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ABSTRACT

With an ever increasing focus on reducing the environmental impact of solvent
releases on human health and the environment, the replacement of conventional, organic
solvents with alternative compounds that are inherently benign has attracted much
attention in both industry and academia. Supercritical carbon dioxide (scCO2) and water
are two alternative compounds that are of particular interest because they are non-toxic,
non-flammable, readily available, and cheap. Although scCO2 has been successfully used
in industry as a solvent for selective extraction (e.g. extraction of caffeine from coffee
beans), development of scCO 2 as a reaction solvent has been less successful due to its
limited solvation power for many organic reagents of interest. In addition scCO2 has
generally been shown to reduce both the reaction rate and selectivity of many reactions
when compared to conventional solvents. Unlike scCO2, water is known to significantly
accelerate reaction rates and improve selectivities over that obtainable in conventional
solvents. However, most organic compounds are insoluble in water which has limited its
use as a reaction solvent for industrial-scale processes.

In order to replace conventional solvents with scCO2 and/or water, significant
technological advantages resulting from the use of these compounds will have to be
demonstrated. This research attempts to demonstrate some potential advantages of using
scCO2 and scCO2/water as reaction media for several synthetic transformations of
interest. The Diels-Alder cycloaddition of 9-hydroxymethylanthracene and N-
ethylmaleimide was investigated in scCO 2, and the cycloaddition between
cyclopentadiene and methyl vinyl ketone (MVK) was studied in an scCO2/liquid water
environment. Nitrogen chemistry, specifically the synthesis of nitrogen heterocycles from
amines, was also studied in scCO2 and scCO 2/liquid water systems.

The objective of studying the Diels-Alder cycloaddition of 9-
hydroxymethylanthracene with N-ethylmaleimide in scCO 2 was to demonstrate the
ability of scCO2 to dramatically accelerate the rate of this reaction when compared to
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conventional solvents. Using spectroscopy to track the disappearance of the 9-
hydroxymethylanthracene peak, it was found that this reaction proceeds at rates in scCO 2
that are significantly faster than in traditional organic solvents. It was also observed that
the reaction rate constant increased with decreasing density, opposite the trend normally
observed for most reactions conducted in scCO2. On the basis of the low solubility of 9-
hydroxymethylanthracene in scCO2 and similar results observed in fluorocarbon solvents
(fluorocarbons and scCO 2 are known to behave similarly as solvents), a solvophobic
mechanism was inferred as the cause of the rate acceleration observed for this particular
reaction in scCO2.

In order to utilize the complementary solvation powers of scCO2 and water, a
second Diels-Alder reaction, cyclopentadiene with MVK, was studied in an scCO2/liquid
water mixture. Specifically, the effect of MVK concentration on the selectivity and
conversion was studied under both silent and sonicated conditions. Power ultrasound was
used as a means to reduce the inherent mass transport limitations that are present in this
biphasic system via the production of emulsions that increase the interfacial contact area
between the two phases. The results of this study demonstrate the ability of power
ultrasound to dramatically increase both the selectivity and conversion over that
obtainable under silent conditions. In agreement with previous studies, it was found that
the ultrasonic effect is most prevalent for systems in which the water-based Hatta number
is greater than one (i.e. an initial MVK concentration of 1.0 mol L- for this system) due
to efficient utilization of the water phase. At lower Hatta numbers (or lower initial MVK
concentrations) the ultrasonic effect is almost negligible as the reaction takes place
mostly in the scCO 2 phase and not in the water phase.

The objective of the final study in this thesis was to develop amine chemistry in
the presence of scCO2 by identifying amines and amine derivatives suitable for
application in a wide range of important synthetic transformations in carbon dioxide
media. The synthesis of nitrogen heterocycles using both hetero Diels-Alder
cycloadditions and Pictet-Spengler cyclizations was investigated. Also studied was
carbamate formation using scCO 2 as both a reagent and solvent. Unfortunately, most of
the results to date are less than encouraging. The hetero Diels-Alder cycloaddition
between benzylamine and 2,3-dimethyl-1,3-butadiene in scCO 2 failed to produce a
quantitative yield of the desired product; forming instead an unknown oily substance. For
the Pictet-Spengler cyclization in scCO 2 and scCO 2/water systems of N-
methoxycarbonyl-3,4-dimethoxyphenethylamine, a carbamate compound, quantitative
yields of the desired product were produced. However, this reaction proceeded much
slower in scCO 2 and scCO 2/water than in toluene. Due to the slow reaction rate observed
in both alternative media and the inability of scCO 2 or water to dissolve all of the
reactants, the usefulness of either scCO 2 or water as a reaction solvent for this Pictet-
Spengler reaction is questionable. Instead an alternate "one-pot" strategy that uses scCO2
as both a reactant and solvent was pursued. This strategy entails forming the carbamate
from a primary amine and scCO2 prior to injection of additional reagents that would
allow for completion of the Pictet-Spengler reaction in the same reaction vessel.
Unfortunately, attempts to replicate the methods of the Yoshida group for carbamate
generation from scCO2 have failed in our laboratory. We have only been able to obtain
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about half the yield of the desired product achieved by Yoshida and co-workers with our
remaining product mixture consisting of by-products that the Yoshida group does not find
in their workup.

Thesis Supervisor: Jefferson W. Tester
H.P. Meissner Professor of Chemical Engineering
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Solvents in 'Green Chemistry'

According to the Environmental Protection Agency (EPA), which coined the term

'Green Chemistry', their early definition of the subject is: "'Green Chemistry' is the

utilization of a set of principles that reduces or eliminates the use or generation of

hazardous substances in the design, manufacture, and application of chemical products."

A key aspect of these principles is that they place more emphasis on preventing

environmental problems at the early stages of innovation rather than solving problems

that have already occurred (Anastas and Williamson, 1998). Investigations of chemical

transformations in environmentally-friendly media could potentially lead to greener

chemistry on three levels (Buelow et al., 1998): 1) solvent replacement, 2) better

chemistry (e.g. higher reactivity, selectivity, less energy), and 3) new chemistry (e.g. use

of CO2 as a carbon source).

The replacement of conventional organic solvents with more environmentally-

friendly media has attracted much attention because solvents are integral to chemical

practices. Solvents are used ubiquitously in a wide range of chemical industries and

applications including roles in reactions, separations, extractions, and cleaning (Nelson,

2000). Worldwide the total solvent market is estimated at over 30 billion pounds per year

(Nelson, 2000), but unfortunately many of these chemicals are still released in significant



11

quantities into the environment despite the proliferation of environmental regulations

during the past three decades (Anastas and Williamson, 1998). As shown in Table 1-1,

the EPA's Toxic Release Inventory (TRI) data indicates that a combined total of over 300

million pounds of methanol, toluene, xylene, methyl vinyl ketone, and acetonitrile were

released and disposed of in 2002. Although the direct impact of solvent releases on

human health and the environment is difficult to assess in monetary terms, the acute and

chronic toxicity and the environmental persistence of many common solvents suggests a

severe impact (Anastas and Williamson, 1998).

The representative reductions in solvent releases shown in Table 1-1 between

1997 and 2002 are largely a result of improvements in solvent recovery and waste stream

treatment. However, the quantities released are still significant and a better long-term

solution would involve a fundamental switch to cleaner solvent technologies. One

solution is to eliminate the solvent, but in cases where this is not possible a second

solution is the replacement of conventional organic solvents with solvents that are

inherently benign.

Table 1-1. Estimated annual release and disposal of five common solvents in the United
States in 1997 and 2002 (U.S. EPA).

Percentage
Solvent 1997 2002 Reduction From

(million lbs) (million lbs) 1997-2002
Methanol 223 167 25%

Toluene 117 65.7 44%

Xylene 77.9 43.9 44%

Methyl Ethyl Ketone 54.8 28 49%

Acetonitrile 28.4 18.6 35%
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1.2 Water and Carbon Dioxide as Benign Alternative Solvents

Today there are a wide variety of solvents in industrial use with a considerable

range of physical properties. Besides those listed in Table 1-1 other popular solvents

include carbon disulfide, tetrahydrofuran, acetone, and dichloromethane. Because of their

different properties, all of these solvents are used for many different applications

including recrystallizations, extractions, cleaning, and coating among others. As a result

of this solvent diversity, it is unreasonable to expect any one 'green' solvent to meet

every industrial need. The motivation of this research is to investigate the use of water

and/or dense carbon dioxide as environmentally benign media for the facilitation of

chemical reactions. Water and carbon dioxide (specifically near- and supercritical,

scCO2) were chosen because they are perhaps two of the most environmentally friendly

solvents as they are non-toxic, non-flammable, readily available, and cheap (Timko,

2004). They were also chosen because they have been the subject of many academic

investigations from which a large knowledge base can be tapped.

Water as a solvent for organic reactions was rediscovered in the eighties after a

long period of time in which it was not considered due to the insolubility of most organic

reactants and the incompatibility of many of the reaction intermediates with water

(Lubineau et al., 1994). Since the early work of both the Breslow group (Breslow et al.,

1983; Rideout and Breslow, 1980) and Grieco et al. (1984; 1983), the effect of water has

been studied in a number of chemical reactions. These investigations have found that

water tends to dramatically increase the rates and/or selectivities of these reactions when

compared to conventional solvents due to a hydrophobic effect that is a consequence of

water's unique hydrogen-bonding network (Lubineau and Auge, 1999).
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Breslow and Maitra (1984) demonstrated water's ability to dramatically improve

both the reaction rate and selectivity when water was used as a solvent for the Diels-

Alder cycloaddition of 3-buten-2-one to cyclopentadiene:

0 4e - ACOCH3 (1)
0 COCH3

Elldo Exo

For this reaction, Breslow and Maitra found that the selectivity to the endo product was

improved from 4:1 in octane to 21:1 in water. Water was also found to increase the

second-order rate constant by 700-fold when compared to octane. Meanwhile, Grieco and

Larsen (1986; 1985) also demonstrated water's ability to improve the rate, yield, and

selectivity of a number of organic reactions including hetero Diels-Alder reactions for

cyclocondensations of iminium salts.

Despite these many successes, the aforementioned poor solubility characteristics

of water at moderate temperatures and pressures for most organic reagents is a serious

drawback for its potential use in industry. For example, the solubility of cyclopentadiene

in water at 20 C is only 10 mM. Supercritical water is a good solvent for organic

reagents, but the severe thermal condition and high pressure (Tc > 374 °C, Pc > 240 bar)

is a major deterrent to the use of supercritical water as a solvent in many reactions of

interest. Finally, two other major drawbacks for the use of water in chemical synthesis

(sub- or supercritical) are many chemical processes cannot be performed in protic

solvents like water and many reagents of interest will hydrolyze quickly in the presence

of water (Timko, 2004).
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As a gas, carbon dioxide is essentially a non-solvent, but above its critical point

(Tc = 31.1 °C, P = 74 bar) the solubility of many compounds in carbon dioxide increases.

Unlike water, carbon dioxide's critical point is relatively mild which makes dense carbon

dioxide a potentially attractive alternative solvent because it is both environmentally

friendly and it has many desirable properties associated with supercritical fluids. A few of

these desirable properties include the large isothermal compressibility characteristic of a

near-critical fluid which allows for large changes in density via small pressure changes.

In theory this ability to change the fluid density allows for manipulation of the reaction

environment (solvation dynamics and equilibrium solubility) through tuning of a number

of physiochemical properties including solvent power, diffusivity, and viscosity. Also,

because the diffusivity and viscosity of supercritical fluids are generally at least an order

of magnitude higher and lower, respectively, than liquid solvents (Lucien and Foster,

1999), interfacial transport limitations can be eliminated in principle through the use of

supercritical fluids. Finally, with supercritical fluids there is the possibility of integrating

both reaction and separation processes which would provide an economic advantage over

conventional synthetic processes that use liquid solvents (Tester et al., 2000).

Industrially, carbon dioxide (liquid, near critical, and supercritical) has been used

successfully in a number of different applications because of its many advantages.

Extraction of caffeine from coffee beans (McHugh and Krukonis, 1994) and the cleaning

of materials with micron-sized features such as those in the microelectronics industry are

a couple of example applications in which carbon dioxide has found widespread use.

Carbon dioxide as a solvent is also attractive to the food and drug industries since
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residual amounts of CO2 (which should be negligible) do not have any toxic or

undesirable side effects, unlike many conventional solvents.

Despite finding use in a few industrial-scale applications, the high pressures

required for supercritical fluid processing are a major obstacle for more widespread

industrial use of scCO2. To have an impact on industrial practice, it will be necessary to

demonstrate significant technological and environmental advantages of using scCO2 as a

reaction solvent over conventional compounds. Unfortunately there are two major

drawbacks to scCO 2. Like water, the most important drawback is the low solvation power

of scCO2 for many reagents of interest. In general, low-molecular weight hydrocarbons,

many fluorocarbons (though not highly crystalline fluorocarbons such as conventional

Teflon®-type polymers) (Luna-Barcenas et al., 1998), and many siloxane-based

polymers (Shen et al., 2003) exhibit relatively high (greater than 1 wt%) solubility in

scCO2 at moderate conditions. Most other compounds, including high-molecular weight

hydrocarbons and ionic salts, exhibit extremely low solubilities. The example of benzene,

naphthalene, and anthracene is illustrative of the relationship between molecular weight

and solubility in scCO2. Benzene, the smallest compound of this trio, is almost

completely miscible with scCO2. The solubility of naphthalene is roughly 5 wt% at 35 °C

and 150 bar (Modell et al., 1978), but at the same conditions the solubility of anthracene,

the largest molecule, is less than 5 x 10-3 wt% (Bunker et al., 1997). The second

drawback to using scCO2 as a solvent for reactions is that the rates and selectivities of

most chemical reactions in scCO2 are similar or inferior to those characteristic of

reactions conducted in conventional solvents (Ikushima and Arai, 1999, Renslo et al.,

1997).
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On an academic scale, efforts to demonstrate the technological advantages of

scCO2 have focused on exploiting its physiochemical properties. Successful

achievements include using its favorable transport properties to improve reaction rates,

selectivities, and catalyst lifetimes for heterogeneously catalyzed transformations (Baiker,

1999; Subramaniam et al., 2002). The high solubility of gases such as H2 and CO in

scCO2 has been exploited in a number of hydrogenation (Burk et al., 1995; Goetheer et

al., 2003) and hydroformylation (Davis and Erkey, 2000; Lopez-Castillo et al., 2003)

reactions, sometimes with substantially improved regioselectivities when compared to

conventional solvents (Koch and Leitner, 1998). Near- and supercritical carbon dioxide

have also been used as a reactant (Jessop et al., 1996) and reversible protectant group

(Wittmann et al., 2001).

Without significant technological or economic advantages, environmental benefits

alone are not enough to warrant the replacement of organic solvents with either carbon

dioxide or water. However, one solution to overcome some of the limitations of water

and carbon dioxide is to combine them. Carbon dioxide at conditions near its critical

point is nearly immiscible with water (King, 1992) so that mixtures of the two naturally

form a biphasic system similar to the phase splitting of hydrocarbon/water mixtures.

