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Abstract

The Levenberg-Marquardt method is an efficient and popular damped least square
technique. This method is a combination between the Gauss and the steepest gradient
descent methods, where the amount of damping used in each iteration is central in
establishing the behavior of the system. Further, the damping is determined by four
parameters, whose optimum values vary from model to model. An inappropriate
selection of the damping parameters could trigger a decrease in the rapidness of
convergence, a convergence to a local minimum, or system instability. Therefore, finding
proper values for these parameters is fundamental in the use of this method and implies a
great deal of extra time. This lack of efficiency is considered a disadvantage in

comparison to other techniques.

In an attempt to eliminate the use of arbitrary damping parameters as well as to improve
the rapidness of the method, this work offers a new formulation for damping. Preliminary
results show a positive behavior of the new method, which makes self-consistent
automatic choices for the damping coefficients. An apparent improvement in efficiency is
observed, despite the fact that a matrix determinant is included in the calculation of
damping and more computational resources are involved. The savings in time due to the
mechanization of the damping calculation seem to compensate for the extra resources.

More study will be needed in order to validate or disqualify the proposed method.
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1. Introduction

1.1 Modeling methods

To predict the behavior of natural processes, modeling techniques try to fit a
mathematical model to experimental data. For each model the best estimates of
parameters are the ones that make the model the best match for the observed data. In
order to find these best parameter approximations an error function, which is usually
calculated as the median of the square residuals, is minimized.. The lowest point on this
surface corresponds to the best approximation to the unknown parameters. Furthermore,
in most natural processes, data are often nonlinear with respect to the parameters, so the
search for a minimum error is usually iterative. These iterative procedures require the
user to provide starting values for the unknown parameters from which the algorithm

starts the minimization.

The least squares method is one of the most popular and powerful techniques for fitting
mathematical models to experimental data. One advantage of this method is the broad
range of functions that can be fit and the efficient use of data. However, the starting
values must be reasonably close to the global minimum or the optimization procedure
may not converge or may converge to local minima. In addition, a strong sensitivity to

outliers can also cause the technique to converge to a local minimum.

There are two main approaches to the least squares estimation. On one hand, a Taylor
expansion (Gauss or Gauss-Newton method) may be applied to the model, which corrects
for parameters at each iteration assuming local linearity. On the other hand, the steepest
gradient method iterates to the best estimate of the parameters going down the error
function surface. Both methods are not optimal in the search of a global minimum, the
first one because of divergence of the successive iterations, the second one because of

slow convergence after a few iterations (Marquardt, D., 1963).



The popular Levenberg-Marquardt (LM) method (Levenberg, 1944; Marquardt, 1963) is
a damped least square technique for nonlinear models where a positive constant
(damping) is added to the diagonal of the Jacobian matrix in order to control the behavior
of the system and prevent singularity. This method combines the advantages of the Gauss
and the steepest gradient descent methods. If the damping used at one iteration reduces
the error, the damping is divided by a reduction constant before the next iteration and the
convergence to the solution is speeded. If the error increases then the damping is
multiplied by an amplification constant, making the convergence slower but ensuring that
a solution can be found. In this way, the method switches from one technique to the other
smoothly. The LM method uses the method of the steepest descent when the results are
far from the minimum. But as the solution approaches the minimum, the algorithm
switches to the Gaussian method, which will tend to a zero step size when approaching

the best fit.

Unfortunately, the LM technique presents some difficulties related to the calculation and
rate of change of the damping, which is controlled by four main parameters: the initial
damping, the amplification and reduction constants, and the minimum damping. An
inappropriate choice of these parameters will cause the method to diverge or to converge
too strongly or too slowly (Lampton, 1997). In addition, because the presence of damping
increases the value of eigenvalues, preventing in this way the singularity of the system,
the presence of the minimum damping is fundamental. This minimum value importantly
affects the rapidness and stability of the method, and a proper amount is critical for the

effectiveness of the LM technique.

Therefore, rapid convergence and the stability of the system are dependent upon an
appropriate choice of the damping parameters, whose optimum value will vary from one
model to another. Unfortunately, estimating these parameters often translates into trying
the method several times before starting an experiment, which leads to a great deal of

extra time spent in the modeling process.



1.2 Thesis Objectives

Taking advantage of the simplicity of the Levenberg-Marquardt algorithm, the present
work will attempt to examine and improve the efficiency of the method. There are two

primary goals:

(1) To minimize the number of parameters upon which the damping depends by
obtaining automatically and self-consistently coefficients, thereby reducing the modeling

time as well as the error associated with a large number of variables.

