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ABSTRACT

Text documents generally contain two forms of structures, logical structures and physical struc-
tures. Loosely speaking, logical structures are sections of text that are both visually and semanti-
cally distinct. For example, a document may have an “introduction”, a “body”, and a “conclu-
sion” as its logical structures. These structures are so named because each section has a distinct
purpose in conveying the document’s logical arguments or intentions. Perfect machine recogni-
tion of logical structures in large collections of documents is an unsolved problem in computa-
tional linguistics.

This thesis presents evidence that a new family of functions on text segments carries information
that is useful for differentiating document logical structures. For any given text segment, a
function of this form is referred to as the cadence, and it is based on a new interpretation of the
vector space representation that Gerard Salton introduced in 1975. Cadence also differs from the
original Salton representation in that it relies on three heuristic transformations based on author-
ship, location, and term coherence.

To test the hypothesis that the cadence of a text segment carries information helpful to differenti-
ating logical structures, a corpus was built containing 2800 documents with manually-annotated
logical structures. Structures representing abstracts, introductions, bodies, and conclusions from
this corpus were clustered with a k-means algorithm using cadence data. Precision and recall
performances were computed for the results, and a chi-squared cross-tabulation test was used to
determine the statistical significance of the clustering results. Precision and recall were highest
for abstracts (P = 0.931 + 0.025, R = 0.992 + 0.026), followed by introductions (P = 0.747 +
0.025, R = 0.802 + 0.026) and conclusions (P = 0.737 + 0.025, R = 0.813 + 0.026), and lowest for
bodies (P = 0.876 + 0.03, R = 0.663 = 0.026). These results suggest that cadence may have
substantial promise for finding logical structures in un-annotated documents.

Thesis Supervisors: C. Forbes Dewey, Jr.,
Title: Professor of Mechanical Engineering and Bioengineering






ACKNOWLEDGEMENTS

My advisor — Prof. Dewey — has given me my most insightful years.

This research was made possible in part by the Defense Advanced Research Projects
Agency and the Bioinformatics and Genome Training Fellowship.






Table of Contents

Section 1 INtroduction.............cciriiiniiiiinmmiin 9
Section 2  Definition of Logical Structures and Related Works ............... 11
2.1 Related Works on Physical Structures ...........ccccooveeviiiiiiiiiiiiineeeeeee, 12

2.2 Related Works on Logical Structures ..........cccccoeoiiiiiiiiieeniinniiieee. 14

221 Statistical MethOAS .........cooceriiiieiiee e 15

222 Rule-based Methods ...........cceiiiiiiiiiiiii e 16

Section 3  Definition of Cadence and Its Computation ...........cc.ecccieneenes 19
3.1 A Hypothesis for Cadence...........ccerviriiiiiimiiiiiieiiiiiiii s 19

3.2 Definition of CadencCe........ccoceeivviiiiiiiiiie e 20

3.2.1  Motivations for Heuristic Operators...........cccococeeviiirviniiiieics e, 22

3.2.2 The Coherence Operator ...........ccccoiieiiiiiiiee et e 23

3.2.3 The Authorship Operator........cc...cceivieiriee et 25

3.24 The Location Operator ............ccciviieiiiiiee et 25

3.3 REMAIKS ... e 26

3.3.1  USEOf TR IDF ..ttt 26

3.3.2 Cadence and Stop WOrdS ........ccceeeiiiiiiieeiiiie et 26

3.3.3 Error Due to Transformations.......cccoovveeeeiiieeei e 26



3.3.4 Heuristic Operators are Not Commutative ...........cccccevveiieiiiiiinecncneeee, 26

3.3.5 Heuristic Framework ..........coooiiiiioiiin et 26

Section4 Empirical Evidence for Cadence .........cococcceuemeemrncimmrenennennnnnnnn 27
4.1 Test Corpus DescCription.........ueeviiiiiiiiiiiiiieiecc e 27

4.2 Experimental Evidence for Cadence .........ccccccoeeiiiiiiiniii e 29

4.3 Cadence and Logical Substructures.............cccccvmriiieiiiiiiineeee e 33

4.4 Relative Contributions to Cadence.........cccceovviiiirieeiiiiicieee e 35

4.5 Empirically Derived Aspects of Cadence.............cccccevviiiiiieen e 37

451 RUIEOFB000 ...ttt cer e ree s s e e e e e e eree s 37

452 The Topic Invariance of Cadence ..........ccccoveeeeeiiiecciiee e 38

4.6 Experimental Results with Entropy.........ccccceiviiiiiiiiiiiii, 41

Section 5  Future WOorK.......cocccmriiiiniinnneneniinsssssmninssessssensnssesssnesnns 45
Section 6 Concluding Remarks..........ccccevieveinicnnsnssscsssssssssssssssnenssssmnsmseennen 47

Section 7  Bibliography........ccccciicinisinssnses s e 49




Section 1 Introduction

Text documents generally contain two forms of structures, logical and physical. Loosely
speaking, logical structures are sections of text that are both visually and semantically
distinct. For example, a document may have an “introduction”, a “body”, and a “conclu-
sion” as its logical structures. These structures are so named because each section has a
distinct purpose in conveying the document’s logical arguments or intentions. Physical
structures, on the other hand, are conceptually different from logical structures. They are
based solely on the physical layout of the document. Examples of physical structures are
pages, columns, sentences, paragraphs, headers, etc. Physical structures by definition are
demarcated with physical markers, whereas logical structures are demarcated by a
combination of physical markers and conceptual boundaries.

The ability to discover logical structures automatically and perfectly within large collec-
tions of heterogeneous documents continues to be an unsolved problem in computational
linguistics and computer science. The research described in this thesis tests the hypothe-
sis that a particular characteristic of all text segments contains information that is useful
in differentiating logical structures within documents. This thesis refers to this character-
istic as cadence.

The ability to demarcate structure in text with a high degree of precision and recall would
have many uses and would serve as a foundation for many text automation needs. For
instance, one would be able to query a collection documents for all documents containing
a particular phrase only if that phrase was in the “introduction” section. One would also
be able to enhance document categorization.

This introduction is followed by 5 sections. Section 2 presents a formal definition for
logical structures and reviews the literature on document logical structure analysis.
Section 3 presents a formal definition for cadence and a method to compute it. Section 4
presents evidence that cadence contains information useful for differentiating logical
structures. Section 5 offers remarks on future work and Section 6 concludes.
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Section 2  Definition of Logical Structures and
Related Works

The common notion that documents are made up of logical structures, or components that
are topically cohesive, is intuitive. This intuition, however, has not led to a definition for
logical structures that is both widely accepted and that does not rely on some subjective
interpretation. This thesis uses the following working definition put forth by Summers:

The logical structure of a document consists of a hierarchy of segments of
the document, each of which corresponds to a visually distinguished se-
mantic component of the document [1].

Subjectivity arises when a high degree of discrimination is desired between one structure
and another. Consider a large heterogeneous collection of text. The specification of all
logical structures that appear in the collection will undoubtedly yield many overlapping
structures. Some documents may consist of chapters which have titles. Each chapter may
also be subsequently divided into sections and subsections. For other documents, how-
ever, the notion of chapters may not exist and these documents may be comprised of only
sections, subsections and their titles. Chapters typically connote more significance than
sections, and therefore can be thought of as distinct from sections. On the other hand,
many documents exist where one can arguably replace chapters for sections or vice-versa
and not change their logical intent.

Subjectivity also arises when seemingly similar logical structures are referred to by
different names in different documents. For instance, the “Abstract” logical structure is
referred to as a “Summary” for documents in the journal Cell. A knee-jerk reaction is that
these two structures are identical except for their names, but the possibility exists that
they are indeed different at some semantic and visual level. Without consulting every
author of every structure, subjectivity is required to arbitrate, especially for large collec-
tions of text.

The notion of a set of logical structures for a set of documents is termed a document
logical model. The number of possible logical structures for a large collection of docu-
ments make it unlikely that one document model can be defined that describes every
document to a fine degree of granularity. To make the problem of discovering logical
structures tractable, all of the methods reviewed in this section limit the scope of possible
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logical structures in their respective document models. The work of this thesis also limits
the scope of logical structures by using a document model consisting of only the abstract,
introduction, body, and conclusion structures.