Because the solvation powers of water and carbon dioxide are complementary, a biphasic

system of the two solvents allows for dissolution of a much wider range of reagents than

is possible in either solvent alone. The accelerative effect of water on chemical kinetics

(the hydrophobic effect) can be accessed more readily by using carbon dioxide to

dissolve the main reagents which tend to be water insoluble. Also in more sophisticated

schemes, such as those involving homogeneous catalysis, segregation of the catalyst in
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either one of the two phases would allow its reactivity to be accessed and allow for

effective recovery of the catalyst. Despite these possible advantages not all of the

limitations of water and carbon dioxide can be overcome by combining the two

compounds. For instance reactions requiring an aprotic solvent still are not feasible

without protecting agents, and the pH of water in contact with CO2 is effectively buffered

at approximately 3 (Toews et al., 1995) which means that base-catalyzed reactions would

require extremely aggressive buffering.

Another important limitation of a water/carbon dioxide biphasic system is the

imposition of mass transport limitations upon the reaction of interest. In order to remove

mass transport limitations from the water/carbon dioxide system, both emulsions

(Jacobson et al., 1999) and microemulsions (McCarthy et al., 2002) have been

investigated as a means to increase the contact area between the two phases and facilitate

chemical reactions. Overall many of the results are promising as the rates and/or

selectivities of some chemical reactions have been improved over that of the

corresponding conventional solvent system. Most of these studies have relied upon

generating emulsions through the use of surfactants designed for the water/carbon

dioxide interface. However, an alternative approach that has also proven successful is the

use of ultrasound to generate emulsions and thus simplify the system by eliminating the

need for surfactants (Timko, 2004).

In this thesis, both carbon dioxide and carbon dioxide/water systems were

investigated as reaction solvents. Their effect upon the formation of nitrogen heterocycles

via iminium ions (through hetero Diels-Alder cycloadditions, Pictet-Spengler

cyclizations, and dipolar cycloadditions) and their role in carbamate synthesis were
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studied and compared to conventional solvent systems. Although many of the results of

this thesis are encouraging and demonstrate the technological advantages of scCO 2 and

water as reaction solvents, some of the experimental investigations clearly display the

drawbacks of scCO2 as a reaction solvent, particularly when attempting to conduct

nitrogen-bearing chemistry in an scCO 2 environment.
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CHAPTER 2

OBJECTIVES AND APPROACH

2.1 Objectives

The overall objective of this study was to investigate the effect of carbon dioxide

and carbon dioxide/water systems on the kinetics of several different types of organic

reactions. Specific objectives in obtaining knowledge about these effects were as follows:

1) Investigate the solvophobic acceleration of a Diels-Alder reaction in

supercritical carbon dioxide. Most chemical transformations conducted in

supercritical carbon dioxide (scCO2) display reaction rates and selectivities

that are similar or inferior to those characteristic of reactions conducted in

conventional solvents. These studies also indicate that the observed reaction

rate increases with increasing fluid density/pressure. However, there is one

known exception, that of Thompson et al. (1999), in which the observed

reaction rates were faster than those in conventional hydrocarbon solvents and

the reaction rates were also decreasing functions of fluid density/pressure. It

was hypothesized that the observed behavior in the study by Thompson and

co-workers was a result of solvophobic effects.

The approach of this study was to use the knowledge base developed for

Diels-Alder reactions in incompressible solvents in order to gain insight

regarding the molecular-level solvation effects in scCO2. Primarily, our
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analysis was based on previous research that investigated the use of aqueous

and fluorinated solvents as media for Diels-Alder reactions. In this study we

demonstrate that the Diels-Alder cycloaddition of 9-hydroxymethylanthracene

with N-ethylmaleimide in scCO 2 shows dramatic rate accelerations over

conventional solvents and we propose that it is a solvophobic mechanism, a

result of the low solubility of 9-hydroxymethylanthracene, that leads to the

observed results.

2) Investigate the effect of a biphasic carbon dioxide/water system on the

rate and selectivity of a model Diels-Alder reaction. Combined water and

carbon dioxide systems have attracted attention in green chemistry because

this combination allows one to maintain the environmental benefits of

aqueous reaction media while addressing the solubility limitations of organic

reagents in water. Unfortunately, biphasic systems have large mass transport

limitations. The generation of emulsions via the use of surfactants is one

possible way to overcome these transport limitations. Another strategy is to

generate emulsions through power ultrasound as demonstrated by Timko

(2004). Specifically, this study continued the work of Timko by investigating

the effect of initial methyl vinyl ketone concentration on the selectivity and

conversion of the model Diels-Alder cycloaddition between cyclopentadiene

and methyl vinyl ketone under both silent and sonicated conditions in a dense

carbon dioxide/water system.

3) Study the chemistry of nitrogen-bearing compounds in dense carbon

dioxide and/or water systems. Chemistry of nitrogen-bearing compounds in
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the presence of carbon dioxide is often difficult due to the tendency of amines

to react with carbon dioxide and form carbamic acid, an undesirable, unstable

side product that inhibits formation of the desired adduct. The intent of this

study was to develop and investigate different reaction classes in the presence

of CO2 and/or water that form nitrogen heterocycles via iminium ions. Hetero

Diels-Alder cycloadditions and Pictet-Spengler cyclizations were the primary

reaction classes studied. Also studied was the generation of carbamate

compounds using scCO2 as both a reactant and solvent.

2.2 Method of Approach

To accomplish the above objectives, an experimental plan was developed that

consisted of the following sub-projects:

1) Spectroscopic measurement of the reaction rate of 9-

hydroxymethylanthracene with N-ethylmaleimide following the procedures

previously established by Jin Qian and co-workers (2004). This measurement

involved both the collection and analysis of spectroscopic data.

2) Design of 316-stainless steel inserts to occupy the volume of the acoustic

reactor so that a water fraction of 0.85 by volume could be reached while

maintaining the optimal horn-to-interface distance of 2 cm.

3) Measurement of the conversion and selectivity of the well-known Diels-Alder

reaction between methyl vinyl ketone (MVK) and cyclopentadiene at various

initial MVK concentrations in order to demonstrate the benefit of power

ultrasound for a commercially important reaction.
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4) After completion of the designated reaction time for the hetero Diels-Alder

cycloaddition, Pictet-Spengler cyclization, and carbamate generation

experiments, the reactor contents were collected and given to Josh Dunetz for

analysis of both yields and conversions of all products and the starting

material, respectively.

5) For the nitrogen chemistry experiments visual observations were conducted in

this lab and all unexpected observations were noted and reported. For runs

demonstrating unexpected behavior, control experiments were conducted as

needed in order to determine the source of this behavior.
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CHAPTER 3

SOLVOPHOBIC ACCELERTION OF A DIELS-ALDER
REACTION IN SUPERCRITICAL CARBON DIOXIDE

The experiments in this study were conducted in collaboration with Jin Qian,

Michael T. Timko, and Christopher J. Russell at MIT. My involvement included

spectroscopically measuring the rate of the reaction of interest over a span of different

pressures at 75 C. The kinetic data at 45 C and 60 C and the solubility data were

obtained prior to my participation in this analysis. This chapter is a summary of both my

work and the work of the other collaborators involved in this study. More information

can be found in publications by Qian and coauthors (2004; 2003).

3.1 Background and Objectives

Background. Many chemical transformation reactions in supercritical fluids are under

investigation by research groups in the U.S., Europe, and Japan (Tester et al., 2000). The

Diels-Alder cycloaddition, in particular, is a good model reaction for use in supercritical

fluids because it (Timko, 2004):

1) is of commercial importance because it is one of the most important

synthetic pathways for the construction of six-membered rings which are

contained in many important pharmaceuticals and natural products.

2) proceeds in a controlled fashion to the desired products at low

temperatures (less than 100 °C).
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3 ) follows bimolecular second-order kinetics; first order with respect to each

of the two reagents.

4') yields a mixture of isomers (either regio- or stereo-) depending on the

choice of reactants, thereby affording an opportunity to study selectivity.

5) allows for the selection of reagents that will ensure that the reaction rates

are fast enough for meaningful kinetic data to be collected in a reasonable

time but slow enough to study in standard batch reactors that require

reactions with half lives greater than several minutes.

Given these advantages it is not surprising that the Diels-Alder reaction has been

the subject of many studies in near-critical and supercritical carbon dioxide (scCO2)

(Glebov et al., 2001; Thompson et al., 1999; Lin and Akgerman, 1999; Renslo et al.,

1997; Weinstein et al., 1996) and subcritical (Reaves and Roberts, 1999) and

supercritical propane (Knutson et al., 1995). All of these studies, with the exception of

one publication (Thompson et al., 1999), have found that the rates of Diels-Alder

reactions are generally slower in scCO2 than the rates observed in conventional

hydrocarbon solvents. These studies also indicate that the observed reaction rate increases

with increasing fluid density/pressure with exceptions having been reported near the

critical point (Thompson et al., 1999; Lin and Akgerman, 1999). Selectivities of the

Diels-Alder reactions in scCO2 are comparable to those observed in hydrocarbon solvents

(Renslo et al., 1997).

In order for scCO 2 to replace conventional compounds, researchers will have to

demonstrate the technological advantages of using scCO2 as a reaction solvent. To date

most research efforts on using scCO2 have focused on exploiting the physiochemical
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properties of scCO2. One example includes taking advantage of its favorable transport

properties to improve the rates, selectivities, and catalyst lifetimes of heterogeneously

catalyzed transformations (Subramaniam et al., 2002; Baiker, 1999). Due to the high

solubility of gases such as H2 and CO in scCO 2, scCO 2 has also been used in

hydrogenation (Goetheer et al., 2003; Burk et al., 1995) and hydroformylation (Lopez-

Castillo et al., 2003; Davis and Erkey, 2000; Koch and Leitner, 1998) reactions to obtain

substantially improved regioselectivities when compared to conventional solvents (Koch

and Leitner, 1998). Carbon dioxide has also been used as a reactant (Jessop et al., 1996)

and reversible protecting group (Wittmann et al., 2001) at conditions near or above its

critical point. Less emphasis, however, has been placed on molecular-level analysis of

solvation effects of scCO 2 on chemical kinetics. Many of the studies of scCO2 as a

reaction solvent have involved catalyzed systems (Goetheer et al., 2003; Lopez-Castillo

et al., 2003; Wittmann et al., 2001; Davis and Erkey, 2000; Koch and Leitner, 1998;

Jessop et al., 1996; Burk et al., 1995) which are difficult to interpret at a molecular level

because they proceed via complex mechanisms. Meanwhile, previous attempts to predict

or correlate trends for elementary reactions such as the Diels-Alder cycloaddition have

relied upon kinetic- (Weinstein et al., 1996) or thermodynamic- (Thompson et al., 1999;

Reaves and Roberts, 1999; Knutson et al., 1995) fitted parameters without the benefit of

molecular-level analysis.

The approach of this study was to use the knowledge base developed for Diels-

Alder reactions in incompressible liquid solvents (e.g., hydrocarbons, fluorocarbons,

water) in order to gain insight regarding the molecular-level solvation effects in scCO 2.

Primarily, our analysis was based on previous research that investigated the use of
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aqueous and fluorinated solvents because observations of rate and selectivity

improvements in these solvents are directly relevant to chemical reactivity in supercritical

fluids. More specifically, since scCO2 and fluorinated compounds behave similarly as

solvents, accelerative mechanisms in one may be operative in the other. If this

assumption holds, then the considerable literature of Diels-Alder reactions in

conventional, liquid solvents can be used to interpret observations made in supercritical

fluids and to form a basis for selecting model reactions.

Since the work of Breslow and co-workers (1984; Rideout and Breslow, 1980)

and Grieco et al. (1983), it has been well established that water dramatically improves the

reaction rates and sometimes the selectivities of certain Diels-Alder reactions when

compared to hydrocarbon solvents. Solvophobic interactions and an enhanced hydrogen-

bonding effect, which preferentially stabilizes the polarized transition state, are

considered the primary contributors to this rate enhancement (Otto and Engberts, 2000).

Recent research has focused on quantifying the relative energetic contributions of these

two effects for a given set of reactants through the use of computer simulations

(Chandrasekhar et al., 2002).

Fluorinated solvents have also been shown to accelerate certain organic reactions

including Diels-Alder cycloadditions (Jenner and Gacem, 2003; Myers and Kumar,

2000), conjugate addition of amines (Jenner and Gacem, 2003), and esterification of

acids and alcohols (Gacem and Jenner, 2003). One of the largest rate improvements is the

50-fold acceleration of the Diels-Alder reaction of 9-hydroxymethylanthracene (diene)

and N-ethylmaleimide (dienophile) when carried out in perfluorohexane rather than

acetonitrile (Myers and Kumar, 2000). Because of the inability of perfluorohexane and
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acetonitrile to form hydrogen bonds, it has been hypothesized that the origin of the

acceleration in perfluorohexane is entirely solvophobic.

Objectives. The objectives of this phase of our research project was to (1) demonstrate

that the Diels-Alder cycloaddition of 9-hydroxymethylanthracene and N-ethylmaleimide

(reaction I) in scCO2 shows dramatic rate accelerations over conventional solvents and

(2) to understand the mechanism(s) responsible for this acceleration.

nF

(I)

0

3.2 Experimental Apparatus and Procedures

Materials. 9-hydroxymethylanthracene, N-ethylmaleimide, and all solvents (HPLC-

grade) were purchased from Sigma Aldrich and used without further purification. Grade

5.5 carbon dioxide (>99.99%) was obtained from BOC and used as received. Water was

deionized to a minimum resistivity of 18.1 MQ cm using a Barnstead Nanopure filtration

system.

Kinetic Measurements. The simplified experimental setup for the high-pressure

experiments performed in this study is shown in Figure 3-1. Reactions were performed in

an optically accessible reactor, Figure 3-2, designed previously in our research group

(Taylor, 2001). This 316-stainless-steel reactor is cylindrical with a working volume of

approximately 3 cm3. Sapphire (a-A120 3) windows positioned at opposing ends of the

reactor (path length of 2.9 cm) were used for optical access and absorption spectroscopy.

0
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Although the reaction mixture could be stirred with a standard Teflon-coated stir bar, a

stir bar was only used in select experiments to confirm that diffusion and free convection

alone were sufficient for good mixing over the time scales of interest because it was

found that the stir bar interfered with spectroscopic measurements. Temperature within

the reactor was monitored to within ±0.5 °C with a T- type thermocouple inserted into the

reaction fluid and maintained using a combination of a PID controller (Omega 9001 CN),

ki'
Figure 3-1. Simplified schematic of the high-pressure system used to obtain kinetic data
in this study. Depicted are (a) cylinder of grade 5.5 C0 2, (b) heat exchanger to liquefy the
gaseous CO2, (c) high-pressure pump (Eldex BBB-4), (d) digital pressure transducer
(Dynisco), (e) HPLC valve (Valco Instruments uw-type), (f) three-way valve that served
as reactor inlet and outlet, (g) high-pressure reactor equipped with ao-A120 3 sapphire
windows for either transmission or scattering spectroscopy, (h) T-type thermocouple, (i)
analog pressure gauge (Matheson 63-3133), (j) source of monochromatic UV radiation,
and (k) spectrophotometer detector.