(2) To optimize the running time and the number of iterations the method takes to get to

the solution.



2. Background

Most techniques trying to fit a mathematical model to experimental data focus on finding
a global minimum in the error surface (Brent, 1973). When descending through a steep
valley in the error surface it is best to use a small step size to avoid missing the minimum
of the valley, even though this could also cause convergence to local minima. On the
other hand when moving along a gently sloping area of the error surface it is more

convenient to take large steps, otherwise it will take too long to converge.

2.1 Steepest Gradient Descent Method

The steepest gradient descent method works by making a step that is the negative
gradient of the error times some constant. This means that in steep regions (where slow
convergence is advisable) the algorithm moves quickly and in shallow regions (where
fast convergence is more favorable) the method moves slowly. The iterative convergence

to a solution from an initial guess of parameters (By) is represented by

AB =-a JE(B)
0B

, where E =T - f (24, B)) is the estimation error function
T is the experimental data
f (zx, Bj) is the fitting function
Zy are the number of independent data, of dimension N
B, are the parameters, of dimension M

a is a positive constant



The steepest gradient descent method works fine with simple models, but it fails when
more complexity is added. In addition, convergence can take a long time because the
method goes through most of the error surface missing the minima. Besides, the
curvature of the error surface may not be the same in all directions, which implies more
complexity in the error surface. For this method, including information about second
order derivative (curvature of the error surface) would be useful. However, it is often too

costly to compute second derivatives and methods incorporating this information are
difficult.

2.2 Gauss Method

This method is based on the idea that nonlinear models can be approximated by linear
functions through Taylor expansion when the system is close to a minimum in error
space. Then the square error (E®) will approximate a quadratic equation where the linear
least square method can be used to find a minimum. If the approximation is valid the
method will converge to a global minimum faster than the steepest gradient descent
technique. The Gauss method may be expressed as follows (Dennis & Schnabel, 1983;
Fletcher, 1987):

For T=f(z,B)

Assuming a local linearity of parameters and using a first order Taylor expansion we

obtain,

T (zy) = To (zi) + {OT (zx) / OB;} A B;
then
{OT (zx) / 0B} AB; =T (zy) - To (2x)

, which in matrix notation is stated as

A AB =AT (1)



, where A (k,j) = {dT(zy) / dB; } is the Jacobian matrix.
The error is defined as

E=AT-AAB
and the error squared as

E’= (AT - A AB)" (AT - A AB)

Now, in order to minimize by least squares, the gradient is calculated and then equaled to

ZEro:

OE? =2ATAT+2ATAAB =0
OAB

then
ATA AB = ATAT

Finally, solving for the parameters vector AB, we get:
AB = (ATA) ' ATAT 2

, which is solved iteratively to converge from some initial parameters (By) to the final

solution.

The distinctive property of least squares problems is that we can consider ATA as an
estimation of the Hessian matrix (Hij = 0Hij/0Bi0Bj). The Hessian approximation is
exact only when f(z, B) is linear, which forces the nonlinear least squares method to rely

on it only in regions where a linear approximation to f(z, B) is reasonable (close to
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minima). In practice, this approximation is helpful only when the step size is small

(Levenberg, 1944; Marquardt, 1963).

The main advantage of the Gauss technique is rapid convergence. However, the rate of
convergence is highly sensitive to the starting location and the linearity around the

starting location.

2.3 Levenberg Marquardt (LM) method

The Levenberg-Marquardt method performs an interpolation between the Gauss and the
steepest gradient descent methods based upon the maximum neighborhood in which the
truncated Taylor series gives an adequate representation of the nonlinear model

(Marquardt, D., 1963).

In the algorithm a positive constant (damping) is added to the diagonal of ATA in order to
control the convergence of the method and provide an effective way to avoid the
singularity of the system. In the former case damping will determine the rapidness of
convergence, with large damping producing slow convergence and vice versa. In the
latter case the presence of damping will artificially increase the eigenvalues improving
the ill-conditioning of matrix ATA. In the method the step to converge from an initial

guess to a final solution is represented by:

AB = (ATA + £21) T AT AT 3)
where B = Parameters to find

A =Jacobian matrix

g = Damping

T =Data

11



The general steps of the Levenberg-Marquardt algorithm are as follows:

Choose the initial parameters By

Choose the values for the positive constants a and B
Start with a large initial damping €0

Determine ATA

Determine AB and calculate Biy

A e

Check at each step
_If RMSE;<RMSE,; ,then €% =¢4/B
-If RMSE;>RMSE;, ,then &% =0¢4
7. Maintain a minimum value for damping (Szmjn) to ensure non-singularity of the

matrix Q=ATA + &L

Nevertheless, there are some inconveniences in this method. The fact that damping is
defined by four parameters, whose values must be decided before running the algorithm,
strongly affects the rapidness and the way of convergence of the method. The parameters
to be determined are the amplification (a) and reduction () constants, the initial damping
and the minimum damping. If these parameters are not optimum for the model under
study, the damping may become excessively large or small, affecting the way of

convergence of the algorithm and thus the final results.

