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Abstract

We propose an efficient buffer management method for Cachet [7], called BCachet. Cachet
is an adaptive cache coherence protocol based on a mechanism-oriented memory model
called Commit-Reconcile & Fences (CRF) [1]. Although Cachet is theoretically proved to
be sound and live, a direct implementation of Cachet is not feasible because it requires too
expensive hardware.

We greatly reduced the hardware cost for buffer management in BCachet without chang-
ing the memory model and the adaptive nature of Cachet. Hardware cost for the incoming
message buffer of the memory site is greatly reduced from PxN FIFOs to two FIFOs in
BCachet where P is the number of sites and N is the number of address lines in a memory
unit. We also reduced the minimum size of suspended message buffer per memory site from
(log2 P+V) xPxrqma, to log2 P where V is the size of a memory block in terms of bits and
rqma is the maximum number of request messages per cache.

BCachet has three architectural merits. First, BCachet separates buffer management
units for deadlock avoidance and those units for livelock avoidance so that a designer has
an option in the liveness level and the corresponding hardware cost: (1) allows a livelock
with an extremely low probability and saves hardware cost for fairness control. (2) does not
allow a livelock at all and accept hardware cost for fairness control. Second, a designer can
easily parameterize the sizes of buffer units to explore the cost-performance curves without
affecting the soundness and the liveness. Because usual sizes of buffer management units
are much larger than the minimum sizes of those units that guarantee the liveness and
soundness of the system, a designer can easily find optimum trade-off point for those units
by changing size parameters and running simulation. Third, since BCachet is almost linear
under the assumption of a reasonable number of sites, BCachet is very scalable. Therefore,
it can be used to for very large scale multiprocessor systems.

Thesis Supervisor: Arvind
Title: Johnson Professor
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Chapter 1

Introduction

In a Distributed Shared Memory (DSM) system processors, and memory are distributed and

communicate with each other through a network. DSM system have long communication

latencies and usually employ hardware and software caching technique to overcome this la-

tency. DSM systems have provided a fertile ground for research in cache coherence protocols

[2, 3, 11, 18, 23, 20, 6, 17, 19]. There is an emerging consensus that a single fixed protocol

is unlikely to provide satisfactory performance for a range of protocols [21, 13, 22, 9, 15].

Consequently, there has been a great interest in adaptive protocols that can monitor the

behavior of a program and dynamically adjust to improve its performance. There are few

examples of adaptive protocols in use - both their performance and correctness have been

incredibly difficult to establish.

This thesis is about further development of an adaptive cache coherence protocol known

as Cachet, which was designed by Xiaowei Shen in late nineties [5, 7]. Cachet has several

attractive attributes:

1. Cachet is composed of three micro-protocols, Base, Writer-Push, and Migratory. Each

micro-protocol is optimized for different access patterns, so that a system can achieve

performance improvement by adaptively changing from one micro-protocol to another

based on program execution monitoring and some adaptivity policy.

2. Cachet provides two sets of rules - mandatory and voluntary, and guarantees that

the use of voluntary rules cannot affect the correctness of the protocol. Cachet has

solved a major problem in adaptive protocol verification by such a separation of rules.

Although a voluntary action may be done based on a wrong prediction, the system

9



does not have to recover from the voluntary action because firing voluntary rule is

always safe in Cachet.

3. Cachet supports the Commit-Reconcile and Fences (CRF) [1] memory model. CRF

is a low-level mechanism-oriented memory model for architects and compiler writers.

It is universal in the sense that almost all other memory models can be described

using CRF primitives via translation [1]. Consequently, a system that uses Cachet

can support a variety of memory models by one protocol.

In spite of all these wonderful properties, Cachet needs more development before it can

be used in a practical system. Cachet provides no policy guidelines about adaptivity. Little

is known about what can or should be monitored about a program and used to provide

dynamic feedback to the cache system. The other major issue in the implementation of

Cachet in a DSM system is the management of communication buffers. Xiaowei Shen

has chosen to describe the Cachet protocol in an abstract manner where the clarity and

correctness issues have dominated the buffer management issues.

For a system with N address lines and P processors in which each processor can generate

rqmax writeback messages at a time, a direct implementation of Cachet requires N x P

FIFO buffers at the input of memory. For even a moderate size system this number is too

large and thus, practically infeasible. Reordering of messages can reduce buffer sizes at the

expense of making buffer management more difficult. Cachet also requires storage to hold

up to P suspended writeback messages per address line if each address line has its own

storage, or Cachet requires storage to hold up to P x rqma suspended writeback messages

per memory unit if the storage is shared by all address lines.

The main contribution of this thesis is to provide BCachet, a modified Cachet protocol,

with practical buffer management characteristics. BCachet requires only two FIFOs at the

input of memory. BCachet also reduces the need for suspended message buffers to one

processor name tag per address line if each address line has its own suspended message

buffers, or one processor name tag per memory unit if the suspended buffer is shared by all

address lines. The reduced buffer requirement does not cause BCachet to be less flexible or

adaptive than Cachet.

Thesis organization: We give a brief overview of CRF and Cachet in Chapter 2. In

Chapter 3, we define HWb as an intermediate step toward describing BCachet in Chapter 4.
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In Chapter 5, we briefly show the correctness of BCachet, and finally in Chapter 6, we offer

our conclusions and some ideas for future work.
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Chapter 2

Cachet

Cachet [7] is a protocol for the mechanism-oriented memory model called Commit-Reconcile

& Fences (CRF) [1]. We give overviews of CRF and Cachet in Sections 2.1 and Section 2.2,

respectively. These descriptions are taken almost verbatim from papers on CRF and Ca-

chet [1, 7] and Xiaowei Shen's doctoral dissertation [7].

2.1 Commit Reconcile & Fences (CRF)

A system diagram of CRF memory model is shown in Figure 2-1. It includes a global

memory (MEM), processors (PROC), memory to processor buffer (MPB), processor to

memory buffer (PMB), and semantic caches called sache.

Figure 2-1: CRF System Overview

We use the syntax shown in Figure 2-2 to describe the detailed structure of the CRF

system. Notice every request from a processor to memory contains a tag t, which the mem-
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ory system uses in responding to a particular request. Messages in MPB can be reordered

arbitrarily because of these tags. Messages in PMB can also be reordered but are subject

to some restrictions as will be discussed shortly.

SYS Sys(MEM,SITEs) System
SITEs SITE SITEISITEs Set of Sites
SITE Site(SACHE,PMB,MPB,PROC) Site
SACHE e Cell(a,v,CSTATE)ISACHE Semantic Cache
CSTATE = Clean Dirty Cache State
PMB < t,INST>;PMB Processor-to-Memory Buffer
MPB < t,REPLY>IMPB Memory-to-Processor Buffer
REPLY v Ack Reply

INST Loadl(a) 0 Storel(a,v) Commit(a) 0 Reconcile(a) 0 Instruction
Fencerr(al,a2) n Fencer,(al,a2) Fencew,(al,a2) 0
Fenceww(al ,a2)

Figure 2-2: TRS expression of CRF

Two cache states, Clean and Dirty, are used in CRF. CRF defines execution of memory

instructions in terms of the cache state change and data movement between saches and the

memory.

CRF has eight memory instructions (please see Table 2.1). Conventional Load and

Store instructions are split into two local memory instructions and two global instructions

to achieve finer-grained memory operation. The local instructions, Loadl and Storel, can be

performed if the address is cached in the sache. If the address is in the sache, Loadl reads the

value and Storel writes a value to the sache block. Two global memory instructions, Commit

and Reconcile perform a synchronization of sache to the memory. Commit guarantees that

there is no Dirty copy of the address in the sache after it is completed while Reconcile

guarantees that there is no Clean copy in the sache after it is complete.

Four fence instructions are used to control the reordering of memory instructions in

PMB. Each fence operation has two arguments, pre-address and post-address. A fence

instruction does not allow the reordering between two instructions of the addresses in certain

situations. The instruction reordering table that defines the fence operation is shown in

Table 2.1.

The interactions between memory and sache is defined as background rules. According

to CRF- Cache rule, a sache can obtain a Clean copy if the address is not cached. According

to CRF-Writeback rule, a Dirty copy can be written back to the memory and become a

Clean copy. A Clean copy can be purged by CRF-Purge rule.

14



2.2 Cachet

The Cachet system models a distributed shared memory system as shown in Figure 2-3.

In this model, message buffer are used to model a network delay. Processor, processor-

to-memory, and memory-to-processor buffer are the same as in the CRF model. Cache

elements in Cachet have more possible states than simply Clean and Dirty. Also unlike

CRF, in Cachet memory cells have several states associated with them. Message queues

of caches and memory's are modeled by point-to-point buffers where two messages can

be reordered if addresses, destinations, or sources in the two messages are different (see

Figure 2-4).

Before giving the details of Cachet, we explain the three micro-protocols that are used

to compose it.

2.2.1 Micro-Protocols

Cachet employs three different micro-protocols, Base, Writer-Push, and Migratory. Char-

acteristic of each micro-protocol is described as follows.

Rule Name Instruction Cstate Action Next Cstate
CRF - Loadl Loadl(a) Cell(a, v, Clean) retire Cell(a, v, Clean)

Cell(a, v, Dirty) retire Cell(a, v, Dirty)
CRF - Storel Storel(a, v) Cell (a,-, Clean) retire Cell(a, v, Dirty)

I.________ ____Cell(a, -, Dirty) retire Cell(a, v, Dirty)
CRF - Commit Commit(a) Cell(a, v, Clean) retire Cell(a, v, Clean)

afsache retire aSsache
CRF - Reconcile Reconcile(a) Cell(a, v, Dirty) retire Cell(a, v, Dirty)

a sache retire aSsache

Background Rules
Rule Name Cstate Mstate Next Cstate Next Mstate
CRF - Cache apsache Cell(a, v) Cell(a, v, Clean) Cell(a, v)
CRF - Writeback Cell(a, v, Dirty) Cell(a, -) Cell(a, v, Clean) Cell(a, v)
CRF - Purge Cell(a, -, Clean) Cell(a, v) asache Cell(a, v)

Instruction Reordering
Loadl Storel Fencerr Fencer, Fencert Fencew, Commit Reconcile

_2 (a') (a', ) (a',a) (a' a' (a', a) (a',a) (a') (a')

Loadl(a) true aa ' aa true true true true
Storel(a, v) a a' aia' true true true true a a' true
Fencerr(ai, a2) true true true true true true true a2a'
Fencerw (al, a2) true a2a' true true true true true true
Fencer(al , a2) true true true true true true true a2 Aat
Fence,, (ai, a2) true a2 t true true true true true true
Commit(a) true true true true aAai aia' true true
Reconcile(a) aAa' true true true true true true true

Table 2.1: Summary of CRF Rules

15
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* Base: Base protocol is the most straightforward implementation of CRF. It uses the

memory as a rendezvous point for reading and writing, that is, to read or write a

value globally, a cache must access the memory. In this protocol, a cache must write

back a Dirty copy on Commit and purge a Clean copy on Reconcile to guarantee that

the memory stores the most recently updated global value.

* Writer-Push: Writer-Push is optimized for the case where load operations are more

frequent than store operations. It uses caches as rendezvous points for reading and the

memory as a rendezvous point for writing, that is, a cache must access the memory

to write a value globally. In this protocol, a cache must write back a Dirty copy on

Commit and the memory is responsible to purge all other copies before update the

memory value to guarantee that the memory and the Writer-Push cache blocks store

the most recently updated global value.

* Migratory: Migratory is optimized for the case where an address is exclusively owned

by a processor for a long time. It uses the cache as a rendezvous point for reading

and writing, that is, a cache does not need to access to the memory for global reading

and writing operation. In this protocol, to guarantee that the Migratory cache block

stores the most recently updated global value, the memory is responsible for purging

the Migratory cache block and retrieving the most recently updated global value on

requests from other sites.

The difference of Base, Writer-Push, and Migratory are shown in Table 2.2.

Table 2.2: Different Treatment of Commit, Reconcile, and Cache Miss

17

Micro-Protocol Commit on Dirty Reconcile on Clean Cache Miss
Base update memory purge local clean copy retrieve data from memory
Writer-Push purge all clean copy retrieve data from memory

update memory
Migratory flush exclusive copy

update memory
retrieve data from memory



2.2.2 Cache and Memory States, and Message Types in Cachet

Figure 2-5 shows various elements of Cachet in our syntax. It is followed by the explanations

of each cache and memory state, and message type

= Sys(MSITE,SITEs)
- Msite(MEM,IN,OUT)

e 0 Cell(a,v,MSTATE)IMEM
_ SITE n SITEISITEs

Site(id,CACHE,IN,OUT,PMB,MPB,PROC)
- e MSG®IN

e 0 MSG®OUT
= Msg(src,dest,CMD,a,v)

MSTATE = Cw[DIR] f Tw[DIR,SM] 0 Cm[id] D
Tm[id,SM] f T'm[id]

DIR - e 0 idIDIR
SM _ e 0 (id,v) SM
CSTATE _ Cleanb Dirtyb Cleanw, 0 Dirtyw 0 Cleanm U Dirtym 0

WbPending CachePending
CMD _ CacheReq 0 Wb 0 DoWnwb O Downmow DownVmw 

Downmb DownVmb 0 Cacheb 0 Cachew Upwm f WbAckb U
DownReq,,b 0 DownReqmw DownReqmb

System
Memory Site
Memory
Set of Cache Sites
Cache Site
Incoming Queue
Outgoing Queue
Message

Memory State

Directory
Suspended Message
Cache State

Command

Figure 2-5: TRS Expression of Cachet

Cache States of Cachet

Cachet protocol employs six stable cache states and two transient states. These states are

list as follows.

* Cleanb: Clean state of Base.

* Dirtyb: Dirty state of Base.

* Cleanw: Clean state of Writer-Push.

* Dirty,: Dirty state of Writer-Push.

* Cleanm: Clean state of Migratory.

* Dirtym: Dirty state of Migratory.

* WbPending: The transient state that indicate a dirty copy of the address is being

written back to the memory.

18
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* CachePending: The transient state that indicate a data copy of the address is being

retrieved from the memory.

* Invalid: The address is not cached.

Memory States of Cachet

Cachet protocol employs two stable memory states and three transient states. Two transient

states contain suspended writeback messages.

* Cw[dir]: The address is cached under Writer-Push in the sites whose identifiers are

recorded in dir.

* Cm[id]: The address is cached under Migratory in the site whose identifier is id.

* Tw[dir,sm]: The address is cached under Writer-Push in the sites whose identifiers

are recorded in dir. The suspended message buffer sm stores suspended writeback

messages. The memory has sent DownReqb to the sites whose identifiers are recorded

in dir.

* Tm[id,sm]: The address is cached under Migratory in the site whose identifier is id.

The suspended message buffer sm stores suspended writeback messages. The memory

has sent a DownReqmb to the site whose identifier is id or it has sent a DownReqm,

followed by a DownReqb to the site.

T'm[id]: The address is cached under Migratory in the site whose identifier is id. The

memory has sent a DownReqm, to the site whose identifier is id.

Messages of Cachet

To achieve high adaptivity and seamless integration, Cachet employs eighteen messages:

ten memory-to-cache messages and eight cache-to-home messages. Based on behavioral

similarity, we classify them into eight categories as follows.

* CacheReq requests a memory to send a data copy.

- CacheReq informs that the cache request a data copy from the memory.

· Cache carries a data copy to the cache.

19



- Cacheb carries a Base copy to the cache.

- Cachew carries a Writer-Push copy to the cache.

- Cachem carries a Migratory copy to the cache.

* Up informs its target cache that a memory intends to upgrade the micro-protocol of

the block.

- Upwm informs the cache that the memory intends to upgrade a cache block from

Writer-Push to Migratory.

* Wb carries a value to be written back to the memory.

- Wbb carries a data copy of dirty Base block, which will be written back to the

memory.

- Wbw carries a data copy of dirty Writer-Push block, which will be written back

to the memory.

* WbAck informs its target cache of the completion of a writing back operation in

memory.

- WbAckb informs the cache that writing back of the copy has been done and

allows the cache to retain a Base copy.

- WbAckw informs the cache that writing back of the copy has been done and

allows the cache to retain a Writer-Push copy.

- WbAckm informs the cache that writing back of the copy has been done and

allows the cache to retain a Migratory copy.

* DownReq requests a cache to downgrade the micro-protocol of the block.

- DownReqwb informs the cache of the request from the memory for downgrading

from Writer-Push to Base.

- DownReq, informs the cache of the request from the memory for downgrading

from Migratory to Writer-Push.

- DownReqmb informs the cache of the request from the memory for downgrading

from Migratory to Base.

20



* Down informs its target memory that the cache has downgraded the micro-protocol.

- Downwb informs the memory that the cache block has downgraded from Writer-

Push to Base.

- Downm,, informs the memory that the cache block has downgraded from Migra-

tory to Writer-Push.

- Downmb informs the memory that the cache block has downgraded from Migra-

tory to Base.

* Down V informs its target memory that the cache has downgraded and carries the

value to be written back.

- L)ownVmb informs its target memory that the cache has downgraded from Mi-

gratory to Base and carries a data copy to be written back.

