances of something are to be examined, one at a
time, dragging each instance to the right pane overcrowds it since previous instances that
are of no use still linger in the pane. For example, if the user wishes to examine the
contents of Channel A, and then Channel B with no more use for Channel A, he would
first need to manually remove Channel A, and then add Channel B. He cannot replace
Channel A with Channel B. Finally, if the same item is added to the right pane multiple

64

times, it is duplicated, and shown in the same view, again contributing to overcrowding,
with little additional benefit.

As a result, in a departure from current philosophy in Haystack, where items dragged to
the right pane in Haystack are rendered in a particular view, we chose to introduce a
different abstraction when developing the channel viewer: a tool. A tool has its own
ontology and type, and when added to the right pane, is rendered in its applet view. A
tool manages some content, and thus can control how to render the content. Another
important principle is that the underlying content can be changed, e.g. by drag and drop,
thereby removing the problem of overcrowding and lack of replacement semantics in the
right pane. Finally, a tool allows having state associated with it or can host multiple
pieces of information whose relationships determine the result that is produced and the
content that is rendered. For example, a tool that lets users examine how two people are
related would allow specifying any two people that can be dragged to the tool, and the
tool would then show which set of mutual acquaintances connect them.

4.3.2.4 Set Transform Instance Viewer
The set transform instance viewer is a prototyping tool that allows users to quickly see
what results a set transform instance will produce, when they are working with the
channel manager to create a new channel. This tool is especially useful when trying to
build a query, as the user can check to make sure the different portions of the query are
returning the results correctly. Figure 9 depicts the set transform instance viewer tool
showing a union of properties of various types (dami: Obj ectProperty and
daml:DatatypeProperty).

The tool lists the set transform being computed at the top. The update button is provided
to allow the user to re-invoke the transform instance (after possibly having made some
changes to the store) to ensure that the appropriate results are being produced. Finally, the
bottom of the tool shows the set of items produced by invoking the transform instance.

As in the case of the channel viewer tool, the user can drag and drop a set transform
instance on the tool, and the tool copies the set transform closure, rendering the copy in
the tool independent of the one being used in the channel definition. (Although it would
be useful to use the same STI as the one being used in the channel, so that the user need
not drag and drop it each time, the STI is copied so that the user does not assume, that
reinvoking the set transform will also update the channel. Also, keeping the tools
independent allows channels to be deleted, without rendering the STI viewer tool
inconsistent.)

65

Set Transform Instance Viewer Tool X

Set Transform Instance:

SetUnion

Update

^ Abstract

^ Acceptor
^ Active task

^ Actual (Literal) Argument
^ Actual (Resource) Argument
^ Actual (Resource) Argument Value
^ Address

^ Adenine Method

r Adenine Method
. Adenine condition
/ Adenine query specification
/v Airline

Figure 9 Screenshot of Set Transform Instance Viewer Tool

4.4 Implementation
All code to support the above mentioned functionality was implemented in adenine, split
across two adenine files: schemata/InformationChannel.ad contains code for the channels
ontology, agent, and implementation of the set transforms and condition tests, and
ui/InformationChannelManager.ad contains code for all the UI tools (except the Ontology
Browser) discussed above. Below, we discuss the various components, and salient
aspects of their implementation.

4.4.1 Channel Manager Agent Implementation
The Channel Manger agent is implemented as an Adenine Service that is periodically
invoked by the Service Manager. Each time the agent runs, it queries for all channels, and
processes each one, updating the ones that are currently enabled.

A channel is updated by reifying a he: collection (the native Haystack collection
abstraction) and populating it. During each update cycle, the collection is only updated
with the deltas to the existing set of members: addition of new members, and removal of
members no longer satisfying the criteria (as opposed to removing all the old elements
and adding all the new elements). This is done in order to minimize disruption to the user
in case the channel is being watched by UI components.

66

Since channels can be used to supply content to multiple other channels, a channel may
get updated multiple times: once for itself, and again when used in the context of
computing another channel. In order to avoid computing a channel multiple times during
the same agent update cycle, the agent employs a boolean flag to determine if a channel
has been updated in the current agent invocation. The agent toggles its own flag each
time it is invoked. As it processes each channel, if a channel has already been updated in
a given invocation (i.e., the channel's update flag matches the agent's flag), it is not
recomputed. (Each time a channel is processed by the agent, its flag is also toggled
regardless of whether or not it is enabled. Thus, there is no chance that a channel may
become enabled and not be updated on the very next update cycle.)

The Channel Manager agent can be viewed as an interpreter for the language consisting
of set transforms. Each time it is invoked, it takes the set transform instance for the
channel, and invokes it. As we already mentioned earlier, if the
channel:vectorizedArg flag for the argument is set to true, the argument (a set
transform instance specified by channel: vectorSource) is evaluated, i.e. the set
transform instance is invoked. Otherwise, the argument is passed directly on to the set
transform. We mentioned that vectorization of arguments is implemented by computing a
Cartesian Product of the values resulting from invoking the set transform instance with
the values of the other arguments. In order to minimize the memory overhead, this
Cartesian Product is never pre-computed to create a table of argument value tuples in
memory. Instead, each row of the table is computed by cycling through the indices of the
various collections of values for the arguments. Thus, the agent trades off additional time
for savings in memory.

The code for the channel manager agent is written in Adenine primarily because of speed
and flexibility during the development process; it was easy to quickly prototype and
evolve the framework for updating channels. However, having converged upon a better
understanding of what the agent's tasks are, it seems a java implementation would be
better and would gain from improvements in execution speed since the process of
generating argument values for vectorized arguments is compute intensive. Also, an
object oriented approach would lead to a more modular implementation, with minimal re-
querying of agent metadata that could be stored in member variables.

4.4.2 Set Transforms and Condition Tests' Implementation
Set Transforms and Condition Tests are very query intensive, and thus implemented as
Adenine methods; Adenine provides a compact means of expressing RDF queries and
accessing the store, thereby easing development effort. Below, we describe the
implementation of each class of set transforms.

The set transforms corresponding to set operations take two arguments, each argument
being a set transform instance (closure). The closures are executed, and the results are
then combined using the corresponding set operation, and returned.

Query set transforms consist of 3 sets of transforms, depending on whether the return
values are in the subject, predicate or object position. As described earlier, all query set

67

transforms take 2 arguments, one corresponding to the value to be used to fix one of the
variables in the triple being queried, and the other corresponding to the condition closure
that the values corresponding to the non-returned variable will be bound to, and tested
against.

The dichotomy of resources and literals in RDF requires additional implementations of
queries since conditions are type sensitive. Thus, once a set transform has obtained a set
of pairs by querying with just the fixed variable, it must remove all those tuples that have
values corresponding to the conditioned variable that do not match the condition test's
argument type. For example, if the query is to return all subjects having predicate : f oo
and literals matching "bar", then all tuples (?x ?y) that result from the query ?x : f oo ?y
must be processed to remove those where ?y corresponds to a resource. A similar case
exists, if the fixed variable happens to be in the object position, rather than the predicate
position. In this case, query transforms are duplicated because the UI needs to construct
appropriate widgets based on the range of the parameters being collected. However, the
underlying implementation of the query is reused for both the literal and resource version.

As a result of the inflation of primitives, 4 primitives each are needed for queries
returning subjects and predicates. Two primitives are needed for queries returning objects
(channels can only consist of resources, and thus only resources in the object position are
returned).

The current set of conditions tests that have been implemented are binary relational
conditions, e.g. equal, greater, etc. All conditions have one free variable that is supplied
by the query that is performed; users supply the rest of the arguments. Condition tests are
performed by iterating through the values in the 2-tuple and binding the appropriate
member to the appropriate argument in the condition test closure. The condition test is
then invoked, which then returns a Boolean value corresponding to whether or not the
condition was satisfied.

The duplication problem resulting from the resource/literal dichotomy is repeated in the
case of condition tests; some conditions such as equality are duplicated since appropriate
UI elements need to be constructed to solicit appropriate values from the user. However,
even when soliciting just literal arguments from users, additional types within literals
(e.g., integer, string, and double) require further duplication of condition tests. A
language that supports various types (e.g., object, double, integer, string, etc.) on top of
the native RDF would be really useful here since these operator could then be overloaded
at the language level, and all these implementations that inflate, can collapse to a single
one.

4.4.3 Channel Manager Implementation
The UI development for the Channel Manager was also done in Adenine since it provides
the Slide ontology for creating GUIs in a simple, declarative fashion, and also because it
provides facilities for direct binding of UI elements to data, to create a live and
responsive UI using data sources.

68

Using the View Architecture in Haystack, we have implemented two major views for
Channels that allow us to create the channel manager. The first view
(icm: ChannelInteractiveview) allows users to interact with the channel itself, to edit
its properties. The second view, (icm: ChannelInteractivecontentview) allows users

to work with the contents of the channel, i.e., the elements that have been computed to be
channel members. This view uses a collection view to show the collection of items
corresponding to the channel. Finally, one additional view part that overrides the default
title view part has been implemented to allow showing a channel's enabled status.

Fundamentally, the channel manager is implemented by browsing to a channel
("Channel's Channel") that maintains the list of all channels, and using the view part
class that implements the icm: ChannelInteractiveContentview. The other view of the

channel is then used in the preview pane, to allow users to edit the channel that has been
selected from the collection above.

We implemented several context menu and drag and drop operations that aggregate
functionality which together allows the channel manager to behave as the central console
for working with channels (hence the name). These operations are implemented as
appropriately annotated Adenine methods.

The context menu operations that are available from a channel include the ability to
toggle the channel's active status, copying the channel and deleting the channel from the
store. The ability to create a channel is available by invoking the context menu on the
collection of channels, using the standard Haystack mechanism to add items to a
collection. Note however, since the collection underlying the channel manager is a
channel itself, items that are not channels will be removed the next time the Channel's
Channel is updated.

The view part that implements the icm: channelInteractiveview employs standard

slide widgets for edit boxes and check boxes. It also embeds view containers for other
resource properties, e.g., the target collection, set transforms instances and condition test
closures. Custom views have been implemented for the latter two types of entities. In
implementing these two views, additional views for their arguments are also
implemented. Set transforms and condition leverage the view architecture in Haystack to
select the correct argument view part: a resource argument embeds a view container
showing the title of the resource, whereas a literal argument shows an edit box. A number
of utility UI components were implemented to selectively show/hide portions of
arguments (ui/utility.ad): if the argument is vectorized, the underlying
channel: vectorSource is shown, otherwise the channel: argumentValue is shown.

Drag and drop operations support various capabilities: dragging entities as values for
resource arguments, dragging a set transform or condition test (obtained from the
corresponding channels - see below) onto a set transform instance or condition test
closure to change the underlying target operation and re-initialize appropriate arguments.
Finally, although a user can drag a collection to be specified as the new target collection
for the channel, he/she should never have to do so (it is only provided for completeness).

69

As mentioned earlier, all items created in the course of user interaction, e.g., channels, set
transform instances, and condition tests are initialized with properties set to default
values. This is done by implementing appropriate constructors for each of the types of
items, as well as other information objects they depend upon (e.g., arguments.). The
Haystack infrastructure has been augmented by adding a method
util: createDefaultEntity that creates an item of a particular type by calling a
constructor for that type, annotated with the construct:def aultconstructor property
set to true. Thus, we bypass the current Haystack creation mechanism that simply
annotates a resource with a type, title, creator and date, without initializing it with
appropriate property values. Resource properties of objects are constructed in a similar
manner, and fall back on the Haystack default construction mechanism if a default
constructor does not exist for items of the type expected by the property. Similarly,
util: createDef aultLiteral is invoked to create default literal values of particular
types, e.g., string, double, boolean, etc. Like the constructors, copy constructor and
destructor methods have also been implemented to support the corresponding operations.

We have declared a number of channels that appear by default when Haystack is started
consisting of entities of particular types. These channels can be used for constructing
other channels and include collections, classes, properties, set transforms and condition
tests. The hope is that users will create several instances of channel viewer tools in the
right pane, and drag these channels there for ready access when constructing a new
channel.

4.4.4 Supporting Tools' Implementation
The implementation of the tools supporting the Channel Manager (Channel Viewer Tool,
Set Transform Instance Viewer Tool and Ontology Browser) is discussed in this section.

Both the viewer tools were implemented by creating a simple ontology for the tools,
instantiating items of those types (using the construction mechanism discussed above)
and adding them to the start pane collection (right hand pane). Since items in the right
pane are displayed using the ozone:AppletViewPart view part class, appropriate view
parts were implemented and annotated as being of type ozone:AppletViewPart.

The channel viewer tool has two properties, icm: channel (points to the channel being
viewed) and icm: channelItemFocus (points to the currently selected item in the
channel's collection). A drag and drop operation is implemented that replaces the
underlying channel with a newly specified channel. The channel's target collection is
displayed in the list view in the tool, followed by a description of the currently selected
item in the list. Although the haystack collection views could be used to visualize the
items in the channel, they would either provide too much power (e.g., a list of items with
preview pane), or not enough (e.g., a list of items that cannot be selected or scrolled if the
UI space available is limited). Thus, the simplest approach was to directly show the
members of the collection. Defining another collection view did not make sense, as the
semantics of the tool (just show a description of the selected item) would customize the

70

implementation such that the new view for collections would probably not be used
anywhere else.

The set transform instance viewer tool also has two properties,
channel: setTransformInstance (points to the set transform instance whose results are
being viewed), icm: setTransformInstanceResults (points to a hs: Collection

containing the results of invoking the set transform instance). The collection pointed to
by the second predicate is local to the tool instance. A drag and drop operation allows
specifying a new set transform instance, whose description is copied, and pointed to by
the channel: setTransformInstance predicate. Clicking on the "Update" button,
invokes an adenine method that executes the set transform instance, and updates the
collection pointed to by icm:setTransformInstanceResults. This collection is
displayed in the list view on the tool. A haystack collection view was not reused for
reasons similar to those above.

