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New sensor applications of poly(phenylene ethynylene)s
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Jordan Howard Wosnick

Submitted to the Department of Chemistry on June 21, 2004
in Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy in Chemistry

ABSTRACT

The principle of energy migration in conjugated polymers has been shown to have broad
applicability to the design of sensors capable of detecting a variety of analytes. The infinitely
customizable nature of these materials makes them powerful building blocks for a new
generation of fluorescent sensors that exploit intricate chemical and photophysical effects to
maximize sensitivity and selectivity. This dissertation discusses three new sensor applications of
poly(phenylene ethynylene)s (PPEs) that make use of their chemical and photophysical
properties to elicit fluorescence changes in response to analytes.

A series of water-soluble carboxylate-functionalized PPEs has been prepared in which the
carboxylate groups are attached to the polymer backbone by means of oligoethylene glycol
spacers. The fluorescence properties of these polymers are strongly dependent on ionic strength
and surfactant concentration, and the polymers can be activated and coupled to amine-containing
biomolecules in solution. This technique has been used to generate a quenched polymer-peptide
system that functions as a 'turn-on' fluorescence sensor for trypsin.

Highly fluorescent PPE films on glass slides and silica microspheres have been prepared by
electrostatic layer-by-layer assembly of a polyanionic PPE. These films are capable of efficiently
transferring energy to dye-labeled polycations adsorbed to the film surface. Suspensions of PPE-
coated microspheres have been used for the detection of quenchers in aqueous solution and show
up to 200-fold sensitivity enhancements versus similar dissolved polymers.

A series of calix[4]arene-functionalized PPEs have been synthesized and used for the detection
of the Ba2+ and N-methylquinolinium ions in solution. Fluorescence quenching by these analytes
was shown to be assisted by specific host-guest interactions involving the calix[4]arene
macrocycles.

Thesis Supervisor: Timothy M. Swager
Title: Professor of Chemistry
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List of Abbreviations

1,2-alt the 1,2-alternate conformation of calix[4]arenes

1,3-alt the 1,3-alternate conformation of calix[4]arenes

cone the cone conformation of calix[4]arenes
DIPA N,N-diisopropylamine
DIPC N,N'-diisopropylcarbodiimide
DMF N,N-dimethylformamide
DNP 2,4-dinitrophenyl
EDAC N-ethyl-N'-(3-(1-dimethylamino)propyl)carbodiimide HC1

LB Langmuir-Blodgett
LBL layer-by-layer deposition
MES 2-(N-morpholino)ethanesulfonic acid

MMP matrix metalloprotease
MV2+ methylviologen

NHS N-hydroxysuccinimide
NMP N-methylpyrrolidinone
paco the partial cone conformation of calix[4]arenes

PAH poly(allylamine) (hydrochloride)
PBS phosphate-buffered saline
PDAC poly(diallyldimethylammonium chloride)

PPE poly(phenylene ethynylene)
ppm parts per million
PPV poly(phenylene vinylene)
PSS poly(styrenesulfonate)
QY fluorescence quantum yield

TBS Tris-buffered saline

THF tetrahydrofuran
TNT 2,4,6-trinitrotoluene
Tris tris(hydroxymethyl)aminomethane
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Chapter 1

Sensor applications of conjugated polymers - a primer

Partially adapted from:

Swager, T. M.; Wosnick, J. H. MRS Bull. 2002, 446.
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An introduction to conjugated polymer sensors

Once merely an intellectual curiosity, electronically conjugated polymers have become

one of the most promising types of new materials. Their study has attracted researchers from a

wide variety of fields and spans the range from purely application-focused investigations to basic

research into their structure and properties. The attraction of conjugated polymers in modem

materials chemistry and engineering is a direct consequence of a particularly unique property:

they are organic structures that can have the properties of metals or semiconductors. This feature

leads to a natural tendency to see conjugated polymers as infinitely customizable replacements

for inorganic materials in electronics applications. However, some of the more unusual

properties of conjugated polymers open up a far wider range of potential applications that go far

beyond what is possible with inorganic materials. The Swager group has had a long-standing

interest in using conjugated polymers as amplifying elements for the creation of chemical

sensors that push the limits of conventional sensor technology.' This chapter describes the

general principles behind the sensor applications of conjugated polymers, with a particular

emphasis on poly(phenylene ethynylene)s (PPEs) - the conjugated polymer of choice for

fluorescent sensing- and on the evolution of sensor design in the Swager group.2

Exciton generation and migration

The overlapping -orbital structure of conjugated polymers means that their electronic

properties are dominated by orbital 'bands' akin to those found in inorganic semiconductors.

Semiconductors such as silicon and germanium are made less resistive by 'doping' them with

electron-deficient (boron) or electron-excessive (phosphorus) atoms that introduce free charge

carriers ('holes' or electrons, respectively) into the system, and many conjugated polymers

8



behave similarly: in this subset of conjugated polymers, commonly known as conducting

polymers, conductivity is induced through chemical or electrochemical redox events that supply

the needed charge carriers. For conducting polymers, charge mobility is a collective property of

the entire polymer chain and is partly governed by the structure of the polymer itself. Defects in

the polymer structure - whether present naturally or deliberately introduced by manipulating

molecular structure and conformation - can have a strong effect on the electronic properties of

the polymer. This phenomenon has formed the basis for a variety of conducting polymer-based

chemical sensors that signal the presence of the analyte of interest by changes in oxidation

potential or conductivity.2

The fact that a small number of defects can affect a collective property like conductivity

forms the basis for a versatile amplification mechanism.3 Key demonstrations in the Swager

group have shown that this concept - the 'molecular wire' approach - can also be applied to

fluorescent, semiconductive conjugated polymers in which absorption of a photon generates an

excited-state electron-hole pair known as an exciton. In this case, migration of the exciton along

the polymer backbone fulfills the role played by the charge carrier in an electrically conducting

polymer.4 Excitons are known to follow downhill energy gradients when possible, and this

phenomenon is exploited in applications such as electroluminescent displays, where pure colors

are be produced by allowing excitons to become 'trapped' at deliberately introduced low-energy

sites (usually red-emissive fluorophores) after migrating through the display material (usually a

green-emissive fluorophore). Because migration of excitons from these low-energy trapping sites

is energetically unfavorable, their electronic properties dominate those of the bulk material even

at very low concentrations. In the same way, trapping sites introduced into a conjugated polymer

can serve as energy sinks that effectively 'harvest' all of the excitons generated in the polymer.

9



Because these trapping sites need only be very dilute for their effects to dominate the properties

of the polymer, this type of energy harvesting constitutes an amplification mechanism that

magnifies the observable effects of the traps.

The opportunity to apply exciton migration in conjugated polymers to the amplification

of sensory signals is provided by analytes that can serve as traps or that generate trapping sites.

In the mid-1990s, former Swager group graduate student Qin Zhou prepared a -conjugated

poly(phenylene ethynylene) (PPE) bearing cyclophane groups (Figure 1.1).5 It was previously

known that cyclophanes are efficient receptors for the guest N,N'-dimethyl-4,4'-bipyridinium,

also known as methylviologen (MV2+), an excellent electron acceptor and fluorescence quencher.

MV2+ was found to quench the fluorescence of these PPEs 40-60 times better than it quenches a

small-molecule model compound containing the same receptor. Fluorescence lifetime

measurements (see below) confirmed that MV2 + is bound in the cyclophane moieties of these

polymers, and it was concluded that the observed sensitivity arises from the additive nature of

the poly-receptor / ligand interaction.

10
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Figure 1.1. The initial demonstration of amplified fluorescence sensing in a conjugated polymer. When isolated
fluorescent receptors are used (top), the reduction in fluorescence signal on analyte binding reflects the quenching
effects of the analyte on a single unit. When the receptors are part of a conjugated polymer, only a single receptor
unit need be occupied to observe a collective system response.

The mechanism of sensory signal amplification by conjugated polymers can be illustrated

using a band diagram of the kind used to describe semiconductor behavior (Figure 1.2). The

extended valence and conduction bands of the conjugated polymer - somewhat analogous to

the bonding and anti-bonding molecular orbitals of a small molecule - are separated in energy

by a characteristic bandgap Eg. On absorption of a photon, an exciton is generated and begins to

migrate along the polymer backbone. In the absence of an external quencher, the exciton remains

intact for a characteristic fluorescence lifetime r and then recombines, causing the emission of a

photon (fluorescence) or the dissipation of the excitation energy as heat. However, when a

suitable electron-accepting analyte is present, electron transfer from the polymer to the analyte

11
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occurs and the exciton recombines non-radiatively (Figure 1.2a). The net effect of the presence

of the analyte is to quench the fluorescence of the entire polymer chain, making the system a

'turn-off sensor for this analyte. In the case of non-quenching analytes, ligand binding

introduces a local minimum in the polymer bandgap in which excitons can be trapped (Figure

1.2b). Selective recombination of excitons from this low-energy well results in a new emission

that is red-shifted relative to the intrinsic fluorescence of the polymer, making this process a type

of 'turn-on' sensory mechanism.

a b
Conduction

Band __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I ® 

hv ET hv 

Valence _
Band

Figure 1.2. Schematic representation of exciton migration in a conjugated polymer and how it produces
amplification. (a) Turn-off sensor: an exciton migrates along the polymer backbone until it encounters an electron-
accepting analyte that facilitates non-radiative recombination, leading to fluorescence quenching. (b) Turn-on
sensor: binding of an analyte causes a local change in the polymer bandgap, creating an energy well that the exciton
becomes trapped in. Recombination of excitons from this well results in a new red-shifted emission.

PPEs: the conjugated polymer of choice for sensory applications

Optimal signal amplification in conjugated polymers requires that excitons have as much

mobility as possible in order to maximize the chances of encountering an analyte before radiative

recombination occurs. For this reason, any structural features present in a conjugated polymer

that impede exciton mobility will also reduce the amplification advantage these materials

provide. This consideration has led to the adoption of the poly(phenylene ethynylene) (PPE)

family as the conjugated polymer of choice in the Swager group (Scheme 1.1). PPEs are easily

12



synthesized from aromatic diiodides and diacetylenes by a Sonogashira polymerization reaction,

and their bandgaps can be tailored by modifying the substituents on the aromaitc rings. PPEs

behave as linear rigid rods over short distance scales, and the cylindrical symmetry of the triple

bond allows these polymers to maintain electronic conjugation even when the aromatic rings are

twisted relative to one another. In contrast, the closely related poly(phenylene vinylene)s (PPVs),

which are also highly fluorescent, have much more conformational flexibility and thus a wider

range of a-orbital energies. The conformational freedom of PPVs causes interruptions in

electronic conjugation, meaning that individual polymer chains can often be thought of as

collections of isolated fluorophores of various conjugation lengths rather than a single large

fluorophore. Excitons pass between these segments by F6rster energy transfer (FRET), which is

facilitated in this case by good spectral overlap between the 'donor' and 'acceptor' segments.6

The dispersion in energy levels ensures that low-energy segments in PPVs can act as internal

trapping sites that reduce exciton mobility. These intrinsic traps compete with the analyte-

induced trapping processes and necessarily decrease the degree of amplification possible in

PPVs.

OR OR'
Pd(PPh3)4, Cul

~- - I I
toluene / DIPA

RO R'O

OR

R'O

PPE PPV

Scheme 1.1. Synthesis and structure of a generic poly(phenylene ethynylene) (PPE) and structure of a generic
poly(phenylene vinylene) (PPV). Although standard para-dialkoxy substituents are shown, many others are
possible.

Relative to PPVs, the symmetry of PPEs leads to a more extended conjugated structure

and a much narrower range of xr-orbital energy levels. As a consequence, PPEs have sharper

13



spectral features and the polymer in this case behaves as a true 'molecular wire' with no

endogenous local energy minima to compete with those introduced by analytes of interest. The

result is a relatively 'smooth' energy surface along which excitons travel primarily by direct

orbital coupling (Dexter energy transfer).7

Dimensionality effects in conjugated polymer sensors

Conceptually, the use of conjugated polymers to provide increased sensitivity in sensory

schemes can be seen as amplification by increased dimensionality: rather than being confined to

a single receptor site which may or may not be bound to an analyte, the exciton is free to migrate

along a one-dimensional extended electronic structure consisting of multiple receptors wired in

series. Occupancy of any one of these receptors by an analyte gives rise to an observable signal.

Given this model, it would seem that increasing the molecular weight of the conjugated polymer

should improve the amplification it affords by means of the additive effects of additional

receptor units. However, Qin Zhou's work on amplified quenching of PPEs with MV2+ revealed

an intrinsic limit on the degree of amplification possible in a one-dimensional system. She found

that increasing the polymer molecular weight gave rise to larger amplification up to a size

equivalent to 140 phenylene-ethynylene repeat units, and that further extensions in molecular

weight beyond the 140-unit limit did not significantly add to the sensitvity of the system. This

result was attributed to the 'random walk' nature of the exciton as it migrates along the polymer

backbone - with the relatively flat energy surface provided by the PPE, the exciton is likely to

revisit the same empty receptor units several times during the lifetime of the excited state.

The Swager group has devoted a considerable amount of effort into finding ways to

maximize the efficiency of exciton migration and overcome the 140-unit amplification limit.
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These studies, discussed in the following sections, have focused on expanding the dimensionality

of exciton migration in conjugated polymers by optimizing exciton transport along polymer

chains, between polymer chains in a monolayer, along energy gradients in multi-layer structures

and by extending polymer lifetimes.

Controlling polymer aggregation in PPEs

The extension of exciton migration to more than one dimension must necessarily take

into consideration the photophysics of polymer interactions.8 It has long been known that PPE

aggregation caused by r-stacking in neighboring polymer chains has deleterious effects on the

fluoresence quantum yield (QY) of these materials. Addressing this self-quenching while taking

advantage of exciton migration in two and three dimensions required a system in which the

contrasting needs of inter-polymer exciton migration and the prevention of polymer aggregation

are balanced. Toward this end, former Swager group postdoc Jye-Shane Yang prepared a

polymer in which rigid pentiptycene groups are embedded into the PPE backbone (Figure 1.3).

The pentiptycene units act as rigid spacers that prevent polymer aggregation when the polymer is

cast as a thin film and reliably ensure a high QY. In what is arguably the most famous

demonstration of the potential of conjugated polymer sensors, films of this polymer were found

to be highly sensitive to fluorescence quenching by trinitrotoluene (TNT), a common explosive

used in land mines.9 The free volume defined by the pentiptycene group also provides voids

large enough for small molecules such as TNT to diffuse into, further enhancing the sensitivity

of this system. This polymer forms the basis for the most sensitive devices yet created for the

detection of land mines: these instruments are capable of providing a fluorescence response to

15



the very low vapor pressure of TNT above a buried land mine. The femtogram sensitivity of

these devices rivals the low detection limits provided by trained mine-sniffing dogs.10

* 2 7 m

OC14H29

C14H290

1)

/ Polymer Backbone
Pentiptycene Groups

Figure 1.3. A pentiptycene-containing polymer which maintains a high fluorescence quantum yield even when cast
into a thin film. The rigid nature of the pentiptycene units prevents deleterious n-stacking effects and provides
galleries for the binding of the explosive TNT, which effectively quenches the fluorescence of this polymer.

An alternative approach to dealing with the effects of polymer aggregation is to capitalize

on them in the design of sensors. Former Swager group graduate student Jinsang Kim prepared a

PPE bearing 15-crown-5 units close to the polymer backbone (Scheme 1.2).1" While this crown

ether unit interacts with many different alkali metal cations, it is known to form 2:1 complexes

with the K+ ion. Addition of K+ to a solution of this polymer induces polymer aggregation and

results in a decrease in the fluorescence of the solution. The Na+ and Li+ ions, which form 1:1

complexes with the crown ether ring, do not induce aggregation and the polymer fluorescence

remains constant in the presence of these ions. This system thus functions as a selective 'turn-

off sensor for Kt.
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Scheme 1.2. The fluorescence of this crown ether-bearing polymer is attenuated in the presence of K+ due to the
formation of 2:1 crown ether-ion complexes that promote polymer aggregation.

A detailed understanding of how polymers interact in thin films is crucial to optimizing

exciton migration in multi-dimensional conjugated polymer structures. While the polymers

described above were designed to either prevent or exploit aggregation effects, careful

investigations into the effect of higher dimensionality on exciton mobility required organized

assemblies of polymers in controlled orientations. This goal was accomplished by Jinsang

through the extensive use of Langmuir-Blodgett (LB) techniques. In LB processing, external

pressure is used to form aligned monolayers of polymers at the air-water interface. These

monolayers can be systematically transferred to solid substrates to create films of any desired

thickness or orientation. The degree of control afforded by the LB technique allowed the study of

inter-polymer interactions and energy migration within a polymer monolayer and between layers

in a multi-layer structure. Jinsang and former Swager group postdoc Igor Levitsky found that the

use of aligned LB films provided a clear sensory advantage over isolated polymer chains in

solution in turn-off and turn-on assays. 2'13 By creating trapping sites on the surface of aligned

PPE multi-layer films, it was shown that energy transfer through the three-dimensional structure

to the traps was facilitated by increasing the number of underlying layers, up to a limit of about

17
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16 layers.14 At this thickness, the rate of exciton migration through the multi-layer film is

comparable to the lifetime of the exciton. Although exciton migration is clearly enhanced

relative to polymers in solution, the quenching sensitivity of the multi-layer structures suffers

from the inability of the exciton to 'find' the traps.

To overcome this limitation, a system was devised to direct excitons along a well-defined

energy gradient in a manner analogous to the photosynthetic systems of light-harvesting

organisms. A multilayer film consisting of three PPEs of different bandgaps was prepared

(Figure 1.4) in which the polymer bandgap sequentially decreases from one component to the

next.1 5 Direct excitation of the polymer with the largest bandgap (most blue-shifted absorption

and emission) was found to result in efficient energy transfer to a monolayer of the polymer with

the smallest bandgap, even when the total number of polymer layers in the system exceeded 16.

The use of the layered 'vectorial' energy transfer structure was shown to be superior to films

consisting of simple mixtures of polymers of different bandgaps and constitutes a promising

strategy for harnessing exciton migration for analytical purposes.
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Figure 1.4. A three-layer striated film of PPEs, designed to transport energy from the highest-bandgap (most blue-
shifted) polymer to the lowest-bandgap (most red-shifted) polymer. The excitons follow the downhill energy surface
provided by the steadily decreasing bandgaps. Emission from this system arises predominantly from the most red-
shifted polymer.

As demonstrated above, maximizing the effiency of exciton migration in conjugated

polymers represents a means to improving the sensitivity of conjugated polymer-based sensors.

An alternative approach to improving the sensitivity of PPE-based sensors is to augment the

number of potential receptor sites that can be sampled by the migrating exciton by extending the

fluorescence lifetime of the polymer. Former Swager group graduate student Aimee Rose and

visiting scientist Shigehiro Yamaguchi prepared PPEs in which polycyclic aromatic structures

are integrated into the polymer backbone.7 T' 6 These aromatic units were chosen based on their

known long fluorescence lifetimes, a characteristic that is preserved when they are integrated

into polymers. As shown in Scheme 1.3, PPEs with integrated dibenzochrysene and triphenylene

19



units have significantly longer fluorescence lifetimes than a standard para-dialkoxy PPE. This

property makes these materials useful for the generation of stimulated emission as well as basic

studies into the mechanism of exciton migration in PPEs.

OC1OH21 OC0 H21

H3CO H3CO

= 0.71 ns = 0.52 ns

Scheme 1.3. PPEs containing integrated dibenzochrysene (left) and triphenylene (middle) units have significantly
longer fluorescene lifetimes than standard para-dialkoxy PPEs (right).

Energy transfer to dyes as an amplification mechanism

The harnessing of exciton migration and energy transfer in conjugated polymers to

achieve specific analytical goals has been of long-standing interest in the Swager group.

Schemes in which light-harvesting conjugated polymers are used to amplify the fluorescence

signals of small-molecule fluorophores are of particular interest in this regard due to the ubiquity

of fluorescence techniques in biochemistry. In this context, the role of the polymer can be seen as

that of the donor in a classical Frster energy transfer (FRET) scheme, with the red-shifted

small-molecule fluorophore acting as an energy acceptor. The first practical demonstration of

this effect in the Swager group was made by former postdoc Tyler McQuade, who used layer-by-

layer assembly (see Chapter 3) to deposit pH-sensitive fluorescein dyes on the surface of a PPE

thin film.17 At alkaline pH values the fluorescein units are strong absorbers and highly

fluorescent, and excitation of the polymer results in strong emission from the fluorescein

acceptors as a result of efficient FRET between these two species. In acidic environments

20



fluorescein is rendered colorless and non-fluorescent, and the elimination of the FRET pathway

leads to emission solely from the PPE itself (Figure 1.5). In this case, light-harvesting by the

polymer led to an amplification factor of approximately one order of magnitude relative to direct

excitation of the fluorescein groups. This system thus constitutes a PPE-amplified fluorescent pH

sensor in which energy transfer is modulated by the fluorescence properties of the acceptor.

OH

O O

H C 0 0 

S0N if COOH CO
HN o . ~. 0

y¥ 0
Y 0 0 2ii~~

450 500 550 600 650

Wavelength (nm)

Figure 1.5. A bilayer film is assembled electrostatically from the two polymers shown at left. The emsision of the
system is pH-dependent: in alkaline environments, excitation of the PPE at 420 nm results in efficient energy
transfer to the fluoresceinamine dyes, which fluoresce at 535 nm. In acidic environments, the fluoresceinamine
moieties are no longer efficient FRET acceptors and the polymer emission (460 nm) predominates. Direct excitation
of the system at the absorbance maximum of the fluoresceinamine groups produces a much weaker signal in all
cases, indicating that emission at high pH is amplified by the polymer.

Former Swager group graduate student Kenichi Kuroda used an alternative approach to

create a polymer-amplified sensory platform. In this application, a PPE was end-capped with

thermally responsive poly(N-isopropylacrylamide) (polyNIPA) blocks, which cause the polymer

21



to precipitate at high temperatures. When this block co-polymer was mixed with a rhodamine-

labeled polyNIPA derivative in aqueous solution, no FRET was seen. However, co-precipitation

caused by heating the mixture gave rise to efficient energy transfer from the PPE donor to the

rhodamine acceptor. 8 This result suggests that it is possible to combine the advantages of a

homogeneous solution assay with precipitation-induced sensitivity enhancement, an innovation

that holds great promise for the design of highly refined polymer-amplified biosensors.

Tools of the trade: assessing sensory response in fluorescence studies

Many of the sensor applications discussed in this dissertation rely on polymer

fluorescence quenching by an analyte of interest as the basis of the sensory response.

Quantitative analysis of the efficiency of fluorescence quenching for a given fluorophore-analyte

pair is generally carried out by means of the Stern-Volmer equation:19

Fo/F = 1 + Ksv[Q]

where Fo is the initial fluorescence of the fluorophore, F is its fluorescence in the presence of the

quencher, [Q] is the concentration of the quencher, and Ksv is the Stem-Volmer quenching

constant. Experimentally, Ksv values can be determined from the slope of a plot of Fo/F versus

[Q] over a range of quencher concentrations. The magnitude of Ksv thus provides a measure of

the efficiency of the quencher toward the particular fluorophore in use and is dependent on

solvent, temperature, and other environmental factors.

When discussing quenching effects in fluorescent conjugated polymers (or any other

fluorescent material), it is helpful to distinguish between the two major mechanisms through

which quenching can take place. In dynamic quenching, collision of a fluorophore in an excited

state with a quenching analyte results in a non-radiative relaxation event. The efficiency of

22



quenching in this case is dependent on the frequency of successful collision events. From this, it

follows that fluorophores with longer fluorescence lifetimes will show larger fluorescence

reductions at a given quencher concentration due to an increase in the probability of successful

collision events. For dynamic quenching the Stem-Volmer constant Ksv can be expressed as the

product kqT, where kq is the bimolecular quenching rate constant and is the fluorescence

lifetime of the fluorophore.

In static quenching, the fluorophore forms a non-fluorescent ground-state complex with

the quencher, and the observed Ksv value is equivalent to the quencher-fluorophore association

constant (Ksv has the units of M'-1). Because both static and dynamic processes can give linear

Stern-Volmer plots, it is sometimes difficult to distinguish between the two without further

information. However, exceptionally large Ksv values are usually indicative of static quenching

processes: substituion of these values into the dynamic quenching equation Ksv = kqT yields

nonsensically large values of kq (faster than the rate of diffusion) and thus indicates that

collisional quenching is impossible within the lifetime of the fluorophore. The most reliable way

to discriminate between static and dynamic quenching processes is by recording changes in the

fluorescence lifetime in response to increases in quencher concentration. For pure dynamic

quenching, quencher-fluorophore collisions increase under these conditions and the fluorescence

lifetimes become shorter. For pure static quenching, pre-formed quencher-fluorophore

complexes do not contribute to the observed fluorescence at all and the overall lifetime of the

system remains independent of the quencher concentration. The use of lifetime-based studies

thus provides an important tool in elucidating fluorophore-quencher interactions.
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Conclusions

The principle of energy migration in conjugated polymers has been shown to have broad

applicability to the design of sensors capable of detecting a variety of analytes. The infinitely

customizable nature of these materials makes them powerful building blocks for a new

generation of fluorescent sensors that exploit intricate chemical and photophysical effects to

maximize sensitivity and selectivity. The remainder of this dissertation discusses three systems

based on poly(phenylene ethynylene)s that take advantage of their properties to create new

analytical tools. As our understanding of the fundamental science of these materials progresses,

future innovations will be limited only by our imaginations.

References

(1) Several recent 'perspective' articles have described the Swager group's approach to the use

of conjugated polymers in chemical sensors. For example, see (a) Swager, T. M.; Wosnick, J. H.

MRS Bull. 2002, 446. (b) Wosnick, J. H.; Swager, T. M. Curr. Opin. Chem. Biol. 2000, 4, 715.

(c) Kuroda, K.; Swager, T. M. Macromol. Symp. 2003, 201, 127.

(2) The reader is referred to two reviews on the sensor applications of conjugated polymers for a

complete picture of how these materials are used. (a) McQuade, D. T.; Pullen, A. E.; Swager, T.

M. Chem. Rev. 2000, 100, 2537. (b) Zheng, J.; Swager, T. M. Book chapter in press.

(3) Swager, T. M. Acc. Chem. Res. 1998, 31, 201.

(4) Swager, T. M.; Gil, C. J.; Wrighton, M. S. J. Phys. Chem. 1995, 99, 4886.

(5) (a) Zhou, Q.; Swager, T. M. J. Am. Chem. Soc. 1995, 117, 7017. (b) Zhou, Q.; Swager, T. M.

J. Am. Chem. Soc. 1995, 117, 12593.

24



(6) Nguyen, T.-Q.; Wu, J.; Doan, V.; Schwartz, B. J.; Tolbert, S. H. Science 2000, 288, 652.

(7) Rose, A.; Lugmair, C. G.; Swager, T. M. J. Am. Chem. Soc. 2001, 123, 11298.

(8) Kim, J.; Swager, T. M. Nature 2001, 411, 1030.

(9) (a) Yang, J.-S.; Swager, T. M. J. Am. Chem. Soc. 1998, 120, 5321. (b) Yang, J.-S.; Swager,

T. M. J. Am. Chem. Soc. 1998, 120, 11864.

(10) Cumming, J. C.; Aker, C.; Fisher, M.; Fox, M.; La Grone, M. J.; Reust, D.; Rockley, M. G.;

Swager, T. M.; Towers, E.; Williams, V. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1119.

(11) Kim, J.; McQuade, D. T.; McHugh, S. K.; Swager, T. M. Angew. Chem. Intl. Ed. Engl.

2000, 39, 3868.

(12) (a) Levitsky, I. A.; Kim, J.; Swager, T. M. Macromolecules 2001, 34, 2315. (b) Kim, J.;

Levitsky, I. A.; McQuade, D. T.; Swager, T. M. J. Am. Chem. Soc. 2002, 124, 7710.

(13) McQuade, D. T.; Kim, J.; Swager, T. M. J. Am. Chem. Soc. 2000, 122, 5885.

(14) Levitsky, I. A.; Kim, J.; Swager, T. M. J. Am. Chem. Soc. 1999, 121, 1466.

(15) Kim, J.; McQuade, D. T.; Rose, A.; Zhu, Z.; Swager, T. M. J. Am. Chem. Soc. 2001, 123,

11488.

(16) Yamaguchi, S.; Swager, T. M. J. Am. Chem. Soc. 2001, 123, 12087.

(17) McQuade, D. T.; Hegedus, A. H.; Swager, T. M. J. Am. Chem. Soc. 2000, 122, 12389.

(18) Kuroda, K.; Swager, T. M. Macromolecules 2004, 37, 716.

(19) For a discussion of the derivation of the Stem-Volmer equation and related quenching

effects, see Lakowicz, J. R.; Principles offluorescence spectroscopy; Kluwer Academic: New

York, 1999.

25



Chapter 2

Carboxylate-functionalized water-soluble PPEs for

bioconjugation and protease detection
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Introduction

Fluorescence-based techniques are widely used in all aspects of biochemistry. The large

number of parameters that play a role in fluorescence - such as luminescence quantum yields,

polarization, fluorescence lifetimes, quenching effects, and energy transfer - make it an

information-rich technique that can be adapted to the investigation of a wide variety of

phenomena.' The choice of fluorophore used in biochemical experiments has historically been

governed by the range of naturally occuring fluorescent biomolecules (such as tryptophan and

the green fluorescent protein) and synthetic small-molecule fluorophores (such as the fluorescein

and rhodamine families). While considerable effort has been made in addressing the

shortcomings of some of these fluorophores, such as solvent-dependent quantum yield and

instability, there is clearly room for innovation in fluorophore design.

An obvious category of potential fluorophore for biochemical sensory applications is

conjugated polymers, and the application of these materials to the detection of biochemical

events has seen a surge in interest in last several years. This phenomenon can be traced to recent

efforts to overcome a major limitation of conventional conjugated polymer materials - their

insolubility in water. Conjugated polymers are inherently hydrophobic due to their extended

aromatic backbones, and modifications are required to render them soluble in aqueous

environments. Most solutions to this problem have centered on the addition of charged side-

chains to the conjugated polymer backbone, leading to polyelectrolyte conjugated polymers that

have been used in a number of sensory strategies.2 Many biosensor schemes based on conjugated

polymers - in particular the work of the Heeger, Whitten and Schanze groups - have made use

of the interactions between polyanionic conjugated polymers and cationic fluorescence
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quenchers to produce a sensory response. One of the quenchers in common use by these groups

is the herbicide N,N'-dimethyl-4,4'-bipyridinium, also known as methylviologen (MV2+ - see

Chapter 1). This electron-poor dication is a strong quencher of the fluorescence of conjugated

polymers, and its potency is maximized when an anionic conjugated polymer is used. For

example, Whitten and co-workers found that methylviologen quenches a sulfonate-substituted

poly(phenylene vinylene) (PPV) with a Stern-Volmer constant of around 10 7.3 These authors

attributed this very large quenching effect to both efficient electron transfer to MV2+ and non-

specific polymer aggregation induced by the presence of the dication, and used a biotinylated

MV2+ derivative to create a system in which the fluorescence of the polyanionic PPV is restored

on addition of avidin. Another approach was taken by Schanze, Lakowicz and co-workers, who

developed viologen-boronic acids in which the quenching ability of the MV2+ core is reduced by

complexation with the vicinal diol units of monosaccharides.4 These sugar-sensitive quenchers

were used together with a PPE bearing sulfonate sidechains to create a sensor for fructose,

glucose and galactose.