32

thermal tape (Barnstead), and fiberglass insulating tape. Pressure was measured to within

±1 bar using a standard Bourdon-tube pressure gauge (Matheson 63-3133).

Figure 3-2. Digital picture of the optically-accessible, 3 mL reactor used for absorption
spectroscopy. This reactor was designed previously in our research group (Taylor, 2001).

In order to initiate each reaction a solution injection method was used because

both N-ethylmaleimide and 9-hydroxymethylanthracene are solids at room temperature

and dissolve slowly into scCO2. This method involved dissolving both reactants into

either acetonitrile or acetone and using pressurized CO2 to inject the solution into the

reactor through an HPLC valve (Valco Instruments Co. Inc. uw-type). A second injection

method was used for most of the 75 °C runs in which 10 utL of a solution of both reagents

in either acetone or acetonitrile was directly injected into the reactor prior to sealing the
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reactor cap at a torque of 100 ft-lbs. This method was adopted because of injection

difficulties, likely a result of a plugged injection loop, that were encountered during the

75 °C experiments.

Visual inspection of the reactor contents indicated one-phase behavior for all

experiments. However, it is sometimes difficult to visually identify the presence of a

small volume of a second phase. Variation of the reactant concentrations served to

confirm that if an undetected second phase were present it did not appreciably affect

kinetic rate measurements. For most of the experimental runs the concentrations of N-

ethylmaleimide and 9-hydroxymethylanthracene were 1 x 10-3 mol L-' (1.0 x 10 -4 mole

fraction at a fluid density of 0.4 g cm-3) and 0.02 mol L-l (2.2 x 10-6 mole fraction at a

fluid density of 0.4 g cm-3), respectively. Although the ratio of dienophile to diene was

varied, it was always kept above 50:1 (in molar units) to ensure pseudo-first-order

kinetics. The mole percentage of co-solvent was approximately 0.2% for most

experiments and it was always less than 3.5%. Changing neither the co-solvent

(acetonitrile or acetone) nor its concentration had a significant effect on the observed

reaction rate within the limits of experimental reproducibility (±5%).

For these studies the reaction temperature was varied from 45 to 75 C and

pressure was varied between 90 and 190 bar. Assuming that the reaction mixture can be

treated as pure carbon dioxide, these conditions correspond to a carbon dioxide density

ranging between 340 and 730 kg m -3 as calculated by an accurate equation of state (Span

and Wagner, 1996). The error introduced by assuming that the reaction mixture is pure

carbon dioxide is minimal given the dilute concentrations of reactants and co-solvent

used in these experiments.
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The rate of reaction I was measured in situ by monitoring the disappearance of the

9-hydroxymethylanthracene peak at 379 nm using a Varian Cary 50 UV/vis

spectrophotometer. At this wavelength, interference from the sapphire windows and the

other chemical compounds in the reaction mixture was negligible. Reaction progress was

monitored on the order of 10 h which is approximately 1 to 4 half lives depending on

reaction conditions. Spectra from a representative run are presented in Figure 3-3 while

several representative first-order plots of the logarithm of 9-hydroxymethylanthracene

disappearance over time are shown in Figure 3-4. These logarithmic plots were always

linear with little scatter and the uncertainties in the slopes were less than 4%. The

second-order rate constant was calculated by dividing the slope of the assumed first-order

plot by the known concentration (2% on the basis of its post-reaction recovery) of the

excess dienophile. Control experiments were conducted in which only one of two

reactants was injected into the reactor in order to confirm that the compounds were stable

at the conditions of interest and did not adsorb appreciably to the reactor walls. Drift in

the 379 nm peak of 9-hydroxymethylantrancene was found to be less than ±2%. On the

basis of these three sources of error (scatter in pseudo-first-order plots, reactant

adsorption, and uncertainty in the concentration of excess dienophile), the error in the

measured rate constants is estimated to be less than ±10%.

Analytical Methods. The adduct in the reaction was identified offline by reversed-phase

high-performance liquid chromatography (HPLC; Waters 2690) with tandem mass

spectroscopic (MS/MS; LCQ, Finnigan) detection utilizing an atmospheric pressure

chemical ionization interface. A Zorbax SB-C18 column (4.6 mm x 15 cm) was used

with flash column chromatography (25% ethyl acetate/hexanes). A sample volume of
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Figure 3-3. Disappearance of the 379 nm peak of 9-hydroxymethylanthracene in scCO2
during the course of a reaction. Conditions: 75 C, 149 bar (p = 460 kg m 3 ). Spectra
every 4 min are shown for the first hour of a 3 h long run.
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50 L was injected for each analysis. The composition of the binary isocratic mobile

phase was 0.499 acetonitrile/0.499 water/0.002 formic acid. Operating parameters of the

MS/MS system were first auto-optimized in full scan mode and then manually adjusted

by flow injection analysis of each target compound at a concentration of 1 mg L-1. Target

compounds were identified in both full scan mode and selected ion monitoring (SIM)

mode by infusion by matching the retention times and mass spectra with standards. The

adduct was synthesized by refluxing N-ethylmaleimide and 9-hydroxymethylanthracene

in a 9:1 CHC13/CH30H solution for 24 h.

For several representative kinetic runs conducted in scCO2, the reactor contents

were collected by depressurizing the reaction mixture through cold acetonitrile. These

post-reaction mixtures were analyzed using the HPLC-MS/MS technique, which

indicated that mass balance closure of the diene was greater than 85% and that the only

product was the Diels-Alder adduct of reaction I.

Solubility Measurements. Measurements of the solubility of 9-hydroxymethyl-

anthracene in scCO2 at 45 C and pressures ranging between 70 and 150 bar were

performed by measuring the UV absorbance (at 379 nm using the Varian

spectrophotometer) of samples withdrawn from the reactor. This procedure involved

loading approximately 4 mg of solid 9-hydroxymethylanthracene into a 25 mL high-

pressure view' cell reactor which is described in detail in Chapter 5. At each pressure, the

supercritical solution was stirred vigorously for 1 h and allowed to settle, unstirred, for

2 h prior to sample collection. A fraction of the mixture (between 10 and 50 pL) was then

withdrawn through an HPLC valve (Valco Instruments uw-type) and slowly discharged

into cold solvent. The precipitated 9-hydroxymethylanthracene was washed from the loop
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with additional cold solvent and diluted to a standard volume prior to spectroscopic

analysis.

Kinetic Measurements at Atmospheric Pressure. The rate of the Diels-Alder reaction

of N-ethylmaleimide with 9-hydroxymethylanthracene was measured at atmospheric

pressure in water and acetonitrile over the temperature range 20-50 °C. An Agilent 8532

spectrophotometer equipped with an internal stirring motor and a Peltier heater was used

for the measurements. A 100-fold excess of dienophile was used in all experiments, and

the initial concentration of 9-hydroxymethylanthracene was x10-3 mol L-1 for

experiments conducted in acetonitrile and 2x10-5 mol L-1 for experiments conducted in

water. The disappearance of diene was monitored at 379 nm for at least 2 half lives.

Assumed first-order plots were linear, and the uncertainties in the slopes were less than

1%. The bimolecular rate constant was recovered by dividing the pseudo-first-order

slopes by the known concentration of N-ethylmaleimide. For the water measurements,

concentrated solutions of 9-hydroxymethylanthracene in acetonitrile were used to deliver

the diene. The resulting concentration of acetonitrile was less than 1% on a mole basis.
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3.3 Experimental Results

Measured Rate Constants. All 23 measured rate constants (which are referred to as kc

when reported in molar units) for reaction I in scCO2 are listed in Table 3-1 together with

the conditions of the experiment (pressure, temperature, density). As stated previously the

density was determined using an EOS for pure carbon dioxide (Span and Wagner, 1996)

and the error was estimated from the known uncertainties of the pressure and temperature

measurements. At 45 °C and 90 bar, our results indicate that the reaction rate measured in

scCO 2 is nearly 25x faster than that measured in acetonitrile at 45 C and atmospheric

pressure (Myers and Kumar, 2000; Rideout and Breslow, 1980). Considering that other

Diels-Alder reactions, such as that between cyclopentadiene and ethyl acrylate, are

slower in scCO2 than in many conventional solvents such as methyl chloride,

tetrahydrofuran, and hexane (Weinstein et al., 1996), this dramatic rate acceleration is

quite remarkable and it demonstrates that scCO 2 as a reaction solvent can provide

significant technological advantages in addition to its many environmentally friendly

characteristics.
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Table 3-1. Rate constants, k,, measured in this study for the reaction of 9-
hydroxymethylanthracene and N-ethylmaleimide in scCO2. Reaction conditions are listed
along with the rate data.

Run Number kc (103 L mol -1 s-1)a T (C) P (bar) P (kg m 3)

1 25 45 90 340±20

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

23

21

18

15

12

8.0

9.6

6.8

7.4

85

94

64

30

37

24

24

290

230

120

110

76

70

45

45

45

45

45

45

45

45

45

60

60

60

60

60

60

60

75

75

75

75

75

75

93

97

101

105

110

131

135

138

143

85

115

132

152

161

166

178

128

138

152

169

179

193

380±20

440± 4

520±30

560±20

610±20

698± 8

710± 8

717± 7

729± 7

340±13

400±20

520±14

614±10

642± 7

655± 7

684± 6

352± 8

406± 9

472±30

540± 8

572± 7

610±22

a Errors in the measured rate constants are estimated to be less than 10% based on
the uncertainties in the concentration of N-ethylmaleimide, errors in the spectroscopic
technique, and adsorption of 9-hydroxymethylanthracene to the reactor walls.
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Figure 3-5a contains a plot of kc as a function of pressure at a given temperature

while Figure 3-5b is an analogous plot of kc versus the reaction mixture density. These

plots show that at each temperature, the rate constants are roughly linear functions of

pressure and density and the rate constants clearly decrease with both pressure and

density. Also, the magnitudes of the slopes of kc versus either pressure or density increase

smoothly with temperature above the critical point of pure carbon dioxide.
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Figures 3-5. Values of kc measured for reaction I in scCO2 plotted as a function of
pressure (a) and density (b), respectively, at various temperatures: , 45 °C; o, 60 °C; Y,
75 C. Solid lines are the best fits for the data but have no physical basis.

To our knowledge the only published report of decreasing rate constants with

increasing pressure/density for a Diels-Alder reaction in scCO2 is that of Thompson et al.

(1999). These authors studied the hetero Diels-Alder reaction of anthracene and 4-

phenyl-1,2,4-triazoline-3,5-dione at 40 C (reaction II) which is quite similar to the

model reaction (reaction I) chosen for this study. Therefore, it is not entirely surprising

that the two reactions exhibit similar behavior with pressure and density.
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Solubilities of 9-Hydroxymethylanthracene in scCO2. The measured solubilities of 9-

hydroxymethylanthracene in scCO2 at 45 C are plotted in Figure 3-6. As shown, the

solubility increases from 1.2x10- 5 to 1.9x10-4 mol L- for the pressure range between 70

and 150 bar. Near 75 bar there is a sharp increase in the solubility that is related to the

significant density increase in the vicinity of the critical point of scCO2. The solubility of

9-hydroxymethylanthracene follows a trend similar to that observed for anthracene

(Bunker et al., 1997). Anthracene is roughly 10 Ox less soluble in scCO 2 than 9-

hydroxymethylanthracene which can be attributed to two factors: (1) weak specific

interactions between the methanol group of 9-hydroxymethylanthracene and carbon

dioxide and (2) the higher vapor pressure of 9-hydroxymethylanthracene relative to

anthracene due to less efficient packing in the solid state.
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Figure 3-6. Solubility of 9-hydroxymethylanthracene, [HA], in scCO 2 at 45 °C plotted as
a function of pressure. The solid line is intended to guide the eye and no physical basis is
intended (Qian et al., 2004).

3.4 Discussion

The rate of the Diels-Alder reaction of 9-hydroxymethylanthracene and N-

ethylmaleimide is accelerated in scCO 2 relative to conventional solvents, and at all

temperatures for which data are available, the rate constants decrease with increasing

pressure/density. We propose that the solvophobic effect is the physical cause of these

observations because the solvophobic mechanism is consistent with both the

experimental rate and solubility measurements and it is further supported by activation

volume estimates and comparison to reaction rates in conventional solvents.

Effect of Pressure on Reaction Rates. Transition-state theory is often used by many

researchers to interpret the effect of pressure on kinetic data for reactions conducted in

,,
I1 I r I I- I II - F -· I II I I
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supercritical fluids. Within this context, the pressure dependence of the rate constant is

given by

(r-~r-r------1~~ R(3-1)
;P 'r, RT

where kx is the bimolecular rate constant expressed in mole fraction units, T and P are the

system absolute temperature and pressure, R is the universal gas constant, x is the

concentration in mole fraction units, and VI is the apparent activation volume.

Sometimes an overbar is used in conjunction with A VI to specify that it is a partial molar

quantity. The following formula is used to convert between conventional concentration

units, kc, and mole fraction concentration units, kx:

tkc (p./Mw) (3-2)

where p is the mixture fluid density (expressed as g L' 1) at the temperature and pressure

of the kinetic measurement and Mw is the average molecular weight of all of the species

in the mixture.

The apparent activation volume is composed of two terms which account for (1)

the formation/breaking of bonds and (2) changes in solvation that accompany the

reaction. For both structured fluids like water and compressible fluids such as those near

their critical point, the apparent activation volume is dominated by changes in the

solvation volumes. Although interpretation of A VI is difficult and rarely provides

mechanistic insight for complicated reactions with multiple steps, molecular-level

information can be obtained in principle from interpretation of A VI for true elementary

reactions such as the Diels-Alder cycloaddition.
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Using our data and transition-state theory, Figure 3-7a is a plot of the natural

logarithm of rate constants in mole fraction units (i.e. k) as a function of pressure at

different temperatures. The slopes of these curves are essentially linear (R2 > 0.80), and

the lines are roughly parallel. Equation 1 was used to determine apparent values of AV,

and the results are plotted as a function of reduced temperature (Tr = TIT,) in Figure 3-7b.

The values of a VI for the data set are both large and positive (+350 cm3 mol-'), and the

error bars in Figure 3-7b represent the uncertainties in the slopes of the best-fit lines in

Figure 3-7a.

The studies of Jenner and Gacem (2003) on the effect of pressure on Diels-Alder

reactions, report values of z VI that range from -27 to -36 cm3 mol'. Using these results,

consideration of only the contributions from bond breaking/formation leads to Az V

estimates of roughly -30 cm3 mo'-1. Since the volume change associated with bond

breaking/formation should not be strongly affected by the solvent, there must be a

significant effect (roughly +380 cm3 mol-') on the apparent values of A VI measured in

this study which arises from solvation.