In this work it was found that the system is extremely sensitive to the value of minimum
damping. A large minimum damping may cause slowness, a small minimum damping

may cause singularity and in both cases it was likely to get trapped in a local minimum.

Therefore, the selection of adequate values for the damping parameters is a fundamental
part of the standard LM method. Unfortunately, the only way to find these optimum
values, besides previous knowledge based on past cases, is through experimentation,

which implies extra processing time and loss in efficiency.

12



3. Motivation

From the Levenberg-Marquardt algorithm we have that
AB=(ATA + £°1) T ATAT

Let us define H = (ATA); G = g I, and Q = H + G; where

(hn h12 h13 \

H = h21 hzg h23...
h31 h32 h33...

In this work we will concentrate on maintaining the main property of damping, which is

avoiding zero or small eigenvalues and thus the singularity of ATA by increasing the
values of the diagonal of H. In order to do that, a minimum amount of damping is needed
for those vectors with small diagonal values. We will also assume that as the damping

increases the rapidness of convergence decreases.
Then, let us suppose there is a positive constant & such as

g2, =01* (I/ hiy)
€2, = 82* (1/ hy)
€23 = 83* (1/ h)

and the values of €2; are such that they keep Q from being singular and make the

algorithm converge to a solution. This concept was first proposed by Levenberg (1944)

13



where the constant J; are a system of positive constants or weighting factors expressing
the relative importance of damping the different increments. In this work we will use one

unique value for §; = 0. Then, we have that

/ 0 0 \

O(1/ hyy)
G = 0 d(1/hy) O
0 0 S(1/hs3) ...

.. )

and

/hll hiz hps \ /5(1/h11) 0 0 \

Q = h21 h22 h23 + 0 6(1/1122) 0
h31 h32 h33 0 0 6(1/1’133)

N i

For example, for

/7 10° hy hy by )
H= hay  10% hy  hy
hs; hyp 100 hy
ha  hy  hg 107

N /

we have that

14



//8105 0 0 ()\\\

G = o &10°0 O 0
0 o d&100 o

Lo o 0 48107/

and
(10° +610°) hy, hy; hy, \
Q = h21 (10-3+6103) h23 h24
hs; hy,  (10'+810")  hy,
K h41 h42 h43 (102 +610-2 ) j
then

/5105 hi;  his hM\
Q~ | hy 310° hy hy
hsy hyp 100 hy
Ql“ hy  hg 10

We notice that in the proposed technique, the lowest values in the diagonal of H get the
highest values of damping, ensuring in this way the non-singularity of the matrix. On the
other hand, for the high values of the diagonal, the amounts of damping are low, which

avoids the slowness of the method caused by unnecessary damping.
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In this way this approach assigns variable damping to each term of the diagonal of H as a
function of the diagonal values themselves, assigning significant damping only to the

terms that need it and improving the rapidness of the algorithm.

However, because high values of damping ensure the stability of the matrix H but also

make the convergence slower, the role of constant & will be central for the method to

behave efficiently. 0 has to be chosen optimally so it maintains stability (keeping the
significant value of damping where needed) and makes the convergence as fast as

possible (reducing the value of damping as much as possible). The following sections

will investigate possible values for this constant.

The main advantage of this method, if convergence is reached, would be the fact that
there are not external parameters affecting the behavior of damping. The system would
adjust the amount of damping internally based on the behavior of the Jacobian matrix,

allowing the mechanization of the algorithm and an improvement in efficiency.

16



4. Testing

Following the concepts stated in the previous section, the damping will be defined as
82j = o* (1/ hjj)

,where €2 is the value of damping added to the j™ parameter,
h;; is the value of i diagonal element of matrix H

0 is a positive constant

We know that large values of damping would produce a slower convergence and vice
versa. Therefore a small value of damping will be preferable when singularity is not

compromised.