The detection of DNA hybridization is of major importance in genomic analysis and has

also been the target of several conjugated polymer-based assays. The groups of Leclerc5 and

Nilsson6 have exploited changes in the photophysical properties of cationic polythiophenes on

complexation to anionic DNA to create highly sensitive DNA sensors. Bazan and Heeger have

used the interaction of cationic polyfluorene derivatives with polyanionic nucleic acids to control

energy transfer between the conjugated polymer and fluorophore-labeled target DNA.7 Whitten

et al. have used the biotinylation-mediated co-localization of conjugated polymers, quencher-

labeled probe DNA and peptide-nucleic acid scaffolds on microparticles to create assays capable

of detecting single-nucleotide mismatches.8
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A unifying feature of most of the research described above is the use of simple,

unmodified conjugated polyelectrolytes as amplification elements. These systems are usually

based on conjugated polymers in which charged groups are either integrated into the polymer

backbone or are attached to it by means of short alkyl spacer groups. Because the dominant

mechanism of signal transduction involves the manipulation of electrostatic effects - which are

ubiquitous in biochemistry - these sensor designs necessarily suffer from the possibility of

reductions in sensitivity or fidelity through non-specific polymer-analyte interactions. Previous

research by former Swager group graduate student Kenichi Kuroda has sought to overcome these

limitations using non-ionic water-soluble polymers with dendritic sidechains.9

The approach to the integration of conjugated polymers into biosensor schemes presented

in this chapter has focused on the role of small-molecule dyes in biochemistry and the need to

create conjugated-polymer systems that can be chemically manipulated in ways similar to these

dyes. This focus necessarily draws on the basic chemistry used to label biomolecules with

fluorophores and on the entire field of bioconjugation.' 0 Among the many schemes used for the

preparation of bioconjugates, one of the most popular involves the attachment of biomolecule

amine groups - such as those found on the side chains of lysine residues in proteins - to dyes

bearing amine-reactive functional groups such as isothiocyanates or activated esters. The variety

of amine-reactive dye derivatives available from commercial suppliers such as Sigma and

Molecular Probes is a testament to the popularity of this class of bioconjugation reaction. In

particular, activated ester derivatives (such as succinimide and pentafluorophenyl esters) are

available for a wide variety of small-molecule fluorophores and represent a popular compromise

between the sometimes-conflicting requirements of high activity toward amine groups, long-term

storage stability, and robustness of the biomolecule-label linkage. With these concerns in mind,
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we envisioned a conjugated polymer system containing activated ester groups that could be

integrated into existing bioconjugation schemes (Figure 2.1).

O
H
hi

Q-NH 2

I-

Figure 2.1. Schematic representation of a conjugated polymer functionalized with activated succinimide esters and
used for attachment of a biomolecule through a pendant amine group.

The development of conjugated polymer systems capable of post-polymerization

functionalization opens up a wide range of potential sensor applications for these materials. In

particular, they can provide an entry into polymer sensor schemes where the recognition

elements cannot be directly integrated into the monomer design for synthetic or scale reasons: in

these cases, the solvent- or reagent-sensitive recognition element can be installed post-

polymerization through the use of activated ester derivatives. Several applications of this post-

polymerization functionalization principle are described in this chapter, but our efforts have been

focused on a single model biosensory system that best illustrates the potential applications of

these polymers.

The design inspiration for this model system came from previous observations

surrounding the use of PPE thin films as sensors for the explosive TNT (see Chapter 1). In these

studies, the penetration of TNT molecules into the polymer film and the strong association of

TNT with the polymer backbone were found to be key factors in ensuring optimal fluorescence

quenching and thus a strong sensory response. We conceived of a related system in which
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quencher removal from a conjugated polymer forms the basis of a 'turn-on' response. Such a

scheme requires a suitable quencher-polymer pair, joined by a tether that can be cleaved or

removed by a recognition or enzymatic event (Figure 2.2).

a

Figure 2.2. Schematic representation of a conjugated-polymer turn-on sensor based on quencher removal. Covalent
attachment of a quencher (dark circle) to the polymer backbone causes the polymer to stay in a non-fluorescent
('off) state. On cleavage of the quencher-polymer tether, the quencher is removed and fluorescence is turned 'on'.

An obvious choice of tether in a scheme such as Figure 2.2 is an oligopeptide chain susceptible

to degradation by a protease. The system would then signal the presence of this protease by the

generation of new fluorescence." Enzymatic cleavage of the tether would add a second gain

mechanism - supplied by ability of a single enzyme molecule to hydrolyze multiple

oligopeptide tethers - to the amplification inherent in the amplified quenching of PPEs by

nitroaromatics. From a bioanalytical perspective, a protease assay based on quencher removal

from a conjugated polymer can be seen as a polymer-amplified variant of internally-quenched

fluorogenic probes based on small-molecule donor-acceptor pairs (Figure 2.3).1 With careful

optimization of quencher efficiency and loading, the combination of the non-linear effects of

enzymatic catalysis and amplified quenching could result in an assay scheme of unparalleled

sensitivity.
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PI

Figure 2.3. Schematic representation of the mechanism of action of conventional small molecule-based fluorogenic
probes. A dye pair (dark circles) consisting of a normally fluorescent donor and non-fluorescent acceptor are joined
by an enzyme-cleavable tether that maintains the system in an internally quenched 'off state. On cleavage of the
tether, donor-acceptor energy transfer is interrupted and the fluorescence of the donor is turned 'on'.

In this chapter we describe the design and synthesis of a series of carboxylate-

functionalized PPEs that can be converted into activated esters and used in post-polymerization

bioconjugation schemes. These PPEs have been used together with a fluorescence-quenching

oligopeptide to prepare a PPE-peptide substrate that forms the basis for a fluorogenic turn-on

assay for proteases after the principle illustrated in Figure 2.2. The photophysical properties of

these PPEs in aqueous solution and in the presence of quenchers and surfactants has been

investigated and used to provide a model that reveals the role of electrostatic and hydrophobic

interactions in the behavior of the PPE-peptide assay system.

Results and Discussion

Synthesis of carboxylate-functionalized PPEs

A number of potential designs were explored for the preparation of PPEs containing

carboxylic acid-bearing sidechains suitable for conversion into activated esters. The

requirements of our proposed applications dictated that the polymers be water-soluble, and we

wished to maximize the flexibility of the system by choosing a modular linker unit to join the
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carboxylic acid moieties to the polymer backbone. The monomer 2,5-bis(carboxymethyl)-1,4-

diiodobenzene was known from previous research carried out in the Swager group, but potential

steric problems arising from the close proximity of the carboxylate group to the eventual location

of the polymer backbone decreases its utility for bioconjugation. We chose to prepare a set of

monomers (Scheme 2.1) based on extension of the sidechain of this dicarboxylic acid with ester

derivatives of commercially available co-aminoalkanoic acids. Hydrolysis of the resulting methyl

esters (2) produced carboxylic acid monomers 1. Compounds 1 and 2 were only sparingly

soluble in common organic solvents, which made synthesis and purification difficult. The

relatively low water solubility of 2 also suggested that these monomers would not be sufficiently

hydrophilic for use in the preparation of water-soluble PPEs.

OH

1. SOC 2 I

I 2. H2NCH2(CH2)nCOOMe
l.' I r_u +_

H eOH

MeOH / H2 0 I

N O NHO ' O

1 (n = 1-3) 2 (n = 1-3)

Scheme 2.1. Synthesis of extended-chain methyl ester monomers 1 and carboxylic acids 2.

The synthetic and solubility problems encountered with amide-based sidechains suggested that a

sidechain of greater overall hydrophilicity would be required to obtain fully water-soluble

polymers. In addition, we envisioned that the steric needs of large biomolecules would be best

served by a system in which the carboxylic acid unit was positioned farther from the polymer

backbone than the commerically available amines used in Scheme 2.1 would allow. Accordingly,

we chose to make use of the well-known water solubility and easy availability of oligoethylene
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glycols to construct a set of two monomers, 9 and 10, containing carboxylic acid groups

separated from the monomer core by glycol spacers (Scheme 2.2).

0 TsCI, Et3N, CH202 

Na, THF

3 (n1) (n=1)
4 (n=4) 6 (n=4)

HO-- OH

K2CO3, KI

2-butanone

OH

CF3COOH neat I

_0 _ sn °-f

7 (n=l) 9 (n=1)
8 (n=4) 10 (n=4)

Scheme 2.2. Synthesis of carboxylate monomers 9 and 10.

The initial functionalization of diethylene glycol and pentaethylene glycol, which were

selected to provide a choice of two very different backbone-carboxylate spacings in the

completed polymer, was carried out based on a literature precedent.12 Michael addition of a large

excess of the deprotonated glycol to tert-butyl acrylate provided a mixture of the mono-addition

product and unreacted glycol which could be easily separated owing to the high water solubility

of the unreacted starting material. Conversion of the remaining free alcohol group of the glycol

to the tosylate followed by a Williamson etherification with 2,5-diiodohydroquinone provided

the tert-butyl-protected acid monomers 7 and 8 as clear oils. While these compounds are highly

soluble in organic solvents and would therefore be easy to incorporate into a polymer synthesis

reaction, we chose to remove the tert-butyl groups at the monomer stage to avoid synthetic

incompatibilities between common de-tert-butylation reagents and the electrophile-sensitive PPE

backbone. Simple dissolution of 7 and 8 in neat trifluoroacetic acid provided acid monomers 9

and 10 as white solids. Both 9 and 10 have high solubility in common organic solvents.
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While monomers 9 and 10 could conceivably be converted into succinimide esters before

polymerization, we chose to delay the activation of the carboxylic acid groups until after

polymerization because of concerns about the stability of the succinimide esters to the

polymerization conditions. In this context, monomers 9 and 10 were co-polymerized with

diacetylene co-monomers containing di- and triethylene glycol methyl ether sidechains to

provide polymers 11, 12 and 13. Morpholine was used as the polymerization medium in these

reactions, simultaneously serving as both an excellent solvent for the growing polymer chain and

as the amine base needed for the Sonogashira coupling reaction (Scheme 2.3). In addition, the

use of this solvent facilitated the purification of the water-soluble product polymers: the reaction

mixtures were typically purified by pouring the morpholine solution into water and dialyzing the

resulting solution against several changes of distilled water in 10,000-MWCO dialysis tubing.

Solid samples of 11, 12 and 13 could be recovered by lyophilization of the resulting aqueous

solutions.

0

OO0 OH

9 (m=1) 11 or 2

Pd(PPh3)4, Cul
morpholine

1U (mp-4)

11 (m=l, p=1)
12 (m=4, p=1)
13 (m=4, p=2)

Scheme 2.3. Synthesis of carboxylate PPEs 11, 12 and 13 from monomers 9 and 10 and oligoethylene glycol-
substituted diacetylene co-monomers.
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While all three polymers could be re-dissolved in DMF, water and aqueous buffer solutions, the

ease of re-dissolution generally followed the order 11 < 12 < 13, suggesting that a greater total

number of glycol units per polymer repeat unit increases the solubility of the polymer.

Photophysicalproperties of carboxylate-functionalized PPEs

The absorbance and fluorescence spectra of polymer 12 were measured in DMF (Figure

2.4) and aqueous solution (Figure 2.5).
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Figure 2.4. Absorbance (left) and fluorescence (right) spectra of 12 in DMF solution.
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Figure 2.5. Absorbance (left, solid lines) and fluorescence (right, dotted lines) spectra of 12 in unbuffered water
(pH - 6) and in a solution adjusted to pH 11. The concentration of polymer is identical in both cases.

In DMF, polymer 12 shows absorbance and fluorescence features typical of non-aggregated

PPEs dissolved in 'good' solvents, including a single absorbance feature centered around 430 nm

and an emission profile with a maximum at 470 nm. However, the spectra of 12 in aqueous

solution (Figure 2.5) are highly distorted and pH-dependent. In addition to the typical 430 nm

absorbance feature characteristic of PPEs, the absorbance spectrum of 12 in unbuffered water

(pH - 6) displays a sharp peak at 500 nm indicative of aggregation caused by polymer -

stacking. The fluorescence of 12 under these conditions is somewhat blue-shifted relative to

typical PPE fluorescence spectra in 'good' solvents. In NaOH solution at pH 11, the spectral

features of 12 change remarkably: the sharp 500 nm absorbance feature disappears completely,

and the emission spectrum shows an additional broad, red-shifted feature.

The absorbance features of 12 would seem to suggest that this polymer undergoes a pH-

sensitive aggregation process wherein a well-defined polymer aggregate dominates at low pH.
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Rendering the polymer solution alkaline increases the negative charge on the carboxylate-

functionalized PPE, augmenting the water solubility of individual polymer chains and

discouraging inter-chain interactions. A similar mechanism has been proposed by Schanze and

co-workers to explain the pH- and solvent-dependent spectroscopic features of phosphonate- and

sulfonate-substituted PPEs.13

Although the minimization of polymer aggregation effects would seem to be necessary to

achieve the greatest possible sensitivity in assay schemes based on these PPEs, the need for

stable, near-neutral buffered solutions precludes the use of a highly alkaline environment to

control aggregation in these applications. Instead, we screened a number of commercially

available non-ionic surfactants for their ability to increase the fluorescence quantum yield (QY)

of PPEs in neutral and buffered solutions. Triton X-100 (Scheme 2.4) was found to be

remarkably effective in this regard: the addition of about 0.5 wt% of this surfactant to a solution

of 13 in water increased the QY of the polymer from 0.11 to 0.20. The same effect was observed

in a solution of 13 in a pH 7.5 Tris-buffered saline (TBS) solution, although its overall

magnitude was not as strong (Figure 2.6). This difference can be attributed to the larger inherent

hydrophobic forces in solutions of high ionic strength.

-9.5

Scheme 2.4. Structure of the non-ionic surfactant Triton X-100.
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Figure 2.6. Fluorescence enhancement of polymer 13 in Tris-buffered saline (TBS; 50 mM Tris pH 7.5, 150 mM
NaCl, 5 mM CaC12) on addition of Triton X-100, with approximate quantum yields. The concentration of polymer is
identical in each of the scans.

The data in Figure 2.6 clearly show that 30-50% increases in QY are possible with the addition

of small concentrations of Triton X-100. Concomitant with the fluorescence intensity increases is

a gradual change in the shape of the fluorescence spectra. In the absence of surfactant, the

spectrum of 13 in TBS resembles that of 12 in water at pH 11 - a dual-peak structure with a

red-shifted emission maximum around 480 nm. Addition of surfactant causes the red-shifted

emission band to disappear, with the result that the fluorescence profile of 13 in the presence of

1.13 wt% Triton X-100 begins to resemble the spectrum observed in the 'good' solvent DMF

(Figure 2.4).

The results of the pH and surfactant experiments suggest that in aqueous solution the

polymer exists in equilibrium between an aggregated, n-stacked form of relatively low QY and a

highly solubilized form of higher QY in which inter-chain interactions are minimized. To
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determine if these two forms can be identified photophysically, the fluorescence lifetime of

polymer 13 was measured in DMF and three different buffers, both with and without added

surfactant (Table 2.1).

Table 2.1. Fluorescence lifetimes of 13 in aqueous buffer solutions and in DMF. Numbers in brackets indicated the
relative amplitudes of the component lifetimes. Polymer solutions were excited at 405 nm and fluorescence recorded
at 470 nm using RF phase modulation (see Experimental section).

The fluorescence lifetime of 13 in DMF solution was 0.77 ns, a value typical for PPEs in 'good'

solvents. In the case of aqueous solutions, we found that the fluorescence decay was bi-

exponential, indicating the presence of two distinct fluorescent species in solution or two distinct

radiative decay pathways.' The components of the fluorescence decay correspond to a dominant

short-lived species of T = 0.6-0.7 ns - similar to the lifetime of the polymer in DMF - together

with minor contributions from a longer-lived 3-4 ns component. As Table 2.1 indicates, the

relative populations of the two species are strongly affected by the addition of surfactant, which

was found to greatly increase the amplitude of the short-lifetime component at the expense of the

longer-lived species. Alkaline buffer environments also generally favored increased

contributions from the short-lifetime component. In general, the data indicate that the same

conditions that promote large quantum yields and sharp emission spectra (organic solvents,

alkaline pH values or surfactant in aqueous solutions) also result in an increase in the relative

contribution of the short-lived species. These observations are consistent with a model in which
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no surfactant 0.64 ns (0.82) 0.64 ns (0.82) 0.67 ns (0.93) 0.77 ns
3.81 ns (0.18) 4.05 ns (0.18) 3.97 ns (0.07)

0.1 wt% Triton X-100 0.77 ns (0.97) 0.70 ns (0.87) 0.75 ns (0.98)
3.90 ns (0.03) 3.24 ns (0.13) 3.71 ns (0.02)

0.2 wt% Triton X-100 - 0.73 ns (0.92) -
4.24 ns (0.08)



the polymer chains are aggregated in neutral to acidic solutions and well-solvated in organic

solvents, when the solution is rendered alkaline, or when surfactant is added. In this case the

short-lived component of the fluorescence lifetime represents the radiative lifetime of the non-

aggregated polymer and is increased in amplitude when the relative proportion of polymer chains

in this state is increased. Similarly, the long-lived fluorescence decay can be assigned to polymer

aggregates that are broken up at conditions of high pH and surfactant concentration and are

completely absent in DMF solutions. These aggregates are expected to form through strong

hydrophobic and r-stacking interactions between polymer chains, and their long fluorescence

lifetime is the signature of a weakly allowed transition from the lowest excited state of the

aggregate to the ground state.13 In phosphate-buffered saline (PBS) solutions of 13 the high ionic

strength of the medium encourages greater aggregation through hydrophobic interactions,

requiring higher concentrations of surfactant to break up aggregates compared to buffer solutions

lacking added salts.

Quencher selection and quenching efficiency

An assay substrate of the type illustrated in Figure 2.2 derives its sensitivity from both the

quantum yield of the polymer fluorophore and the degree of quenching in the initial non-

fluorescent form. The success of quencher-removal protease detection is therefore critically

dependent on the optimization of the 'off state to give the lowest possible background

fluorescence. Simple fluorogenic protease substrates like the one depicted in Figure 2.3 generally

use small-molecule fluorophore-quencher pairs such as the MCA-DNP and EDANS-DABCYL

systems (Scheme 2.5). In these systems quenching occurs via Frster energy transfer and is

41



maximized by the good spectral overlap between the donor fluorescence and acceptor

absorbance within each pair.

NI 

I I H. 
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MCA DNP EDANS DABCYL

Scheme 2.5. Two common fluorophore-quencher pairs used in commercial fluorogenic probes for proteases.
Quencher structures are enclosed in boxes. MCA = 7-methoxycoumarin-4-acetyl; DNP = 2,4-dinitrophenylamino;
EDANS = 2-(1-sulfonatonaphthyl-5-amino)ethylamino; DABCYL = 4-(4-dimethylaminophenylazo)benzoyl.

We chose to investigate the DNP quencher unit based on the known sensitivity of PPEs to

quenching by nitroaromatics. In addition, we hoped to capitalize on the commercial availablity

of dinitrophenyl-substituted lysine (LysDNP) and related derivatives suitable for use in solid-

phase peptide synthesis. To determine the suitability of the DNP chromophore as a PPE

fluorescence quencher, an analysis of the Stem-Volmer quenching constants for LysDNP with

polymer 13 was carried out in unbuffered aqueous solution and in pH 7.5 TBS, both with and

without surfactant (Figure 2.7).
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Figure 2.7. Stern-Volmer quenching Fo/F of polymer 13 by LysDNP (structure shown) as a function of
concentration in solutions of varying composition.

Quenching of 13 was found to be highly efficient in neutral, unbuffered water, showing a Stem-

Volmer quenching constant Ksv of 5.8x104 M-l1. The presence of Triton X-100 at low

concentration reduced this value by a factor of four to 1.4x 104 M-1, similar to the Ksv determined

in Tris-buffered saline (1.5x104 M-l). Addition of surfactant to the Tris-buffered saline solution

reduced Ksv still further to 1.Ox104 M-1 . The large magnitude of Ksv in all of these cases strongly

implies that static binding of LysDNP is responsible for the observed quenching (see Chapter 1),

and in this context the differences in Ksv observed under various solvent and surfactant

conditions can be understood in terms of variations in the effective association constant of

LysDNP and 13. Here the addition of surfactant and the use of a controlled near-neutral pH

reduces hydrophobically driven interactions between LysDNP and 13, suggesting that the pH,

ionic strength and surfactant concentration of the assay medium is important in determining the
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background fluorescence of a quencher-linked substrate such as the one illustrated in Figure 2.2.

These parameters will thus directly affect the 'on' / 'off' signal contrast achievable in such a

system.

Covalent bioconjugation with carboxylate PPEs

The experiments described above clearly indicate that the DNP chromophore is a potent

quencher of the fluorescence of carboxylate polymers such as 13 in aqueous solution. However,

the mechanism of the quencher-removal assay illustrated in Figure 2.2 requires that there be a

fundamental contrast between the 'off' (tethered) and 'on' (cleaved) states of the polymer

substrate when the absolute quencher concentration is kept constant. A demonstration of this

contrast effect must verify that DNP groups covalently tethered to the polymer sidechain are

significantly more effective at quenching the polymer fluorescence than the equivalent

concentration of DNP groups in solution. The difference in quenching efficiency revealed by

such an experiment is a direct determinant of the signal gain possible in a quencher-removal

protease assay.

The experiment designed to determine this 'on' / 'off contrast also provided the

opportunity to test the utility of carboxylate PPEs 11, 12 and 13 in bioconjugation schemes. We

prepared 15 (Scheme 2.6) for use as a biomolecule 'mimic' - an amine-containing substance,

suitable for covalent attachment to an activated-ester PPE, which would allow the coupling

reaction to be followed in the fluorimeter.
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Scheme 2.6. Synthesis of the hydrophilic biomolecule 'mimic' 15.
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To establish the baseline quenching ability of 15 relative to unactivated carboxylate PPEs, we

continuously monitored the fluorescence of a stirring solution of 12 in borate buffer as 15-nmol

aliquots of 15 were added (Figure 2.8). As expected, 15 served as an effective quencher of the

unactivated polymer 12, producing significant fluorescence quenching at low concentrations.

0 200 400

Time (sec)

600 800 1000

Figure 2.8. Fluorescence of a solution of 12 in borate buffer (pH 8.5) in response to addition of aliquots of 15
(arrows). Each addition corresponds to a concentration increase of approximately 5 gM in 15. The fluorescence at
470 nm (ex 405 nm) was recorded every 10 s.

Following standard methods for the activation of carboxylate-containing small molecules, a

solution of 12 in DMF was treated with excess N-hydroxysuccinimide (NHS) and
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diisopropylcarbodiimide (DIPC). After a short activation period, the activation solution was

diluted into borate buffer and treated with a single aliquot of 15. The fluorescence of the

activated polymer solution was followed after addition of the quencher (Figure 2.9).
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Figure 2.9. Fluorescence of a solution of 12, previously activated with excess NHS and DIPC in DMF for 10
minutes, after dilution into borate buffer (pH 8.5) and addition of 15 at 5 gM (arrow).

Whereas the presence of 5 gM of 15 reduces the fluorescence of unactivated polymer 12 to about

93% of its initial value (Figure 2.7), the same concentration of 15 added to activated 12 results in

a time-dependent reduction to about 50% of its initial fluorescence after 15 minutes (Figure 2.9).

The exponential decay of Figure 2.9 is consistent with a mechanism in which the fluorescence-

quenching amine-containing 15 is covalently 'captured' by the activated-ester form of 12 as an

amide. It is important to note that the absolute quencher concentration remains the same

throughout each experiment: differences in fluorescence intensity at any given time can be

accounted for by the distribution of quencher in the solution (either free or covalently bound to
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the polymer). In this case the covalent tether leads to a high 'effective concentration' of 15

around the polymer and more significant quenching, even though Ksv does not change. In related

experiments, we found that extending the activation time resulted in faster fluorescence decay on

addition of 15, consistent with a more complete conversion of the carboxylate groups of 12 to

activated esters.

To confirm that amide bond formation between the activated ester form of 12 and

quencher 15 is in fact responsible for the time-dependent reduction in fluorescence seen in

Figure 2.9, we attempted to disrupt the quencher-capture reaction through the addition of a large

excess of hydroxylamine (Figure 2.10). Hydroxylamine is a powerful nucleophile that is used in

bioconjugation schemes to quickly consume excess activated ester.
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Figure 2.10. Fluorescence of a solution of 12, previously activated with excess NHS and DIPC in DMF for 90
minutes, after dilution into borate buffer (pH 8.5), addition of a 15-nmol aliquot of 15 (first arrow) followed by
excess hydroxylamine (second arrow).
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The addition of hydroxylamine completely halted the fluorescence decay caused by the previous

addition of 15, showing that it effectively competes for the activated ester groups present on the

polymer sidechains. The slow increase in the fluorescence of the polymer solution after

hydroxylamine addition suggests that the activation process itself has a deleterious effect on

polymer fluorescence and that destruction of the activated ester groups or excess NHS or DIPC

improves the fluorescence properties of the system. In this case the addition of hydroxylamine

turns 'on' polymer fluorescence by destroying excess activation reagent or disrupting polymer

cross-links.

Protease target selection and linker design

The enzymatic specificity of the quencher-removal protease assay illustrated in Figure

2.2 arises entirely from the oligopeptide tether used to link the quenching unit to the polymer

backbone. As a first demonstration of the utility of our proposed protease detection scheme, we

turned to the matrix metalloprotease (MMP) family. The MMPs are zinc proteases that are

involved in normal biological processes and are also strongly associated with tumor angiogenesis

and metastasis.'4 While a wide variety of conventional fluorogenic substrates are available for

these enzymes, their important role in the progression of cancer has inspired the development of

a number of unusual fluorogenic probes. For example, the group of Weissleder has invested

considerable effort in the design of MMP substrates for in vivo imaging. These substrates consist

of near-infrared fluorophores tethered to a soluble polylysine backbone by oligopeptide linkers

susceptible to hydrolysis by MMPs, and are ordinarily non-fluorescent due to self-quenching of

the dyes. 15 On enzymatic cleavage of the linkers, free fluorophore is released and the system

becomes fluorescent. These systems were used to image tumors and to quantify MMP inhibition
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in live mice. In conceptually related work, Matrisian and co-workers very recently reported a

dendrimer-based internally quenched substrate for MMPs based on fluorescein-labeled

oligopeptides covalently attached to a PAMAM dendrimer.16

The specific target of our proposed quencher-removal protease assay was matrix

metalloprotease 13 (MMP-13), a human collagenase first isolated and characterized in the mid-

1990s.7 MMP-13 has been associated with both arthritis and breast carcinomas and is thus of

direct medical interest. While the natural substrate of MMP-13 is collagen, a highly active non-

natural substrate sequence (kcat/Km 106) has been identified, making this enzyme-substrate pair

attractive for our application.18 This substrate sequence, GPLGMRGL, is hydrolyzed by the

enzyme at the G-M bond and contains the PXGX motif (where X is a hydrophobic amino acid)

used in earlier fluorogenic substrates for proteases.19 We also recognized that the presence of a

single Arg residue in the middle of this sequence would render it susceptible to cleavage at the

R-G bond by the common digestive enzyme trypsin. A modified version of this sequence,

AcHN-LysDNP-GPLGMRGLGGGGK (16), was synthesized using standard solid-phase

techniques in conjunction with Dr. Charlene Mello and Jennifer Burzycki of the US Army

Natick Soldier Center. Our modifications were designed to provide both a source of the DNP

quencher (LysDNP) and a free amine handle (C-terminal Lys residue) for covalent attachment of

16 to activated-ester derivatives of carboxylate PPEs 11-13. The N-terminal acetyl group was

introduced manually onto the bead-bound peptide to ensure that the conjugation reaction would

proceed solely through the C-terminal Lys residue.
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Preparation and evaluation ofpolymer-peptide substrates

After HPLC purification and characterization, the fluorescence-quenching peptide 16 was

covalently tethered to polymer 12 using a variation on the technique described above. To ensure

the fidelity of the coupling reaction, we made use of the fact that carbodiimide activation of

carboxylate groups is efficient in mildly acidic solutions and very slow in alkaline solutions.l ° A

DMF solution of polymer 12 was treated with excess 1-ethyl-3-(3-(1-

dimethylamino)propyl)carbodiimide hydrochloride (EDAC, a water-soluble carbodiimide) and

NHS, added as solutions in pH 5.5 MES buffer. After approximately one hour, a solution of 16

in pH 8.5 borate buffer was added. The use of an alkaline environment in this step was critical to

both stop the activation reaction and facilitate amide bond formation between 16 and activated

12. A parallel reaction using the previously described biomolecule 'mimic' 15 was carried out to

provide a non-peptidic control substrate (Scheme 2.7).
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Scheme 2.7. Synthesis of polymer-peptide substrate 17 and mimic 18.

Polymer-peptide 17 and mimic 18 were purified by dialysis against frequent changes of water to

remove unreacted starting material and coupling by-products. Both substrates were non-

fluorescent, and the absorbance spectrum of 17 in Tris-buffered saline clearly showed

contributions from the absorbance of both the PPE backbone (centered at 435 nm) and the

pendant DNP chromophores (centered at 360 nm) (Figure 2.11).
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Figure 2.11. Absorbance spectrum of a solution of 17 in TBS.

We made use of the relative contributions of the DNP chromophore and the absorbance of the

PPE backbone to determine the ratio of DNP to polymer repeat units in 17. The extinction

coefficients of 13 and LysDNP were evaluated independently at 360 and 435 nm (Table 2.2). By

solving for the observed absorbances of 17 at these wavelengths (Figure 2.11), its peptide

loading was determined to be 1.7 peptides per polymer repeat unit.

Table 2.2. Extinction coefficients of 13 (representative of polymer 12) and LysDNP (representative of peptide 16)
determined in pH 7.5 TBS. All values are reported in units of M' crnm'. Polymer values are reported on a repeat-unit
basis.
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Trypsin-catalyzed fluorescence turn-on

The response of substrate 17 to trypsin-catalyzed peptide cleavage was followed by

monitoring the fluorescence of a dilute solution (1.1 AM) in TBS after addition of a small

quantity of trypsin (3 jtg/ml) (Figure 2.12). The fluorescence of 17 is rapidly and strongly

enhanced under these conditions.
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Figure 2.12. Fluorescence response of 17 (1.1 M) to treatment with trypsin at 3 jig/ml.

The observed response in this case is characterized by a rapid initial generation of fluorescence

followed by a slower, linear evolution of fluorescence with time. Comparison of the absorbance

and fluorescence spectra of 17 before and after digestion with trypsin reveal an approximately

tenfold increase in fluorescence intensity after 30 minutes. The absorbance spectrum of 17 is

changed slightly after trypsin digestion, especially around 360 nm, suggesting that the dipole

strength of the DNP chromophore is sensitive to complexation to the polymer backbone.
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Figure 2.13. Absorbance (left) and fluorescence (right) spectra of 17 (1.1 M) before and after digestion with
trypsin (3 jtg/ml).

To verify that the fluorescence turn-on in this system is due to the enzymatic action of

trypsin and not a non-specific binding effect, a set of parallel experiments was conducted using

the trypsin inhibitor benzamidine hydrochloride and the non-peptidic substrate 18 (Figure 2.14).

The presence of a large excess of inhibitor and the use of the non-peptidic substrate 18 reduces

rate of fluorescence turn-on to undetectable levels. Unsurprisingly, the inhibitor alone is also

unable to trigger a fluorescence increase in 17.
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Figure 2.14. Fluorescence turn-on of 17 (0.26 gM) with trypsin (1 Fg/ml), in the presence of excess benzamidine
hydrochloride inhibitor (0.4 mg/ml), with inhibitor alone, and the parallel fluorescence response of 18.

Trypsin-inducedfluorescence enhancement in a small-molecule mimic of 17

Compound 20, a small-molecule mimic of 17, was prepared and subjected to digestion by

trypsin in an attempt to quantify the enhancement provided by exciton migration in the polymer-

peptide substrate (Scheme 2.8). Though the quencher-polymer linker in 20 is shorter than the one

used for 17 - a feature which should encourage quenching in the 'off state and promote large

enhancements in fluorescence on quencher removal - hydrolysis of 20 by trypsin in TBS causes

only a threefold enhancement in fluorescence intensity (Figure 2.15), several times smaller than

the tenfold increase observed for 17. This result demonstrates the advantages of amplified

quenching of PPEs in sensor design.
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Scheme 2.8. Synthesis of the PPE mimic 19 and peptide-polymer small-molecule mimic 20.
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Figure 2.15. Fluorescence spectra of 20 in pH 7.5 Tris-buffered saline before and after digestion by trypsin.
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Ionic strength effects on fluorescence enhancement

The linear response of conventional fluorogenic probes for proteases make them useful

for the quantitative determination of enzyme activity. Although a polymer-peptide system

operating on the basis of quencher removal shares some design similarities with these small-

molecule fluorogenic probes, the possibility of amplified quenching effects and the spatially

constrained nature of the multiple oligopeptide tethers in 17 are likely to introduce significant

non-linear effects that would complicate any effort to collect absolute kinetic data from this

system. Despite these limitations, we wished to determine if the fluorescence effects of ionic

strength and surfactant concentration described earlier play a significant role in the fluorescence

turn-on of substrates such as 17. To this end, we prepared a modified polymer-peptide substrate

17' in which the peptide loading is reduced to 0.25 peptide chains per repeat unit (versus 1.7 for

17). On digestion by trypsin, the degree of fluorescence enhancement in this substrate was found

to be 6.6-fold in Tris-buffered saline (Figure 2.16), 4.4-fold in the same solvent containing 0.16

wt% Triton X-100 (Figure 2.17), and 11.5-fold in Tris buffer without added salts (Figure 2.18).