- L)ownVmw informs its target memory that the cache has downgraded from Mi-

gratory to Writer-Push and carries a data copy to be written back.

2.2.3 Specification of Cachet

Table 2.3, Table 2.4, and Table 2.5 give all the rules of Cachet. Detail information about

Cachet, including the proof of its soundness and liveness can be found in Xiaowei Shen's

thesis [7].

Table 2.3: Cachet: The Processor Rules

Mandatory Processor Rules

Instruction Cstate Action Next Cstate
Loadl(a) Cell(a, v, Cleanb) retire Cell(a, v, Cleanb)

Cell(a, v, Dirtyb) retire Cell(a, v, Dirtyb)

Cell(a, v, Cleanw) retire Cell(a, v, Cleanw )

Cell(a, v, Dirtyw) retire Cell(a, v, Dirtyw )

Cell(a, v, Cleanm) retire Cell(a, v, Cleanm)

Cell(a, v, Dirtym) retire Cell(a, v, Dirtyem)

Cell(a, v, WbPending) stall Cell(a, v, WbPending)

Cell(a, -, CachePending) stall Cell(a, -, CachePending)

apcache stall, < CacheReq, a > -+H Cell(a,-, CachePending)

Storel(a, v) Cell(a, v, Cleanb) retire Cell(a, v, Dirtyb)

Cell(a, v, Dirtyb) retire Cell(a, v, Dirtyb)

Cell(a, v, Cleanw ) retire Cell(a, v, Dirtyw )

Continued on next page

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12
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Table 2.3 - continued from previous page
Instruction Cstate Action Next Cstate

Cell(a, v, Dirtyw ) retire Cell(a, v, Dirtyw ) P13

Cell (a, v, Cleanm) retire Cell(a, v, Dirtyr) P14

Cell(a, v, Dirtyn ) retire Cell(a, v, Dirtym) P15

Cell(a, vl, WbPending) stall Cell(a, vl, WbPending) P16

Cell(a, -, CachePending) stall Cell(a, -, CachePending) P17

acache stall, < CacheReq, a > - H Cell(a, -, CachePending) P18

Commit(a) Cell(a, v, Cleanb) retire Cell(a, v, Cleanb) P19
Cell (a, v, DirtYb) stall, < Wbb, a, v > - H Cell(a, v, WbPending) P20

Cell(a, v, Cleanw) retire Cell(a, v, Cleanw) P21
Cell(a, v, Dirty,,,) stall, < Wb,, a, v > -H Cell(a, v, WbPending) P22

Cell(a, v, Cleanm) retire Cell(a, v, Cleanr) P23
Cell(a, v, Dirtyn ) retire Cell(a, v, Dirtyr) P24

Cell(a, v, WbPending) stall Cell(a, v, WbPending) P25

Cell(a, -, CachePending) stall Cell(a, -, CachePending) P26

a_ cache retire afcache P27
Reconcile(a) Cell(a, -, Cleanb) retire a cache P28

Cell(a, v, Dirtyb ) retire Cell(a, v, Dirtyb ) P29

Cell(a, v, Cleanw ) retire Cell(a, v, Cleanw ) P30
Cell(a, v, Dirtyw ) retire Cell (a, v, Dirtyw ) P31

Cell(a, v, Cleanm) retire Cell(a, v, Cleanm) P32
Cell(a, v, Dirtymr) retire Cell(a, v, Dirtym) P33

Cell(a, v, WbPending) stall Cell(a, v, WbPending) P34

Cell(a, -, CachePending) stall Cell(a, -, CachePending) P35

a acache retire a cache P36

Table 2.4: Cachet: The Cache Engine Rules

Voluntary C-engine Rules
Msg form H Cstate Action Next Cstate

Cell(a, -, Cleanb) a cache

Cell(a, v, Dirtyb) < Wbb, a, v > -+H Cell(a, v, WbPending)

Cell(a, v, Clean,) < Downwb,a > -+H Cell(a, v, Cleanb)
Cell(a, v, Dirtyw) < Downwb, a > -+H Cell(a, v, Dirtyb)

< Wbw, a, v > -+H Cell(a, v, WbPending)

Cell(a, v, Cleanm) < Downmw, a > -+H Cell(a, v, Cleanw)
< Downmb,a > -+H Cell(a, v, Cleanb)

Cell(a, v, Dirtym) < DownVmw, a, v > -+H Cell(a, v, Cleanw)

< DownVmb,a, v > -+H Cell(a, v, Cleanb)

afcache < CacheReq, a > -+H Cell(a, -, CachePending)

Mandatory C-engine Rules
Continued on next page

C1

C2

C3

C4

C5

C6

C7

C8
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Table 2.4 - continued from previous page

Msg form H Cstate Action Next Cstate
< Cacheb,a, v > Cell(a, -, CachePending) Cell(a, v, Cleanb)
< Cachew, a, v > Cell(a, -, Cleanb) Cell(a, v, Cleanw)

Cell(a, vi, Dirtyb) Cell(a, vl, Dirtyw )

Cell(a, v, WbPending) Cell(a, vl, WbPending)

Cell(a, -, CachePending) Cell(a, v, Cleanw )
afcache Cell(a, v, Cleanw)

< Cacher, a, v > Cell(a, -, Cleanb) Cell(a, v, Cleanm)
Cell(a, vi, Dirtyb) Cell(a, vi, Dirty )

Cell(a, vi, WbPending) Cell(a, vi, WbPending)

Cell(a, -, CachePending) Cell(a, v, Cleanm )
aecache Cell(a, v, Cleanm )

< Upwm, a > Cell(a, v, Cleanb) Cell(a, v, Cleanb)
Cell(a, v, Dirtyb) Cell(a, v, Dirtyb)

Cell(a, v, Cleanw) Cell(a, v, Cleanm )
Cell(a, v, Dirtyw ) Cell(a, v, Dirtym )

Cell(a, v, WbPending) Cell(a, v, WbPending)

Cell(a, -, CachePending) Cell(a, -, CachePending)
a cache aecache

< WbAckb, a > Cell(a, v, WbPending) Cell(a, v, Cleanb)
< WbAckw, a > Cell(a, v, WbPending) Cell(a, v, Clean )
< WbAckm,, a > Cell(a, v, WbPending) Cell(a, v, Cleanm )

< DownReq,,b, a > Cell(a, v, Cleanb) Cell(a, v, Cleanb)

Cell(a, v, Dirtyb) Cell(a, v, Dirtyb)

Cell(a, v, Cleanw ) < Downwb, a > -H Cell(a, v, Cleanb)

Cell(a, v, Dirtyw ) < Downwb,a > -H Cell(a, v, Dirtyb)

Cell(a, v, WbPending) Cell(a, v, WbPending)

Cell(a, -, CachePending) Cell(a, -, CachePending)

aecache aecache
< DownReqw, a > Cell(a, v, Cleanb) Cell(a, v, Cleanb)

Cell(a, v, Dirtyb) Cell(a, v, Dirtyb)

Cell(a, v, Cleanw) Cell(a, v, Cleanw )
Cell(a, v, Dirty,,,) Cell(a, v, Dirtyw )

Cell(a, v, Cleanm) < Downmw, a > -H Cell(a, v, Cleanw)

Cell(a, v, Dirtym) < DownVm,,a,v > - H Cell(a, v, Clean,)
Cell(a, v, WbPending) Cell(a, v, WbPending)

Cell(a, -, CachePending) Cell(a, -, CachePending)

a cache acache
< DownReq,b, a > Cell(a, v, Cleanb) Cell(a, v, Cleanb)

Cell(a, v, Dirtyb) Cell(a, v, Dirtyb)

Cell(a, v, Cleanw) < Downwb, a > -H Cell(a, v, Cleanb)
Cell(a, v, Dirtyw) < Downwb, a > -H Cell(a, v, Dirtyb)

Cell(a, v, Cleanm) < Downmb, a > -+H Cell(a, v, Cleanb)

Continued on next page
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Table 2.4 - continued from previous page

Msg form H Cstate Action Next Cstate

Cell(a, v, Dirtym) < DownVmb, a, v > -+H Cell(a, v, Cleanb)

Cell(a, v, WbPending) Cell(a, v, WbPending)

Cell(a, -, CachePending) Cell(a, -, CachePending)
a cache ascache

C53

C54

C55

C56

Table 2.5: Cachet: The Memory Engine Rules

Voluntary M-engine Rules
Mstate Action Next Mstate

Cell(a, v, Cw[dir])(id dir) < Cachew, a, v > -+id Cell(a, v, Cw[idldir])

Cell(a, v, Cw[id]) < Upwm,,, a > -+id Cell(a, v, Cm[id])

Cell(a, v, Cw[e]) < Cachem, a, v > -+id Cell(a, v, Cm[id])

Cell(a,v, Cw[dir]) < DownReqwb,a > -+dir Cell(a, v, Tw[dir, e])

Cell(a, v, Cm[id]) < DownReqmw, a > -+id Cell(a, v, T'm[id])

< DownReqmb, a > -id Cell(a, v, Tm[id, e])

Cell(a, v, T'm[id]) < DownReqwb, a > -+id Cell(a, v, Tm[id, e])

Mandatory M-engine Rules

Msg from id Mstate Action Next Mstate

< CacheReq, a > Cell(a, v, Cw[dir])(id dir) < Cacheb, a, v > -+id Cell(a, v, Cw[dir])

Cell(a, v, Tw[dir, sm])(id4dir) stall message Cell(a, v, Tw[dir, smin])

Cell(a, v, Cw[dir])(idEdir) Cell(a, v, Cw[dir])

Cell(a, v, Tw[dir, sm])(idEdir) Cell(a, v, Tw[dir, sm])

Cell(a, v, Cm[idl])(id$idl) stall message Cell(a, v, T'm[idl])

< DownReqmw, a > -idl

Cell(a, v, T'm[idi ]) stall message Cell(a, v, T'm[idi])

(idTidl )
Cell(a, v, Tm[idi, sm]) stall message Cell(a, v, Tm[id, smin])

(idtidl )
Cell(a, v, Cm[id]) Cell(a, v, Cm[id])

Cell(a, v, T'm[id]) Cell(a, v, T'm[id])

Cell(a, v, Tm[id, sm]) Cell(a, v, Tm[id, smin])

< Wbb, a, v > Cell(a, v, Cw[dir])(id dir) < DownReqwb,a > dir Cell(a, vl,Tw[dir, (id, v)])

Cell(a, vi, Tw[dir, sm]) Cell(a, vi, Tw[dir, sm I(id, v)])

(id dir)
Cell(a, vi, Cw[idldir]) < DownReqwb, a > -+dir Cell(a, vi, Tw[dir, (id, v)])

Cell(a, vl, Tw[idldir, sm]) Cell(a, vi, Tw[dir, sm I(id, v)])

Cell(a, vi, Cm[idl])(id$idl) < DownReqmb, a > -+idl Cell(a, vl, Tm[idl, (id, v)])

Cell(a, vl,T'm[idi]) < DownReqwb,a > -idl Cell(a, vl,Tm[idi, (id, v)])

(idfidi )
Cell(a, vl, Tm[idi, sm]) Cell(a, vi, Tm[idi, sml(id, v)])

Continued on next page
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Table 2.5 - continued from previous page

Msg from id Mstate Action Next Mstate

(idAidl )
Cell(a, vl, Cm[id]) Cell(a, vl, Tw[e, (id, v)])

Cell(a, vl, T'm[id]) Cell(a, v, Tw[e, (id, v)])

Cell(a, vl, Tm[id, sm]) Cell(a, v, Tw [e, sm l(id, v)])

< Wbw, a, v > Cell(a, vl, Cw[dir])(id dir) < DownReqwb, a > dir Cell(a, vl, Tw[dir, (id, v)])

Cell(a, vl, Cw[idldir]) < DownReqwb, a > -dir Cell(a, vl, Tw[dir, (id, v)])

Cell(a, v, Tw[idldir, sm]) Cell(a , v, Tw[dir, sml(id, v)])

Cell(a, vl, Cm[id]) Cell(a, v, Tw[e, (id, v)])

Cell(a, vl, T' m[id]) Cell(a, vl, Tw[e, (id, v)])

Cell(a, v, Tm[id, sm]) Cell(a , v , [e, sm(id, v)])

< Downwb, a > Cell(a, v, Cw[idldir]) Cell(a, v, Cw[dir])

Cell(a, v, Tw[idldir, sm]) Cell(a, v, Tw[dir, sm])

Cell(a, v, Cm[id]) Cell(a, v, Cw[e])

Cell(a, v, T'm[id]) Cell(a, v, Cw[,])

Cell(a, v, Tm[id, sm]) Cell(a, v, Tw[e, sm])

< Downmuw, a > Cell(a, v, Cm[id]) Cell(a, v, Cw[id])

Cell(a, v, T'm[id]) Cell(a, v, Cwu[id])

Cell(a, v, Tm[id, sm]) Cell(a, v, Tw[id, sm])

< DownVm, a, v > Cell(a, v, Cm[id]) Cell(a, v, Cw[id])

Cell(a, v, T'm[id]) Cell(a, v, Cw[id])

Cell(a, v, Tm[id, sm]) Cell(a, v, Tw[id, sm])

< Downmb, a > Cell(a, v, Cm[id]) Cell(a, v, Cw[e])

Cell(a, v, T'm[id]) Cell(a, v, Cw[e])

Cell(a, v, Tm[id, sm]) Cell(a, v, Tw[e, sm])

< DownVmb, a, v > Cell(a, v, Cm[id]) Cell(a, v, Cw[e])

Cell(a, vl, T'm[id]) Cell(a, v, Cw[e])

Cell(a, vl, Tm[id, sm]) Cell(a, v, Tw[e, sm])

Cell(a, -, Tw[e, (id, v) sm]) < WbAckb, a > -+id Cell(a, v, Tw[e, sm])

Cell(a, -,Tw[e, (id, v)]) < WbAckw,a > -+id Cell(a,v,Tw[e, e])

Cell(a, -,Tw[e, (id, v)]) < WbAckm,a > -+id Cell(a, v, Tw[e, e])

Cell(a, v, Tw[e, e]) Cell(a, v, Cw[e])
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Chapter 3

HWb: An Optimized Cachet

protocol

In this chapter, we modify the Cachet protocol without changing the point-to-point message

passing assumption. Most changes are motivated by a desire to make Cachet more suitable

for buffer management, which we will discuss in the next Chapter. We call the modified

Cachet - HWb. We offer some arguments about the correctness (Soundness) of the modified

protocol but omit a full proof because it is long and tedious and not very insightful.

3.1 An overview of modifications to Cachet

We will make the following changes to Cachet:

1. We drop the distinction between the two types of writeback message: Wbw and Wbb,

in Cachet because it is of no consequence. (See rules P20 and P22 in Table 2.3, C2

and C5 in Table 2.4, and M18-33 in Table 2.5).

2. We drop the rules for generating writeback acknowledgment messages, WbAck. and

WbAckm, because these are composite rules and can be derived from other rules. (See

rules C30 and C31 in Table 2.4, M52 and M53 in Table 2.5).

3. Several rules in Cachet send multiple (invalidate-like) messages, one to each cache

that has the location cached. (See rules M4, M18, M20, M28, M29 in Table 2.5).

Blocking of one of the outgoing messages can lead to deadlock in a system with limited
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communication buffer space. We replace such rules by finer-grained rules which inform

one cache at a time. This creates a need for slightly finer-grain bookkeeping but does

not necessarily increase the total storage requirements.

4. In Cachet, writeback messages that cannot be processed immediately, because the

memory is busy invalidating the address in some caches, are stored in a suspension

list. (See rules M18-33 in Table 2.5). Instead, we either leave the writeback messages

in the incoming queue or negatively acknowledge it so that the affected cache can

attempt the writeback later.

5. In Cachet, the value carried by a writeback message is temporarily stored in the sus-

pended message buffer (See for example, rule M18-33 in Table 2.5) and it eventually

replaces the value in the memory (See for example, rule M51-53 in Table 2.5). In case

of several suspended writeback messages, the final writer is determined nondetermin-

istically. Considerable space can be saved by immediately storing the writeback value

in the memory and by just storing the id of the cache who has sent the Wb message

(See for example, rules M18-27B in Table 3.3).

6. We assign higher priority to rules that make memory state transitions toward stable

states than those that make transitions toward transient states. (For example, rules

(M51, M54) over (M19) in Table 2.5).

3.2 The HWb Protocol

The specification of HWb, which incorporates all changes discussed above is shown in Ta-

ble 3.1, Table 3.2, Table 3.3, and Table 3.4.

The following facts should be kept in mind while reading the new protocol:

* HWb has Wb instead of Wbb and Wb, message types.

* The suspended message buffer in HWb (GM) contains the identifier of the cache that

sent the writeback message. This is different from the suspended message buffer in

Cachet (SM), which contains both the identifiers and the values of writeback messages.

* In HWb, the transient state Tw has two directories while in Cachet, Tw state has one

directory. The first directory is the same as the one in Cachet and contains the ids
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of caches that have the address in the Writer-Push state and to whom DownReqwb

message has been sent but no reply has been received. The second directory contains

ids of caches that have the address in Writer-Push states and to whom DownReqwb

message has not been sent.