When hj; is small then the damping €2; will tend to become large. In this way small
eigenvalues will be avoided and stability maintained. On the other hand, if h;j is large the
value of damping will tend to become small, which will not decrease the rapidness of

convergence. Then the constant 6 needs to have the following property:

To reduce the value of €2; when 1/ hy; is large, so the algorithm does not become

slow, while keeping the comparative large damping to avoid singularity.

Alternatively, we know that if one or more eigenvalues of the matrix H = (ATA) are equal
to zero, then the determinant of H will also be zero (Gere & Weaver, 1983). Therefore,

the determinant of a matrix is another indicator for the condition of a matrix and can be

used to determine an adequate value of constant 6.

17



In the following sections, three different variations for the constant 0 calculated based on

the determinant of (ATA) will be tried.

In general we consider a function T = f (z, B;))

, where T =Data
Z; = Number of data, of dimension N

B; = Number of parameters, of dimension M
and the estimation error is defined as E =T - f (z, B;)
The model selected as a characteristic representation of non-linear models is

T(z) = (B1)*z + (B2)*exp(-B3*z) “4)

where B;=3; B,=2; B3=1.
This will be the model used for all experiments. Furthermore, as a way to understand the
comparison between methods, no noise will be added. The data will be synthetically
produced based on this model, where z is a set of 100 values ranging from O to 5.
In addition, as a way to compare the effectiveness of the experiments, several runs with
the standard Levenberg-Marquardt algorithm were tried. The main parameters to
compare in between methods will be whether there is convergence and the number of
iterations and time taken to get to a solution.

The stopping and evaluation criteria applied to all experiments will be the following:

e The maximum number of iterations will be 3,000.

¢ The stopping criterion will be when

18



[RMSE ; - RMSE ;,,] ¥100 < 10™
RMSE

or

RMSE;; < 1038

, whichever comes first.

e The final solution will be evaluated in terms of its closeness to the global solution

(indicated by equation (4), where B;=3; B,=2; B3;=1).

4.1 Experiment 1:

The results for the experiments with the standard Levenberg-Marquardt algorithm are
shown in Table 1. The first column shows the initial guesses of the model parameters,
where (B1)o, (B2)o, and (B3)o where assigned as equal for all the experiments and ranging
from 5 to 100. The three following columns contain the quantities for the four damping
parameters. In this case o and § were assigned as equal with values of 5 and 10, the initial
damping (which in LM is a unique amount for all parameters) has values of 1 and 2, and
the minimum damping was designated as 10 or 10~. All the quantities of the damping
parameters were selected arbitrarily. The fifth column presents the solution to which the
algorithm converged. Soll represents the global solution (B;=3, B,=2, B;=1) and sol2
represents a local minimum solution. The last four columns are the number of iterations

and time taken to converge to a solution and the average for each initial guess case.
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Standard Levenberg-Marquardt Algorithm

Initial Dampin Initial . . . Average . Average
Parameters Cons:)antgs Damping Min Damp | Solution| lterations Iterations Time Time
B1=B2=B3 a=§ g1=g2=g3 gm it <it> t <t>

] 1.00E-04 [ glob sol 6 0.062
5 1.00E-03 | glob sol 6 0.063
5 1.00E-04 | glob sol 8 0.078
1.00E-03 | glob sol 8 0.078
5 1 1.00E-04 [ glob sol 7 7.0 0.078 0.07
10 1.00E-03 | glob sol 7 0.062
2 1.00E-04 { glob sol 7 0.079
1.00E-03 | glob sol 7 0.078
) 1.00E-04 | giob sol 121 25
5 1.00E-03 | loc sol 13 0.17
2 1.00E-04 | glob sol 66 1.8
1.00E-03 | loc sol 58 0.75
20 1 1.00E-04 singular 494 singular 0.93
10 1.00E-03 | glob sol 27 0.23
5 1.00E-04 | loc sol 25 0.61
1.00E-03 | glob sol 36 0.43
] 1.00E-04 [ glob sol 65 14
5 1.00E-03 | loc sol 28 0.33
2 1.00E-04 | glob sol 24 1
1.00E-03 | loc sol 33 0.83
40 1 1.00E-04 singular 30.0 singular 0.63
10 1.00E-03 lob sol 14 0.34
5 1.00E-04 | glob sol 22 0.16
1.00E-03 | glob sol 24 0.38
1 1.00E-04 | glob sol 38 0.48
5 1.00E-03 | glob sol 13 0.36
> 1.00E-04 singular singular
1.00E-03 | loc sol 40 0.73
60 1 1.00E-04 singular 327 singular 0.61
10 1.00E-03 | glob sol 25 0.52
5 1.00E-04 | glob sol 38 1.016
1.00E-03 | loc sol 42 0.562
4 1.00E-04 | glob sol 20 0.36
5 1.00E-03 | loc sol 21 0.36
> 1.00E-04 | loc sol 194 6.6
1.00E-03 | glob sol 30 0.48
80 1 1.00E-04 singular 514 singular 1.42
10 1.00E-03 | loc sol 31 0.48
5 1.00E-04 | glob sol 40 1.3
1.00E-03 | glob sol 24 0.33
) 1.00E-04 | glob sol 52 1.4
5 1.00E-03 | glob sol 38 0.44
> 1.00E-04 | glob sol 45 0.42
1.00E-03 lob sol 28 1.3
100 1 1.00E-04 &ob sol 30 384 0.36 0.77
10 1.00E-03 | loc sol 28 0.19
5 1.00E-04 singular singular
1.00E-03 | glob sol 48 1.3