2.1 Related Works on Physical Structures

The research arena for automatic structure extraction for text dates back several decades.
It has matured greatly with the confluence of mathematics, computer science, and more
recently, computational linguistics. Electronic documents are generally thought of as
having physical structures and logical structures. This thesis concerns logical structures,
but a review of both areas is given here for completeness.

Previous work in discovering physical document structures falls mostly along rule-based
or heuristic methods (of which syntactic and grammar-based are subsets) and statistical
methods. Thorough surveys of many methods are given by Summers [1], S. Mao et al [2],
R. Haralick [3], G. Nagy [4], and H. Fujisawa, Y. Nakano, and K. Kurino [5]. This
section discusses the most important methods of physical structure analysis in more
detail.

Rule based methods are typically top down or bottom up methods [6, 7, 8]. Wahl et al [9]
performed some of the earliest work on page segmentation from scanned documents in
1982. They adapted the generic Run Length Smoothing algorithm found in other applica-
tions and applied to it text segmentation. Their algorithm was shown to be able to differ-
entiate text, horizontal and vertical solid black lines, graphics and halftone images.

Fletcher and Kasturi [10] developed a bottom-up system in 1988 for use on OCR’ed
(Optical Character Recognition) documents. The system uses connected component
analysis that is not sensitive to font style and size. This was achieved by setting a thresh-
old of eight connected pixels where the number eight was derived empirically. Each
connected component is then circumscribed by rectangles and larger components are
built on the inter-connection between eight smaller components. To separate text from
graphics, a histogram of frequencies of components as a function of there areas is built.
Manual inspection of the histogram is required to find a threshold that would separate
text from graphics.

O’Gorman [11] reported a bottom-up system in 1993 called Docstrum that uses a nearest
neighbor clustering technique to identify text lines and text blocks in OCR’ed documents.
This system was a breakthrough in its time because it was nearly independent of skew-
angle (page orientation) and line-spacing. Docstrum also did not assume a Manhattan
layout’, which many of its predecessors required.

Another bottom-up method is the use of Voronoi diagrams as proposed by Kise et al in
1998 [12]. A Voronoi diagram of a collection of objects is a partition of the space around
the objects into cells such that each point in the same cell of an object is closer to that
object than any other objects in consideration. The algorithm worked by first creating a

" A layout style where blocks of text are separated by either horizontal or vertical demarcations.
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highly granular Voronoi diagram of an OCR-ed document and then iteratively deleting
edges of cells that satisfied specific area and distance requirements.

Another method proposed in 1998 was by A. K. Jain and B. Yu [13]. They proposed a
method of segmenting pages by extracting segments that that are connected to one
another using a technique based on Block Adjacency Graphs. Although their method was
reported to work well on business letters and forms, the emphasis of their algorithm was
on scientific and technical articles where it can reliably differentiate text, tables, and
images. They also proposed a document model tailored for technical documents. Their
algorithm works by first converting OCR-ed documents into binary black and white
images using a fixed threshold at 128 bits. The algorithm then breaks the image into a set
of blocks by looking at each pixel row of the image and defining a new block if the
previous pixel row’s black run-length at that location is different than this row’s current
run-length. To identify text and non-text regions, the authors proposed the following
heuristics:

A block is a text block if i) its height is less than 0.3 inch and the con-
nected components in it are horizontally aligned and 1i) its width is greater
than 1 inch and the connected components in it have roughly the same
height”.

A block is an image block if 1) the smaller of its height and width is larger
than 0.5 inches and ii) the ratio of the number of black pixels it contains to
the its area in pixels is larger than 0.4.

A block is a table block if 1) the top and bottom horizontal lines of the ta-
ble have similar lengths (if those lines are present) and ii) the average
height of its connect components is less than 0.3 inches.

Top-down methods for physical structures typically start with an entire document and
iteratively split it into smaller units. The splitting of a unit stops when that unit satisfies
some prior rule. Nagy & Seth [14] developed a top-down system called Gobbledoc and
reported it in 1992. This system allows user to define strict layout rules for batches of
similar documents. The authors give the following set of rules as an example: “The title
lines are set in Melior 36/38 point boldface, centered...Title lines can be from 1 to four
lines...The title line precedes the byline and the separation between them is 38-point
leading.” In addition to these strict rules, Gobbledoc also allows the administrator to
define grammar rules to label physical structures such as paragraphs and sentences. The
combination of strict and grammar rules allow for an algorithm to guess where to demar-
cate any given document into X and Y segments. The final task of labeling each segment
becomes trivial since each segment is defined by the rules it satisfies (i.e. if a segment
satisfies all of the rules given above for title, it is a title).

Baird et al. [15] reported a top down system developed at AT&T Bell Laboratories in

1990. This system was designed to work specifically on Manhattan-type documents and
uses a technique the authors called shape-directed covers. In general, top-down methods
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have longer run times than bottom-up methods because they require recursive split-and-
then-backtrack steps. Bottom-up methods do not incur these backtracking steps but pay a
penalty on error rate because local evidence for decision-making is sparse at the initial
phase of execution. With the system proposed by Baird, their technique tries to minimize
the number of backtracking steps by identifying the most greedy split steps and executing
them in order all the while maximizing the statistical support for their split criteria.

Rule-based approaches can become arbitrary unless they are constrained by an underly-
ing grammar. Work by Chou in this area uses a combination of rules and statistical
methods to introduce grammar by assuming that an underlying stochastic process for
grammar is present. In the earlier work reported in 1994 [16], Kopec and Chou used a
Markov model to generate likelihoods for possible outcomes for a set of predefined
templates. The model used heuristically chosen transition probabilities and does not give
suggestions for estimating these parameters. In his work reported in 2001 [17], Tokuyasu
and Chou refined the notion of using communication theory with an algorithm named
Turbo Recognition that was developed in collaboration with Microsoft Research. This
algorithm used two Markov models to describe physical structures in the horizontal and
the vertical dimensions. The authors implemented a prototype and demonstrated its
effectiveness in decoding physical structures in the face of substantial OCR noise.

In 2003 [18], Kanungo and Mao reported on a system they developed which uses a
segmentation algorithm that models a document’s physical structure as a hierarchy. The
segmentation algorithm is a weighted finite state automaton where the weights represent
probabilities for each possible outcome. The probabilities are derived from ground truth
data.

2.2 Related Works on Logical Structures

Discovering logical structures has generally been recognized to be more difficult than
discovering physical structures. Overall performance of existing systems for logical
structures continues to lag behind those for physical structures [19]. Many people have
proposed many solutions to varying aspects of this problem. In 1975, G. Salton proposed
one of the first mathematically rigorous methods for computing the similarity between
text segments in a seminal paper titled “A Vector Space Model for Automatic Indexing
[20]. We give a thorough review of this work and of Salton’s subsequent work in the
1970’s because it is the foundation for the concept of cadence.

Salton first developed his vector space model for text with the goal of developing deci-
sion rules for determining which terms in documents should be indexed. The intuition is
that not all terms should be indexed equally because not all terms contributed the same to
the precision-recall performance of an information retrieval (IR) system. Two decades
before, Luhn at IBM demonstrated that scoring terms in proportion their frequencies in
documents can increase retrieval performance over systems where all terms were treated
equally [21]. This is particularly true when there are moderate numbers of these high
frequency terms and when they are not uniformly distributed across the document collec-
tion. For certain document collections where these two conditions are not met, the
retrieval performance is actually worse. This observation led Karen Sparck Jones of
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Cambridge University to propose an alternative weighting method called Inverse Docu-
ment Frequency which emphasized terms which appears in few documents [22]. The
notion here is that these terms are specific to a small and exclusive set of documents, and
so they are better positioned to distinguish these documents from the rest of the collec-
tion. It turns out that performance gains afforded by this method are also collection
dependent. Salton’s concept of discrimination value analysis was a breakthrough in its
time because it was the first method of indexing that was not collection dependent. His
technique is also computationally simple. Salton first describes the concept of discrimi-
nating value analysis in his 1971 paper titled “Experiments in automatic thesaurus
construction in information retrieval” [23] and in another paper in 1975 titled “A theory
of term importance in automatic text analysis” [24]. These two papers demonstrated
significant precision gains for an IR system when it optimizes the discrimination proper-
ties of terms.