As a consequence of voluntary downgrading rules (rules C3 and C4 in Table 2.4), the

memory may receive an (implicit) response to a DownReqwb from a cache even before

it sends the DownReqwb message to that cache. In this situation, we simply drop the

appropriate id from the second directory (See rule M2B in Table 3.4).

Table 3.1: HWb: The Processor Rules

Mandatory Processor Rules
Instruction Cstate Action Next Cstate

Loadl(a) Cell(a, v, Cleanb) retire Cell(a,v, Cleanb)

Cell(a, v, Dirtyb) retire Cell(a, v, Dirtyb)

Cell(a, v, Cleanw) retire Cell(a, v, Cleanw )

Cell(a, v, Dirtyw) retire Cell(a, v, Dirty, )

Cell(a, v, Cleanm) retire Cell(a, v, Cleanm)

Cell(a, v, Dirtyr ) retire Cell(a, v, Dirtym )
Cell(a, v, WbPending) stall Cell(a, v, WbPending)

Cell(a, -, CachePending) stall Cell(a, -, CachePending)

a ¢ cache stall, < CacheReq, a >-+ H Cell(a,-, CachePending)
Storel(a, v) Cell(a, v, Cleanb) retire Cell(a, v, Dirtyb)

Cell(a, v, Dirtyb) retire Cell(a, v, DirtYb )

Cell(a, v, Cleanw) retire Cell(a, v, Dirtyw )

Cell(a, v, Dirtyw ) retire Cell(a, v, Dirtyw )

Cell(a, v, Cleanm) retire Cell(a, v, Dirtym)

Cell(a, v, Dirtyw ) retire Cell(a, v, Dirtym)

Cell(a, vi, WbPending) stall Cell(a, vi, WbPending)

Cell(a, -, CachePending) stall Cell(a, -, CachePending)

a f cache stall, < CacheReq, a >-+ H Cell(a, -, CachePending)

Commit(a) Cell(a, v, Cleanb) retire Cell (a,v, Cleanb)

Cell(a, v, Dirtyb) stall, < Wb, a, v >-+ H Cell(a, v, WbPending)

Cell(a, v, Cleanw) retire Cell(a, v, Cleanw )

Cell(a, v, Dirtyw) stall, < Wb, a, v >-+ H Cell(a, v, WbPending)

Cell(a, v, Cleanrn) retire Cell(a, v, Cleanm)

Cell(a, v, Dirtym ) retire Cell(a, v, Dirtym )

Cell(a, v, WbPending) stall Cell(a, v, WbPending)

Cell(a, -, CachePending) stall Cell(a, -, CachePending)
a , cache retire a cache

Reconcile(a) Cell(a, -, Cleanb) retire a cache

Cell(a, v, Dirtyb) retire Cell(a, v, Dirtyb )

Continued on next page
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Table 3.1 - continued from previous page
Instruction Cstate Action Next Cstate

Cell(a, v, Cleanw ) retire Cell(a, v, Clean, )

Cell(a, v, Dirtyw ) retire Cell(a, v, Dirtyw )

Cell(a, v, Cleanm) retire Cell(a, v, Cleanm)

Cell(a, v, Dirtym) retire Cell(a, v, Dirtym)

Cell(a, v, WbPending) stall Cell(a, v, WbPending)

Cell(a, -, CachePending) stall Cell(a, -, CachePending)

a V cache retire a V cache

P30

P31

P32

P33

P34

P35

P36

Table 3.1: HWb: The Cache Engine Rules

Voluntary C-engine Rules
Cstate Action Next Cstate

Cell(a, -, Cleanb) a cache C1
Cell(a, v, Dirtyb) < Wb, a, v >-+ H Cell(a, v, WbPending) C2

Cell(a, v, Cleanw) < Downwb, a >-+ H Cell(a, v, Cleanb) C3

Cell(a, v, Dirtyw) < Down,b,a >-+ H Cell(a, v, DirtYb) C4

< Wb,a,v >-+ H Cell(a, v, WbPending) C5

Cell(a, v, Cleanm) < Downmwo,a >-+ H Cell(a,v, Cleanw) C6

< Dowunmb,a >-+ H Cell(a,v, Cleanb) C7

Cell(a,v, Dirtym) < DownVm,,a,v >-+ H Cell(a,v, Cleanw,) C8
< DownVnb, a, v >-+ H Cell(a, v, Cleanb) C9

a f cache < CacheReq, a >-+ H Cell(a, -, CachePending) C10

Mandatory C-engine Rules
Msg from H Cstate Action Next Cstate

< Cacheb, a, v > Cell(a, -, CachePending) Cell(a, v, Cleanb) C11

< Cachew, a, v > Cell(a, -, Cleanb) Cell(a, v, Cleanw) C12

Cell(a, vi, Dirtyb) Cell(a, vi, Dirtyw ) C13

Cell(a, vi, WbPending) Cell(a, vi, WbPending) C14

Cell(a, -, CachePending) Cell(a, v, Cleanw) C15

a ¢ cache Cell(a,v, Cleanw) C16

< Cachem, a, v > Cell(a, -, Cleanb) Cell(a, v, Cleanm) C17

Cell(a, vi, Dirtyb) Cell(a, vi, Dirtym) C18

Cell(a, v, WbPending) Cell(a, vi, WbPending) C19

Cell(a, -, CachePending) Cell(a, v, Cleanm) C20

a f cache Cell(a, v, Cleanm) C21

< Upwm, a > Cell(a, v, Cleanb) Cell(a, v, Cleanb) C22

Cell(a, v, Dirtyb) Cell(a, v, Dirtb) C23

Cell(a, v, Clean,) Cell(a, v, Cleanm) C24

Cell(a, v, Dirtyw) Cell(a, v, Dirtym ) C25

Cell(a, v, WbPending) Cell(a, v, WbPending) C26
Continued on next page
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Table 3.2 - continued from previous page
Msg from H Cstate Action Next Cstate

Cell(a, -, CachePending) Cell(a, -, CachePending) C27
a cache a ¢ cache C28

< WbAckb, a > Cell(a, v, WbPending) Cell(a, v, Cleanb) C29

< DownReqwb, a > Cell(a, v, Cleanb) Cell(a, v, Cleanb) C30

Cell(a, v, Dirtyb) Cell(a, v, Dirtyb) C31

Cell(a, v, Clean,) < Down,,b, a >- H Cell(a, v, Cleanb) C32

Cell(a, v, Dirtyw) < Downwb,a >-+ H Cell(a, v, Dirtyb) C33
Cell(a, v, WbPending) Cell(a, v, WbPending) C34

Cell(a, -, CachePending) Cell(a, -, CachePending) C35
a cache a ¢ cache C36

< DownReqm, a > Cell(a, v, Cleanb) Cell(a, v, Cleanb) C37

Cell(a, v, DirtYb) Cell(a, v, Dirtyb) C38

Cell(a, v, Cleanw) Cell(a, v, Cleanw ) C39

Cell(a, v, Dirtyw) Cell(a, v, Dirtyw) C40

Cell(a, v, Cleanm) < Downmw, a >-- H Cell(a,v, Cleanw) C41

Cell (a,v, Dirtym) < DownVmw,a,v >-+ H Cell(a,v, Cleanw) C42

Cell(a, v, WbPending) Cell(a, v, WbPending) C43

Cell(a, -, CachePending) Cell(a, -, CachePending) C44
a cache a f cache C45

< DownReqmb, a > Cell(a, v, Cleanb) Cell(a, v, Cleanb) C46

Cell(a, v, Dirtyb) Cell(a, v, DirtYb) C47

Cell(a, v, Cleanw) < Downwb, a >-+ H Cell(a, v, Cleanb) C48

Cell(a, v, Dirtyw) < Downwb, a >-+ H Cell(a, v, Dirtyb ) C49

Cell(a, v, Cleanm) < Downmb, a >-+ H Cell(a, v, Cleanb) C50

Cell(a, v, Dirtym) < DownVmb,a, v >-+ H Cell(a, v, Cleanb) C51

Cell(a, v, WbPending) Cell(a, v, WbPending) C52

Cell(a, -, CachePending) Cell(a, -, CachePending) C53
a ¢ cache a cache C54

Table 3.3: HWb: The Memory Engine Rules-A

Voluntary M-engine Rules
Mstate Action Next Mstate

Cell(a, v, Cw[dir])(id ¢ dir) < Cachew, a, v >-+ id Cell(a, v, Cw[id I dir]) M1

Cell(a, v, Cw[id]) < Upwm, a >-- id Cell(a, v, Cm[id]) M2

Cell(a, v, Cw[e]) < Cachem, a, v >-+ id Cell(a, v, Cm[id]) M3

Cell(a, v, Cw[idldir]) < DownReqwb, a > -+id Cell(a, v, Tw[id, dir, e]) M4

Cell(a,v, Cm[id]) < DownReqmw,a >-+ id Cell(a,v,T'm[id]) M5
< DownReqmb,a >-- id Cell(a,v, Tm[id,e]) M6

Cell(a,v,T'm[id]) < DownReqwb, a >-+ id Cell(a,v, Tm[id, E]) M7

Continued on next page
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Table 3.3 - continued from previous page
Mandatory M-engine Rules

Msg from id Mstate Action Next Mstate

< CacheReq, a > Cell(a, v, Cw[dir])(id 4 dir) < Cacheb, a, v > -+id Cell(a, v, Cw[dir])

Cell(a, v, Tw[dirl, dir2, stall message Cell(a, v, Tw[dirl, dir2,

gm])(id dirl dir2) ,gm])

Cell(a, v, Cw[dir])(id E dir) Cell(a, v, Cw[dir])

Cell(a, v, Tw[dirl, dir2, Cell(a, v, Tw[dirl, dir2,

gm])(idEdiri dir2) gmin])

Cell(a, v, Cm[idi])(id • idi) stall message Cell(a, v, T'm[idi])

< DownReqmw,a >-- idl

Cell(a, v, T'mlidl])(id $ idi) stall message Cell(a, v, Tm[idl])

Cell(a, v, Tm[id , gm])(id 0 idi) stall message Cell(a, v,Tm[id, gmin])

Cell(a, v, Cm[id]) Cell(a, v, Cm[id])

Cell(a, v, T'm[id]) Cell(a, v, Tm[id])

Cell(a, v, Tm[id, gm]) Cell(a, v, Tm[id, gmin])

< Wb,a, v > Cell(a, vl, Cw[dir])(idf dir) Cell(a, v, Tw[e, dir, id])

Cell(a, vl, Tw[diri, dir2, Cell(a, v, Tw[dirl, dir2

gm])(idodi dir 2, dirl Idir2•e) gmlid])

Cell(a, vi, Tw[e, e, gm]) stall message Cell(a, vi, Tw[e, e, gm])

Cell(a, vi, Cv[idldir]) Cell(a, v, Tw[e, dir, id])

Cell(a, vi, Cw[idldir]) stall message Cell(a, vl, Tw[e, dir, el)

Cell(a, vi, Tw[ididirl, dir2, Cell(a, v, Tw[dirl, dir2,

gm]) gmlid])

Cell(a, v1, Tw[dirl, idldir2, Cell(a, v, Tw[dirl, dir2,

gm]) gmlid])

Cell(a, vl , Tw[idldirl, dir2, stall message Cell(a, vl ,Tw[dir , dir2,

gm]) gm])

Cell(a, vi, Tw[dirl, idldir2, stall message Cell(a, vi, Tw[dir, dir2,

gm]) gmin])

Cell(a, vi, Cm[idl])(id4idl) < DownReqmb, a > -+id1 Cell(a, v, Tm[idi, id])

Cell(a, vl, T'm[idl])(idAidi) < DownReqwb, a > -id 1 Cell(a, v, Tm[id1, id])

Cell(a, vi, Tm[idi, gm])(idoid ) Cell(a, v, Tm[idi, gmlid])

Cell(a, vi, Cm[id]) Cell(a, v, Tw[e, e, id])

Cell(a, vi, Cm[id]) stall message Cell(a, vl, Tw[e, e, e])

Cell(a, vi, T'm[id]) Cell(a, v, Tw[e, e, id])

Cell(a, v, T' m[id]) stall message Cell(a, v, Tw[e,e, e, ])

Cell(a, vi, Tm[id, gm]) Cell(a, v, Tw[e, e, gmlid])

Cell(a, vi, Tm[id, gmin]) stall message Cell(a, vi, Tw[e, e, gmin])
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M8

M9

M10

Mll

M12

M13

M14

M15

M16

M17

M18

M19A

M19B

M20A

M20B

M21A1

M21A2

M21B1

M21B2

M22

M23

M24

M25A

M25B

M26A

M26B

M27A

M27B



Table 3.4: HWb: The Memory Engine Rules-B

Mandatory M-engine Rules
Msg from id Mstate Action Next Mstate

< Downwb,a > Cell(a, v, Cw[idldir]) Cell(a, v, Cw[dir])

Cell(a, v, Tw[idldirl, dir2, Cell(a, v, Tw[dirl, dir2,

9m]) gm])

Cell(a, v, Tw[dirl, idldir2, Cell(a, v, Tw[dirl, dir2,

gm]) gm])

Cell(a, v, Cm[id]) Cell(a, v, Cw[e])

Cell(a, v, T'm[id]) Cell(a, v, Cw[l)

Cell(a, v, Tm[id, gm]) Cell(a, v, Tw[c,e, gm])

< Dornmw, a > Cell(a, v, Cm[id]) Cell(a, v, Cw[id])

Cell(a, v, T'm[id]) Cell(a, v, Cw[id])

Cell(a, v, Tm[id, gm]) Cell(a, v, Tw[id, e, gm])

< DownVmw, a, v > Cell(a, vi, Cm[id]) Cell(a, v, Cw[id))

Cell(a, v , T'm[id]) Cell(a, v, Cw[id])

Cell(a, vi, Tm[id, e]) Cell(a, v, Tw[id, e, e])

Cell(a, vl, Tm[id, gm])(gmef) Cell(a, vi, Tw[id, e, gm])

< Downmb,a > Cell(a, v, Cm[id]) Cell(a, v, Cw[e])

Cell(a, v, T'm[id]) Cell(a, v, Cw[])

Cell(a, v, Tm[id, gm]) Cell(a, v, Tw[e, , gm])

< DownVmb, a, v > Cell(a, v, Cm[id]) Cell(a, v, Cw[e])

Cell(a, vi, T'm[id]) Cell(a, v, Cw[c])

Cell(a, vl, Tm[id, e]) Cell(a, v, Tw[e, e, e])

Cell(a, vl, Tm[id, gm])(gm c) Cell(a, vl ,Tw[e, , g, m])

Cell(a, v, Tw[e,e,idlgm]) < WbAckb, a > -+id Cell(a,v, Tw[e,c,gm])

Cell(a, v, Tw[e, e, e]) Cell(a, v, Cw[f])

Cell(a, v, Tw[dirl,idldir2, < DownReq,,b,a > -+id Cell(a,v, Tw[idldirl,dir2,

gm]) gm])

M1

M2A

M2B

M3

M4

M5

M6

M7

M8

M9

M10

M11A

MllB

M12

M13

M14

M15

M16

M17A

M17B

M18

M19

MDirl

3.3 Soundness of HWb

We argue the correctness of each modification discussed in Section 3.1:

1. The rules on the memory side corresponding to message types Wb, and Wbb (i.e.,

rules M18-33 in Table 2.5) produce outputs which are identical. Hence the difference

between Wb, and Wbb is inconsequential.

2. The effect of the rule M52 in Table 2.5 can be achieved by firing M51 and M1. The

effect of M53 in Table 2.5 can be achieved by firing M51 and M3. Similarly, the effect

of C30 in Table 2.4 can be achieved by C29 and C12, and the effect of C31 by C29

33



and C17. Consequently, all these are derived rules.

3. Sending out downgrading messages one by one instead of in a bulk does not affect

the soundness of the protocol because the combination of the first and the second

directories in Tw state of HWb is equivalent to the corresponding directory in the Tw

state of Cachet. The main difference between the two protocols is that in case a Down

message or an implicit acknowledgment in the form of a Wb message is received from

a cache even before the downgrading request is sent to the cache, HWb does not even

sent downgrading request. In case the downgrading request has been sent the cache

simply ignores it.

4. Once a writeback message is suspended in sm in Cachet, it has no effect on the pro-

cessing of incoming messages until the memory state becomes non-transient. Hence, it

should not matter whether the suspended message buffer is tied to the address line or

simply waiting in the input queue. The only subtlety is that because of the fine-grain

id-deletion in Wb processing, the id of the cache sending the writeback may be the

one who either has not been sent an downgrade request or has not processed such a

request. In either case such a request will be ignored by the cache if and when the

message reaches the memory. Our protocol is sound because we erase id of the stalled

writeback message from the (first and second) directory.

5. Immediately storing the writeback value in the memory is sound because memory

value in a transient memory state of Cachet cannot be read by caches until the state

of the address becomes stable again. (See for example, rules M51-53 in Table 2.5). In

HWb, we can save the writeback value in the memory at the moment of receiving the

writeback message because writing the value will eventually be done and the previous

value will never be used again. (See M18-27B in Table 3.3).