From Figure 3-7b, proximity to the critical point has only a minimal effect on A VI

since there is only a weak trend in the apparent activation volume in the range of reduced

temperature, 1.06 to 1.23, considered in this study. There may be a slight increasing trend

in A VI with temperature, but uncertainties in the estimated values of A VI are as large as

the total change itself. This observation suggests that critical phenomena arising from

density fluctuations, such as reactant clustering (either solute-solvent or solute-solute), do

not play a role in the observed kinetics (Ellington and Brennecke, 1993).
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Several researchers (Thompson et al., 1999; Reaves and Roberts, 1999; Knutson

et al., 1995) have used cubic EOS's to predict the partial molar volume in equation 3-1,

thereby relating measured rate constants (or at least trends in rate constants) to pressure.

This approach usually requires estimates of Tc, P,, the accentricity factor (w), and the

binary interaction parameter (kui) (Tester and Modell, 1997). Since thermodynamic

parameters are well defined only for stable species, it is frequently assumed that the

product and transition state are thermodynamically equivalent. Also, the interaction

parameters are generally assumed to be zero (Thompson et al., 1999; Reaves and

Roberts, 1999) or small (Knutson et al., 1995) compared to unity. Naturally these

assumptions introduce some uncertainty and cast suspicion on the use of equation 3-1 as

a predictive tool or its ability to provide physical insight. For example, Thompson et al.

(1999) found that changing the estimated critical temperature of the product (and thus the

transition state) by 20% led to entirely different signs in EOS predictions of A V.

Due to the uncertainty and suspicions noted above, we propose a different

physical picture to describe the relationship between rate constants and pressure/density

in scCO2 that employs a theory of preferential solvation to explain the observed reaction

rate trends. Figure 3-8 is a schematic of the physical situation in terms of changes in free

energy as a function of reaction coordinate, X. In both panels, there is an increase in free

energy upon combination of the reagents to form the transition state that depicts the

activation free energy for the chemical reaction, zGi. Likewise in both panels, increasing

the fluid density decreases the free energy of the reagents, transition state, and product.

The difference between the panels is the influence of density on the barrier height, A GI.
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Figure 3-8. Free energy sketches for reaction coordinates representing two different
responses to density. (a) shows preferential solvation of the transition state as density
increases, leading to a net decrease in AG+with increasing density. In (b) the reactants are
preferentially solvated by increased density, leading to a net increase in AG+ as density
increases (Qian et al., 2004).

In Figure 3-8a, the transition state is preferentially solvated relative to the reactants (Gt

is a decreasing function of density) while the reactants are solvated preferentially relative

to the transition state (G1 is an increasing function of density) in Figure 3-8b. The

reaction rate constant is related to JGI by the Eyring equation:

kBT
k, exp(-AG* 'RT) (3-3)

where kB is Boltzmann's constant (1.38x10 -2 3 J K- 1) and h is Planck's constant

(6.6261x10 -3 4 J s). The Eyring equation simply shows that an increase in zJGI leads to an

exponential decrease in k and vice versa. As a result the Eyring equation predicts an

increase in the reaction rate with density for the situation depicted in Figure 3-8a and a

decrease in the reaction rate with density for the opposite situation of Figure 3-8b.
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Reported kinetic rate measurements of Diels-Alder reactions in scCO2 can be

divided into two groups corresponding to panels (a) and (b), respectively, of Figure 3-8.

The first, more populated group corresponds to Diels-Alder reactions in which the

reactants are rather soluble in scCO2. Many of the most common dienes (isoprene,

cyclopentadiene) and dienophiles (methyl acrylate, ethyl acrylate, maleic anhydride) in

this group are either essentially miscible with scCO2 or at least reasonably soluble. Of the

reagents commonly used in this group, maleic anhydride is the least soluble in scCO 2

with a measured solubility estimated (Glebov et al., 2001) to be 0.2 mol% at 60 °C and

100 bar. This contrasts with the second group, which includes the reagents used in this

study and that of Thompson et al. (1999), in which the solubilities of the dienes are much

lower, on the order of 1x10-3 mol% or less.

Going beyond the physical picture described above, consideration of transition-

state theory provides a more physical interpretation of the observed rate phenomena and

their relationship to reagent solubility. In this context, kc is expressed as

kBT 
, = k--7K-C (3-4)

where K is the transmission coefficient (0 K <1) and KcI is the concentration-based

equilibrium constant for the reaction between the reactants and transition state. For an

elementary reaction such as the Diels-Alder cycloaddition Kc; is defined as

t cA-B (3-5)

where CA and CB are the molar concentrations of the reactants and CAB is the

"concentration" of the idealized transition state. Following a standard thermodynamic
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procedure, most of which can be found in the literature (Weinstein, 1998; Weinstein et

al., 1996), equation 3-4 can be written

B k -- exp( lT . at (3-6)

as where JAG ° is the change in partial molar Gibbs free energy between reactants and

transition state when all species are in their respective standard states, Kxid is the

continued product of the ideal solution mole fraction solubilities, and Kx,sa; is the

continued product of the actual saturation mole fraction solubilities. By definition KX,id is

not a function of pressure (Prausnitz et al., 1999), and neither is AG, ° provided that the

reference states are defined at a fixed pressure. Therefore, assuming that K is at most a

weak function of pressure, the majority of the pressure dependence in equation 3-6 is due

to Kx,sat.

Using equation 3-6, Figure 3-8a,b can be interpreted in terms of solubility or

solvation. For the Diels-Alder reactions in which the dienes are essentially miscible with

scCO2, increases in fluid density will have little effect on the solubility of dienes.

However, the transition state of these reactions is much less solvated in scCO2 than the

reactants due to the larger molecular size of the transition state. It is well-known that as

the molecular size of compounds increase their solubility in scCO2 decreases. This is

particularly true when molecular size is increased without introduction of new functional

groups. The examples of benzene (which is essentially miscible with scCO2), naphthalene

(which has a characteristic solubility of approximately 5 wt% in scCO 2 at 35 C and

150 bar (Modell et al., 1978)), and anthracene (the solubility of which is less than

5x10-3 wt% at 35 C and 150 bar (Bunker et al., 1997)) are illustrative. Unlike the
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reactants used in these types of Diels-Alder reactions, the solvation of the large transition

state, which contains no functional groups not present in the reactants, increases

significantly with fluid density. Therefore, Kx,sat increases with pressure which leads to

an increase in k,.

The situation is reversed for dienes such as anthracene and 9-

hydroxymethylanthracene which are sparingly soluble in scCO2. The solubilities of these

reactants increase sharply with density as depicted for 9-hydroxymethylanthracene in

Figure 3-6. The solvation of the transition state most likely also increases with fluid

density, but we hypothesize that the effect is less pronounced than for the reactants.

Therefore, for these reactions, Kx,sat decreases with pressure, leading to a decrease in kx.

This hypothesis is supported by the fact that a fraction of the insoluble surface area of the

diene becomes inaccessible to the solvent during the course of the reaction. Due to the

reduced requirement for solvent interactions with the transition state, it is preferentially

solubilized as density is decreased. This is a solvophobic effect analogous to those

reported in water (Chandrasekhar et al., 2002; Otto and Engberts, 2000; Breslow et al.,

1984; Grieco et al., 1983; Rideout and Breslow, 1980) and fluorocarbon solvents (Myers

and Kumar, 2000; Jenner and Gacem, 2003). The large, positive values of A Vf observed

for our rate data are related to changes in the preferential solvation of the transition state

relative to the reactants as pressure decreases rather than true changes in molecular

volumes (of either the reactants/transition state or solvent). Critical phenomena cannot

explain the observed pressure/density behavior since VI is only a weak function of

reduced temperature. In any event, solute/solute and solute/solvent clustering should be

negligible for Tr > 1.1 (Tucker, 1999).
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Solvophobic Interactions and Acceleration of Diels-Alder Reactions. The Diels-Alder

reaction between 9-hydroxymethylanthracene and N-ethylmaleimide has been studied

previously in conventional solvents (Myers and Kumar, 2000; Rideout and Breslow,

1980). These studies have clearly implicated the accelerative roles of hydrogen-bonding

and solvophobic interactions. Myers and Kumar (2000) demonstrated that the

bimolecular rate constants for this reaction measured at 45 °C in a range of solvents were

inversely related to the solubilities of the diene in the same solvent, with significant

deviations observed only for reactions conducted in solvents capable of hydrogen bond

donation (e.g., water and trifluoroethanol). Table 3-2 lists available experimental

measurements of the rate constant of reaction I along with the solubility of 9-

hydroxymethylanthracene and -z1JGI, which is the change in the activation free energy

relative to that observed in acetonitrile calculated from equation 3-3. Duplicate values of

kc agree to within experimental error with the exception of those obtained in water. In this

study, 1 mol% acetonitrile was used as a delivery solvent for rate studies in water. Most

likely, this small amount of acetonitrile acted as a co-solvent; thus, reducing the

solvophobic effect and decelerating the reaction rate.

Values of -GI reported in Table 3-2 range from zero (for acetonitrile, by

definition) to roughly 6 kJ mol-1 (for water). Values of -/zGI for scCO 2 bridge the gap

between the values reported for fluorocarbon and hydrocarbon solvents. Changes in fluid

density in the supercritical solvent are similar to changes in the chemical identity of

incompressible solvents. Increasing the scCO 2 fluid density from 340 to 730 kg m -3 is

roughly equivalent to changing the solvent from perfluoro-n-butyl ether to 1-butanol. Just

as in conventional solvents, the slowest rate constants are observed in scCO2 under
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conditions at which 9-hydroxymethylanthracene is most soluble. Naturally, the

accelerative effect of scCO2 is less than that of water since carbon dioxide lacks the

capacity to form hydrogen bonds. Nonetheless, solvophobic reduction of AGI in scCO2 is

significant.

Table 3-2. Rate constants, k, for the Diels-Alder reaction of 9-hydroxymethylanthracene
and N-ethylmaleimide at 45 C in hydrocarbon solvents, fluorocarbon solvents, water,
and scCO2 (Qian et al., 2004).

solvent k, -AAG a solubilityb source
(105 L mol-1 s-') (kJ mol -1) (10 3 mol L)

scCO 2 (p=
340 g L')

scCO 2 (p=
560 g L-1)

scCO 2 (P=
730 g L-')

n-hexane
isooctane
di-n-butyl ether
acetonitrile

methanol

1 -butanol

perfluorohexane
perfluoro-2-n-
butyl ether
perfluorobenzene
trifluoroethanol
water

Supercritical Fluid Solvents
2480±250 4.0 0.03

1490±150

740±100

Hydrocz
776± 80
796± 71
245± 16
108± 10
107± 8
100± 6
337± 60
344± 25
666± 23

Fluorocarbon
5345±308
4562±404

152± 26
841±114

22300±720
22600±700
18400±300

3.0

1.8

arbon Solvents
2.3
2.3
0.9
0.0

1.3

2.1
Solvents

4.5
4.3

0.4
2.4
6.1

0.13

0.18

1.24
na

20.9
29.5

29.9

na
and Water

>0.005
>0.005

11.2
18.1

0.027

this work

this work

this work

Myers
Rideout

Myers
Rideout
this work
Myers
Rideout
Rideout

Myers
Myers

Myers
Myers
Myers
Rideout
this work

a-AAG is the change in activation free energy relative to that in acetonitrile. bSolubilities
of 9-hydroxymethylanthracene at 45 °C where available.
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3.5 Conclusions and Recommendations

The Diels-Alder reaction of N-ethylmaleimide with 9-hydroxymethylanthracene

proceeds at rates in supercritical carbon dioxide that are much faster than in traditional

organic solvents. On the basis of the low solubility of 9-hydroxymethylanthracene in

scCO2, we infer a solvophobic mechanism consistent with that proposed for acceleration

of this reaction in water and fluorocarbon solvents. Strong, negative pressure and density

dependencies of the rate constant were observed that is consistent with a solvophobic

mechanism driven by the positive relationship between fluid density and solute solubility.

The apparent activation volumes are both large and positive (+350 cm3 mol') and only a

weak function of reduced temperature which rules out the influence of clustering

phenomena (solute/solvent or solute/solute) as the cause of the observed accelerations.

Instead, the large activation volumes can be attributed to changes in the solubility of the

reagents relative to that of the transition state with increasing density.

Understanding the solvophobic acceleration of Diels-Alder reactions in scCO2

provides a tool for selection of model reactions to conduct in supercritical fluids.

Typically, reagent selection is based on solubility in scCO2, but our results show that

solvophobic acceleration can provide a second criterion for the choice of reagents. The

similarities of scCO2 with fluorinated solvents (which are more accessible experimentally

than scCO 2) might also be exploited in the future. However, like water, scale-up of

reactions involving sparingly soluble species may be prohibitive for utilizing scCO2 as a

solvent for Diels-Alder reactions and other syntheses.

Future work should be conducted to further understand this solvophobic

acceleration so that the results uncovered by this investigation might be applied to a
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wider range of organic reactions. Possible focal points include: (1) determination of

specific molecular structures which are expected to interact solvophobically in scCO 2, (2)

further quantification of the solvophobic effect, particularly in the presence of hydrogen-

bond-donating co-solvents, and (3) development of computational techniques integrating

methods from density functional theory and molecular simulation to further molecular-

level understanding of reactivity in scCO2.
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CHAPTER 4

WATER AS A CATALYST: CONVERSION AND
SELECTIVITY OF A MODEL DIELS-ALDER REACTION IN
CARBON DIOXIDE/WATER SYSTEMS

This chapter describes an experimental investigation of the Diels-Alder reaction

between cyclopentadiene and methyl vinyl ketone conducted in carbon dioxide/water

mixtures. My contribution to this project involved studying the effect of methyl vinyl

ketone concentration on the conversion and selectivity of this reaction under sonicated

conditions. This work was a continuation of the experiments performed previously by

Michael T. Timko in his Ph.D. thesis (2004).

4.1 Background and Objectives

Background. As described in Chapter 1, the work of Breslow and co-workers (Breslow

et al., 1983; Rideout and Breslow, 1980) and Grieco et al. (1984; 1983) in the early

1980s sparked two decades of intense investigation into the effect of water upon the

reactivity of organic compounds. Both researchers independently found that the rates of

certain Diels-Alder reactions were accelerated nearly a 1000-fold when conducted in

aqueous media rather than conventional hydrocarbon solvents. These results changed the

common perception of water as a solvent that was not practical for important synthetic

reactions (due to the limited solubility of most organic compounds) into a solvent that

may be industrially useful because of its well-known environmental compatibility and

recently discovered technological advantages.



59

A recent review by Lubineau and Auge (1999) describes many types of chemical

reactions that demonstrate the advantages, both improved reaction rates and selectivities,

of using water rather than conventional hydrocarbon solvents. Although the role of water

in these reactions is complex and not completely understood, it is agreed that the

hydrophobic effect and enhanced hydrogen bonding of water to highly polarized

transition states dominate the observed accelerative effects of water on chemical kinetics.

The relative contribution of these effects is the subject of current inquiry (Chandrasekhar

et al., 2002).

Despite successful academic research that has exhibited clear technological

advantages of using water over conventional solvents, water has not yet been adopted on

a commercial scale because of the limited solubility of most organic reagents in water. In

effect, this limited solubility places a limit on the maximum production rates that can be

achieved. There are potential engineering solutions to increase production rates but they

all suffer from severe disadvantages. For example, reactors with volumes large enough to

maintain required production rates while ensuring one-phase conditions could be used.