The use of the vector space model or other methods for logical structure identification
falls along two lines [1, 2]: statistical methods or rule-based methods. Rule-based meth-
ods can be further divided into heuristics or semantic and grammatical methods.

2.2.1 Statistical Methods

Tateisi and Itoh [25] developed a system in 1994 that uses stochastic syntactic analysis to
classify components of a document as text or graphic. If a component is text, it is further
classified as into several possible logical structures, such as headings, first and last lines
of a paragraph, continuation lines of list items, ordinary lines, etc. The syntactic nature of
this method first classifies a component into classes where each class is defined by a set
of rules (or grammar). The grammar is supposed to be similar to that used to classify
terms into parts of speech, hence the name syntactic. Associated with each rule is the
probability of that rule being associated with a particular line. The authors do not present
details on how the probabilities are chosen.

In 1997, Brugger, Zramdini, and Ingold [26] proposed a document model for logical
structures based on the concept of n-grams. Their method relies on the specification of a
tree where each node represents an instance of logical structure. The tree requires that n-1
seed nodes are constructed and these seed nodes determine the probabilities of the n™
node. To derive the probabilities for each possible outcome of a structure, the authors use
a generalized means function.

Dengel and Dubiel [27] describe a system for identifying the logical structures common
in business letters in 1996. The system requires a training-set of documents as inputs and
clusters their components into a concept hierarchy. The concept hierarchy is defined a
priori and contains for each concept (logical structure) a set of attributes and their values
that most differentiates one concept another in the hierarchy. Document components are
classified into this hierarchy by examining how many attributes overlap that of a concept.

Ahonen [28] implemented in 1996 the first known application of grammatical inference

to the problem of inferring document type definitions for SGML documents. The method
infers knowledge about element order, whether elements are optional or required, and
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whether elements were iterative. Another approach is given by Young-Lai also in 1996
[29]. The difference between the two approaches is that the latter assumes a stochastic
model for errors — such as misspellings — present in large collections of documents. The
work by Ahonen, however, assumes that no such exceptions are present.

Key and Wong [30] introduced another statistical inference method in 2001 building on
methods proposed by Ahonen and Young-Lai. The method proposed by Key amd Wong
uses a probabilistic finite state automaton. They derive the parameters for these transition
probabilities empirically via a test collection and its transition frequencies.

2.2.2 Rule-based Methods

The literature contains many descriptions of rule-based methods. This section only
describes some of the more important ones.

Bayer and Walischewski [31] describe a system developed at Daimler-Benz Research in
1995 which uses a semantic network to extract logical structures from business letters.
The authors developed the system using their own semantic network to specify relation-
ship for components in their document model. They also extended the notion of the
traditional semantic network by attaching to each structure grammatical attributes that
specifies spatial constraints relative to other structures.

In 1997, Wenzel [32] developed a semantic-based logical structure extraction system for
use with business letters. The core component of this system is a pattern matcher that
tries to detect key phrases to match against pre-defined set of logical structures. The
system allows users to declare these logical structures and phrases via a pattern language
developed by the author.

In 1993, Saitoh, Tachikawa, and Yamaai [33] reported their system for detecting physical
components and classifying these into logical structures. The system classifies objects as
captions, headers, footers, or bodies. Objects are classified on the basis of satisfying
simple rules. An example rule is that a text component is a caption if it is close to a
diagram or is it near the bottom of diagram-frames or tables. The authors do not describe
how they set thresholds for each rule; e.g., what does it mean to be close to a diagram?

Niyogi and Srihari [34] developed a system in 1995 that segments documents into
physical structures, groups these physical structures into logical units, and assigns
reading orders for the logical units. The system uses hierarchy of rules to achieve orga-
nizing rules into manageable classes. The authors reported that their system uses 160
rules. 114 of these rules are designed specifically for newspapers and the remainder can
be used with other document types.

Salton et al. [35] proposed a text decomposition method in 1996 based on his vector
space representation model. The method proposed a unified way to discover functionally
homogeneous excerpts known as segments and groups of not-necessarily contiguous
excerpts known as themes. A segment is defined as a contiguous piece of text that is
internally linked but is largely disconnected from adjacent text. A theme is a group of text
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excerpts that address a common topic. The method computes similarity scores between
text excerpts. To identify segments, groups of 5 neighboring paragraphs are examined
one at a time for similarity above a defined threshold of 0.2. A segment is found if two or
more of the paragraphs in a group are related by a similarity greater than the threshold.
To find text themes, a relationship map is constructed that represents excerpts as nodes
and these nodes are connected by links if they share a similarity value greater than the
threshold value of 0.2. All possible triangles in this map are then considered by comput-
ing centroid vectors as the averages of the three vectors in the respective centroids.
Similarities of centroids are then computed and centroids are merged if their similarities
exceed a given threshold. When no further merging is possible, themes are identified as
the final set of triangles remaining.

Lin, Niwa, and Narita [36] developed a clever system in 1997 to extract the logical
structure of books by taking advantage of information in their table of contents. Their
system automatically locates the table of contents, extracts heading and pagination
information, and then uses this information to perform text matching within the body of
the book.

Kochi and Saitoh [37] reported the development of a system in 1999 where document
templates are matched against individual documents to extract logical structures. The
system assumes that all documents to be processed come from a known template. The
matching algorithm computes a distance measurement between each structure and
template features and matches documents to templates where the global distance for all
features is minimum. The authors do not describe their method for specifying weights. A
similar algorithm is described by Summers in 1998 [1]. The work by Summers is more
general in the sense that it deals with a hierarchy of logical structures as well as many
more templates. Summers also describes but does not implement ways in which this
algorithm can be modified to use machine learning techniques to achieve higher perform-
ance.

In 1999, Ishitani [38] from Toshiba Corporation developed a system for detecting logical
structures by dividing the process into four modules. Each module relies on simple
heuristics. Each of the four modules can collaborate with other modules to extract logical
structures where there are imperfect layouts and/or errors. The first module classifies
each text line into one of five categories: normal, indented, centered, new line, or previ-
ous to new. The second module labels connected text line as one of four structures: title,
paragraph, list, or formula. The third module segments connected lines that could not be
classified into any of the four structures into smaller segments for classification by the
second module. The fourth module groups objects that have been over-segmented. An
example of collaboration between modules is when a text component is not classifiable
into a category by module one, so this module sends the component to either module 3 or
4 for modification before trying again.
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Section 3 Definition of Cadence and lIts
Computation

There are many ways to describe a segment of text. One could describe it at a semantic
level where one speaks of its topic or intention. The alternative is to describe it statisti-
cally, such as how many terms it has, the frequency of each term it contains, or as in the
case of this thesis, its cadence. This section introduces cadence as a new way of describ-
ing text segments. The next section tests the hypothesis that cadence can be useful in
differentiating text segments from differing logical structures.

3.1 A Hypothesis for Cadence

Informally, the cadence of a text segment is the ‘importance’ of its words as a function of
fractional position in the segment. One can think of cadence as a plot of the importance
of each term in the segment versus its relative position; the importance of the first term
would be plotted at position 0% followed by that of the second term, that of the third term
and so forth until the last term’s importance is plotted at position 100%. We are assuming
for now that each term’s importance can be specified somehow. Consider a hypothetical
text segment that has important terms in the beginning, not-so-important terms in the
middle and it ends with important terms. Its cadence would be shaped in the form of the
U similar to the cartoon of Figure 1. One can imagine that other segments can have more
complex or less complex cadences. Some may be shaped in the form of sinusoids. Some
may be flat, and some may be complex combinations of different profiles.

\/

0 0.25 0.5 0.75 1

Termm Importance

Term Position
Figure 1: lllustration showing a hypothetical cadence

for a text segment where the beginning and ending
terms are more important than the middie terms.
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The notion of cadence as presented thus far is fairly simple. If we assume that all terms in
a language can be assigned some importance, then it is clear that there exists a cadence
for any text segment from that language. Whether or not that segment is meaningful does
not matter. The only requirement is that the segment contains one or more terms and that
each term has a definable importance . Cadence may be intuitive to grasp, but it is not
obvious why cadence contains useful information. If this is not obvious, one may ask
“where did the motivations for representing text in this way come from?” It turns out that
this thesis is a result of fortuitous observations that under certain circumstances, text
segments that have the same logical structures show similar cadence plots. The reason for
this is not clear, and this thesis does not attempt to answer that question. Instead, this
thesis hypothesizes that cadence can be useful, and it presents statistically significant
evidence to validate this hypothesis.