These interesting results show that even low peptide loading levels such as those found in 17' are

sufficient to provide 'on' / 'off contrast of a magnitude similar to that seen in the highly

quenched substrate 17. This effect can be seen as a manifestation of the amplifying effects of

exciton migration in PPEs - relatively few tethered peptides are required to cause efficient

quenching of the fluorescence of the polymer.
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Figure 216. Fluorescence spectra of 17' in pH 7.5 Tris-buffered saline before and after digestion by trypsin. The
fluorescence scales of Figures 2.16- 2.18 are identical and data were collected from solutions equal in concentration.
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Figure 2.17. Fluorescence spectra of 17' in pH 7.5 Tris-buffered saline containing 0.16 wt/o Triton X-100 before
and after digestion by trypsin.
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Figure 2.18. Fluorescence spectra of 17' in pH 7.5 Tris buffer before and after digestion by trypsin.

Examination of the data presented in Figures 2.16, 2.17 and 2.18 reveals several

interesting phenomena. In general, the absolute fluorescence intensity of 17' in TBS containing

0.16 wt% Triton X-100 (Figure 2.17) is higher both before and after trypsin digestion than the

corresponding measured intensities in the absence of surfactant. While a surfactant-mediated

increase in the relative QY of the polymer is expected in the absence of any external quencher,

the fact that surfactant alone is able to increase the fluorescence of the tethered 'off form of 17'

is remarkable. Furthermore, while the initial fluorescence intensities of 17' in Tris buffer and

Tris-buffered saline are comparable, the use of the latter limits the final fluorescence output of

the system considerably. It is also interesting that in all three cases the final fluorescence

spectrum contains a dominant red-shifted band that is largely absent in intact 17'. This suggests
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that the presence of the intact polymer chain of 17' may play a role in preventing polymer

aggregation.

We subjected samples of 17' to digestion by trypsin at very low concentrations (50

ng/ml) to determine how the reaction medium affects the relationship between peptide hydrolysis

and fluorescence generation. Fluorescence enhancement in this system was followed as a

function of time (Figure 2.19) and correlated to the actual rate of quencher release, measured by

assaying the free peptide fragment AcHN-LysDNP-GPLGMR by HPLC (Figure 2.20).
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Figure 2.19. Fluorescence generation as a function of time in the digestion of 17' by trypsin (50 ng/ml) for three
different reaction media. Fluorescence was monitored at 475 nm (4, 405 nn).
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Figure 2.20. Release of the peptide fragment AcHN-LysDNP-GPLGMR as a function of time in the digestion of
17' by trypsin (50 ng/ml) for three different reaction media. Relative free peptide concentration was determined by
HPLC analysis of unbound DNP chromophore.

Rate data from Figures 2.19 and 2.20 are summarized in Table 2.3.

Table 2.3. Relative rates of peptide hydrolysis and fluorescence generation from substrate 17' under initial-rate
conditions, derived from the data of Figures 2.19 and 2.20.

I Petide hdrolysis Fluorescence generation
pH 7.5 TBS 1 1
pH 7.5 Tris 4.1 0.6 5.3 0.2

pH 7.5 TBS, 0.08% Triton X-100 1.1 0.2 2.9 0.2

The relative rate data shown in Table 2.3 reveal that, in general, the initial rates of

fluorescence generation in different reaction media do not scale with the actual rate of peptide

hydrolysis as measured by HPLC. For example, the reduction in ionic strength on changing the

solvent from Tris-buffered saline to ordinary Tris buffer causes a fourfold increase in the
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reaction rate, consistent with previous observations concerning the ionic strength-dependent rate

of trypsin-catalyzed peptide hydrolysis.2 0 However, the same change in reaction medium causes

a greater (5.3-fold) increase in the rate of fluorescence generation. The addition of surfactant has

an even greater effect on the disparity between the actual reaction rate and the rate of

fluorescence generation: while the presence of 0.08% Triton X-100 does not significantly affect

the actual rate of peptide hydrolysis, the rate of fluorescence generation is increased by a factor

of three. These observations, together with the effects of the reaction medium on the overall 'on'

/ 'off fluorescence enhancement of the system, provide further evidence of the role of ionic

strength and surfactant in mediating the interactions between the PPE backbone and

fluorescence-quenching peptide in 17. The general effect of increased ionic strength in this

system seems to be the promotion of quencher-polymer interactions, even when the quencher has

been cleaved from the polymer backbone (Figure 2.21). Conversely, the addition of surfactant

reduces quencher-polymer interactions and enhances the fluorescence of the system in both its

'off and 'on' states by 'insulating' the hydrophobic peptide and polymer chains from each other

(Figure 2.22). The fluorescence enhancement provided to the 'off state more than offsets the

gains achieved in the 'on' state, leading to an overall negative effect on the sensitivity of the

system.

Figure 2.21 (following page). Schematic representation of the interaction between the fluorescence-quenching
peptide and polymer backbone of 17 before (top) and (after) hydrolysis of the peptide tether by trypsin under
conditions of high ionic strength. Hydrophobic effects promote strong quencher-polymer interactions under these
conditions.
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Figure 222. Schematic representation of reduced interactions between the fluorescence-quenching peptide and
polymer backbone of 17 under conditions of lower ionic strength or in the presence of surfactant. Hydrophobic
effects are alleviated by the surfactant and reduce quencher-polymer interactions under these conditions.

0 2N
, NHAc

0 2N HN- HN

0<
o N

HN

NHHoNH

0 0
HN

0

(
0

64

I

I(
II¢

II

II

(

II



Treatment of 17 with MMP-13

As mentioned above, we chose peptide 16 for use as a tether in our quencher-removal

protease detection scheme because its core sequence, GPLGMRGL, has been identified as an

excellent substrate for the cancer-associated enzyme MMP-13. Unfortunately, subjecting

substrate 17 to hydrolysis by an activated commercial preparation of MMP-13 did not result in

reproducible increases in fluorescence. This effect is probably a result of the simple steric

inaccessibility of the peptide sequence caused by its proximity to the rigid and bulky polymer

backbone: while the constricting effects of the polymer itself may not be significant when trypsin

(MW -24 kDa) is used, the much larger MMP-13 enzyme (-60 kDa) may be less tolerant of

steric interference. We also suspected that the reagent used to activate the MMP enzyme,

4-aminophenylmercuric acetate (APMA), may interfere with the fluorescene response of 17 to

quencher removal. In an independent experiment, we found that 20 p.M APMA alone was

sufficient to increase the fluorescence of 17 in a time-dependent manner. This unexpected result

may be due to a reduction in polymer-peptide interactions, perhaps due to oligopeptide chelation

of the organomercurial.

PPEs for bioconjugation to antibodies

The exploitation of antibody-antigen interactions represents a critical part of the toolkit

used in the study of biological and biochemical phenomena. In particular, the use of

fluorescently labeled antibodies for cell staining and the analysis of protein gels has become a

standard technique, and a wide variety of both primary and secondary antibodies bearing small-

molecule fluorophores are commercially available. In conjunction with the research group of

Prof. Alice Ting, we sought to extend the use of labeled antibodies to study protein-protein
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interactions that are currently inaccessible with small-molecule dyes. The remainder of this

chapter describes a series of PPEs suitable for bioconjugation to antibodies.

While antibodies can be and often are labeled by covalent bond formation between lysine

side chains and activated-ester derivatives of small-molecule dyes, they have a number of special

structural features that make this form of labeling problematic. Labeling through the side-chains

of lysine residues is non-specific and the introduced labels can often interfere with antigen

binding. For this reason, it has become popular to take advantage of the fact that antibodies are

highly glycosylated, possessing 4-18% carbohydrate by weight, depending on the type of

immunoglobulin.21 Dilute, mildly acidic solutions of periodate can be used to selectively oxidize

the vicinal diol groups of carbohydrates to generate aldehydes, which can be condensed with

small-molecule amines or hydrazides to form imines or hydrazones. Because antibodies are

glycosylated only in regions that do not participate in antigen binding, the binding capacity of the

antibodies is preserved. Additionally, the periodate oxidation step can be fine-tuned to change

the extent of labeling.2 Hydrazones are more stable than imines, making the use of hydrazides a

preferred method for antibody labeling.2 ' 23'10 By incorporating hydrazide groups into PPE

building blocks, we have designed a series of monomers and polymers suitable for

bioconjugation to antibodies (Scheme 2.9).
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Scheme 2.9. Schematic representation of the oxidation of an immunoglobulin followed by hydrazone formation
with a hydrazide-containing polymer.

In our first approach to the preparation of hydrazide-containing PPEs, a hydrazide-

containing monomer, 21, was used to provide a hydrazide-substituted polymer building block

suitable for incorporation into a PPE. A similar approach was used for the preparation of 24, a

hydrazide-containing PPE end-capping reagent (Scheme 2.10). Both of these compounds were

synthesized by simple hydrazinolysis of the corresponding methyl esters.
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Scheme 2.10. Synthesis of hydrazide-containing monomer 21 and end-cap 24.

An alternate entry into hydrazide-containing PPEs was based on the activated-ester PPEs used

for the preparation of polymer-peptide substrate 17. In this case, the activated ester was treated

with a sub-stoichiometric quantity of an 2-kDa amino-polyethylene glycol to promote solubility,

followed by consumption of the remaining activated ester groups with hydrazine hydrate

(Scheme 2.11). The polymer was purified by dialysis to remove excess hydrazine and unreacted

PEG-amine. Introduction of the hydrazine group in polymers based on 21, 24 and 25 was

confirmed by a positive Sanger reaction with 2,4-dinitrofluorobenzene, which covalently

derivatizes and quenches the polymer. Methods for antibody labeling with these polymers are

currently under development in our laboratory.
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Scheme 2.11. Introduction of hydrazide and PEG groups via post-polymerization modification of 13.

Conclusions

A family of water-soluble carboxylate-functionalized PPEs has been synthesized for use

in bioconjugation schemes. These polymers show strong aggregation effects in aqueous solutions

that are reduced at high pH and in the presence of surfactant. Carbodiimide activation of these

polymers results in activated-ester PPEs that can be covalently attached to amine-containing

biomolecules. This technique has been used to prepare a polymer-peptide substrate in which a

trypsin-susceptible oligopeptide chain links an efficient fluorescence quencher to the polymer

backbone. Digestion of this substrate with trypsin results in a fluorescence increase of up to an

order of magnitude. Ionic strength and surfactant effects play a large role in the photophysical

mechanism of fluorescence generation. The PPE bioconjugation technique has also been used to

prepare polymers suitable for covalent attachment to oxidized antibodies.
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Experimental

Synthetic considerations. Starting materials were purchased from Aldrich Chemical Company

or Alfa-Aesar and used without further purification. THF was dried by passing through a 'dry

still' column of activated alumina and was stored under argon before use. 2-Butanone was

degassed by vigorous sparging with argon immediately before use. Morpholine was dried and

degassed by passage through a column of activated alumina, followed by repeated evacuation of

the storage flask and re-filling with argon. Melting points were recorded on a Laboratory

Instruments Inc. Mel-Temp II and are uncorrected. NMR spectra were measured on Varian

Inova-500 and -501 spectrometers at 500 MHz (H) or 125 MHz (' 3C) and were referenced to the

1H resonance of internal SiMe4 ('H, 0 ppm) for CDC13 solutions, and the resonances of naturally

occurring 13C and monodeuterated species in the NMR solvent (all other H spectra and all 13C

spectra). Mass spectra were measured on a Bruker Daltonics Apex II 3T FT-ICR instrument at

the MIT Department of Chemistry Instrumentation Facility. Solutions of EDAC (1-(3-

dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride) and NHS (N-hydroxysuccinimide)

were prepared from commercial reagents immediately before use in 0.1 M MES buffer (pH 5.4).

Reverse-phase HPLC was carried out on Zorbax SB and Waters Delta Pak C18 columns, eluting

with gradients of MeCN and H2 0 containing 0.1% CF3COOH. Compounds were detected on the

basis of their UV absorbance as they eluted from the column. Routine absorbance spectra were

measured on an Agilent 8453 spectrophotometer. Fluorescence spectra were measured in quartz

cuvettes on Spex Fluorolog fluorimeters.
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19-Hydroxy-4,7,10,13,16-pentaoxaoctadecanoic acid, tert-butyl ester (4). This compound was

synthesized based on a modification of a literature procedure for a shorter homolog.12 A solution

of 15 g (63 mmol) pentaethylene glycol in 175 ml of dry THF was treated with ca. 100 mg of

freshly cut sodium metal chips. The solution was stirred vigorously under argon until gas

evolution had ceased (about 1.5 hr). 3.1 ml (2.7 g, 21 mmol) tert-butyl acrylate was then added

and the reaction mixture stirred overnight under argon. The reaction mixture was quenched by

the addition of 8 ml of 1 M aqueous HC1. After stirring for several minutes, the reaction mixture

was poured into 200 ml of a saturated NaCl solution and extracted three times with 100 ml

portions of EtOAc. The combined EtOAc extracts were washed with saturated aqueous NaCl,

separation and dried over anhydrous MgSO4. After filtration, the mixture was concentrated under

reduced pressure to provide a clear colorless oil (6.16 g, 80%).1H NMR (CDCl3, ppm): 1.45 (s,

9H), 2.51 (t, 2H, J = 6.5 Hz), 3.1 (br s, 1H), 3.60-3.74 (m, 22H). 13C NMR (CDC13, ppm): 28.16,

36.29, 61.72, 66.94, 70.35, 70.40, 70.53, 70.58, 70.60, 70.64, 70.66, 72.69, 80.58, 171.02.

HRMS: [C17H34 0 8+CH3COO] requires 425.2387, found 425.2389.

19-(p-Toluenesulfonyloxy)-4,7,10,13,16-pentaoxaoctadecanoic acid, tert-butyl ester (6).

Compound 4 (4.5 g, 12.3 mmol) was dissolved in a mixture of 30 ml CH2C12 and 10 ml Et 3N and

cooled in an ice-bath under argon. 3.6 g of solid p-toluenesulfonyl chloride (Aldrich) was then

added in one portion. The reaction mixture was stirred overnight at room temperature and then

poured into 100 ml of 1 M HC1. The organic phase was separated, washed with saturated

aqueous NaCl, and dried on anhydrous MgSO4. After filtration, the solution was concentrated to

dryness on a small amount of silica gel and chromatographed on silica gel (elution with a

gradient of 1:1 EtOAc/hexanes to 3:1 EtOAc/hexanes). The product eluted as a thick, colorless
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oil (5.00 g, 78%). 1H NMR (CDC13, ppm): 1.45 (s, 9H), 2.45 (s, 3H), 2.50 (t, 2H, J = 6.0 Hz),

3.58-3.72 (m, 20H), 4.16 (m, 2H), 7.35 (d, 2H, J = 8.0 Hz), 7.80 (d, 2H, J = 8.0 Hz). 3C NMR

(CDCl 3, ppm): 21.77, 28.20, 36.36, 66.99, 68.76, 69.38, 70.46, 70.59, 70.62, 70.66, 70.67, 70.68,

70.71, 70.83, 80.60, 128.09, 129.95, 133.05, 144.92, 171.02. HRMS: [C24H40SO1 o+Na] requires

543.2234, found 543.2214.

1,4-diiodo-2,5-bis(17-(tert-butoxycarbonyl)-3,6,8,12,15-pentaoxaheptadecyloxy)benzene (8).

Compound 6 (1.93 g, 3.71 mmol) and 2,5-diiodohydroquinone (639 mg, 1.77 mmol) was

dissolved in air-free 2-butanone. After addition of K2CO3 (1.47 g, 10.6 mmol) and a spatula-tip

quantity of KI, the reaction mixture was heated at reflux under argon for 20 h. The reaction

mixture was evaporated to dryness and re-dissolved in a mixture of CH2C12 and 1 M HC1. The

organic phase was separated, washed with saturated NaCl solution, dried over anhydrous MgSO4

and concentrated to dryness on a small amount of silica gel. Chromatography on silica gel

(elution with 7:2 EtOAc/hexanes) gave the product as a thick colorless syrup (0.90 g, 48%). 1H

NMR (CDC13 , ppm): 1.44 (s, 9H), 2.50 (t, 2H, J= 6.6 Hz), 3.60-3.77 (m, 18H), 3.87 (t, 2H, J=

4.5 Hz), 4.09 (t, 2H, J= 4.5 Hz), 7.21 (s, 1H). 13C NMR (CDC13, ppm): 28.29, 36.43, 67.07,

69.76, 70.44, 70.55, 70.68, 70.78, 70.83, 70.91, 80.70, 86.57, 123.56, 153.25, 171.11. HRMS:

[C40H68120 16+Na] requires 1081.2489, found 1081.2477.

1,4-diiodo-2,5-bis(17-carboxy-3,6,8,12,15-pentaoxaheptadecyloxy)benzene (10). Compound

8 (0.90 g, 0.85 mmol) was dissolved in 5 ml neat CF3COOH and stirred at room temperature

overnight. The reaction mixture was evaporated to dryness, dissolved in water, and re-evaporated

under reduced pressure to provide an oil which solidified on standing, providing an off-white
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powder (0.62 g, 80%). M.p. 64-65 ° . 1H NMR (CDC13, ppm): 2.61 (t, 2H, J= 6.0 Hz), 3.63-3.80

(m, 18H), 3.89 (t, 2H, J= 5.0 Hz), 4.11 (t, 2H, J= 5.0 Hz), 7.24 (s, 1H). 3C NMR (CDC13,

ppm): 35.18, 66.66, 69.79, 70.46, 70.69, 70.78, 70.85, 70.89, 71.32, 86.60, 123.62, 153.28,

175.37, 206.05. HRMS: [C32H5201 6I2-H] requires 945.1267, found 945.1268.

9-Hydroxy-3,6-dioxanonanoic acid, tert-butyl ester (3). This compound was prepared in a

manner analogous to that described for 4 above. Diethylene glycol (Aldrich, 31.8 g, 0.3 mol), a

small quantity of freshly cut sodium metal, and tert-butyl acrylate (13.1 g, 0.1 mol) gave 11.3 g

(48%) of a clear, colorless oil. 1H NMR (CDC13, ppm): 1.45 (s, 9H), 2.52 (t, 2H, J = 6.5 Hz),

2.65 (br s, 1H), 3.6-3.8 (m, 10H). 3 C NMR (CDC13, ppm): 28.2, 36.34, 61.97, 67.02, 70.55,

72.67, 80.87, 106.68, 171.14. HRMS: [CllH 25 0 5+Na] requires 257.1359, found 257.1350.

9-(p-Toluenesulfonyloxy)-3,6-dioxanonanoic acid, tert-butyl ester (5). Compound 3 (6.5 g,

27.7 mmol) was dissolved in a mixture of 200 ml CH2C12 and 8 ml Et3N under argon. The

reaction mixture was cooled in an ice bath for 30 min, and then 6.0 g (33.3 mmol) p-

toluenesulfonyl chloride was added as a solution in 70 ml CH2C12. The reaction was stirred

overnight and poured into 1 M HC1. The organic phase was separated, washed with saturated

aqueous NaHCO3 and saturated aqueous NaCl, and dried on anhydrous MgSO4. The residue

remaining after concentration under reduced pressure was chromatographed on silica gel (elution

with a gradient of 9:1 to 3:1 hexanes/EtOAc) to provide a clear, straw-colored oil (8.9 g, 83%).

1H NMR (CDC13, ppm): 1.44 (s, 9H), 2.45 (s, 3H), 2.48 (t, 2H, J = 6.5 Hz), 3.55-3.60 (m, 2H),

3.66-3.69 (m, 2H), 4.15 (t, 2H, J = 5.0 Hz), 7.35 (app d, 2H, J = 8.5 Hz), 7.80 (app d, 2H, J = 8.5

Hz). 13C NMR (CDC13, ppm): 21.76, 28.19, 36.31, 67.00, 68.76, 69.38, 70.41, 70.73, 80.65,
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128.09, 129.95, 133.04, 144.93, 170.96. HRMS: [C8H 28SO7+Na] requires 411.1448, found

411.1457.

1,4-Diiodo-2,5-bis((8-tert-butoxycarbonyl)-3,6-dioxaoctyl)benzene (7). 2,5-

Diiodohydroquinone (202 mg, 0.56 mmol) and compound 5 (475 mg, 1.2 mmol, 2.2 eq) were

dissolved in air-free 2-butanone (50 ml). K2CO3 (465 mg, 3.4 mmol, 6 eq) and a catalytic

quantity of KI were added. The reaction was heated at reflux for 16 hr under argon. After cooling

to room temperature, the reaction mixture was evaporated to dryness and the residue remaining

was taken up in a mixture of CHC13 and water. The organic layer was separated, washed with

saturated aqueous NaHCO3 and saturated aqueous NaCl, dried over anhydrous MgSO4, and

filtered. The filtrate was evaporated to dryness onto a small amount of silica gel.

Chromatography on silica gel (elution with 5:2 hexanes/EtOAc) provided a clear oil (0.34 g,

75%). H NMR (CDC13, ppm): 1.43 (s, 9H), 2.52 (t, 2H, J= 7.5), 3.64-3.66 (m, 2H), 3.72-3.77

(m, 4H), 3.88 (t, 2H, J= 4.5 Hz), 4.10 (t, 2H, J= 5.0 Hz), 7.23 (s, H). 13C NMR (CDC13, ppm):

28.27, 36.43, 67.11, 69.74, 70.43, 70.66, 71.22, 80.67, 86.55, 123.55, 153.23, 171.09. HRMS:

[C28H44120 1 0+Na] requires 817.0916, found 817.0928.

1,4-Diiodo-2,5-bis(8-carboxy-3,6-dioxaoctyl)benzene (9). Compound 7 (142 mg, 0.18 mmol)

was dissolved in 5 ml neat CF3COOH and stirred for 1.5 hr at room temperature. The reaction

mixture was evaporated to dryness, re-dissolved in water, and concentrated to a white solid (91

mg, 75%). M.p. 100-103 ° . H NMR (DMSO-d 6, ppm): 2.44 (t, 2H, J= 6.0 Hz), 3.51-3.53 (m,

2H), 3.60-3.63 (m, 4H), 3.73 (t, 2H, J= 5.0 Hz), 4.09 (t, 2H, J= 4.5 Hz), 7.37 (s, 1H), 12.2 (br s,
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1H). 3C NMR (DMSO-d 6, ppm): 34.80, 66.31, 68.96, 69.68, 69.72, 70.08, 86.94, 122.85,

152.52, 172.65. HRMS [C20H28010 2-H] requires 680.9688, found 680.9675.

1,4-Bis(4-methylphenylethynyl)-2,5-bis(8-carboxy-3,6-dioxaoctyl)benzene (19). Compound 9

(204 mg, 0.3 mmol) and catalytic amounts of PdCl2(PPh3 )2 (Strem) and CuI (Aldrich) were

dissolved in 5 ml in dry, degassed morpholine under argon. 116 mg (1 mmol) of 4-

ethynyltoluene (Gelest) was then added, and the reaction mixture was stirred at room

temperature for 2 d. The reaction mixture was then evaporated to dryness under vacuum and re-

dissolved in a mixture of CH2C12 and dilute aqueous HCl. The organic phase was washed with a

concentrated NaCl solution containing dilute HCl and dried on MgSO4. After filtration, the

solution was evaporated onto a small amount of silica gel and chromatographed on silica gel (7%

MeOH/CH2Cl2), providing 90 mg (46%) of a dark, oily solid. RP-HPLC (Zorbax SB-C18

column, 40/60 MeCN/H20 for 2.5 min followed by a gradient to 90/10 MeCN/H20 over 15 min

and a 2.5 min 90/10 MeCN/H20 hold, all with constant 0.1% CF3COOH): 18.1 min, absorbance

~max 315 nm and 360 nm. 1H NMR (DMSO-d 6 , ppm): 2.34 (s, 3H), 2.40 (m, 2H), 3.49 (app t, 2H,

J = 5.0 Hz), 3.57 (app t, 2H, J = 6.0 Hz), 3.66 (m, 2H), 3.79 (app t, 2H, J = 4.3 Hz), 4.16 (app t,

2H, J = 4.3 Hz), 7.17 (s, 1H), 7.25 (d, 2H, J = 8.0 Hz), 7.41 (d, 2H, J = 8.0 Hz). 13C NMR

(DMSO-d 6, ppm): 21.10, 66.13, 66.35, 69.06, 69.75, 70.16, 85.58, 95.04, 113.18, 116.63,

119.54, 129.45, 131.17, 138.67, 152.99, 172.70. HRMS [C38H42010-H] requires 657.2705, found

657.2702.

1-amino-8-(2,4-dinitrophenylamino)-3,6-dioxaoctane (15). Compound 1427 (249 mg, 1 mmol)

was dissolved in a stirring mixture of 170 mg K2CO3 in 5 ml THF. 2,5-dinitrofluorobenzene (186
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mg, 1 mmol) was then added via syringe. The reaction mixture was stirred for 1 hr, filtered, and

evaporated onto a small amount of silica gel. Chromatography on silica gel (elution with 3:1

EtOAc/hexanes) provided 290 mg (71%) of a bright yellow solid. 1H NMR (CDC13, ppm): 1.43

(s, 9H), 3.34 (m, 2H), 3.56 (m, 2H), 3.62 (m, 2H), 3.67 (m, 2H), 3.71 (m, 2H), 3.84 (t, 2H, J =

5.5 Hz), 5.0 (br s, 1H), 6.94 (d, 1H, J = 9.5 Hz), 8.28 (dd, 1H, J = 9.5, 3.0 Hz), 8.84 (br s, 1H),

9.16 (d, 1H, J = 3.0 Hz). After stirring this compound in neat CF3COOH (5 ml) overnight, the

reaction mixture was evaporated to dryness, resuspended in H2 0, and then re-evaporated under

vacuum to form a thick orange oil (compound 15). 1H NMR (CD 30D, ppm): 3.14 (t, 2H, J = 5.0

Hz), 3.67 (t, 2H, J = 5.0 Hz), 3.70-3.76 (m, 8H), 3.83 (t, 2H, J = 5.0 Hz), 7.20 (d, 1H, J = 9.5

Hz), 8.28 (dd, 1H, J = 9.5, 3.0 Hz), 9.01 (d, 1H, J = 2.5 Hz). 13C NMR (CD30D, ppm): 40.81,

44.09, 68.03, 68.08, 69.79, 71.47, 71.54, 71.62, 116.17, 124.82, 131.24, 149.91. HRMS:

[C12H18N406+H] requires 315.1299, found 315.1307.

Polymer synthesis. Monomer 10 (28 mg, 0.03 mmol), 2,5-diethynyl-1,4-bis(3,6-

dioxaheptyl)benzene 2 4 (11 mg, 0.03 mmol), Pd(PPh3 ) 4 (Strem, catalytic amount) and CuI

(Aldrich) were dissolved in dry, degassed morpholine (4 ml) and heated under argon at 600C for

24 hr. The blue-green fluorescent solution was cooled to room temperature, dissolved in water,

and dialyzed (Pierce Snake-Skin, 10,000 MWCO) against several changes of deionized water for

3 d. Lyophilization of the resulting yellow-orange solution gave 12 as a dark solid. 1H NMR

(CD30D, ppm): broad peaks centered at 2.5, 3.45-3.8, 3.9, 4.3, 7.2. Absorbance ax (aqueous

base, pH 11): 435 nm. Emission ax (aqueous base, pH 11): 475 nm. Polymer 13 was prepared

by an analogous method starting from 10 and using 2,5-diethynyl-1,4-bis(3,6,9-

trioxadecyloxy)benzene.25 H NMR for 13 (DMSO-d6, ppm): broad peaks centered at 2.4, 3.45-
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3.55, 3.6, 3.8, 4.2, 7.2. Successful gel permeation chromatographs could not be obtained for

these polymers (they did not pass through the GPC column). NMR spectra of these polymers can

be found in the Appendix. Based on dialysis and size-exclusion chromatography behavior the

molecular weights of these polymers are estimated to be > 2.5x 104.

Stern-Volmer titrations. Dilute solutions of 13 were titrated with LysDNP in the appropriate

medium and the fluorescence spectra measured after each addition of LysDNP. Fluorescence

peak heights were used for the construction of Stem-Volmer plots after correcting for the inner-

filter effect of the highly colored LysDNP.26 The slope of the ratio of initial to observed

fluorescence (Fo/F) was plotted versus the quencher concentration. Linear fits of Fo/F versus

[LysDNP] provided Ksv values as shown in the main text.

Lifetime measurements. Fluorescence lifetimes were measured by the frequency-domain

method in a Spex Fluorolog 2 fluorimeter. Phase and modulation data were collected at 10

modulation frequencies between 10 and 220 MHz and fitted to mono- or bi-exponential

functions using the instrument software. Colloidal silica (r = 0) was used as a standard. For

lifetime titrations with surfactant, PMT signals were re-balanced after each measurement.

Quantum yield measurements. Quantum yields were measured in the usual mannerl using a

Coumarin 6 standard (QY = 0.78 in EtOH solution) and were corrected for solvent refractive

index. Solution optical densities were kept below 0.1 and all measurements were made in

triplicate and averaged to reduce error.
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Synthesis of peptide AcHN-LysDNP-GPLGMRGLGGGGK (16). Peptide

LysDNP-GPLGMRGLGGGGK-OH (without the N-terminal end-cap) was synthesized on an

Advanced ChemTech 396 Omega peptide synthesizer using standard Fmoc chemistry. After

deprotection of the terminal Fmoc group on the solid support, the collected resin, bearing ca. 66

gmol of peptide, was suspended in 8 ml N-methylpyrrolidinone (NMP). The swollen resin gave a

positive Kaiser test indicating the presence of the free N-terminal amine. Et(iPr)2N (340 l) and

Ac2O (185 gl) were added and the resin stirred for 30 min. The resin was collected, rinsed 3x

with NMP, and dried. Kaiser tests on the treated beads were negative for free amine. Side-chain

protecting group removal and release of the peptide from the resin was performed using standard

techniques. The peptide was purified on a Waters Delta Pak C18 column using a gradient of H20

and MeCN containing constant 0.1% CF3COOH. Fractions containing 16 were combined and

lyophilized to a dark yellow powder. MS: [AcHN-LysDNP-GPLGMRGLGGGGK+OH] requires

1508.7, found 1508.8. The peptide was made up to 10 mM in water for use.

Small-molecule mimic 20. Compound 19 (231 gig, 0.35 !pmol) was dissolved in 231 jil of DMF.

14 pl each (1.4 ptmol) of freshly-prepared 0.1 M solutions of EDAC and NHS in 0.1 M MES

buffer were then added, and the mixture was stirred for 3 hr. Then 0.1 ml of a 10 mM solution of

AcHN-Lys(DNP)-GPLGMRGLGGGGK-OH was added in dilute borate buffer (pH 8.5). After

stirring overnight, the solution was purified by HPLC (one product peak, isolated through

repeated injections on a semi-preparative Zorbax SB-C18 column) using 2.5 min at 90/10

H20/MeCN, followed by a gradient to 85/15 MeCN/H20 over 20 min and a 4.5 min 85/15

MeCN/H20 hold, all with constant 0.1% CF3COOH. Compound 4 eluted at 19.1 min,
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absorbance x 360 nm with an additional peak at 315 nm. Fractions containing the compound

of interest were combined and lyophilized to a dark filmy solid.

Preparation of substrates 17 and 18. 500 p1 of solution containing 0.25 mM (repeat unit basis)

12 in DMF was treated with 25 p1 each of freshly prepared 0.1 M solutions of EDAC and NHS

in 0.1 M MES buffer (ca. 20 eq EDAC/NHS per repeat unit). After 1 hr, a mixture of 65 pl 10

mM 16 (for 17) or 15 (for 18) with 500 p1 pH 8.5 borate buffer was added and the resulting

reaction mixture was stirred overnight. The reaction mixture was diluted with water and dialyzed

(Pierce Snake-Skin, 10,000 MWCO) for several days against water. An analogous procedure was

used for the preparation of 17' using 150 gl of activated 12 solution diluted into 250 pl pH 8.5

borate buffer containing 10 p1 10 mM 16. The resulting yellow-orange, non-fluorescent solutions

were used as stock concentrates for trypsin assays.

Trypsin digestion of substrates. TPCK-treated trypsin (Sigma, 11,000 units/mg) was made up

as a 1 mg/ml stock solution in 1 mM HC1 and stored frozen in working aliquots. In a typical

fluorescence assay, a portion of a stock solution of substrate was diluted into assay buffer to a

total volume of 3 ml. The fluorescence spectrum of the sample was measured (with 3x 405 nm

for polymer substrates and 345 nm for 20). After addition of trypsin (3 gl), the fluorescence of

the sample (at 475 nm for polymer substrates, 400 nm for 20) was collected every 10 s for 30

min. When fluorescence generation was complete, the final fluorescence spectrum was collected.