6. Assigning higher priority to a rule (that make memory state transitions toward stable

states than those that make transitions toward transient states) cannot affect the

soundness of the protocol because we make the system more deterministic by adding

more conditions under which which actions will be taken. This may affect the liveness,

however. We will show that the liveness of the final protocol (BCachet), which is based

on HWb, in Chapter 5.
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Chapter 4

BCachet: Cachet with Buffer

Management

The optimized version of Cachet, HWb, that we presented in Chapter 3 uses the same buffer

management scheme as Cachet. The buffer scheme that is implied by Cachet communication

rules (see Figure 2-4) leads to N x P FIFOs for a system with N address lines and P

processors. Both Cachet and HWb require space for suspended messages whose processing

has to be deferred until later. Cachet stores such messages in a suspended message list

(sm) in every location, while HWb can leave them in the external input buffer until the

suspended message list has a space for messages. Suspended messages have to be stored in

a manner that does not block the incoming traffic in a way that creates deadlocks.

In this chapter, we will modify HWb to produce BCachet such that BCachet can be

implemented using only two FIFOs per memory unit and which has a fixed and small buffer

requirement for suspended messages.

4.1 The BCachet protocol

BCachet has high priority and low priority FIFOs from processors to memory. The type

of a message determines if it should be enqueued in a high priority(H) or a low priority(L)

FIFO. The messages from the memory to a processor share a single queue. A special queue

(STQ) is provided at the memory end to hold stalled messages. Please see Figure 4-1 and 4-

2 for the BCachet system configuration. The salient features of BCachet are described next:
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Processor
· reso 

Size(LOUT )= rqmax

* e

Network

Size(GM)>O

Figure 4-1: Buffer Management System (BCachet) Overview
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SYS - Sys(MSITE,SITEs)
MSITE - Msite(MEM,HIN,LIN,STQ,FR,OUT,

FRTAG,FRCRT)
FR - e MSG
FRTAG = f n(id,a)
FRCRT = f 0 id
STQ = e 0 MSG;STQ
MEM = e 0 Cell(a,v,MSTATE)IMEM
SITEs - SITE SITEISITEs
SITE = Site(id,CACHE,rqcnt,TAGs,IN,HOUT,LOUT,

PMB,MPB,PROC)
CACHE =E f Cell(a,v,CSTATE)ICACHE
TAGs = e 0 tTAGs
IN - e 0 MSG;IN
HIN - e 0 MSG
LIN = f 0 MSG;LIN
OUT - e 0 MSG;OUT
HOUT = e MSG;HOUT
LOUT - f 0 MSG;LOUT
MSG - Msg(src,dest,CMD,a,Value)
Value f v

MSTATE - Cw[DIR] Tw[DIR,DIR,GM] 
Cm[id] Tm[id,GM] 0 T'm[id]

DIR - f idIDIR
GM _ f idlGM

CSTATE Cleanb Dirtyb [ Cleanw Dirtyw, Cleanm [
Dirtym WbPending CachePending (Cleanb,Downwb) 0
(Cleanb,Downmb) (Cleanw,,) 
(Clean,,Downinw) (Cleanm,e) 

CMD = CacheReq 0 Wb 0 Downwb Downmw, DownVmw 0
Downmb DownVmb Cachew 0 Cachem [] Up,,wm 0
WbAckb O DownReqwb O DownReqmw DownReqb 
CacheAck CacheNack WbNack ErFRTag

One Path

High Priority

Low Priority

rqmaz
P
Size(HIN)
Size(LIN)
Size(OUT)
Size(HOUT)
Size(LOUT)
Size(IN)
Size(STQ)
Size(Dir)
Size(GM)

System
Memory Site

First Priority Request Register
FR Tag
Fairness Controller
Stalled Message Queue
Memory
Set of Cache Sites
Cache Site

Cache
Request Tag
Incoming Queue
High Priority Incoming Queue
Low Priority Incoming Queue
Outgoing Queue
High Priority Outgoing Queue
Low Priority Outgoing Queue
Message
Value

Memory State

Directory
Suspended Message

Cache State

Command

: Cache,, Cachem, Upwmt, WbAckb,
DownReqmb, DownReqmw, DownReqwb, CacheAck,
CacheNack, WbNack
Downmw, Downwb, Downmb, DownVmw,
DownVmb, ErFRTag
CacheReq, Wb

1
1

2
Rqmao

1
0
0

Maximum Number of Request per Site
Number of Cache Sites
Memory's High Incoming Buffer Size
Memory's Low Incoming Buffer Size
Memory's Outgoing Buffer Size
Cache's High Outgoing Buffer Size
Cache's Low Outgoing Buffer Size
Cache's Incoming Buffer Size
Stalled Message Queue Size
Directory Size
Suspended Message Buffer Size

Figure 4-2: TRS expression of BCachet
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1. Request Counter: In BCachet, we introduce a request counter (Rqcnt) per cache

to control the number of outstanding request messages (i.e., Wb, CacheReq) from the

cache. A cache increases its Rqcnt by one when it sends a request type message and

decreases its Rqcnt by one when it receives a response. When a Rqcnt reaches the

maximum value, rqma,,,, it postpones sending a request message until Rqcnt becomes

less than rqma,.

2. High and Low Message Paths: A BCachet system uses high priority and low pri-

ority FIFOs for cache-to-memory messages instead of a point-to-point buffers. When

a cache sends a message, it is determined by the type of the message whether it

should be enqueued in a high priority(H) or a low priority(L) FIFO. Every response

type message uses H-FIFO (i.e., Down, DownV, ErFrTag) while every request type

message uses L-FIFO (i.e.,CaheReq, Wb). (See Figure 4-2). For memory-to-cache

messages, a BCachet system has only one FIFO path. (See Figure 4-2).

3. Message Holding (Locked Cache States & CacheAck Message): Separation

of message path based on the message type is unsound with respect to point-to-point

message passing. The point-to-point message passing does not allow two messages to

be reordered if they have the same address, source, and destination. However, two

separate paths may reorder two messages although they have the same address, source

and destination in case the front message is CacheReq and the following message is

a high priority message. The scenario is shown in Figure 4-3. Let say msgl is a

CacheReq message and msg 2 is a high priority message. First, msgl goes into LFIFO

and it waits to proceed. Before msgl proceeds, msg2 enters HFIFO. Since msg2 is in

HFIFO, it proceeds first. Finally, msgl proceeds. The order of these two messages is

switched, even though msgl and msg2 have the same address, source, and destination.

We call this reordering of messages - incorrect reordering.

We introduce message holding scheme to solve the incorrect reordering problem. In

BCachet, a cache dose not send a message if the message may cause incorrect reorder-

ing. Instead of sending a dangerous message, a cache block stores the information

of the message in a cache state until sending it becomes safe. We call this scheme
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message holding.

For message holding scheme, we introduce five locked cache states, (Cleanb,Down.b),

(Cleanb,Downb), (Clean,, e), (Clean,,Downm,,), and (Clean,e) as well as CacheAck

message. A locked cache state is a tuple of HWb's cache state and message, and thus,

indicates that a cache block is in the cache state and the message is held by the cache

block. For example, a cache block in (Cleanb,Downb) indicates that the cache block

is Cleanb state a Downtb message is held in the cache.

A cache block enters locked cache states from CachePending when the cache block

receives Cache, or Cachem message. In HWb, when a cache sends a CacheReq

message, the cache sets the block of the address as CachePending. It is possible that

the cache receives Cache. or Cachem sent by voluntary cache rules (See M1 and M3

in Table 3.3) and sets the block as Cleanw or Cleanm (See C15 and C20 in Table 3.2)

before the CacheReq message disappears in the buffer. In BCachet, instead of setting

the cache state as Cache, or Cachem, the cache sets the cache state as (Cache,,c)

or (Cache,,), respectively (See MC4 and MC9 in Table 4.3).

Once a cache block enters locked cache states, sending a message is not allowed until

the CacheReq sent by the block disappears in the system. It is possible that the cache

receives request for downgrading, before the CacheReq disappears in the system. In

that case, the cache can response to the downgrading request by sets the cache state as

an appropriate locked cache state. (See MC28-MC31, MC41-MC45, and MC55-MC59

in Table 4.3). Execution of some instructions and protocol changes in some situations

are allowed by the same way. (See P10-P14, P24-P28, P38-P42, P52-P56 in Table 4.1,

msg2(a,id)

msg1(a,id) msg1(a,id) msg1(a,id)

HFIFO LFIFO HFIFO LFIFO HFIFO LFIFO

(1) (2) (3)

Figure 4-3: Incorrect Reordering
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VC11-VC14 in Table 4.2, MC18-MC19, MC28-MC31, MC41-MC45, MC55-MC59 in

Table 4.3).

The locked cache states become normal cache states when the cache block is informed

that the CacheReq sent by the block disappeared in the system. CacheAck mes-

sage is used to inform the cache of disappearance of the CacheReq message. When

a CacheReq is served, the memory sends CacheAck to the sender cache so that the

sender cache of the CacheReq knows that sending the message for the address be-

comes safe. (See FRC1-FRC6 in Table 4.6, CHA1, CHA3, CHA4, CHA8-CHA10 in

Table 4.7). On receiving a CacheAck message, the cache sets the cache state as the

corresponding normal state and releases a held message if the initial cache state con-

tains a held message. (See MC60-MC65 in Table 4.3).

Figure 4-4 shows an cache state transition related to locked cache states in BCachet

and Figure 4-5 shows the complete cache state transition diagram in HWb. We

can easily check that the locked cache state transitions can be simulated by cache

state transitions in HWb. For example, a cache state transition from (Clean,, e) to

(Cleanb, Downwb) in BCachet can be thought as a cache state transition Clean to

Cleanb and the action, sending a Downwb message.

4. Negative Acknowledgment: We use negative acknowledgment method to dis-

tribute the message congestion over sites in case too many request messages are sent

to the memory. A BCachet's memory site temporarily stores a request message in

stalled message queue (STQ) if the request cannot be served. If the stalled message

queue is full, then the memory sends the corresponding Nack signal back to the sender

of the request message so that the sender resend the request again. (See for example,

SNM2, SNM4 in Table 4.7, MC66, MC67 in Table 4.3). It is guaranteed that each

cache site can handle all request messages generated by it and the Nack signals sent

to it because the size of cache's outgoing low priority message queue (LOUT) must

be equal to or larger than the maximum number of request message generated by the

cache (See Figure 4-2).

Although the size of STQ does not affect the liveness of the system, it affects system's
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Figure 4-4: Locked Cache State Transition Diagram
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-- c-engine rules and processor rules

- - - - - .- - - processor rules

Figure 4-5: Complete Cache State Transition Diagram of the Previous Protocol
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performance. If STQ is too small, then the memory engine may send many Nack

signals. Therefore, the systems is likely to consume consumes much bandwidth for

Nack signals.

5. Directory and Suspended Message Buffer:

A directory (Dir) and a suspended buffer (GM) of a memory are reserved memory

space shared by all address lines. Note that we are not assuming each memory block

has its own Dir and GM. (See Figure 4-6). Directory size does not affect the liveness of

Cachet, because of adaptive mechanism of protocol change in Cachet and the nature

of the base protocol that the base protocol does not require directory. The liveness

of the system is guaranteed as long as the size of GM is greater than or equal to one

name tag of a processor (See Figure 4-2).

The size of Dir and GM may affect a lot system's performance. If Dir is too small,

then lots of cache blocks cannot upgrade to Writer-Push or Migratory protocol. If

GM is too small, then the memory only can serve one Wb message at a time, and

thus, other Wb messages must wait in STQ or be negatively acknowledged.

6. Fairness Control: In BCachet, fairness units are used to to avoid livelock. BCachet

uses a first priority request register (FR), a first priority request register tag (FRTag),

request tags (Tag)s, and a fairness controller (FRCRT).

FR, FRTag and Tags are used to guarantee the fairness of service among request

messages. If a specific request message has not be served for a long time, the system

stores the message in FR just beside the memory so that it has infinitely many chances

to be served. This is necessary because it is possible that the message is in somewhere

else whenever a memory is ready to serve a specific message. FRTag and Tags are

used to control FR. When a cache generates a request message, the cache stores the

address of the message in Tags. (See P9, P23, P30, P32 in Table 4.1 and VC2, VC5,

VC10 in Table 4.2). s FRTag receives an address among Tags of caches in fair way

and stores the address and the identifier of the cache. If FR is empty and a memory

receive a request message whose address and source identifier match with FRTag, then

the memory engine places the message into FR. The address in Tags and FRTag is
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address lines

Dir

(al,idl)

(al,id2)

(a6,idl)

GM

(a6,id3)

(a6,id2)

Figure 4-6: Shared Directory and Suspended Message Buffer
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erased if the request message of FRTag is served by a memory. To control FRTag, we

additionally use ErFRTag message that request the memory to erase FRTag.

FRCRT is used to guarantee the fairness of low priority message passing among the

cache sites. If FRCRT is empty, the memory stores an identifier of a site in FRCRT

to indicate the site who will send low priority message in the next time.

FR, FRTag, Tags, and FRCRT are used to avoid livelock that may occur with very

low probability. To save the hardware cost, a system designer may not use these units

and accept very low probability of livelock.

Table 4.1, Table 4.2, Table 4.3, Table 4.4, Table 4.5, Table 4.6, Table 4.7, and Table 4.8.

show the specification of BCachet.

We use "=", "-", "-a", and "_" to indicate that the message is using a high priority

path, a low priority path, a stalled message queue, and the first priority request register,

respectively. The notation "SP(out)" is the size of free space in output message queue of a

memory, and Full(gm) means that a buffer, gm, is full. SF besides a table means "strong

fairness" of the rule. If a rule does not have SF, then it means "weak fairness" of the rule. In

case of complicate rules, we use nested form of rules using "Erase- (id, a) Action," "Erase-

id Action," and "Stall- or-Nack Msg." For example, WBB10 in Table 4.7 represents two

rules (WBB10 with SNM3 and WBB10 with SNM4). WBB10 states that when the head

of LIN is Wb, the HIN is empty, the memory state is Cell(a, vl,Tm[id,gm]), and GM is

full, then the memory engine can set the memory state as Cell(a, vi, Tw[e, E, gmin]) (WBB10)

and can store Wb to STQ if STQ is not full (SNM3), or can negatively acknowledge Wb

(SNM4).

Table 4.1: BCachet: The Processor Rules

Instruction Cstate,Rqcnt,TAGs Action Next Cstate,Rqcnt,TAGs
Loadl(a) Cell(a, v, Cleanb) retire Cell(a, v, Cleanb)

Cell(a, v, Dirtyb) retire Cell(a, v, Dirtb)

Cell(a, v, Clean, ) retire Cell(a, v, Cleanw )

Cell(a, v, Dirtyw) retire Cell (a, v, Dirty, )

Cell(a, v, Cleanm) retire Cell(a, v, Cleanm)

Cell(a, v, Dirtym) retire Cell (a, v, Dirtym )

Continued on next page

P1 SF

P2 SF

P3 SF

P4 SF

P5 SF

P6 SF
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Table 4.1 - continued from previous page
Instruction Cstate,Rqcnt,TAGs Action Next Cstate,Rqcnt,TAGs

Cell(a, v, WbPending) stall Cell(a, v, WbPending)

Cell(a, -, CachePending) stall Cell(a, -, CachePending)
a cache, stall, Cell(a, -, CachePending),

rqcnt < rqmaz, tags < CacheReq, a > -+H rqcnt + 1, altags
ascache, stall a cache,

rqcnt>rqmaz, tags rqcnt, altags

Cell(a, v, (Cleanb, Downwb)) retire Cell (a, v, (Cleanb, Downwb ))
Cell(a,v, (Cleanb, Downmb)) retire Cell(a, v, (Cleanb, DotVnmb))

Cell(a, v, (Cleanw, Downmw)) retire Cell(a, v, (Cleanw, Downmw))

Cell(a, v, (Cleanw, e)) retire Cell (a, v, (Cleanw, e))
Cell(a, v, (Cleanmn, e)) retire Cell(a, v, (Cleanm, e))

Storel(a, v) Cell(a, v, Cleanb) retire Cell(a, v, Dirtyb)

Cell(a, v, DirtYb) retire Cell(a, v, Dirtyb )

Cell(a, v, Cleanw) retire Cell(a, v, Dirtyw)

Cell(a, v, Dirtyw) retire Cell(a, v, Dirtyw)

Cell(a, v, Cleanm) retire Cell(a, v, Dirtym )

Cell(a, v, Dirtym) retire Cell(a, v, Dirty )

Cell(a, vi, WbPending) stall Cell(a, vi, WbPending)

Cell(a, -, CachePending) stall Cell(a, -, CachePending)
afcache, stall Cell(a, -, CachePending),
rqcnt < rqma, tags < CacheReq, a > --H rqcnt+ 1, altags

a cache, stall a cache,

rqcnt>rqmaz, tags rqcnt, tags

Cell(a, v, (Cleanb, Downwb)) stall Cell(a, v, (Cleanb, Downwb))