However, the recovery of low concentrations of organic compounds from aqueous

streams would be energy intensive and costly and the low solubilities of the organic

compounds would offset any increases in the production rate achieved by using water

over conventional solvents. Another solution is to deploy a second organic phase in

addition to the water phase or to even use one of the reactants as a second phase. The

problems with this solution are that using a second organic phase would compromise the

environmental advantages of using water as a reaction solvent, and it is possible that the

favorable selectivities anticipated with aqueous-based chemistry will be limited by side
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reactions occurring in the organic phase (Timko, 2004). Finally, an array of chemistry-

based solutions has been proposed to increase the solubility of organic compounds in

water while retaining the other beneficial aspects of aqueous reactivity. These techniques

include the addition of carboxylate groups to common dienes (Grieco et al., 1984), the

creation of glucose-grafted dienes (Lubineau et al., 1994), the use of polar co-solvents

(Blokzilj and Engberts, 1994), and the use of surfactants to solubilize organic reagents

(Diego-Castro and Hailes, 1998). Although many of these methods have been successful,

potential drawbacks include the need for additives like surfactants, limitations on the

range of reagents that can be used, or an increase in the number of chemical steps

required to form the desired product.

Timko (2004) pursued an alternative approach to overcome the solubility

limitations of water. His approach employs a biphasic system in which dense carbon

dioxide is used in conjunction with liquid water in order to maintain the environmental

benefits of aqueous reaction media while addressing the solubility limitations of organic

reagents. In this study the Diels-Alder cycloaddition between cyclopentadiene and methyl

vinyl ketone in biphasic carbon dioxide/water systems was studied. To overcome mass

transport limitations that are present in biphasic systems, power ultrasound was used to

generate emulsions in order to increase the interfacial contact area between phases.

Ultrasound was introduced into the reaction mixture via a titanium sonic probe that was

immersed in the reaction fluid. Experiments were conducted at 30 °C and 80 bar over a

range of water volume fractions with a methyl vinyl ketone concentration of 1 mol L-'. In

non-emulsified, silent systems, it was found that both the selectivity and conversion (after

1 hour) increase with increasing water content. With sonication, both the conversion and
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selectivity increased dramatically over the silent case. For example, sonication at a water

fraction of 0.60, increased conversion from 30% to 60% and selectivity from 6.5:1 to

greater than 10:1. Furthermore, the experimental results suggest that 2 cm is the optimal

distance between the tip of the sonic horn and the carbon dioxide/water interface. Sonic

enhancement was much less dramatic for horn-to-interface distances which differed from

this optimal value, consistent with a number of published reports on the sonication of

fluids (Laborde et al., 2000; Dahnke and Keil, 1999; McMurray and Wilson, 1999).

Objective. The objective of this study was to extend our work in biphasic systems by

investigating the effect of methyl vinyl ketone concentration on the selectivity and

conversion of the model Diels-Alder cycloaddition between cyclopentadiene and methyl

vinyl ketone (reaction 4-1):

0 COCH3

Endo Exo

Both silent and sonicated conditions in a dense carbon dioxide/liquid water biphasic

system were evaluated.

4.2 Experimental Methods

Materials. Methyl vinyl ketone (purity > 99%) and HPLC-grade acetone (purity >

99.55%) were obtained from Sigma Aldrich and used as received. Dicyclopentadiene was

also purchased from Sigma Aldrich and cracked at 180 °C to obtain cyclopentadiene with

a purity of roughly 98% as determined by gas chromatography. The freshly prepared

cyclopentadiene was used immediately or stored at -10 °C for up to 12 hours before use.

Water was deionized to a minimum resistivity of 18.1 MQ (Barnstead Nanopure) and
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used immediately. Grade 5.5 carbon dioxide (purity > 99.9995%) was purchased from

BOC Gases and used without further treatment.

Experimental Conditions. All experiments were conducted in an acoustic reactor

designed previously in our group for use in studies involving high-pressure, ultrasonic

emulsification. This reactor is described in detail elsewhere (Timko, 2004), so only the

salient features are presented here. The high-pressure reactor, as shown in Figure 4-1,

consists of two intersecting cylindrical chambers (i.d. = 1.9 cm) bored in a slab (18.8 cm

x 15.3 cm x 5.1 cm) of 316-stainless steel. Three of the four apertures in the reactor

contain a-A120 3 sapphire windows sealed with stainless steel glands. The pressure seal

was made using a Teflon gasket and the sapphire itself was protected from damage

during tightening by a buna-N rubber gasket (90 durometer, Shore A, provided by New

England Die Cutting, Inc.). The fourth aperture contains a titanium sonic probe (o.d. =

0.80 cm, Sonics and Materials, Inc.) sealed with a stainless steel gland. Teflon and buna-

A' gasket were again used to make the pressure seal for this aperture. During experimental

runs the glands were tightened to approximately 90 ft-lbs using a torque wrench.

The experimental conditions of this study replicate those used by Timko (2004).

Reactions were run at 30 °C and 80 bar; an environment which was originally selected by

Timko because the effects of ultrasound were well established under these conditions and

the liquid-like density of carbon dioxide (0.70 g cm-3) at this temperature and pressure

was expected to favor high solubility of the reagents and promote two-phase conditions.

In addition to ultrasound, described below, a recirculation loop was also used to agitate

the contents of the reactor. The recirculation loop was configured so that the water phase

was recalculated through the carbon dioxide phase.
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Figure 4-1. Schematic of the custom-built, high-pressure reactor used for sonic
experiments. A: stainless steel gland; B: buna-N gasket; C: sapphire window; D: Teflon
gasket; E: 0.25" apertures for machined NPT fittings; F: sonic probe. Pictured on the
right is a digital photograph of the reactor (Timko, 2004).

Ultrasound was introduced directly into the reaction medium using the Branson

sonication unit and titanium probe described previously (Timko, 2004). The operating

frequency of the sonication unit is 20 kHz and the ultrasound was pulsed at a duty of 25%

(based on a 1 s cycle) for reactions studied at a power density of 0.55 W cm -3. Sonication

experiments were only conducted with the horn inserted into the water phase and pointed

up toward the carbon dioxide/water interface. For all experimental runs, the volume of

the water phase was monitored so that the horn tip resided approximately 2 cm from the

interface, conrresponding to the optimal distance determined by Timko (2004).

Experimental Protocol. Selectivity and conversion after 1 hour were measured for the

Diels-Alder reaction between cyclopentadiene and methyl vinyl ketone in a dense carbon
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dioxide/water system (85% water by volume/15% C0 2). Experimental runs were

conducted both in the presence and absence of emulsifying ultrasound. The initial

concentration of methyl vinyl ketone, [MVK]o, was varied from 0.05 to 1.0 mol L- l.

Larger concentrations of [MVK]o were not used because preliminary experiments

indicated three-phase behavior (water-rich liquid, dense C0 2, and an MVK-rich phase)

for concentrations above 1.0 mol L- of the dienophile in water/carbon dioxide systems at

30 °C and 80 bar.

Due to the design of the acoustic reactor, a 316-stainless steel insert was designed

and fabricated to occupy a portion of the reactor volume so that the experiments could be

conducted with a water fraction of 0.85 while maintaining the 2 cm horn-to-interface

distance. With the horn pointed up, the reactor is designed such that 55 cm3 of the water

phase is needed to obtain the 2 cm distance. As a result, the insert, with a volume of

17.3 cm3, was used to displace a portion of the excess CO2 volume thereby reducing the

total reactor volume from 82.5 ± 1.6 cm3 to 65.2 ± 1.6 cm3.

In a typical run a solution of MVK and water was prepared and added to the

reactor. The reactor was then sealed and pressurized to 70 bar with carbon dioxide. For

30 minutes the reactor contents were allowed to come to thermal equilibrium during

which time the mixture was agitated using the recirculation pump (LDC Analytical)

operating at a flow rate of 15 cm3. Sonication was also commenced at this time for

experiments in which it was used. After thermal equilibrium was achieved, the pressure

of the reactor was increased to 80 bar. The reaction was then initiated by injecting 50 AL

of cyclopentadiene into the reactor through a calibrated sample loop via a standard 6-way

valve (Valco Instruments uw-type) using the recirculating water phase.
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The reaction was concluded after 1 hour by venting the entire reactor contents

into cold acetone. A high-pressure metering valve (Autoclave Engineers 10 OVRMM2812)

heated with thermal tape (Barnstead) operated at 40 V (as set by a standard variable

transformer) was used to maintain an even flow of depressurizing carbon dioxide and

prevent formation of ice in the vent line. A glass vessel equipped with a frit (10 jpm pore

diameter) was used to improve recovery of volatile components. The cold acetone into

which the reactor contents had been vented was diluted to a standard volume by more

acetone and analyzed by GC (Agilent 6890) using the method described for the

measurement of rate data in pure water in Chapter 7 of Timko (2004). The reactor was

rinsed with acetone and this wash was also analyzed by GC. Uncertainties in the

calculated selectivity and conversion to a 95% confidence level were based on the error

in the GC calibration which was ± 3%.

4.3 Experimental Results

The results from the variable [MVK]o experiments are presented in Figure 4-2.

The silent experiments were completed prior to my analysis of the sonicated condition.

Under silent conditions decreasing the initial concentration of MVK from 1.0 mol L- to

0.05 mol L-1 increases the selectivity from roughly 6:1 (slightly higher than the 4.4:1

observed in pure carbon dioxide) to nearly 16:1 (much closer to the 20:1 observed in pure

water). Meanwhile, the selectivity is much less sensitive to [MVK]o under sonicated

conditions with an increase of only 13:1 to 16:1 between [MVK]o values of 1.0 mol L-

and 0.05 mol L-1, respectively. Figure 4-2 also clearly shows that the conversions

achieved after 1 hour are improved under sonicated conditions, especially when
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[MVK]o = 1.0 mol L -'. In effect, ultrasonic enhancement of mass transport rates allows

water-like selectivities and conversions to be obtained even when [MVK]o = 1.0 mol L-1.
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S, of the Diels-Alder cycloaddition of methyl vinyl ketone with cyclopentadiene in
carbon dioxide/water systems plotted versus the initial concentration of dienophile. For
the sonicated condition, the horn-to-interface distance is 2 cm. Conditions: 30 °C, 80 bar,
85% water by volume, 1 hr reaction time. Ultrasound: 20 kHz ultrasound, 25% duty (on
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Following the analysis of Timko (2004), the observed selectivity behavior can be

interpreted in terms of the relative rates of the processes described in Table 4-1. Table 4-1

lists estimated mass transport coefficients, rate constants, and Hatta numbers, defined as

(krxnDA)1/ 2 / k, in both phases for the extremes in [MVK]o. The mass transport

coefficients listed in Table 4-1 are based on the transport measurements of benzaldehyde

described by Timko and therefore do not take into account transport to water droplets as

they recirculate through the carbon dioxide phase. Thus the mass transport coefficients in

Table 4-1 underestimate the total mass transport rates between the two phases. The Hatta

numbers indicate that: 1) mass transport in the water film is slightly enhanced by reaction

for [MVK]o = .0 mol L-1 as the water-based Hatta number equals 2 in this case; 2) the

carbon dioxide phase is well mixed, as the Hatta number is always much less than unity

in this phase. Water-based Dimkohler numbers are less than unity (< 1 x 10-2).

Table 4-1. Characteristic values of rate related processes for dynamics of the reaction
between methyl vinyl ketone and cyclopentadiene in carbon dioxide/water systems
(Timko, 2004).

Rate process [MVK]o = 1.0 mol L- [MVKjo = 0.05 mol L-

H 20 C0 2 H20 CO 2
pseudo-first order reaction ratea (s'- ) 0.04 2 x 10-5 3 x 10

-3 1 X 10 -6

mass transport coefficient (cm s -1) 3 x 10 -4 3 x 10-3 3 x 10-
4 3 x 10-3

(H2 0 film) (CO2 film) (H20 film) (CO2 film)

Hatta numberb 2 0.015 0.5 4 x 10- 3

reaction enhanced transport coefficient 7 x 10- 4 3 x 10-3 3 x 10-4 3 x 10- 3

(cm s')

overall mass transport coefficient (cm
S-l), kmt kw / Kcw 6 x 10 -6 3 x 10 -6

with Kcw (cyclopentadiene) =100

mass transport coefficient x specific 1 x 106 6 x 10-7
surface areac (s-1)

a for the overall rate of disappearance of cyclopentadiene i.e., k + k or kc + kc
b Hatta number, yw = (krxn DAW)1/2/ kw or yc = krxn DAC)1 /2 / kc
c assuming that the specific interfacial area = 20 cm2 / 100 cm3 = 0.2 cm-1.
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Using the data in Table 4-1, when [MVK]o = 1.0 mol L-' the pseudo-first-order

reaction rate constant in the carbon dioxide phase is 2 x 10-5 s-1 while the overall rate is

1 x 10-6 s-l . The 20-fold difference between the two rates implies that the reaction occurs

primarily in the carbon dioxide phase before the cyclopentadiene can be transported to

the water phase. This marked difference in rate supports the experimental observation

that the selectivity at [MVK]o = 1.0 mol L-' is much closer to the selectivity observed in

pure carbon dioxide that that observed in pure water. In contrast, when [MVK]o =

0.05 mol L- the reaction rate constant in carbon dioxide is 1 x 10-6 s-1 while the effective

transport-limited rate constant to the water phase is 6 x 10-7 s -1, less than a two-fold

difference. This leads to the conclusion that when [MVK]o = 0.05 mol L-1 transport of

cyclopentadiene to the water phase is sufficiently fast compared to reaction in the bulk

carbon dioxide that a substantial fraction of the water phase is utilized, thus supporting

the observation that the selectivity approaches the values reported in pure water at lower

concentrations of methyl vinyl ketone. Meanwhile, the trends observed under sonicated

conditions are consistent with the findings of Timko (2004) for a biphasic system with

small water-based Hatta numbers where a much smaller acoustic effect for systems with

low Hatta numbers (Hatta < 0.5) when compared to systems with Hatta > 1 was reported.