The ratio of the areas of the final and initial fluorescence spectra provided the degree of

fluorescence enhancement on hydrolysis. Control experiments using the trypsin inhibitor

benzamidine hydrochloride were carried out using 0.4 mg/ml of inhibitor in the reaction mixture.
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Collection of data for kinetic analysis. Dilute solutions of trypsin were used in the collection

of initial rate data to minimize the effects of product inhibition. All experiments were carried out

at 23.4 +/- 0.10C. In a typical experiment, a portion of stock solution of 17' was diluted into

assay medium (Tris-buffered saline, plain Tris buffer, or Tris-buffered saline containing 0.08%

Triton X-100 - 500 tl total volume in all cases) and treated with 2.5 1 of a 10 pg/ml solution of

trypsin. The fluorescence of the reaction mixture (measured at 475 nm) was collected every 7.5 s

for 6 min. The slope of a plot of F475 versus time was used to determine the rate of fluorescence

generation under each of the three assay medium conditions. For the determination of the peptide

cleavage rate, parallel experiments were run at the same concentration and temperature. Aliquots

of reaction mixture were removed at 45-s intervals and quenched by acidification with one

volume of 10% aqueous CF3COOH for every 25 volumes of reaction mixture. The resulting

solutions were analyzed for the peptide fragment AcHN-LysDNP-GPLGMR on a Zorbax SB-C8

100x4.5 mm reverse-phase HPLC column (the polymer with bound peptide does not pass

through the column) monitoring for the absorbance of the LysDNP chromophore at 360 nm.

Integration of the elution peaks provided a relative measure of the concentration of LysDNP in

each sample. The slope of a plot of the peak integration (in mAU-s) versus time was used to

determine the actual rate of peptide cleavage under each of the three assay medium conditions.

1,4-Diiodo-2,5-bis((8-tert-butoxycarbonyl)-3,6-dioxaoctyl)benzene bis-hydrazide (21).

Diacid 9 (209 mg, 0.31 mmol) was suspended in MeOH and treated dropwise with 0.5 ml SOC12

(CAUTION! Violent reaction.) The reaction mixture was stirred for 30 min at room temperature

and then heated at reflux for 2 h. The reaction mixture was evaporated to dryness in vacuo, then
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re-suspended in EtOH. Hydrazine hydrate (1 ml) was added and the reaction mixture heated at

reflux overnight. The resulting suspension was concentrated to dryness and recrystallized from

hot EtOH, providing a white solid (113 mg, 52%). H NMR (DMSO-d6 , ppm): 2.25 (t, 2H, J =

6.5 Hz), 3.50 (app t, 2H, J = 5.0 Hz), 3.58-3.62 (m, 4H), 3.72 (app t, 2H, J = 4.0 Hz), 4.09 (t, 2H,

4.0 Hz), 4.17 (br s, 2H), 7.37 (s, 1H), 8.99 (s, 1H). 13C NMR (DMSO-d 6, ppm): 34.31, 66.72,

68.94, 69.58, 69.65, 70.03, 86.94, 122.83, 152.51, 169.49. HRMS: [C20H32N40 8I2+H] requires

711.0832, found 711.0839.

9-(4-Iodophenyloxy)-3,6-dioxanonanoic acid, tert-butyl ester (22). 4-Iodophenol (4.4 g, 20

mmol), tosylate 5 (8.54 g, 22 mmol), and K2CO3 (5.54 g, 40 mmol) were heated at reflux in 2-

butanone (200 ml) under argon for 48 h. After cooling to room temperature, the reaction mixture

was diluted with CH2C12 and washed with dilute aqueous HCl. The organic phase was washed

with saturated NaCl solution, dried over anhydrous MgSO4, filtered, and chromatographed on

silica gel (elution with 4:1 hexanes/EtOAc) to provide a clear oil that solidifed on standing (5.51

g, 63%). M.p. < 400. H NMR (CDC13, ppm): 1.44 (s, 9H), 2.50 (t, 2H, J = 6.3 Hz), 3.62-3.74 (m,

6H), 3.83 (app t, 2H, J = 4.8 Hz), 4.08 (t, 2H, J = 4.2 Hz), 6.79 (d, 2H, J = 8.7 Hz), 7.54 (d, 2H, J

= 8.8 Hz). 13C NMR (CDC13, ppm): 28.26, 36.40, 67.09, 67.67, 69.76, 70.58, 70.92, 80.71,

83.09, 117.20, 138.31, 158.83, 171.07. HRMS: [C17H25I0 5+Na] requires 459.0639, found

459.0622.

9-(4-Iodophenyloxy)-3,6-dioxanonanoic acid (23). Compound 22 was stirred in neat

CF3COOH (5 ml) at room temperature overnight. The reaction mixture was concentrated to

dryness, re-suspended in water, and dried in vacuo to provide a white, flaky solid (212 mg,
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89%). M.p. 65-67°. 'H NMR (DMSO-d6, ppm): 2.43 (t, 2H, J = 6.5 Hz), 3.49-3.57 (m, 4H), 3.58

(t, 2H, J = 6.5 Hz), 3.71 (m, 2H), 4.05 (m, 2H), 6.80 (d, 2H, J = 9.0 Hz), 7.58 (d, 2H, J = 9.0 Hz),

12.17 (br s, 1H). 13C NMR (DMSO-d 6, ppm): 35.89, 67.40, 68.40, 69.93, 70.78, 70.97, 84.33,

118.44, 139.10, 159.53, 173.81. HRMS: [C13H17I0 5-H] requires 379.0048, found 379.0038.

9-(4-Iodophenyloxy)-3,6-dioxanonanoic acid hydrazide (24). SOC12 (10 drops) was added

dropwise (CAUTION! Violent reaction.) to a suspension of 23 (209 mg, 0.55 mmol) in MeOH.

The reaction mixture was heated at reflux for 2 h, cooled, and concentrated to dryness under

reduced pressure to provide a clear, colorless oil: 1H NMR (CDC13, ppm): 2.61 (t, 2H, J = 6.5

Hz), 3.62-3.71 (m, 7H), 3.75 (t, 2H, J = 7.0 Hz), 3.83 (app t, 2H, J = 5.0 Hz), 4.08 (app t, 2H, J =

5.0 Hz), 6.70 (d, 2H, J = 9.0 Hz), 7.54 (d, 2H, J = 9.0 Hz). This oil was re-dissolved in EtOH,

and 30 drops of hydrazine hydrate were added. The reaction mixture was heated at reflux

overnight, concentrated to dryness, re-suspended in toluene and dried in vacuo to provide a waxy

white solid (92%). M.p. 70-75 °. 1H NMR (CDCl 3, ppm): 2.48 (t, 2H, J = 5.5 Hz), 3.65-3.73 (m,

8H), 3.85 (m, 2H), 4.14 (app t, 2H, J = 5.0 Hz), 6.71 (d, 2H, J = 8.0 Hz), 7.55 (d, 2H, J = 8.0 Hz),

7.78 (br s, 1H). 13C NMR (CDC13, ppm): 35.48, 66.95, 67.66, 69.82, 70.32, 70.64, 83.25, 101.93,

117.19, 138.42, 158.77. HRMS: [C13H19N204I+H] requires 395.0462, found 395.0462.
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Chapter 3

Layer-by-layer PPE films on silica substrates for enhanced

sensory amplification
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Introduction

The use of conjugated polymers in thin-film form has a number of advantages over

polymer solutions in sensory schemes. As described in Chapter 1, these stem from inherent

limitations in energy migration along a one-dimensional structure such as a dissolved PPE in

solution. Excitons generated in one segment of the polymer chain are free to migrate along the

length of the polymer backbone, but the random nature of the exciton 'walk' means that the

excited state is likely to re-visit the same portions of the polymer chain several times during its

lifetime. By depositing the polymer as a two-dimensional thin film, excitons are allowed a

greater degree of migrational freedom in which the chances of re-visiting the same polymer

segment are greatly reduced. If each polymer segment is thought of as a receptor for a particular

photophysically active analyte - one that either serves as a fluorescence quencher or an

emissive trap - this means that a larger number of potential receptor sites can be visited by the

exciton, resulting in greater signal amplification and lower detection limits.

There has been long-standing interest in the Swager group in optimizing the structure of

PPE thin films to maximize energy migration and boost signal amplification. Spin-coating is one

of the most popular methods of making conjugated polymer thin films but suffers from limited

reproducibility and the requirement for large quantities of material (much of which is 'spun off

the substrate in the spin-coating process). In contrast, the Langmuir-Blodgett (LB) technique,

which deposits aligned polymers onto substrates in a highly controlled fashion, is capable of

producing PPE films of precisely controlled thickness and alignment. Former Swager group

graduate student Jinsang Kim and postdoc Igor Levitsky made use of these features to determine

the effects of PPE film thickness on energy migration and analyte sensing.1' 2 While unparalleled

in the degree of control it provides, the LB technique has disadvantages of its own: foremost
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among these are the high cost of the equipment needed to produce LB films and the time-

consuming nature of LB film deposition onto substrates.

The initial motivation for the work described in this chapter was the desire to produce

PPE-coated silica microspheres for use in laser applications. Microspheres are well known as

efficient cavities for the generation of lasing behavior due to the presence of so-called

'whispering-gallery modes' (WGMs)3 in which total internal reflection causes the constructive

interference of certain wavelengths of light. In the case of microspheres, light is guided around

the inside of the spherical structure and the microsphere takes on the role of the internal 'cavity'

necessary for lasing to take place. In most cases, microsphere lasers are constructed from a

dielectric material such as silica internally 'doped' with a laser dye or lanthanide ion.4 However,

microsphere lasing can also occur when the optically active material is coated on the outside of a

transparent microsphere. In order to use PPEs as the gain medium in microsphere lasers, we

sought a method to evenly coat silica microspheres (5 gm and smaller in diameter) with PPE thin

films. Spin-coating and LB techniques were ruled out for obvious practical reasons, and initial

efforts by former Swager graduate student Aimee Rose to coat microspheres with conjugated

polymer using solvent-driven physisorption met with limited success. The fact that commercial

silica microspheres are mostly sold as aqueous suspensions discouraged the use of water-

sensitive silane chemistry. For these reasons, we elected to use the alternating layer-by-layer

(LBL) deposition technique to accomplish the required PPE deposition onto microspheres. This

chapter describes the use of a polyelectrolyte PPE to generate thin films on glass slides and silica

microspheres and the use of these PPE thin films for various energy-transfer and amplified

quenching applications.
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The layer-by-layer (LBL) technique

The layer-by-layer technique was pioneered by Decher5 and Rubner and is based on the

sequential adsorption of oppositely charged polyelectrolytes (Figure 3.1).

Silica surface (microscope slide
or silica micro sphere)

+. +

etc.

Figure 3.1. Schematic illustration of the layer-by-layer deposition process. For clarity, deposition is shown on only
one side of the substrate.

To construct a thin film using LBL methods, a charged substrate is first immersed in a solution

of an oppositely charged polyelectrolyte (polymer A). Over-compensation of the surface charge

on the substrate gives the thin film an overall charge of the same type as polymer A. Subsequent

immersion of the polymer A-coated substrate into a polyelectrolyte solution of opposite charge

(polymer B) results in the deposition of polymer B as a new layer. This A/B 'layer pair' can then

be subjected to additional adsorption cycles as needed to generate films of desired thickness.

Numerous studies employing X-ray techniques, ellipsometry and profilometry have shown that

the thickness of the resulting films is directly proportional to the number of deposited A/B layer

pairs.5

Since its introduction in the early 1990s, the LBL technique has become very popular as a

method for constructing thin films. Its principal advantages center on its extreme operational

simplicity - the only equipment required to create LBL thin films is three beakers and a source

of water for rinsing the substrate between immersions. Any substrate to which a polyelectrolyte
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can be adsorbed is usable, including glass, which contains mildly acidic silanol groups that are

easily deprotonated in base to give a negatively charged surface. The LBL technique has also

been extended beyond polyelectrolytes to include gold nanoparticles, colloids of various

descriptions, and charged biomolecules such as proteins and DNA in the film structure. These

and other applications of the LBL technique have been reviewed in the compilation edited by

Tripathy et al.6

Sensory and conjugated-polymer applications of LBL

The simplicity of the LBL technique has led to interest in using thin films assembled

using this method for sensory purposes. For example, Lee et al. deposited films containing a pH-

sensitive pyrene dye on silica supports in both native form and as pendant chromophores. The

fluorescence of the LBL-assembled films was found to be sensitive to quenching analytes such

as DNT, Fe3+ and Hg2 + as well as to changes in pH. 7 Leblanc and co-workers fabricated an

unusual LBL structure based on alternating layers of the biological polycation chitosan and

highly luminescent CdSe 'quantum dots' capped with anionic head-groups. These authors found

that inclusion into the LBL structure had beneficial effects on the fluorescence properties of the

quantum dots, and the resulting structures were used in the fluorescence-based detection of the

nerve agent paraoxon. 8

Several groups have studied the behavior of LBL-assembled thin films incorporating a

conjugated polymers as a component polyelectrolyte. Rubner and co-workers examined energy

transfer in LBL films made up of an anionic poly(phenylene) donor separated from a cationic

poly(phenylene vinylene) acceptor by non-conjugated spacer layers of varying thickness.9 They

observed efficient F6rster energy transfer (FRET) between these two conjugated polymers even
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when thick spacer groups were used and concluded that significant layer interpenetration occurs

in this system. Richter and Kirstein carried out a similar study using a poly(phenylene vinylene)

donor separated from a layer of dye-modified poly(allylamine) (PAH) acceptor by PAH-

poly(styrenesulfonate) (PSS) spacers.1° They also observed efficient energy transfer between the

two photophysically active layers, although the observed F6rster radii were not self-consistent

and they similarly attributed these results to significant layer interpenetration. Schanze et al.

recently reported an LBL film based on an anionic PPE bearing short phosphonate-terminated

side chains." A quaternary ammonium polycation (see below) and a Zr(IV) species were used as

co-polyelectrolytes, and the Zr(IV)-containing film was used in the construction of an

electroluminescent device. These authors did not report the photoluminescence properties of the

resulting films. Thunemann also created electroluminescent devices derived from a PPE with

integrated benzoic acid side-groups, but in this case the PPE was pre-aggregated with

polyelectrolyte counterions before deposition onto substrates.'2

Previous research in the Swager group has made use of PPE-containing LBL films for

sensory purposes. Former Swager group postdoc Tyler McQuade fabricated films based on a

polycationic PPE donor and a fluorescein-modified polyanion.'3 The resulting assembly

functioned as a polymer-amplified pH sensor in which energy transfer between the PPE and

fluorescein was modulated by the pH-sensitive photophysical properties of the fluorescein

acceptor.

This chapter describes the preparation of highly fluorescent PPE thin films using the LBL

technique. The PPE chosen was designed to satisfy a number of requirements to ensure

appropriate LBL behavior while retaining optimal fluorescence properties. The LBL technique

was used to deposit thin films of this polymer on glass slides and silica microspheres. Glass
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slides LBL-coated with PPE showed excellent donor characteristics toward dye-modified

derivatives of poly(allylamine) (PAH). The LBL-coated silica microspheres were used in a series

of 'suspension-phase' Stern-Volmer quenching assays and exhibited greatly enhanced

sensitivities relative to PPEs in solution.

Results and Discussion

Synthesis of a polyelectrolyte PPE for LBL deposition

Initial efforts to create LBL films using simple carboxylate PPEs like those described in

Chapter 2 produced films with well-controlled thickness (measured in terms of the film

absorbance) but very poor fluorescence properties. This suggested that the weakly acidic

carboxylic acid groups present on each repeating unit did not provide sufficient electrostatic

repulsion to prevent -stacking and polymer aggregation. For this reason, we sought to include a

pentiptycene units14 (described in Chapter 1) into the PPE structure to reduce aggregation effects

and ensure high fluorescence quantum yields in the resulting films. The use of a carboxylate-

containing diiodophenylene monomer (described in Chapter 2) and this pentiptycene co-

monomer provided polymer 1 in good yield (Scheme 3.1).

O, 'OOH C' OIj

Pd(PPh3)4, Cul

_- >( tol / DIPA / NMP,
O 5:1:4

O-'-_O ~~~ OH 700

0
I

Scheme 3.1. Synthesis of polymer 1.
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Remarkably, we found that the use of 50% N-methylpyrrolidinone (NMP) in the polymerization

mixture together with the usual 4:1 toluene/DIPA combination was essential for successful

polymerization: the use of toluene/DIPA alone, neat morpholine, NMP/DIPA, or other solvent

combinations led to no visible polymerization, even at high temperatures and prolonged reaction

times. This strong solvent dependency may arise from the different solubility requirements of the

two monomers and the growing polymer chain.

Characteristics of LBL PPE films on glass slides and microspheres

Polymer 1 was deposited on glass microscope slides (previously cleaned with

concentrated nitric acid followed by 3 N KOH) from DMF solutions after first adsorbing a layer

of the commercially available polycation poly(diallyldimethylammonium chloride) (PDAC,

Scheme 3.2) to render the substrate cationic. The high water soubility and pH-independent

charge of this polyelectrolyte make it especially suitable for our application.

Scheme 3.2. Structure of poly(diallyldimethylammonium chloride) (PDAC).

LBL films were built up by successive immersion of the polymer-coated substrates in DMF

solutions of 1 and aqueous solutions of PDAC. The use of DMF as a solvent for the deposition of

1 was necessary due to the insolubility of this polymer in water. To avoid contaminating the

dipping solutions, exhaustive rinsing steps with appropriate solvents were used between substrate

immersions or before transferring substrates from one solvent to another.

Qualitatively, films of PDAC/1 produced by the LBL technique showed a deep-yellow

color and bright, homogeneous fluorescence under illumination by a hand-held UV lamp. The
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growth in film thickness, represented by the absorbance of the film, was monitored after each

dipping cycle using a standard spectrophotometer. Figure 3.2 shows the spectra of consecutive

(PDAC/1) layer pairs after each immersion in 1.
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Figure 3.2. UV-vis spectra of a PDAC/1 LBL film on a glass microscope slide, measured after the deposition of
each layer pair. The lowest trace represents one PDAC/1 layer pair, with each subsequent trace representing an
additional PDAC/1 cycle. Polymer 1 was deposited from a 0.01 wt% solution in DMF, while PDAC was deposited
from a 2 wt% solution in water. Each immersion was approximately 3 minutes in duration.

Figure 3.3 shows the buildup of absorbance after each layer pair for the system shown above.
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Figure 3.3. A410 versus number of (PDAC/1) layer pairs deposited for the system shown in Figure 3.2.

The pattern of absorbance growth shown in Figure 3.2 is typical of LBL film deposition and

shows that the essential absorbance features of polymer 1 are maintained as the film is built up.

The relationship of film absorbance to the number of layer pairs deposited (Figure 3.3) was

found to be linear at early stages in the deposition process, but deviated significantly from

linearity at later stages. The use of longer immersion times (up to 20 minutes) was found to

restore linearity in most cases, suggesting that depletion or contamination of the dipping

solutions over time may interfere with the kinetics of the adsorption process.

While PDAC itself has no absorption bands in the visible region, the adsorption of a layer

of this material onto a pre-existing PPE layer was found to influence the spectroscopic

characteristics of the PPE layer itself (Figure 3.4). The slight absorbance red-shift seen on

capping a layer of 1 with PDAC likely arises from perturbations in the bandgap of 1 brought on

by the strongly charged environment created by the additional PDAC layer. Immersion-induced
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annealing of the polymer film is also consistent with these spectral shifts, which may be

indicative of a small amount of polymer aggregation.
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Figure 3.4. Build-up of absorbance of polymer 1 in the construction of two PDAC/1 layer pairs, showing the
spectroscopic effects of the addition of PDAC layers.

In contrast to the absorbance build-up behavior seen in Figures 3.2 and 3.3, the growth of

fluorescence with dipping cycles was much less regular. Following the build-up of fluorescence

for a (1/PDAC) LBL film through three layer pairs (Figure 3.5) shows that while the overall

fluorescence of the film does increase as the number of immersions in polymer 1 is increased,

the growth is not regular, with strong fluorescence effects seen after PDAC immersions.
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Figure 3.5. Fluorescence of a (PDAC/1) LBL film followed after each immersion. Growth of film fluorescence is
not regular with respect to the number of layers of 1 deposited.

One notable feature of the fluorescence spectra shown in Figure 3.5 is the layer-dependent

increase in the intensity of the fluorescence band at 490 nm relative to the main emission at 460

nm (Figure 3.5). This result suggests that the deposition of multiple layer pairs promotes the

formation of an emissive aggregate or excimer. The dramatic irregularity of the fluorescence

intensities in the face of the highly regular absorbance data may also be due to physical effects

such as the waveguiding of light in the glass substrates. Problems arising from fluorescence

intensity inconsistencies were minimized in our applications by the use of single layer-pair

PDAC/1 films, in which film-to-film variations in fluorescence intensity were less than 10%.

LBL polymer films were deposited on silica microsphere substrates by a simple extension

of the methodology described above. Commercially available suspensions of monodisperse silica

microspheres ranging in size from 0.64 to 5.00 ptm were centrifuged, the supernatant decanted,
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and the microsphere pellet ultrasonicated in 3 N KOH for 30-60 minutes to render the

microsphere surfaces anionic. The LBL deposition of PDAC/1 films on these microspheres was

then simply carried out by treatment of the microspheres with the appropriate polymer solution

with continuous ultrasonication or stirring. Excess polymer was removed by repeated

centrifugation and ultrasonication steps using fresh solvent. By visual inspection, microspheres

coated with 1 were bright yellow in color and could be dispersed in solvent to provide a bright

blue-green fluorescent, turbid suspension (Figure 3.6).

Figure 3.6. 5.0-pm silica microspheres coated with polymer 1. Left: Microspheres in suspension in DMF with a
pellet of settled microspheres at the bottom of the test tube, illuminated by normal room light. Right: The same
microspheres suspended in DMF and illuminated by a hand-held UV lamp.

PPE-coated microspheres were examined by scanning electron microscopy by Swager group

graduate student Jessica Liao. The resulting micrographs confirmed that the LBL process left an

even coating of polymer on the microsphere surface, although indentations can be seen in some

cases.
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Figure 3. 7. Scanning electron micrograph of 5.0-ptm microspheres coated with polymer 1. Image courtesy of
Jessica Liao.

Confocal laser scanning microscopy was used to confirm the surface-confined nature of the

polymer film on 5.0-Utm silica microspheres (Figure 3.8). Because confocal microscopy only

reveals fluorescent objects through thin 'slices' in the x-y plane, the polymer-coated

microspheres appear as bright rings, indicating that the fluorescent material (polymer 1) is

located only at the outer surfaces of the microspheres.
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Figure 3.8. Confocal micrograph of silica microspheres coated with polymer 1. Confocal microscopy only reveals
fluorescent objects. The microspheres are imaged at a thin 'slice' along the z-axis and appear as rings due to
confinement of the fluorescent PPE to the outer surface of the microsphere.

Confocal micrographs of polymer-coated microspheres also revealed that microsphere

aggregation increased as the microspheres with subjected to more numerous layer-pair

depositions (Figure 3.9). This increased aggregation could be avoided by thorough sonication

while adding polyelectrolyte solutions to the microsphere suspensions, suggesting that

aggregation was caused by polyelectrolyte-promoted adhesion of closely packed microspheres.
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Figure 3.9. Confocal micrograph of silica microspheres coated with polymer 1. Left: One PDAC/1 layer pair.
Right: Four PDAC/1 layer pairs.

Spectroscopic analysis of confocal micrographs demonstrated that the fluorescence spectrum of a

single layer of polymer 1 on microspheres is substantially the same as that for 1 in DMF

solution, indicating that the microsphere-coated form does not suffer from the effects of x-

stacking and aggregation (Figure 3.10). Differences at the blue edge of the emission band are

suggestive of greater conformational disorder in the LBL-deposited polymer relative to isolated

polymer chains in solution.
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Figure 3.10. Spectrum of polymer 1 in DMF measured in a fluorimeter (e,, 405 nm) and coated as a film on a
single 5.0-p±m silica microsphere (x,, 364 nm).

Energy transfer effects in LBL films

The simplicity with which films of 1 can be constructed using the LBL method provided

an opportunity to use this technique to investigate energy transfer and quenching phenomena in

multilayer films. In particular, we sought to use the strong electrostatic forces present in LBL

films to examine the efficiency of energy transfer from a single layer of 1 to a dye-labeled

polycation adsorbed on top of it. Derivatives of PAH derivatized with fluorescein,

tetramethylrhodamine, and carboxy-X-rhodamine (a Texas Red analog) were prepared as shown

in Scheme 3.3. These polymeric dye derivatives were synthesized so as to have an extremely

small fluorophore loading (one equivalent of fluorophore per 415 polymer repeat units) to

minimize interference by the pendant dye groups in the LBL adsorption process.
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Scheme 3.3. Synthesis of dye-labeled derivatives of PAH using fluorophore succinimide esters. For simplicity, only
one isomer of each dye is shown; mixtures of the 5'- and 6'-carboxylate succinimide esters were used in each case.

Previous investigations (not shown here) in conjunction with former Swager group postdoc Tyler

McQuade had revealed that energy transfer between spin-coated films of polymers structurally

related to 1 and fluorophores adsorbed to the film surface was remarkably efficient even in cases

where the spectral overlap between the PPE and dye was small. This result deviates from

predictions based on simple F6rster energy transfer (FRET), which dictates that energy transfer

between donor and acceptor chromophores should be strongly dependent on spectral overlap,

and suggested that an electron-exchange (Dexter-type) energy transfer mechanism may be

operative. To verify if this effect could be reproduced in an LBL system, a film of 1 on a glass

microscope slide was dipped into a solution of 4 for 5 seconds. Fluorescence spectra were

measured before and after immersion (Figure 3.11).
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Figure 3.11. Spectra of an LBL film of 1 before and after a 5-s immersion in a solution of 4.

The spectrum of the PDAC/1/4 system in Figure 3.11 clearly shows a strong emission band

centered around 600 nm due to the fluorescence of the ROX fluorophore, even with excitation at

405 nm. Concomitant with the appearance of this new band is a marked reduction in the intensity

of the emission due to 1 - the remaining emission is blue-shifted to about 445 nm and is

dominated by Raman scattering from water trapped in the polymer film. Because the ROX

fluorophore has no absorbance at the wavelength used to excite the polymer (405 nm), the new

emission band is entirely due to energy transfer from 1 to 4. Direct excitation of the ROX

fluorophore at 545 nm gave rise to a ROX emission about 8 times weaker than that produced by

excitation of 1. While this degree of signal amplification is significant, previous experiments

with spin-cast films using TAMRA surface-trapped dyes provided energy-harvesting

amplifications about one order of magnitude greater than this.
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To investigate the effect of film thickness on energy transfer, a layer of 4 was deposited

as the top layer on films composed of one to five layers of 1. The ratios of emission intensities of

the ROX fluorophore (F4) and PPE 1 (F1) generated on excitation of 1 were plotted versus the

number of layer pairs (Figure 3.12).

,'ct

20-

a 15-

o

LL- 10-

5-

0-
1 2 3 4 5

Number of layer pairs

Figure 3.12. Ratio of fluorescence emission intensity arising from the ROX-substituted PAH derivative 4 and PPE
1 in (PDAC/1) films containing different numbers of layer pairs underneath a layer of 4. Ratios are corrected for
thickness-dependent changes in peak shape. Two experiments were carried out for the simple one-layer-pair system.

Figure 3.12 shows a steady monotonic decrease in the ROX/PPE emission ratio as the number of

layer pairs of PDAC/1 is increased from one to four. This result implies that energy harvesting

and transfer by 1 to the fluorophore in 4 is most efficient for the layer of 1 immediately adjacent

to 4. In this case, it is probable that there is some interpenetration of the top layer of 4 into the

underlying (PDAC/1) LBL structure, but that energy transfer from lower layers to the emissive

traps present in 4 is inefficient owing to poor inter-layer exciton migration in these films.

Although layer interpenetration is known to be significant in systems such as PDAC/PSS and
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PAH/PAA, the vast structural differences between 1 and PDAC may limit this effect in the films

studied here. In all cases, it is obvious for this system that the use of more than one underlying

layer of PPE provides no advantage in sensory applications.

In order to facilitate exciton migration through LBL films, we attempted to prepare a

series of pentiptycene-containing cationic polymers based on imidazolium-substituted monomers

such as those shown in Scheme 3.4. It was hoped that the construction of an all-PPE film would

enable facile three-dimensional exciton migration and overcome the problems posed by the

presence of interleaved non-conjugated layers of PDAC.

.R"""- .'- NN N N
OR 

II~ I
-N N

R=

OR

Scheme 3.4. Monomers used in the attempted synthesis of cationic, imidazolium-containing PPEs. Counterions used
include OTf, BF4- and I-.

Unfortunately, polymerization of these monomers was unsuccessful under every set of

conditions used. However, a cationic PPE could be obtained by microwave heating of a PPE

containing bromoalkane-substituted sidechains in neat N-methylimidazole (not shown). While

this PPE could be adsorbed to a layer of PSS on a glass slide, all attempts to co-adsorb this

polymer with 1 failed.

PPE-dye energy transfer in LBL films was further examined using polymers 2 and 3 in a

manner similar to that described above for 4 (see above, Figure 3.11). In this experiment, a single

layer-pair PDAC/1 film was immersed for 10 minutes in solutions of 2, 3 and 4 of comparable

concentration. As shown in Figure 3.13, all three polymers were found to be efficient quenchers
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of the PPE fluorescence of 1 in the LBL film, but the fluorescein derivative 2 showed the largest

dye emission overall.
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Figure 3.13. Fluorescence spectra of PDAC/1 films (solid symbols) and after adsorption of a top layer of a PAH
fluorescein (2), tetramethylrhodamine (3) or carboxy-X-rhodamine (4) derivative (open symbols).

It is instructive to compare the PDAC/1/4 curves of Figure 3.11 and Figure 3.13, which represent

the same dipping experiment but differ in the length of time the PDAC/1 film was immersed in 4

(5 seconds and 10 minutes, respectively). Emission from the ROX fluorophore is much weaker

after extended immersion in 4, implying that prolonged exposure of the film to the dye-labeled

polycation results in a reduction in the effective quantum yield of the pendant fluorophores. This

may arise from simple aggregation and self-quenching effects as the layer of 4 is allowed to

accumulate on top of the PDAC/1 film. If so, the observed trend of dye emission intensities in

Figure 3.13 may reflect enhanced self-quenching in the hydrophobic TAMRA and ROX dyes

versus the more hydrophilic fluorescein unit.
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Quenching effects in LBL PPE-coated microspheres

Quantitative or semi-quantitative assessment of the relative sensory advantages of PPE

thin films over PPEs in solution is made difficult by the manner in which a thin-film Stem-

Volmer experiment is carried out. For films that are immersed into an analyte solution, removed,

and dried, calculation of the quenching constant Ksv is complicated by the uncertainty

surrounding the effective 'concentration' of analyte in the dried film. The use of LBL polymer-

coated microspheres suspended in solvent - essentially a micron-sized 'suspension' of thin

films - should allow for the quantitative determination of an effective Ksv for thin films while

keeping the polymer surface in equilibrium with the quencher solution. Comparison of the

observed Ksv values for the suspended microspheres with those determined for polymers in

solution thus allows a semi-quantitative assignment of sensory amplification provided by thin

films.

Preliminary experiments in this area revealed a strong solvent dependence in the

quenching of PPE-coated microspheres. A suspension of 1.87-pm (PDAC/1)2-coated

microspheres in CHC13 showed a Ksv of approximately 70 M'-1 with the quencher

2,4-dinitrotoluene (DNT), somewhat larger than values seen for comparable PPEs in solution

(see Chapter 4). This value is consistent with mostly dynamic interactions between well-solvated

quenchers and the efficiently 'wetted' organic surface. In contrast, PDAC/1-coated microspheres

suspended in 50 mM pH 7.5 Tris buffer showed a Ksv of 9.2x 103 with the electronically similar,

negatively charged quencher 3,5-dinitrobenzoate. In order to test the effect of microsphere

charge on the quenching efficiency, the latter experiment was repeated with PDAC/1/PDAC-

coated microspheres having a positive surface charge. In this case the observed Ksv was 4.5x 103,
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indicating that any pre-concentration effects arising from greater surface adsorption of the

quencher are more than offset by the presence of an extra PDAC 'spacer' layer between the

fluorescent PPE 1 and the electron-accepting quencher.

Following up on this result, Ksv values were determined for suspensions of PDAC/1 and

(PDAC/1)2-coated 5.0 pm microspheres using 4-nitrobenzylamine, s-N-(2,4-dinitrophenyl)lysine

(LysDNP) and dinitrophenyl-labeled bovine serum albumin (BSA-DNP) as quenchers. Stem-

Volmer experiments were carried out in 0.1 M pH 7.3 phosphate-buffered saline (PBS) and

polymer 5 (see Chapter 2) was used as a water-soluble analog of 1 for comparison purposes

(Scheme 3.5).

Scheme 3.5. Structures of LBL polymer 1 and water-soluble analog 5.