Cell(a,v, (Cleanb, Downmb)) stall Cell(a, v, (Cleanb, Downmb))

Cell(a,v, (Cleanw, Downmw)) stall Cell(a, v, (Cleanw, Downmw))

Cell(a, v, (Cleanw, e)) stall Cell(a, v, (Cleanw, e))

Cell(a, v, (Cleanm, e)) stall Cell(a, v, (Cleanm, e))

Commit(a) Cell(a, v, Cleanb) retire Cell(a, v, Cleanb)

Cell(a, v, Dirtyb), stall, Cell(a, v, WbPending),

rqcnt < rqmax, tags < Wb, a,v > -+H rqcnt + 1, altags

Cell(a, v, Dirtyb), stall, Cell(a, v, Dirtyb),

rqcnt < rqmaz, tags rqcnt, tags

Cell(a,v, Cleanw) retire Cell(a, v, Cleanw)

Cell(a, v, Dirtyw), stall, Cell(a, v, WbPending)

rqcnt < rqmaz, tags < Wb, a,v > -H rqcnt + 1, atags
Cell(a, v, Dirtyw), stall Cell(a, v, Dirtyw),

rqcnt>rqma, tag s rqcnt, tags

Cell(a, v, Cleanm) retire Cell(a, v, Cleanm)

Cell(a, v, Dirtym) retire Cell(a, v, Dirty )
Cell(a, v, WbPending) stall Cell(a, v, WbPending)

Cell(a, -, CachePending) stall Cell(a, -, CachePending)
Continued on next page
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Table 4.1 - continued from previous page
Instruction Cstate,Rqcnt,TAGs Action Next Cstate,Rqcnt,TAGs

a e cache retire a f cache

Cell(a,v, (Cleanb, Downwb)) retire Cell(a, v, (Cleanb, Downwb))

Cell(a,v, (Cleanb, Downmb)) retire Cell(a, v, (Cleanb, Downmb))

Cell(a, v, (Clean, e)) retire Cell(a, v, (Cleanw, e))

Cell(a, v, (Cleanw, Downmw)) retire Cell(a, v, (Cleanw, Downmw))

Cell(a, v, (Clean, e)) retire Cell(a, v, (Cleanr, e))

Reconcile(a) Cell(a, -, Cleanb) retire a f cache

Cell(a, v, Dirtb) retire Cell(a, v, Dirtyb)

Cell(a, v, Cleanw) retire Cell(a, v, Cleanw )

Cell(a, v, Dirtyw) retire Cell (a, v, Dirtyw)

Cell(a, v, Cleanm) retire Cell(a, v, Cleanm)

Cell(a, v, Dirtyr) retire Cell(a, v, Dirtyr )
Cell(a, v, WbPending) stall Cell(a, v, WbPending)

Cell(a, -, CachePending) stall Cell(a, -, CachePending)
afcache retire a f cache
Cell(a, v, (Cleanb, Downwb)) stall Cell(a, v, (Cleanb, Downwb))

Cell(a, v, (Cleanb, Downmb)) stall Cell(a, v, (Cleanb, Downmb))

Cell(a, v, (Cleanw, e)) retire Cell(a, v, (Cleanw, e))

Cell(a, v, (Cleanw, Downw ) ) retire Cell(a, v, (Cleanw, Dounmw ))

Cell(a, v, (Cleanm, e)) retire Cell(a, v, (Cleanm, e))

Table 4.2: BCachet: The Voluntary Cache Engine Rules

Voluntary C-engine Rules

Cstate,Rqcnt,Hout,Tags Action Next Cstate,Rqcnt,Tags

Cell(a, -, Cleanb) a cache
Cell(a, v, Dirtyb), < Wb,a,v > -H Cell(a, v, WbPending),

rqcnt rqma=,, tags rqcnt + 1, atags
Cell(a, v, Cleanw) < Downwb, a > = H Cell(a, v, Cleanb)
hout = e
Cell(a, v, Dirtyw), hout = e < Downwb, a > =H Cell(a, v, Dirtyb)

Cell(a, v, Dirtyw), < Wb,a,v > -+H Cell(a,v, WbPending),

, rqcnt < rqmax, tags ,rqcnt + 1,altags

Cell(a, v, Cleanm) < Downmw, a > =H Cell(a, v, Cleanw)

hout = e < Downmb, a > =YH Cell(a, v, Cleanb)

Cell(a,v, Dirtym) < DownVmw,a,v > H Cell(a,v, Cleanw)

hout = e < DownVmb, a, v > =H Cell(a, v, Cleanb)

a|cache, < CacheReq, a > -+H Cell(a, -, CachePending),
rqcnt < rqmaz, tags rqcnt + 1, altags

Cell(a, v, (Cleanw, )) Cell(a, v, (Cleab, Douwnwb))

Cell(a, v, (Cleanw, Downmw)) Cell(a, v, (Cleanb, Downrmb))
Continued on next page

P37 SF

P38 SF

P39 SF

P40 SF

P41 SF

P42 SF

P43 SF

P44 SF

P45 SF

P46 SF

P47 SF

P48 SF

P49

P50

P51 SF

P52

P53

P54 SF

P55 SF

P56 SF

VC1

VC2

VC3

VC4

VC5

VC6

VC7

VC8

VC9

VC10

VC11

VC12
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Table 4.2 - continued from previous page

Cstate,Rqcnt,Hout,Tags Action Next Cstate,Rqcnt,Tags 
Cell(a, v, (Cleanm, e)) II

it
Cell(a,v, (Cleanw,Downmw)) VC13

Cell(a, v, (Cleanb, Downlmb)) VC14

Table 4.3: BCachet: The Mandatory Cache Engine Rules

Mandatory C-engine Rules

Msg from H Cstate,Hout,Tags Action Next Cstate,Rqcnt,Tags

< Cachew, a, v > Cell(a,-, Cleanb) Cell(a, v, Cleanw)

Cell(a, vi, Dirtyb) Cell(a, vi, Dirtyw )

Cell(a, vi, WbPending) Cell(a, vl, WbPending)

Cell(a, -, CachePending) Cell (a, v, (Cleanw, e))

a ~ cache Cell(a,v, Cleanw)

< Cachem, a, v > Cell(a,-, Cleanb) Cell(a, v, Cleanm)

Cell(a, vi, Dirtyb) Cell(a, vi, Dirtym)

Cell(a, vl, WbPending) Cell(a, vi, WbPending)

Cell(a, -, CachePending) Cell (a, v, (Cleanm, e))

a ~ cache Cell(a, v, Cleanm)

<Upwm, a > Cell(a,v,Cleanb) Cell(a, v, Cleanb)

Cell(a,v, Dirtyb) Cell(a, v, Dirtyb)

Cell(a,v, Cleanw) Cell(a, v, Cleanm)

Cell(a, v, Dirtyw ) Cell(a, v, Dirtym )

Cell(a, v, WbPending) Cell(a, v, WbPending)

Cell(a, -, CachePending) Cell(a, -, CachePending)

a V cache a cache

Cell(a, v, (Clean., e)) Cell(a, v, (Cleanm, e)
Cell(a, v, (Cleanb, Downwb)) Cell(a, v, (Cleanb, Downwb)

<WbAckb,a > Cell(a,v, WbPending),rqcnt < ErFRTag,a > =4H Cell(a,v,Cleanb),rqcnt -1

hout = e, a tags tags

<DownReqwb, a > Cell(a, v, Cleanb) Cell(a, v, Cleanb)

Cell(a, v, Dirtyb) Cell(a, v, Dirtyb)

Cell(a,v,Cleanw),hout -E < Downwb,a > H Cell(a,v,Cleanb)
Cell(a,v, Dirtyw), hout = e < Dowvnwb,a > =H Cell(a, v, Dirtyb)

Cell(a, v, WbPending) Cell(a, v, WbPending)

Cell(a, -, CachePending) Cell(a, -, CachePending)

aVccea V cache a cache

Cell(a, v, (Cleanb, Downwb)) Cell(a, v, (Cleanb, Downwb))

Cell(a, v, (Cleanb, Downmb)) Cell(a, v, (Cleanb, Downmb))

Cell(a, v, (Cleanw, e)). Cell(a,v, (Cleanb, Downwb))

Cell(a, v, (Cleanw, Downmw)) Cell(a, v, (Cleanb, Downmb))

<DownReqmw, a > Cell(a, v, Cleanb) Cell(a,v, Cleanb)

Cell(a, v, Dirtyb) Cell(a, v, Dirtyb)

Continued on next page

MC1

VC2

WC3

VC4

VC5

MC6

MC7

MC8

MC9

MCO10

MC11

MC12

MC13

MC14

MC15

MC16

MC17

MC18

MC19

MC20SF

MC21

MC22

MC23SF

MC24SF

MC25

MC26

MC27

MC28

MC29

MC30

MC31

MC32

MC33
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Table 4.3 - continued from previous page

Msg from H Cstate,Hout,Tags Action Next Cstate,Rqcnt,Tags

Cell(a, v, Cleanw) Cell(a, v, Cleanw)

Cell(a, v, Dirtyw) . Cell(a, v, Dirtyw)

Cell(a, v, Cleanm), hout = e < Downmw, a > H Cell(a, v, Cleanw )

Cell(a, v, Dirtym), hout = e < DownVmw, a, v > H Cell(a, v, Cleanw)

Cell(a, v, WbPending) Cell(a, v, WbPending)

Cell(a, -, CachePending) Cell(a, -, CachePending)
a ~ cache a ~ cache

Cell(a, v, (Cleanb, Downwb)) Cell(a, v, (Cleanb, Downwb))

Cell(a, v, (Cleanb, Downmb)) Cell(a, v, (Cleanb, Downmb))

Cell(a, v, (Cleanw, e)) Cell(a, v, (Cleanw, e))

Cell(a, v, (Cleanw, Downmw)) Cell(a, v, (Cleanw, Downmw))

Cell(a, v, (Cleanm, e) Cell(a, v, (Cleanw, Downw ))

< DownReqmb, a > Cell(a, v, Cleanb) Cell(a, v, Cleanb)

Cell(a, v, Dirtyb) Cell(a, v, Dirtyb)

Cell(a, v, Cleanw), hout = e < Downwb, a > H Cell(a, v, Cleanb)

Cell(a, v, Dirtyw), hout . < Downwb,a > =H Cell(a, v, Dirtyb)

Cell(a, v, Cleanm),hout = e < Downmb,a > H Cell(a,v, Cleanb)
Cell(a,v, Dirtym),hout = e < DownVmb,a,v > H Cell(a,v, Cleanb)
Cell(a, v, WbPending) Cell(a, v, WbPending)

Cell(a, -, CachePending) Cell(a, -, CachePending)
a 4 cache a ~ cache

Cell(a, v, (Cleanb, Downwb)) Cell(a, v, (Cleanb, Downwb))

Cell(a, v, (Cleanb, Downmb) Cell(a, v, (Cleanb, Downob))

Cell(a, v, (Cleanw, e)) Cell(a, v, (Cleanb, Downwb))

Cell(a, v, (Cleanw, Downmw)) Cell (a, v, (Cleanb, Downmb))

Cell(a, v, (Cleanm, e)) Cell(a, v, (Cleanb, Downmb))

< CacheAck, a, v > Cell(a, -, CachePending) < ErFRTag, a > =H Cell(a, v, Cleanb)

rqcnt, hout = e, altags rqcnt - 1, tags

< CacheAck,a > Cell(a,v, (Cleanb, Downwb)), < Downwb,a > =>H Cell(a,v, Cleanb)

rqcnt, hout = e,altags < ErFRTag, a > =>H rqcnt - 1,tags

Cell(a, v, (Cleanb, DoWnmb)), < Downmb,a > =H Cell(a, v, Cleanb)

rqcnt, hout = e < ErFRTag, a > H rqcnt - 1,tags
Cell(a,v, (Cleanw,e)), < ErFRTag, a > =H Cell(a,v, Cleanw)
rqcnt, hout = e, altags rqcnt - 1, tags

Cell(a, v, (Cleanw, Downmw)) < Downmw,a > =>H Cell(a, v, Cleanw))

rqcnt, hout = e, atags < ErFRTag, a > =>H rqcnt - 1, tags
Cell(a,v,(Cleanm,e)) < ErFRTag, a > :~H Cell(a,v, Cleanm)
rqcnt, hout = e, altags rqcnt - 1, tags

< CacheNack,a > Cell(a, v, CachePending) < CacheReq, a > - H Cell(a, v, CachePending)

< WbNack,a > Cell(a, v, WbPending) < Wb, a, v > -H Cell(a, v, WbPending)
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MC34

MC35

MC36SF

MC37SF

MC38

MC39

MC40

MC41

MC42

MC43

MC44

MC45

MC46

MC47

MC48SF

MC49SF

MC50SF

MC51SF

MC52

MC53

MC54

MC55

MC56

MC57

MC58

MC59

MC60SF

MC61SF

MC62SF

MC63SF

MC64SF

MC65SF

MC66SF

MC67SF



Table 4.4: BCachet: The Voluntary Memory Engine Rules

Voluntary M-engine Rules

LIN,OUT Mstate Action Next Mstate

lin = e, SP(out)>2 Cell(a, v, Cuw[dir]) < Cachew,a, v > =id Cell(a, v, Cw[idldir])

Cell(a, v, Cu[id]) < Upwm, a >* id Cell(a, v, Cm[id])

Cell(a, v, C[fe]) < Cache,a,v > id Cell(a, v, Cm[id])

Cell(a, v, Cw[idldir]) < DownReqwb,a > =id Cell(a, v, Tw[id, dir, el)

Cell(a, v, Cm[id]) < DownReqmw,a > =id Cell(a, v, Tm[id])

< DownReqmb, a ># id Cell(a, v, Tm[id, e])

Cell(a,v, TIm[id]) < DownReqwb,a > =id Cell(a, v, Tm[id, ])

VM1

VM2

VM3

VM4

VM5

VM6

VM7

Table 4.5: BCachet: The Memory Engine Rules-Hmsg

Mandatory M-engine Rules

Hin Mstate Action Next Mstate

< Downwb, a, id > Cell(a, v, Cw[idldir]) Cell(a, v, Cw[dir])

Cell(a, v, Tw[idldirl, dir2, Cell(a, v, Tw[dirl, dir2,

ginm) ginm])

Cell(a, v, Twu[dirl, idldir2, Cell(a, v, Tw[dirl, dir2,

gin) ginm])

Cell(a, v, Cm[id]) Cell(a, v, Cw[])

Cell(a, v, T'm[id]) Cell(a, v, Cw[e])

Cell(a, v, Tm[id, gmin]) Cell(a, v, Tw[e, e, gm])

< Down,, a, id > CelU(a, v, Cm[id]) Cell(a, v, Cw[id])

Cell(a, v, T'm[id]) Cell(a, v, Cw[id])

Cell(a, v, Tm[id, gm]) Cell(a, v, Tw[id, e, gm])

< DownVmw, a, v, id > Cell(a, vi, Cm[id]) Cell(a, v, Cw[id])

Cell(a, vl, T'm[id]) Cell(a, v, Cw[id])

Cell(a, vl ,Tm[id, e]) Cell(a, v, Tw[id,e, e])

Cell(a, v1, Tm[id, gm])(gm/e) Cell(a, vl, Tu[id, e, gmin])

< Downmb, a, id > Cell(a, v, Cm[id]) Cell(a, v, Cwu[e])

Cell (a, v, T'm[id]) Cell(a, v, Cw[e])

Cell(a, v, Tm[id, gm]) Cell(a, v, Tw[, , gmin])

< DownVmb, a, v, id > Cell(a, vi, Cm[id]) Cell(a, v, Cw[e])

Cell(a, vl, T'm[id]) Cell(a, v, Cw[e])

Cell(a, vl, Tm[id, el) Cell(a, v, Tw[e,e, e,])

Cell(a, vl, Tm[id, gm])(gm:e) Cell(a, vl, Tw[e, , gin])

< ErFRtag, a, id > Erase - (id, a) Action

Out Mstate,FRTag Action Next Mstate,FRTag

SP(Out) > 2 Cell(a,v, Tw[e,e,idlgm]) < WbAckb,a > =id Cell(a,v, Tw[e,e, gm])

frtag = (id, a) Erase - (id, a) Action frtag = e

Cell(a, v,Tw[e, , e]) Cell(a, v, Cw[])

Continued on next page

HM1

HM2A

HM2B

HM3

HM4

HM5

HM6

HM7

HM8

HM9

HM10

HMllA

HM11B

HM12

HM13

HM14

HM15

HM16

HM17A

HM17B

HM18

GM1 SF

GM2
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Table 4.5 - continued from previous page

Hin Mstate Action Next Mstate

SP(Out)>2 Cell(a, v, Tw[dirl, idldir2, < DownReqwb, a > =-id Cell(a, v, Tw[idldirl, dir2,

gm]) gm])