The Ontology Browser is implemented as a slide in Adenine (ui/OntologyBrowser.ad). It
consists of two main portions, the top set of selector panes and the preview pane. The
left selector pane displaying a list of ontologies has a datasource that tracks which
element is currently selected. This list of classes and properties in the right selector pane
is queried based on the ontology specified by this datasource. The preview pane is also
split into two regions. The top region shows summary information about the currently
selected ontology (using the datasource specified above), and the bottom pane shows
information about the class or property selected in the right selector pane (also tracked by
a datasource). Appropriate view parts were implemented to show summary information
for ontologies, as well as detailed information on classes and properties.

4.5 Conclusion
In this chapter we have tackled the problem of weak (or lack of) control over content
specification (regardless of domain). We have accomplished this by building a set of
tools and adding to the Haystack infrastructure in a way that lets users express and
manipulate information of interest. The notion of channels allows users to work with a
unit of content in closed form, without listing the actual information entities. A set of
primitives allow users great flexibility in building channels, and thus in controlling which
subset of information entities in the store are of interest. Furthermore, an agent that
updates channels, allows the content to always remain current. Finally, a set of UI tools
allows users to build channels and view them. Together with the ability to identify single
items of interest by explicitly specifying them, we now have a means for users to specify
content in various different forms: single items vs. collections, and explicitly vs.
implicitly.

71

Chapter 5 Information Spaces
In the previous chapter, we discussed the notion of channels as a unit of content that the
user can specify, and tools that support it in Haystack. Users can now specify information
of interest as either single items or collection both explicitly and implicitly. Next, we
require a means for users to be able to aggregate arbitrary content onto a single screen to
define an information space - a console of related information and tools pertinent to a
particular task. This chapter is devoted to understanding the infrastructure and tools
added to Haystack to address this need.

5.1 Basic Capabilities
Before discussing the detailed design and implementation of information spaces in
Haystack, we take a brief look at some of the basic capabilities such spaces should
support:

" Information Aggregation - The information space should allow aggregation of
various bits of information by allowing users to position them and allocate
appropriate space in various parts of the information space.

" Customize Information Space - Users should be able to customize not just what
is shown, and where it is shown, but also how it is shown, e.g. cosmetic attributes
such as color, borders, etc., as well the views used for information entities. Also,
users should be able to collect frequently used operations for tasks in information
spaces.

" Design and Usage Mode - An information space should support two modes: a
design mode that lets users customize the information space, and a usage mode
that allows them to work with it. Furthermore, users should be able to easily
switch modes, e.g., switching from usage mode to design mode to change some
customization attribute, and then back to usage mode.

" Collection of Information Spaces - Users should be able to create and manage a
collection of information spaces that correspond to their various tasks.

72

Furthermore, they should be able to copy and modify existing spaces to quickly
create new ones.

* Persistent Information Spaces - Users should be able to return to information
spaces and see updated information.

5.2 Design
Support for information spaces in Haystack can be thought of as consisting of two
primary components: information spaces and their views, and an information spaces
manager. We discuss each in turn below.

5.2.1 Information Space
Any given information space in Haystack is supported by a set of interrelated objects,
their ontologies and their associated views. We first briefly consider the underlying
ontologies to see how they support the views. Then, we discuss the two views of
information spaces (corresponding to design mode and usage mode) and their related
design decisions.

5.2.1.1 Underlying Ontologies
Three ontologies underlie information spaces: Information Space Ontology, Two
Dimensional Layout Ontology and Information Portal Ontology.

The Information Space Ontology declares a class named is: Informationspace, used to
specify the class type of information spaces. In addition to the title and description
associated with most entities in Haystack, the class has one other property:
is: informationSpaceLayout, which points to an entity with type
tdl: TwoDimensionalLayout, which captures the two dimensional layout of information
portals in the space. An information space can have a collection of information portals
laid out in some fashion, each one showing a particular entity or channel of information.

The tdl: TwoDimensionalLayout class is declared in the Two Dimensional Layout
Ontology and recursively captures the layout of items in two dimensions, by splitting the
space available to it among its children (also of type tdl: TwoDimensionalLayout). It
has three main properties: tdl: children, tdl:orientation, tdl:cellData. The
tdl: children property specifies a list of children of type tdl: TwoDimensionalLayout.

The tdl: orientation property specifies whether the children are to be grouped into
rows, or columns. A collection of nested layout entities yields a tree of items of type
tdl: TwoDimensionalLayout. Only the leaf nodes of this tree are rendered as "cells" for
the user. The remaining nodes are used to determine where to render the leaf nodes in the
corresponding sub-tree. Finally, tdl: cellData specifies the content of the cells, i.e. the
data that is to be laid out and managed by the leaf nodes. The cell data in the case of
information spaces are information portals having type ip: InformationPortal. Thus,
all non-leaf nodes have children, and a corresponding orientation. All leaf nodes have an
associated entity as the cell data, and no children.

The two dimensional layout ontology was created to support a reusable, flexible layout
scheme that would not force the user into two dimensional grid, with a fixed set of rows

73

and columns. Thus, each node in the tree above can change the orientation for its
children, yielding maximum flexibility in layout of cells.

An information portal has a title property, in addition to the following three properties:
ip: informationPortalContentSpecification,

ip: informationPortalPresentationSpeci fication and
ip: informationPortalManipulationSpeci f ication, pointing to entities of type
ip: InformationPortalContentSpecification,

ip: InformationPortalPresentationSpeci f ication and
ip: InformationPortalManipulationSpecification respectively .(URIs are case
sensitive, and thus the same string in different cases may represent both the property
name, as well as the class name). These classes capture the content, presentation and
manipulation preferences of users. The class
ip: InformationPortalContentSpecification has two properties
(ip: underlyingContent, ip: showUnderlyingChannelContent), which capture the

underlying content, and if relevant, whether or not the channel's contents are to be
shown. The class ip:InformationPortalPresentationSpecification has four
properties, ip: showBorder, ip: showTitle, ip: channelItemsScrollable,

ip:viewPartClassToUse. The first two properties allow the user to select whether or not
the portal is to be rendered with a border or title. The third property allows the user to
specify whether the list of items of a channel (if shown) should be scrollable. The user
may specify the view to use in displaying the underlying entity or all the entities in the
channel's collection via the ip:viewPartClassToUse property. Finally, the
ip: InformationPortalManipulationSpecification has a single property,
ip: availableoperations that points to a list of operations the user would like to
associate, and have readily available, with the information portal.

5.2.1.2 Information Space Designer View
Information spaces can be designed by users via an interactive designer view (shown in
Figure 10) that allows users to customize various aspects of the space. A new space is
initialized with a single information portal.

The designer consists of two main sections: the top pane that allows editing the title, and
description, and the bottom pane, that allows users to control what will be available when
they are working with the information space.

The bottom pane consists of an information portal. An information portal allows users to
view some information entity, or collection of entities specified using a channel. The left
hand portion of the portal allows users to customize various properties of the portal. It
allows users to enter the title for the information portal. Below the title, the user may
customize the portal using three sub-panes corresponding to the content, presentation and
manipulation preferences for the portal. The right hand portion of the portal allows users
to further split the space occupied by the portal into additional portals using the various
buttons.

74

The content portion of the portal pane allows users to specify which entity is to be shown
in that portal (underlying entity) using a drag and drop operation. Since any item can be
dragged to the content sub-pane, including channels, users must disambiguate whether
the channel itself is to be viewed, or the members that comprise its contents. This is
accomplished by checking the "Show Channel Content" check box appropriately, which
only becomes available if the underlying entity is a Channel.

The Presentation sub-pane allows users to specify how the portal, as well as its contents,
should look. Thus, using the appropriate check boxes, users may specify whether the
portal is to show a border and title when the user is in usage mode. The remaining
presentation attributes correspond to the underlying entity for the portal, and are
predicated on the type of the content being shown.

Name Description

Pingle Portal No Description A

Name: Split Into Rows
n Information Portal

Split Into Col.

Content Presentation Manipulation Delete Cell

Underlying Information Entity: Z Show Border Available Operations
Properties (Enabled) E Show Title Manage Channels
o Show Channel Content n Channel Items Scrollable Manage Information Spaces

View Part Class to Use for
Channel Items: InteractiveViev

A test view part class
BodyViewPart
Custom Contact View
Friends View
HierarchicalViewPart
IconViewPart
InactiveInlineViewPart
InactiveThumbnailViewPart
InactiveThumbnailViewPart
LineSummaryViewPart
Mr-driAPlavPerTfrnVirewPArt Vj

Figure 10 Screenshot of Information Space Designer

If it is the case that the members of a channel are being shown (i.e., the user has specified
a channel as the underlying information entity, and checked the "Show Channel
Contents"), then the "Channel Items Scrollable" check box becomes available and allows
users to specify that they want a layout for the channel collection that has a scrollbar.
(Haystack also allows a layout showing a stacked set of items, which must be expanded

75

to show additional items.) Users may specify which view to use for the items in the
channel collection being displayed by the portal. This can be specified by dragging and
dropping a view from the list of views that Haystack deems are applicable. Since the
channel collection may be some (future unknown) heterogeneous mix of elements, the
list of views only consists of views available for dami: Thing.

If the portal is not showing the elements of a channel, then the "Channel Items
Scrollable" check box is not available. In this case, since the type of the underlying entity
is known, the list of views from which the user may select, consists of a union of all
views available for daml: Thing, as well as the views available for items having the same
type as the underlying entity.

The last sub-pane available to the user for customizing the portal allows her the ability to
specify a collection of operations she believes are useful to have handy when working
with the information in the portal. In Haystack, all operations have URIs and are first
class entities. That is, they are treated the same way as all other entities having a URI;
they dragged into the collection of relevant operations, just as any item in Haystack.

The right hand portion of the portal pane allows users to click on buttons labeled "Split
into Rows", "Split into Columns" and "Delete Cell" to appropriately segment the space
into additional portals, or to remove portals. Any previous specifications for the portal
(e.g., underlying entity, presentation preferences, etc.) are lost during this operation. The
root portal (the single portal taking up the entire information space real estate) cannot be
deleted.

Several salient features of the current design are noteworthy. We expect users will create
information spaces containing several portals. One way users may reduce the resulting
clutter in the interface is to use the Haystack navigate facility, to navigate to the
underlying portal. All items that are navigated to are shown in the main Haystack pane.
Thus, the portal gets allocated the maximum amount of space allowed by Haystack. A
less drastic measure allows users to resize portals, or their sub-panes to focus on areas of
interest. In the process, other portals or sub-panes reduce their size appropriately to cede
space to the portion of the UI the user is interested in.

Since users are designing an information space, it would be useful for them to be able to
see how the final space looks and behaves when being used. This can be accomplished
by selecting the "Information Space Usage View" (see section 5.2.1.3) from the pull
down menu labeled "Change view" located below the information space title.

Another important feature of the current information space design allows users to
leverage a built-in capability in Haystack to specialize operations in order to customize
the manipulation capabilities of an information portal. In general, operations that the user
may invoke, may solicit him for values for arguments in order to carry it out (e.g., the
"send e-mail" operation requires a recipient and a message at the very least). Currying is
a technique in Haystack that allows users to specify some or all of the arguments, and
save the resulting partially (or completely) specified operation closure as a new operation

76

that, when invoked, will ask the user for any remaining argument values. Thus, a user
may partially specify an operation that he feels will always require the same values for
some of the arguments, and save it as a new operation. For example, the user may
specify that the recipient for the "send e-mail" operation should always be "David
Karger," and save this partial specification as a new "mail to David" operation. Thus,
when the new operation is invoked, it will only ask the user for the body of the message,
and always send the message to "David Karger." This operation, like all other operations,
can then be associated with a particular information portal, for which the previously
specified arguments make sense (e.g., in customizing a software bug tracking portal, an
operation known as "notify the project manager" may be associated with the portal
showing the bugs, which will always send a message to "David Karger"). Thus, the user
may customize the manipulation capabilities of a portal by not just specifying which
operations should be available in a particular portal, but also by pre-initializing some of
its arguments with values corresponding to what makes sense in the context of the portal
or information space being designed.

Several important design decisions were made in constructing the information space
designer, and are discussed below.

Perhaps the most important design decision that affected the construction of information
spaces by users was how to allow users to allocate space to portals. Clearly, several
different methods of allocating space are possible. For example, automated layout of the
information could be done using various heuristics as well as preferences. Such a
mechanism could take into account not just the content to be shown, but also its view,
and then algorithmically develop an optimal allocation, based on the size of the views for
each of the information entities. However, such an approach would not be in the spirit of
allowing users control over their information space. Furthermore, we argue, that
"information visualization ergonomics", i.e., the set of decisions that a user makes for
how to layout information based on frequency of use, order of use, relationship to each
other, etc. would suffer. As a result, following in the footsteps of Delaunaymm and
Yahoo!, we chose to allow users to explicitly specify the layout of information [15,17].

Even if information layout is explicitly specified by users, various possibilities exist for
how users allocate the space. For example, users may associate information entities with
various arbitrary places on the underlying canvas, much as a person pins something to a
bulletin board. This approach has the benefit of allowing users to move the items' relative
to each other, e.g., move one above the other, quite simply, without having to re-design
the space. However, this alternative has some drawbacks: space may be wasted between
items pinned to the board, and users must constantly resize or move elements to see their
contents, and possibly resize/move others to make space. Also, a bulletin board metaphor
makes more sense when a user needs to juxtapose information; when the relationship
between information is more important than the information itself.

Given our understanding of the portal creation task from Yahoo!, and the ideas espoused
by the QuickSpace project, it seemed that the goal of user controlled content layout was
to allow users access to a canvas that is appropriately segmented and completely devoted

77

to showing the content of interest, with the user being able to specify the location of
items, and possibly their size directly or indirectly, e.g. by placing it in a narrow column
in the Yahoo! portal as opposed to the wide column [12, 15]. Such an approach allowed
users to allocate maximal space to the content of interest. Furthermore, it allowed the
space to adapt to a local change: if a user increases the amount of space for one item, the
space for other items automatically decreased without overlapping - an important feature
desired by users, as demonstrated by QuickSpace.