3.2 Definition of Cadence

Consider a set of text documents where terms have been stemmed, stop words' have been
removed, and the authorship of each document is known. For these documents, one can
arbitrarily extract » text segments where each segment is a contiguous subtext. For these
segments, one can define vectors of term importance of the form

\7,-=(WnaW,-z,~~vWim,) (1)

where the i indicates the i segment extracted from this corpus and the w’s are term
importance weights assigned to each term in the segment. The order of each weight — as
indicated by the second subscript — corresponds to the same order that its respective term
appears in the text. Note that this formulation is sufficiently general to accommodate
differing methods of computing term importance. Note also that these segments may
contain different number of terms and therefore may occupy spaces of different dimen-
sions; the dimension of a segment will vary according the number of terms in that seg-
ment and so the dimension is designated as m;. To compare vectors, one must bring them
into the same dimension. One method to do this is to transform each vector ¥, into a

continue function f;(x) from the interval [0,1] to the reals. fi(x) is a function which interpo-
lates the values in v, . Formally,

Let y=x(m, —1)+1

f@=vly1+6-b eIy -0y D (2)

" It is theoretically possible to have a text segment with one or more terms, but the cadence is undefined.
These cases are possible because the formal definition of cadence requires the removal of stop words from
a segment. Text segments consisting of only stop words will therefore have no definable importance.

* See 3.3.2 for more details on stop words.
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The notations | y | and |—y-] indicate the lower and upper integer bounds, respectively, of
the real value x(m, —1)+1. %,[]] and ¥, »]] uses array notation to indicate the ele-

ments of the vector ¥, at the lower and upper integer bounds.

Figure 2 illustrates an example of how the function f;(x) and the vector ¥, are related for a

case where the dimension of ¥, is ten:

trigf | * @ 1t

12 .. 10 0 .. 1
Component # of v, Real line [0,1]

Figure 2: lllustration showing that f(x) is the interpolation of the tf-idf weights over the real line
from O to 1. This illustration uses the tf-idf term weighting scheme.

The functions f;(x) can then be operated on by three heuristic operators A y( ) which are
specific to each segment as follows:

F,(x)=H, (Hiz (Hi3 (fz (x)))) (3)

These operators are described in more detail the next subsection. For now, assume that
these operators together produce a continuous function Fj(x). Defining this new function
Fi(x) for the set of n segments would result in the following set of functions

F(x)=H, (le (H13 (fl (x))))

Fn (x) = Hn] (Hnl (HnS(fn (x))))

A function F(x) of this form is defined as the cadence of a text segment. For any given
segment, one can define a class of these functions by varying the method one chooses to
weight term importance. In much of the experimentation for this research, the #fidf
weighting scheme was used. For the rest of this thesis, we use the notation
v, =(tf -idf,, .o -idf,,,....of -idf;, ) unless otherwise noted. Although most of the ex-

periments for this research uses the ¢fidf metric, this thesis also presents preliminary
evidence that other metrics, specifically one based on term entropy, may be equally
effective at differentiating logical structures. -
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The only items in the definition of cadence that require further specification are the
heuristic operators H y( ).

3.2.1 Motivations for Heuristic Operators

The motivation for heuristic operators came from fortuitous observations of results from
exploratory experiments. Results from those experiments formed two plots of raw tfidf
weights unaltered by heuristics. These plots are shown in Figure 3. The plots show that
very slight similarities exist between plots sharing certain characteristics. Specifically, it

0.7 0.7

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

(a) (b)

Figure 3: Plot (a) and (b) are plots of tf-idf weights for text segments as a function of position in their
segments. Plot (a) is for three abstracts from two authors. Note that the two solid lines from the same
author look slightly different than the dashed line from a different author. Plot (b) shows the weights for two
text segments that are from the introductions of two different documents sharing the same author. Finally,
note how the plots in (a) different from those in (b) and that those in (a) come from a different region of
documents than those in (b).

was noted that if two abstracts came from the same author, their tfidf profiles were
sometimes more visibly similar than for two segments from different authors. Similarly,
if two segments appear roughly within the same region of their respective documents
(beginning, middle, end), it was noted that their profiles sometimes shared more similari-
ties than if they had came from different regions. At the time, these observations were not
statistically significant nor did they infer causality between authorship (or location) and
profile characteristics with reasonable confidence. They did, however, bring up the
possibility of applying a series of heuristics to amplify hidden information present in #fidf
profiles. A major section of this thesis will show that these early observations have since
been validated with statistically significant findings.

The third heuristic operator was not inspired by any experimental findings. It simply has
to do with a hunch that segments representing the same logical structures share the same
level of terminological coherence. For example, one may expect abstracts to be generally
more terminologically cohesive than bodies. One may also expect introductions and
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conclusions to be more cohesive than bodies, but less so than abstracts. The motivation
for this heuristic is that if these notions are true, taking advantage of them may help
differentiate abstracts from introductions and introductions and conclusions from bodies.

3.2.2 The Coherence Operator
The operator H,,( ) is the first operator for the i segment. It is called the coherence

operator and its goal is to introduce terminological coherence information into the tf'idf
vector.

One can think of this operator intuitively by imagining two text segments representing
the same logical structure from different documents. Imagine also that these segments
address completely different fields of interest. An example would be an abstract from an
article on physics and an abstract from an article on anthropology. Imagine examining the
nouns in each segment and counting the ones that are hyponyms or hypernyms’ of other
nouns in the same segment. In a sense, this count is a measure of the terminological
coherence of a text segment. The higher count, the more coherent the segment is because
the same concepts are being referred to repeatedly by synonyms. Likewise, if the count is
low, most nouns are referring to completely different concepts and none can be said to be
a synonym of another.

For our thought experiment, what if it was true that the ratio of the number of coherent
nouns to the number of terms in a segment was about the same for our physics and
anthropological abstracts? More generally, what if it was true that similar logical struc-
tures tend to share this ratio and that the raw tf'idf weights do not sufficiently draw out
this fact? For example, it is not far-fetched to imagine abstracts to be generally more
terminological cohesive than bodies. To “inject” this information into the functions fi(x)
to aid in the discrimination of different logical structures is precisely what the coherence
operator is designed to do.

The operator takes as its arguments the functions fi(x). Recall that these functions are
simply the raw tfidf vectors transformed onto the real line. The operator is applied using
the following algorithm:

1) Define the raw vectors
B = idfy o f - idf e tf - idf,,) (4)
for a corpus of documents where terms are stemmed and stop words have

been removed. If there are n segments from this corpus, there would be #
of these vectors. For each vector ¥,, define fi(x) as in Equation ( 2).

" According to the WordNet glossary: “A hypernym is a term used to designate a whole of a class. Y is a
hypernym of X if X is a kind of Y. A hyponym is a term used to designate a member of a class. X is a
hyponym of Y if it is a kind of Y.
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2) For each function fi(x), compute a coherence ratio r, = 0%1 . Recall

that m; is the number of terms in the i segment. c; is the number of syno-
nyms in the i segment. ¢; can be found with the following substeps:

a) For each noun” term in the segment, query the WordNet 2.0 data-
base for its hypernyms and hyponyms.

b) Collect into a set S; all unique terms as a result of the WordNet
queries using all of the nouns in the /* segment.

¢) c;is the number of terms in the segment that also appear in S;.

3) Histogram all functions fi(x) into 5% bins according their coherence ra-
tio. The first bin is for functions where 0 <7, <0.05, the second group for

functions where 0.05 <7, <0.10 and so forth until 0.95<r, <1. The bins

quantized to 5% is arbitrary. No studies have been done to study the ef-
fects of using a different binning strategies.

4) For each bin, find the mean function of that bin
- 1
f)==> fi(®

g ¢

where g is the number of function in the respective bin.