Erase-(id,a) Action

Id,Address FRTag Action Next FRTag

(id, a) frtag = (id, a) frtag = e

frtag$(id, a) frtag

Table 4.6: BCachet: The Memory Engine Rules-FR

Mandatory M-engine Rules

FR Mstate,OUT Action Next Mstate

< CacheReq, a, Cell(a, v, Cw[dir])(idfdir, 1. < CacheAck,a,v > =id Cell(a, v, Cw[dir])

id > SP(out)>2) Erase - (id, a) Action
Cell(a, v, Cw[dir])(idEdir, < CacheAck, a > =id Cell(a, v, Cw[dir])

SP(out)>2) Erase - (id, a) Action

Cell(a, v, Tw[dirl, dir2, < CacheAck, a > =id Cell(a, v, Tw[dirl, dir2,

gm])(idEdirl Idir2, SP(out)>2) Erase - (id, a) Action gm])

Cell(a, v, Cm[id])(SP(out)>2) < CacheAck,a > =id Cell(a, v, Cm[id])

Erase - (id, a) Action

Cell(a, v, T'm[id])(SP(out)>2) < CacheAck,a > =id Cell(a, v, T'm[id])

Erase - (id, a) Action

Cell(a, v, Tm[id, gm])(SP(out)>2) < CacheAck, a > =id Cell(a, v, Tm[id, gm])

Erase - (id, a) Action

Cell(a, v, Cm[idl])(SP(out)>2) < DownReqm,,a > =id Cell(a,v,T'm[idl])
< Wb, a, v, id >, Cell(a, v!, Cw[dir]) Erase - (id, a) Action Cell(a, v, Tw[e, dir, id])

(id dir, -Full(gm))

Cell(a, vl, Tw[ , d, dir2, Erase - (id, a) Action Cell(a, v, Tw[dirl, dir2,

gm])(idedirl ]dir2, gmlid])

dir1 dir2 , -Full(gm) )
Cell(a, vi, Cw[idldir])(-Full(gm)) Erase - (id, a) Action Cell(a, v, Tw[e, dir, id])

Cell(a, vl, Tw[idldirl, dir2, Erase - (id, a) Action Cell(a, v, Tw[dirl, dir2,

gm])(-Full(gm)) gmlid])

Cell(a, vl, Tw[dirl, idldir2, Erase - (id, a) Action Cell (a, v, Tw[dirl, dir2,

gm])(-Full(gm)) gmlid])

Cell(a, vl, Cm[idl]) < DownReqmb, a > =idl Cell(a, v, Tm[idl, id])

(idiidi, SP(out)>2, -Full(gm)) Erase - (id, a) Action
Cell(a, vl, T'm[idl]) < DownReqwb, a > =yidl Cell(a, v, Tm[idl, id])

(idoidi, SP(out)>2, -Full(gm)) Erase - (id, a) Action

Cell(a, vi, Tm[idl, gm]) Erase - (id, a) Action Cell(a, v, Tm[idl, gm lid])

(idoidl, -Full(gm))
Continued on next page
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FRTErl

FRTEr2

FRC1 SF

FRC2 SF

FRC3 SF

FRC4 SF
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FRW2 SF

FRW3 SF
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FRW5 SF

FRW6 SF

FRW7 SF



Table 4.6 - continued from previous page

Cell(a, vl, Cm[id])(-Full(gm))

Cell(a, vi, T'm[id])(-Full(gm))

Cell(a, vl, Tm[id, gm])(-Full(gm))

Full(gm)

Erase - (id, a) Action

Erase - (id, a) Action

Erase - (id, a) Action

Erase - id Action

stall message in FR

Cell(a, v, Tw[e, e, id])

Cell (a, v, Twu[e, e, id])

Cell (a, v, Tw[e, e, gmlid])

Mstate

Cell(a, vl, Cw[idldir])

Cell(a, vl,Tw[id dirl, dir2,

gm])

Cell(a, vl, Tw[dirl, idldir2,

gmin])

Cell(a, vl, Cm[id])

Cell(a, vl, T'm[id])

Cell(a, vl ,Tm[id, gmin])

otherwise

Action

no action

Next Mstate

Cell(a, vl, Tw [e, dir, e])

Cell (a, vl, Twu[dirl, dir2,

gm])

Cell(a, vl, Tw[dirl, dir2,

gm])

Cell(a, vl, Tw [e, , e])

Cell(a, vl, Tw[, e, e])

Cell(a, vl, Tw[e, e, gm])

Erase-(id,a) Action

Id,Address FRTag Action Next ErFRTag

(id, a) frtag = (id, a) frtag = e FRTErl

frtag#(id, a) frtag FRTEr2

Table 4.7: BCachet: The Memory Engine Rules-LIN

Mandatory M-engine Rules

Head(Lin),Hin Mstate,OUT Action Next Mstate

< CacheReq, a, id >, Cell(a, v, Cw[dir]) 1. < CacheAck, a,v > =id Cell(a, v, Cw[dir]) CHA1 SF

hin = e (idedir, SP(out)_>2) Erase - (id, a) Action

Cell(a, v, Tw[dirl, dir2, gm]) Stall - or - Nack message Cell(a, v, Tw[dirl,dir 2, CHA2 SF

(idfdirl dir2) gmin])

Cell(a, v, Cw[dir]) < CacheAck,a > =id Cell(a, v, Cw[dir]) CHA3 SF

(idEdir, SP(out)>2) Erase - (id, a) Action

Cell(a,v, Tw[dirl,dir2, < CacheAck,a > =id Cell(a, v, Tw[dirl,dir2, CHA4 SF

gm])(idEdirl Idir2, Erase - (id, a) Action gin])

SP(out)>2)

Cell(a,v,Cm[idl]) 1.Stall - or - Nack message Cell(a,v,T'm[idl]) CHA5 SF

(idiidl, SP(out)_Ž2) 2. < DownReqmw, a > =idl 

Cell(a,v,T'm[idl]) Stall - or - Nack message Cell(a,v,T'm[idl]) CHA6 SF

(idiidl, -Full(stq))
Cell(a, v, Tm[idl, gin]) Stall - or - Nack message Cell(a, v, Tm[idl, gm]) CHA7 SF

Continued on next page

52

Mstate,OUT

Id

id

FRW8 SF

YRW9 SF

FRW10 SF

FRW11 SF

Erase-id Action

WErl

WEr2A

WEr2B

WEr3

WEr4

WEr5

WEr6

FR Action Next Mstate
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Table 4.7 - continued from previous page
Mstate,OUT

(idtidl )
Cell(a, v, Cm[id])

(SP(out)>2)

Cell(a, v, Tm[id])

(SP(out)Ž2)
Cell(a, v, Tm[id, gm])

(SP(out)>2)

FRTag,FR

frtag = (id,a), fr =e
Cell(a, vl, Cw[dir])(idfdir,

-Full(gm), SP(out)>2)

Cell(a, vi, Tw[dirl, dir2,

gm])(iddirl dir2,
dirl Idir2Oe, -Full(gm))

Cell(a, vl, Cw[idldir])

(-Full(gm), SP(out)>2)
Cell(a, v, Tw[idldirl, dir2,

gm])(-Full(gm))

Cell(a, vl, Tw[dirl, idldir2,

gm])(-Full(gm))

Cell(a, vl, Cm[idl])(idoidl,
-'Full(gm), SP(out)>2)

Cell(a, vl, T'm[idl ])(id#id,
-Full(gm), SP(out)_2)

Cell(a, vl, Tm[idl, gm])

(idqidl, -Full(gm))

Cell(a, vl, Cm[id])

(-Full(gm), SP(out)>2)
Cell(a, vi, T'm[id])

(-Full(gm))

Cell(a, vi, Tm[id, gm])

(-Full(gm))

Cell(a, vl, Cw[idl dir])

(id dir, id idl,
Full(gm), SP(out)>2)

Cell(a, vl, Tw[dirl, dir2,

gm])(id dirl dir2,

Full(gm))

Cell(a, vl, Cw[idldir])

(Full(gm))

Cell(a, vi, Tw[idldir , dir2

, gm])(Full(gm))

Action

< CacheAck,a > =id

Erase - (id, a) Action

< CacheAck,a > =Yid

Erase - (id, a) Action

< CacheAck,a > :-id

Erase - (id, a) Action

Action

< CacheReq, a, id > Ofr

< DownReqmb, a > =4idl

< DownReqwb,a > =idl

< DownReqwb,a > *idl

Stall - or - Nack message

Stall - or - Nack message

Stall - or - Nack message

Stall - or - Nack message

Next Mstate

Cell(a, v, Cm[id])

Cell(a, v, T'm[id])

Cell(a, v, Tm[id, gm])

Next FRTag

frtag = e

Cell(a, v, Tw[e, dir, id])

Cell(a, v, Tw[dirl, dir2,

gmlid])

Cell(a, v, Tw[e, dir, id])

Cell(a, v, Tw[dirl, dir2,

gmlid])

Cell(a, v, Tw[dirl, dir2,

gmlid])

Cell(a, v, Tm[id, id])

Cell(a, v, Tm[idi, id])

Cell(a, v, Tm[idl, gmlid )

Cell(a, v, Tw[e, e, id])

Cell(a, v, Tw[e, e, id])

Cell(a, v, Tw[e, e, gmlid])

Cell(a, vi, Tw[idl, dir, e])

Cell(a, vl , Tw[dirl, dir2,

gm])

Cell(a, vl, Tw[e, dir, e])

Cell(a, vi, Tw[diri, dir2,

gm])

Continued on next page
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Head(Lin),Hin

< Wb, a, v, id >,

hin = e

CHA8 SF

CHA9 SF

CHA10 SF

CHB1 SF

WBA1 SF

WBA2 SF

WBA3 SF

WBA4ASF

WBA4BSF

WBA5 SF

WBA6 SF

WBA7 SF

WBA8 SF

WBA9 SF

WBA10 SF

WBB1 SF

WBB2 SF

WBB3 SF

WBB4ASF

.



Table 4.7 - continued from previous page
Head(Lin),Hin

Cell(a, vl, TW[dir1, idldir2

,gm])(Full(gm))

Cell(a, vi, Cm[idl])

(ididl ,
Full(gm), SP(out)>2)

Cell(a, vi, T'm[idl])(idiidl,

Full(gm), SP(out)>2)
Cell(a, vi, Tm[idl, gm])

(idAidi, Full(gm))

Cell(a, v, Cm[idl)

(Full(gm)

Cell(a, vl, T'm[id])

(Full(gm))

Cell(a, vi, Tm[id, gmin])

(Full(gm))

FRTag,FR
frtag = (id, a), fr = e

Stall - or - Nack message

< DownReqmb, a > =idj

Stall - or - Nack message

< DownReq,b,a > =Yidl

Stall - or - Nack message
Stall - or - Nack message

Stall - or - Nack message

Stall - or - Nack message

Stall - or - Nack message

Action

< Wb,a, v, id > fr

Cell(a,v , Tw[dir, dir2 ,

gm])

Cell(a, vi, Tm[idi, e])

Cell(a, vi, Tm[idl, e])

Cell(a, vi, Tm[idl, gmin])

Cell(a, vl, Tw[e, , e])

Cell(a, vl, Tw[e, e, e])

Cell(a, vl, Tw[e,e, gm])

Next FRTag
frtag = e

Id,Address FRTag Action Next FRTag
(id, a) frtag = (id, a) frtag = e

frtag$(id, a) frtag

Stall-or-Nack Msg

Msg STQ,OUT Action
< CacheReq,a,id > -Full(stq) < CacheReq,a, id > -stq

Full(stq), SP(out)>2 < CacheNack,a > =id
< Wb, a, v, id > -Full(stq) < Wb, a, v, id > -stq

Full(stq), SP(out)>2 I < WbNack, a > id

Table 4.8: BCachet: The Mandatory Message Passing Rules

Mandatory Message Passing Rules

Sys(Msite(mem, hin, lin, msg; stq, fr, out, frtag, frcrt), sites), i f -Full(lin)
-+ Sys(Msite(mem, hin, lin; msg, stq, fr, out, frtag, frcrt), sites)

Sys(Msite(mem, e, lin, stq, fr, out, frtag, frcrt),
Site(id, cache, rqcnt, tags, in, msg; fifo, lout, pmb, mpb, proc)lsites)

Sys(Msite(mem, msg, lin, stq, fr, out, frtag, frcrt),
Site(id, cache, rqcnt, tags, in, fifo, lout, pmb, mpb, proc) sites)

Sys(Msite(mem, hin, lin, stq, fr, out, frtag, id),
Site(id, cache, rqcnt, tags, in, e, msg; lout, pmb, mpb, proc) Isites)

Continued on next page

FRTErl

FRTEr2

3NM1

;NM2

3NM3

3NM4

STQSF

HPS SF

LPS SF
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MstateOUT Action Next Mstate

WBB4BSF

WBB5 SF

WBB6 SF

WBB7 SF

WBB8 SF

WBB9 SF

WBB10 SF

WBC1 SF

Erase-(id,a) Action

Mstate,OUT Action INext Mstate

]



Table 4.8 - continued from previous page
Mandatory Message Passing Rules

if-Full(lin)
-+ Sys(Msite(mem, hin, lin; msg, stq, fr, out, frtag, e),

Site(id, cache, rqcnt, tags, in, e, lout, pmb, mpb, proc)lsites)

Sys(Msite(mem, hin, lin, stq, fr, msg; out, frtag, frcrt),

Site(id, cache, rqcnt, tags, in, hout, lout, pmb, mpb, proc) sites)

if-Full(in)
-+ Sys(Msite(mem, hin, lin, stq, fr, out, frtag, frcrt),

Site(id, cache, rqcnt, tags, in; msg, hout, lout, pmb, mpb, proc)lsites)

Sys(Msite(mem, hin, lin, stq, fr, out, frtag, e),

Site(id, cache, rqcnt, tags, in, hout, lout, pmb, mpb, proc) lsites)

if lout!e
Sys(Msite(mem, hin, tlin, stq, fr, out, frtag, id),

Site(id, cache, rqcnt, tags, in, hout, lout, pmb, mpb, proc)Isites)

Sys(Msite(mem, hin, lin, stq, fr, out, e, frcrt),
Site(id, cache, rqcnt, altags, in, hout, lout, pmb, mpb, proc)lsites)

- Sys(Msite(mem, hin, lin, stq, fr, out, (id, a), frcrt),
Site(id, cache, rqcnt, altags, in, hout, lout, pmb, mpb, proc)lsites)
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FRTSF
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Chapter 5

Correctness of BCachet

In this chapter, we show a brief proof of the soundness of BCachet and offer arguments of the

liveness of BCachet. The soundness of BCachet states that any state transition in BCachet

can be simulated in HWb, and consequently, in CRF. The liveness of BCachet states that

any memory instruction in processor-to-memory buffer will eventually be served. We do

not give a detail proof of the liveness of BCachet because it is too tedious and too long and

is not very insightful.

Notations In this chapter, we will use notations in terms of a BCachet term s for simple

description as follows.

s = Sys(Msite(mem, hin, lin, stq, fr, out, f rtag, frcrt),

Site(id, cache, rqcnt, tags, in, hout, lout, pmb, mbp, proc) sites)

Mem(s) _ mem

Hin(s) - hin

Lin(s) - lin

STQ(s) _ stq

FR(s) - fr
Out(s) - out
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FRTag(s)

FRCRT(s)

Cacheid(s)

Rqcntid(s)

Tagsid(s)

Inid(s)

Houti,(s)

Loutid(s)

Pmbid(s)

Mpbid(s)

Procid(s)

f rtag

f rcrt

_ cache

= rqcnt

= tags

= in

- hout

- lout

- pmb

= mpb

_ proc

Using the definitions above, we also define composite FIFOs as follows.

FRLinSTQLoutid(s)

LinSTQLoutid(s)

HinHoutid(s)

InidOut(s)

= FR(s); Lin(s); STQ(s); Loutid(s)

= Lin(s); STQ(s); Loutid (s)

= Hin(s); Hout(s)

= Inid(s); Out(s)

To describe, cache states and memory states, we define notations as follows.

Locked(cs) - cs = (Cleanb, Downwb) V cs = (Cleanb, Downmb) V cs = (Clean,, c) V

cs = (Clean,, Down,,w) V cs = (Cleanm, c)

dir

dirl dir2

id

if ms = Cw[dir]

if ms = Tw[dirl, dir2, -, -]

if ms = Cm[id] V ms = Tm[id, -] V ms = T'm[id, -]
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GM(ms) _ gm if ms= Tw[-,-,-,gm]Vms=Tm[-,gm]{ E if ms = Cw[-] v ms = T'm[-J v ms = Cm[-]

GM(ms) - id gm if GM(ms) = idlgm
GM(ms) if id V GM(ms)

5.1 Soundness of BCachet

In this section, we show simple proof of the soundness of BCachet. The soundness of

BCachet states that for a given state transition "sl - 8s2" in BCachet, there exists a

mapping function f (BCachet -+ HWb), such that, f(si) - f(s2). We prove the soundness

of BCachet in two steps. First, we define a mapping function f. Second, we show that each

rewriting step in BCachet corresponds to a rewriting step or a sequence of rewriting steps

in HWb under the mapping, f. Therefore, any state transition of BCachet can be simulated

by HWb.

5.1.1 Mapping from BCachet to HWb

Invariants in BCachet Before we start defining a mapping function, we first state lem-

mas about request messages. The following tree lemmas can be proved by induction on

rewriting steps.