As Table 4-1 shows, the Hatta number in the water phase is approximately 0.5 when

[MVK]o = 0.05 mol L- 1, which supports the observation that sonication does not

dramatically improve either the selectivity or the conversion at this condition. In contrast,

the significant enhancement in selectivity and conversion that is observed under

sonicated conditions when [MVK]o = 1.0 mol L-' is expected as the Hatta number in the

water phase is equal to 2.
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4.4 Conclusions

A set of experiments were conducted at a water volume fraction of 0.85 while

maintaining the optimal horn-to-interface distance of 2 cm and varying the initial

concentration of methyl vinyl ketone from 0.05 to 1.0 mol L- . Under sonicated

conditions the most dramatic improvements were seen when the initial methyl vinyl

ketone concentration was 1 mol L- . At this concentration the endo:exo selectivity was

nearly 13:1 and the conversion after one hour was greater than 90%. These results

compare favorably to that obtained silently (6:1 selectivity, 70% conversion) or expected

in pure carbon dioxide (4.5:1 selectivity, 30% conversion). As the concentration of

methyl vinyl ketone was decreased from 1.0 to 0.05 mol L- 1, the selectivities and

conversions obtained under sonicated conditions approached those obtained without

ultrasonic emulsification (16:1 selectivity, 50% conversion). In general, for water/CO 2

systems in which the water-based Hatta number is greater than one, sonication increases

mass transport rates in this biphasic system, thus allowing both the selectivity and

conversion to approach that of a water-phase reaction without directly encountering

solubility limitations of the reactants in water.
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CHAPTER 5

SYNTHESIS OF NITROGEN-BEARING COMPOUNDS IN
DENSE CARBON DIOXIDE AND/OR WATER SYSTEMS

The work in this chapter was conducted as part of the CMI project which is a

collaborative project between the following research groups: Professor Jeff Tester (MIT),

Professor Rick Danheiser (MIT), and Professor Andy Holmes (Cambridge University,

UK). At MIT our lab worked closely with Josh Dunetz of Professor Danheiser's lab. The

overall objective of the CMI project is to investigate the application of water and carbon

dioxide as "environmentally friendly" media for synthetic, organic reactions involving

different types of amines.

5.1 Background and Objectives

Background. The synthesis of organic compounds in the absence of regulated or

potentially toxic solvents is an important industrial goal, and is the motivation for

development of alternative reaction media. Supercritical carbon dioxide has recently

attracted considerable attention (Qian et al., 2004; Leitner 2002; Glebov et al., 2001;

Thompson et al., 1999) as it is non-toxic, inexpensive and universally available. Because

supercritical fluids offer the ability to vary density and solvent power through small

changes in pressure and temperature, separations of reactants, products, and catalysts are

facilitated. The many favorable and tuneable properties of near-critical and supercritical

carbon dioxide (scCO2) make it attractive for use on an industrial scale.



73

Besides scCO 2, water has attracted attention as a potential green solvent due to the

work of Breslow and co-workers (1983; Rideout and Breslow, 1980) and Grieco et al.

(1984; 1983) that demonstrated water's ability to accelerate the rate of certain Diels-

Alder reactions over a 1000-fold when compared to conventional organic compounds. A

recent review by Lubineau and Auge (1999) describes many types of chemical reactions

that demonstrate the advantages, both accelerated reaction rates and improved

selectivities (regio- and stereo-), of using water as a reaction solvent rather than

conventional hydrocarbon solvents. Although the role of water in these reactions is

complex and not completely understood, it is agreed that the hydrophobic effect and

enhanced hydrogen bonding of water to highly polarized transition states (Otto and

Engberts, 2000) dominate the observed accelerative effects of water on chemical kinetics.

The relative contribution of these effects is the subject of current inquiry (Chandrasekhar

et al., 2002).

Unfortunately the practical application of both water and scCO2 as reaction media

has been limited by the poor solvent power they exhibit for many reactants and reagents

of interest. Although scCO2 will dissolve many non-polar compounds of low molecular

mass, many catalysts, substrates, and reagents have limited solubility in this medium.

Likewise, most organic reagents display limited solubility in water. The combination of

water with scCO2 to form a biphasic system is one possible solution to overcome some of

the solubility limitations of both solvents because their solvation powers are

complementary. In addition, this particular biphasic system allows the accelerative effect

of water on chemical kinetics (the hydrophobic effect) to be accessed more readily by

using carbon dioxide to dissolve the main reagents which tend to be water insoluble. A
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limitation of using a biphasic system is the inherent, interphase mass transport resistance

that may influence the kinetics of the reaction of interest. One strategy to overcome these

potential limitations is the generation of water/CO2 emulsions which reduce mass

transport limitations through the creation of more interfacial surface area. Emulsions can

be created using either surfactants (Jacobson et al., 1999; McCarthy et al., 2002) or power

ultrasound (Timko, 2004).

To this point, the research in this thesis has focused on Diels-Alder reactions that

proceed in a controlled fashion to the desired products and have only involved the

formation and/or breaking of carbon-carbon bonds. Nitrogen-bearing chemistry,

however, is also of interest as nitrogen heterocycles represent a class of compounds that

is extensively used in the pharmaceutical, agrochemical, and electronics industries.

Pharmaceutically important compounds include among others: methopholine, yohimbine,

vincamine, salsolinol, and debrisoquine. Some synthetic transformations important for

the formation of these nitrogen heterocycles are:

* palladium-catalysed amination reactions

· dipolar cycloadditions including nitrile oxide and azomethine ylide
cycloadditions

* hetero Diels-Alder reactions of iminium ions

* Mannich and Pictet-Spengler reactions

* enantioselective organocatalytic carbon-carbon bond forming
reactions

* palladium-catalysed coupling reactions on solid phase supports.

Although the chemistry of nitrogen-bearing compounds in conventional solvents

is well documented (Yokoyama et al., 1999; Gothelf and Jorgensen, 1998; Cox and
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Cook, 1995; Larson and Grieco, 1985; Kumar et al., 1982), this chemistry is more

difficult in the presence of carbon dioxide as amines can react reversibly with CO2 to

form carbamic acid or alkylammonium carbamic acid salts (Belli Dell'Amico et al.,

2003). Both of these compounds are unstable and can lead to the production of undesired

by-products. These reactions are shown below where reaction 5-la is a generic scheme

for carbamic acid formation and reaction 5-lb is the generic scheme for alkylammonium

carbamic acid salt formation.

CO2 0
..... . R .[I (5-1a)

K-NM2

2 R-NH 2

C0 2

' 'N' OH
H

0
R K . O ® (5-lb)
N 0 H3N-R
H

Carbamic acid formation from various primary and secondary amines has been

documented using both visual and NMR techniques (Kainz et al., 1999; Fischer et al.,

2003). Leitner and co-workers conducted visual experiments involving the secondary

amines n-ethyl-n-benzylaniline and n-methyl-n-benzylaniline in the presence of CO 2. In

their studies the Leitner group found that n-ethyl-n-benzylaniline formed a white solid

that was attributed to carbamic acid formation. In contrast the Leitner group observed that

n-methyl-n-benzylaniline, which has a bulkier substituent group attached to the nitrogen

atom, did not form carbamic acid as no white solid was observed. Albert and co-workers

conducted experiments that analyzed the amine/carbamic acid equilibrium in scCO2 via

NMR at 50 "C and 80-200 bar. These experiments focused on various benzylamine
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Figure 5-1:
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Figure 5-1. Results of work by the research groups of Leitner (left column) and Albert
(right column) that demonstrate the effect of steric inhibition on carbamic acid formation
from different secondary amines.

Supercritical carbon dioxide has also been used in applications where it is both a

reagent and a solvent (Salvatore et al., 2002; Selva et al., 2002; Yoshida et al., 2000;

McGhee et al., 1995). In these studies, scCO 2 was used as a replacement for phosgene to

generate carbamate products from primary and secondary amines at relatively mild

conditions. Some of the general schemes that have been proposed are shown in reactions

5-2 (Yoshida et al., 2000) and 5-3 (Selva et al., 2002):

+ R3 --X K2C0 3 , Bu4 NBr

scCO 2

O
R1 L oR 3 (5-2)

N OR
1 2

R

NH
1 2

R
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0 0
R1-tNH2 + scCO2 R N OMe(5-3)

MeO OMe N OMe
H

These carbamate reactions are of interest because they represent a "green

chemistry" methodology to generate a protecting group in situ for the nitrogen atom that

can be used in synthesis reactions of nitrogen heterocycles. The work of Venkov and

Lukanov (1992), shown in reaction 5-4, demonstrates the use of carbamates as a reagent

in Pictet-Spengler reactions involving n-acyliminium ions:

1.5 equiv (HCHO)n

0.02 equiv TsOH H-H20 M" (5-4)

MeO '
'

x H' 'CO 2Me toluene (0.5 M) Me O CN2Me
110°C, 3h

75%

Here the -CO 2Me substituent is used as a protecting group to prevent carbamic acid

generation and to produce high yields of the desired product.

Objectives. The objective of this phase of our research was to develop amine chemistry

in the presence of scCO2 by identifying amines and amine derivatives suitable for

application in a wide range of important synthetic transformations in carbon dioxide

media. The synthesis of nitrogen heterocycles using both hetero Diels-Alder

cycloadditions and Pictet-Spengler cyclizations was investigated. Also studied was

carbamate formation using scCO 2 as both a reagent and solvent.

5.2 Experimental Materials and Apparatus

Materials. With the exception of the carbamate compound, all of the reagents, catalysts,

and solvents used in these experiments were purchased and used as received from Sigma
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Aldrich. The carbamate was synthesized by Josh Dunetz by reacting 3,4-

dimethoxyphenethylamine with methyl chloroformate and triethylamine in

dichloromethane. Grade 5.5 carbon dioxide (>99.99%) was obtained from BOC and used

as received. DIeionized water as received from MIT's water supply was further deionized

to a minimum resistivity of 18.1 MQ cm using a Barnstead Nanopure filtration system.

Apparatus. All experiments were performed in the view-cell high-pressure reactor

designed and described in detail by Weinstein (1998; Renslo et al., 1997); thus only the

basic features of the system are presented here. The reactor, Figure 5-2, was fabricated

from a 6.4 cm x 6.4 cm x 12.7 cm block of 316-stainless steel. A cylindrical chamber,

with a length of 8.0 cm and a diameter of 1.9 cm was bored into this block. The total

working volume of the reactor is roughly 22.6 ± 0.6 cm3 and the maximum operating

pressure is estimated to be approximately 500 bar at 25 °C. Six ports were machined into

Figure 5-2. Digital photograph of the high-pressure view-cell reactor designed by
Weinstein (1998) and used for amine chemistry studies in this work.
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the pressure vessel and were used for the inlet and outlet valves (Whitey ss-3NBM4), a

sampling valve (Valco Instrument Company, Inc. uw-type), pressure measurement, and a

thermocouple, respectively. The primary opening to the cylindrical chamber was sealed

using an ao-A120C)3 sapphire window and a stainless steel hex nut, similar to that used for

the acoustic reactor described in Chapter 4. The pressure seal was made using a

combination of Teflon and buna-N rubber (90 durometer on the Shore A scale) gaskets.

The reactor contents can be mixed using a Teflon-coated stir bar coupled to a standard

magnetic stir plate. Pressure measurements were made using a Bourdon tube pressure

gauge (McDaniels Controls Inc.) with a readability of ±2 bar. As before, temperature was

measured to within 1 C using a T-type thermocouple (Omega Engineering). The

temperature was maintained at its set point using a PID controller (Omega Engineering

9001CN) and thermal heat tape (Barnstead).

5.3 Hetero Diels-Alder Cycloaddition

For the hetero Diels-Alder experiments, 2,3-dimethyl-1,3-butadiene was reacted

with benzylamine and formaldehyde in several different solvent systems at a temperature

of 35 °C. A general scheme for this reaction (Larson and Grieco, 1985) is

RINH2 HI,RI R 1
cat. H+ N N

+ - - R2 (5-5)
R R

R2 CHO

Reaction 5-5 shows that the amine, R1NH 2, first reacts with the aldehyde, R 2CHO, to

form an iminium ion, R2N+HRl, which then reacts with the diene, C4H6, to give the

desired nitrogen heterocycle product.
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Procedure. The temperature for these studies was chosen in order to replicate the work

of Larsen and Grieco (1985) in which they conduct this experiment in water at 35 °C for

48 h. All of the experiments conducted at atmospheric pressure were performed by Josh

Dunetz in the Danheiser laboratory. These experiments include reactions run in water,

water/tetrahydrofuran (THF), and water/hexane systems. The pressurized experiments

involving carbon dioxide were performed at an arbitrarily chosen pressure of

approximately 138 bar in the view-cell pressure vessel depicted in Figure 5-2.

A typical experiment in our lab involved loading the reactor with all the reagents

prior to sealing, heating, and pressurizing the system. Generally, specified volumes of

benzylamine, 2,3-dimethyl- 1 ,3-butadiene, and aqueous formaldehyde, which are all

liquids, were pipetted into the reactor. For runs that required more water than that present

in the aqueous formaldehyde, an excess of deionized water was added to the reaction

vessel. The reactor was then sealed using a standard torque wrench to a torque of

100 ft-lbs, and heat tape was wrapped securely around the reactor. After connecting the

reactor to the carbon dioxide system, a low flow of carbon dioxide was used to purge the

system of residual air. Next, the reactor was initially pressurized to 70 bar where it was

held for a sufficient time in order to achieve thermal equilibrium. For example, about

10 minutes were required for the reactor to reach the reaction temperature of 35 C. Once

thermal equilibrium was achieved, more carbon dioxide was added to the system until the

final pressure of 138 bar was reached. Stirring was provided by using a Teflon-coated stir

bar.

After the 48 h reaction time was completed, the carbon dioxide phase in the

reactor was vented into cold tetrahydrofuran (THF) following similar procedures to those
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documented in Chapter 4. A high-pressure metering valve (Autoclave Engineers

10VRMM2812) heated with thermal tape (Barnstead) operated at 40 V (as set by a

standard variable transformer) was used to maintain an even flow of depressurizing

carbon dioxide and prevent formation of ice in the vent line. A glass vessel equipped with

a frit (10 m pore diameter) was used to improve recovery of any volatile components.

After the reactor was completely depressurized, it was opened and washed several times

with THF. These THF washes and the THF that the vent gas was bubbled through were

collected and given to Josh Dunetz for quantitative analysis.

Results. The Diels-Alder cycloaddition of benzylamine with 2,3-dimethyl-1,3-butadiene

was conducted in water, water/THF, water/hexane, and water/scCO 2 media at 35 °C for

48 h unless noted otherwise. The experiments involving CO2 were conducted in this lab

while the remaining experiments were completed by Josh Dunetz. The results of these

runs are shown in Table 5-1.

Table 5-1. Results of the hetero Diels-Alder cycloaddition in various solvents. All of
these reactions were run for 48 h. The numbers in parentheses by each solvent refer to the
ratio of volumes used for each solvent in that reaction. Reaction conditions: 35 °C and
138 bar.

Dienea Amineb Solvent Yield
Concentration Concentration

2.2 2.8 H20 50%
2.2 2.8 H20/THF (1:1) 51%
2.2 2.8 H 2 0/scCO 2(1: 1) 0%

aDiene refers to 2,3-dimethyl-1,3-butadiene. The concentration of formaldehyde for all
experiments is equal to that of the diene. bAmine refers to benzylamine.

As shown in Table 5-1 the 50% yield obtained for the H2 0 case is comparable to

the 64% yield of Larsen and Grieco (1985) at the same conditions. For the H20/scCO 2

biphasic experiments, quantitative yields of the desired product were not achieved.
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Instead, visual observation of the H20/scCO 2 reaction mixture indicated the presence of

an unexpected third phase, which appeared to be a viscous oil-like substance, below the

aqueous phase.