Table 1. Standard Levenberg-Marquardt Algorithm results.
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Table 1 shows many combinations of damping parameters resulting in a local minimum
solution (loc sol). A deeper analysis indicates that both, a slow convergence and a fast
convergence (given by a large or small minimum damping) can lead to a local minimum

solution.

Apparently, one of the most important factors affecting this behavior is the amount of
minimum damping. For all the cases tried where the method converged to a local
minimum solution, it was possible to find at least one choice of minimum damping for
which the method converged to the global solution (glob sol). However, because finding
that optimum minimum damping took considerable extra time, we will not consider those

results in this work, so the comparison with other methods can be more equivalent.

In addition, the singularity of the system seems also to be related to the amount of
minimum damping. All the cases of singularity found in the experiment were improved

when the minimum damping was increased.

Therefore, the rapidness of the convergence seems to be an important factor to consider
in terms of local minimum solutions and singularity. In the first case, both a large
damping (slow convergence) and a small damping (fast convergence) may lead to a local

minimum, whereas a very small damping may cause singularity. This fact should be

considered at the time of selecting the appropriate value for the constant 0.

4.2 Experiment 2:

The first modification of the Levenberg-Marquardt algorithm will try to get a process
independent from constants o and f and from the initial damping €2,. We will keep the

minimum damping as an arbitrary parameter, but we will try to eliminate it later.
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For this experiment we will try the value

0 = 1/detQ

Because matrix Q includes the damping as a factor in its calculation, we will consider the
determinant of Q an indicator of how the damping behaves. When the damping gets

large, we will expect a higher value for the determinant of Q. Consequently, the constant
0 will be comparatively small, decreasing the value of the damping in the following

calculation. In this way excessive damping, due to a small value of h;;, will be controlled.
We expect that the reduction of the damping will not be excessive such that Q becomes
singular. The case with a small damping and a comparable smaller determinant of Q will
provide a way to control small values of damping.

In order to apply this concept, the values as well as the determinant of Q have to be

obtained from the previous iteration to the one for which we are deriving. Then the

constant O will be expressed as,

0; = 1/detQ ;4

and the damping will become

(82j)j =1/ hjj)i * 1/detQ i,

, Where i is the iteration number and j is the column position in H and Q.

Therefore, 0; will reflect the behavior of the damping in iteration (i-1) and control

extreme values. If the damping was too large in iteration (i-1) then 0; will reduce the

damping in iteration i and vice versa.
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The value of 0 for the first iteration will be fixed at 1, which will make the damping for

the first iteration (82j)0 = (1/ hyj)o. This initial value is dependant on the first matrix H and

assigns large damping to small h;;’s and vice versa.

In order to make the comparison between methods easier, the values for minimum
damping (€2;,) will be the same ones used in the runs of standard Levenberg-Marquardt

(Table 1).

The results of this experiment are shown in Table 2 .

Initial Parameters 1/det Q-1 * 1/hii (with minimum damping)
B1= B2 = B3 Min Damp| Solution Iterations Time

Bi gm it |Average| t Average
1,00E-04 loc sol 9 0,08

5 9 0,09
1,00E-03 loc sol 9 0,11
1,00E-04 | glob sol 36 0,28

20 33 0,38
1,00E-03 | glob sol 29 0,48
1,00E-04 | singular

40 19 0,16
1,00E-03 | glob sol 19 0,16
1,00E-04 | glob sol 25 0,19

60 25 0,20
1,00E-03 | glob sol 24 0,20
1,00E-04 | glob sol 27 0,33

80 30 0,34
1,00E-03 loc sol 33 0,34
1,00E-04 loc sol 171 2,20

100 171 2,20
1,00E-03 | singular

Table 2. Experiment 1 results.