We hypothesized that once users have worked on a task several times, they have a good
understanding of what is needed, and what the optimal layout of information is, that
maximizes their efficiency. Thus, changes to the layout of an information space should be
rare, and hence the ability to move portals relative to each other will not be important in
the long run. The two properties above should be more important. The other important
consideration in our design was simplicity of creation of a new information space. As in
various other parts of our implementation, we chose to make things work immediately,
without requiring significant user configuration. In this case, users should quickly be able
to segment the entire space, rather than be forced to position and size an information
portal. Consequently, we designed our information spaces to capture the desirable
features of Yahoo! and QuickSpace, both in the Design view as well as Usage view.

The decision to only allow the user to split cells into two rows or columns was another
important design decision. Clearly, the underlying layout ontology could easily support
more powerful layouts, based on an arbitrary number of children, rather than the two
children semantics of the current splitting operations. However, we felt it was important
to keep the operation of segmenting the usable space as simple and efficient ("one-click")
as possible. Since portals could be resized to create the look of a non-binary tree driven
layout, nothing was lost in terms of capability in segmenting the space.

Similar to other tools, another design decision was to only show the user those
customization tools that are relevant based on his/her current settings. Thus, the UI is
dynamic in that it shows and hides various UI components based on whether or not they
make sense in the current context, e.g., the "Show Channel Content" check box is not
visible if the underlying entity for the portal is not a channel.

One of the design decisions was made based partially on constraints due to current means
of development of Uls in Haystack, and partially on future functionality we would like to
support. The "Show Channel Content" check box is not strictly necessary. It is quite
possible to specify that the elements of a channel are to be shown by specifying an
appropriate view for the channel (e.g., icm: channelInteractivecontentview) that
lists the elements of the channel. If a preview pane that accompanies this view is not
desired, in favor of a simple list of items in the channel, then a new view for channels
could be made available to the user. However, use of views for channels in this case
creates two problems, and thus necessitates the check box. First, having a view for the
channel, that showed the items in the channel, would deprive the user of the ability to
specify how to show the individual items in the channel, since that would be statically
specified by the developer of the view. Second, in the future, we would like to be able to

78

support "wiring" of the user interface, i.e. the ability to allow parts of the user interface to
control others, e.g. if one item in a collection is selected, a more detailed view of it
should appear in a different portion of the information space. Such functionality would
require the ability to expose for programmatic and user access, which item is currently
selected in the collection. Due to the way the view architecture has been designed in
Haystack, currently it is not possible to expose such properties of the view, i.e., a view
for a channel showing its members would not be able to expose the currently selected
item. Such functionality can only be exposed by directly using UI widgets to access the
collection, without a level of indirection imposed by a view that maintains such a
collection. Thus, if the check box is set to true, it allows the information space framework
to know to use the UL widget for showing collections directly, so that it's "currently
selected item" property can be made available in the future.

5.2.1.3 Information Space Usage View
The Information Space Usage View is another view of an information space, and is
utilized to let users actually work with the information in the information space, rather
then specify their preferences. Figure 11 and Figure 12 depict both the design view and a
usage view of an information space.

-___-_ ----- -....

Manipulation
Availabke Operations

Content
Undying Inormation
EnIty: Pk openies !Z.ie)d'

P19x -iyne OorM Cert

Content Presentation Manipulation
Entity:

Vi Pm.t Ofta to tj o

iner-"Ts":t rere

Figure 11 Design view of the "My Info Space" Information Space

79

Content
UEfrtyInfomation
Entity: G sse (Erzbied)

Presentation
02U5.d hder

V w Pat EWSs to Use or
Underlyiftg Ent"t: 1:4erMd

A tesz view paO as

Manipulation
Avalable Operaos

vwpr, s r

Presentation
[a Show forder

Schanne ftems SaO&Vab
Vu-- Part Lasl to List f(r
(1i*Ane IRen.; Lr esoi-

0 -,,1i Z;, ..

v v t- , i JeP

A -5,O.W.Ai Ap~

F-Mt into cu.--.

No undeying entit y specif"..

:PActsve

..-... .. - --- -- -.-- -

Figure 12 Usage view of the "My Info Space" Information Space

The title of the information space is displayed at the top. As can be seen, the layout of
information in the usage view mimics that of the design view. Each portal is rendered
according to the specifications in the design view, with respect to showing borders, titles,
views, operations, etc. (If no underlying entity is specified, a default pane is shown that
informs the user of missing information.) Each portal consists of three main parts: the
title bar, the content pane, and the operations pane. The title bar shows the title of the
portal as specified by the user, if it is to be displayed. The space below the title bar is split
into a left and right pane. The left pane shows the contents of the portal according to the
view that was specified in the design mode. The right pane shows the operations the user
chose to make accessible.

As in the design mode, users can resize the various portals as needed. The entire user
interface of Haystack is constructed by nesting views of entities, and the information
presented in the information portals is no exception. Hence, in any information portal,
users can manipulate information as they would in any other part of Haystack; users have
access to context menus, and drag and drop capabilities, in addition to the affordances
provided by various UI widgets, e.g. text fields, check boxes, etc. Furthermore, users can
invoke the operations that they chose to make available in certain portals, by clicking on
the appropriate buttons.

80

esrac(N rroperues in zsvsie.
e. Aptca k(N, descrntr. vte.

- e A4tAv tS (NAo descptio 3a4 .

Ads(NA dANA

Aderw, Modm ',No eszrpk.-n sav3aW.
-. Ad.n'Ae cONK JlNAA, s"tN" aeaiwbl.)

A lbm arget (?J descrjn Xn avaOe ,
,1 Aat renvw(N desopt"o a,4(Abl.)

k nr"eicP.t kNo oescripvaoeela
SAnsw (No descriNNA " a a"iAe.i
A:Agme~ URI :No dIIVWoo& *!bit

Sk mntVak.;e f t06 prcoper"ty ,s w be used, ther. th.e brgumet vectorcawll flag trr-s o be set t u
Asa, s (No deiptiAv A,)

SAss~xated ike. kA, ittm socied wiht- r-;o rld-
-. AAAANed opeaA'NA (NA scA('fn A.AAA.)

As ated opertn i(1, soiptx. waA'tie.)
^ Aftachment (NA des, poa,. ,,abl.'

(No A(nA (N d .crti a" aW .'

(No de vle.)

SAutha c Pemter (Ar, erCiy pwirnaly a esvonsbt f or d.in th on',ef-
Aa" jlajjor.s (-:his ,r eri abows spt-cfing a cclioir- of ckrtosjprdnsrts.)

asAaibeopearat (N, descr,,oor avafable)
Eackgrud Imame (No de ,Iripwl avalt%)

(A d(N.'A crAN' (. (N''AvAlAthA A.)5 Hsv.L-s to OmrTrt (W. dsrAIA*,

--C5v hInp trio descrmpc &aatka
/ssCar Coretd Y-- (ha, d sc kbor vibl.

a ef Dat.3 (rnly specdir for "a reik)
NC-amnl (. deso.Aption A iANN .

v'. Cann . (No d nN NA AAAppN.
/Ct !,- (W-d desm rk-o -vaInk..)
SChn * (No dcsrurM.". avamlaw.

,I- 1-tnn-t (NodCascrptb avadte.)
/wChmrnne Iter- F- oi (Ntdcripwio dve4.u

/xaid(Nk. d crroinadge.)
SC4idr- (Each oftme thldke- in this PA,;- be of ype rv;"- Da -c d~yi. ts p:werty i6 g-'chj, Lht
"r*rMke must the be osw oe "clr e'. If il z5 -~t pedried, the". the " wtatMo Mst ot"nf.

Uscidr-r (A irof Xeno dhetstat cpce the conten-. 0 this res-wce.)
CNa ider- (No desrtbcn vle.

/--kt (No descrton. aalaoi.)
W- Gas :dtviw (No description vo a.
vsCas~d pnet awpec Ijo esrdnavailabi-)

One particular design decision made in the development of the usage view for
information spaces and portals was the use of buttons in the right pane of a portal, to
show the operations the user had selected to be available in that context. It could be
argued that, in keeping with the Haystack philosophy of context sensitive operations,
these operations should have been added to the context menu of the items to which they
apply, perhaps in exclusion to any other operations.

We argue that such an approach would be detrimental to the user. Operations on context
menus are two or more clicks away. The user must first invoke the context menu, select
the right context (since there may be multiple underlying entities) and then navigate one
or more sub-menus before being able to access operations. This is fundamentally
antithetical to the reason why users want to co-locate relevant operations in the first
place: convenience of access. We argue that they should be "projected" onto the user by
being made visible in a prominent manner, in much the same way that MS-Word
"projects" frequently used operations via toolbars, or by hiding other operations from
menus.

Another design decision that was made in developing the information space usage view
was to arbitrarily select some styles for the information portal itself, e.g., a border width
of 1, a title bar at the top having a fixed color and font style, etc. One reason for this was
due to the fact, that Haystack currently implements graphics styles as a bag of properties,
inherited by the children of a view, as opposed to properties of objects such as text, lines,
etc. in the object-oriented sense. In fact, Haystack has no notion of objects of type text or
line that have properties of color, font or thickness. Thus, the graphics styles cannot
easily be made uniformly available without significant custom coding to collect these
properties, and use them appropriately for rendering. Also, were they to be made
available for portals, they would constitute a special case since the parents and
grandparents of portals would also need to support this capability for uniformity, as
would all views in Haystack. In order to support the functionality above, the UI rendering
engine would need to support a notion of interoperating objects with particular views, so
that users could specify the various properties of the objects. Alternatively, the user
interface engine would need to support a rendering pipeline that takes an object and
renders it with user-specified optional "decorations", e.g., borders, titles, etc. Neither
possibility is currently supported by the Haystack UI rendering engine.

5.2.2 Information Spaces Manager
The Information Spaces Manager (shown below) is designed in the same manner as the
Channel Manager, and supports similar functionality for working with all information
spaces from a single user interface.

81

Type

Information Soace

Inforrration SpDate

Title Y

My info Space

Date

No iterms in list

Sinale Portal No iters in list

El

Name

ingle Portal

Descriptionr o Description

Figure 13 Screenshot of Information Spaces Manager

An Information Spaces Channel is defined, and is viewed using the
icm:ChannellnteractiveContentView view for channels, which simply wraps a collection
view that is showing the current collection that underlies the channel. Thus, a collection
of information spaces are available, and can be previewed and interacted with using
either the design or usage view. Similar to the Channel Manager, various operations are
made available for information spaces via context menus. These operations include the
ability to add information spaces using the "Add new item" operation from the collection
context. Also, any given information space can be copied or deleted by right clicking on
it, and selecting the appropriate operation from the context menu.

5.3 Implementation
In this section, we discuss the implementation of both the design and usage information
space views. We forego discussing the Information Spaces Manager implementation as it

82

Split Into Rows

I Spli Inty CL.~
Delete Cel

Name:
n Information Portal

Content Presentation Manipulation
Underlying Information Entity: E Show Border Available Operations
Properties (Enabled) S Thow Tile Manage Channels
2 Show Channel Content Channel Items Scrollable Manage Information Spaces

View Part Class to Use for Channel
Items: InteractiveViewPart

A test view part class
BodyViewPart
Custom Contact View
Friends View
HierarchicaViewPart
IconViemPart
InactivelnhineViewPart
InactiveThumbnailViewPart

is the same as the Channel Manager implementation. The relevant files consist of three
pairs of files corresponding to the three ontologies, and their views. These files are,
schemata/InformationSpace.ad, ui/InformationSpace.ad,
schemata/TwoDimensionalLayout.ad, ui/TwoDimensionalLayoutPart.ad,
schemata/InformationPortal.ad, ui/InformationPortal.ad.

Both the design and usage views for information spaces are implemented in a similar
fashion. In both views, the portals in the space are laid out in two dimensions, by
embedding a view (TwoDimensionalLayoutView) for the tdl:TwoDimensionalLayout
entity captured by the is:informationSpaceLayout predicate. Similar to information
spaces, information portals also implement two views, one for design mode, and one for
usage mode. The appropriate view to use for portals when laying them out is specified by
the information space by registering a context property for use by the
TwoDimensionalLayoutView.

The TwoDimensionalLayoutView serves as the layout engine and deserves further
elucidation. Given an entity of type tdl:TwoDimensionalLayout, it checks to see if the
entity has any children. If it has children, the entity is rendered by laying out its children
either in rows or columns, as specified by the orientation. If it does not have any children
(i.e., is a leaf node), the view to be used to render the cell is determined by the context
property that was registered by the information space. This view can either be a
TwoDimensionalLayoutCellEditorView or TwoDimensionalLayoutCellUsageView.

The former view consists of two portions: a left hand pane showing the cell data with an
editor view, and a right hand pane that allows users to edit the layout tree, by providing
buttons that allow further splitting or deleting the cell. The cell data is embedded in a
view container using a fixed view type that allows editing preferences for the information
to be laid out in two dimensions, i.e., it requires the cell data to implement an
editor/designer view. (In the discussion of the information space designer earlier, we
stated that each portal consisted of the title, and three sub-panes, as well as the buttons
for splitting and deleting the portal for simplicity of description; in reality, the buttons are
provided by the view for the underlying leaf node of the layout tree, which further
embeds the information portal in the left hand pane.)

The TwoDimensionalLayoutCellUsageView simply embeds the cell data in a view
container using a view that simply shows the information, as it is to be presented, i.e., it
requires the cell data to implement a usage view.

Since both a designer and usage view are available for them, information portals can be
rendered appropriately by the two dimensional layout manager, as dictated by whether
the information space hosting the layout manager is being shown in design or usage view.