5) Define the following difference function for each function f;(x), con-

sidered with respect to its bin mean, ?(x) :

fe,(x) = f,(x)- f(x)

6) Finally, the H ,.l( ) operator for all functions f;(x) is defined as

H,(f,(0)= f,(x)-T, fe,(x) (5)

* To identify a term as a noun, one could use a parts-of-speech tagging algorithm. This thesis does not use
such a system. Instead, each term is fed to the WordNet 2.0 database, and a term is identified as a noun if
WordNet identifies one of its senses as a noun. This method over-recognizes nouns, but this is acceptable
since erring in this way is in line with the goal of injecting this type of information into the raw vectors. A
disadvantage of this approach is that it may not recognize domain specific nouns, such as the names of
proteins.

24



where T, is called the coherence attractor. It is a scalar on the interval
[0,1] and chosen to be the same for all text segments. This thesis arbitrar-
ily chooses the value to be 0.10.

Intuitively, this algorithm preserves the mean and lowers the variance of each bin. That
s, it shifts each points in the function fi(x) closer toward the corresponding point of its

bin mean function 7(x) .

3.2.3 The Authorship Operator
The operator H,,( ) is the second operator for the i segment. It is called the authorship

operator. Its goal is to incorporate author information into the image of the fi(x) function
under the coherence operator. The operator is applied using nearly the same algorithm
used for the coherence operator. The inputs to this operator are the functions H, (f;(x)):

1) Bin all functions H,(f;(x)) according to their authorship. In the case

of multi-author documents, pick a convention for which authors to use
(first, second, etc.). The algorithm implemented for this research used only
the first author .

(2) The remaining steps are similar to steps (5) and (6) for the coherence
operator. That is, find the mean function for each bin and call it f(x).

Then find the difference function fa ,(x) for each H,(f,(x)) relative to
its bin mean. Finally, the location operator is defined as

HiZ(Hil(,fi(x))):Hz'l(.fi(x))—]:zﬁi(x) (6)

where Ty, 1s called the authorship attractor This thesis chooses a value of
0.10 for 7,.

3.2.4 The Location Operator

The third operator H,( ) is called the location operator. It introduces information about

where in the document the i segment came from, relative to the document beginning,.
This thesis uses segmentation quantized to 5%. Perhaps finer or coarser segmentations
are more informative. The author is not aware of a scheme for optimizing segmentation
in relation to cadence.

Some text segments will inevitably straddle bin demarcations. One may use an arbitration
method to bin these straddlers to one side or the other. This thesis counts number of terms
on each side of the demarcation and bins segments to the side with the most terms. The
steps for the location operator are the same as the authorship operator. This operator bins
all functions H,(H,(f,(x))) according to whether or not their corresponding text

" The choice of only using the first author leaves open the question as to whether an optimum choice exists.
Perhaps using more than one author or using only the last author may yield better results.
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segments came from the first 5%, second 5%, third 5%, or so forth of their documents.
The operator is defined as

H, (Hi2 (Hil (f;(x)))) =H, (Hil(fi(x)))_ T;ﬁz(x) (7)

where T; is the location attractor and ﬁi(x) is the difference function defined analo-
gously to the ones for coherence and authorship. This thesis chooses the value 0.10 for 7.

33 Remarks

There are several remarks about the prescribed formulation of cadence and the use of
heuristics.

3.3.1 Use of TF:IDF

As noted previously, much of the research in this thesis uses the tfidf weighting scheme
for term importance. In theory and in practice, one could use another term scoring
scheme. The question remains unanswered as to what is the optimal scheme for differen-
tiating logical structures. Section 4 below first presents evidence for the utility of cadence
using tf-idf and then follows it with preliminary data using another metric based on term
entropy.

3.3.2 Cadence and Stop Words

Throughout section 2.0, stop words are mentioned as being removed from segments
before the construction of v,. This thesis uses the stop word list from the SMART

retrieval system developed by Salton in 1971 [39]. It should be noted that the SMART
stop word list can remove more than it should.

3.3.3 Error Due to Transformations
The transformation of the ¥, vector into a real-valued function fi(x) assumes that it is

meaningful to make something continuous out of something inherently discrete. There is
no deep reason why this should be done at all. One should recognize, however, that in
doing this transformation, one is “straying” from the data. One could theoretically
minimize this type of error by comparing cadences near points where data actually exists.
A thorough treatment of this type of error would be of interest in the future.

3.3.4 Heuristic Operators are Not Commutative

The authorship and location operators are not algebraically commutative. That is,
H,(H,(H,))=H,(H,,(H,()). The author has not experimented with using a
different order and is not aware of a reason to prefer one order over the other.

3.3.5 Heuristic Framework

Does there exist an over-arching framework for deriving or choosing good heuristic
operators? The author believes that this continues to be an unsolved question. The author
also believes that an understanding of this topic will be of fundamental importance to the
advancement of cadence in the future.
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Section 4 Empirical Evidence for Cadence

One hypothesis of this thesis is that cadence carries information useful for differentiating
segments representing different logical structures. Formally, the two hypotheses tested
are:

Hy: Cadence carries no useful information in differentiating abstracts, in-
troductions, bodies, and conclusions.

H;: Cadence carries information useful in differentiating abstracts,
introductions, bodies, and conclusions.

This section presents data from testing these hypotheses. The general structure of the test
is as follows:

1) A corpus of about 2,800 documents was assembled and manually anno-
tated. The annotations demarcate the abstract, introduction, body and con-
clusion of each document. Not all documents contain all structures.

2) Equal numbers of text segments from each of the four logical structures
were randomly selected from the corpus.

3) A k-means clustering algorithm with k=4 was to discover 4 natural
groups of segments based on cadence information.

4) A Chi-squared test is used to assess the significance the clustering re-
sults.

This section first describes the corpus and then presents data from the hypothesis
test. This section also presents experimental data comparing various aspects of
cadence.

4.1 Test Corpus Description

The annotated corpus used for the hypotheses test in this section contains over 2,800
documents. The documents came from two main sources. The first source is from the
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standard Cranfield, Medlars, and Times collections of documents [40, 41]. The Cranfield
collection contains 424 abstracts in aerodynamics. The Medlars collection contains 450
abstracts in medicine. The term Medlars is now used to denote a file format for docu-
ments in the PubMed database. The Medlars collection referred to in this thesis is the
1969 collection. The Times collection contains 425 world news articles from the 1963
editions of Time Magazine. These three corpora have been used as standard research
corpuses since the 1970’s.

The second source was donated from EBSCO Industries, Inc. This collection contains
2,350 documents spanning a large range of topics, from information technology technical
support to lawn mower repair instructions. Each document from this collection contains
an abstract, introduction, body, and conclusion. Table 1 summarizes the contribution of
each source to the annotated test corpus.

Source Abstracts Introductions Bodies Conclusions
Cranfield 424 - - -
Medlars 450 - - -
Time - 450 450 450
EBSCO 2,350 2,350 2,350 2,350
Total 3,224 2,800 2,800 2,800

Table 1: Contributions from the sources of the annotated test corpus.

Figure 4 shows that the corpus obeys the usual form of Zipf’s Law in that word frequen-
cies obey a power law distribution with exponent approximately -1. The existence of this
law indicates that words in this corpus are distributed similarly to generally accepted
corpora in English.

The annotated test corpus is actually a subset of a larger un-annotated corpus of 48,000
documents. The tfidf weights of each non-stop term in the annotated documents are
computed relative to the entire 48,000 documents. That is, the ¢fidf weight of the i™ term

in the j* document is

tfij -idf,.j =ny .log(%J (8)

J
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where n; is the number of occurrences of the i™ term in the j* document, N is the corpus
size (in this case equal to 48,000), and D; is the number of documents in the corpus in
which the /™ term appears at least once. In theory, one can compute term weights relative
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Figure 4: Zipf plot of for terms in test corpus.

to just the annotated corpus, but it turns out that for a corpus size under 5000, the utility
of cadence is substantially diminished. It is unclear how or why this phenomenon exists.
Experimental results demonstrating it is presented in 4.5.1

4.2 Experimental Evidence for Cadence

1000 abstracts, introductions, bodies and conclusions were randomly selected from the
annotated corpus for a tf)tal of 4000 segments. Figure 5 shows the cadence plots for a
subset of these segments .

The 4000 cadences were randomly assigned to four unlabeled clusters. A k-means
clustering algorithm with k=4 was applied to the clusters. Results are shown in Table 2
along with precision and recall statistics.