Analysis of this oily by-product has proven to be difficult. At this point the only

conclusions that have been reached about its identity are that the substance is a polymeric

material that is soluble only in n,n-dimethylformamide (DMF), dimethylsulfoxide

(DMSO), and 1 M HCl. Control experiments were also conducted to determine the

source of the oil formation. Table 5-2 shows the results of these visual experiments in

which one or two reagents at a time were added to a water/scCO 2 mixture at 35 °C and

138 bar. From these experiments it was concluded that the minimal reagents necessary to

form the oil are the amine and formaldehyde. Since formaldehyde is unreactive and

benzylamine forms a white solid that is assumed to be carbamic acid when these two

reagents are added alone to the H20/scCO 2 mixture, the unknown, polymeric oil is

suspected to be a product of multiple reactions between carbamic acid and formaldehyde.

Table 5-2. Results of visual experiments aimed at determining the minimal ingredients
necessary to form the unknown oil-like substance. These runs were all conducted in
H2 0/scCO 2 mixtures at 35 °C and 138 bar at the concentrations listed in Table 5-1.

Reagents Used Visual Observation

Diene alone Two-phase behavior

Formaldehyde alone Two-phase behavior

Amine alone White solid formation

Diene and formaldehyde Two-phase behavior

Amine and formaldehyde Viscous oil

Amine, formaldehyde, diene Viscous oil
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Other possible reaction mechanisms for the formation of this oily substance are possible,

but at this point no further experiments have been pursued. Some additional control

experiments that may be of interest include changing the aldehyde to a less reactive

compound such as benzaldehyde and replacing benzylamine with a bulkier amine,

possibly a carbamate derivative, that prevents excessive carbamic acid formation.

5.4 Pictet-Spengler Cyclization

The hetero Diels-Alder experiments were abandoned after it was determined that

amine chemistry in CO 2 might be easier for transformations in which the product is

formed via an intramolecular reaction. Reaction 5-6 shows a general scheme that

demonstrates the intramolecular cyclization that takes place during a Pictet-Spengler

reaction:

MeON HCHO, H2 0 MeO (5-6)

MeO / H NR H) MeO N. R

where the substituent R group can be varied in order to protect the nitrogen atom from

reacting with C0 2 to form carbamic acid. The hydrogen ion, H+, is provided by a

catalytic amount of acid which was tosic acid (C7H80 3S(H 20) or TsOH) in these

experiments.

Procedure. Unlike the hetero Diels-Alder experiments in which only one reaction

system was investigated, the Pictet-Spengler studies were more exploratory as different

amines, aldehydes, and solvents were studied. Experiments in scCO2 were performed

using dimethoxyphenethylamine and a derivative of this compound, N-methoxycarbonyl-

3,4-dimethoxyphenethylamine, which replaces one of the hydrogen protons on the
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nitrogen atom with a -CO2Me substituent group. Besides formaldehyde, the effect of

benzaldehyde was also examined for the case when the R substituent was equal to

CO2Me. Finally, the effect of solvent was analyzed by running these reactions in toluene,

scCO 2, scCO 2/water, and neat (i.e. no solvent). The pressure of all the experiments was

set at approximately 138 bar while the temperature was either 60 or 80 °C depending on

the literature conditions that we were trying to replicate. Stirring was again provided by a

Teflon-coated stir bar.

The typical setup and procedure for these reactions was similar to that described

for the hetero Diels-Alder cycloaddition experiments. As before the reactor was initially

loaded with the reagents (the amine, aldehyde, and TsOH), purged of air with C0 2, and

pressurized to approximately 70 bar. For runs that required excess water, deionized water

was added to the system. After allowing sufficient time for the reactor contents to come

to thermal equilibrium (approximately 20 to 30 minutes depending on the reaction

temperature, 60 or 80 °C), additional CO2 was added until the system pressure reached

138 bar. Upon completion of the reaction, the reactor was depressurized and cleaned

following the exact procedure used in the hetero Diels-Alder experiments.

Results. The first Pictet-Spengler reaction conducted in scCO 2 was the reaction of 3,4-

dimethoxyphenethylamine (0.5 M) with formaldehyde (0.75 M) at 60 °C and 131 bar,

reaction 5-7, where R = H for this case.

MeO I-", RCHO

MeO NH2 scCO2 (1900 psi)

60 C, 19-23 h

(5-7)
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Although not noted in reaction 5-7, a catalytic amount of TsOH (0.025 M) was also

added to the reaction mixture.

Unfortunately two separate runs (19 h and 23 h) of this reaction failed to yield any

quantifiable amount of the desired cyclization product depicted above. Instead it was

found that the primary amine yielded several distinct by-products. Most of these by-

products were not characterized, but one interesting product was isolated and

characterized. This by-product, the yield of which was approximately 10%, is shown

below:

MeO

MeO MN (5-8)
MeO '

The reaction mechanism responsible for the generation of this by-product is unknown and

further research aimed at explaining the mechanism has not been pursued.

Following the failed attempt to form the desired cyclization product starting from

a primary amine, schemes for protecting the nitrogen atom were pursued. Research by

Venkov and Lukinov (1992) on the Pictet-Spengler reaction, reaction 5-9, demonstrated

that attaching an electron withdrawing group (EWG) to the nitrogen atom gave yields

between 70% and 90% for the desired cyclization product.

RCHO
MeO ~ cat. TsOH-H 20 MeO (59)

MeO w H'N EWG toluene, 110 °C MeO 'EWG

(R = H,Ar)
EWG = COR, CO 2R, 70-90%

S0 2Ph, P(O)(OEt)2
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Using these results, our next step was to attempt to replicate this chemistry both in

toluene and in the scCO2/water environment by attaching a -CO 2Me group to the primary

amine used previously. All of the experiments involving this carbamate (N-

methoxycarbonyl-3,4-dimethoxyphenethylamine), synthesized by Josh Dunetz as

described above, were run at carbamate concentrations of 0.5 M, aldehyde concentrations

(either formaldehyde or benzyaldehyde) of 0.75 M, and TsOH concentrations of 0.025 M.

The pressure was again approximately 138 bar, and the temperature was set at 60 °C for

runs using formaldehyde and 80 °C for runs that used benzaldehyde.

Table 5-3 shows the yields for complete carbamate conversion of the desired

cyclization product obtained in various solvents when formaldehyde was used as the

aldehyde source for the Pictet-Spengler cyclization of carbamate. As the results show, the

cyclization of carbamate is much faster and more efficient in toluene than in either scCO 2

or scCO2 /H2 0 media as it requires a shorter reaction time to reach complete conversion

(3 h versus approximately 8 h) and the yields obtained in toluene at shorter reaction times

are higher than those obtained in the alternative reaction media. In fact after 3 h only 64%

of the carbamate is even converted in the scCO2/H2 0 system.

The results of reactions run with benzaldehyde, Table 5-4, as opposed to

formaldehyde support the observation that the cyclization of carbamate in toluene is

much faster than the rate that can be obtained in a scCO 2/H20 mixture. In this reaction

100%0/o conversion is achieved with toluene after 15 h while only 50% conversion is

achieved in scCO2 after 17 h.

Visual observations of the reactor contents for the experiments described in

Tables 5-3 showed that the mixture was a multi-phase system. For the case in which
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scCO2 and H2 0 were combined in a 70:30 volume ratio, three phases were clearly present

(from top to bottom): scCO2, H20, and a yellow oil. Although the melting point of the

carbamate, which is added to the reactor as a yellow solid, is reported to be 178-180 °C,

Table 5-3. Yields obtained in various solvents where formaldehyde was used as the
aldehyde source for the Pictet-Spengler cyclization of carbamate. The yields reported are
for reactions that were allowed enough time for complete conversion of the starting
materialc. Concentrations are: carbamate (0.5 M), formaldehyde (0.75 M), and TsOH
(0.025 M). Reaction conditions: 60 °C and 138 bar for pressurized runs.

Solvent Reaction Time (h) Yield

Toluene 3 99%

scCO2 /H2 0 (70:30)a 3 64%c

scCO 2 /H2 0 (70:30)a 17 81%

scCO 2b 17 88%

scCO 2b 8 84%

aThe numbers in parentheses represent the volume ratio of scCO 2 to H2 0 in the reaction
mixture. bIn actuality there is a little water present for these experiments due to the
addition of aqueous formaldehyde to the reaction mixture. This number is actually the
conversion of the carbamate achieved after 3 h of reaction time in scC02/H20. It is not an
actual yield of the desired product as some undesirable by-products may have formed.

Table 5-4. Conversions achieved in toluene and scCO2 where benzaldehyde was used as
the aldehyde source for the Pictet-Spengler cyclization of carbamate. Concentrations are:
carbamate (0.5 M), benzaldehyde (0.75 M), and TsOH (0.025 M). Reaction conditions:
80 °C and 138 bar for pressurized runs.

Solvent Reaction Time (h) Conversion

Toluene 15 100%

scCO 2a 17 50%

aUnlike the formaldehyde case there is in fact no water present as pure benzaldehyde was
used in this run.

observations indicated that it began to melt in the reactor vessel near 50 C. In order to

determine the cause of this melting, control experiments were conducted in which the
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carbamate was added to the reactor by itself, with only water, and with only CO2. These

different combinations were then heated to 60 °C. For the case where the carbamate was

added by itself, nothing appeared to occur as the carbamate remained as a solid. When

water was added, the carbamate remained insoluble at low temperatures, but at

approximately 50 °C it melted and formed a second, yellow phase below that of water. A

similar observation was made for the case of pressurized CO2 (70 bar) in which the

carbamate remained insoluble and solid at low temperatures but proceeded to melt into its

own phase near 50 °C.

From these visual observations it was hypothesized that perhaps scCO2 and water

are unnecessary for this particular reaction as they did not seem capable of solvating the

carbamate. In fact their presence may be the cause of the slower reaction rate and reduced

selectivity when compared to toluene, especially if the system is not mixed properly,

simply because they are capable of solvating the tosic acid and aldehyde but not the

carbamate, thus preventing sufficient contact between the reagents.

In order to test this hypothesis a couple of reactions were run neat (no solvents)

and compared to reactions run in toluene. Table 5-5 contains the results of these

experiments which seem to indicate that even toluene inhibits the chemical kinetics of

this particular reaction. As shown, the yields obtained in the neat experiments using

benzaldehyde (PhCHO) and isobutyraldehyde (i-PrCHO) as the aldehyde source are

significantly improved over those obtained in toluene at the same conditions and reaction

time. Using aqueous formaldehyde (HCHO) the yields obtained in the toluene and neat

experiments are similar.
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Table 5-5. Yields obtained after complete conversion of the carbamate using different
aldehydes in both toluene and neat (no solvent) systems. The reaction conditions for each
experiment are shown in the table. For the case of HCHO, water was present in small
amounts due to the aqueous nature of formaldehyde.

Aldehyde Conditions Solvent Yield

HCHO (aq) 60 °C, 3 h toluene 98%
neat 100%

PhCHO 85 °C, 2 h toluene 21%
neat 81%

i-PrCHO 80 °C, 23 h toluene 39%
neat 77%

Discussion. The results presented above suggest that scCO2 and water do not provide

any technological advantages for this particular Pictet-Spengler reaction system as the

chemical kinetics of this reaction are much slower and less selective in these alternative

reaction media than in toluene. However, one must keep in mind that mixing in our

reactor was not ideal as the stir bar was incapable of vigorously mixing all three phases

even at its maximum rotational speed. Also we were not able to close mass balances as

the carbamate had a tendency to solidify in the outlet lines upon reactor venting.

Although we were able to recover approximately 90% of the carbamate in several

practice runs, it is possible that some of the desired product could be lost during the

venting and cleaning process. Finally, with the exception of using formaldehyde as the

aldehyde source, toluene, even with its high solubility for the reagents used in this

reaction, does not offer any advantage over running the reaction neat. This result suggests

that solvents as a reaction promoter may be unnecessary, which further supports the

conclusion that this scCO2/water biphasic mixture will not provide any technological
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advantages since it is incapable of solvating the carbamate reactant that was used in this

study.

5.5 Carbamate Generation Using CO2 as a Carbon Source

Although the Pictet-Spengler reaction proved to be disappointing from the

standpoint of potentially using water and carbon dioxide as alternative, green solvents, it

has led us in a new direction in which carbon dioxide can be used as both a reactant and

solvent. The plan for this new path is to basically conduct a "one-pot" synthesis in which

carbamate compounds are first generated using CO2 as a reactant. Generating the

carbamate in this manner would allow for the elimination of several organic compounds,

such as dichloromethane, that are required for making the carbamate using conventional

techniques. The second step would then involve injection of additional reagents required

for synthetic transformations of interest, such as the Pictet-Spengler reaction, that are

capable of producing nitrogen heterocycles from carbamate starting material.

The fortnation of carbamates from primary amines and CO2 has been well

documented in the literature (Salvatore et al., 2002; Selva et al., 2002; Yoshida et al.,

2000; McGhee et al., 1995). Many different techniques have been utilized by these

studies; one of which we are attempting to replicate (Yoshida et al., 2000) and another

that we plan to replicate (Selva et al., 2002). The chemical equations for these two

methods were shown previously in reactions 5-2 and 5-3. The overall goal of this portion

of the project was to find or improve upon a method for generating carbamate products in

good yields from primary amines and CO2 with the added constraint that the reagents

used in this method should be compatible with all reagents used in any seceding synthetic
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transformations. To date we have only attempted to replicate the Yoshida group's (2000)

reactions with unsatisfactory results.

Procedure. The procedures that were used to load and empty the reactor are similar to

those discussed previously in this chapter. The reactor is first loaded with all the reagents

which for this case include: benzylamine (0.10 M), butyl bromide (BuBr) (0.16 M),

tetrabutylammonium bromide (5 mol%), and potassium carbonate (0.2 M). Because the

butyl bromide can potentially cause undesired N-alkylation of the starting amine, care

was taken to prevent their contact by loading in order the benzylamine,

tetrabutylammonium bromide, potassium carbonate, and finally the butyl bromide. The

reactor was then quickly sealed at a torque of 150 ft-lbs, wrapped with heat tape, and

pressurized to approximately 48 bar. After allowing 30 minutes for the reactor to reach

thermal equilibrium at 100 C, additional CO 2 was added to bring the final system

pressure to 103 bar. Stirring was provided by a Teflon-coated stir bar.

After 5 h the reaction was quenched by bubbling the CO2 phase through cold THF

using the equipment described earlier. Once depressurized the vessel was opened and

washed several times with THF and water. These washes and the cold THF were

collected and given to Josh Dunetz for analysis.

Results. Our experimental results have been disappointing as we have been unable to

replicate the isolated yield of 85% obtained by the Yoshida group (2000). Table 5-6

shows that when the reactor is in the vertical position we were only able to convert 40%

of our starting material into the desired carbamate product with another 10% and 35%

converted into two undesired products that form as a result of N-alkylation (described
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below). One encouraging result is that less than 5% of the starting benzylamine remained

unreacted.

Table 5-6. Yields obtained from the carbamate generation experiments in two reactor
orientations: vertical and horizontal. The listed compounds are benzylamine (1), the
desired carbamate (2), and the undesired N-alkylation by-products, (3) and (4).