Lemma 1. For a given BCachet term s,

InidOut(s) = fif ol; Msg(H, id, WbNack, a, -); fifo 2

--~ Msg(id, H, Wb, a, -)¢FRLinSTQLoutid(s) A

Msg(H, id, WbAckb, a, -)VInidOut(s) A

Msg(H, id, WbNack, a,-)ffifoi; ffo 2 A Cell(a, vl,Tw[-, -, -,idl-])VMem(s) A

Cell(a, -, Tm[-, idl-]) Mem(s) A Cell(a,-, WbPending)ECacheid(s)
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Lemma 2. For a given BCachet term s,

InidOUt(s) = fifol; Msg(H, id, CacheNack, a, -); fifo 2

--y Msg(id, H, CacheReq, a, -) FRLinSTQLoutid(s) A

Msg(H, id, CacheAck, a, -)VInidOut(s) A

Msg(H, id, CacheNack, a, -) fifol; fifo 2 A

Cell (a, v, CachePending) E Cacheid (s)

Definition 1 (CacheReq-Related Message). CacheReq, CacheAck, and CacheNack

are CacheReq-related message type.

Definition 2 (CacheReq-Related Message). Wb, WbAckb, WbNack, and id in the

suspended message buffer are Wb-related message type.

Definition 3 (Reqeust-Related Message). CacheReq, Wb, WbAckb, CacheAck, CacheNack,

WbNack, and id in the suspended message buffer are request-related message type.

Lemma 3. In a given BCachet term s, at maximum, there can exist one request-related

message for the same address and regarding the same site in the term s, that is, for a given

BCachet term s, only one of (5.1), (5.2), and (5.3) can be true at a time as well as (5.4),

(5.5), and (5.6) are always true.

msg E FRLinSTQLout i d(s), such that, Addr(msg) = a A Src(msg) = id (5.1)

msg E InidOut(s), such that,

(Cmd(msg) = CacheAck V Cmd(msg) = WbAckb V Cmd(msg) = CacheNack

VCmd(msg) = WbNack) A Addr(msg) = a A Dest(msg) = id (5.2)

Cell(a, v,ms) E Mem(s), such that, id E GM(ms) (5.3)
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FRLinSTQLoutid(s) = fifol; msg; fif o2 such that

Addr(msg) = a A Src(msg) = id

- - VmsglEfifol; fifo 2, (Addr(msgl)#a) V (Src(msgl)#id) (5.4)

InidOut(s) = fifol; msg; fifo 2 such that

(Cmd(msg) = CacheAckVCmd(msg) = WbAckbVCmd(msg) = CacheNackV

Cmd(msg) = WbNack) A Addr(msg) = aADest(msg) = id

- - msgl fifol; fifo 2 such that

(Cmd(msgl) = CacheAckVCmd(msgl) = WbAckbVCmd(msgl) = CacheNackV

Cmd(msgl) = WbNack) A Addr(msgl) = a A Dest(msgl) = id (5.5)

id E GM(ms) = id f GM(ms) - id (5.6)

Lemma 3 states there cannot be more than two request-related messages for the same

address and for same id. Lemma 1 and Lemma 2 state that if a WbNack or a CacheNack

message is in the memory-to-cache path, then the target cache block of the message must

be in WbPending or CachePending state, respectively. These lemmas will be used later in

proving that the mapping function f is well defined.

We define a mapping function that maps a BCachet term to a HWb term to prove

the soundness of BCachet. We define the mapping part by part. First, we define several

sub-mapping functions that map a sub-term of a BCachet term to a sub-term of a HWb

term because the mapping is too complicate. These functions are defined in the notion of

converting rules. Each sub-mapping function is related to a set of converting rules which

are strongly terminating and confluent. Using sub-mapping functions, we finally define a

mapping function that maps a BCachet term to a HWb term. We do not use a singe set of

converting rules to directly define a mapping function from BCachet to HWb because it is

difficult to make the rules confluent and it is not easy to express a mapped HWb term in

terms of a BCachet term using a single set of rules.
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First, we define a function (cvEr::FIFO -+ FIFO) that erases all WbNacks, CacheNacks,

ErFRTags, and dummy CacheAcks in a FIFO. We define converting rules associated with

cvEr as follows.

Erase-ErFRTag-and-Nacks Rule

fifol; msg; fifo2

if Cmd(msg) = ErFRTag V Cmd(msg) = WbNack V Cmd(msg) = CacheNack

-- fifol; fifo2

Erase-CacheAck Rule

fif ol; Msg(src, dest, CacheAck, a, value); fifo 2

if value = 

-4 fifol; fifo2

Convert-CacheAck Rule

fif o1; Msg(src, dest, CacheAck, a, value); fif o2

if valueoe

- fifol; Msg(src, dest, Cacheb, a, value); fifo 2

Definition 4 ( Erase-Dummy,Convert-CacheAck Rules).

CvEr - {Erase - ErFRTag - and - Nacks Rule, Erase - CacheAck Rule,

Convert - CacheAck Rule}

CVEr is a set of rules that erase dummy messages or convert non-dummy CacheAck

message. If CacheAck has a value, it is not a dummy message, otherwise a dummy message.

There is no corresponding message of dummy messages in HWb. Therefore, these messages

can be safely erased. Non-CacheAck message corresponds to Cacheb in HWb, and thus, it

is converted to Cacheb.
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Lemma 4. CvEr is strongly terminating and confluent, that is, rewriting a FIFO term

with respect to CVET always terminates and reaches the same normal form, regardless of

the order in which the rules are applied.

Proof. The proof of termination is trivial because according to the rules, the rules consume

ErFRTag, CacheAck, WbNack, and CacheNack, and do not generate these types of mes-

sages. The confluence follows from the fact that the converting rules do not interfere with

each other. [

We indicate the normal form of a FIFO term, SFIFO, with respect to CvEr as CVEr (SFIFO).

For example, for a given BCachet term s, cvEr(Out(s)) is the output message queue of the

memory site of s (Out(s)), with all of its dummy CacheAcks, CacheNacks, and WbNacks

are erased and non-dummy CacheAcks are converted to Cacheb. For a given BCachet term

s, we will use CVEr later to convert Out(s), Inid(s), Hinid(s), and Houtid(s) to the corre-

sponding units in HWb.

Second, we define a function cvRs ::(FIFO, CACHE, PtoPFIFO) -+ (FIFO, CACHE,

PtoPFIFO) that converts a FIFO, a cache of a BCachet term, and a point-to-point buffer.

We define converting rules associated with cvRqs as follows.

Convert-WbNack Rule

(f if ol; Msg(H, id, WbNack, a, -); fif o2 , Cell(a, v, WbPending)lcache, ptopfif o)

-+ (fif ol; fifo 2, Cell(a, v, WbPending) cache, ptopfif o®Msg(id, H, Wb, a, v))

Convert-CacheNack Rule

(fif o; Msg(H, id, CacheNack, a, -); fifo 2, Cell(a, -, CachePending)lcache, ptopfifo)

-- ( if ol; fifo 2, Cell(a, -, CachePending) cache, ptopfif o(Msg(id, H, CacheReq, a, -))

Definition 5 (Convert Nacks Rules).

CvRqs =- Convert - WbNack Rule, Convert - CacheNack Rule}
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Lemma 5. For a given BCachet term s, CVRqs is strongly terminating and confluent with

respect to (InidOut(s), Cacheid(s), e), that is, rewriting process starting from (InidOut(s),

Cacheid(s), e) always terminates and reaches the same normal form, regardless of the order

in which the rules are applied.

Proof. The proof of termination is trivial because according to the rules, the rules consume

CacheNack and WbNack. The confluence follows from the fact that the converting rules

do not interfere with each other. This is because two Nack messages that have the same

address and the same destination cannot coexist in InidOut(s) by Lemma 3. [1

For a given BCachet term s, we notate the normal form of (InidOut(s), Cacheid(s), E)

with respect to CvRq8 as cvRZs (InidOut(s), Cacheid(s), E). We define rqsid(s) as the third

element of cvRq, (InidOut(s), Cacheid(s), e). The formal expression of rqsid(s) is as follows.

rqsid(s) = Third(cvRqs (InidOut(s), Cacheid(s), e))

Third(x,y,z) = z

For a given BCachet term s, all CacheNacks and WbNacks for site id in a BCachet term

s are converted to CacheReqs and Wbs and stored in rqsid(s) because the corresponding

Pending block must be in Cacheid(s) by Lemma 1 and Lemma 2.

Third, we define a function cvR::(CACHE, PtoPFIFO) -+ (CACHE, PtoPFIFO)

that converts BCachet' cache and a point-to-point buffer to HWb's cache and a point-to-

point buffer. To define cvpR, we define converting rules associated with it as follows.

Release-Message-of-(Cleanb, Downwb) Rule

(Cell(a, v, (Cleanb, Downwb)) I cache, ptopfif o)

-+ (Cell(a, v, Cleanb) Icache, ptopfif oOMsg(id, H, Downwb, a, -))

Release-Message-of- (Cleanb, Downmb) Rule

(Cell(a, v, (Cleanb, Downmb)) I cache, ptopf if o)

- (Cell(a, v, Cleanb)Icache,ptopfif o(Msg(id, H, Downb, a,-))
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Release-Message-of-(Cleanw, e) Rule

(Cell(a, v, (Cleanw, e))lcache, ptopfif o)

-+ (Cell(a, v, Cleanw)lcache, ptopfifo)

Release-Message-of- (Cleanw, Down,,w) Rule

(Cell(a, v, (Clean, Downmw)) Icache, ptopfifo)

- (Cell(a, v, Cleanw)J cache, ptopfif o®Msg(id, H, Downm, a, -))

Release-Message-of-(Clean, ) Rule

(Cell(a, v, (Clean, e)) cache, ptopfifo)

- (Cell(a, v, Cleanm) cache, ptopfifo)

Definition 6 (Release Message Rules).

CvRs -- {Release - Message - of - (Cleanb, Downrb)Rule,

Release - Message - of - (Cleanb, Downmb)Rule,

Release - Message - of - (Cleanw, e)Rule,

Release - Message - of - (Cleanw, Downmw)Rule,

Release - Message - of - (Cleanm, E)Rule}

Lemma 6. For a given BCachet term s, CVRpa is strongly terminating and confluent with

respect to (Cacheid(s), e).

Proof. The proof of termination is trivial because according to the rules, the rules consume

(Cleanb, Downwb), (Cleanb, Downmb), (Cleanw, c), (Cleanw, Downmw), and (Clean, e),

and no rule can generate these types of states. The confluence follows from the fact that

two different cells cannot have the same address and the converting rules do not interfere

with each other. C

For a given BCachet term s, we notate the normal form of (Cacheid(s), e) with respect to

CVRs as cvR, (Cacheid(s), e). We define rcache::CACHE - CACHE and rmsgs::CACHE
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-4 PtoPFIFO as the first and the second element of cvRIs(Cacheid(s), e). The formal ex-

pression of these are as follows.

rcache(cache) = First(cvr,(cache, )))

rmsgs(cache) = Second(cv,rs(cache, e)))

First(z, y) = x

Second(x,y) = y

For a given BCachet term s, rcache(Cacheid(s)) and rmsgs(Cacheid(s)) are the cache and

the output message queue of the cache site (id) of the corresponding HWb term, respec-

tively. rcache(Cacheid(s)) is achieved by releasing messages held in expanded cache states.

rmsgs(Cacheid(s)) is a point-to-point buffer that contains messages released by Cacheid(s).

Fourth, we define cvfifo :: FIFO - PtoPFIFO that converts a FIFO to a point-

to-point buffer. We define Convert-FIFO Rule and also define Cvfif, as a set of this rule.

For a given FIFO term, sfifo, cvfifo(Sfifo) is the normal form of sfifo with respect to Cvfifo.

Convert-FIFO Rule

msgl; msg2 -4 msgl®msg2

Definition 7 (Convert FIFO Rules).

Cvfifo - {Convert- FIFORule}

Lemma 7. For a given FIFO term Sfifo, Cvfifo is strongly terminating and confluent with

respect to sfifo.

Proof. The proof of termination is trivial because according to the rules, they consume ";".

No rule can generate ";". The confluence follows from the fact that converting rule do not

interfere with itself. O

Using the functions defined above, we define a mapping function f that maps a BCachet

term to a HWb term. For a given BCachet term s that has n sites (idl idn), we define

f (s) as follows.
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f (s) = Sys(msite, siteid, Isiteid, l...siteid )

msite = Msite(Mem(s),CVfifo (CvE (Hin(s)) )Ocvfifo(FR(s) )(cvfifo (Lin(s))O

cvfifo(STQ(s))OMsid, (s)OMSid, (s)O...Msid. (s), cvfifo(vE, (out)))

MSidk (S) = CVfifo(CEr,(HOUtidk (s)))Ocvfifo(Loutidk (s))Orqsid() (1) (l<k<n)

siteidk = Site(idk, rcache(Cacheidk (s))), cvfifo(CVEr(Inidk (s))), rmsgs(Cacheidk (s)),

Pmbidk (s), Mpbidk (s), Procidk (s)) (l_<k<n)

The following theorem states that BCachet is sound with respect to HWb, that is, any

state transition in BCachet can be simulated by a sequence of state transitions in HWb.

Theorem 1 (HWb Simulate BCachet). Given BCachet terms sl and s2,
BCachet HWb

S - s2 in BCachet = f(sl) f(s2) in HWb

Proof. For a given state transition in BCachet, sl rBChet s2, we can easily find the corre-

sponding HWb rule (rHWb) such that f(sl) _w f(s2). The list of rBCachet and rHWb are

as shown in Table 5.1, Table 5.2, Table 5-1, Table 5.3, Table 5.4, Table 5.5, Table 5.6, and

Table 5.7. Starting from an initial BCachet term where all queues and caches are empty,

we can show the theorem by induction. O
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Table 5.1: Simulation of BCachet Processor Rules in Table 4.1 by HWb Processor Rules in
Table 3.1

Table 5.2: Simulation of BCachet Voluntary Cache Engine Rules in Table 4.2 by HWb
Voluntary Cache Engine Rules in Table 3.2

68

rBCachet rHWb
P1, P10, P11 P1

P2 P2
P3, P12, P13 P3

P4 P4
P5, P14 P5

P6 P6
P7 P7
P8 P8
P9 P9+Message-Cache-to-Mem

P9A f
P15 P10
P16 P11
P17 P12
P18 P13
P19 P14
P20 P15
P21 P16
P22 P17
P23 P18+Message-Cache-to-Mem

P23A, P24, P25, P26, P27, P28 e
P29, P38, P39 P19

P30 P20+Message-Cache-to-Mem
P31, P40, P41 P21

P32 P22+Message-Cache-to-Mem
P33, P42 P23

P34 P24
P35 P25
P36 P26
P37 P27

P30A, P32A e
P43 P28
P44 P29

P45, P54, P55 P30
P46 P31

P47, P56 P32
P48 P33
P49 P34
P50 P35
P51 P36

P52, P53 f

rBCachet rHWb
VC1 C1
VC2 C2+Message-Cache-to-Mem
VC3 C3+Message-Cache-to-Mem
VC4 C4+Message-Cache-to-Mem
VC5 C5+Message-Cache-to-Mem
VC6 C6+Message-Cache-to-Mem
VC7 C7+Message-Cache-to-Mem
VC8 C8+Message-Cache-to-Mem
VC9 C9+Message-Cache-to-Mem
VC10 C1O+Message-Cache-to-Mem

VC11, VC12 C3
VC13 C6
VC14 C7



rBCachet rHWb
MC1 C12
MC2 C13
MC3 C14
MC4 C15
MC5 C16
MC6 C17
MC7 C18
MC8 C19
MC9 C20
MC10 C21

MC11, MCi9 C22
MC12 C23

MC13, MC18 C24
MC14 C25
MC15 C26
MC16 C27
MC17 C28
MC20 C29

MC21, MC28, MC29 C30
MC22 C31
MC23 C32+Message-Cache-to-Mem
MC24 C33+Message-Cache-to-Mem
MC25 C34
MC26 C35
MC27 C36

MC30, MC31 C32
MC32, MC41, MC42 C37

MC33 C38
MC34, MC43, MC44 C39

MC35 C40
MC36 C41 +Message-Cache-to-Mem
MC37 C42+Message-Cache-to-Mem
MC38 C43
MC39 C44
MC40 C45
MC45 C41

MC46, MC55, MC56 C46
MC47 C47
MC48 C48+Message-Cache-to-Mem
MC49 C49+Message-Cache-to-Mem
MC50 C50+Message-Cache-to-Mem
MC51 C51 +Message-Cache-to-Mem
MC52 C52
MC53 C53
MC54 C54

MC57, MC58 C48
MC59 C50
MC60 Cll

MC61, MC62, c
MC63, MC64, MC65

MC66 e
MC67 f

Figure 5-1: Simulation of BCachet Mandatory Cache Engine Rules in Table 4.3 by HWb
Mandatory Cache Engine Rules in Table 3.2
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Table 5.3: Simulation of BCachet Voluntary Memory Engine Rules in Table 4.4 by HWb
Voluntary Memory Engine Rules in Table 3.3