Cluster 1 contains all cadences that are classified by the k-means algorithm as abstracts.
Cluster 2 contains cadences classified as introductions, cluster 3 for bodies, and cluster 4
for conclusions. The table highlights cadences that were correctly classified in red.

* Microsoft Excel limits the number of series on one graph to 255 so these graphs show cadences for 255
randomly selected segments.
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Cluster Abstracts Introductions Bodies Conclusions

1 995 39 23 10

2 3 755 163 100

3 0 48 680 31

4 2 158 134 859
Precision 0.933+0.025 0.739+0.025 0.896+0.025 0.745+0.025
Recall 0.995+0.026 0.755+0.026 0.680+0.026 0.859 + 0.026
Balanced-F 0.963 0.747 0.773 0.798

Global Precision: 0.822 + 0.013
Chi-squared Statistic: 7381

Chi-squared p-value (15 degrees of freedom): less than 0.005

Table 2: k-means clustering results with parameter k=4.

Results shown in Table 2 is used to test between the hypotheses:

Ho: Cadence carries no useful information in differentiating abstracts, in-
troductions, bodies, and conclusions

Hy: Cadence carries information useful in differentiating abstracts,
introductions, bodies, and conclusions.

A chi-squared statistic 7 for these results is determined using the formula

where N;; is the number of segments in the (ij) entry of the table. The value 250 is the
expected number of segments in each cluster if each segment had the same likelihood of
being assigned to any of the four clusters. The corresponding p-value with 15 degrees of
freedom is significantly less than 0.005. This suggests that the clustering results in Table

2 have less than 0.005 probability of occurring under the scenario of uniformly random

group assignments. Since the performance metrics are very good, one can infer H; and

reject Ho.

Precision and recall confidence intervals are also reported in the table. Precision for the j*

column is computed as:

max; (ni,j)

Z n;
i

precision ; =
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where j is the column index and it represents the segment type (abstract, introduction,
body, conclusion), i is the row index and it represents cluster number, and #;; is thus the
number of segments from the j type that was clustered into the i”” cluster. max;(n; ) is the
largest value over all columns in the i" row.

Recall for the /* column is computed as:

max, (ni,j)

recall . =
/ 1000

where max;(n;;) is the largest value over all rows in the j’h column. This numerator is
divided by the constant 1000 because the experimental setup chooses 1000 of each type
of segments.

For each of the four types of segments, a Balanced-F score is computed as

2 precision; - recall
BF; = —
(preczszon ; +recall j)

Confidence intervals for precision and recall are computed as follows:

1) Treat the cadences of a logical structure type (abstract, introduction,
etc.) as independent Bernoulli random variable X;’s, where i =1...1000.

Pr(X,=1)=r
Pr(X,=0)=1-r

X; = 1 when the i cadence is classified correctly and 0 otherwise. r is the
unknown true recall performance of the clustering algorithm based on ca-
dence.

1000

2) Define recall = mZX ; . By the Central Limit Theorem, recall can
i=1

be approximated as a Normal random variable with mean x =7 and vari-
2

ance o’ = q;(;o . The variance is a function of the unknown r. One can
bound the variance by noting that the maximum of the function »—7? is
1
1/ at » =0.5. Thus we use the maximum variance of o> = .
A 4-1000

3) Convert recall into a Standard Normal random variable by subtracting
its mean and  dividing by its standard  deviation.
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recall =7 _ [41000(recall -r) is distributed as a Standard Normal ran-

fo)
dom variable. The confidence interval for  at 90% confidence is thus

{ ~1.645 +1.645

, =[-0.026,+0.026

V4-1000 \/4.1000} [ ]

The confidence interval for precision can be approximated using the same procedure
where the constant 1000 is replaced by the total number of cadences in each cluster.

4.3 Cadence and Logical Substructures

The previous section presented evidence that supports the notion that cadence can differ-
entiate text segments representing different logical structures. What if the same k-means
algorithm is applied to a set of segments from only one logical structure? That is, can
cadence differentiate abstracts from abstracts, introductions from introductions, bodies
from bodies, and conclusions from conclusions?

Table 3 through Table 6 show the results of four different experiments (one for abstract,
one for introductions, etc.). In each experiment, 1000 segments of the same type of
logical structure were randomly selected from the corpus and randomly assigned to four
unlabeled clusters. Then the clustering algorithm with parameter k=4 was applied to the
clusters to produce four output clusters. The value of &~=4 was not chosen for any particu-
lar reason other than it is the same value used in experiments presented previously.

The experiment for abstracts indicates that cadence cannot differentiate one abstract from
another in a statistically significant manner. A reasonable conclusion one can make is that
cadence cannot differentiate substructures within abstracts. Another possible conclusion
could be that cadence is not finding different types of abstracts. Similar conclusions can
be made for introductions and conclusions. For bodies, the assignments are not consistent
with a non-informative random process because the p-value is too low. There is a possi-
bility that cadence is detecting meaningful substructures within body segments or that it
is finding different classes of bodies. It could also be true that cadence is detecting
structures that are not meaningful. Understanding these possible substructures would be
very worthwhile in the future.
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Cluster Abstracts
1 254
2 223
3 263
4 260

Chi-squared Statistic: 4.06

p-value (3 degrees of freedom): ~0.25

Table 3: k-means clustering of 1000
cadences representing abstracts.

Cluster Introductions
1 237
2 247
3 269
4 247

Chi-squared Statistic: 2.19

p-value (3 degrees of freedom): ~0.55

Table 4: k-means clustering of 1000
cadences representing introductions.

Cluster Bodies
1 252
2 285
3 262
4 201

Cluster Conclusions
1 260
2 241
3 258
4 241

Chi-squared Statistic: 15.1

p-value (3 degrees of freedom): < 0.005

Chi-squared Statistic: 1.3

p-value (3 degrees of freedom): ~0.70

Table 5: k-means clustering of 1000
cadences representing bodies.
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Table 6: k-means clustering of 1000
cadences representing conclusions.




4.4 Relative Contributions to Cadence

There are four factors that contribute to the cadence of a text segment. The first is the raw
tf-idf weights and the other three are the heuristic operators. Experiments were performed
to investigate the contributions of these factors individually and in combination with one
another.

Table 7 through Table 9 show the results of these experiments using the same k-means
clustering algorithm and the same 4000 test segments used in Section 4.2 The global
precision is reported to help in comparing different experiments. Table 7 shows cluster
results when the text segments are represented by their fi(x), functions which are the
transformation of their raw #fidf vectors onto the real line.

The low p-value suggests that these functions do indeed carry information useful in
differentiating logical structures. It seems as though whatever this information is, it is
comparably more muted and thus less discriminating than with cadence (see Table 2).
This can be seen by the lower global precision of 0.511+ 0.013 in Table 7 as compared to
0.822 + 0.013 in Table 2. Closer examination of the clustering results shows marked
decrease in precision and recall performances across the board. It is peculiar that intro-
ductions suffer the most performance degradation and that they are often misidentified as
abstracts or conclusions. Perhaps there is information intrinsic to introductions that are
brought forth to a greater extent by the heuristic operators than with other logical struc-
tures.

Table 8 shows clustering results when the k-means algorithm is applied to the functions
fi(x) after they have been operated on by the coherence operator. Specifically, 4000

functions of the form H n(f.-(x))= f,.(x)—Tcﬁi(x) are randomly assigned to four

unlabeled clusters. The k-means clustering algorithm is then applied. Performance for
introductions sees the most improvement by the coherence operator, followed by per-
formance gains by abstracts and then conclusions. Performance on body segments was
minimally affected. Further performance improvements are seen when the coherence
operator is applied in conjunction with either the author or location operators (see Table
10 and Table 9).
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4.5 Empirically Derived Aspects of Cadence

There are two aspects of cadence that have been observed. The first aspect was alluded to
at the end of Section 4.1 as a phenomenon whereby the ability of cadence to differentiate
logical structures is dependent on the corpus size. This phenomenon is termed the Rule of
5000. The second aspect has to do with the fact that the cadence of a logical structure
seems to be invariant with topic domains. Each of these aspects is discussed below.