Ksv data are listed in Table 3.1.

Table 3.1. Observed KsV values (in M-l) PPE-microsphere systems and PPE 5 in solution using 4-nitrobenzylamine,
LysDNP and DNP-labeled BSA as quenchers. DNP-labeled BSA values are expressed in terms of equivalents of
DNP. All Stern-Volmer determinations were carried out in 0.1 M PBS, pH 7.3.
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PDAC/1 microspheres (1.45 ± 0.4) x10 3 (1.13 0.04) 10 (6.6 ± 0.4) x10
(PDAC/1)2 microspheres (2.69 ± 0.07) x 103 (1.81 ± 0.04) x10 (9.9 ± 0.5) x 104

Polymer 5 in solution (5.91 0.08) xlO (1.48 0.07) x10 4 1 (3 2) xlO
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The most notable trend in Table 3.1 is that, for all cases, the PPE-coated microsphere systems

show larger Ksv values than polymer 5. The enhancement provided by a single PDAC/1 layer

pair on a microsphere ranges from about threefold for the small, soluble 4-nitrobenzylamine to

over 200-fold for BSA-DNP. In the latter case, this large difference may be originate from co-

operative static binding of the protein's multiple DNP groups to the microsphere surface.

Quenching efficiency towards PPE-coated microspheres proceeds in the order LysDNP > BSA-

DNP > nitrobenzylamine, while in the case of polymer 5 the quenching efficiencies of BSA-

DNP and nitrobenzylamine are comparable. It is likely that the greater quenching efficiency of

LysDNP is a result of hydrophobic interactions between this quencher and the polymer surface

that are stronger than those possible with the labeled protein derivative, which is partially

solubilized by other charged and hydrophilic amino-acid side chains. Finally, it is interesting to

note that in all cases the microspheres coated with two layer pairs show larger Ksv values than

those coated with one layer pair. This result is surprising given the energy-transfer layer effects

described in Figure 3.12 may reflect a different energy-transfer mechanism or stronger quencher-

surface binding in thicker films.

Conclusions

A carboxylate-functionalized PPE suitable for use in layer-by-layer deposition has been

synthesized and used with the non-conjugated polycation PDAC to create PPE films on glass

slides and silica microspheres. These films show excellent spectral properties and are capable of

transferring excitation energy to polycationic dye-labeled acceptors adsorbed to the film surface.

In addition, PPE-coated microspheres have been used for the detection of water-soluble
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quenchers in solution and show quenching enhancements of up to 200-fold versus water-soluble

PPEs in solution.

Experimental

Synthesis of polymer 1. Diethynylpentiptycene (Nomadics Life Sciences Inc.) (75 mg, 0.154

mmol), 2,5-bis(9-carboxy-3,6-dioxaoctyloxy)-1,4-diiodobenzene (see Chapter 2) (105 mg, 0.154

mmol) Pd(PPh3) 4 and CuI (catalytic amounts) were dissolved in a degassed mixture of 50%

NMP, 40% toluene and 10% DIPA and stirred at 600 overnight under argon. After cooling to

room temperature, the polymer was precipitated into EtOAc, collected by centrifugation and

washed several times with EtOAc yielding 100 mg (72%) of a yellow solid 1. The molecular

weight of polymer 1 could not be determined using gel-permeation chromatography. The H

NMR spectrum of 1 can be found in the Appendix.

Synthesis of dye-labeled PAH derivatives 2-4. Poly(allylamine hydrochloride) (Alfa-Aesar,

Mn 70,000) and the succinimide esters of the 5(6)-carboxy derivatives of fluorescein (Molecular

Probes, for 2), tetramethylrhodamine (Sigma, for 3) or carboxy-X-rhodamine (Molecular Probes,

for 4) were combined in a 415:1 molar ratio (based on amine equivalents in PAH) in ca. 10 ml of

a solution of 10% EtOH in pH 8.3 borate buffer. The reaction mixtures were stirred overnight in

the dark and then transferred to dialysis tubing (Pierce SnakeSkin, 10,000 MWCO) and dialyzed

exhaustively against deionized water for a minimum of two days. Solutions were stored in the

dark before use.
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Layer-by-layer deposition. Glass microscope slides were generally cleaned by soaking in

concentrated HN03 for at least 1 hr before use, followed by rinsing with deionized water and

ethanol. In some cases the acid cleaning step was replaced by vigorous sonication with a

detergent solution followed by sonication in absolute ethanol. Slides were soaked in 3 N KOH

before the deposition of the first layer. LBL films were built up by alternating immersion of the

glass slides for a minimum of 10 minutes into solutions of 1-2 wt% PDAC (Dajac Laboratories)

in deionized H20 and saturated solutions of 1 in DMF (filtered before use). Slides were washed

with the copious quantities of the immersion solvent followed by ethanol after each immersion

and were air-dried.

Silica microspheres were obtained from Bangs Labs and shaken with 3 N KOH for a

minimum of 20 minutes before deposition of the first layer. Excess KOH solution was removed

by centrifugation of the microspheres, removal of the supernatant, and vigorous shaking with

fresh deionized water. This process was repeated as necessary until the washings reached neutral

pH. Polymer solutions were added to microsphere suspensions while ultrasonicating, and

ultrasonication or vigorous shaking was continued throughout the adsorption process. Excess

polymer solution was removed by the process described above and microspheres were washed

several times between immersions. Microspheres were stored under a DMF supernatant before

use and could be re-suspended by vigorous shaking or ultrasonication.

Microsphere characterization. Confocal micrographs were obtained using a Leica

Microsystems confocal laser scanning microscope with excitation from a laser line at 364 nm.

Care was taken to avoid prolonged exposure of microspheres to the UV laser light to minimize

photobleaching. Microsphere spectra were obtained using the software provided as a histogram
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from 5-nm intensity 'bins'. Scanning electron micrographs were acquired by Jessica Liao at the

SEM facility of the MIT Institute for Soldier Nanotechnologies.

Fluorescence measurements. Fluorescence spectra for films on glass slides and microsphere

suspensions were obtained on Spex Fluorolog 2 and 3 fluorimeters. Spectra of suspended

microspheres were obtained in quartz cuvettes in the right-angle detection mode. Microsphere

suspensions were magnetically stirred during fluorescence experiments to prevent sedimentation.

Quenchers were obtained from Aldrich (4-nitrobenzylamine HCl) or Sigma (LysDNP and BSA-

DNP) and used without further purification. For Stem-Volmer quenching experiments,

quenchers were added as concentrated solutions to minimize intensity effects from dilution

(under 0.5%). Polymer films on glass slides were allowed to air-dry before acquiring spectra. All

spectra from flat substrates were obtained in the front-face detection mode.
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Chapter 4

Synthesis and properties of calix[4]arene-substituted

poly(phenylene ethynylene)s
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Introduction

The research described in this chapter concerns the synthesis and properties of new

calix[4]arene-based poly(phenylene ethynylene)s. Because of the somewhat unusual nature of

calixarenes, this chapter begins with a primer on the structure and basic properties of calixarenes,

followed by more detailed discussions concerning particular aspects of calixarene chemistry

relevant to this research - the use of the calix[4]arene skeleton as an organizing element for

crown ethers and the complexation of organic cations within the calix[4]arene basket. For

reasons of brevity, only those aspects of calix[4]arene chemistry that are immediately relevant to

the work presented in this chapter are discussed. Readers interested in learning more about

calixarenes are referred to the monographs by Gutsche 2 and to the review compilations edited

by Mandolini and Ungaro3 and Asfari4 for more information.

Synthesis and general properties of calixarenes

Calixarenes are broadly defined as a class of cyclophane-like macrocycles consisting of a

series of aromatic rings meta-linked by methylene bridging groups. Synthesized by the base-

catalyzed condensation of substituted phenols with formaldehyde, the calixarene family features

a surprising degree of structural diversity.
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Scheme 4.1. Synthesis of calix[4]arene (1) via the p-tert-butyl derivative.

Calixarenes can come in a variety of different sizes based on the number of component aromatic

rings in the macrocycle and are named accordingly - for example, the molecule shown in

Figure 5.1 is known as calix[4]arene due to the presence of four aromatic rings in the overall

structure. Theoretically, any calix[n]arene with n > 4 can be prepared, but those in which n is 4, 6

or 8 are easiest to synthesize and are most commonly used in literature applications. The simplest

route to these molecules involves the preparation of their p-tert-butyl derivatives using p-tert-

butylphenol and formaldehyde. The precise conditions of solvent, reaction temperature and

(especially) the nature and concentration of the alkali metal hydroxide used in the reaction

determine the size of the resulting macrocycle. Unsubstituted calix[n]arenes can be obtained

from the p-tert-butyl derivatives using an AC13-mediated Friedel-Crafts-like de-alkylation

procedure.5 In the late 1980s the group of Gutsche, which had been involved in much of the

systematic investigation into the structural and chemical properties of calixarenes, published

methods for high-yielding syntheses of the n = 4, 6 and 8 p-tert-butylcalix[n]arenes that could

easily provide hundred-gram quantities of these compounds in one-pot procedures.6 7 Although

the general structure of the calixarenes had been known since the 1940s, the publication of these

procedures roughly corresponded with an increase in the number of calixarene-related research

articles appearing in the literature. As Mandolini and Ungaro3 point out, access to these
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simplified methods for calixarene synthesis also coincided with the surge of interest in

supramolecular chemistry caused by the awarding of the 1987 Nobel Prize in Chemistry for work

in this area.

The primary attraction of calixarenes in supramolecular chemistry lies in their basket-like

shape and the presence of two distinct 'rims' defining this basket - an 'upper rim' comprising

the edges of the aromatic rings making up the calixarene skeleton, and a 'lower rim' made up of

the phenolic OH groups. Early research in this area also recognized the presence of multiple

conformational isomers arising from flipping motions involving individual rings within the

calixarene system. Higher calixarenes can possess a large number of distinct conformations, but

in the parent calix[4]arene molecule these motions give rise to four possible isomers (Scheme

4.2).

11
/09 I

cone partial cone 1,2-alternate 1,3-altemate
(paco) (1,2-alt) (1,3-alt)

Scheme 4.2. The four possible conformations of the calix[4]arene skeleton, shown for the tetramethyl ether.
Abbreviations are shown in parentheses.

It has been generally concluded that the mechanism of calix[4]arene conformational

interconversion involves the motion of the phenolic end of one of the aromatic units through the

center of the macrocycle cavity. Modification of the phenolic OH groups on the aromatic rings

with carbon-based substituents (such as the methyl ether groups shown in Scheme 4.2) changes
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the barrier for conformational interconversion, with substituents larger than ethyl completely

preventing the interconversion of isomers. In addition to these steric factors, hydrogen bonding

throughout the lower rim plays a significant role in restricting the conformational mobility of the

calix[4]arene skeleton.

It is notoriously difficult to predict the conformational outcome of a reaction that

converts a flexible calix[4]arene derivative into one with a locked conformation. No hard and

fast rules exist for determining the distribution of conformational isomers arising from such

reactions, although some general trends exist.8' 9 In the case of the synthesis of lower-rim ether

derivatives of calix[4]arene, the nature of the alkylating agent (tosylates or halides), base

(carbonates, hydrides, alkoxides, alkyllithiums), solvent (THF, DMF, MeCN, acetone) and

upper-rim substituents (hydrogens, tert-butyl groups, other substituents) all play significant roles.

For example, while the reaction of unmodified calix[4]arene with excess l-iodopropane gives

exclusively the cone conformation of tetrapropoxycalix[4]arene with the NaH / DMF base-

solvent combination, a mixture of cone and paco is obtained when a 9:1 THF:DMF mixture is

used. When the alkylation is carried out using propyl tosylate and Cs2CO3 in MeCN, a mixture of

conformations is obtained from which large quantities of the 1,3-alt conformation can be

isolated. These conformational outcomes have been explained as arising from a combination of

steric effects, metal-ion templation, hydrogen bonding, and cation-r interactions. While some

classes of calix[4]arene lower-rim derivatization reactions are 'reliable' in their conformational

outcomes - for example, the use of alkyl halides with NaH as a base in DMF seems to always

provide cone products - it remains difficult to predict a priori what the outcome of a given

derivatization reaction will be in more complex cases or when the calixarene scaffold is already

partially derivatized.
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The task of identifying calix[4]arene conformations experimentally is facilitated by the

unique NMR signatures characteristic of each conformation. These signatures differ most in the

number and nature of the peaks arising from hydrogen atoms attached to the methylene 'hinge'

carbons. In the case of the cone conformation, the two hydrogens on each methylene carbon are

inequivalent (one points away from the macrocyle while the other points roughly parallel to its

axis), differ in their H NMR chemical shift by about 1 ppm, and couple to each other strongly,

providing a classic 'AB quartet'-type pattern. In the 1,3-alt conformation, which is much more

flexible and higher in symmetry, these two hydrogens become equivalent and a singlet is seen.

The paco form is much lower in symmetry than either of these conformations and the presence

of multiple inequivalent aromatic rings leads to highly complex NMR spectra. Further

characterization difficulties can arise in cases where a mixture of conformations is present. For

example, the 1,3-alt and cone conformations of tetrapropoxycalix[4]arene can be separated by

column chromatography only with great difficulty.

Calixarene-based ionophores

While the most obvious structural feature of the calix[4]arene skeleton is the basket-like

shape of its inner cavity, many promising molecular recognition applications of these molecules

have resulted not from exploitation of this cavity but from the use of the calix[4]arene

framework to pre-organize ligands or receptor groups in desired geometries. The availability of

the geometrically well-defined and (more-or-less) accessible conformations already mentioned,

the presence of the two chemically distinct 'rims', and the development of procedures for

regioselective calixarene modification all faciliate these applications, and these synthetic

possibilities have allowed the preparation of a wide variety of calixarene-based ionophores. One
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of the most popular derivatization strategies for the synthesis of ligands for small ions involves

the modification of the calixarene lower rim with amide or ester linkages, as shown in Scheme

4.3.

X

Scheme 4.3. A common motif for calix[4]arene-based ionophores. X = OH, OR, or NR2.

In these cases, the calixarene is fixed in the cone conformation and interaction with the metal ion

takes place through the ether and carbonyl oxygens on the lower rim. Systems such as the one

shown in Scheme 4.3 are generally excellent Na+ binders and have been used in a variety of

sensory schemes. °0

The incorporation of ionophoric crown ether groups into calixarenes was pioneered by

the group of Ungaro.11 In contrast to the systems described above, these 'calixcrowns' show a

preference for larger alkali metal cations, and some derivatives are remarkably efficient ligands

for Cs+ and even Fr +.12 Much of the research in this area has been motivated by the need for

ligands that selectively extract heavier alkali metal cations from solutions containing Na+. This

application is of special importance in the treatment of aqueous nuclear waste containing

mixtures of radioactive 137 Cs and non-radioactive Na isotopes.

As in the case of simple crown ethers, interactions between metal ions and the oxygen

atoms of singly-bridged calixcrowns are important in guest binding, and the size of the crown

ether ring is a key factor in determining the selectivity of the calixcrown toward various ions.
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However, the presence of multiple aromatic units in the calixarene moiety introduces an

additional consideration for metal binding that often leads to unusual selectivity. When the

substituents on the non-bridged rings are suitably chosen, the interactions between these

aromatic rings and metal ion guests can lead to interesting conformational effects. For example,

the two closely related calixcrowns shown in Scheme 4.4 each undergo a different

conformational interconversion on binding K+.13
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Scheme 4.4. Conformational interconversions on binding K+ for two calixcrown[4] derivatives. The paco isomer is
preferred for the tert-butyl deriavtive, while the de-tert-butylated version shows a strong preference for the 1,3-alt
conformation.

While they appear somewhat random at first glance, the outcomes shown in Scheme 4.4 can be

explained as arising from a combination of steric and cation-7 interactions,14 of which the latter

prove to be especially potent in these systems.1 5 In the case of the tert-butyl derivative, a cation-x

interaction stabilizes the paco conformation, while the smaller steric hindrance of the de-tert-
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butylated derivative allows the interaction of both mobile aromatic edges with the metal cation.

The presence of these interactions has been further confirmed using X-ray crystallography.

In the structures shown in Scheme 4.4, the conformational mobility provided by the

presence of two methyl-substituted rings allows the calixcrown ligand to adopt the

conformations most conducive to ion binding. Ungaro and co-workers synthesized calixcrown

derivatives locked in the cone, paco and 1,3-alt conformations by substitution of the rings not

forming part of the crown ether chain with bulky isopropyl groups. Using these fixed

conformational isomers, they determined that, in general, the paco and 1,3-alt conformations are

excellent ligands for the larger alkali metal ions (K+ and larger), with a paco calixcrown[5]

derivative showing a K+/Na+ binding constant ratio of over 105. In a similar vein, locked 1,3-alt

conformations of calixcrowns have proven to be efficient ligands for Cs+.'3' 16

Part of the research described in this chapter involves the synthesis of calixarene-

modified PPEs in which the PPE backbone is connected to the calixarene through a direct

calixcrown linkage containing a PPE monomer unit. A small number of calixcrown derivatives

have been reported in which the crown ether portion of the molecule contains embedded benzene

rings (Scheme 4.5).17 These derivatives, all of which are of the bis-crown variety

(conformationally-locked 1,3-alt isomers containing two crown ether bridges), were studied for

their ability to transport 137Cs+ across a supported liquid membrane. The incorporation of ortho-

linked aromatic rings into the crown ether had beneficial effects on ion binding and particularly

on Cs+/Na+ selectivity ratios, a phenomenon attributed to the inability of the rigidified crown

ether portion to re-organize around the Na+ ion. Cs+ binding in the para-linked version was about

three orders of magnitude weaker than in the ortho-linked version.
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Scheme 4.5. Calixarene-bis(crown) ethers containing aromatic rings embedded in the crown ether portion of the
molecule via ortho (left) orpara (right) linkages. Both molecules are locked in the 1,3-alt conformation. The ortho
derivative is a much stronger Cs+ binder than the para derivative.

Within the Swager group, former postdoc Khushrav Crawford and graduate student Marc

Goldfinger prepared calixarene-based conjugated polymers containing a bithiophene-linked

calixcrown unit.' 8 These polymers were found to undergo Na+-specific emission changes which

were attributed to the confomational rigidification of the bithiophene moiety. No fluorescence

changes were observed for K+ , Li+ or Ca2 +.

Complexation of organic salts inside the calix[4]arene cavity

The prospect of using the basket-like cavity of calix[4]arenes for the complexation of

organic molecules is immediately suggested by the structure of the molecules themselves. Most

efforts in this area have been directed at developing systems that bind either neutral molecules or

organic ions within the calixarene cavity. Calixarene complexes with neutral molecules are

somewhat rare and are generally weak, although the well-known strong complexation of C60 by

calix[8]arenes is a notable exception.'9 In contrast, many organic cations, especially modified
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ammonium and pyridinium derivatives, are known to bind within the calixarene cavity.20 The

driving force for this binding interaction is generally explained as a co-operative effect of

multiple cation-it interactions between the aromatic units of the calixarene and the ion itself. In

addition, much of the early work in this area used water-soluble calixarenes bearing negatively

charged groups (sulfonates or phenoxides), introducing significant electrostatic and hydrophobic

binding forces.

As in the case of the calixcrowns, steric factors also play a role in the binding of analytes

in the calixarene cavity, and many of the most interesting organic cation-binding calixarene

systems are derived from the larger calix[n]arenes (n > 5). Depending on the pattern of lower-rim

substitution, such molecules can bind organic cations such as acetylcholine with binding

constants on the order of 102-103.20 In contrast, no evidence has been observed for the

complexation of trimethylalkylammonium cations by calix[4]arenes locked in the cone

conformation. Additionally, the presence of bulky substituents at the upper rim has been found to

have a deleterious effect on analyte binding in these systems.

Relative to organic ammonium derivatives, N-methylpyridinium salts are better guests for

calix[4]arenes, though binding constants are small - around 5-7 M-1 for N-methylpyridinium

iodide with cone tetraalkoxycalix[4]arenes in CDC13-CD3CN mixtures.21 Rigidification of the

cone structure by the elimination of "pinching" motions increases these binding constants, as

does the use of calix[4]arene 'capsules' formed by linking two calix[4]arene units via their upper

rims (Scheme 4.6).22

125



o oO

5 M-1 20 M' 1

I -

guest

M-1 guest

0.-

Scheme 4.6. Approximate binding constants for calix[4]arenes in the cone conformation with N-methylpyridinium
iodide in CDC13-CD3CN mixtures. Both rigidification of the calixarene conformation (through the formation of 1,2
ring bridges) and capsule formation (using a calixarene-calixarene bridge) have dramatic effects on the binding
constant.

Araki et al. have studied the interaction of cone tetrapropoxycalix[4]arene with various N-

methylpyridinium iodide salts and with N-methylquinolinium iodide.23 Their observations

confirm the expected steric limitations on guest binding, in that the introduction of extra methyl

groups onto the pyridinium core results in a reduction in Ka and that the formation of a double-

calixarene 'capsule' results in even greater binding selectivity. The bulkier N-methylquinolinium

iodide was found to bind to the cone calix[4]arene with a Ka of 3.6 ± 1.3 and was not bound at all

by a doubly linked calix[4]arene capsule.

The goal of the research described in this chapter was to apply some of the guest-binding

properties of calix[4]arene receptors to the design of new PPE-based sensors. Two calixcrown-

based monomers were designed in order to provide PPEs in which the polymer backbone is

intimately associated with the calixcrown cavity. The crystal structures of these monomers were

determined and show interesting structural features. A PPE prepared from one of these
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monomers showed a small spectral response to Ba2+. In addition, an upper-rim-linked, cone-

locked monomer was designed in which the PPE backbone is forced to pass alongside the

opening of the basket-like cone calix[4]arene cavity. A PPE formed from this monomer is

strongly quenched by the analyte N-methylquinolinium hexafluorophosphate.

Results and Discussion

Synthesis and structural characterization of calixarene-based monomers

Calix[4]arene-crown ether monomers were synthesized as shown in Scheme 4.7.

4
@7~j MeOTs / K2CO3 

MeCN 

OH /

1 2

6

Scheme 4.7. Synthesis of calixcrown monomers 4 and 6.

Following a well-known literature route, reaction of the unmodified calix[4]arene 1 with

two equivalents of methyl tosylate in MeCN using K2CO3 as a base provided the 1,3-ring
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disubstituted calix[4]arene dimethyl ether.2 4 This derivative has a sharp 'H NMR spectrum,

clearly indicating the presence of a rigid cone isomer stabilized by intramolecular hydrogen

bonding around the lower rim of the calixarene. Reaction of 2 with the ditosylate 325 under high-

dilution conditions provided a product that eluted as one compound in column chromatography

and HPLC. The H NMR spectrum of the product mixture was highly complex, suggesting the

presence of multiple calixarene conformations, and a variable-temperature NMR study did not

show any significant changes in the spectrum of the product mixture between -10 ° and 50°.

High-resolution mass spectral analysis of the product mixture indicated the presence of one

compound consistent with the desired molecular formula C44H441208. These observations

suggested that two or more non-interconverting conformations were present, and the complexity

of the H NMR spectrum strongly implied the presence of a highly asymmetric paco isomer. To

obtain a more definitive structural assignment, crystals suitable for X-ray crystal structure

determination were grown by slow evaporation of a CH2Cl2/MeOH solution of the product. The

structure of 4 revealed that this compound crystallizes somewhat unusually as a mixture ofpaco

and cone conformations, resulting in a crystal consisting ofpaco and cone conformations at a 3:1

ratio. Structures of these isomers are shown in Figures 4.1 and 4.2.

128



Figure 4.1. Crystal structure of the paco isomer of 4 from two orthogonal side views. One molecule of the
asymmetric unit is shown. Ellipsoids are drawn at 50% probability.
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Figure 4.2. Crystal structure of the cone isomer of 4 from two orthogonal side views. One molecule of the
asymmetric unit is shown. Ellipsoids are drawn at 50% probability.
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The structure of the paco isomer of 4 (Figure 4.1) shows the classic features of this

conformation. The three 'upright' or syn rings roughly define the sides of a pinched partial cone

in which the aromatic rings attached to the crown ether moiety are nearly parallel to each other

and sharply angled relative to the syn methoxy-bearing ring. The 'inverted' or anti methoxy-

bearing ring is almost perpendicular to the crown-ether-bearing rings and directs the anti

methoxy group sharply away from the partial-cone cavity, while the diiodophenylene unit is

oriented approximately perpendicular to the axis of the cavity. In contrast, the structure of the

cone isomer (Figure 4.2) represents a highly distorted pinched cone in which the crown-ether-

bearing rings are actually tilted toward one another. Removal of the methoxy groups of 4 using

Me3SI in CHC13 provided a product 4' in which only the cone conformation could be detected

(see Appendix). This suggests that the abundance of the paco isomer in 4 may be due to steric

repulsion between the para-linked diiodophenylene unit and methyl ether groups.

Reaction of the dimethyl ether 2 with the ditosylate 5, prepared in two steps from 2,5-

diiodocatechol, provided the calix[4]arene monomer 6 by an analogous procedure. In contrast to

4, the 1H NMR spectrum of 6 features a series of somewhat broad peaks consistent with a

flexible cone conformation. Confirmation of the cone structure of 6 was provided by X-ray

single crystal analysis (Figure 4.3).
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Figure 4.3. Crystal structure of 6 from two orthogonal side views. One molecule of the asymmetric unit is shown.
Ellipsoids are drawn at 50% probability.
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The structure of 6 is that of a standard pinched-cone calixarene, with the crown-ether-

bearing rings oriented parallel to one another and the methoxy-bearing rings angled strongly

away. The crown ether linker suspends the diiodophenylene group at an oblique angle below the

calixarene and at a much larger calixarene-diiodophenylene distance than seen in either of the

conformations of 4. This is a predictable consequence of the differences in connectivity between

the diiodophenylene units of 4 and 6 and suggests that PPEs based on 4 will have a smaller

calixarene-backbone distance than those based on 6. In addition, the structures support the

prediction that the calixcrown ionophore in polymers based on 4 will be much less accessible

than that in those based on 6.

Synthesis of a basket-like calix[4]arene-based monomer locked in the cone conformation

was carried out according to the sequence shown in Scheme 4.8.

HN0 3-SiO 2
C8 H 17 Br

OH<b 9) NaH / DMF

OH
OH

1

o ROOR
OR

R = C8H 17

7

CH 2CI 2

NO 2

ROOR
OR

8

NH 2

OR

9

Mea I

l ld10
ID: COCI

Et3N, CH2CI 2

Me

HN

OOR
OR 11

Scheme 4.8. Synthesis of monomer 11.
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Treatment of the parent calix[4]arene 1 with 1-bromooctane in DMF using NaH as a base

provided the tetraoctyl ether 726 in the cone conformation. The use of silica-supported HNO3

allowed for mild nitration2 7 of 7, which was monitored by TLC and quenched when the starting

material had been completely consumed. The product mixture contained mostly 8 along with

small quantities of di- and trinitrocalixarenes, which were easily removed by column

chromatography. The NMR spectrum of 8 shows the expected pattern for a calix[4]arene with

one para-substituted ring, including two overlapping 'AB quartets' in the bridging methylene

region. Reduction of 8 using SnCl2 provided the calix-aniline28 derivative 9, which was

condensed with acid chloride 1025 to provide the amide-based monomer 11.

Synthesis and characterization of calixarene-based PPEs

Monomers 4, 6 and 11 were co-polymerized with 2,5-diethynyl-1,4-

bis(hexadecyloxy)benzene in toluene-diisopropylamine mixtures in the standard manner.

Polymers 12, 13 and 14 (Scheme 4.9) were isolated by precipitation from MeOH. GPC versus

polystyrene standards indicated molecular weights on the order of 1-2xl 04. Overall, it was found

that monomer purity was essential for the prevention of gel formation during polymerization,

especially in the case of 12 and 13. This gelation process presumably results from cross-linking

caused by impurities containing two diiodophenylene units per monomer.
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)C 16H33

12

Me

Scheme 4.9. Structures of polymers 12, 13 and 14.

Spectroscopic response of calixcrown-based PPEs to Ba2+ and other analytes

The absorbance and emission spectra of polymers 12 and 13 are shown in Figures 4.4 and

4.5.
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Figure 4.4. Absorbance (left) and fluorescence (right) spectra of polymer 12 in CH2C12 solution.
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Figure 4.5. Absorbance (left) and fluorescence (right) spectra of polymer 13 in CH2C12 solution.
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Determination of the fluorescence response of these polymers to metal salts is

complicated by the insolubility of these salts in 'good' (i.e. non-aggregating) solvents for PPEs.

To overcome this problem, we chose to use Ba(C104)2, which is commercially available and

highly soluble in MeCN. Small aliquots of a concentrated solution of Ba(C104 )2 in MeCN were

added to solutions of the PPEs in CH2C12. As shown in Figure 4.6, 12 showed no response to

Ba2+ at millimolar concentrations. However, a small decrease in the fluorescence intensity of 13

is observed at small concentrations of Ba2 +, with subsequent concentration increases causing no

further changes (Figure 4.7).
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Figure 4.6. Response of polymer 12 to Ba2+ in CH2C12 solution.
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Figure 4.7. Response of polymer 13 to Ba2+ in CH2C12 solution.

The behavior of these polymers in response to Ba2+ can be explained as arising through a

combination of factors. Although there have been no literature reports on the interactions

between calixcrowns and Ba2+, former Swager group graduate student Hsiao-hua Yu found that

Ba2+ exerted a template-like effect on the electropolymerization of a calixcrown-based

bithiophene derivative.29 The ionophoric cavity of 12 seems ideal for a large, fairly soft cation

such as Ba2+ due to the proximity of the crown ether donors and multiple electron-donating

aromatic rings, but access to the calixcrown ionophore is likely hindered by the steric crowding

caused by the connectivity of the para-linked phenylene unit. In contrast, the more accessible

crown ether moieties of polymer 13 are able to bind Ba2+, and it is plausible that the interaction

of this ion with the crown-ether oxygen atoms connected directly to the PPE backbone causes the

observed spectral shifts.
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Polymer 12 was screened against a variety of nitroaromatic compounds, including some

with relatively acidic protons, in order to determine if any abnormally large Stern-Volmer

quenching interactions were present. Such large Ksv values would be indicative of a static

binding interaction between a fluorescence-quenching guest molecule and the PPE, possibly

through hydrogen bonding between the guest and the calixcrown moiety (see Chapter 1). The

observed Ksv values are typical of those observed for PPE quenching by nitroaromatics, and

although dinitroaromatics are better overall quenchers than mononitroaromatics, no further

trends can be discerned among the data (Table 4.1).

Table 4.1. Stern-Volmer quenching constants for polymer 12 with a variety of analytes.

2,4-dinitrotoluene
2,6-dinitrotoluene

4-nitrotoluene
2-nitrobenzenesulfonamide

3-nitrophthalimide
3,5-dinitrobenzoic acid

4-nitrobenzylamine

29 ± 1 (CH2 C12)
32 ± 1 (CH2C12)

15.0 ± 0.5 (CH 2C12)
11.2 ± 0.5 (THF)
18.2 + 0.6 (THF)

24.1 ± 0.9 (CH2C12)
20 A 2 (CH 2C12 )

Spectroscopic effects of guest binding in basket-like calixarene-PPEs

Polymer 14 possesses a basket-like calix[4]arene cavity locked in the cone conformation

attached directly to the PPE backbone by means of an amide linkage of limited flexibility. In

order to see whether the known organic cation-binding properties of rigid cone calixarenes could

be applied to the PPE-mediated detection of a photophysically active guest, we elected to use the

electron-poor N-methylquinolinium (NMQ) ion as a prototypical quencher. This ion contains the

same structural features as the known calix[4]arene guest N-methylpyridinium, with the added

advantage of a more extended aromatic system that should promote larger r-stacking interactions
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with the PPE backbone. We chose to use the hexafluorophosphate (PF6) salt of NMQ to avoid

complications from strong charge-transfer interactions between NMQ and most halide ions. The

N-methylacridinium ion, which might seem to be an even better target analyte for a calixarene-

PPE system, has absorbance and emission spectra that strongly overlap with those of 14 and thus

preclude its use as a quencher.

To determine the contribution of the host-guest interaction to the fluorescence quenching,

polymer 15 was prepared from monomer 16. This model system was designed to provide an

electronic environment identical the one present in polymer 14 (Scheme 4.10).

Me PC 1 6H33 Me

0 C16 H3 3 0 O

H 15H
C6H C6 H1 30
130

16
R = CH17

Scheme 4.10. Structures of model polymer 15, derived from monomer 16. This monomer unit has an electronic
structure analogous to that of the calixarene-based monomer in 14.

The Stern-Volmer quenching plots for these polymers with NMQ are shown in Figure 4.8.
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Figure 4.8. Stern-Volmer quenching of polymers 14 and 15 with N-methylquinolinium PF6 as a function of
quencher concentration.