We briefly discuss the implementation of the design view for information portals (since
the usage view is driven by the view the user chooses for the underlying entity). Simply,
the design view for an information portal, embeds three views corresponding to the
content, presentation and manipulation specifications (see ontologies) associated with the

83

portal. In fact, the ontological separation of information portal properties into these three
categories was done not just to better organize the interface, but also because drag and
drop operations in Haystack are context sensitive. Since any item can be specified as the
underlying entity for an information portal, drag and drop directly onto an information
portal entity would have prevented use of drag and drop for other user operations, such as
specifying the desired view, or operations of interest. Thus, the use of three sets of
properties avoided this problem since they could be declared as separate drop targets,
rather than the single parent information portal. The content and presentation sub-panes
employ some reusable utility code for showing and hiding user interface components
based on a condition specified by a data source.

5.4 Conclusion
In this chapter, we have addressed the problem of giving users the ability to build a single
task based interface. As a result, we have provided tools in Haystack that users can
employ to segment a canvas into multiple portals that aggregate relevant information
(single entities or channels) for the task. Furthermore, users can also specify how to view
the information in the task interface by reusing views in their own contexts. Finally, users
may specify or customize operations that are relevant to the task such that they are
available in a convenient manner. Thus, users attain the ability to create a task interface
simply by aggregating the relevant resources in a personally useful manner.

84

Chapter 6 User Creatable Views
In the previous chapter, we presented methods for users to control the content, the views
to display the content, as well as how the content was laid out. Even with this significant
control over the presentation of information, a critical component was missing: users
were required to re-use the views already created by developers. In customizing an
interface for a task, much can be gained in user efficiency by allowing him/her to directly
tailor the view of the information itself (rather than select from a set of views) to suit
personal preferences. In this chapter, we discuss this idea further, present a design pattern
to support it in various domains within Haystack, and discuss a simple capability we
developed to customize views of all entities, regardless of domain.

6.1 View Designers
When working with information, it is critical that users be able to customize views not
just in terms of cosmetic properties (e.g., color and font) or pre-determined/fixed,
domain-specific properties (e.g., sorted e-mails by sender) deemed to be useful by the
developer, but also by controlling which set of properties are accessible and how they can
be visualized and manipulated in conformance with the semantics of the underlying
information entity.

Not everyone is interested in all facets of the information being used. For example, in the
case of contact information for friends, even though the user may have information on the
job title and place of work of a friend, she may not be interested in seeing it listed in her
address book; she may only want the phone number and e-mail address listed. Thus, the
user may want to specify a particular facet of the underlying information to work with.
This idea can be employed, for example, to keep information synchronized, where
different parties view and/or modify different facets of the information in a manner
similar to database views, e.g., the software project manager can update just the skill set
of her team member, while the HR department may focus just on keeping the team
member's employment status updated.

85

Given the same information, not everyone manipulates it or visualizes it in the same way
either. For example, different employees in an enterprise may access the same
information, but only one may have the ability to modify it. Similarly, a person in the
accounting department may be interested in the spread sheet view of some sales figures,
whereas a higher level executive would prefer a chart based on this data.

The ideas regarding fine grained control over information properties and presentation
used in a view of the information are not new. For example, Microsoft Outlook allows
users to select fields of interest for items in the contacts list [9]. In addition, to allowing
the user to select fields, it allows the user to control the visualization by specifying the
order of the fields and font/color preferences for contacts. This could easily be extended
to making certain fields editable vs. read-only.

Similar notions exist in Haystack; Aspects are a means of inspecting an information
entity [21]. One type of aspect (metadata aspect) allows users to view a set of properties,
e.g., "All Properties" aspect, "Standard Properties" aspect, etc. (see Figure 14).

In fact, as Quan points out, the notion of aspects need not be restricted to a subset of
reified properties of the underlying information entity; they can be the result of any
computation on the entity, e.g. the age of the underlying entity based on its date of birth
and the current date, or the size of the underlying collection of items.

Related to the problem of customizing views of information is that of allowing non-
programmers to create user interfaces. Marquise is an example of a tool that allows users
to create user interfaces for graphical editors by "demonstration, without programming."
[30] The Marquise tool "contains knowledge about palettes for creating and specifying
properties of objects, and about operations such as selecting, moving and deleting
objects" and hence constitutes a domain specific (applicable only to designing interfaces
for graphical editors) user interface designing tool. Marquise highlights the notion of
embedding domain knowledge into an interface builder tool, rather than the interface
itself.

In this chapter, we advocate giving users the power to create their own views, using
appropriate view designers that interpret the underlying information using various
semantics, and can expose appropriate primitives for creating views. Semantics can be
leveraged in various ways by view designers to allow creation of powerful views by
users, while preserving valid data. For example, a simple understanding of the properties
the user wishes to view/manipulate would allow the view designer to present appropriate
widgets, e.g. a checkbox for a Boolean property, a slider control for a property having a
fixed continuous range or enumerated values as valid values. Semantics used to interpret
information can also be used to allow designers to correspond to styles of views, e.g. a
list of numerical pairs can be interpreted as coordinates for a curve that is drawn. As a
result, different view designers can make available different types of rendering
preferences, e.g. text font vs. line thickness. Similarly, a list of genetic bases (Adenine,
Guanine, Thymine, Cytosine) can be interpreted appropriately by a designer, and allow

86

the user to specify a preference of whether just the sequence, or its complement is also to
be rendered.

Karun Bakshi

E Person summary

Name: Karun Bakshi

Electronic Karun Bakshi (JXTA)
address:

Home page: jj Karun Bakshi

El Media creations

Edit z|

Edit x

i

El Full name information

.<arun Bakshi

Specify a new English full name Other choices"

El Addresses and phone numbers
No items in list

Specify a new home location Other choices"

B All Properties

El Standard Properties

type:

Name:

Alias:

Contributor:

Author/Creator:

Subject:

Description:

Date:

Resource Type:

Format:

Language:

Relation:

Source:

Coverage:

Rights:

44 Person

Karun Bakshi

None specified; dick here to add

None fpecified; dick here to add

None specified; click here to add

None specified; click here to add

None specified; click here to add

None specihed; click here to add

None specized; click here to add

None specified; click here to add

None specified; click here to add

None specified; click here to add

None specified; click her e to add

None specifed; click here to add

None specihed; click here to add

Edit E
Edit z

Edit 2
Edit z

Edit z

Edit r

Edit z

Edit z

Edit z

Edit x

Edit z

Edit E
Edit x

L .Reverse Properties

Figure 14 Screenshot of Haystack showing various aspects of the entity Karun Bakshi

87

Since Haystack can represent information from arbitrary domains, it should support the
addition of new view designers. As a baseline however, it is important that Haystack
allow users to inspect arbitrary sets of properties of any entity, until a domain specific
designer becomes available. Thus, we developed a simple, generic view designer that
extends the power of metadata aspects in Haystack to users by allowing them to create
views (henceforth referred to as metadata lens views or view parts) that select and view
properties of interest from the underlying entity. Much like Magic Lenses, the user can
specify that the view be used to examine a particular entity; the view then exposes the
specified properties [11]. The only semantics the designer understands are that property
values can be either literals or resources. However, even this simple capability becomes
powerful, when combined with the power to reuse existing views in creating new views.

6.2 Design
The aforementioned user creatable views are designed analogously to information spaces.
They allow users to specify "portals" for properties of the underlying entity, lay them out
in two dimensions and stipulate various preferences for rendering them. Since the user
creates views, he/she must be able to inspect and manipulate them. Similar to information
spaces, the views themselves (and the property portals they embed) support two views: a
designer view that allows users to layout the property portals and specify preferences, and
a usage view that is rendered when the user has selected the view for examining some
entity. Unlike information spaces however, it is not possible to switch from design view
to usage view since the view needs to be applied to some information entity; unlike
information spaces, such an entity is not specified in a fixed manner. (Note, the design
and implementation of the metadata lens view part, and its designer and associated
infrastructure require a thorough understanding of the Haystack view/part architecture
and UI rendering ,which is beyond the scope of this document. Please consult [31] for
further details.)

Finally, like Information Spaces, a "Metadata Lens View Parts Manager" has been
implemented to allow users a convenient interface for creating and managing various
views. We discuss the supporting ontologies for this framework, followed by a discussion
of the user interfaces for the views (designer vs. usage) and the manager.

6.2.1 Underlying Ontologies
As in the case of information spaces, metadata lens views are implemented using three
primary ontologies: Metadata Lens View Part Ontology, Property Lens Ontology and the
Two Dimensional Layout Ontology. We do not discuss the Two Dimensional Layout
Ontology as it has already been covered in the previous chapter.

The mlvp:MetadataLensViewPart class is declared in the Metadata Lens View Part
Ontology, and is a subclass of ozone:ViewPart, i.e. it declares a particular type of view
part. (This class is analogous to the is: Informationspace class.) It is with this type,
that all metadata lens views the user creates are annotated. In addition to supporting the
various properties that views in Haystack support as well as a user-specified title, this
class also has two additional properties: mlvp:metadataLensViewPartLayout, and
mlvp:metadataLensViewPartClass. The first property captures the two dimensional

88

layout of the properties to be displayed. The second property points to a unique view part
class that the user can name, and which then becomes available for use in Haystack (e.g.,
in the information space designer to specify the view part class for the entity underlying
an information portal).

The Property Lens Ontology declares the pl: PropertyLens class. (This class is
analogous to the ip: InformationPortal class.) The view that the user creates, embeds a
set of property lenses that are to be applied to the underlying entity. Property Lenses
support five attributes: pl:property, p1: editable, pl: showTitle, pl:propertyTitle

and pl:viewPartClassToUse. The pl:property attribute points to the property that is
to be extracted for the underlying entity. The pl: editable attribute is only applicable if
the property that is to be examined has literal values, and specifies if the user would like
to be able to edit the property, or just view it. The pl: showTitle attribute controls
whether or not the title indicated by p1:propertyTitle is to be shown when the
property lens is rendered in its usage view. Note, p1:propertyTitle points to a copy of
the title of the property in order to allow users to change it in the context of the view
being created (for visualization purposes), without actually changing the title of the
property being inspected. As a result, the user has the flexibility to use a meaningful title
for the view, yet still retain the ontologically meaningful title of the property. Finally, the
pl:viewPartClassToUse property is only applicable if the property being examined
results in a resource. It provides the vehicle for reuse of existing views and specifies
which view part class to use in order to render the resource that results when the specified
property of the underlying entity is queried.

6.2.2 Metadata Lens View Part Designer View
The Metadata Lens View Part Designer View of mlvp:MetadataLensViewPart can be
used to design the view being created by laying out property lenses. A new metadata lens
view is initialized with a single property lens. The figure below shows the layout for the
designer.

Similar to Information spaces, the designer is split into two sections: the top pane lets the
user edit the title of the view and the associated view part class. The bottom pane allows
users to layout the various property lenses, using the same mechanism for editing the two
dimensional information portal layout described in Chapter 5.

Each of the property lenses allows all five attributes of property lenses to be edited. The
pl: property can be specified by using drag and drop to specify a property to inspect.
The p1: editable and pl: showTitle Boolean properties can be edited by the
corresponding checkboxes. The title to display for the property being inspected can also
be edited and defaults to its current title. Finally, the pl:viewPartClassToUse property
can be specified using drag and drop.

An important feature of the current interface is that a user is required to specify a title
(initially blank) for the view part class that is associated with the view that the user has
created. Albeit confusing, this distinction between the view part class and the view (also
known as a view part) is an artifact of the current Haystack view implementation

89

infrastructure, since view part classes (rather than views) are specified when the user
wants to see some entity in a particular manner. Generally, the user will want both titles
to be the same for ease in remembering, and since the view part class (a concept
understood by Haystack) is used to refer to the view (a concept understood by the user)
when finding and creating a specified view in the Haystack implementation. However,
the interface does not ask for just a single title and update both, since the two titles are in
fact titles for distinct concepts (they cannot be used interchangeably).

4 u4 nE m ng Yoieisnn

eiets VCeleTeC
View Part Class to Use Interac.iveVie.wat View Part Class to Use interactweViewPart

Web page
Z Show Itle E Editable In c ..

C~elcl

View Part Class to Use inteactiveVnWart

Friend
[_Show Title LjEditable I nt- kL.

View Part lass to Use LneSkymaryoie 4a: t

Figure 15 A Metadata Lens View Part shown using the Designer View

A second feature to note about the current design interface for property lenses is that even
though p1: editable and p1:viewPartclassToUse may be deemed mutually exclusive

(p: editable is applicable to literal values, and p1:viewPartClassToUse is applicable
to resource values), they are both available simultaneously for editing. This is done since
Haystack supports a semi-structured data model, where the declared ontologies are not
enforced, and hence there are no guarantees on the nature of the values of properties.
Furthermore, depending on the data model, some ontologies may actually model
properties as having either literal or resource values. Thus, the property lens collects the
relevant information "just in case", and applies the preferences dynamically, based on the
results of querying the property value.

6.2.3 Metadata Lens View Part Usage View
The Metadata Lens View Part Usage View is the view that is rendered when the view
part is being used to inspect the properties of some information entity. The figure below
shows an example of this view: an information space is used to show three people (Karun

90

Bakshi, David Huynh and Vineet Sinha) that are mutual friends, using the Friends view
part that the user created above to see who is a friend of whom.

Full namte Mobile

-Web page

Full narne Mobile

Web page

Friends

Friends

Figure 16 An information space that allows the user to inspect three people using the Friends View

As in the case of information spaces, the metadata lens view part lays out the usage views
of the embedded property lenses according to the specification of the two dimensional
layout. Each of the property lenses in turn shows a title for the property (if selected by the
user), followed by a list of values for the property. (Just as the ranges of properties are
not enforced in the semi-structured store, neither is the cardinality of the property. Thus,
we show multiple values if they exist, for completeness.) If the property was selected to
be editable (and is a literal), then the user is presented with an edit box; otherwise, just
the value of the literal is presented. If the value is a resource, the appropriate view part
class is used to display it.