As observed on Table 2, the first column presents the initial model parameters, where as
mentioned before (B)o=(B2)o=(B3)o. The second column shows the values of minimum
damping (10 or 10), the third column shows the solution to which the algorithm
converged to and the last four columns show the number of iterations and time (including

the average for each initial guess case) taken for the method to get to a solution.
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This first modification to the standard LM shows apparent good results. It seems to be
faster than the standard Levenberg-Marquardt algorithm for most of the cases and it does

not depend on an initial damping, or on constants a and P.

However, if now, in an effort to reduce the number of parameters in the algorithm, we
eliminate the minimum damping, the results are much more discouraging. For most of the
cases the Jacobian matrix becomes singular. The results of this case compared to the

previous case and to the standard Levenberg-Marquardt method are showed in Table 3.

i ' Experiment 1
i Levenberg-
|  Marquardt | 1/det Q(i-1) * 1/hjj || 1/det Q(i-1) * 1/hjj
‘ Algorithm ';ﬂ(with min damping) {| (no min damping)
Initial Aver?ge Avgrage ; Iterations Time Iterations] Time
Parameter }-]lterations| Time r;
== T ——T I ia I
5 | 7 007 || o 0,09 6 0,14
20 *"‘ 49 0,93 F 33 0,38 | 12 0,16
| 1
s [ 30 063 || 19 0,16 26 0,20
60 || 33 061 f| 25 0,20 |{ singular
1 1
go || s 142 [} 30 0,34 || singular
| 1
100 || 38 0,77 “ 171 2,20 singular

Table 3. Comparison among LM method, Experiment 1 with min damping and Experiment 1 with no min

damping.

In Table 3 the first column shows the different initial parameters cases, and the following
columns present the number of iterations (or average) and the time (or average) taken for
the standard LM, Experiment 2 with minimum damping, and Experiment 2 with no

minimum damping respectively to get to a solution. It is indicated when the method does
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not converge to a solution because it becomes singular (indicated as singular), as well as
when the method does not converge to a solution before the maximum number of

iterations is reached (indicated as > 3000).

The most likely reason for the results of Experiment 1 with no minimum damping is that

constant 0 is too small. More specifically, in the cases where the damping in iteration (i-
1) was large, 0 = 1/det Q ;.; becomes small, decreasing the value of 1/hjj and making

(€2); excessively small.

This behavior contradicts the main property previously stated for the constant 6 reducing
the value of damping to improve rapidness while keeping a comparative large value to
avoid singularity. However, because our main goal is to get an algorithm not dependent

upon arbitrary parameters, we will test some other possibilities for 0.

4.3 Experiment 3:

After the results obtained in the previous attempt, we conclude that even though the first
choice for damping did not work as well as expected when the constraint of the minimum

damping was omitted, the general behavior of the experiment showed some interesting

aspects.

The apparent good behavior of the method for the constrained case (minimum damping

included) is a good indication that the inverse of the Jacobian determinant could still be a
good candidate for constant 6. However, we need to find a way to increase the value of

1/detQ or alternative the value of 1/ hjj, so the damping increases and keeps stability.

In the next experiment, a set of runs intending to accomplish a more balanced damping
will be analyzed. Because we cannot measure the exact amount of increase or decrease

we need for the components of the damping, we will try all the possibilities related to the

case already tried.
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The choices of damping to be evaluated will be the following ones:

a) (82j)i =1/ (hjj)i * 1/detH;
b) (€%)i=1/(qg)i1 * 1/detQ;,
c) (€%)=1/(qj)i1 * L/detH;

We expect that at least one of these alternatives will balance the value of damping so the

minimum damping will not be necessary. The results of these modifications comparing

with the results of Experiment 1 with no minimum damping are shown in Table 4.
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Table 4. Experiment 1 versus Experiment 2 (no minimum damping).

In Table 4, the first column represents the choices for initial parameters and then grouped

in sets of three columns are the number of iterations and time taken to get to a solution as

well as the final solution of Experiment 2 (with no damping) and Experiment 3 (three

cases) respectively.

From the results we observe that the cases with the most encouraging results are the ones

including =1/detH as the factor for the diagonal inverses, where the fewest cases of
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singular were obtained. The experiment where (Szjj)i =1/ (qjj)i_l* 1/detH; works well in

most cases. The case where (82jj)i =1/ (hy) * 1/detH; has slow convergence and not all

solutions converge to the global minimum (glob sol).