Polymer 14 is quenched by NMQ with a Ksv of 82 ± 7 M-1, while the control polymer 15

shows a Ksv of 25 2 M-1. The Stern-Volmer quenching constant for polymer 14 was very

slightly increased (to 97 6 M-1) in the presence of a large excess of exogenous monomer 11.

However, the fluorescence lifetimes of polymers 14 and 15 were found to be completely

insensitive to quencher concentration. Because dynamic quenching would imply that larger

quencher concentrations should give rise to smaller r values (Chapter 1), this result demonstrates

that static PPE-quencher interactions are at play in all of the above systems. The fact that even

the model polymer 15 shows completely static quenching with NMQ suggests that there is a

strong electrostatic interaction between the electron-rich PPE backbone and NMQ that does not

depend on the presence of a calix[4]arene host system. 'Modification' of the PPE structure with
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the cone calixarene roughly triples the observed Ksv, reflecting the additional enthalpic driving

force of multiple cation-n interactions between the analyte and the calixarene 'baskets' in 14.

Without the aid of an electron-rich extended n-structure, monomer 11 is unable to efficiently

compete with the polymer for NMQ and its presence does not significantly change the Stem-

Volmer constant. It is worth re-iterating that cone calix[4]arenes are known to interact only very

weakly with the N-methylquinolinium ion. Nonetheless, it is probable that the quenching of

polymer 14 by NMQ arises from a synergistic combination of cation-i interactions within the

calixarene cavity and electrostatic interactions between the PPE and the electron-poor it-system

of NMQ.

Conclusions

A series of structurally unusual calix[4]arene-crown ether monomers have been

synthesized, and a PPE based on one of these monomers shows small spectral shifts on exposure

to Ba2 +. Additionally, a PPE has been prepared in which the polymer backbone passes along the

upper rim of a fixed cone calix[4]arene. Enhanced quenching of this polymer by the

N-methylpyridinium cation is attributed to cation-it interactions between the guest and the

calix[4]arene host.

Experimental

Synthetic considerations. Reagents were purchased commercially and generally used without

further purification. Dichloromethane was reagent grade or better and used without further

purification. DMF was dried by storage over activated molecular sieves before use. MeCN was
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dried immediately before use by passage through a column of freshly activated alumina.

Toluene-diisopropylamine mixtures used for polymerization reactions were degassed by

vigorous sparging with argon before use. Compound 3,25 2,5-diiodocatechol,30 and 2,5-

diethynyl-1,4-bis(hexadecyloxy)benzene31 have been previously reported and were generously

provided by Phoebe Kwan, Zhengguo Zhu, and Irina Gorodetskaya, respectively. Compounds

2,24 10,25 and N-methylquinolinium hexafluorophosphate32 were prepared by literature

procedures. Melting points were recorded on a Laboratory Devices Inc. Mel-Temp II and are

uncorrected. NMR spectra were recorded on Varian INOVA 500 MHz or Varian UNITY 300

MHz spectrometers and referenced to the 1H resonance of internal Me4Si or the 3C resonance of

the solvent. High-resolution mass spectra were recorded on a Bruker Daltonics Apex II 3T FT-

ICR instrument. HPLC analyses were carried out on a Dynamax 250x9.5 column using degassed

EtOAc/C 7H 16 eluents at a 4 ml/min flow rate. Compound elution was monitored at 265 nm.

Para-linked calixcrown 4. Compound 2 (200 mg, 0.44 mmol), compound 3 (302 mg, 0.44

mmol) and Cs2CO3 (500 mg) were heated at reflux in dry MeCN (175 ml) under argon for 4 d.

After cooling to room temperature, the reaction mixture was concentrated to dryness and re-

dissolved in a mixture of CHC13 and 1 N HCl. The organic layer was separated, washed with

water and saturated NaCl solution, and dried on anhydrous MgSO4. Column chromatography

(4:1 hexanes/EtOAc) provided a white solid (179 mg, 43%). M.p. >130°, broad. HPLC: 10.9 min

(10% EtOAc/C 7H16). 1H NMR and 13C NMR (CDC13, ppm): extremely complex spectra, see

appendix. HRMS: [C44H44I2 0 8+Na] requires 977.1018, found 977.1049.
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Demethylation of 4. A solution of calixcrown 4 (40 mg, 0.042 mmol) in CHCl3 (5 ml) was

treated with 15 pl Me3SI under argon. After stirring at 600 for 1.5 h, the reaction mixture was

cooled to room temperature and washed with 1 N HC1, dilute Na2S203 , and saturated NaCl

solution. The reaction mixture was dried over anhydrous MgSO4, filtered, and concentrated to

dryness. The white residue remaining was recrystallized from CHC13-MeOH and then

chromatographed on silica gel (elution with 4:1 hexanes/EtOAc) to provide 4' as a white solid (7

mg, 18%). HPLC: 16.2 min (10% EtOAc/C 7H16). 1H NMR (CDC13, ppm): 3.27 (d, 2H, 13.0 Hz),

3.86 (m, 2H), 3.90 (m, 2H), 4.13 (m, 2H), 4.30 (m, 2H), 4.34 (d, 2H, 13.0 Hz), 6.62-6.66 (m,

2H), 6.76 (d, 2H, 7.5 Hz), 7.01 (s, 1H), 7.03 (d, 2H, 7.5 Hz), 7.37 (s, 1H). 13C NMR (CDC13,

ppm): 69.99, 70.52, 71.47, 75.55, 87.38, 118.85, 124.77, 125.10, 128.40, 128.64, 128.88, 133.55,

151.85, 153.45, 153.81. HRMS: [C42H4008I2-H] requires 925.0740, found 925.0744.

1,4-diiodo-2,3-bis(2-(2-hydroxyethoxy)ethyl)benzene. 2,5-Diiodocatechol (543 mg, 1.50

mmol), 2-(2-chloroethoxy)ethanol (375 pl, 2.55 mmol), K2CO3 (830 mg) and a few crystals of

KI were combined in dry DMF in a Schlenk tube and stirred at 800 under argon for 4 d. After

cooling to room temperature, the reaction mixture was extracted with CH2C12 and the organic

extract washed with dilute HC1, water, and NH4C1 solution (three times). The organic layer was

dried on anhydrous MgSO4 and chromatographed on silica gel (elution with 4% MeOH in

CH 2C12) to provide a slightly pink-colored solid (510 mg, 63%). M.p. 870. H NMR (CDC13,

ppm): 3.2 (br s, 1H), 3.69 (m, 2H), 3.76 (app d, 2H, 4.2 Hz), 3.91 (m, 2H), 4.24 (m, 2H), 7.25 (s,

1H). 13C NMR (CDC13, ppm): 61.91, 70.66, 72.92, 73.26, 93.25, 135.83, 152.32. HRMS:

[C14H2012 06+CH3COO] requires 596.9488, found 596.9495.
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1,4-diiodo-2,3-bis(2-(2-(p-toluenesulfonyloxy)ethoxy)ethyl)benzene (5). Para-toluenesulfonyl

chloride (400 mg, 2.2 mmol) was added to a cold solution of 1,4-diiodo-2,3-bis(2-(2-

hydroxyethoxy)ethyl)benzene (155 mg, 0.29 mmol) in a mixture of 20 ml CH2C12 and 3 ml Et3N.

After stirring under argon overnight, the reaction mixture was diluted with EtOAc and washed

with 1 N HC1 and saturated NaCl solution. The organic layer was dried over anhydrous MgSO4

and purified by column chromatography on silica gel (elution with 2:1 hexanes/EtOAc) to

provide 5 as a white solid (152 mg, 62%). M.p. 74°-76°. 1H NMR (CDC13, ppm): 2.43 (s, 3H),

3.75 (m, 4H), 4.09 (m, 2H), 4.18 (m, 2H), 7.22 (s, 1H), 7.33 (d, 2H, 8.0 Hz), 7.78 (d, 2H, 8.0

Hz). 13C NMR (CDC13, ppm): 21.78, 68.70, 69.45, 70.45, 72.45, 93.21, 128.05, 130.00, 132.95,

135.63, 144.97, 152.02. HRMS: [C28H32S201 0I2+Na] requires 868.9418, found 868.9437.

Ortho-linked calixcrown 6. Compound 2 (76 mg, 0.17 mmol), compound 5 (143 mg, 0.17

mmol), and Cs2CO3 (155 mg) were heated at reflux in dry MeCN (75 ml) under argon for 4 d.

The reaction mixture was concentrated to dryness and re-dissolved in a mixture of CH2C12 and 1

N HC1. The organic layer was separated, washed with saturated NaCl solution, and dried over

anhydrous MgSO4. Purification by column chromatography (elution with 3:1 hexanes/EtOAc)

provided a white solid (85 mg, 53%). M.p. dec. HPLC: 6.8 min (10% EtOAc/C 7H 16). H NMR

(CD3CN, ppm): broad peaks. 3.25 (d, 2H, 12.5 Hz), 3.40 (m, 2H), overlapping peaks 3.90 (br m),

4.01 (m), 4.08 (m), 4.16 (s), 4.22 (m) total integration ca. 11H, 4.41 (d, 2H, 12.5 Hz), 6.49 (t,

1H, 7.5 Hz), 6.61 (d, 2H, 7.5 Hz), 6.90 (t, 1H, 7.0 Hz), 7.17 (d, 2H, 7.0 Hz), 7.31 (s, 1H). 13C

NMR (CDC13, ppm): 31.18, 64.46, 70.39, 72.13, 73.45, 73.76, 93.36, 122.76, 122.84, 127.98,

128.65, 133.92, 135.75, 136.58, 152.49. HRMS: [C44H44I 2 08+CH 3 COO] requires 1013.1264,

found 1013.1249.
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Mononitrotetra(octyloxy)calix[4]arene 8. Silica-supported HNO3 was prepared by stirring a

suspension of 40 g silica gel in 100 ml of 8 N HNO3 for 3 h. The silica was recovered by

filtration and air-dried overnight before use. Calix[4]arene tetraoctyl ether 7 (1.00 g, 1.15 mmol)

was dissolved in 40 ml CH2C12 and treated with ca. 1 g of HNO3-SiO2. A purple color developed

immediately. After 50 min TLC analysis (9:1 hexanes/EtOAc) indicated complete consumption

of 7. After removal of the silica by filtration, the reaction mixture was washed with aqueous

NaHCO3 and saturated NaCl solution. The organic phase was separated, dried over anhydrous

MgSO4, and filtered through a small pad of silica gel. The oil remaining after concentration of

the eluate was chromatographed on silica gel (elution with 3% EtOAc/hexanes) to provide 365

mg (35%) of 8 as an oily orange solid. H NMR (CDCl 3, ppm): 0.89 (m, 12H), 1.30 (m, 36H),

1.49 (m, 4H), 1.88 (m, 8H), 3.16 (d, 2H, 14.0 Hz), 3.19 (d, 2H, 14.0 Hz), 3.75 (t, 2H, 6.5 Hz),

3.84-3.92 (m, 4H), 3.92-4.02 (m, 2H), 4.41 (d, 2H, 14 Hz), 4.46 (d, 2H, 14 Hz), 6.23 (br s, 2H),

6.83 (t, 1H, 7.5 Hz), 6.93 (t, 2H, 8.3 Hz), 7.11 (s, 1H). 13C NMR (CDC13, ppm): 14.32, 22.91,

22.91, 22.94, 26.32, 26.60, 26.77, 29.71, 29.78, 29.90, 29.93, 30.04, 30.20, 30.44, 30.60, 30.69,

31.16, 31.31, 32.16, 32.18, 32.19, 75.34, 75.39, 75.71, 121.87, 122.61, 123.41, 127.89, 128.70,

129.65, 134.18, 135.17, 136.19, 136.87, 142.73, 156.04, 157.41, 161.66, 163.15. HRMS:

[C60H87NO6] requires 917.6528, found 917.6501.

Monoaminotetra(octyloxy)calix[4]arene 9. Nitro compound 8 (129 mg, 0.14 mmol) was

dissolved in EtOH containing ca. 5% EtOAc to promote solubility. 2 g of SnC12 were added and

the reaction mixture heated at reflux under argon overnight. The reaction mixture was

concentrated to dryness, re-dissolved in CH2C12 and washed with 1 N NaOH followed by
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saturated NaCi solution. The organic phase was dried over anhydrous MgSO 4 and filtered, and

the solvent was removed under reduced pressure to afford a dark red oil that was used without

further purification (86 mg, 69%). H NMR (CDC13, ppm): 0.89 (app t, 12H, 6.0 Hz), 1.25-1.40

(br m, 40H), 1.89 (m, 8H), 3.02 (d, 2H, 13.5 Hz), 3.14 (d, 2H, 13.5 Hz), 3.78 (t, 2H, 7.5 Hz),

3.86 (m, 6H), 4.36 (d, 2H, 13.0 Hz), 4.44 (d, 2H, 13.5 Hz), 5.94 (s, 2H), 6.54-6.65 (m, 9H). 3 C

NMR (CDC13, ppm): 14.34, 22.95, 26.54, 26.60, 26.66, 29.87, 29.88, 30.16, 30.52, 30.57, 30.58,

31.19, 31.23, 31.25, 32.22, 71.19, 75.34, 75.37, 75.40, 115.57, 121.72, 121.99, 122.05, 128.23,

128.24, 128.28, 128.29, 135.38, 135.44, 135.58, 140.47, 149.99, 156.80, 156.89. HRMS:

[C60 H8 9N0 4+H] requires 888.6864, found 888.6881.

Calix[4]arene monomer 11. A solution of 10 (161 mg, 0.40 mmol) in CH2C12 was added

dropwise over 30 min to an ice-cold solution of 9 (353 mg, 0.40 mmol) in 40 ml CH2C12

containing 1 ml Et3N. The reaction mixture was allowed to stir overnight while warming to room

temperature, then was poured into dilute HC1. The organic phase was separated, washed with

water and saturated NaCl solution, and dried over anhydrous MgSO4. The residue remaining

after concentration to dryness was subjected to column chromatography (6:1 hexanes/EtOAc)

and the product recrystallized from a CHCl3-MeOH-hexane mixture, yielding 103 mg (21%) of a

cream-colored solid. M.p. 100° dec. HPLC: 4.3 min (10% EtOAc/C 7H16 ). 1H NMR (CDC13,

ppm): 0.89 (m, 12H), 1.30-1.42 (m, 40H), 1.89 (m, 8H), 2.40 (s, 3H), 3.15 (d, 2H, 13.0 Hz), 3.17

(d, 2H, 14.0 Hz), 3.84 (t, 2H, 7.0 Hz), 3.90 (m, 6H), 3.44 (app d, 4H, 13.5 Hz), 6.53 (m, 3H),

6.63-6.75 (m, 8H), 6.89 (s, 1H), 7.72 (s, 1H), 7.83 (s, 1H). 13C NMR (CDC13, ppm): numerous

peaks (see Appendix); major peaks at 14.34, 22.95, 26.52, 26.65, 29.89, 30.19, 30.54, 32.21,
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75.40, 100.00, 120.92, 122.21, 128.21, 128.61, 135.39, 157.09. HRMS: [C68H93NOsI2+Na]

requires 1280.5035, found 1280.5075.

2,5-Diiodo-4-methylbenzoic acid, (4-hexyloxy)phenylamide (16). A solution of 10 (418 mg,

1.03 mmol) in CH2Cl2 was added dropwise to an ice-cold solution of 4-hexyloxyaniline (203 mg,

1.05 mmol) in a mixture of 20 ml CH2C12 and 4 ml Et3N. After stirring for 8 hr under argon, the

reaction mixture was washed with 1 N NaOH followed by 1 N HC1 and saturated NaCl solution.

The organic layer was dried over anhydrous MgSO4 , filtered, and concentrated to dryness. The

residue remaining was recrystallized from hot EtOH to give 16 as pale pink plates (208 mg,

37%). H NMR (CDC13, ppm): 0.91 (m, 3H), 1.33-1.37 (m, 4H), 1.78 (m, 2H), 2.41 (s, 3H), 3.95

(t, 2H, 6.8 Hz), 6.89 (app dd, 2H, 2.0 Hz, 6.5 Hz), 7.44 (s, 1H), 7.50 (app dd, 2H, 2.0 Hz, 6.5

Hz), 7.73 (s, 1H), 7.90 (s, 1H). 3C NMR (CDC13, ppm): 14.27, 22.83, 25.92, 27.70, 29.43,

31.80, 68.53, 92.25, 100.80, 115.08, 122.13, 130.37, 138.58, 140.63, 141.22, 145.60, 156.72,

165.44. HRMS: [C20H2 3NO2I2-H] requires 561.9745, found 561.9729.

Polymer synthesis. PPEs were synthesized by standard methods. In a typical synthesis,

monomer 4 (17 mg, 0.018 mmol), 2,5-diethynyl-1,4-bis(hexadecyloxy)benzene (11 mg, 0.018

mmol), Pd(PPh3) 4 and CuI (catalytic amounts) were dissolved in freshly degassed 4:1

toluene/diisopropylamine (2 ml) under argon and stirred at 600 overnight. The reaction mixture

was diluted with a small quantity of CH2Cl2 , washed with saturated NaHCO3 and NaCl solutions,

dried over anhydrous MgSO4 and concentrated. Slow addition of the concentrated CH2C12

solution to MeOH resulted in the precipitation of the PPE as a yellow solid. Polymer 12 was

collected by centrifugation, washed several times with fresh MeOH, and allowed to air-dry.
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Polymers 13 and 14 were prepared and purified by an analogous method using 2,5-diethynyl-1,4-

bis(hexadecyloxy)benzene and monomers 6 and 11, respectively. Polymer Mn values were on the

order of 1-2x104 with PDI values of 1.3-2.0. 1H NMR spectra of these polymers are included in

the appendix.

Fluorescence studies. Fluorescence spectra were measured on a Spex Fluorolog 2 fluorimeter

in quartz cuvettes. Fluorescence lifetimes were measured using phase modulation at 10

frequencies between 10 and 220 MHz and referenced to a colloidal-silica standard (r = 0). For

Stern-Volmer quenching studies, quenchers were dissolved in solutions equal in polymer

concentration to the assay solution. Lifetime Stern-Volmer studies showed consistent r values in

each case (0.55 + 0.02 ns) regardless of quencher concentration.

X-ray crystal structure determination. Crystals suitable for X-ray analysis were grown by

slow evaporation of CH2Cl2-MeOH solutions of 4 and 6. Crystal structure determination was

performed by Dr. William Davis (MIT X-ray Crystallography Facility) using a Bruker Smart

diffractometer equipped with a Kappa CCD area detector using radiation from a Mo-Ka source

monochromated through graphite ( = 0.71073 A). Structures were solved and refined using the

Bruker SHELXTL package. Crystal structure numbering schemes and data are reproduced

below.
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a
C34a C44a

C1 9a

3a

021a

Figure 4.9. The paco conformation of 4, showing the crystallographic numbering scheme. The structure depicted
above represents half of the molecules in the crystal. In the numbering scheme, atoms belonging to the above
molecule take the suffix 'a' while those belonging to the paco isomer of the other molecule take the suffix 'c'.
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Table 4.2. Crystal data and structure refinement for 4.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
z
Density (calculated)
Absorption coefficient
F(000)
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta = 23.000
Absorption correction
Refinement method
Data / restraints / parameters
Goodness-of-fit on F2

Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole

C4 4.12 5 H44 C10.2 5 2 08
964.96
193(2) K
0.71073 A
Orthorhombic
Pbca
a = 21.553(2) A
b = 16.1747(17) A
c = 47.940(5) A
16712(3) A3

a= 90° .

3= 900.

= 900 .

16
1.534 Mg/m 3

1.572 mm-'
7728
1.27 to 23.000.
-22<=h<=23, -17<=k<=17, -52<=1<=33
71892
11637 [R(int) = 0.0463]
100.0 %
None
Full-matrix least-squares on F2

11637/3/ 1038
2.107
R1 = 0.0607, wR2 = 0.1209
R1 = 0.0699, wR2 = 0.1223
0.674 and -0.639 e.A-3

Table 4.3. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2x 103)

for 4. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

x y z U(eq)

I(1A)
I(2A)
O(1A)
0(2A)
0(3A)
0(4A)
0(5A)
0(6A)
0(7A)
0(8A)
C(1A)
C(2A)
C(3A)
C(4A)
C(5A)
C(6A)
C(7A)

3006(1)
4763(1)
4840(2)
6033(2)
6588(2)
2939(2)
3810(2)
4987(2')
5910(2)
6793(3)
3533(3)
3417(3)
3768(3)
4240(3)
4364(3)
4002(3)
4920(3)

7720(1)
9131(1)
7490(3)
6501(3)
7850(2)
9407(3)
9802(3)
9096(3)
9407(2)
7896(4)
8155(4)
8931(4)
9189(4)
8704(4)
7932(4)
7650(4)
6640(4)

3215(1)
2096(1)
2436(1)
2462(1)
2769(1)
2871(1)
3301(1)
3514(1)
3065(1)
3726(1)
2875(1)
2767(1)
2544(1)
2436(1)
2551(1)
2772(1)
2519(2)

67(1)
56(1)
47(1)
57(1)
45(1)
50(1)
47(1)
46(1)
37(1)
77(2)
43(2)
39(2)
43(2)
40(2)
45(2)
46(2)
55(2)
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C(8A)
C(9A)
C(1 OA)

C(11 A)
C(12A)
C(13A)
C(14A)
C(15A)
C(16A)
C(17A)
C(18A)
C(19A)
C(20A)
C(21A)
C(22A)
C(23A)
C(24A)
C(25A)
C(26A)
C(27A)
C(28A)
C(29A)
C(30A)
C(31A)
C(32A)
C(33A)
C(34A)
C(35A)
C(36A)
C(37A)
C(38A)
C(39A)
C(40A)
C(41A)
C(42A)
C(43A)
C(44A)
I(1B)
I(2B)
O(1B)
0(2B)
0(3B)
0(4B)
0(5B)
0(6B)
0(7B)
0(8B)
C(1B)
C(2B)
C(3B)
C(4B)
C(5B)
C(6B)
C(7B)
C(8B)
C(9B)

5437(3)
6271(3)
6810(3)
3085(3)
3272(.3)
3981(.3)
4388(.3)

5435(.3)
5614(3)
6065(3)
6326(4)
6153(4)
5718(:3)
5585(4)
5719(4)
6307(4)
6454(4)
5965(5)
5368(4)
5245(4)
7105(4)

7333(3;)
7054(2;)
7199(3)
7680(3)
7987(3;)
7815(4)
6819(3)
6526(3)
6080(3)
5825(3)
6044(3)
6480(3)
6716(3)

5353(31)
5409(3)
7095(5')
5159(1,)
2022(1)
3995(2'
4033(2)
4455(2)
3173(2)
3007(2)
3509(2)
3346(2')
4665(5')
4206(2,)

3773(3')
3146(3)
2967(3,i
3399(3)
4026(3)
3546(3)
3887(3)
4649(3)

6264(4)
7242(4)

7537(4)
10227(4)
10275(4)

9774(5)
9039(5)
9481(4)
10277(4)
10664(5)
10256(5)
9456(6)
9034(4)
8132(4)
7571(4)
7479(4)
7022(4)
6615(4)
6660(5)
7143(5)
7007(5)
7847(5)
8261(4)
9073(4)
9456(5)
9044(7)
8248(7)
9558(4)
10307(4)
10196(4)
10874(3)
11664(4)
11783(4)
11115(4)
10736(4)
9058(4)
7378(8)
2846(1)
1868(1)
3910(2)
4764(3)
3277(2)
777(2)
-739(2)
-205(2)
1923(2)
1078(6)
2552(3)
3165(3)
2966(3)
2167(4)
1551(3)
1758(3)
4509(3)
5112(3)
4485(4)

2354(2)
2339(1)
2507(1)
2953(1)
3255(1)
3589(1)
3639(2)
3678(1)
3609(1)
3775(1)
3998(2)
4054(2)
3890(1)
3944(1)
3695(1)
3590(1)
3354(1)
3228(2)
3328(2)
3561(2)
3229(2)
3140(1)
2918(1)
2848(1)
3000(2)
3202(2)
3276(2)
2643(1)
2778(1)
2987(1)
3133(1)
3061(1)
2859(1)
2720(1)
3356(1)
2907(1)
3939(2)
10294(1)
10358(1)
10148(1)
9597(1)
9289(1)
10430(1)
10101(1)
9540(1)
9332(1)
9357(3)
10298(1)
10235(1)
10259(1)
10327(1)
10378(1)
10371(1)
10046(1)
9861(1)
9568(1)

57(2)
52(2)
51(2)
51(2)
47(2)
54(2)
63(2)
43(2)
41(2)
59(2)
75(2)
76(2)
52(2)
65(2)
57(2)
55(2)
60(2)
70(2)
70(2)
67(2)
72(2)
55(2)
47(2)
47(2)
60(2)

75(3)
74(3)
50(2)
42(2)
39(2)
36(1)
50(2)
52(2)
53(2)
44(2)
43(2)
134(5)
45(1)
50(1)
41(1)
47(1)
40(1)
53(1)
44(1)
44(1)
42(1)
81(3)
32(1)
31(1)
34(1)
37(1)
36(1)
37(1)
45(2)
41(2)
43(2)
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C(lOB)
C(11B)
C(12B)
C(13B)
C(14B)
C(1 SB)
C(16B)
C(17B)
C(18B)
C(19B)
C(20B)
C(21B)
C(22B)
C(23B)
C(24B)
C(25B)
C(26B)
C(27B)
C(28B)
C(29B)
C(30B)
C(31B)
C(32B)
C(33B)
C(34B)
C(35B)
C(36B)
C(37B)
C(38B)
C(39B)
C(40B)
C(41B)
C(42B)
C(43B)
C(44B)
C(36C)
C(37C)
C(38C)
C(39C)
C(40C)
C(41(C)

C(44C)
0(8C)
C1(2S)
C(101)
Cl(lS)

4722(3)
3598(3)
3218(3)
3450(3)
3285(.3)
3463(.3)
2936(3)
2890(3)
3353(3)
3883('3)
3955(3)
2441(3)
2288(3)
2768(3)
2693(3)
2108(3)
1616(3)
1713(3)
3240(3)
3777(3)
4359( 3)
4833(3)
4718(23)

4156(4)
3687(3)
5415(3)
5503(9)
5109(3)
5089(9)
5628(9)
6020(7)
6047(9)
4574(3)
3418(4)
4928(15)
5251(5)
5109(3)
4853(6)
4846(5,1

5039(9)
5235(5)
5627(8)
5110(3)
7238(6)
7344(1.3)
7030(11)

4090(4)
99(4)
-666(4)
-1147(4)
-1003(4)
-89(3)
296(4)
402(4)
138(4)
-211(4)
-322(3)
664(4)
1541(3)
2120(4)
2881(4)
3060(4)
2527(4)
1755(4)
3451(4)
3049(3)
2958(3)
2507(4)
2198(4)
2311(4)
2719(4)
2251(4)
1350(11)
787(4)
-50(11)
-354(12)
191(10)
1006(12)
-595(3)
2125(5)
1060(30)
1604(7)
787(4)
203(8)
356(8)
1116(11)
1737(6)
289(10)
624(4)
-220(9)
573(15)
1278(14)

9285(1)
10423(2)
10380(1)
9923(1)
9625(1)
9254(1)
9147(1)
8858(1)
8685(1)
8795(1)
9083(1)
9341(1)
9246(1)
9225(1)
9090(1)
8982(1)
9010(2)
9146(1)
9054(1)
8900(1)
9023(1)
8895(1)
8627(1)
8498(1)
8634(1)
9048(2)
9099(5)
9156(1)
9139(5)
8936(4)
8842(3)
8901(3)
9199(1)
9627(1)
9655(6)
9245(3)
9156(1)
9335(3)
9608(2)
9702(5)
9522(2)
8764(3)
8859(1)
8800(3)
8881(7)
8962(4)

Table 4.4. Bond lengths [A] and angles [] for 4.