In the view above, each person has a list of friends, but only single values for the other
properties. Notice, that the homepage for the person Karun Bakshi is displayed rather
than an editable URL. In this case, the URL that was given was a resource (not a literal).
Prior to looking for a view part locally, Haystack automatically tries to dereference all
resources that appear (based on some heuristic, e.g., begins with "http:...") to be URLs
on the Web, when attempting to use an InteractiveViewPart to display the resource. In

91

Friends

'4 Pe.-ow ietc

Full name Mobile

Web page

this case, it succeeds in finding and embedding it. Thus, the value of the same property is
dynamically displayed, based on whether it is a literal or a resource.

Several features of this view are noteworthy. First, the type of interaction for a property
with a resource value depends on the view selected to render it. Thus, for example, the
interaction with the friends depends on what the underlying view
(LineSummaryViewPart) supports for resources of type hs: Person. Also, since the
underlying layout engine is the same as information spaces, the resulting metadata lens
view supports resizing the lenses. However, we do not show borders between properties
to hide any notion of a resize handle.

6.2.4 Metadata Lens View Parts Manager
The Metadata Lens View Parts Manager is implemented in exactly the same manner as
the Channel and Information Space Manager, with the correct view for an appropriately
defined channel. Relevant operations are made available for creating, copying and
deleting metadata lens view parts, as with the other channels. The only difference is that
the preview pane only allows interacting with the view using its designer view since there
is no underlying information entity to which it can be applied. A screenshot of this user
interface is presented below.

92

Type Title I Date

Metadata Lens View Part, Ozone Part Custom Contact View No items in list
Metadata Lens View Part, Ozone Part My Test View Part No items in list

93

Name View Part Class Title

ICustom Contact View 1 lCustom Contact View

Full name
v Show Title F1 Editable

ull name

View Part Class to Use InteractiveViewPart

Voice
2 Show Title FJ Editable

View Part Class to Use Interactive

split Into Ros

Split Into Col.

Delete Cell

Web page
2 Show Title 2 Editable

View Part Class to Use

Figure 17 Screenshot of Metadata Lens View Parts Manager

6.3 Implementation
In this section, we discuss the implementation of the design and usage views of the
Metadata Lens View Parts. We do not discuss the implementation of the Metadata Lens
View Parts Manager as it is implemented in the same manner as previous such interfaces.
The implementation files for the Metadata Lens View Part class are
schemata/MetadataLensViewPart.ad and ui/MetadataLensViewPartDesigner.ad. The
implementation files for Property Lens are schemata/PropertyLens.ad and
ui/PropertyLens.ad.

93

1Split Into Rows]

Split Into Col.

Delete Cell

Split Into Rows

Split Into Col.

Delete Cell

Interactive

In order to understand how Metadata Lens View Part's views are implemented, we
briefly examine a portion of the declaration for a new view of type
mlvp:MetadataLensViewPart below. (Note, identifiers without : below indicate
variables having a unique URI, which changes for each view part the user creates. The
other URIs remain the same for each view part.)

add {dailu Thing ha:classiesw- :etadataLensViewPartClasaView

add {newViewPart
mlvp:metadataLensViewPartLayout viewLayout;
mlvp:metadataLensViewPartClass metadataLensViewPartClass;
dc:title "Untitled Metadata Lens View

Part";

rdf:type ozone:Part;
rdf:type ozone:ViewPart;
rdf :type mlvp:Met adataLensviewPart ;
rdf :type metada t aensViewPar tClas s;
ozone :viewDomain : MetadataLensViewPar tClassView;
ozone:partDataGenerator :presentMetadataLensViewPart;

Several attributes are noteworthy. First, all items (daml: Thing) are designated as having
class view :MetadataLensViewPartClassView, that the new view part implements (as the
ozone: viewDomain property indicates). Second, the view part has also been annotated as
being of a unique view part class type (metadataLensViewpartClass). These two
annotations are necessary for Haystack to locate this view part for any item that specifies
the unique view part class for rendering. Third, the new view part has been annotated as
being type mlvp:MetadataLensViewPart to indicate that it is a view part of a particular
type. Finally, the view part has attributes that are specific to the new type of view part
(mlvp: MetadataLensViewPart), e.g., mlvp:metadataLensViewPartLayout.

The designer view for the view part is implemented simply by taking the value of the
mlvp:metadataLensViewPartLayout property that points to an object of type
tdl: TwoDimensionalLayout, and viewing it with the TwoDimensionalLayoutView (as
explained in Chapter 5) that serves as a layout engine for the property lenses. The
property lenses themselves are viewed using their own design view by specifying the
desired view that is to be used by the two dimensional layout engine for its cell data as
TwoDimensionalLayoutCellEditorView.

The usage view that is created by the user (when the view part is being used to view the
properties of an underlying entity), is rendered by calling an adenine method that
generates the part data (UI widget description of the view), as specified by the
ozone: partDataGenerator property. This method also queries for the
mlvp:metadataLensViewPartLayout property of the view, and also invokes the two
dimensional layout engine, but specifies the TwoDimensionalLayoutCellUsageView for
the property lenses by registering an appropriate context property (see Chapter 5). In
addition, the underlying entity to which this view is being applied (i.e., the entity whose

94

properties are being inspected) is also registered in the context so that the property lenses
can be applied to the right underlying entity.

The implementation of the usage view above can be used to model other view part
designers that may be created in the future. A new view part designer will in general
allow the user to create a particular type of view part that is a subclass of
ozone:ViewPart. Such a view part should have one or more properties to capture user
preferences for the view (in our case, this predicate was
mlvp:metadataLensViewPartLayout). Then, the view should be rendered by a view
container implemented that will invoke the method specified by
ozone:partDataGenerator (:presentMetadataLensviewPart in our case). This
method interprets the user preferences captured by the view, and translates them to part
data (UI widget descriptions) understood by Haystack. Finally, the designer should make
the appropriate annotations for the view part class and class views
(metadataLensViewPartClass and :MetadataLensViewPartClassView) to ensure that
the view part gets invoked in the right circumstances, i.e., for objects of the right type,
that want this particular view.

The Property Lens designer view is fairly straightforward, as it simply exposes all the
property lens properties for editing by the user. The Property Lens Usage view interprets
the user preferences for the property lens, and generates appropriate part data to show the
values of the property.

6.4 Conclusion
In this chapter we deliberated the need for users to be able to create, not just reuse, views
for a given information entity. Thus, we proposed the need for view designers that
understand the semantics of various types of information and expose relevant capabilities
for creating views. Given that Haystack's data model can support various types of
information, it should support various types of view designers. As a result, we developed
a domain-independent, baseline view designer that lets users inspect any properties of an
information entity in Haystack, regardless of its domain and taking advantage of minimal
information semantics. Nevertheless, we recognized that more powerful views can be
designed by view designers that better understand the semantics of the underlying
information that the views they generate will be manipulating.

95

Chapter 7 Conclusion and Future Work
Having considered the architecture and the design and implementation of tools required
for users to create and customize their own information spaces, this final chapter is
devoted to understanding some of the merits of our approach and the resulting
contributions, new ideas worth exploring in the future as well as areas deserving
additional improvement.

7.1 Contributions
Although we currently lack an evaluation of our system, and an understanding of its
efficacy in increasing user productivity in arbitrary information based tasks, we feel that
our work nevertheless contributes some important ideas.

The most important (and simplest) idea we highlight is the existence of a problem (and
thus, research topic) in the way user's currently perform information based tasks; the
tasks are generally unique based on various factors, and require information from
arbitrary domains. As a result, traditional approaches to increasing user efficiency using
multiple applications or more user-friendly, task-centric, all-encompassing interfaces
built by developers will inherently be rigid and lacking in some respect from the user's
perspective; users are different and tasks continuously change in manners developers
simply cannot foretell. Instead, we propose allowing users to build their own interfaces
for their tasks rather than be fettered by the constraints of information locked in
application specific islands, using various tools for creating customized task-based
interfaces: information spaces. As a result, we allow users to create their own
"applications," tailored to a particular task.

In support of this approach, we developed the notion of Channels of information, a
general means of allowing the user to specify a persistent query/description of how to
compute a collection of information that is related in some manner. As a result, a channel
can be used as a unit of specifying content that can be "re-directed" into any/multiple
user created information spaces.

96

We also proposed an architecture for a solution to the above problem that is open in that
it allows adding more components that enhance the toolkit available to users to customize
their interfaces. New query and computational primitives may be added to enhance the
expressive power available to the user in specifying channels via the Channel Manager.

Building on top of the Haystack philosophy of having multiple means of viewing an
information entity, we proposed the notion of view designers that understand the same
information using different semantics, and hence allow building views that interact with
that information in various ways (in addition to ones that are implemented by
developers). We also outlined a general design pattern for implementing other view
designers in Haystack. Developers may implement domain or type specific view
designers, which allow the user to create views that provide a better interaction and
visualization experience. For example, whereas the user may create a view to look at the
properties of appointments via the current generic view designer, a specialized view
designer for a calendar can allow the user to render appointments in a timeline format or
a week at-a-glance format.

Finally, Haystack already supports operations as first class entities, and hence additional
operations can be written and exposed to the user for availability in particular contexts.

7.2 Future Work
Our current system as it stands leaves plenty of room for future work, which we consider
in this section. For simplicity, we categorize the work into three categories: evaluation of
current system, new ideas for supporting information customization within the current
framework, new features that would make the current set of functionality more useful.

7.2.1 Evaluation
Since we have not evaluated our system, or any of our claims, a major portion of our
future work will focus on obtaining feedback on the relevance of our ideas and usability
of our implementation via a user study. Some of the questions that the user study should
seek to find answers to include:

" Is the idea of user creation and customization of information spaces compelling?
That is, do people actually have the problems we argued in our motivation? If so,
is the power they are given in this respect, worth the accompanying burden of
creating their own channels and information spaces? If not, why not? How can the
burden be minimized or alleviated. How useful are domain specific view
designers in this respect, or is the ability to select (rather than create) from a pre-
defined set of views sufficient?

" What are some of the use cases for information spaces that are important from
users' perspective? Which features/ideas in our current implementation support
them? Which features are missing? Which features/ideas/abstractions need to be
modified to enhance usability?

" How did the individual design decisions for the various tools fare? For example,
does projection operations by creating buttons, rather than modifying the context

97

menu with the user specified operations help, or is the accompanying loss of
uniformity disorienting to the user? Should users be able to resize information
portals, or simply collapse them to make more space for other parts of the
interface?

We are already aware of various improvements to the current implementation that are
required to enhance usability, before a user study can be conducted:

* The current means of piping the results from one set transform to another,
requires users to build the channel definition in reverse order: the final set
transform must be specified first, and its inputs can then be specified as being the
results of other set transforms. A graph editor that does not force this "tree-like"
declaration method and that allows users to link the results of set transforms to the
inputs of other set transforms in any order would be more intuitive.

" The current query interface is complex and requires users to remember individual
query primitives that can only perform one type of query, and specify arguments
for them. A query interface that provides an intuitive interface for multiple types
of queries, and maps the user specified information to the appropriate underlying
query primitives is more desirable.

" The names of various set transforms and primitives are cryptic, and should be
more user-friendly and descriptive.

* The current means of changing the layout of information spaces results in loss of
information portal preferences if they are split further. Also, within a given
layout, it is difficult to switch the locations of information portals. Users should
not have to do significant re-creation of the information space, just because the
layout has changed.

" Due to the way in which Haystack is implemented, users are forced to contend
with implementation complexities such as view part classes. The current Haystack
infrastructure should be changed to simplify and minimize the abstractions and
concepts the user must understand.

" In order to have a good use case for the user study, one or more domain specific
view designers or views may need to be created.

7.2.2 New Avenues for Research
In this section, we discuss new ideas that will enhance the power of users to customize
their information spaces.

* Channel Triggers - It would be useful for the user to specify certain actions that
are to be taken by the system, when items are added to or removed from the
channel.

" Dynamic Currying - The operations shown in an information portal should be
sensitive to the channel item currently selected; operations that are not relevant to
it should not be visible, and operations that require an argument type matching
that of the selected item should dynamically bind to it, as is done in context
menus.

98

* Information Space Wiring - Information portals showing channel items should
expose the currently selected item, such that it can be used elsewhere in the
interface, e.g., a preview pane can be shared by the most recently selected item
from multiple channels. Thus, users should be able to "wire-up" their interface.

" Channel Learning - Haystack should be able to learn and generate the channel
description based on set transforms from a collection of items specified by the
user.

" Virtual Property Lenses - A new type of property lens that computes a property
value (rather than extracting it) would significantly enhance the power of views
users can create.

" Viewing Heterogeneous Channels - The items in a channel need not necessarily
be of the same type, e.g., "Messages from David Karger" may include instant
messages as well as e-mail. Users may want to see different types of information
using different types of views, and the current information portal implementation
would need to be enhanced to support this functionality.

" Reuse of Tools - The tools we developed for information spaces allow users to
bootstrap and can be used to actually create some of the tools themselves. For
example, information spaces can be used to create an Ontology Browser, and
property lenses can be used to actually implement the Design View of property
lenses themselves! These exercises should be performed to see where limitations
exist that do not allow such recreation of functionality, and what new abstractions
are needed to overcome them and further enhance the power available to users.

7.2.3 New Features for Current Implementation
The following feature enhancements would tremendously increase the usability of our
tools:

* Polished Information Space User Interface - The current user interface for
information spaces is not space efficient and forces significant user interaction.
For example, it requires the user to manually resize various information portals,
and does not allow hiding the pane showing the buttons for relevant operations. It
would be nice to be able to collapse portals and sub-panes with a single click.
Also, space is currently wasted by vertically placing the buttons that allow users
to split information portals in design mode. If they were horizontally laid out
(e.g., below the portal), users would have more space to work with the portals in
designer view.