Table 5.4: Simulation of BCachet Mandatory Memory Engine Rules-Hmsg in Table 4.5 by
HWb Mandatory Memory Engine Rules-B in Table 3.4
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rBCachet rHWb
VM1 M1
VM2 M2
VM3 M3
VM4 M4
VM5 M5
VM6 M6
VM7 M7

rBCachet rHWb
HM1 M1

HM2A M2A
HM2B M2B
HM3 M3
HM4 M4
HM5 M5
HM6 M6
HM7 M7
HM8 M8
HM9 M9

HM10 M10
HM11A MIlA
HMllB M11B
HM12 M12
HM13 M13
HM14 M14
HM15 M15
HM16 M16

HM17A M17A
HM17B M17B
HM18 e
GM1 M18
GM2 M19
DM1 MDirl



Table 5.5: Simulation of BCachet Mandatory Memory Engine Rules-FR in Table 4.6 by
HWb Mandatory Memory Engine Rules-A in Table 3.3
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rBCachet rHWb
FRC1 M8
FRC2 M10
FRC3 M11
FRC4 M15
FRC5 M16
FRC6 M17
FRC7 M12
FRW1 M18
FRW2 M19A
FRW3 M20A

FRW4A M21A1
FRW4B M21A2
FRW5 M22
FRW6 M23
FRW7 M24
FRW8 M25A
FRW9 M26A
FRW10 M27A

FRW11 with WErl M20B
FRW11 with WEr2A M21B1
FRW11 with WEr2B M21B2
FRW11 with WEr3 M25B
FRW11 with WEr4 M26B
FRW11 with WEr5 M27B
FRW11 with WEr6 e



Table 5.6: Simulation of BCachet Mandatory Memory Engine Rules-LIN in Table 4.7 by
HWb Mandatory Memory Engine Rules-A in Table 3.3

rBCachet THWb
STQ, FRC, FRT e

HPS, LPS Message-Cache-to-Mem
MPS Message-Mem-to-Cache

Table 5.7: Simulation of BCachet Mandatory Message Passing Rules in Table 4.8 by Message
Passing Rules in HWb
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rBCachet rTHWb
CHA1 M8
CHA2 M9
CHA3 M10
CHA4 M11
CHA5 M12
CHA6 M13
CHA7 M14
CHA8 M15
CHA9 M16

CHA10 M17
CHB1 e
WBA1 M18
WBA2 M19A
WBA3 M20A

WBA4A M21A1
WBA4B M21A2
WBA5 M22
WBA6 M23
WBA7 M24
WBA8 M25A
WBA9 M26A
WBA10 M27A
WBB1 M4
WBB2 e
WBB3 M20B

WBB4A M21B1
WBB4B M21B2
WBB5 M6
WBB6 M7
WBB7 e
WBB8 M25B
WBB9 M26B
WBB10 M27C
WBC1



5.2 Liveness of BCachet

In this section, we give some arguments about the liveness of BCachet. We will not show

detail proof because the proof is too tedious and too long.

Liveness of BCachet: For a given BCachet sequence a <sl, s2,...>,

< t, Loadl(-) > E Pmbid(a) < t,-> E Mpbid (a)

< t, Storel(-) >E Pmbid(a) < t, Ack >E Mpbid(a)

<t,Commit(-) >EPmbid(a) <t,Ack >EMpbid(a)

<t,Reconcile(-) >E Pmbid(O) - <t,Ack >E Mpbid(r)

The liveness of BCachet states that every memory instruction in a processor-to-memory

buffer (Pmb) will eventually be executed.

The liveness of BCachet can be proved in five steps. The brief arguments about the five

proving steps are as follows:

1. We can prove the liveness of message flow, that is, any message will eventually reach

its destination.

Liveness of Message Flow: For a given BCachet sequence a <sl, s2,...>,

msg E HinHoUtid(Cr) Head(HinHoutid(a)) = msg

msg E InidOut() A Dest(msg) = id - Head(InidOut(a)) = msg

msg E LinSTQLoutid(a) Head(LinSTQLoutid(o)) = msg

It is trivial that H-path is live, that is, any message will eventually be sunk at the

memory. This is because these messages are guaranteed to be sunk at the memory in

any condition. (See rules HM1-HM18 in Table 4.5).

We can prove the liveness of memory-to-cache path based on the liveness of the H-path

and the fact that the head message of memory-to-cache path can be sunk, in the worst

situation, if the HOUT or LOUT of a cache have empty slots for new messages. (See
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rules MC20, MC23, MC24, MC36, MC37, MC48-MC51, MC60-MC67 in Figure 4.3).

The memory-to-cache path is live because HOUT will eventually have an empty slots

and LOUT always have a space for new messages due to the size constraint of LOUT,

"Size(LOUT) > rqm."

We can prove that L-path is live, that is, any request type messages in L-path can

arrive at its destination memory. The rules consuming the head message of this path

can be fired, in the worst situation, if the outgoing message queue (OUT) of the

memory has more than two empty slots. OUT will eventually have more than two

empty slots because memory-to-cache path is live, and thus, OUT will eventually send

its messages.

2. We can prove the liveness of downgrading, that is, any transient memory state will

eventually become stable state.

Liveness of Downgrading: For a given BCachet sequence a <sl, s2,...>,

Cell(a,-,Tw[-,-, -,gm]) Mem(a) "Cell(a,-,Tw[E, , E,gml-])E Mem(,)

. Cell(a,-, Cw[] E Mem(ca)

Cell(a, -,Tm[id, gn]) E Mem(a) ., Cell(a, -,Tw[, e, ,gml-]) 6 Mem(4(i.7)

, Cell(a,-, Cw[e]) E Mem(a)

Cell(a,-,T'm[id]) E Mem(o) Cell(a,-,Cw[e]) E Mem(a) V

Cell(a, -, Cw[id]) E Mem(a)

Trivially, a memory cell in Tw state will eventually send all DownReq messages kept

in the second directory because the rules sending DownReq are strongly fair and the

message flow is live. (See rules DM1 in Table 4.5). The response of DownReq (Down)

may be held in cache states if the cache generated a CacheReq and it is not completed.

The cache states holding Down messages are (Cleanw, Downm), (Cleanb, Downrb),

and (Cleanb, Downmb), and in this case, the memory contains id of the CacheReq in its
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directory. If the memory contains the id of the CacheReq, then the CacheReq can be

completed at the memory and the memory can send CacheAck to the cache. (See rules

FRC3, FRC5, FRC6 in Table 4.6 and CHA4, CHA9, CHA10 in Table 4.7). Therefore,

the Down messages held in caches will eventually be released and the memory in Tw

state will eventually receive all requested Down messages. After receiving all responses

to DownReqs, the directory of the memory becomes empty. Once, the memory in Tw

state has empty directory, it is easy to show Tw state will eventually becomes Cw

state. (See rules GM1, GM2 in Table 4.5).

Using the same argument, we can prove that a memory block in Tm state will even-

tually receive the response to down request sent by the memory block and become

Tw state. Therefore, Tm state will eventually become stable state because Tw state

will eventually become stable state.

Using the same argument, we can prove that a memory block in T'm state also will

eventually receive the response to the down request sent by the memory block and

become Cw state.

3. We can prove the liveness of first priority request control, that is, the first priority

request register (FR) and the first priority request register's tag (FRTag) will eventu-

ally become empty as well as a message in FR will eventually be served and a request

message will enter FR if it cannot be served forever.

Liveness of First Priority Request Control: For a given BCachet sequence a

<S1, 82, ...>,

FR(a)7e - FR(a) = e

FR(a) = Msg(id, H, Wb, a,-) - FR(a) = e A

Cell(a, -,ms) E Mem(o) : id E GM(ms)

FR(a) = Msg(id, H, CacheReq, a,-) FR(a) = A

Msg(H, id, CacheAck, a, -) E Out(a)
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FRTag(a) = (id, a) '. FRTag(a) = e

O(Msg(id, H, Wb, a, -) E LinSTOLoutid(a) V

Msg(H, id, WbNack, a, -) E InidOut(a))

FR(o) = Msg(id, H, Wb, a,-)

O(Msg(id, H, CacheReq, a, -) E LinSTOLOUtid(a) V

Msg(H, id, CacheNack, a, -) E InidOut())

FR(a) = Msg(id, H, CacheReq, a, -)

We can prove that the message in FR will eventually be served using the liveness of

downgrading. If a CacheReq is stored in FR, the memory has sent or will eventually

send necessary DownReq messages, and the memory state is or will eventually become

a transient state. (See FRC7 in Table 4.6). The stalled CacheReq eventually be

served because the transient state will eventually be a stable state that can serve the

CacheReq and the rule that can serve the CacheReq is strongly fair (See rules FRC1-

FRC6 in Table 4.6). If a Wb is stored in FR, the major reason why the Wb cannot

be served is that there are not enough space in the suspended message buffer. The

Wb will eventually be served because the liveness of downgrading guarantees that all

transient state will become stable state, and the suspended message buffer earns an

empty slot for the Wb message during the state transition toward a stable state.

FRTag will eventually become empty so that another request message can reserve the

FR by listing its address and id in FRTag. This is trivial because when a request

in FR is served, then the memory engine erases the address and identifier kept in

FRTag. (See rules FRC1-FRC6, FRW1-FRW10 in Table 4.6, MC20, MC60-MC65 in

Table 4.3, and HM18 in Table 4.5).

If a request message cannot be served all the time, then the message eventually enter

FR so that it will eventually be served. This follows from the strong fairness of the

rule, FRT, in Table 4.8.

4. We can prove that request is live, that is, any pending state (CachePending, WbPend-

ing, and locked states) will eventually become a clean state.
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Liveness Proof of Request: For a given BCachet sequence a <sl, s2, ...>,

Cell(a, -, cs) E Cacheid(a) : Locked(cs) = True V cs = CachePending

. Cell(a,-, Cleanb) E Cacheid(a) V Cell(a,-, Clean,) E Cacheid(a) V

Cell(a,-, Cleanm) E Cacheid(a)

Cell (a, -, WbPending) E Cacheid(a)

- Cell (a,-, Cleanb) E Cacheid(a)

The liveness of request is based on and the liveness of first priority request control.

A request message will eventually enter FR if a request message is not served all

the times. It is guaranteed that the message in FR will eventually be served, and

therefore, all pending state will eventually become stable state.

5. BCachet is live, that is, all instructions in a processor-to-memory buffer of a cache site

will eventually be served and the corresponding responses will eventually be placed in

the memory-to-processor buffer of the site.

Liveness of BCachet: For a given BCachet sequence a <sl, s2,...>,

< t, Loadl(-) >E Pmbid(a)O < t,- >E Mpbid(a)

< t,Storel(-) >EPmbid(a) < t,Ack >E Mpbid(a)

< t,Commit(-) >E Pmbid(a) < t,Ack >E Mpbid(a)

<t,Reconcile(-) >E Pmbid(a) < t,Ack >E Mpbid(a)

We can prove the liveness of BCachet based on the liveness of request. Since all pending

state will eventually become stable state, it is easy to show that all memory instruction will

eventually be served by the strong fairness of processor rules. (See Table 4.1).
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Chapter 6

Conclusion

This thesis addresses a buffer management method for Cachet. We modified the Cachet

protocol and changed the hardware structure for the protocol. The modifications are done

in two phases.

In the first phase, we modified the protocol without changing the assumption of point-

to-point message passing. In this phase, we split atomic coarse-grained writeback and

multi-casting of DownReq operations into finer-grained actions so that the free buffer space

required by these actions is small. We stores the value of a writeback message in the memory

at the moment of reception of the writeback message without affecting the memory model.

This modification allows the memory engine to store only the identifier of the writeback

message in the suspended message buffer so that the suspended message buffer saves the

storage for the value of the writeback message. We simplify the protocol in this phase too.

We eliminate some redundancy and assign higher priorities on some rules.

In the second phase, we change the cache-to-memory message path from point-to-point

buffer to a couple of high and low priority FIFOs so that we can use simple FIFOs in a

real implementation. Due to the existence of voluntary rules in Cachet, separating message

paths based on the message type causes an incorrect reordering problem. We solved this

problem by message holding technique, in which expanded cache states store the informa-

tion messages until sending message becomes safe. We also use fairness control units to

prevent livelock. These units guarantee that a request will be served eventually by giving

high priority to the request if the request suffers from unfair treatment. As a final design,

the concrete buffer management for Cachet, BCachet is shown in Chapter 4.
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In the remainder of this chapter, Section 6.1 discusses the advantage of the BCachet

implementation. The comparison of the hardware costs of BCachet and Cachet is also

shown in this section. In Section 6.2, we discuss possible future work related to this thesis.

6.1 Advantage of BCachet

To discuss the real scalability, we will discuss the merits of BCachet based on the assump-

tion that the memory space is also distributed over the system.

In BCachet, the reordering ability of the incoming message buffer of the memory is

greatly reduced from P x N FIFOs to two FIFOs where P is the number of processors and

N is the number of memory blocks in a memory unit. We also reduced the minimum size

of the total suspended message buffers from (log2 P + V) xrqma, xP 2 to P log2 P where V

is the size of a memory block in scale of bits. Table 6.1 summarizes the hardware cost to

avoid deadlock in two systems. Table 6.2 shows the hardware cost to avoid livelock in two

systems. Since livelock occurs with extremely low probability because of variety of a latency

of message passing, a designer may not spend the cost in Table 6.2 to guarantee that the

livelock will never occur. Therefore, this hardware cost is optional. Because P and N are

much larger than A, V, M, and rq,,a,, BCachet requires much smaller hardware cost than

the original Cachet.

BCachet Cachet
The Size of Total Message Queues P(rqma, + 6) NP + 3P
(number of messages)
The Size of A Suspended Message Buffer P log2 P (log2 P + V)rqmaxP
(bits)
P : the number of sites
N : the number of address lines
V : the size of a memory block(bits)
rqma : the maximum number of requests per site

Table 6.1: Comparison of Minimum Hardware Costs to Avoid Deadlock Between Cachet
and BCachet

From the system designer's point of view, BCachet has some architectural advantages.

First, in BCachet, the soundness and the liveness are almost independent to the sizes of the
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suspended message buffer and the stalled message queue as well as the directory, so that a

designer can easily make a decision on a trade-off between hardware cost and performance.

The BCachet system is sound and live, as long as the system meets the minimum constraint

about the sizes of these units, which is pretty small compared to moderate buffer sizes. A

designer can parameterize these sizes and find optimal trade-off points by simulation without

affecting the soundness and the liveness of the system. For example, since the minimum

size of the suspended message buffer is one Byte for a DSM system with 28 sites, we can

find the optimal suspended message buffer size, by changing the size of it in the range over

one Byte and simulating the system.

Second, BCachet is very scalable since the minimum sizes of buffers are almost linear

in reasonable P range. Since M is usually much larger than log2 P, the hardware cost for

buffer management is approximately linear to the number of sites. Since the hardware cost

C for deadlock avoidance is as shown in Formula (6.1) and M is usually much larger than

log2 P, C is approximately linear as shown in Formula (6.2). For example, if we have a

DSM which has 28 nodes and a message size is 64 Bytes, then log2 P = 8 and M = 512 and

the assumption about the sizes M and log2 P holds.

C = P{M(rqmaz + 7) + A(rqma + 1) + 3 log2 P} (6.1)

, P{M(rqma + 7) + A(rqmax + 1)} (6.2)

BCachet Cachet
The Total Size of Fairness Control Units P(rqmax(A + 1) + 2 log2 P + M) 0
(bits)
P : the number of sites
A : the size of address (bits)
M : the size of message (bits)
rqma : the maximum number of requests per site

Table 6.2: Comparison of Minimum Hardware Costs to Avoid Livelock Between Cachet and
BCachet
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6.2 Future Work

Further Optimization

The constraint about the size of the low priority output message queue of a cache site can be

reduced to 1 by using message holding techniques. Because we have used 4 bits to represent

14 cache states, we can add two new cache states without increasing the number of bits for

encoding cache states. We may add (WbPending, Wb) and (CachePending, CacheReq) to

represent WbPendig that holds Wb message and CachePending that holds CacheReq mes-

sage. In this modification, whenever a cache block wants to send a Wb message and the low

priority output message queue is full, a cache can set the cache state as (WbPending, Wb).

The Wb message held in the cache state can be released if the queue has space later. This

modification effectively merges the low priority output message queue into the cache and

reduces the minimum size of LOUT to one.

Heuristic Policies

Cachet, and consequently BCachet has enormous adaptivity for various access patterns.

Voluntary rules provide options for a system so that the system intelligently chooses one of

the options. However, the concrete policy of this choice has not been suggested yet. One

idea about heuristic policies is to use hardware to monitor an access pattern and make a

decision based on the monitoring result. Mukherjeee and Hill [10] presented a way to use

hardware to predict a message stream and use it in speculative operation. They used a

history table as used in branch prediction [12]. BCachet may adopt this idea in its heuristic

policy. For example, we can use a history table to predict the next input message and can

fire a voluntary rule in advance of the input message.
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