I( 1A)-C( lA)
I(2A)-C(4A)
O( 1A)-C(SA)

2.105(6)
2.097(6)
1.365(7)

O( 1A)-C(7A)
O(2A)-C(9A)
O(2A)-C(8A)
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46(2)
53(2)
48(2)
55(2)
55(2)
37(2)
40(2)
44(2)
45(2)
49(2)
39(2)
45(2)
39(2)
38(2)
41(2)
51(2)
59(2)
47(2)
45(2)
41(2)
36(1)
43(2)
53(2)
54(2)
49(2)
50(2)
84(7)
40(2)
112(9)
86(6)
52(2)
91(6)
41(2)
72(2)
134(5)
22(3)
40(2)
36(1)
26(3)
52(2)
23(2)
64(5)
24(2)
141(5)
47(2)
490(30)

1.442(7)
1.430(8)
1.437(7)



0(3A)-C(30A)
0(3A)-C(1 OA)
0(4A)-C(2A)
0(4A)-C(11A)
0(5A)-C(12A)
O(5A)-C(13A)
0(6A)-C(1 5A)
0(6A)-C(14A)
0(7A)-C(37A)
0(7A)-C(43A)
0(8A)-C(23A)
0(8A)-C(44A)
C(1A)-C(2A)
C(1A)-C(6A)
C(2A)-C(3A)
C(3A)-C(4A)
C(4A)-C(5A)
C(5A)-C(6A)
C(7A)-C(8A)
C(9A)-C(1 OA)
C(11A)-C(12A)
C(13A)-C(14A)
C(15A)-C(16A)
C(15A)-C(20A)
C(16A)-C(17A)
C(16A)-C(42A)
C(17A)-C(18A)
C(18A)-C(19A)
C(19A)-C(20A)
C(20A)-C(21A)
C(21A)-C(22A)
C(22A)-C(23A)
C(22A)-C(27A)
C(23A)-C(24A)
C(24A)-C(25A)
C(24A)-C(28A)
C(25A)-C(26A)
C(26A)-C(27A)
C(28A)-C(29A)
C(29A)-C(34A)
C(29A)-C(30A)
C(30A)-C(31A)
C(31A)-C(32A)
C(3 1A)-C(35A)
C(32A)-C(33A)
C(33A)-C(34A)
C(35A)-C(36A)
C(36A)-C(41A)
C(36A)-C(37A)
C(37A)-C(38A)
C(38A)-C(39A)
C(38A)-C(42A)
C(39A)-C(40A)
C(40A)-C(41A)
I(1B)-C(1B)
I(2B)-C(4B)

1.401(7)
1.436(7)
1.377(7)
1.419(8)
1.407(7)
1.429(7)
1.392(7)
1.427(7)
1.378(7)
1.433(7)
1.406(9)
1.470(10)
1.382(8)
1.391(9)
1.374(8)
1.387(8)
1.391(8)
1.392(9)
1.495(9)
1.489(8)
1.504(8)
1.498(9)
1.384(9)
1.389(9)
1.402(9)
1.529(8)
1.376(10)
1.373(11)
1.402(10)
1.510(9)
1.529(9)
1.370(9)
1.390(10)
1.389(9)
1.384(11)
1.525(10)
1.374(11)
1.389(10)
1.508(10)
1.388(10)
1.392(9)
1.392(9)
1.411(9)
1.503(9)
1.348(11)
1.385(12)
1.512(8)
1.399(9)
1.400(8)
1.412(8)
1.407(8)
1.492(8)
1.360(9)
1.368(9)
2.109(5)
2.100(5)

O(1B)-C(2B)

O(1B)-C(7B)

0(2B)-C(9B)

0(2B)-C(8B)

0(3B)-C(30B)

0(3B)-C(10B)
0(4B)-C(5B)
0(4B)-C(1 B)
O(5B)-C(12B)
O(5B)-C(13B)
0(6B)-C(1 5B)
0(6B)-C(14B)
0(7B)-C(23B)
0(7B)-C(43B)
0(8B)-C(37B)
0(8B)-C(44B)
C(1B)-C(6B)
C(1B)-C(2B)
C(2B)-C(3B)
C(3B)-C(4B)
C(4B)-C(5B)
C(5B)-C(6B)
C(7B)-C(8B)
C(9B)-C(1 OB)
C(11B)-C(12B)
C(13B)-C(14B)
C(15B)-C(16B)
C(15B)-C(20B)
C(16B)-C(17B)
C(16B)-C(21B)
C(17B)-C(18B)
C(18B)-C(19B)
C(19B)-C(20B)
C(20B)-C(42B)
C(21B)-C(22B)
C(22B)-C(27B)
C(22B)-C(23B)
C(23B)-C(24B)
C(24B)-C(25B)
C(24B)-C(28B)
C(25B)-C(26B)
C(26B)-C(27B)
C(28B)-C(29B)
C(29B)-C(30B)
C(29B)-C(34B)
C(30B)-C(31B)
C(31B)-C(32B)
C(31B)-C(35B)
C(32B)-C(33B)
C(33B)-C(34B)
C(35B)-C(36B)
C(36B)-C(37B)
C(36B)-C(41B)
C(37B)-C(38B)
C(38B)-C(42B)
C(38B)-C(39B)
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1.362(6)
1.454(7)
1.408(7)
1.418(7)
1.393(7)
1.436(7)
1.367(7)
1.429(7)
1.419(7)
1.440(7)
1.388(7)
1.437(7)
1.383(7)
1.459(7)
1.438(12)
1.54(3)
1.385(8)
1.395(8)
1.394(8)
1.388(8)
1.385(8)
1.393(8)
1.508(8)
1.506(8)
1.499(8)
1.490(9)
1.393(8)
1.394(8)
1.400(8)
1.536(8)
1.366(8)
1.381(8)
1.399(8)
1.510(8)
1.525(8)
1.372(8)
1.399(8)
1.401(8)
1.392(8)
1.507(8)
1.374(9)
1.425(9)
1.518(8)
1.394(8)
1.398(8)
1.397(8)
1.399(9)
1.512(9)
1.373(9)
1.371(9)
1.490(18)
1.275(18)
1.61(3)
1.357(18)
1.446(18)
1.59(3)



C(39B)-C(40B)
C(40B)-C(41B)
C(36C)-C(41C)
C(38C)-C(39C)
C(39C)-C(40C)

C(5A)-O(1A)-C(7A)
C(9A)-0(2A)-C(8A)
C(30A)-0(3A)-C(1OA)
C(2A)-0(4A)-C(11A)

C(12A)-O(5A)-C(13A)

C(15A)-0(6A)-C(14A)
C(37A)-0(7A)-C(43A)
C(23A)-0(8A)-C(44A)
C(2A)-C(1A)-C(6A)
C(2A)-C(1A)-I(A)
C(6A)-C(IA)-I(1A)
C(3A)-C(2A)-0(4A)
C(3A)-C(2A)-C(1A)
0(4A)-C(2A)-C(1A)
C(2A)-C(3A)-C(4A)
C(3A)-C(4A)-C(5A)
C(3A)-C(4A)-I(2A)
C(5A)-C(4A)-I(2A)
O(1A)-C(SA)-C(4A)
O(1A)-C(5A)-C(6A)
C(4A)-C(5A)-C(6A)
C(1A)-C(6A)-C(5A)
O(1A)-C(7A)-C(8A)
0(2A)-C(8A)-C(7A)
0(2A)-C(9A)-C(1OA)
0(3A)-C(1OA)-C(9A)
0(4A)-C(1 1A)-C(12A)
O(5A)-C(12A)-C(1 A)
0(5A)-C( 13A)-C(14A)
0(6A)-C(14A)-C(13A)
C(16A)-C(15A)-C(20A)
C(16A)-C(15A)-0(6A)
C(20A)-C( 1 5A)-0(6A)
C(15A)-C(16A)-C(17A)

C(15A)-C(16A)-C(42A)

C(17A)-C(16A)-C(42A)

C(18A)-C(17A)-C(16A)
C(19A)-C(18A)-C(17A)
C(18A)-C(19A)-C(20A)
C(15A)-C(20A)-C(19A)
C(15A)-C(20A)-C(21A)
C(19A)-C(20A)-C(21A)
C(20A)-C(21A)-C(22A)
C(23A)-C(22A)-C(27A)
C(23A)-C(22A)-C(21A)
C(27A)-C(22A)-C(21A)
C(22A)-C(23A)-C(24A)
C(22A)-C(23A)-0(8A)
C(24A)-C(23A)-0(8A)

1.30(2)
1.35(2)
1.346(16)
1.332(16)
1.37(2)

118.6(5)
113.4(5)
112.1(5)
117.2(5)
112.2(4)
114.9(5)
115.1(4)
112.1(7)
122.1(6)
119.7(5)
118.2(5)
121.5(6)
117.9(6)
120.5(5)
121.6(6)
120.0(6)
120.0(5)
120.0(5)
117.0(6)
123.7(6)
119.2(6)
119.1(6)
109.4(5)
111.6(6)
109.1(6)
109.0(5)
112.2(5)
109.9(5)
109.4(5)
114.2(6)
122.4(6)
118.4(5)
119.0(6)
118.3(6)
122.5(6)
119.2(6)
120.6(7)
119.6(7)
121.9(7)
116.9(7)
123.0(6)
120.1(7)
113.9(6)
117.2(7)
121.6(7)
121.1(7)
124.5(8)
118.0(7)
117.5(7)

C(40C)-C(41 C)
C(44C)-0(8C)
Cl(2S)-C(101)
C(101)-Cl(1S)

C(25A)-C(24A)-C(23A)
C(25A)-C(24A)-C(28A)
C(23A)-C(24A)-C(28A)
C(26A)-C(25A)-C(24A)
C(25A)-C(26A)-C(27A)
C(26A)-C(27A)-C(22A)
C(29A)-C(28A)-C(24A)
C(34A)-C(29A)-C(30A)
C(34A)-C(29A)-C(28A)
C(30A)-C(29A)-C(28A)
C(31A)-C(30A)-C(29A)
C(3 1A)-C(30A)-0(3A)
C(29A)-C(30A)-0(3A)
C(30A)-C(31A)-C(32A)
C(30A)-C(31A)-C(35A)
C(32A)-C(31A)-C(35A)
C(33A)-C(32A)-C(3 1A)
C(32A)-C(33A)-C(34A)
C(33A)-C(34A)-C(29A)
C(31A)-C(35A)-C(36A)
C(41A)-C(36A)-C(37A)
C(41A)-C(36A)-C(35A)
C(37A)-C(36A)-C(35A)
0(7A)-C(37A)-C(36A)
0(7A)-C(37A)-C(38A)
C(36A)-C(37A)-C(38A)
C(39A)-C(38A)-C(37A)
C(39A)-C(38A)-C(42A)
C(37A)-C(38A)-C(42A)
C(40A)-C(39A)-C(38A)
C(39A)-C(40A)-C(41A)
C(40A)-C(41A)-C(36A)
C(38A)-C(42A)-C(16A)
C(2B)-O(1B)-C(7B)

C(9B)-0(2B)-C(8B)

C(30B)-0(3B)-C(1OB)

C(5B)-0(4B)-C(1 B)
C(12B)-0(5B)-C(13B)

C(15B)-0(6B)-C(14B)

C(23B)-0(7B)-C(43B)

C(37B)-0(8B)-C(44B)

C(6B)-C(1B)-C(2B)

C(6B)-C(1B)-I(1B)

C(2B)-C(1B)-I(1B)

O(1B)-C(2B)-C(3B)

O(1B)-C(2B)-C(1B)
C(3B)-C(2B)-C(1B)
C(4B)-C(3B)-C(2B)
C(5B)-C(4B)-C(3B)
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1.39(2)
1.318(17)
1.36(2)
1.38(2)

115.9(8)
121.4(7)
122.6(8)
122.3(7)
119.3(8)
120.7(8)
113.4(6)
117.3(7)
122.0(7)
120.7(7)
122.7(6)
119.1(6)
118.1(6)
117.1(7)
121.8(6)
120.7(7)
121.0(8)
120.8(8)
120.9(8)
111.3(5)
117.7(6)
122.7(6)
119.4(5)
119.6(5)
118.8(5)
121.5(5)
116.8(6)
122.8(5)
120.3(5)
122.5(6)
119.5(6)
122.0(6)
112.9(5)
117.3(4)
115.2(4)
112.8(4)
118.1(5)
112.6(5)
112.2(4)
113.7(5)
111.8(15)
121.8(5)
118.9(4)
119.3(4)
124.7(5)
117.5(5)
117.8(5)
120.1(5)
121.7(5)



C(5B)-C(4B)-I(2B) 118.3(4)
C(3B)-C(4B)-I(2B) 120.0(4)
0(4B)-C(5B)-C(4B) 116.9(5)
0(4B)-C(5B)-C(6B) 124.7(5)
C(4B)-C(5B)-C(6B) 118.4(5)
C(1B)-C(6B)-C(5B) 119.9(5)
O(1B)-C(7B)-C(8B) 107.8(5)
0(2B)-C(8B)-C(7B) 112.1(5)
0(2B)-C(9B)-C(1 OB) 109.0(5)
0(3B)-C(1OB)-C(9B) 109.5(5)
0(4B)-C(1 1B)-C(12B) 106.6(5)
O(5B)-C(12B)-C(1 lB) 111.9(5)
O(5B)-C(13B)-C(14B) 109.7(5)
0(6B)-C(14B)-C(13B) 109.4(6)
0(6B)-C(15B)-C(16B) 118.9(5)
0(6B)-C(15B)-C(20B) 119.4(5)
C(16B)-C(15B)-C(20B) 121.7(6)
C(15B)-C(16B)-C(17B) 118.4(6)
C(15B)-C(16B)-C(21B) 121.1(6)
C(17B)-C(16B)-C(21B) 120.3(5)
C(18B)-C(17B)-C(16B) 120.9(6)
C(17B)-C(18B)-C(19B) 119.9(6)
C(18B)-C(19B)-C(20B) 121.4(6)
C(15B)-C(20B)-C(19B) 117.5(6)
C(15B)-C(20B)-C(42B) 122.3(6)
C(19B)-C(20B)-C(42B) 119.9(6)
C(22B)-C(21B)-C(16B) 109.2(5)
C(27B)-C(22B)-C(23B) 118.3(6)
C(27B)-C(22B)-C(2 1B) 122.2(5)
C(23B)-C(22B)-C(21B) 119.0(5)
0(7B)-C(23B)-C(22B) 119.1(5)
0(7B)-C(23B)-C(24B) 118.5(5)
C(22B)-C(23B)-C(24B) 122.4(6)
C(25B)-C(24B)-C(23B) 117.4(6)
C(25B)-C(24B)-C(28B) 122.5(6)
C(23B)-C(24B)-C(28B) 120.0(6)
C(26B)-C(25B)-C(24B) 122.1(6)
C(25B)-C(26B)-C(27B) 118.7(6)
C(22B)-C(27B)-C(26B) 120.9(6)
C(24B)-C(28B)-C(29B) 113.0(5)
C(30B)-C(29B)-C(34B) 118.0(6)
C(30B)-C(29B)-C(28B) 121.7(6)
C(34B)-C(29B)-C(28B) 120.1(6)
0(3B)-C(30B)-C(29B) 118.8(5)
0(3B)-C(30B)-C(31B) 119.2(5)
C(29B)-C(30B)-C(3 1B) 121.8(6)
C(30B)-C(3 1B)-C(32B) 117.4(6)
C(30B)-C(31B)-C(35B) 122.4(6)
C(32B)-C(31B)-C(35B) 119.7(6)
C(33B)-C(32B)-C(3 1B) 121.5(6)
C(34B)-C(33B)-C(32B) 120.0(6)
C(33B)-C(34B)-C(29B) 121.0(6)
C(36B)-C(35B)-C(31B) 116.9(8)
C(37B)-C(36B)-C(35B) 130.5(16)
C(37B)-C(36B)-C(41B) 111.5(16)
C(35B)-C(36B)-C(4 1B) 109.5(16)

C(36B)-C(37B)-C(38B) 136.2(16)
C(36B)-C(37B)-0(8B) 110.8(13)
C(38B)-C(37B)-0(8B) 110.2(14)
C(37B)-C(38B)-C(42B) 128(2)
C(37B)-C(38B)-C(39B) 108.7(16)
C(42B)-C(38B)-C(39B) 119.5(17)
C(40B)-C(39B)-C(38B) 118.5(15)
C(39B)-C(40B)-C(41B) 128.0(16)
C(40B)-C(41B)-C(36B) 115.4(15)
C(38B)-C(42B)-C(20B) 115.2(7)
C(38C)-C(39C)-C(40C) 119.0(13)
C(39C)-C(40C)-C(41C) 122.3(16)
C(36C)-C(41C)-C(40C) 120.3(12)
Cl(2S)-C(101)-Cl(1S) 141(3)

156



Table 4.5. Anisotropic displacement parameters (A2 x 103) for 4. The anisotropic displacement factor exponent
takes the form: -22r2[ h2 a*2U1l + ... + 2 h k a* b* U 12 ]

U 11 U2 2 U3 3 U2 3 U 13 U' 2

I(1A)
I(2A)
O(1A)
0(2A)
0(3A)
0(4A)
0(5A)
0(6A)
0(7A)
0(8A)
C(1A)
C(2A)
C(3A)
C(4A)
C(5A)
C(6A)
C(7A)
C(8A)
C(9A)
C(1OA)
C(11A)
C(12A)
C(13A)
C(14A)
C(15A)
C(16A)
C(17A)
C(18A)
C(19A)
C(20A)
C(21A)
C(22A)
C(23A)
C(24A)
C(25A)
C(26A)
C(27A)
C(28A)
C(29A)
C(30A)
C(31 A)
C(32A)
C(33A)
C(34A)
C(35A)
C(36A)
C(37A)
C(38A)
C(39A)

70(1)
63(1)
51(3)
53(3)
37(3)
34(3)
36(2)
42(3)
36(2)
80(4)
42(4)
44(4)
44(4)
42(4)
48(4)
53(4)
58(5)
60(5)

50(4)
46(4)
46(4)
45(4)
32(4)

44(4)
36(4)
41(4)
67(5)
89(6)
84(6)
59(5)
86(6)
86(6)
72(5)
92(6)
118(8)
87(6)
91(6)
88(6)
55(5)
36(4)
34(4)
46(5)
44(5)
52(5)
45(4)
38(4)
37(4)
35(3)
61(5)

74(1)
63(1)
40(2)
49(3)
50(3)
60(3)
62(3)
58(3)
37(2)
107(4)

55(4)
43(4)
43(4)
50(4)
44(4)
45(4)
48(4)
47(4)
53(4)
60(4)
51(4)

44(4)
88(5)
85(6)
62(5)
51(4)
60(5)
80(6)
107(7)
61(5)
73(5)
50(4)
52(4)

47(4)
51(5)
62(5)
62(5)
80(6)
65(5)
58(5)
64(5)
76(5)
110(8)
122(8)
57(4)
45(4)
38(4)
32(3)
37(4)

59(1)
43(1)
50(3)
68(3)

47(3)
55(3)
42(3)
38(3)
39(2)
44(3)
33(4)
30(4)
42(4)
30(4)
42(4)
39(4)
60(5)
64(5)
52(4)

47(4)
55(5)
52(4)
41(4)
59(5)
32(4)
31(4)
48(5)
56(5)
36(5)

37(4)
36(4)
33(4)
40(4)
40(4)
42(5)
60(5)
49(5)
49(5)
46(4)
46(4)
43(4)
58(5)
72(6)
49(5)
48(4)
44(4)
42(4)
43(3)
53(4)

9(1)
4(1)
-1(2)
-8(2)
-10(2)
-5(2)
-10(2)
1(2)
-2(2)
-6(3)

2(3)
-3(3)
-3(3)
0(3)
-2(3)
-1(3)
11(4)
-13(4)
-12(4)
-19(3)
-1(3)
-10(3)

-7(4)
8(4)
-11(3)

-9(3)
-29(4)
-24(5)
-10(5)
-4(3)
7(4)
9(3)
14(3)
6(3)
-2(4)
6(4)
18(4)

-7(4)
-10(4)
-17(3)
-12(4)
-27(4)
-37(6)
-28(5)
-5(3)
-5(3)
6(3)
-4(3)
-5(3)

15(1)
11(1)
6(2)
-13(2)
1(2)
1(2)
2(2)
5(2)
5(2)
-13(3)
4(3)
0(3)
-4(3)
4(3)
-7(3)
-5(3)
-1(4)
-6(4)
-7(3)
0(3)
7(3)
4(3)
6(3)
10(3)
4(3)
4(3)
-3(4)
-29(4)
-21(4)
4(3)
8(4)
5(4)
-3(4)
-2(4)
11(5)

9(5)
21(4)
-3(4)
6(4)
1(3)
11(3)
9(4)
-6(4)
-19(4)
15(3)
6(3)
-5(3)
-4(3)
-20(4)

-17(1)
2(1)
6(2)
10(2)
5(2)
1(2)
3(2)
0(2)
-4(2)
32(3)
-10(3)
-6(3)
-1(3)
-6(3)
0(3)
-6(3)
10(4)
1(4)
6(4)
11(3)
6(3)
7(3)
1(4)
-5(4)
11(3)
10(3)
6(4)
7(5)
22(5)
14(4)
18(4)
7(4)
14(4)
22(4)
18(5)
-4(4)
2(4)
44(5)
24(4)
6(3)
-2(3)
-6(4)
4(5)
37(5)
-10(3)
-13(3)
-11(3)
3(3)
4(3)

157



C(40A)
C(41A)
C(42A)
C(43A)
C(44A)
I(1B)
I(2B)
O(1B)
O(2B)
O(3B)
O(4B)
O(5B)
O(6B)
O(7B)
O(8B)
C(1B)
C(2B)
C(3B)
C(4B)
C(5B)
C(6B)
C(7B)
C(8B)
C(9B)
C(1OB)
C(1 B)
C(12B)
C(13B)
C(14B)
C(15B)
C(16B)
C(17B)
C(18B)
C(19B)
C(20B)
C(21B)
C(22B)
C(23B)
C(24B)
C(25B)
C(26B)
C(27B)
C(28B)
C(29B)
C(30B)
C(31B)
C(32B)
C(33B)
C(34B)
C(35B)
C(36B)
C(37B)
C(38B)
C(39B)
C(40B)
C(41B)

60(4)
36(4)
41(4)
41(4)
114(8)
35(1)
36(1)
40(2)
43(3)
47(3)
36(3)
40(3)
49(3)
32(2)
56(7)
26(3)
42(4)
35(4)
31(3)
39(4)
34(4)
51(4)
48(4)
45(4)
52(4)
37(4)
47(4)
61(5)
69(5)
47(4)
41(4)
40(4)
45(4)
46(4)
45(4)
37(4)
35(4)
33(4)
50(4)
51(5)
51(5)
36(4)
53(4)
54(4)
45(4)
51(4)
65(5)
85(6)
65(5)
38(4)
71(14)
24(3)
89(15)
78(13)
60(4)
112(16)

40(3)
68(5)
40(4)
45(4)
230(13)
41(1)
36(1)
26(2)
54(3)
31(2)
28(2)
48(3)
39(3)
48(3)
73(7)
33(3)
23(3)
33(4)
36(4)
22(3)
28(3)
24(3)
34(4)
43(4)
38(4)
32(4)
38(4)
47(4)
38(4)
23(3)
31(3)
38(4)
51(4)
42(4)
27(3)
49(4)
32(3)
41(4)
29(4)
42(4)
52(4)
44(4)
27(3)
24(3)
30(3)
30(3)
40(4)
39(4)
36(4)
45(4)
47(11)
40(4)
58(12)
85(14)
40(3)
109(16)

57(4)
54(5)
50(4)
44(4)
59(6)
58(1)
79(1)
58(3)
45(3)
42(3)
93(4)
45(3)
43(3)
45(3)
114(10)
37(3)
29(3)
35(4)
43(4)
48(4)
48(4)
61(4)
40(4)
39(4)
47(4)
90(5)
60(5)
56(5)
58(5)
42(4)
48(4)
54(5)
38(4)
58(5)
46(4)
47(4)
50(4)
38(4)
45(4)
60(5)
75(5)
62(5)
56(4)
47(4)
33(4)
46(4)
53(5)
39(4)
47(4)
68(5)
130(20)
55(4)
190(20)
97(15)
57(4)
52(11)

-2(3)
12(4)
-10(3)
-1(3)
-2(7)
5(1)
12(1)
6(2)
-5(2)
1(2)
17(2)
5(2)
12(2)
4(2)
6(7)
-1(3)
-4(2)
0(3)
2(3)
5(3)
4(3)
6(3)
2(3)
-6(3)
-3(3)
10(3)
16(3)
21(3)
14(3)
7(3)
-1(3)
-1(3)
3(3)
-9(3)
8(3)
3(3)
-7(3)
-7(3)
-12(3)
-9(3)
-26(4)
-20(3)
-5(3)
1(3)

4(3)
4(3)
-4(3)
4(3)
7(3)
1(3)

24(12)
1(3)

62(14)
-63(12)
-2(3)
16(10)

0(3)
1(3)

0(3)
4(3)
-18(5)
0(1)
-1(1)
2(2)
-6(2)
1(2)

-8(2)
-4(2)
-4(2)
-6(2)
2(6)
0(3)
1(3)

1(3)

1(3)

-7(3)
0(3)
1(3)

1(3)

2(3)
8(3)
-19(3)
-9(3)
6(4)
6(4)
-8(3)
5(3)
-12(3)
-4(3)
-3(3)
-2(3)
-6(3)
-2(3)
2(3)
-3(3)
-14(3)
-24(4)
-10(3)
-9(3)
-1(3)
1(3)

10(3)
25(4)
-4(4)
-14(4)
12(3)
-64(13)
9(3)
-115(16)
-23(10)
0(3)
14(10)

-11(3)
-20(4)
12(3)
-11(3)
80(8)
-5(1)
-4(1)
-4(2)
1(2)

-11(2)
-2(2)
-6(2)
-10(2)
2(2)
10(6)
-4(3)
-1(3)
5(3)
-6(3)
-3(3)
2(3)
1(3)

-1(3)
-10(3)
-13(3)
0(3)
-5(3)
9(4)
-1(4)
-8(3)
-4(3)
-2(3)
4(3)
-5(3)
-3(3)
-9(3)
0(3)
4(3)
4(3)
14(3)
11(4)
-2(3)
0(3)
-3(3)
-9(3)
-16(3)
-9(3)
-5(4)
-7(3)
-11(3)
-16(11)
4(3)
-41(11)
34(11)
-11(3)
-32(12)
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C(42B)
C(43B)
C(44B)
C(36C)
C(37C)
C(38C)
C(39C)
C(40C)
C(41C)
C(44C)
0(8C)
C1(2S)
C(101)
Cl(1S)

49(4)
68(5)
114(8)
11(6)
24(3)
35(3)
11(6)
60(4)
28(6)
80(13)
25(4)
95(8)
45(4)
550(50)

27(3)
115(7)
230(13)
22(7)
40(4)
32(3)
43(7)
40(3)
21(6)
77(12)
28(4)
140(11)
44(4)
820(70)

48(4)
34(4)
59(6)
32(8)
55(4)
43(3)
25(7)
57(4)
21(6)
34(9)
18(4)
187(14)
52(4)
101(15)

1(3)
0(4)
-2(7)
-2(5)
1(3)

-4(3)
12(5)
-2(3)
-8(5)
22(8)
-2(3)
27(10)
-10(3)
190(30)

-9(3)
-20(4)
-18(5)
10(5)

9(3)
-4(3)
-6(4)
0(3)
-5(5)
-29(9)

9(3)
-8(8)
4(3)
-100(20)

0(3)
-6(5)
80(8)
6(5)
4(3)
3(3)
5(5)
-11(3)
-1(5)
-18(10)
3(3)
7(8)
7(3)
-520(60)

Table 4.6. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2x 10 3) for 4.

x y z U(eq)

H(3A)
H(6A)
H(7A1)
H(7A2)
H(8A1)
H(8A2)
H(9A1)
H(9A2)
H(1OA)
H(1OB)
H(l A)
H(l lB)
H(12A)
H(12B)
H(13A)
H(13B)
H(14A)
H(14B)
H(17A)
H(18A)
H(19A)
H(21A)
H(21B)
H(25A)
H(26A)
H(27A)
H(28A)
H(28B)
H(32A)
H(33A)
H(34A)

3685
4075
4531
5018
5399
5403
5944
6404
7103
7031
2719
3428
3352
2931
3604
4205
4440
4177
6192
6624
6334
5143
5839
6044
5043
4833
7396
7107
7790
8324
8030

9713
7120
6329
6611
5654
6443
7671
7133
7076
7979
10585
10438
10858
10066
9736
10286
8966
8540
11212
10527
9181
8071
7946
6293
6363
7182
6778
6633
10012
9303
7972

2462
2851
2486
2721
2359
2157
2336
2145
2539
2404
2922
2836
3307
3374
3706
3640
3843
3566
3733
4112
4209
3997
4104
3066
3239
3630
3369
3066
2960
3295
3422

52
55
66
66
68
68
62
62
62
62
61

61

57
57
65
65
75
75
70
90
91

78
78
84
84
81
87
87
72
90
89
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H(35A)
H(35B)
H(39A)
H(40A)
H(41A)
H(42A)
H(42B)
H(43A)
H(43B)
H(43C)
H(44A)
H(44B)
H(44C)
H(3B)
H(6B)
H(7B1)
H(7B2)
H(8B1)
H(8B2)
H(9B1)
H(9B2)
H(1OC)
H(1OD)
H( 11 C)

H( 11D)
H(12C)
H(12D)
H(13C)
H(13D)
H(14C)
H(14D)
H(17B)
H(18B)
H(19B)
H(21C)
H(21D)
H(25B)
H(26B)
H(27B)
H(28C)
H(28D)
H(32B)
H(33B)
H(34B)
H(35C)
H(35D)
H(39B)
H(40B)
H(41B)
H(42C)
H(42D)
H(43D)
H(43E)
H(43F)
H(44D)
H(44E)

6489
7087
5883
6618
7018
5003
5188
5025
5359
5500
6785
7416
7284
2840
4331
3352
3216
3626
4274
4745
4939
4513
5168
3831
3899
3471
2856
3450
3871
3474
2829
2533
3309
4207
2061
2597
2048
1217
1376
3385
3105
5036
4092
3295
5777
5419
5662
6324
6367
4534
4671
3223
3861
3219
5000
4632

9199
9739
12132
12325
11204
10414
11278
9358
8475
9103
7193
7699
6895
3379
1355
4804
4225
5609
5287
4078
4956
4433
4054
64
169
-1157
-654
-1748
-930
-1438
-1029
660
195

-380
319
674
3566
2672
1382
3634
3948
1903
2107
2777
2454
2536
-919
-10
1353
-651
-1150
2660
2153
1696
490
1323

2565
2486
3156
2815
2579
3278
3418
2949
2958
2708
4074
4034
3849
10228
10416
10204
9939
9833
9954
9716
9586
9142
9237
10601
10268
10428
10507
9962
9960
9507
9601
8782
8488
8673
9336
9536
8885
8941
9168
9239
8949
8532
8314
8545
8941
9231
8885
8715
8831
9404
9123
9665
9673
9740
9713
9783

60
60
60
63
63
52
52
65
65
65
201
201
201
41
44
55
55
49
49
51

51

55
55
64
64
58
58
66
66
66
66
53
54
58
53
53
61

71

57
54
54
63
65
59
60
60
104
63
109
50
50
109
109
109
201
201
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H(44F)
H(39C)
H(40C)
H(41C)
H(44G)
H(44H)
H(441)

5321
4709
5038
5359
5970
5578
5719

1368
-54
1221
2258
683
149
-214

9660
9735
9897
9595
8786
8567
8871

201
40
79
35
95
95
95
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Figure 4.10. One molecule of 6, showing the crystallographic numbering scheme. Numbering of the other molecule
in the asymmetric unit is by an analogous scheme.
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Table 4.7. Crystal data and structure refinement for 6.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
z
Density (calculated)
Absorption coefficient
F(000)
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta = 22.500
Absorption correction
Refinement method
Data / restraints / parameters
Goodness-of-fit on F2

Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

C44.50 H44 C1 I2 08
996.05
193(2) K
0.71073 A
Monoclinic
P2(1)/c
a= 14.7132(7) A
b = 29.5179(14) A
c = 19.9111(l0) A
8220.1(7) A3

8

a= 90° .

3= 108.0870(10) ° .

= 900 .

1.610 Mg/m3
1.648 mm 1

3984
1.75 to 22.500.
-14<=h<=15, -27<=k<=31, -21<=l<=21
33599
10740 [R(int) = 0.1131]
99.9 %
None
Full-matrix least-squares on F2

10740/0/975
1.349
R1 = 0.0841, wR2 = 0. 1466
R1 = 0.1389, wR2 = 0.1587
0.00014(5)
0.819 and -0.684 e.A-3

Table 4.8. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2x 103) for 6. U(eq) is
defined as one third of the trace of the orthogonalized UiJ tensor.

x y z U(eq)

I(1)
1(2)
1(3)

I(4)
C(1)
Cl(2)
0(11)
0(12)
0(13)
0(14)
0(15)
0(16)
0(17)
0(18)
0(21)
0(22)

2923(1)
2833(1)
11693(1)
11462(1)
1413(3)
2893(3)
3555(6)
3833(6)
5119(6)
3352(6)
3935(6)
5148(6)
4695(6)
6201(7)
10922(6)
10546(6)

10103(1)
10366(1)
7138(1)
7226(1)
2003(1)
1314(1)
9446(2)
8585(2)
7848(2)
9523(2)
8644(2)
7863(3)
7353(2)
8115(3)
7960(2)
8866(2)

6380(1)
9827(1)
6111(1)
9531(1)
5688(2)
5995(2)
7685(4)
7116(4)
7330(4)
9038(4)
9534(4)
9820(4)
8483(4)
8799(4)
8317(4)
8814(4)

43(1)
44(1)
38(1)
50(1)
66(1)
69(1)
32(2)
26(2)
30(2)
33(2)
34(2)
35(2)
31(2)
32(2)
27(2)
29(2)
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0(23)
0(24)
0(25)
0(26)
0(27)
0(28)
C(1)
C(2)
C(3)
C(4)
C(5)
C(6)
C(7)
C(8)
C(9)
C(10)
C( 11)

C(12)
C(13)
C(14')
C(15)
C(16')
C(17)
C(18)
C(19)
C(20)
C(21)
C(22)
C(23)
C(24)
C(25)
C(26)
C(27)
C(28)
C(29)
C(30)
C(31)
C(32)
C(33)
C(34)
C(35)
C(36)
C(37)
C(38)
C(39)
C(40)
C(41)
C(42)
C(43)
C(44)
C(45)
C(46)
C(47)
C(48)
C(49)
C(50)

9301(6)
11106(6)
10460(6)
9315(5)
9935(5)
8172(6)
3051(9)
2758(9)
2752(8)
2974(9)
3206(8)
4333(9)
4358(1.0)
3867(11)
4769(11)
5854(10)
5592(9)
6289(11)
7204(1]1)

7509(1L0)

6813(1.0)
7168(9)
7687(9)
8658(10)
9161(9)
8667(10)
7656(10)
7196(10)
7097(10)
6763(10)
7442(10)
7178(10)
6233(10)
5525(9')
5826(9')
4520(9')
4504(8)
4419(9'
4381(10)
4409(10)
4492(9)
4541(9)
4558(9)
3833(9')
5699(9)
4786(9)
3815(10)
2940(9)
2976(9)
3272(9)
11626(8)
11889(9)
11828(9)
11499(8)
11230(9)
11285(8)

9630(2)
7933(2)
8806(2)
9633(2)
10103(2)
9466(2)
10207(4)
10630(4)
10665(4)
10303(4)
9891(4)
9402(4)
9038(4)
8288(4)
8057(4)
7543(4)
7083(4)
6773(4)
6906(5)
7348(4)
7665(4)
8148(4)
8163(4)
8170(4)
8163(4)
8166(4)
8162(4)
8160(3)
8138(4)
7661(4)
7328(4)
6891(4)
6764(4)
7063(4)
7524(4)
6911(4)
6653(4)
6186(4)
5957(5)
6203(5)
6671(4)
6880(4)
6928(4)
7621(4)
8531(4)
8104(4)
8283(4)
8767(4)
9043(3)
9829(4)
7155(4)
6780(4)
6806(3)
7193(4)
7575(4)
7553(4)

8573(4)
6942(4)
6409(4)
6099(4)
7481(3)
7083(4)
7453(6)
7665(7)
8349(6)
8808(6)
8578(6)
9381(6)
9886(6)
9983(7)
10346(6)
10101(6)
10111(5)
10449(7)
10764(7)
10717(6)
10387(6)
10275(6)
9744(7)
9955(7)
9444(6)
8745(8)
8505(6)
9013(6)
7725(6)
7499(6)
7465(6)
7291(6)
7202(6)
7251(6)
7355(6)
7178(6)
7820(6)
7834(7)
8445(8)
9019(8)
9055(6)
8450(6)
9711(6)
8281(6)
8693(6)
6665(6)
6571(6)
7053(7)
7674(7)
7916(6)
7139(6)
7588(6)
8262(7)
8485(6)
8076(7)
7373(6)

26(2)
33(2)
28(2)
26(2)
23(2)
25(2)
36(4)
30(3)
28(3)
26(3)
24(3)
36(2)
41(4)
44(4)
45(4)
25(2)
24(2)
41(4)
45(4)
40(4)
25(3)
36(3)
27(3)
37(3)
32(3)
41(4)
33(3)
24(3)
36(4)
28(3)
35(4)
31(3)
33(3)
31(3)
25(3)
32(3)
29(2)
37(4)
52(4)
50(4)
28(2)
31(3)
40(4)
34(3)
37(3)
34(3)
39(4)
37(4)
34(3)
25(3)
22(3)
29(3)
28(3)
27(3)
31(3)
23(3)
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C(51) 10102(9) 8038(4) 6601(6) 36(2)
C(52) 10052(9) 8401(4) 6074(6) 33(3)
C(53) 10537(8) 9156(4) 5943(6) 29(3)
C(54) 9688(9) 9407(3) 5580(6) 25(3)
C(55) 8707(9) 9999(4) 5830(5) 24(2)
C(56) 9103(10) 10427(4) 5880(6) 32(3)
C(57) 8467(10) 10787(4) 5598(6) 28(3)
C(58) 7489(11) 10715(4) 5294(6) 37(4)
C(59) 7106(1 0) 10285(4) 5304(6) 37(4)
C(60) 7725(9) 9913(4) 5579(5) 25(2)
C(61) 7297(9) 9452(4) 5598(6) 30(3)
C(62) 6724(10) 9434(4) 6120(6) 26(3)
C(63) 5713(10) 9432(4) 5906(7) 39(4)
C(64) 5191(10) 9413(4) 6365(7) 41(4)
C(65) 5680(10) 9417(4) 7083(8) 37(4)
C(66) 6663(10) 9424(3) 7337(6) 29(3)
C(67) 7204(9) 9423(3) 6858(6) 25(3)
C(68) 7260(8) 9434(4) 8133(6) 27(3)
C(69) 7687(10) 9902(4) 8362(6) 27(3)
C(70) 7117(10) 10250(5) 8396(6) 37(4)
C(71) 7477(10) 10688(4) 8560(6) 33(3)
C(72) 8420(10) 10777(4) 8692(6) 29(3)
C(73) 9051(10) 10419(4) 8690(5) 28(3)
C(74) 8661(10) 9986(4) 8555(6) 29(3)
C(75) 10086(10) 10526(4) 8799(6) 36(4)
C(76) 10209(8) 10781(4) 8166(6) 29(2)
C(77) 10163(8) 10552(4) 7533(6) 23(3)
C(78) 10229(9) 10784(4) 6939(6) 28(2)
C(79) 10428(8) 11242(4) 7006(7) 35(3)
C(80) 10508(9) 11480(4) 7617(7) 39(4)
C(81) 10393(9) 11249(4) 8189(7) 35(3)
C(82) 10137(9) 10528(4) 6257(6) 31(3)
C(83) 10745(10) 9802(4) 7669(6) 39(4)
C(84) 8650(8) 9039(4) 7197(6) 27(3)
C(85) 9586(9) 9390(4) 9236(6) 30(3)
C(86) 10553(9) 9188(4) 9335(6) 35(4)
C(87) 11467(9) 8667(4) 8935(6) 29(3)
C(88) 11459(10) 8372(4) 8327(7) 40(4)
C(1S) 2653(10)) 1892(4) 5939(7) 47(4)

Table 4.9. Bond lengths [A] and angles [] for 6.