In general, we observe two extremes, one where the convergence is too fast and
singularity is produced (when 1/(qy);1 or 1/detQ; s are used for the damping) and the
other one where the convergence is too slow (when 1/(hjj)i_1 or 1/detH; are included in the

damping).

As a next step, we will try to improve the previous results by applying the square root to
constant 8. For the cases where 0 >1, this will produce a smaller 8, a decrease in the

damping and the speeding of the process, whereas when 0 <1, the square root will create

a larger constant and the slowness of the method. We expect that at least one of the

previous experiments will improve with this modification.

4.4 Experiment 4:

So, let us define

d) (€2)i = U/ (hy) * sqrt(1/detQi.;)
e) (%)= U/ (hy)i1 * sqrt(1/detH;)
f) (&%) =1/ (qg)i1 * sqrt(1/detQ;)
g) (€2)i= 1/ (qy)i1 * sqrt(1/detH;)

The results for this experiment are shown in Table 5, where the first column represents
the choices for initial parameters and then grouped in sets of three columns are the

number of iterations and time taken to get to a solution as well as the final solution of the

four cases of this experiment.
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Table 5. Experiment 3 results.

In the case of the latest results, we observe that when 1/h;; is used the method becomes
extremely slow, with many of the solutions standing far from the global minimum. On
the other hand, the method wherel/detH; is a factor of 1/gj; seems much more promising.
For this latter method, the number of iterations and running times are comparable to those

of the Levenberg-Marquardt method.

We also observe that some of the results converge to a local solution (loc sol) and in one
case becomes singular. We will consider these results as positive because they are very
close to those obtained with the standard LM method and have the advantage of making
self-consistent automatic choices for the damping coefficient. For this reason, we will

select this algorithm for a more detailed analysis.
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4.5 Modified Levenberg-Marquardt (LM) Algorithm:

As previously indicated, in the method selected to become the Modified LM Algorithm
the damping is giving by

(€2 = 1/ (qjji1 * sqrt(1/detH;)
or alternatively
(€2))i = 1/ ([ATAl+ €2)) 1 * sqrt(1/det(ATA))

In order to study this method, we will run more trials with different initial guesses, so the

behavior of the new algorithm becomes clearer. The results are showed in Table 6.

In Table 6 the first column represent the choices for initial parameters, the second and
third columns show the number of iterations and time taken by the method to converge to
a solution (it is indicated as singular when an experiment did not converge because
singularity of the system), and the fourth column shows the solution to which the method

converged to. Glob sol is the global solution whereas all the rest (loc sol) are local

minima solutions.
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1/qii * sqrt(1/detH)

Initial
Parameters Iterations time solution
B1=B2-B3 it t
5 7 0,16 glob sol
10 9 0,16 glob sol
20 17 0,27 glob sol
30 40 0,39 glob sol
40 73 0,78 loc sol
50 95 0,83 glob sol
60 110 0,81 glob sol
113 0,86 glob sol
7 3 084 | globsel o
80 singular
e 0,84 1| - iglobsol
90 22 0,2 loc sol
100 26 0,27 loc sol
110 23 0,26 loc sol
120 81 0,69 glob sol
130 78 0,78 glob sol
140 102 0,84 glob sol
150 82 0,72 glob sol
160 40 0,34 loc sol
170 103 0,72 glob sol
180 56 0,53 loc sol
190 singular
200 singular
-5 14 0,16 glob sol
-10 singular

Table 6. Modified Levenberg-Marquardt Algorithm results.
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5. Results

The results of the Modified LM Algorithm showed in Table 6 represent a considerable

improvement from the standard Levenberg-Marquardt Algorithm. One main attribute

making this new method preferable is the fact that the number of damping parameters

that the user needs to determine before using this technique was reduced from four

(damping constants, initial damping, and minimum damping) to one (initial damping,

which was defined as (82j)0 =89 * (1/ hy)o, where d¢=1.