Chemical Compounds Reactor Orientation

Vertical Horizontal

¢-E H, (1) <5% 34%

11H3 (2) 40% 23%

13, (3) 10% 6%

N N CH3 ( 3

11 H 3 (4) 35% 37%

A possible cause of these less than desirable results is poor mixing conditions that

may be present in the reactor. Visual observation of the reactor contents seems to indicate

that before addition of CO2 the mixture of reagents appears to be a thick slurry that is

capable of being stirred with a stir bar. However, upon addition of CO2 the mixture

becomes very viscous and stirring ceases after the stir bar becomes trapped in the reaction

mixture. Eventually, the stir bar does free itself but the degree of mixing never appears

sufficient enough to obtain good contact between the multiple phases that are present.

One solution to improve the mixing conditions was to run the reactor in a horizontal
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position in order to increase the contact area between the CO2 phase and the other

reagents. However, this solution, which we expected to provide better mixing, actually

produced yields worse than those observed when the reactor was in the vertical position.

These results represent only one experimental run in each reactor configuration so it is

likely that the results reported for the horizontal and/or vertical configurations may be

incorrect. Further experiments to study the reproducibility of the results for each

configuration are planned. As shown in Table 5-6 the final workup in the horizontal

position contained only 23% of the desired product, 6% and 37% of the two undesired N-

alkylation products, and 34% of unreacted starting amine.

Discussion. The large extent to which N-alkylation is occurring in our system is a major

concern. From Figure 5-3, which is the mechanism for carbamate generation using the

Yoshida group's methodology, N-alkylation (although not depicted) is the direct reaction

of butyl bromide (R3-X) with the nitrogen atom in benzylamine (R1R2NH). This reaction

can occur twice with the same nitrogen atom to form compound 4 depicted in Table 5-6

or it can occur once as shown in compound 3. The other type of alkylation, O-alkylation,

is the reaction of butyl bromide (R3-X) with the carbamate anion as depicted in Figure 5-

3. O-alkylation leads to the desired product, compound 2 in Table 5-6, and it is also the

source of the -OBu group on compound 3.
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Figure 5-3. Mechanism for carbamate generation using scCO 2 as a carbon source for the
reaction scheme described by the Yoshida group (2000). Only the primary pathway for
generation of the desired carbamate compound is shown. The pathways for undesired by-
product formation via N-alkylation reactions are not depicted. For the reaction scheme
that we investigated: R = CH2C6H5; R2 = H; R3 = C4H9. Potassium carbonate is also
present, and its role is to react with the Bu4N+X- salt to form KX-; thus regenerating the
phase-transfer catalyst, Bu4N+.

The Yoshida group with a reactor setup similar to ours (50 mL, cylindrical, 316-

stainless steel, and stir bar) does not observe N-alkylation. In general the ratio of N-

alkylation versus the desired O-alkylation will depend on a couple of parameters. First,

the amount of carbamate anion, BnNHCO2- Z+ (where Z is the counter ion such as NBu 4

and K+), that is present has a large effect since the more the amine is sequestered as the

carbamate anion, the less the amount of undesirable N-alkylation that can occur. Because

the carbamate anion can be in equilibrium with the amine and CO2, one possible way to

generate more carbamate anions is to adjust the system pressure in order to drive the

equilibrium reaction toward the production of carbamate anions. A second possible cause

of N-alkylation is the inability of the carbamate anion and the alkylating agent (BuBr),

which respectively reside in the liquid slurry and the scCO 2 phase, to react due to poor
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mixing between the different phases within the reactor; thus slowing the rate of the

desired O-alkylation reaction but allowing more time for N-alkylation to occur.

5.6 Conclusions and Recommendations

Our work so far has clearly demonstrated that conducting nitrogen-bearing

chemistry in the presence of carbon dioxide is very challenging. All of the reaction

systems that we have studied contain complications, including both the feasibility of

certain chemical pathways in scCO2 and physical issues such as the degree of mixing in

our reactor apparatus, which have inhibited our progress. Despite the problems that we

have encountered, a few conclusions can be drawn:

· When using scCO2 as a solvent, primary amines are not a good starting

material due to their reactivity with carbon dioxide. Both the hetero Diels-

Alder and Pictet-Spengler methods were incapable of using primary

amines.

* Carbamates as a starting material offer promise for use in synthetic

transformations in the presence of CO2. Reasonable yields (84% in scCO2

versus 100% in toluene after 8h) and conversions (64% in scCO2 versus

100% in toluene after 3 h) were obtained for the Pictet-Spengler reaction

when starting with the carbamate, N-methoxycarbonyl-3,4-dimethoxy-

phenethylamine. However, the advantage of using carbon dioxide, water,

or even toluene as solvents for this particular reaction is debatable as the

reaction proceeded significantly faster when run neat (i.e. with no

solvents).
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* Carbamates would be even more attractive as a protecting group for

nitrogen if a "one-pot" synthesis can be developed to generate the desired

nitrogen heterocycle from a primary amine via a carbamate intermediate.

Because the role of carbon dioxide and water in the Pictet-Spengler

reaction involving the carbamate is questionable, the generation of

carbamates using CO2 as both a reactant and solvent would give carbon

dioxide a quantifiable use as it would replace conventional solvents such

as phosgene which are normally used for the synthesis of carbamates.

Despite our failed attempts to replicate the chemistry of the Yoshida

group, this methodology is still encouraging as our collaborators at

Cambridge University, UK have been able to obtain an isolated yield of

76% for the desired product using a reactor setup similar to ours.

As for recommendations, there are a few studies that would be beneficial for the

completion of the project's objectives:

* The Selva group's (2002) procedure for generating carbamates from CO2

should be investigated and replicated. This reaction scheme is intriguing

as it uses dimethyl carbonate (DMC), which is more "green" than BuBr, as

an alkylating agent, and it does not require any added base or catalysts.

DMC also may act as a beneficial co-solvent for further desired reactions

such as the Pictet-Spengler reaction.

* Attempts to replicate the chemistry of the Yoshida group (2000) should be

continued. Our failure to obtain yields reasonably close to those of

Yoshida and co-workers are likely due to inefficient mixing and/or poor
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temperature control in our reactor system. Procurement of a new autoclave

reactor with better agitation, temperature control, and a variable feed

injection system is underway.

* )nce a successful method has been developed for the generation of

carbamates from C0 2, "one-pot" methods for the synthesis of nitrogen

heterocycles should be investigated. Pictet-Spengler cyclizations, hetero

Diels-Alder cycloadditions, and dipolar cycloadditions among others are

synthetic transformations that can be studied.
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CHAPTER 6

CONCLUSIONS AND RECCOMMENDATIONS

The overall objective of this work was to investigate reaction systems in which

dense carbon dioxide and water were used as "green" solvents in place of conventional,

organic compounds. This research successfully demonstrated carbon dioxide's ability to

accelerate certain Diels-Alder reactions via a solvophobic mechanism. It also followed up

on the work of Michael Timko in demonstrating the ability of power ultrasound to

accelerate a Diels-Alder reaction in a liquid water/dense carbon dioxide biphasic system

through the generation of emulsions. Finally, this thesis began initial work in developing

reaction systems capable of producing nitrogen heterocycles in the presence of CO2.

These three studies clearly demonstrated the technological advantages that can be

gained by selectively using water and/or scCO2 for certain reaction systems such as those

investigated in the solvophobic and ultrasonic acceleration studies. However, nitrogen

chemistry proved to be much more complicated in the presence of CO2 because of the

reactivity of amines with CO2 to form an undesired by-product called carbamic acid.

Future work aimed at demonstrating the technological advantages of CO2 and/or water as

alternative reaction media basically involve further quantification of both carbon

dioxide's and water's role in accelerating chemical reactions and continued investigation

of amine chemistry in the presence of CO2.

Below are specific conclusions and recommendations for each of the three studies

that were conducted as part of this thesis:
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Solvophobic Acceleration of a Diels-Alder Reaction in Supercritical Carbon Dioxide

The Diels-Alder reaction of N-ethylmaleimide with 9-hydroxymethylanthracene

was found to proceed at rates in supercritical carbon dioxide that are much faster than in

traditional organic solvents. On the basis of the low solubility of 9-

hydroxymethylanthracene in scCO2, a solvophobic mechanism, consistent with that

proposed for acceleration of this reaction in water and fluorocarbon solvents, was

hypothesized to be source of the accelerated kinetics in scCO 2. This hypothesis is

supported by the observed negative pressure and density dependencies of the rate

constant which are driven by the positive relationship between fluid density and solute

solubility. Clustering phenomena (solute/solvent or solute/solute) arising from density

fluctuations near the critical point were ruled out as a potential source of the observed

kinetic acceleration because the apparent activation volumes are both large and positive

(+350 cm3 mol 1) and only a weak function of reduced temperature. Instead, the large

activation volumes can be attributed to changes in the solubility of the reagents relative to

that of the transition state with increasing density.

Understanding the solvophobic acceleration of Diels-Alder reactions in scCO2

provides a tool for selection of model reactions to conduct in supercritical fluids.

Typically, reagent selection is based on solubility in scCO2, but our results show that

solvophobic acceleration can provide a second criterion for the choice of reagents. The

similarities of scCO2 with fluorinated solvents (which are more accessible experimentally

than scCO2) might also be exploited in the future. However, like water, scale-up of

reactions involving sparingly soluble species may be prohibitive for utilizing scCO2 as a

solvent for Diels-Alder reactions and other syntheses.
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Future work should be conducted to further understand this solvophobic

acceleration so that the results uncovered by this investigation might be applied to a

wider range of organic reactions. Possible focal points include: (1) determination of

specific molecular structures which are expected to interact solvophobically in scCO 2, (2)

further quantification of the solvophobic effect, particularly in the presence of hydrogen-

bond-donating co-solvents, and (3) development of computational techniques integrating

methods from density functional theory and molecular simulation to further molecular-

level understanding of reactivity in scCO2.

Water as a Catalyst: Conversion and Selectivity of a Diels-Alder Reaction in Carbon
Dioxide/Water Systems

A set of experiments were conducted at a water volume fraction of 0.85 while

maintaining the optimal horn-to-interface distance of 2 cm and varying the initial

concentration of methyl vinyl ketone from 0.05 to 1.0 mol L-1. Under sonicated

conditions the most dramatic improvements were seen when the initial methyl vinyl

ketone concentration was 1 mol L- . At this concentration the endo:exo selectivity was

nearly 13:1 and the conversion after one hour was greater than 90%. These results

compare favorably to that obtained silently (6:1 selectivity, 70% conversion) or expected

in pure carbon dioxide (4.5:1 selectivity, 30% conversion). As the concentration of

methyl vinyl ketone was decreased from 1.0 to 0.05 mol L- , the selectivities and

conversions obtained under sonicated conditions approached those obtained without

ultrasonic emulsification (16:1 selectivity, 50% conversion). It was concluded that for

systems in which the water-based Hatta number is greater than one, sonication increases

mass transport rates in this biphasic system, thus allowing both the selectivity and
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conversion to approach that of water while avoiding some of the solubility limitations of

water.

One possibility for future work in the generation of emulsions via power

ultrasound is the design of large-scale reactors capable of efficiently producing

ultrasonically-induced emulsions. Designs that use vibrating walls or recycle loops that

contain a sonicated zone are possible solutions that might allow for technology transfer

from the laboratory scale to the industrial scale.

Synthesis of Nitrogen-Bearing Compounds in scCO2 and/or H20 Systems

Conducting nitrogen-bearing chemistry in the presence of carbon dioxide was

found to be difficult as the reaction systems that we studied were rife with complications

that have inhibited our progress. Despite the problems that we encountered, a few

conclusions were drawn:

* Carbamates as a starting material offer promise for use in synthetic

transformations in the presence of CO2. Reasonable yields and

conversions were obtained for the Pictet-Spengler reaction when starting

with the carbamate, N-methoxycarbonyl-3,4-dimethoxyphenethylamine.

However, the purpose of using carbon dioxide, water, and even toluene as

solvents for this particular reaction is debatable as the reaction proceeded

significantly faster when run neat (i.e. no solvents).

* Carbamates would be even more attractive as a protecting group for

nitrogen if a "one-pot" synthesis can be developed to generate the desired

nitrogen heterocycle from a primary amine via a carbamate intermediate.

Because the role of carbon dioxide and water in the Pictet-Spengler
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reaction involving the carbamate is questionable, the generation of

carbamates using CO2 as both a reactant and solvent would give carbon

dioxide a quantifiable use as it would replace conventional solvents such

as phosgene which are normally used for the synthesis of carbamates. The

results of Yoshida (2000) are encouraging despite our failed attempts to

replicate this chemistry.

As for recommendations, there are a few studies that would be beneficial for the

completion of the project's objectives:

· he Selva (2002) procedure for generating carbamates from CO2 should

be investigated and replicated. This reaction scheme is intriguing as it uses

dimethyl carbonate (DMC), which is more "green" than BuBr, as an

alkylating agent, and it does not require any added base or catalysts. DMC

also may act as a beneficial co-solvent for further desired reactions such as

the Pictet-Spengler reaction.

* Attempts to replicate the chemistry of Yoshida (2000) should be

continued. Our failure to obtain yields reasonably close to those of

Yoshida is likely due to inefficient mixing in our reactor system. Plans to

buy a commercial reactor with better mixing conditions are currently in

the early stages.

* Once a successful method has been developed for the generation of

carbamates from CO2, "one-pot" methods for the synthesis of nitrogen

heterocycles should be investigated. Pictet-Spengler cyclizations, hetero
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Diels-Alder cycloadditions, and dipolar cycloadditions among others are

synthetic transformations that can be studied.
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CHAPTER 7

APPENDICES

7.1 Experimental Data: Solvophobic Acceleration

Data for the 75 C runs

The reaction rates for the other temperatures are reported in Table 3-1.

P (bar) p (kg m'3 ) [A]a [Blb pseudo-first- R2 kc
(106 M) (10 4 M) order-slope (103 L mol '1 s)

(105 s-1)

128 352 + 8 5.01 5.00 14.4 0.98 290

138 406 9 9.95 10.2 23.4 0.98 230

152 472 3 0 4.28 4.26 5.14 0.99 120

169 540 8 6.99 6.94 7.75 0.99 110

179 572 7 5.01 5.00 3.79 0.98 76

193 610 22 8.02 8.02 5.64 0.98 70

a[A] = concentration of 9-hydroxymethylanthracene
b[B] = concentration of N-ethylmaleimide

data file: 75 C solvophobic data.xls
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7.2 Experimental Data: Diels-Alder Conversion and Selectivity

Data reported in Chapter 4

Effect of Initial Concentration of methyl vinyl ketone:
Dw = 0.85; 30 °C; 80 bar; 0.6 W cm-3; 20 kHz; 25% duty cycle; 1 hr

Silent Conditions
[MVK]o (mol L1) X S = NIX

0.05 0.42 16.2
0.10 0.37 13.3
0.35 0.47 9.8
0.40 0.53 10.4
0.70 0.63 6.8
0.94 0.69 6.4
1.00 0.69 6.1

Acoustic Conditions
[MVK]o (mol L-) X S = NIX

0.05 0.53 15.8
0.05 NA 15.7
0.20 0.77 14.5
0.50 0.92 14.6
1.00 0.91 12.5