I(1)-C(1) 2.109(11) 0(12)-C(42) 1.388(13)
I(2)-C(4) 2.112(11) 0(12)-C(41) 1.400(12)
I(3)-C(45) 2.080(10) 0(13)-C(29) 1.402(13)
I(4)-C(48) 2.103(11) 0(13)-C(40) 1.471(12)
C1(1)-C(1S) 1.766(14) 0(14)-C(5) 1.395(13)
C1(2)-C(1S) 1.740(12) 0(14)-C(6) 1.436(13)
O( 11)-C(44) 1.336(12) 0(15)-C(7) 1.399(12)
O(1 )-C(43) 1.461(12) 0(15)-C(8) 1.403(13)
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0(16)-C(10)
0(16)-C(9)
0(17)-C(36)
0(17)-C(38)
0(18)-C(22)
0(18)-C(39)
0(21)-C(49)
0(21)-C(88)
0(22)-C(86)
0(22)-C(87)
0(23)-C(74)
0(23)-C(85)
0(24)-C(50)
0(24)-C(51)
0(25)-C(52)
0(25)-C(53)
0(26)-C(55)
0(26)-C(54)
0(27)-C(77)
0(27)-C(83)
0(28)-C(67)
0(28)-C(84)
C(1)-C(44)
C(1)-C(2)
C(2)-C(3)
C(3)-C(4)
C(4)-C(5)
C(5)-C(44)
C(6)-C(7)
C(8)-C(9)
C(10)-C(15)
C(10)-C(1 1)
C(1 )-C(12)
C(11)-C(37)
C(12)-C(13)
C(13)-C(14)
C(14)-C(15)
C(15)-C(16)
C(16)-C(17)
C(17)-C(18)
C(17)-C(22)
C(18)-C(19)
C(1 9)-C(20)
C(20)-C(21)
C(21)-C(22)
C(21)-C(23)
C(23)-C(24)
C(24)-C(29)
C(24)-C(25)
C(25)-C(26)
C(26)-C(27)
C(27)-C(28)
C(28)-C(29)

C(44)-0(11)-C(43)
C(42)-0(12)-C(41)

1.388(13)
1.449(12)
1.414(12)
1.440(13)
1.398(14)
1.416(12)
1.363(13)
1.447(13)
1.405(11)
1.427(13)
1.406(12)
1.440(12)
1.388(12)
1.456(13)
1.411(12)
1.416(12)
1.399(12)
1.473(11)
1.364(12)
1.439(13)
1.360(13)
1.429(12)
1.417(15)
1.429(15)
1.369(15)
1.379(14)
1.377(15)
1.365(14)
1.465(15)
1.468(17)
1.395(16)
1.413(15)
1.382(16)
1.550(16)
1.356(17)
1.392(16)
1.392(16)
1.558(15)
1.485(15)
1.359(16)
1.409(15)
1.433(16)
1.354(16)
1.415(17)
1.380(16)
1.517(16)
1.511(14)
1.379(16)
1.420(16)
1.359(15)
1.397(17)
1.392(16)
1.426(16)

C(28)-C(30)
C(30)-C(31)
C(31)-C(32)
C(31)-C(36)
C(32)-C(33)
C(33)-C(34)
C(34)-C(35)
C(35)-C(36)
C(35)-C(37)
C(40)-C(41)
C(42)-C(43)
C(45)-C(46)
C(45)-C(50)
C(46)-C(47)
C(47)-C(48)
C(48)-C(49)
C(49)-C(50)
C(51)-C(52)
C(53)-C(54)
C(55)-C(56)
C(55)-C(60)
C(56)-C(57)
C(56)-C(82)
C(57)-C(58)
C(58)-C(59)
C(59)-C(60)
C(60)-C(61)
C(61)-C(62)
C(62)-C(63)
C(62)-C(67)
C(63)-C(64)
C(64)-C(65)
C(65)-C(66)
C(66)-C(67)
C(66)-C(68)
C(68)-C(69)
C(69)-C(70)
C(69)-C(74)
C(70)-C(71)
C(71)-C(72)
C(72)-C(73)
C(73)-C(74)
C(73)-C(75)
C(75)-C(76)
C(76)-C(81)
C(76)-C(77)
C(77)-C(78)
C(78)-C(79)
C(78)-C(82)
C(79)-C(80)
C(80)-C(81)
C(85)-C(86)
C(87)-C(88)

116.9(9)
112.8(9)

C(29)-0(13)-C(40)
C(5)-0(14)-C(6)
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1.508(16)
1.494(15)
1.385(14)
1.409(15)
1.408(17)
1.345(17)
1.385(15)
1.376(15)
1.487(16)
1.478(16)
1.468(15)
1.401(14)
1.410(14)
1.374(15)
1.367(15)
1.375(15)
1.429(15)
1.486(14)
1.439(15)
1.381(15)
1.397(16)
1.414(16)
1.502(16)
1.393(16)
1.392(16)
1.423(15)
1.506(15)
1.528(15)
1.414(16)
1.420(15)
1.365(16)
1.386(17)
1.375(16)
1.420(15)
1.557(15)
1.528(15)
1.342(15)
1.386(17)
1.397(16)
1.355(16)
1.407(15)
1.391(15)
1.503(17)
1.529(15)
1.406(15)
1.413(15)
1.397(14)
1.382(14)
1.521(15)
1.378(16)
1.382(15)
1.499(15)
1.489(14)

114.8(8)
115.6(9)



C(7)-0(15)-C(8)
C(10)-0(16)-C(9)
C(36)-0(17)-C(38)
C(22 )-0(18)-C(39)
C(49)-0(21)-C(88)
C(86)-0(22)-C(87)
C(74)-0(23)-C(85)
C(50)-0(24)-C(51)
C(52)-0(25)-C(53)
C(55)-0(26)-C(54)
C(77)-0(27)-C(83)
C(67)-0(28)-C(84)
C(44)-C(1)-C(2)
C(44)-C( 1)-I( 1)
C(2)-C(l)-I(1)
c(3)-c(2)-C(1)
C(2)-C(3)-C(4)
C(5)-C(4)-C(3)
C(5)-C(4)-I(2)
C(3)-C(4)-I(2)
C(44)-C(5)-C(4)
C(44)-C(5)-0(14)
C(4)-C(5)-0(14)
0(14)-C(6)-C(7)
0(15)-C(7)-C(6)
0(15)-C(8)-C(9)
0(16)-C(9)-C(8)
0(16)-C( 10)-C(15)
0(16)-C(10)-C(1 1)
C(15)-C(1l)-C(1 1)
C(12)-C( 1 )-C(10)
C(12)-C( 1)-C(37)
C(10)-C( 1l)-C(37)
C(13)-C(12)-C( 1)
C(12)-C(13)-C(14)
C(15)-C(14)-C(13)
C(14)-C(15)-C(10)
C(14)-C(15)-C(16)
C(10)-C(15)-C(16)
C(17)-C(16)-C(15)
C(18)-C(17)-C(22)
C(18)-C(17)-C(16)
C(22)-C(17)-C(16)
C(17)-C(18)-C(l 9)
C(20)-C(1 9)-C(18)
C(1 9)-C(20)-C(21)
C(22)-C(21)-C(20)
C(22)-C(21)-C(23)
C(20)-C(21)-C(23)
C(21)-C(22)-0(18)
C(21)-C(22)-C(17)
(1 8)-C(22)-C(17)

C(24)-C(23)-C(21)
C(29)-C(24)-C(25)
C(29)-C(24)-C(23)
C(25)-C(24)-C(23)

114.3(9)
112.7(8)
114.5(9)
114.4(9)
117.7(9)
111.4(9)
113.1(8)
115.5(8)
114.7(8)
114.4(7)
114.5(9)
112.5(8)
121.7(10)
118.4(9)
119.0(8)
117.1(10)
121.8(10)
119.8(10)
120.4(8)
119.6(9)
122.5(11)
119.2(10)
118.2(10)
108.4(10)
110.7(9)
115.4(12)
108.6(10)
121.6(11)
119.1(12)
119.2(11)
118.5(12)
121.1(11)
120.3(10)
121.0(13)
122.3(14)
117.1(14)
121.5(11)
116.9(12)
121.3(10)
113.5(9)
118.2(12)
120.2(12)
121.6(11)
120.3(12)
120.0(13)
121.3(12)
117.1(12)
121.2(13)
121.7(12)
118.8(11)
123.1(13)
117.9(11)
111.9(9)
117.3(11)
123.2(11)
119.4(12)

C(26)-C(25)-C(24)
C(25)-C(26)-C(27)
C(28)-C(27)-C(26)
C(27)-C(28)-C(29)
C(27)-C(28)-C(30)
C(29)-C(28)-C(30)
C(24)-C(29)-0(13)
C(24)-C(29)-C(28)
0(13)-C(29)-C(28)
C(31)-C(30)-C(28)
C(32)-C(31)-C(36)
C(32)-C(31)-C(30)
C(36)-C(31)-C(30)
C(31)-C(32)-C(33)
C(34)-C(33)-C(32)
C(33)-C(34)-C(35)
C(36)-C(35)-C(34)
C(36)-C(35)-C(37)
C(34)-C(35)-C(37)
C(35)-C(36)-C(31)
C(35)-C(36)-0(17)
C(31)-C(36)-0(17)
C(35)-C(37)-C(l 1)
0(13)-C(40)-C(41)
0(12)-C(41)-C(40)
0(12)-C(42)-C(43)
O(11 )-C(43)-C(42)
O(1 )-C(44)-C(5)
0(l 1)-C(44)-C(1)
C(5)-C(44)-C(1)
C(46)-C(45)-C(50)
C(46)-C(45)-I(3)
C(50)-C(45)-I(3)
C(47)-C(46)-C(45)
C(48)-C(47)-C(46)
C(47)-C(48)-C(49)
C(47)-C(48)-I(4)
C(49)-C(48)-I(4)
0(21)-C(49)-C(48)
0(21)-C(49)-C(50)
C(48)-C(49)-C(50)
0(24)-C(50)-C(45)
0(24)-C(50)-C(49)
C(45)-C(50)-C(49)
0(24)-C(51)-C(52)
0(25)-C(52)-C(51)
0(25)-C(53)-C(54)
C(53)-C(54)-0(26)
C(56)-C(55)-C(60)
C(56)-C(55)-0(26)
C(60)-C(55)-0(26)
C(55)-C(56)-C(57)
C(55)-C(56)-C(82)
C(57)-C(56)-C(82)
C(58)-C(57)-C(56)
C(59)-C(58)-C(57)
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121.3(13)
118.9(12)
123.8(12)
114.2(12)
122.5(12)
123.3(11)
119.3(11)
123.8(11)
116.9(11)
110.2(10)
115.7(11)
123.4(11)
120.9(11)
121.5(12)
118.5(13)
124.1(13)
115.4(12)
122.2(10)
122.3(11)
124.7(11)
117.0(10)
118.2(10)
112.8(11)
109.7(9)
110.1(10)
110.6(10)
109.4(10)
124.7(10)
118.4(10)
116.9(11)
120.2(10)
121.4(8)
118.4(8)
119.3(11)
120.1(11)
124.0(11)
118.7(9)
117.3(9)
122.7(11)
120.6(10)
116.6(11)
119.1(10)
120.7(10)
119.8(10)
107.6(10)
110.9(10)
118.0(10)
109.6(9)
124.0(11)
118.2(11)
117.6(10)
116.5(12)
124.0(11)
119.4(11)
121.7(11)
120.1(12)



C(58)-C(59)-C(60)
C(55)-C(60)-C(59)
C(55)-C(60)-C(61)
C(59)-C(60)-C(6 1)
C(60)-C(61)-C(62)
C(63)-C(62)-C(67)
C(63)-C(62)-C(61)
C(67)-C(62)-C(61)
C(64)-C(63)-C(62)
C(63)-C(64)-C(65)
C(66)-C(65)-C(64)
C(65)-C(66)-C(67)
C(65)-C(66)-C(68)
C(67)-C(66)-C(68)
0(28)-C(67)-C(66)
0(28)-C(67)-C(62)
C(66)-C(67)-C(62)
C(69)-C(68)-C(66)
C(70)-C(69)-C(74)
C(70)-C(69)-C(68)
C(74)-C(69)-C(68)
C(69)-C(70)-C(71)
C(72)-C(71)-C(70)
C(71)-C(72)-C(73)
C(74)-C(73)-C(72)
C(74)-C(73)-C(75)
C(72)-C(73)-C(75)
C(69)-C(74)-C(73)
C(69)-C(74)-0(23)
C(73)-C(74)-0(23)
C(73)-C(75)-C(76)
C(81)-C(76)-C(77)
C(81)-C(76)-C(75)
C(77)-C(76)-C(75)
0(27)-C(77)-C(78)
0(27)-C(77)-C(76)
C(78)-C(77)-C(76)
C(79)-C(78)-C(77)
C(79)-C(78)-C(82)
C(77)-C(78)-C(82)
C(80)-C(79)-C(78)
C(79)-C(80)-C(81)
C(80)-C(81)-C(76)
C(56)-C(82)-C(78)
0(23)-C(85)-C(86)
0(22)-C(86)-C(85)
0(22)-C(87)-C(88)
0(21)-C(88)-C(87)
C1(2)-C( S)-C1( 1)

119.7(13)
117.7(11)
123.4(10)
118.9(12)
111.8(9)
116.7(11)
123.1(11)
120.2(12)
123.8(13)
118.0(14)
121.9(13)
119.8(12)
124.9(11)
115.3(12)
121.8(11)
118.2(11)
119.6(12)
111.8(9)
117.2(12)
120.2(13)
122.6(11)
121.6(13)
120.9(12)
119.5(12)
117.2(12)
124.0(11)
118.8(11)
123.2(11)
120.0(11)
116.7(12)
111.0(10)
117.2(11)
121.9(11)
120.9(10)
119.5(10)
118.5(10)
121.5(10)
117.8(11)
122.0(11)
120.1(10)
122.8(12)
118.6(11)
121.8(11)
109.9(10)
108.0(9)
112.5(10)
109.7(10)
111.7(10)
111.8(7)
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Table 4.10. Anisotropic displacement parameters (A2 x 103) for 6. The anisotropic displacement factor
exponent takes the form: -2xt2[ h2 a* 2 UI + ... +2hka*b* U 12]

U 11 U2 2 U3 3 U2 3 U 13 U 12

59(1)
41(1)
59(1)
89(1)
70(3)
110(4)
36(6)
35(6)
37(6)
42(7)
38(6)
42(6)
26(6)
43(7)
26(6)
32(6)
34(6)
35(6)
30(6)
29(6)
21(5)
18(6)
37(10)
36(9)
28(9)
30(9)
8(8)
11(6)
59(11)
70(13)
80(13)
41(7)
32(6)
36(11)
56(13)
41(10)
38(10)
38(10)
8(9)
33(10)
28(9)
23(10)
47(11)
40(10)
65(11)
47(11)
50(11)
42(11)
48(11)

35(1)
52(1)
32(1)
35(1)
64(3)
43(2)
26(5)
19(4)
25(5)
26(5)
26(5)
41(5)
28(5)
33(5)
22(5)
31(5)
30(5)
18(5)
27(5)
28(5)
19(5)
27(5)
51(9)
18(7)
18(7)
27(7)
32(8)
32(5)
23(8)
32(8)
39(8)
24(5)
35(6)
31(8)
48(10)
50(10)
20(7)
47(9)
24(7)
35(8)
26(8)
44(9)
29(8)
12(7)
28(8)
22(7)
35(9)
33(9)
28(8)

44(1)
37(1)
25(1)
37(1)
61(3)
57(3)
45(6)
23(5)
28(5)
31(5)
35(5)
22(5)
38(5)
18(5)
46(5)
26(5)
14(4)
53(6)
29(5)
20(5)
27(5)
26(5)
26(8)
46(9)
51(9)
26(7)
33(8)
49(6)
19(8)
44(9)
31(8)
13(5)
7(4)
57(10)
38(9)
28(8)
13(7)
14(7)
48(10)
40(9)
27(8)
63(11)
22(8)
15(7)
24(8)
17(7)
27(8)
15(7)
21(7)

5(1)
-11(1)
0(1)
-2(1)
-4(2)
-2(2)
0(4)
-5(4)
3(4)
4(4)
9(4)
4(4)
-3(4)
-1(4)
-6(4)
-4(4)
0(4)
7(4)
4(4)
6(4)
-8(4)
-2(4)
13(7)
5(6)
-19(6)
14(6)
-3(7)
2(5)
4(6)
12(7)
-7(7)
7(4)
14(4)
12(7)
4(7)
5(7)
0(5)
-12(6)
-10(6)
-3(6)
-4(6)
-9(8)
12(6)
-2(5)
3(6)
-6(5)
-5(6)
3(6)
0(6)

29(1)
11(1)
15(1)
35(1)
17(2)
30(3)
29(5)
10(4)
12(4)
12(5)

7(5)
10(4)
10(4)
5(5)
31(5)
14(4)
5(4)
25(5)
11(4)
9(4)
2(4)
2(4)
20(7)
26(7)
29(7)
15(7)
7(6)
-11(5)
-18(7)
40(9)
38(9)
13(5)
6(4)
14(8)
23(9)
11(7)
0(7)
-4(7)
7(7)
8(8)
-12(7)
24(9)
8(8)
2(7)
29(8)
13(7)
23(7)
3(7)
10(7)

3(1)
2(1)
-3(1)
-5(1)
0(2)
10(2)
7(4)
6(4)
13(4)
5(4)
6(4)
18(5)
-1(4)
-11(5)
-1(4)
9(4)
9(4)
7(4)
12(4)
3(4)
-11(4)
1(4)
11(7)
-2(6)
-5(6)
-3(6)
-3(6)
-3(4)
8(7)
25(8)
11(8)
18(5)
13(5)
13(8)

9(9)
-9(8)
14(7)
3(7)
-2(6)
-4(7)
-7(6)
-7(7)
12(7)
-2(6)
-10(7)
2(7)
-2(7)
13(7)
12(8)
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I(1)
I(2)
I(3)
1(4)

Cl(1)
C(2)
0(11)
0(12)
0(13)
0(14)
0(15)
0(16)
0(17)
0(18)
0(21)
0(22)
0(23)
0(24)
0(25)
0(26)
0(27)
0(28)
C(1)
C(2)
C(3)
C(4)
C(S)
C(6)
C(7)
C(8)
C(9)
C(10)
C( 1l)

C(12)
C(13)
C(14)
C(15)
C(16)
C(17)
C(18)
C(19)
C(20)
C(21)
C(22)
C(23)
C(24)
C(25)
C(26)
C(27)



C(28)
C(29)
C(30)
C(31)
C(32)
C(33)

C((34)
C(35)
C(36)
C((37)
c((38)

(C(39)
(C(40)

C(41)
C(42)
C(43)
C(44)
C(45)
C(46)
C(47)
C(48)
C(49)
C(50)
C(51)
C(52)
C(53)
C(54)
C(55)
C(56)
C(57)
C(58)
C(59)
C(60)
C(61)
C(62)
C(63)
C(64)
C(65)
C(66)
C(67)
C(68)

C(69)
C(70)
C(71)
C(72)
C(73)
C(74)
C(75)
C(76)
C(77)
C(78)
C(79)
C(80)
C('81)

C(82)
C(83)

29(10)
21(9)
26(9)
6(6)
23(9)
32(11)
29(10)
29(6)
3](9)
43(10)
24(9)
27'(9)
46(11)
51(11)
15(9)
28(9)
24(9)
19(8)

34(9)
41(10)
19(8)
22(9)
21(8)
11(6)
13(8)
13(8)
47('10)
32(6)
52('11)
48(11)
61(13)
42(10)
41(7)
28(9)
35(10)
36(111)

37(10)
19(10)
46('11)
21(,9)

20('8)
35('10)
44('10)
39('11)
37('10)
40(10)
50(11)
51(11)
6(6)
17(8)
29(6)
18(9)
43(11)
23(9)
29(9)
51(11)

36(9)
34(8)
34(8)
41(6)
19(8)
51(10)
55(10)
20(5)
11(7)
31(8)
24(7)
32(8)
36(8)

54(9)
41(8)
11(7)
39(8)
24(7)
20(7)
1(6)
41(8)
24(8)
14(7)
32(5)
37(8)
40(8)
16(6)
35(6)
30(8)
15(7)
30(8)
38(9)
24(5)
35(8)
26(7)
25(8)
42(9)
34(8)
15(7)
17(7)
33(8)
26(7)
56(10)
36(9)
30(8)
30(8)
16(7)
37(8)
41(6)
18(7)
20(5)
31(8)
21(7)
40(9)
28(7)
33(8)

20(7)
22(7)
26(8)
35(6)
61(10)
62(11)
73(12)
34(6)

43(9)
38(9)

53(9)
52(9)
17(8)

7(7)
51(9)
70(10)
17(7)
25(7)
31(8)
48(9)
24(7)
50(9)
26(8)
49(6)
36(8)
42(8)
20(7)

7(4)
12(7)
25(8)
23(8)
34(8)
13(5)
23(7)
18(7)

47(9)
45(10)
62(11)
24(8)

37(9)
35(8)
23(7)
19(8)
26(8)
16(7)
11(7)
29(8)
24(8)
35(6)
40(8)
34(6)
54(10)
56(10)
38(9)
35(8)
42(9)

1(6)
6(6)
8(6)
1(5)
-10(7)
6(9)
4(9)
10(4)
1(6)
20(7)
0(6)
-4(7)
-1(6)
11(6)
-27(7)
-6(6)
13(6)
3(6)
-3(6)
-2(6)
4(7)
-1(7)
6(6)
2(5)
15(7)
35(7)
11(5)
14(4)
0(6)
-4(6)
-9(6)
1(7)
7(4)
3(6)
3(6)
-1(6)
-8(7)
-4(7)
0(5)
6(6)
12(6)
5(6)
-1(7)
7(6)
-1(6)
7(6)
8(6)
-10(6)
1(5)

-6(6)
10(4)
23(7)
-2(7)
-14(7)
5(6)
-3(6)

-5(6)

9(6)
-8(7)
-1(4)
1(7)
0(9)
27(9)
5(5)
2(7)
0(7)
11(7)
11(7)
5(7)
3(7)
4(7)
26(8)
13(6)

9(6)
7(7)
21(7)
12(6)
15(7)
-3(6)
-11(5)
-10(6)
22(7)
22(7)
6(4)
9(7)
19(7)
19(8)
16(7)
13(5)
2(6)
11(7)
0(8)
12(9)
18(8)
10(8)
8(7)
17(7)
14(7)
21(7)
14(7)
4(7)
2(6)
26(7)
18(7)
-1(4)
17(7)
5(5)
7(7)
18(8)
5(7)
8(7)
27(8)

15(7)
12(7)

3(7)
-4(4)
1(6)
-20(8)
-17(8)
-11(4)
-3(6)
7(7)
-14(7)
7(7)
13(7)
16(8)
7(7)
3(6)

5(6)
1(6)
-9(6)
-1(6)
-10(7)
-9(6)
-5(6)
-3(4)
-3(6)
20(6)
12(6)
13(5)
0(8)
-5(7)
10(8)
5(8)
18(5)
12(6)
-4(6)

-4(7)
-10(7)
1(7)
-8(6)
0(6)
3(6)

9(7)
12(8)
21(7)
6(7)
3(7)
20(7)
-13(7)
-4(4)
-6(6)
-11(4)
3(6)
8(7)
-14(7)
6(6)
2(7)
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C(84)
C(85)
C(86)
C(87)
C(88)
C((1S)

17(8)
44(10)
34(10)
22(9)
37(10)
63(12)

29(7)
29(7)
31(8)
27(7)
35(8)
46(9)

30(8)
19(7)
40(9)
29(8)
49(9)
33(8)

-13(6)
-4(6)
-14(7)
1(6)
5(7)
-6(7)

-1(6)
14(7)
12(7)
-4(6)
16(8)
16(8)

4(6)
5(7)
15(7)
13(6)
16(7)
-6(8)

Table 4.11. Hydrogen coordinates ( x 104 ) and isotropic displacement parameters (A2x 10 3) for 6.

x y z U(eq)

H(2)
H(3)
H(6A)
H(6B)
H(7A)
H(7B)
H(8A)
H(8B)
H(9A)
H(9B)
H(12)
H(13)
H(14)
H(16A)
H(16B)
H(18)
H(19)
H(20)
H(23A)
H(23B)
H(25)
H(26)
H(27)
H(30A)
H(30B)
H(32)
H(33)
H(34)
H(37A)
H(37B)
H(38A)
H(38B)
H(38C)
H(39A)
H(39B)
H(39C)
H(40A)
H(40B)
H(41A)

2580
2593
4684
4627
5016
4019
3418
3603
5223
4659
6127
7645
8150
6622
7587
8998
9825
9000
6547
7498
8081
7618
6067
4105
4284
4387
4337
43770

4325
4148
3434
3995
3498
6016
5058
5681
4776
5221
3581

10872
10941
9663
9302
8975
9133
8066
8407
8270
7819
6469
6694
7428
8350
8259
8178
8158
8170
8337
8243
7409
6681
6461
7173
6721
6020
5643
6050
6739
7193
7527
7935
7579
8739
8481
8656
7909
8353
8437

7352
8509
9626
9034
10160
10210
9708
10337
10638
10649
10460
11020
10899
10126
10723
10435
9591
8417
7627
7451
7564
7232
7104
7118
6763
7430
8451
9418
10021
9590
7822
8265
8619
9062
8701
8244
6272
6675
6119

36
34
43
43
49
49
52
52
54
54
50
54
48
43
43
44
38
49
43
43
42
37
39
39
39
44
62
60
48
48
50
50
50
56
56
56
41
41

47
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H(41B)
H(42)
H(43A)
H(43B)
H(46)
H(47)
H(5 IA)
H(51B)
H(52A)
H(52B)
H(53)
t1(54A)
H(54B)
11(57)

H(58)
H(59)
H(61A)
H(61B)
H(63)
H(64)
H(65)
H(68A)
H(68B)
H(70)
H(71)
H(72)
H(75A)
H(75B)
H(79)

H(80)
H(81)
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H(82B)
H(83A)
H(83B)
H(83C)
H(84A)
H(84B)
H(84C)
H(85A)
H(85B)
H(86A)
H(86B)
H(87A)
H(87B)
H(88A)
H(88B)
H(lSl)
H(1 S2)

3385
2395
2334
3252
12101
12011
9810
9763
10390
9390
11119
9207
9835
8707
7091
6448
7804
6881
5385
4527
5334
6855
7773
6467
7063
8649
10450
10333
10512
10636
10439
10399
10496
11173
10530
11071
90.36

90:51

8186
9127
9611
10998
10'777

11633
11943
11180
121 12

2918
2962

8034
8721
9131
8867
6515
6561
8140
7771
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9222
9203
9631
11080
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10240
9228
9375
9445
9398
9415
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9213
10199
10923
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10246
10708
11397
11789
11408
10710
10248
9884
9496
9825
9014
9015
8799
9153
9597
9428
9046
8489
8903
8536
8295
2027
2031

6572
6669
7657
8101
7432
8567
6949
6370
5751
5801
5873
5290
5273
5615
5084
5131
5731
5129
5425
6201
7402
8415
8219
8308
8579
8784
8867
9222
6622
7644
8602
5955
6364
7411
7554
8166
7683
6899
7086
9232
9620
9323
9796
9366
8991
7890
8357
5597
6394

47
45
41
41
35
34
43
43
39
39
35
30
30
33
44
45
36
36
47
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44
39
35
43
43
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47
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37
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58
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40
40
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36
42
42
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35
48
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56
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Appendix

H and 13C NMR spectra
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1H (top) and 13C (bottom) NMR spectra of 3 (Chapter 2).
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1H (top) and 13C (bottom) NMR spectra of 5 (Chapter 2).
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1H (top) and 13C (bottom) NMR spectra of 8 (Chapter 2).
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1H NMR spectra of 12 (top) and 13 (bottom) (Chapter 2).
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'H (top) and 13C (bottom) NMR spectra of 15 (Chapter 2).
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1H (top) and 13 C (bottom) NMR spectra of 23 (Chapter 2).
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'H (top) and 13C (bottom) NMR spectra of 24 (Chapter 2).
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IH NMR spectrum of 1 (Chapter 3).
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1H (top) and 13C (bottom) NMR spectra of 4 (Chapter 4).
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IH (top) and 13C (bottom) NMR spectra of 4' (Chapter 4).

198

I



_ _ _ _. , IJ 

I ' r I -I . I 
9 8 7 6 5

4 
4

:' l ... . 1 p
3 2 1 ppm

i U
: I. .. .... ,, , , . ~, .,-TT r .. .F r-rrT-- T T-I-'-- "--T -T' -- r- r I-T

T
T TT' T T r F

180 160 140 120 100 80

1 I-W1 71T '!TWnI tlqIMr t
-- II rl Irr r iT"ITT p I II r - [r' T: --, , q

60 40 20 ppm

'H (top) and 13C (bottom) NMR spectra of the dihydroxy precursor to 5 (Chapter 4).
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1H (top) and 13 C (bottom) NMR spectra of 5 (Chapter 4).
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1H (top) and 13C (bottom) NMR spectra of 6 (Chapter 4).
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1H (top) and 13C (bottom) NMR spectra of 8 (Chapter 4).
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'H (top) and 13C (bottom) NMR spectra of 9 (Chapter 4).
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1H (top) and 13C (bottom) NMR spectra of 11 (Chapter 4).
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1H NMR spectra of 12 (top) and 13 (bottom) (Chapter 4).
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H NMR spectra of 14 (top) and 15 (bottom) (Chapter 4).
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'H (top) and 13C (bottom) NMR spectra of 16 (Chapter 4).
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