" Pervasive Style Annotations - Currently, users cannot specify any style
specifications, e.g. background color, border widths, text fonts, etc. for any part of
their information space. Such a capability is provided by most applications, and
should be supported in Haystack as well.

* Channel Update Specifications - Users should be able to specify when
individual channels are updated.

" Additional Primitives - New set transforms that implement additional primitive
operations would increase the expressive power available to users in defining
channels. For example, a set transform that finds other items "similar" to a
specified item using machine learning would be incredibly useful. Similarly,

99

additional condition tests, e.g., "starting with string xyz" or "having 2 or more
instances of a property" would also increase expressive power available to users.

" Reusable Component Library - Currently, the only means of reusing a portion
of another channel's description (i.e. some set transform instance that it
encapsulates) is to declare a channel that has that set transform instance as its
description. The channel is declared simply so that it can be re-used in some other
channel, and has no semantic value of its own. Condition Tests cannot be re-used
at all. Thus, it would be useful for the user to be able to store set transform
instances (that are not actually computed by the channel manager) and condition
test closures that can be duplicated and used when defining channels.

* Property Lens Library - Given that many properties are common across
ontologies, such as title, date, etc., the user may want to inspect them in multiple
views. Thus, the ability to add existing property lenses to new views without
having to define them each time would be very useful. Perhaps, our system should
increase the granularity at which users can control visualization of information by
allowing them to create and manage individual property lenses, and then reuse
them in different layouts and combinations to create new views rapidly.

* Metadata Lens View Enhancement - The current implementation of the
metadata lens view parts that users can create, do not allow them to add or delete
property values; property values can only be inspected or modified. Such a
capability would allow users complete CRUD (Create, Replace, Update, Delete)
control over their information store. An interesting design question here would be
whether or not to enforce the schema for the underlying object (i.e. not allow
additional values, if the property is unique, e.g. age). Users may desire both
structured and semi-structured access in different circumstances.

100

Appendix A - Available Set Transforms

Table 1 Available Set Transforms

SetUnion Seti, Set2: The sets to be
combined via a set union.

A transform that allows a
set union to be computed of
its constituent arguments. It
is used as a substitute for
boolean disjunction
(Inclusive OR).

SetIntersection Seti, Set2: The sets to be A transform that allows a
combined via a set set intersection to be
intersection. computed of its constituent

arguments. It is used as a
substitute for boolean
conjunction (AND).

SetDifference Minuend Set: The A transform that returns the
"universal" set. set difference of two sets. It

is used as a substitute for
Subtrahend Set: The set to boolean negation when
be subtracted. supplied with an

a ro riate "universal" set.

Subject Quer (Fixed Predicate: The redicate to A transform that returns all

101

Predicate, Literal Object) fix in the subject query. resources that are subjects
having the specified
predicate, and an object

Condition Test: A closure value that satisfied the
for the condition test to specified condition test
apply. closure.

Subject Query (Fixed Predicate: The predicate to A transform that returns all
Predicate, Resource fix in the subject query. resources that are subjects
Object) having the specified

predicate, and an object
Condition Test: A closure value that satisfies the
for the condition test to specified condition test
apply. closure.

Subject Query (Fixed Object (Literal): The A transform that returns all
Literal Object) (literal) object to fix in the resources that are subjects

query. having the specified object,
and a predicate that satisfies
the specified condition test

Condition Test: A closure closure.
for the condition test to
apply.

Subject Query (Fixed Object (Resource): The A transform that returns all
Resource Object) (resource) object to fix in resources that are subjects

the query. having the specified object,
and a predicate that satisfies
the specified condition test

Condition Test: A closure closure.
for the condition test to
apply.

Predicate Query (Fixed Subject: The subject to fix A transform that returns all
Subject, Literal Object) in the query. resources that are predicates

having the specified subject,
Condition Test: A closure and a corresponding object
for the condition test to value that satisfies the
apply. specified condition test

closure.
Predicate Query (Fixed Subject: The subject to fix A transform that returns all
Subject, Resource Object) in the query. resources that are predicates

having the specified subject,
Condition Test: A closure and a corresponding object
for the condition test to value that satisfies the
apply. specified condition test

closure.
Predicate Query (Fixed Object (Literal): The A transform that returns all
Literal Object) object to fix in the query. resources that are predicates

I I having the specified object,

102

Condition Test: A closure and a corresponding subject
for the condition test to value that satisfies the
apply. specified condition test

closure.
Predicate Query (Fixed Object (Resource): The A transform that returns all
Resource Object) object to fix in the query. resources that are predicates

having the specified object,
and a corresponding subject

Condition Test: A closure value that satisfies the
for the condition test to specified condition test
apply. closure.

Object Query (Fixed Subject: The subject to fix A transform that returns all
Subject) in the query. resources that are objects

having the specified subject,
Condition Test: A closure and a corresponding
for the condition test to predicate value that satisfies
apply. the specified condition test

closure.
Object Query (Fixed Predicate: The predicate to A transform that returns all
Predicate) fix in the query. resources that are objects

having the specified
predicate, and a

Condition Test: A closure corresponding subject value
for the condition test to that satisfies the specified
apply. condition test closure.

Null None A transform that returns an
empty set.

Channel Duplicator Channel: The channel A transform that copies and
whose contents are to be returns the contents of
duplicated. another channel.

Collection Wrapper Collection: The collection A transform that copies and
that is to be wrapped. returns the contents of

another collection.

Items of Type Item Type: The type of the A transfor that allows
items to be selected. selection of items of a

particular type.

103

Appendix B - Available Condition Tests

Table 2 Available Condition Tests

Any Value None A condition test that always
returns true, i.e. any value is
wccentahle.

Variable Value (Literal):
The item to which the
condition test is applied.

Fixed Value (Literal): The
item used to compare to the
variable value in the
relational condition test.

A condition test that returns
true if the variable argument
is equal to the fixed
argument (in a string match
sense).

!= (Literal) Variable Value (Literal): A condition test that returns
The item to which the true if the variable argument
condition test is applied. is not equal to the fixed

argument (in a string match
Fixed Value (Literal): The sense).
item used to compare to the
variable value in the
relational condition test. I

104

== (Literal)

Variable Value
(Resource): The item to
which the condition test is
applied.

A condition test that returns
true if the variable argument
is equal to the fixed
argument (in a string match
sense).

Fixed Value (Resource):
The item used to compare
to the variable value in the
relational condition test.

!= (Resource) Variable Value
(Resource): The item to
which the condition test is
applied.

Fixed Value (Resource):
The item used to compare
to the variable value in the
relational condition test.

Fixed Value (Double): The
item used to compare to the
variable value in the
relational condition test.

A condition test that returns
true if the variable argument
is not equal to the fixed
argument (in a string match
sense).

A condition test that returns
true if the variable argument
is greater than the fixed
argument. Both operands
must be numeric.

Variable Value (Literal):
The item to which the
condition test is applied.
Fixed Value (Double): The A condition test that returns
item used to compare to the true if the variable argument
variable value in the is less than the fixed
relational condition test. argument. Both operands

must be numeric.
Variable Value (Literal):
The item to which the
condition test is applied.

>= Fixed Value (Double): The A condition test that returns
item used to compare to the true if the variable argument
variable value in the is greater than or equal to
relational condition test. the fixed argument. Both

operands must be numeric.
Variable Value (Literal): 1

105

== (Resource)

106

The item to which the
condition test is applied.

<= Fixed Value (Double): The A condition test that returns
item used to compare to the true if the variable argument
variable value in the is less than or equal to the
relational condition test. fixed argument. Both

operands must be numeric.
Variable Value (Literal):
The item to which the
condition test is applied.

== (Numeric) Fixed Value (Double): The A condition test that returns
item used to compare to the true if the variable argument
variable value in the is equal to the fixed
relational condition test. argument. Both operands

must be numeric.
Variable Value (Literal):
The item to which the
condition test is applied.

References

1. Extensible Markup Language (XML). http://www.w3.org/XML/.
2. Web Services Activity. http://www.w3.org/2002/ws/.
3. Semantic Web. http://www.w3.org/2001/sw/.
4. Bellotti, V., Ducheneaut, N., Howard, M. and Smith, I. Taking Email to Task:

The Design and Evaluation of a Task Management Centered Email Tool.
Proceedings of the Conference on Human Factors in Computing Systems 2003.

5. Kubi Software. www.kubisoft.com.
6. Anderson, C. and Horvitz, E. Web Montage: A Dynamic Personalized Start Page.

Proceedings of the eleventh international conference on the World Wide Web,
2002.

7. Bauer, D. Personal Information Geographies. Extended Abstracts of the
Conference on Human Factors in Computing Systems 2002.

8. Microsoft Office Online. http://www.office.microsoft.com/home/.
9. Microsoft Office Online, Outlook. http://www.microsoft.com/outlook/.
10. Storey, M., Best, C., Michaud, J., Rayside, D., Litoiu, M. and Musen, M. SHriMP

Views: An Interactive Environment for Information Visualization and Navigation.
Extended Abstracts of the Conference on Human Factors in Computing Systems
2002.

11. Bier, E., Stone, M., Pier, K., Buxton, W. and DeRose, T. Toolglass and Magic
Lenses: The See-Through Interface. Proceedings of International Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH) 1993.

12. Hutchings, D. and Stasko, J. QuickSpace: New Operations for the Desktop
Metaphor. Extended Abstracts of the Conference on Human Factors in
Computing Systems 2002.

13. Berners-Lee, T., Hendler, J. and Lassila, 0. The Semantic Web. Scientific
American, May 2001.

14. Hogue, A. Tree Pattern Inference and Matching for Wrapper Induction on the
World Wide Web. MEng. Thesis. MIT, 2004.

15. MyYahoo! http://my.yahoo.com.

107

16. Card, S., Henderson, D. Rooms: The Use of Multiple Virtual Workspaces to
Reduce Space Contention in a Window-Based Graphical User Interface. ACM
Transactions on Graphics Vol. 5, Issue 3, July 1986, pp. 211 - 243.

17. Cruz, I., and Lucas, W. A Visual Approach to Multimedia Querying and
Presentation. Proceedings of the fifth ACM International Conference on
Multimedia, 1997.

18. Schraefel, M., and Zhu, Y. Hunter Gatherer: A Collection Making Tool for the
Web. Extended Abstracts of the Conference on Human Factors in Computing
Systems 2002.

19. Quan, D., Huynh, D. and Karger, D. Haystack: A Platform for Authoring End
User Semantic Web Applications. 2 International Semantic Web Conference,
2003.

20. Resource Description Framework (RDF). http://www.w3.org/RDF/.
21. Quan, D. Designing End User Information Environments Based On

Semistructured Data Models. PhD Thesis. MIT, 2003.
22. RSS 2.0 Specification. http://blogs.law.harvard.edu/tech/rss.
23. Goldman, R. and Widom, J. DataGuides: Enabling Query Formulation and

Optimization in Semistructured Databases, Proceedings of 2 3 rd International
Conference on Very Large Data Bases, 1997.

24. START Natural Language Question Answering System.
http://www.ai.mit.edu/projects/infolab/start-system.html.

25. Popescu, A., Etzioni, 0. and Kautz, H. Towards a Theory of Natural Language
Interfaces to Databases, Proceedings of the 8th International Conference on
Intelligent User Interfaces, 2003.

26. Banko, M., Brill, E., Dumais, S. and Lin, J. AskMSR: Question Answering Using
the Worldwide Web. Proceedings of 2002 AAAI Spring Symposium on Mining
Answers from Texts and Knowledge Bases, March 2002.

27. Zloof, M. "Design Aspects of the Query-By-Example Data Base Manipulation
Language," in B. Shneiderman (Ed.) Databases: Improving Usability and
Responsiveness. Academic Press. New York, USA. 1978.

28. Microsoft Office Online, Access. http://www.microsoft.com/office/access/.
29. FileMaker. http://www.filemaker.con.
30. Myers, B., McDaniel, R. and Kosbie, D. Marquise: Creating Complete User

Interfaces By Demonstration. Proceedings of the Conference on Human Factors
in Computing Systems 1993.

31. Huynh, D. Haystack's User Interface Framework: Tutorial and Reference.
http://haystack.lcs.mit.edu/documentation/ui.pdf.

108

Assessing Cohesion via Pattern Mining: Representation and Models

Abstract

This paper addresses the problem of au-
tomatic assessment of text cohesion. We
first introduce a novel representation of
cohesion that is based on the notion of
an entity matrix and combines distribu-
tional and syntactic information about
text entities. We then present generative
as well as discriminative models that
uncover text connectivity patterns from
entity matrices. Finally, we apply these
models to measure the cohesiveness of
multidocument summaries. Our experi-
ments show that our approach is an im-
portant step towards automatic evalua-
tion of summary readability.

1 Introduction

When we face a paragraph of multiple sentences,
it is usually easy to decide whether we are look-
ing at an unrelated collection of sentences or a co-
hesive piece of text. A mechanism for automati-
cally delivering such a judgment will have mul-
tiple benefits for applications that produce text,
such as summarization, machine translation, and
concept-to-text generation. This mechanism could
be employed to guide the process of text revision
or to select the most cohesive output among pos-
sible candidates, much in the same way speech
recognizers use language models. Furthermore, an
automatic procedure can serve as an appealing al-
ternative to manually assessing the readability of
machine-generated texts, an expensive and time-
consuming evaluation method used today in gen-
eration and summarization.

Text cohesion can be described in terms of lan-
guage devices that connect individual sentences
into a unified whole; such devices include rep-
etition, coreference, and ellipsis. Linguists have
hypothesized that certain connectivity patterns
among discourse entities are characteristic of all
cohesive texts, suggesting that text quality can be
determined via analysis of cohesive ties (Halliday
and Hasan, 1976; Hasan, 1984). In fact, Centering
Theory (CT) proposes a typology of ordered tran-
sitions among discourse units that relies on entity-
based patterns of connectivity (Grosz et al., 1995).
For example, CONTINUE transitions require that
two utterances have at least one entity in common
and are preferred over transitions that repeatedly
SHIFT from one entity to the next. However, there
is still a marked gap between the descriptive tra-
dition of linguistics and the computational means
for automatic cohesion assessment.