4.5.1 Rule of 5000

Recall the definition of cadence presented in Section 3.2 The cadence of a text segment
is in part a function of the tf'idf weights of the non-stop terms in the segment. Each tf-idf
is, in turn, a function of corpus size as shown in equation ( 8 ). Figure 6 shows a plot of
global precision in clustering the same 4000 test segments used in previous experiments
for different corpus sizes. Global precision performance appears be adversely affected
when corpus size is less than 5000. Figure 7 shows results from a different set of experi-
ments examining the affects of corpus sizes under 4000. These experiments used 400
randomly selected text segments representing equally abstracts, introductions, bodies, and
conclusions.
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Figure 6: Experimental results showing global precision of k-means clustering
algorithm at different corpus sizes. Test set comprised 4000 segments equally

representing abstracts, introductions, bodies, and conclusions. Error bars
represents + 0.026.
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Figure 7. Experimental results showing global precision of k-means clustering
algorithm at different corpus sizes. Test set comprised 400 segments equally
representing abstracts, introductions, bodies, and conclusions. Error bars
represents + 0.041.

One possible explanation for the poor performance with corpus size less than 5000 could
the under sampling of term frequencies.

4.5.2 The Topic Invariance of Cadence

When corpus size is kept at 48,000 documents, both of the test sets of 400 and 4000
segments show cadence plots similar to those shown in Figure 5. The clustering perform-
ances are also statistically equivalent to those presented in Table 2. The distribution of
topics covered in each test set is presented in Table 11 below:

Source Topic Test Set 400 Test Set 4000
Cranfield Aerodynamics 3.5% 4.1%
Medlars Medicine 3.3% 2.9%
Times World News 12.4% 13.2%
EBSCO IT Technical Support 18.5% 19.3%
EBSCO News & Popular Culture 29.2% 26.1%
EBSCO Science & Medicine 18.7% 23.7%
EBSCO Other 14.4% 10.7%
Total 100% 100%

Table 11: Distribution of topics in each of the test sets.
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Contributions to each test set come predominately from the EBSCO collection because
this collection is the largest subset within the annotated corpus. Within the EBSCO
collection, both technical and non-technical topics from diverse areas are represented.
Because clustering results are uniformly good at differentiating abstracts, introductions,
bodies, and conclusions in all of the topics of Table 11, one might conclude that cadence
is topic invariant. That is, the information carried in cadence that is useful to differentiat-
ing logical structures exists across the multiple topics. To understand a possible mecha-
nism that may be responsible for this, it is instructive to look at the similarities and
differences between cadence and the popular Salton vector-space formulation. Table 12
shows results from k-means clustering for the 4000 test segments where each segment is
represented by its Salton vector. For the #” segment, a Salton vector S of the form

Sk=(tfk1-idfl,tsz-idfz,...,tfkn-idfn) (9)

can be constructed where # is the number of terms in the vocabulary of the entire corpus
and ffy;idf; is term weight of the j™ term in the vocabulary. If a segment does not have a
particular term, the corresponding vector element is zero. The vocabulary consists of an
ordered set of non-stop terms designated as types. The ordering scheme does not matter,
and the identity of each weight in the vector S; is preserved by the subscript j. For the
corpus size of 48,000 documents, there are 263,617 unique types in the vocabulary.
When these types are combined to form proper nouns and proper phrases, the vocabulary
grows to 4,563,205 types representing both terms and phrases . This thesis uses the larger
vocabulary. The vectors Sy are sparse by nature since any individual segment uses only a
small fraction of types in the vocabulary.

The low p-value of Table 12 indicates that Salton vectors do carry information that
prevents completely random grouping of segments. The clusters, however, do not corre-
late well with logical structures as indicated by the low precision, recall and balanced F
scores.

" These terms and phrases are identified in the corpus by matching against a set of over 5 million terms and
phrases in the Library of Congress Subject Headings.

39



Cluster Abstracts Introductions Bodies Conclusions

1 201 183 194 173

2 241 247 240 245

3 266 257 275 248

4 292 313 291 334
Precision 0.268 0.254 0.263 0.272
Recall 0.201 0.247 0.275 0.334
Balanced-F 0.230 0.250 0.269 0.300

Global Precision: 0.264 + 0.013
Chi-squared Statistic: 126

Chi-squared p-value (15 degrees of freedom): less than 0.005

Table 12: k-means clustering with parameter k=4 for 4000 segments
where each is represented its Salton vector (transformed by equation 10).

When a similar experiment was performed using Salton vectors of 100 segments from a
narrow topic domain, different performance results were obtained and a clearer picture
emerged. The experiment used 25 abstracts, 25 introductions, 25 bodies, and 25 conclu-
sions from documents in EBSCO collection on endothelial cell biology published be-
tween 1995 and 1999. Results from clustering these segments by their respective Salton
vectors are shown in Table 13. With the exception of the introductions, all performance
metrics improved when the topic domain is narrowed.

The discrepancies in performance between Table 12 and Table 13 are most likely due to
the limitations of the Salton vector framework. This framework represents text segments
that are similar in topics as vectors S that span similar subspaces. Likewise, text seg-
ments that do not address similar topics tend to use different types from the vocabulary,
and so their vectors are made to span different subspaces. So, two text segments that
represent the same logical structure will span very different subspaces if they address
different topics. The k-means clustering results seen in both of the tables relies on having
similar logical structures sharing similar vectors. One would therefore expect better
performance for segments coming from a narrow topic domain if each segment is to be
represented via Salton Vectors. One would also expect very poor performance when
diverse topics are addressed in the test set. Results from Table 12 and Table 13 do indeed
validate this line of thinking.

The reason cadence is topic invariant while Salton vectors are topic variant may be due to
the fact that cadence is not dependent on the notion that “different topics should equal

different subspaces”. In fact, there is no such notion at all in cadence.

It is interesting to note that the performance in Table 13 is statistically similar to that
presented in Table 7. It is tempting to infer from this similarity that cadence is equivalent
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to Salton vectors when Salton vectors are applied to a narrow topic domain. This is
highly unlikely to be the case because Salton vectors are dependent on the ordering of the
types in the vocabulary while cadence is dependent on the ordering of the words in a
segment of text. In theory, the ordering of the terms in the vocabulary carries no informa-
tion because retrieval results using Salton’s framework have been shown to be independ-
ent of ordering schemes. For cadence, however, it is likely that word ordering in a
segment plays a pivotal role in helping to identify its logical structure.

The arguments presented above for why cadence is topic invariant is not sufficiently
convincing to stand on its own. It relies heavily on the ability to attribute a cause for why
Salton vectors are not topic invariant and then suggesting that since cadence is not
susceptible to this same cause, cadence is thus topic invariant. This argument is purely
conjecture, and ordinarily, one would be expected to dismiss such a conjecture if not for
the overwhelming empirical evidence presented throughout this section and summarized
in Table 2.

Cluster Abstracts Introductions Bodies Conclusions

1 12 10 3 3

2 11 5 2 5

3 0 2 14 3

4 2 8 6 14
Precision 0.429 0.217 0.737 0.467
Recall 0.480 0.200 0.560 0.560
Balanced-F 0.453 0.208 0.636 0.509

Global Precision: 0.450 + 0.165
Chi-squared Statistic: 51

Chi-squared p-value (15 degrees of freedom): less than 0.005

Table 13: k-means clustering with parameter k=4 for 100 segments
where each is represented by equation 10. The 100 segments come
from documents on endothelial cell biology published between 1995
and 1999.

4.6 Experimental Results with Entropy

The experimental evidence presented thus far for the utility of cadence in differentiating
logical structures has assumed the #fidf term weighting scheme. Another possible scheme
i1s to weight terms based on their entropy and utility. This section presents the term
weighting scheme used by Dumais [42] and results of hypotheses testing using this
scheme.
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In the #f'idf metric, a term’s weight in a particular document is in part a function of the
number of times it occurs in that document. Therefore, a particular term — such as ‘cat’ —
may have multiple #f'idf scores, one for each document it appears in. Likewise, the
entropy-based metric assigns multiple scores to each term in the entire document corpus.