The comparison between both methods can be appreciated in Table 7. In order to get a

better perspective of the capacity of the new method, the number of iterations and time

taken by the well-known, automatic, and self-consistent Ridge Regression method is also

presented. For this latter case, the automatic algorithm used in the Earth Resources

Laboratory at MIT was used, where the stopping criteria were the same used in the

previous experiments (10 %) and the threshold for parameter change was 70%. Two

graphs showing the results in Table 7 are also offered (Graph la and 1b).
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60 B | 061 |ddosd/locsa/s *’] 10 | g8 |gosd]| @ | 18 [ gos
0 51 | 12 |dobsd/locsd/sngad| singiar 1 & | 13 [ gosg
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Table 7. Comparison between standard LM and Modified LM methods.
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In Table 7, the first column represent the different choices for initial guesses, the three
following columns indicate the average number of iterations and average time to get to a
solution as well as all the different solutions reached by the standard LM method. The
three following columns show the number of iterations and the time taken by the
modified LM to converge to a solution as well as the solutions obtained. Finally, the
same information is also indicated for the case of the Ridge Regression in columns eight,

nine, and ten.

Number of lterations to convergence

—e— Traditional LM
—m— Modified LM
Ridge

Iterations to convergence

5 20 40 60 80 100

Initial Parameters

Time to convergence

—e— Traditional LM
—m— Modified LM
Ridge

Time (s)

5 20 40 60 80 100

Initial Parameters

Graph 1. (a) Number of iterations and (b) Time in seconds taken by each method to converge starting from

different initial parameters.
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From the results in Table 7 we notice that for initial parameters close to the global
solution, the Modified LM method takes fewer steps to converge to the solution than the
standard LM. However, this situation is reversed as the initial guesses get farther from the
global solution. We also notice that the standard LM includes local minima as solutions
in several experiments and became singular in one occasion. This was not improved with

the Modified LM, which also includes local minima solutions and a singular case.

In addition, we observe that whereas the Modified LM develops a singular matrix when
the initial guesses for the parameters are 80, the standard LM gets singular results when
initial guesses equal 40. This could also be interpreted as an advantage of the Modified
LM since this kind of behavior is more acceptable when we are far from the global

solution than when we are close.

Finally, it is important to consider that, even though in general the standard LM takes less
time to converge to a solution than the Modifies LM, the great amount of time invested in
the selection of the damping coefficients is a major disadvantage. This problem is
overcome in the Modified LM, which produced a decrease in the running time of the

algorithm.
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6. Conclusion

The main goal of this work was to adapt the standard Levenberg-Marquardt method to a
more automatic system that does not depend on the selection of damping variables. The
results of this work are promising. The Modified LM method eliminates most arbitrary
damping coefficients, making self-consistent automatic choices of these parameters. In
addition, the Modified LM method is comparable to the standard LM method in terms of

rapidness, even though at starting points far from the global minimum, the standard LM

works better.

Unfortunately, the calculations involved in this new method seem to have a high
computational cost due to the calculation of a determinant. However, the savings in time
and errors associated to the great amount of parameters involved in the standard LM

method may compensate for the extra resources employed.

Finally, the method generated in the present work, even though it is preliminary, shows

good potential as a starting point for further investigation in the improvement of the
standard LM method.
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7. Further Work

As indicated before, the work presented here has to be considered only as preliminary.
More testing is necessary in order to validate, discard, or suggest an improved variant of
the proposed Modified Levenberg-Marquardt Algorithm.

Three central courses of action are recommended in order to continue this study:

1. Run the proposed method considering noise in the model and compare the results

to those of the standard Levenberg-Marquardt method, also including noise.

2. Run the proposed method with other models, with and without noise.

3. If the Modified LM algorithm seems to encounter problems in the above testing,

new alternatives for the value of constant  may be searched.
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Abstract

The Levenberg-Marquardt method is an efficient and popular damped least square
technique. This method is a combination between the Gauss and the steepest gradient
descent methods, where the amount of damping used in each iteration is central in
establishing the behavior of the system. Further, the damping is determined by four
parameters, whose optimum values vary from model to model. An inappropriate
selection of the damping parameters could trigger a decrease in the rapidness of
convergence, a convergence to a local minimum, or system instability. Therefore, finding
proper values for these parameters is fundamental in the use of this method and implies a
great deal of extra time. This lack of efficiency is considered a disadvantage in

comparison to other techniques.

In an attempt to eliminate the use of arbitrary damping parameters as well as to improve
the rapidness of the method, this work offers a new formulation for damping. Preliminary
results show a positive behavior of the new method, which makes self-consistent
automatic choices for the damping coefficients. An apparent improvement in efficiency is
observed, despite the fact that a matrix determinant is included in the calculation of
damping and more computational resources are involved. The savings in time due to the
mechanization of the damping calculation seem to compensate for the extra resources.

More study will be needed in order to validate or disqualify the proposed method.