This paper presents novel computational mod-
els of text cohesion which fuse insights from co-
hesion and centering theories. The ultimate goal of
such models is to automatically assess the degree
of cohesiveness for a given text. But rather than
manually determining connectivity patterns typi-
cal of cohesive texts, we learn them from a collec-
tion of human- and machine-generated texts asso-
ciated with cohesion ratings.

Our cohesion models operate over entity ma-
trices, a representation which combines distribu-
tional and syntactic information about text entities.
Entity matrices can be computed easily by track-
ing the sequences of entities in the text together
with their grammatical roles. This simple, yet ex-
pressive, representation effectively exposes con-
nectivity patterns characteristic of cohesive texts.
We present generative as well as discriminative

1. Newspapers reporteWednesday that three top Libyan
ofticials have been tried and jailed in the Lockerbie
case.

2. Secretary-General Kofi Annan said Wednesday that he
may travel to Libya next week in hopes of closing a
deal.

3. The sanctions were imposed to force Libyan leader
Moammar Gadhafi to turn the men over.

4. Louis Farrakhan, the leader of a U.S. Muslim group,
met with Gadhati and congratulated him on his recov-
cry from a hip injury.

Table 1: A low-cohesion summary.

models for cohesion assessment based on this rep-
resentation.

For evaluation purposes, we use these models to
measure the cohesiveness of multidocument sum-
maries produced by systems that participated in
the Document Understanding Conference (DUC).
Examples of low- and high-cohesion summaries
are shown in Table I and Table 3, respectively. We
find that our generative models positively corre-
late with human assessment of text cohesion, in
contrast to state-of-the-art models proposed in the
literature. Furthermore, the high classification ac-
curacy achieved by the discriminative models -
97% on a 2-way classification - suggests that our
approach is an important step towards automatic
evaluation of summary readability.

In the following sections, we provide an
overview of existing work on automatic cohesion
assessment, then we introduce our notion of entity
matrix, and describe our cohesion models. Next,
we describe the data and baseline models used in
this work. Evaluation results and their discussion
conclude the paper.

2 Related Work

Automatic cohesion assessment Previous
models of text cohesion focus primarily on the
notion of meaning overlap between adjacent
sentences. While in early approaches (Kintsch
and van Dijk, 1978) meaning is represented by
manually-crafted propositional structures, more
recent work assesses cohesion in a fully automatic
manner by using vector-based representations of
lexical meaning (Foltz et al., 1998). Semantic re-
latedness is assessed by measuring the distance
between pairs of adjacent sentences. In contrast,
our approach takes a more global view on the text,
moving beyond pairwise adjacency comparisons.

Cohesion in summarization There is a grow-
ing consensus in the research community that au-

tomatically generated summaries are often diffi-
cult to read due to lack of cohesion. To remedy
this problem, summarization systems often em-
ploy revision modules. Examples of revisions in-
clude sentence re-ordering, aggregation, and con-
stituent elimination (Mani et al., 1999; Barzilay
et al., 2002; Otterbacher et al., 2002). Note that
many summarization systems can produce a vani-
ety of possible outputs depending on their param-
eter values (e.g., compression rate). Our work pro-
vides a principled way to select among various al-
ternatives during the revision process or parameter
setting.

3 The Entity Matrix Model

Our model of text cohesion is entity-based. We ar-
gue that by keeping track of the entities in a text
and their grammatical roles, we can capture the
connectivity patterns of cohesive texts. In this sec-
tion, we explain how we represent text cohesion
and introduce the types of models that are suited
for this representation.

3.1 Representation

Each text is represented by an entity matrix. The
columns of the matrix correspond to text enti-
ties, while the rows correspond to sentences. For
each occurrence of an entity in the text, the cor-
responding matrix cell contains information about
its grammatical role. Each matrix column thus cor-
responds to a string from a finite alphabet reflect-
ing the entity's presence or absence in a sequence
of sentences. Our alphabet consists of four sym-
bols: s (subject), o (object), x (neither subject nor
object) and - (gap which signals the entity's ab-
sence from a given sentence).

Table 2 illustrates a fragment of an entity ma-
trix constructed for the text in Table 3. Occurrence
of nouns is used here to approximate the mention-
ing of discourse entities. Since the text contains
six sentences, the matrix columns are of length
six. Consider for instance the matrix column for
the entity arrest, [- - s - - ol. It records that
arrest is present in sentence 3 as a subject and in
sentence 6 as an object, but is absent from the rest
of the sentences.

Ideally, each entity in the matrix should rep-
resent an equivalence class of coreferent nouns

'Surprisingly, manual resolution of anaphoric expressions
did not lead to a significant improvement in our results. We
explain this by low frequency of such expressions in automat-
ically generated summaries.

r
0-a..

o CJQ
a- cr

S S S X X -

-

0

S - -AX- -- -

-S--

0-

0 .c .,.-3 rA Oi W c

- -J - - - - - -
-- 00----

~S

1
2
3
4
5
6

Table 2: Entity Matrix.

1. Former Chilean dictator Augusto Pinochetj,, was ar-
rested in [London], on [14 October], 1998.

2. [Pinochet ,, 82. was recovering from [surgery]x.
3. [The arrest], was in [response]x to [an extradition

warrant], served by [a Spanish judge]0 .
4. [Pinochet], was charged with murdering [thousands]0 ,,

including many [Spaniards],,.
5. [Pinochet]i is awaiting [a hearing]0 , [his fate], in [the

balance] .
6. [American scholars], applauded the [arrest],,.

Table 3: Summary augmented with syntactic an-

notations for matrix computation.

(e.g., Former Chilean dictator Augusto Pinochet

and Pinochet refer to the same entity). However,
the automatic construction of such an entity matrix
requires a robust coreference tool that is able to
accurately process texts with cohesion violations.
Since all the coreference tools are trained on co-
hesive texts, this requirement is hard to satisfy. In-
stead, we employ a simplified representation: each
noun in a text corresponds to a different entity in
a matrix. The simplification allows us to capture
noun-coreference, albeit in a shallow manner. In
practice, this means that named entities and com-
pound nouns will be treated as denoting more than
one entity. For instance, the NP Former Chilean
dictator Augusto Pinochet will be mapped to three
entities: dictator, Augusto and Pinochet. We fur-
ther assume that each noun within the NP bears
the same grammatical role as the NP head. Thus,
all three nouns in the above NP will be labeled as
subjects. When a noun is attested more than once
with a different grammatical role in the same sen-
tence, we default to the role with the highest gram-
matical ranking: subjects are ranked more highly
than objects, and these than the rest.2

2Our ranking is inspired by CT's notion of salience but it
is restricted to multiple occurrences of the same entity: CT's
salience applies to all entities within an utterance.

C

a

1
2
3
4
5
6

- -

HCT LrT'
s s 0.022 0.007
s 0 0.015 0.004
- - 0.411 0.473

Table 4: Probabilities of selected bigrams in the

corpus of summaries.

The entity matrix allows us to describe cohe-

sive and non-cohesive texts in terms of column

topology. Matrices of cohesive texts will have

some dense columns (i.e., columns with just a

few gaps such as Pinochet in Table 2) and a

lot of sparse columns which will consist mostly

of gaps (see London, judge in Table 2). One

would further expect that entities corresponding to

dense columns are more often subjects or objects.

These characteristics will be less pronounced in

low-cohesion texts which will be represented by

sparser columns and will have a lower frequency

of subjects and objects in dense columns. We

tested these predictions on a corpus of automat-

ically generated summaries from DUC (the cor-

pus collection is described in Section 4). The sum-

maries were generated from the same documents

but had different readability scores (as assessed by
DUC evaluators); the letters HCT and LCT corre-

spond to summaries with high and low cohesion.

Table 4 shows the probabilities of some bigram se-

quences in our corpus. As can be seen, the sum-

maries with low readability score have, on aver-

age, a larger number of gap bigrams [- -I in

their columns than systems with high-readability.
This pattern is reversed for bigrams involving
grammatical roles, such as [s s] and [s o].
These statistics are consistent with CT's CONTI-
NUITY principle.

Transformations To facilitate the discovery

of common patterns in entity matrices, we con-
sider transformations as a means of reducing
the variability intrinsic in the representation. A
common cause of such variability is text length.

As a motivating example, consider two columns

[s o - -] and [s - o - -I. Despite their sur-
face differences, they are characteristic of entities

that occur twice in the document, once as a subject

and once as an object. We can uncover such sim-

ilarities by compressing gap sequences from ma-

trix columns. Specifically, we experimented with

transformations that eliminate gap sequences un-

L Original Transformed

1. -s --- o-- s - - -

2. s - - - 0

3. - s --- o-- s o

Table 5: Examples of column transformations.

L represents the maximal length of a gap sequence

to be removed.

sssxxxso:---
-: - VI - - - 5 "r - - - -

-C-S - - - -

- - - -o Xx X--
-- - - S

Table 6: Transformation 3 applied to the entity ma-

trix from Table 2.

der a certain length3 (see Table 5). For instance,
transformation 1 removes gap sequences shorter

than two, while transformation 3 deletes gap se-

quences shorter than four. Table 6 demonstrates

the results of the application of transformation 3 to

the matrix from Table 2. Our choice of these trans-

formations is motivated by their ability to capture

the notion of recency that plays a prominent role

in CT.

3.2 Models

Generative Models Assuming that entities in

cohesive texts are not distributed randomly, but

rather that their patterns of occurrence satisfy cer-

tain regularities, we can build a generative model

that captures their distribution. The model can then

be used to estimate the likelihood (and therefore
cohesion) of unseen texts.

More specifically, given a corpus of cohesive
texts, we can define a probability distribution
over the columns of their entity matrices using
an n-gram model. The different columns can be

thought of as multiple views of the cohesion of the

same text. Assuming (somewhat simplistically)
that these views are independent, the probability of

a matrix can be computed by multiplying together

the probability for each column. To give a concrete

3 As a results of these transformation, an entity matrix may
be transformed to a sequence of vectors of different length.

Column Type Frequency
s - - - - - 2

x - - - - - --- 2

s 0 1
x 2
o 3
---- 0 1

-- x 2

Table 7: Vector-based representation of the trans-

formed entity-matrix from Table 6.

example, the cohesion of the text in Table 2 will be

derived by multiplying together the probability of

the columns representing Scholars, Balance, etc.

To compare texts with variable lengths and enti-

ties, the probabilities for individual columns were

normalized by column length and the probability

of the entire text was normalized by column num-

ber.

Discriminative Models Our second model

focuses on global connectivity patterns character-

istic of cohesive texts. We hypothesize that some

types of matrix columns frequently occur across

different texts in a corpus and that each text can

be described in terms of the presence/absence of

these columns. A text is thus represented as a vec-

tor in a high-dimensional space where each dimen-

sion corresponds to a column type. An example of

a vector space representation for the transformed

matrix from Table 6 is given in Table 7. The di-

mensionality of the space can be reduced by tak-

ing into account the most frequent entity columns

within a document collection or by applying trans-

formations prior to the construction of the vector

space.
This vector representation allows us to view

document cohesion as a classification task and is

therefore appropriate for discriminative models.

Each document is an instance, described by a fixed

set of attributes (i.e., kinds of matrix columns) and

their values (i.e., frequency). Given a set of docu-

ments annotated with cohesion labels, a discrimi-

native model can be trained to distinguish cohesive

and non-cohesive texts.

4 Collecting Cohesion Judgments

To evaluate the entity matrix models of text cohe-

sion introduced above, we first needed to establish

an independent measure of cohesion. The standard

approach used in experimental psycholinguistics

is to elicit judgments from human participants; in
this section we describe our method for assem-
bling the set of experimental materials and collect-
ing cohesion ratings.

4.1 Method
Materials and Design Our evaluation fo-
cused on multi-document summaries produced by
systems that participated in the DUC-2003 sum-
marization task. DUC judges evaluated each sum-
mary along 12 dimensions of "Summary Qual-
ity Questions." Although none of these ques-
tions directly addressed text cohesion, we relied
on a question that assessed summary readability 4

(question number 12) to select systems that poten-
tially produce summaries with varying degrees of
cohesion. Our selection was further guided by the
length and grammaticality of a summary. We dis-
carded summaries with a length less than 4 which
are not particularly well-suited for studying cohe-
sion. Because our goal is to evaluate cohesion, we
focus only on grammatical summaries.

Next, we randomly selected 16 input document
clusters and included for each of the three sys-
tems their corresponding summaries. To ensure
a wide range of cohesion ratings, sixteen human
summaries were also included. Our set of materi-
als contained 4 x 16 = 64 summaries, with an av-
erage length of 4.6.

Procedure and Subjects From our set of
64 summaries, we generated eight subsets contain-
ing eight summaries each, as follows: the sum-
maries were distributed across subsets so that each
set contained six machine-generated summaries
of various degree of cohesion and two human-
generated summaries; the procedure ensured that
none of the summaries in a given subset were gen-
erated from the same document cluster.

Each participant was assigned one of the eight
subsets and was asked to use a seven point scale
to rate how cohesive the summaries were without
having seen the source texts. It was explained that
some of the summaries had been produced by hu-
mans and others automatically by a computer pro-
gram.

The study was conducted remotely over the In-
ternet. Participants first saw a set of instructions
that explained the task, and defined the notion of
cohesion using multiple examples. Then the sum-
manes were presented; a new random order was

4 Readability is not equivalent to cohesion, since it cap-
tures additional text properties.

generated for each participant. The experiment
was completed by 183 unpaid volunteers (approx-
imately 23 per summary), all native speakers of
English.