For the z* term in the j’h document that is part of a corpus of D documents, a term weight
w;; can be assigned by first computing utility scores for the term as follows

uzj = log(l + fzj)

where uz is the ut111ty score of the z” term in the j* document, and [ 1s the frequency of
the z” term in the ; document. In a more general formulation, the term J+ can be divided
by a constant to shift the utility curve. For this thesis, we use a value of 1 for that con-
stant. The utility function log(/+f;) was arbitrarily chosen from among many other
possible functions that also exhibit the characteristic of ‘diminishing return’. That is,
presumably the 100™ time a term is used in a document is marginally less important than
the first few times it is used.

In addition to a utility score, one also computes an entropy score for each term as
D
j=1

where
Sy
D

21y

j=1

Py =

D is the normalized frequency of the 2" term in the J document From the utility and
entropy scores, one can compute the weight of the z* ® term in the j* Jj " document as

w,=u 1———-—H’
g0 log(D)

As written above, it should be noted that the quantity above is analogous to the tfidf

H
—*=— | is analogous to idf.
(D)j

metric in that u;; is analogous to #f'and (l - 1
og
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To test the effects of using the entropy-based metric prescribed above in the computation
of cadence, experiments similar to that of Section 4.2 were performed. Specifically, 1000
abstracts, introductions, bodies and conclusions were randomly selected from the anno-
tated corpus for a total of 4000 segments. For each segment, its cadence is computed
using the entropy-based metric prescribed above instead of ¢fidf. The weight of each term
is also computed with respect to the larger 48,000 document corpus. A k-means cluster-
ing algorithm with k=4 was then applied. Table 14 presents the results.

The results of Table 14 suggest that using the entropy-based metric is statistically equiva-
lent to using #fidf (compare with Table 2). During experimentation, however, it was
noted that these results were volatile in that they depended on which segments were
selected from the annotated test corpus. Specifically, when the experiment was repeated

Cluster Abstracts Introductions Bodies Conclusions
1 970 65 12 10
2 21 715 156 84
3 0 49 678 45
4 9 171 154 861
Precision 0.918 £0.025 0.733+0.025 0.878 +0.025 0.721 +0.025
Recall 0970+ 0.026 0.715+0.026 0.678 +0.026 0.861 + 0.026
Balanced-F 0.969 0.749 0.791 0.810

Global Precision: 0.806 + 0.013
Chi-squared Statistic: 6988

Chi-squared p-value (15 degrees of freedom): less than 0.005

Table 14: k-means clustering results with parameter k=4.

for different sets of randomly selected segments, about two out every seven sets yielded
poor precision and recall. The mechanism underlying this volatility is not completely
clear, but the leading hypothesis suggests under-sampling. Recall that the entropy-based
metric relies on the entropy of each term. A term’s entropy in turn is a function of the
term’s normalized frequency distribution over the entire corpus of 48,000 documents. It
is plausible that in some cases, one randomly selects segments that have term distribu-
tions that are not well characterized by the corpus-wide distributions. In these cases, one
would expect that entropy would not be a good term weighting scheme, at least not for
large corpuses. This line of thinking has been partially corroborated by results of experi-
ments where the entropy for each term is computed relative to a smaller corpus. These
experiments yield results similar to those in Figure 7 (when #fidf is used with smaller
corpus sizes) and they do not exhibit any noticeable volatility. It is interesting to note that
the entropy-based metric is also subject to the Rule of 5000.
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It appears that one can make several conclusions regarding the use of the entropy-based
metric in the computation of cadence. First, when the entropy-based metric relies on term
distributions that are representative of the segments being differentiated, the concept of
cadence can be generalized to using either #f'idf or entropy without loss of precision or
recall performance. Second, both the entropy-base metric and the tfidf schemes for
computing cadence are subject to the Rule of 5000. Third, with the caveat that this
conclusion has the least amount of data to back it, the #fidf scheme may be the more
robust of the two schemes for computing cadence since it does not appear to exhibit
volatility for large corpora.
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Section 5 Future Work

This thesis has thus far advanced evidence suggesting that cadence can be used to charac-
terize text segments, and that cadence alone can differentiate segments representing
different logical structures. The question remains as to whether cadence can be used to
discover logical structures within documents. These two problems are related, but they
are very different.

The first problem tests the ability to classify segments that are known to be abstracts,
introductions, bodies or conclusions as one of these structures. The second problem
requires the ability to demarcate where these structures begin and end within documents.
For any given document, one must consider all possible segments and classify each one
as one of the four structures or none of the four. For future work, the logical next step
would be to use a supervised learning method to do exactly this.

One could use a k-nearest neighbor learning algorithm. It would require training data
containing positive examples of cadences for each of the four structures and sufficient
negative examples. At the very least, it would also require choices for £ (the number of
nearest neighbors), the size of the training set in terms of positive and negative examples,
a scoring function, and the thresholds for classification based on a query’s score.

The author suspects that the main obstacle with this and similar approaches will be
developing a robust training set. Consider, for a moment, what will be necessary to
demarcate logical structures accurately. Given a query document that may or may not
contain one or more of the four logical structures, demarcating logical structures will
require precision at the word or line level; the first word (or line) would be the beginning
of the structure and the second would be the ending". In either case, finding these demar-
cations will rely on the resolving power of cadence to detect changes at relatively small
scales relative to the structure sizes themselves. That is, for example, the average number
of lines in the smallest of the structures, the abstract, is sixteen. It stands to follow then
that the inclusion or exclusion of a particular line during the demarcation process would
results in less than /4 change in the overall shape of the cadence of a candidate segment.

" Using higher order structures, such as paragraphs, are not always feasible because in the parsing of large
numbers of diverse documents, these markers between these larger structures are usually lost.
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With such small changes, one could imagine that the cadences of many possible text
segments would look close enough to each other and to that of the true abstract that the k-
nearest neighborhood algorithm would fail to reliably pick out the correct one. This is the
best of the scenarios. For bodies or conclusions where the sizes of structures — as meas-
ured by number of lines or words — is several orders of magnitude larger, the ability to
pick out the true demarcations from nearby candidates is even more daunting.

One way to view this difficulty is in terms of length-scales. It is clear that the longer a
text segment is, the less important smaller-scale phenomena at the word or line level
become relative to larger phenomena at the multi-line or page level. It is also clear that
these smaller-scale phenomena are the ones most likely to contain the information to
accurately demarcate down to the correct word or line.

How can one use the cadences of whole logical structures to see both small and large-
scale phenomena? The author suspects that possible solutions lie in what was alluded to
in Section 4.3 . Perhaps larger logical structures contain logical substructures. If these are
present, and if the training set contains sufficient positive examples of them, perhaps they
may provide the necessary smaller-scale phenomena that one needs. For not-so-large
logical structures, it is most likely that logical substructures do not exist, but perhaps
there may be smaller-scale non-logical substructures that one can take advantage of.

These statements are a testament to the future work that will be required as they are
littered with ‘perhaps’.

46




Section 6 Concluding Remarks

This thesis concludes with remarks on where cadence owes its roots. The use of cadence
to characterize text is merely a new interpretation of a larger idea put forth by Gerard
Salton more than two decades ago. Like Salton’s method, cadence is based on vectors
and vector arithmetic. The two methods each enable in their own right separate families
of functions on text where members of a family differ by differing term-weighting
schemes. Both methods are founded on the notion that similarities and differences
between their vector representations are somehow important. These are the most obvious
similarities.

The differences between the two methods are subtle. Both methods use vectors of the
form (w,,w,,,...,W,,;). The m; subscript is a constant for all vectors in Salton’s method,
but it is a property of individual segments in cadence. The elements w;; has the j subscript
referring to an index in a corpus-wide vocabulary in Salton’s method, while cadence has
this same subscript referring to the order in which a word appears in a text. If we ignore
for now the three heuristics, these two differences hardly cry out as glaring differences.

They are, after all, differences at the subscript level.

In hindsight, Salton vectors and cadence are very different in their intentions. Salton
vectors were designed to compare text segments and their topics. They rely on the
identity of words and their frequencies. They assume that topically similar documents
intrinsically use similar words. They rely on little else, and so they pay little attention to
word order. Their simplicity and elegance has been shown to be very effective at what
they try to do. When Salton vectors are used to differentiate logical structures, they
perform miserably. It is as if they fail to capture whatever it is that humans can read and
see as intrinsically there. The evidence in this thesis suggests that cadence may indeed be
that intrinsic property.
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