4.2 Results of Data Collection

We carried out an Analysis of Variance (ANOVA)
to examine the effect of different types of
summaries (human- vs. system-generated). The
ANOVA revealed a reliable effect of summary
type: F(3;45) = 12.3, p < 0.01. Post-hoc Tukey
tests indicated that the human summaries are per-
ceived as significantly more cohesive than system-
generated ones (at a = 0.05). Our analysis also re-
vealed a lack of correlation between the judgments
of our participants and DUC evaluators. The dis-
crepancy can be explained by the differences in
our instructions defining cohesion and the DUC
question number 12 that solely measures readabil-
ity. This prevented us from using the readability
scores of the DUC judges for further analysis.

An important question is how well humans
agree in their cohesion judgments. Inter-subject
agreement gives an upper bound for cohesion as-
sessment and allows us to interpret how well our
models are doing in relation to humans. To mea-
sure agreement, we employed leave-one-out re-
sampling (Weiss and Kulikowski, 1991), by corre-
lating the data obtained from each participant with
the mean cohesion ratings obtained from all other
participants. The inter-subject agreement was .612
(Min = .107, Max = .975, SD = .230).

5 Model Comparison

Correlation analysis was used to assess the de-

gree of linear relationship between cohesion rat-
ings and models of text cohesion, including our
own. Two of the baseline models have been specif-
ically designed to automatically assess text cohe-
sion. We also introduced a new baseline algorithm
that benefits from lexico-semantic information en-
coded in WordNet. In addition, we compared our
model against a standard readability measure used
in educational research.

5.1 Baselines

Readability Measures Readability measures
can be conceivably used for measuring cohesion,
since a text that lacks cohesion will probably be

difficult to read. We experimented with one of

the most commonly cited ones, the Flesh Reading

Ease formula (Flesh, 1951). This fonrula deter-
mines readability as a function of the average sen-
tence length and the average number of syllables
per word.

Word-based Models The simplest model of
lexical cohesion is word overlap. We included it
in our study as it has been previously shown to
be a serious competitor to the more sophisticated
vector-based models (Foltz et al., 1998). By taking
the average word overlap of adjacent sentences we
can derive a measure of cohesion for a set of sen-
tences S,-.

Vector-based Models In this framework the
meaning of individual words is represented in a
high-dimensional real-valued vector space where
closeness corresponds to semantic similarity. Sen-
tence meaning can also be represented as a vec-
tor by taking the mean of the vectors of its
words (Foltz et al., 1998). The similarity between
two sentences can be consequently determined by
computing their cosine. An overall text cohesion
measure is calculated by averaging the cosines for
all pairs of adjacent sentences.

We constructed vector-based models from a
lemmatized version of the North American News
Text Corpus5 (NANTC). The corpus contains 350
million words of text taken from a variety of news
sources. We used singular value decomposition to
reduce the semantic space to 300 dimensions ob-
taining thus a representation more akin to Latent
Semantic Analysis (LSA, Landauer and Dumais
1997). A symmetric 10-word window was used.

Taxonomy-based Models An alternative
method for text cohesion can take advantage of
rich lexical resources, such as WordNet. One can
assume that in a cohesive text a sentence shares
meaning with its neighbors. Semantic similarity
can be automatically captured using WordNet.
A variety of measures have been developed for
this purpose varying from simple edge counting
to information-theoretic measures that combine
taxonomic information with corpus frequencies.
We selected two commonly cited methods to
compute sentence similarity, the first proposed
by Resnik (1995)(Res) and the second by Hirst
and St-Onge (1998)(HstO). Again, text cohesion
can be measured by taking average similarity of
adjacent sentences.

5 Our selection of this corpus was motivated by its simi-
larity to the DUC corpus which primarily consists of news
stories.

5.2 Entity-matrix Models

Generative Model We constructed the entity
matrices for human summaries from the DUC cor-
pus. The summaries were lemmatized and anno-
tated with syntactic information by merging the
output of Chariak's (2000) parser with the gram-
matical relations returned from MINIPAR, a broad
coverage dependency parser (Lin, 2001). MINI-
PAR's relations were further mapped to subject
(s), object6 (o), and the rest (x). From the syn-
tactically annotated summaries, we derived the
representation discussed in Section 3. The matrix
columns were augmented with the start and end
symbols, increasing the size of the alphabet to 6.
We estimated the probability of matrix columns in
our data using n-gram models of variable length
(i.e., 2-4). The models were trained and tested us-
ing the CMU language modeling toolkit (Clarkson
and Rosenfeld, 1997). Our models were tested on
48 machine-generated summaries.

Discriminative Model We experimented
with the vector-based representation introduced
in Section 3 and treated the cohesion assignment
as a classification task. Although the latter is not
strictly comparable with the models discussed
previously, it is interesting to assess the discrim-
inatory power of our representation when trained
on a relatively small data set (i.e., 64 instances,
summaries). We performed a binary and a three-
way classification task. Using entropy-based
discretization (Witten and Frank, 2000), the mean
summary ratings were converted to three nominal
attributes (corresponding to High Cohesion Texts
(HCT), Medium Cohesion Texts (MCT), and Low
Cohesion Texts (LCT) for the three-way classi-
fication task; for the binary task the ratings were
discretized to two attributes (i.e., HCT and LCT).
Note that there is no direct mapping between
system division based on readability score and
summary division based on cohesion judgments:
high-readability systems may still produce some
low-quality summaries. Therefore, only summary
cohesion scores are used in classification. A
classifier was built from the summary data using
BoosTexter (Schapire and Singer, 2000), a general
purpose machine-learning program based on
boosting. The classifier was trained/tested using
leave-one-out cross-validation.

6Direct and indirect objects were mapped to o.

Model Correlation
FRI .010
WO .113
LSA .184
HstO -. 322**
Res -. 125
EMatr .314**

*p < .05 (2-tailed)
**p < .01 (2-tailed)

Table 8: Correlation between human ratings and

cohesion models. Stars indicate the level of statis-

tical significance.

Table 9: Classification accuracy for different trans-
formations. The second column shows the size of
the corresponding feature vector.

6 Results

Baselines Table 8 shows the correlation be-
tween the human ratings and our baseline mod-
els. The Flesh Reading Index (FRI) do not sig-
nificantly correlate with cohesion ratings. This is
not entirely surprising given that FRI has been de-
veloped to analyze texts written by humans and,
thus, can yield counterintuitive results when tested
on machine-written texts. For example, a text with
short sentences will have a higher FRI score than
a longer text, but this fact alone does not make it
more cohesive.

The rest of the baseline models assumes that
semantic similarity across adjacent sentences pre-
dicts text cohesion. The results in Table 8 clearly
do not support this hypothesis. While WO, LSA
and Res exhibit lack of correlation, HstO exhibits
negative correlation with human judgments! We
explain these surprising results by the fact that au-
tomatically generated multi-document summaries
are often fraught with repetitive information. In
this case, similarity scores will be high but the text
itself will not be cohesive.

Entity Matrix: Generative Model In con-
trast to the baseline models, we found a sig-
nificant correlation between the entity-matrix n-
gram model (EMatr) and the cohesion ratings.
The best results were obtained with a bigram

model and transformation 3 (see Table 5). Sig-

nificant correlations were also obtained with tri-

gram and four-gram models (r =.301; p < .05 and

r = .300; p < .05, respectively). We assessed the

effect of compression on the entity matrix repre-

sentation by experimenting with transformations

ranging from 0 to N (0 means no transformations,

whereas N removed all gaps from the data). There

seems to be an optimal compression threshold,

at least for our data: worse results were obtained

with 0 and N transformations, whereas the best re-

sults were obtained with transformation 3 (see Ta-

ble 5). The correlation coefficient in Table 8 sug-

gests that the n-gram model performs satisfacto-

rily given that humans do not perfectly agree in

their judgments. Recall from Section 4 that the

inter-subject agreement was .612.
Our approach highlights the benefits of a more

refined analysis based on distributional and syn-

tactic information.

Entity Matrix: Discriminative Model The

results on the classification tasks (see Table 9)

clearly indicate that our model can be used to iden-

tify incohesive summaries. The model achieves

an accuracy of 97% on the binary classification

task. This amounts to 30% error reduction over the
naive baseline (Base) of always defaulting to the

most frequent class. Expectedly, accuracy for the

three-way classification drops to 64.1%; neverthe-

less, the pronounced difference of 26.6% between
the baseline and the model is preserved. Interest-

ingly, as in the case of n-gram modeling, com-
pressed representations improve the prediction ac-

curacy.
We also analyzed patterns with high discrimina-

tive power, selected by the classifier. Examples of

such patterns include [s x], [x o], [s - s] and

[s s s]. Not surprisingly, most of these patterns
contain symbols in prominent grammatical roles,
reflecting the dominance of CT's CONTINUE tran-
sitions in cohesive discourse.

7 Discussion

In this paper we proposed a novel framework for

representing and measuring text cohesion. We rely
on the notion of entity matrices for representing
entity transitions in text which we claim reveal

patterns of text connectivity. We showed that an n-

gram model trained on entity matrices correlates

significantly with human judgments, in contrast

to state-of-the-art models proposed previously in

Trans Vec. Size 2-way 3-way
Base - 69% ~37.5%~

0 354 73% 53.3%
1 101 97% 59.4%
2 88 97% 59.4%
3 77 97% 64.1%
4 73 78% 64.1%
N 56 73% 62.5%

the literature. Our classification experiments fur-
ther suggest that the representation is suited for

discriminative training; we obtained an accuracy
of 97% on the binary classification task with a

small data set (i.e., 64 summaries).
On the practical side, we have shown that our

models can be used in evaluation of automati-

cally generated summaries. This is an important
result given the amount of manual effort invested
on evaluating the output of summanizers. Since
the entity matrices are not lexicalized, the mod-
els can be trained without requiring large amounts
of data, which is particularly appealing for appli-
cations that generate text automatically. On the
linguistic side, our results yield support to some
of CT's main claims. In particular, we show that
certain types of entity transitions are more typical
of cohesive discourse. Furthermore, the transitions
and their ranking are data driven and thus can be
easily adapted to different text genres.

The approach to cohesion analysis via pattern
mining opens exciting directions for future re-
search. Our future plans include the use of matrix-
based models in text-to-text generation tasks, such
as Lapata's(2003) method for ordering; entity ma-
trix scores can be used to compare alternative or-
derings. An important question for further investi-
gation is the contribution of linguistic information
to cohesion prediction. For instance, by changing
the alphabet and its size, we can quantitatively
measure the effect of syntactic knowledge on the
performance of the cohesion models presented in
this paper. We will also experiment with different
text types and genres as well as with additional co-
hesion models to further leverage the potential of
entity matrices. A promising direction is the use of
grammar induction as a substitute for the n-gram
generative model.

References

R. Barzilay, N. Elhadad, K. McKeown. 2002. Infer-
ring strategies for sentence ordering in multidocu-
ment news summarization. JAIR, 17:35-55.

E. Charmak. 2000. A maximum-entropy-inspired
parser. In Proceedings of the 1st Conference of
the North American Chapter of the Association for
Computational Linguistics, 1 32-139, Seattle, WA.

P. Clarkson. R. Rosenfeld. 1997. Statistical language
modeling. In Proceedings of ESCA EuroSpeech'97,
2707-2710. Rhodes, Greece.

R. Flesh. 195 1. flow to Test Readability. Harper and
Brothers, New York.

P. W. Foltz. W. Kintsch, T. K. Landauer. 1998. Textual
coherence using latent semantic analysis. Discourse
Processes, 25(2&3):285-307.

B. Grosz, A. K. Joshi, S. Weinstein. 1995. Centering:
A framework for modeling the local coherence of
discourse. Computational Linguistics. 2](2):203-
225.

M. A. K. Halliday, R. Hasan. 1976. Cohesion in En-
glish. Longman, London.

R. Hasan. 1984. Coherence and cohesive harmony.
In J. Flood, ed., Understanding reading conipre-

hension: Cognition, language, and the structure of
prose, 181-219. International Reading Association,
Newark, Delaware.

G. Hirst, D. St-Onge. 1998. Lexical chains as rep-
resentations of context for the detection and corrrec-
tion of malapropisms. In C. Fellbaum, ed., WordNet:
An Electronic Lexical Database and Some of its Ap-
plications, 305-332. MIT Press, Cambridge, MA.

W. Kintsch, T. van Dijk. 1978. Toward a model of
text comprehension and production. Psychological
Review, 85:363-394.

T. K. Landauer, S. T. Dumais. 1997. A solution to
Plato's problem: The latent semantic analysis the-
ory of acquisition, induction and representation of
knowledge. Psychological Review, 104(2):21 1-240.

M. Lapata. 2003. Probabilistic text structuring: Exper-
iments with sentence ordering. In Proceeding of the
ACL, 545-552.

D. Lin. 2001. LaTaT: Language and text analysis
tools. In Proceedings of the 1st International Con-
ference on Human Language Technology Research,
San Francisco.

I. Mani, B. Gates, E. Bloedorn. 1999. Improving
summaries by revising them. In Proceedings of the
37th Annual Meeting of the Associationfor Compu-
tational Linguistics, 558-565, College Park, MD.

J. C. Otterbacher, D. R. Radev, A. Luo. 2002. Revi-
sions that improve cohesion in multi-document sum-
maries. In Proceedings of the ACL Workshop on Au-
tomatic Summarization, 27-36, Philadelphia, PA.

P. Resnik. 1995. Using information content to evaluate
semantic similarity. In Proceedings of 14th Inter-
national Joint Conference on Artificial Intelligence,
448-453, Montr6al, Canada.

R. E. Schapire, Y. Singer. 2000. A boosting-based
system for text categorization. Machine Learning,
39(2/3):135-168.

S. M. Weiss, C. A. Kulikowski. 1991. Comn-
puter Systems that Learn: Classification and Predic-
tion Methods from, Statistics, Neural Nets, Machine
Learning, and Expert Systems. Morgan Kaufrnann.
San Mateo, CA.

I. H. Witten, E. Frank. 2000. Data Mining: Practical

Machine Learning Tools and Techniques with Java

Implementations. Morgan Kaufman, San Francisco,
CA.

