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Abstract

Statistical shape and texture appearance models are powerful image representations,
but previously had been restricted to 2D or 3D shapes with smooth surfaces and
lambertian reflectance. In this thesis we present a novel 4D appearance model using
image-based rendering techniques, which can represent complex lighting conditions,
structures, and surfaces. We construct a light field manifold capturing the multi-view
appearance of an object class and extend previous direct search algorithms to match
new light fields or 2D images of an object to a point on this manifold. When matching
to a 2D image the reconstructed light field can be used to render unseen views of the
object. Our technique differs from previous view-based active appearance models
in that model coefficients between views are explicitly linked, and that we do not
model any pose variation within the deformable model at a single view. It overcomes
the limitations of polygonal based appearance nodels and uses light fields that are
acquired in real-time.

Thesis Supervisor: Trevor Darrell
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Descriptive and compact appearance models have been of interest to many computer

vision and graphics researchers for the last decade. These models aim to provide a

rich, intuitive description of the appearance of an object class from a set of example

images of prototype objects. Since these models are learned from examples, they

provide a natural and powerful way of describing the appearance of objects of the same

class. Appearance models have many applications in computer vision and graphics

including computer animation, object recognition, segmentation and tracking. Given

an image of a novel object outside of the model database, an appearance model is

fit to the image and the parameters of the model are then used to fully describe

the appearance of the imaged object. In computer graphics, these parameters may

be used to synthesize the input object from unseen views, novel lighting conditions

or with a different configuration, properties. In computer vision, these parameters

provide useful information about the object (e.g. its pose, articulation, age, gender).

Multidimensional Morphable Models (MMM) [24], Active Appearance Models

(AAM) [8], and their extensions have been applied to model a wide range of ob-

ject appearance. These methods form a class of appearance models known as shape

and texture appearance models or deforrnable models. Shape and texture appearance

models vectorize each example image into shape and texture vectors and then jointly

model the data variation in each of these vector spaces. Shape vectors define the

geometry of each example object and are used to place the objects into correspon-

21
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Figure 1-1: Two-dimensional shape and texture appearance manifold.

dence. Texture vectors are the "shape free" versions of each example image and are

defined by warping each image to the model reference shape. To form the appearance

model, principal axes of variation are computed in each vector space using Principal

Components Analysis (PCA). Unlike pure intensity based models (e.g. Eigenfaces

[36]), shape and texture appearance models provide a more flexible and compact rep-

resentation of object appearance since they decouple the variation due to geometry

and intensity. Conceptually, each prototype image is a point in the combined texture-

shape vector space and lies on a low-dimensional appearance manifold that represents

all valid shapes and textures of the object class (see Figure 1-1). MMMs and AAMs

parameterize this manifold by a hyperplane using PCA, and the model parameters

of an input image are computed by projecting the image onto this hyperplane.

As presented, MMMs and AAMs are able to faithfully model many linear object

classes (e.g. frontal faces). They have difficulty to represent many important aspects

of object appearance, however, including object pose variation, illumination and dy-

namics. Each of these aspects introduce their own set of challenges and over the

22



Frontal View Profile View

Figure 1-2: Pose variation can result in non-linear differences in appearance: parts of

the object are visible in one view but absent from the other view.

years researchers have made progress toward extending deformable models to over-

come these limitations [31, 9, 16, 11]. In this thesis we present a novel extension of

deformable models that enables them to easily and naturally model object classes

with complex surface reflectance and geometry across pose.

Traditional deformable models are only able to handle a small amount of pose

variation, since large pose changes lead to non-linear differences in appearance (see

Figure 1-2). It is possible to model large pose variation in a single 2D deformable

model [31], but requires the use of non-linear models and is therefore complex to

optimize. Alternatively, local-linear models can be fit to the different portions of pose

space [9]. These models are then linked together such that model parameters can be

easily translated from one local-linear model to another. Although this solution is

practical and intuitive, it has difficulty modelling view-dependent textures as multiple

poses are blended at a single model. Also, with object classes that exhibit a large

degree of self-occlusion, such a solution would require a large number of local-linear

models rendering it inefficient.

Large pose variation is easily modelled using 3D; a polygonal 3D appearance

model was proposed by Blanz and Vetter [4]. With their approach the view is an

external parameter of the model and does not need to be modelled as shape variation.

However, this technique is based on a textured polygonal mesh which has difficultly

representing fine structure, complex lighting conditions and non-lambertian surfaces.
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Figure 1-3: Light field appearance manifold. Each point on the manifold is a 4D

light field representing the 3D shape and surface reflectance of an object. The light

field of an object is constructed by computing its projection onto the shape-texture

appearance manifold. A 2D input image is matched to a point on this manifold by

interpolating the shape and texture of neighboring prototype light fields.

Due to the accuracy of the 3D surfaces needed with their approach, the face scans

of each prototype subject cannot be captured in real-time and fine structure such as

hair cannot be acquired.

In this thesis we propose a 4D deformable model using image-based rendering [25,

19] rather than rendering with a polygonal mesh. We use a light field representation,

which does not require any depth information to render novel views of the scene.

With light field rendering, each model prototype consists of a set of sample views

of the plenoptic function [1]. Shape is defined for each prototype and a combined

texture-shape PCA space computed. The resulting appearance manifold (see Figure

1-3) can be matched to a light field or 2D image of a novel object by searching over the

combined texture-shape parameters on the manifold. When matching to an image,

we automatically estimate the object's pose by performing gradient decent over the

24



views of the light field.

We construct a light field appearance manifold in both the spirit of MMMs and

AAMs. We first show how to construct this manifold using optical-flow shape features

andi match to a novel object using a matching algorithm analogous to Beymer and

Poggio [3]. We also demonstrate how to define a light field appearance manifold using

point shape features and we extend the direct search matching algorithm of [8] to light

fields. Specifically, we construct a Jacobian matrix consisting of intensity gradient

light fields. With this approach a 2D image is matched by rendering the Jacobian at

the estimated object pose. Our approach can easily model complex scenes, lighting

effects, and can be captured in real-time using camera arrays [41, 38].

1.1 Related Work

Statistical models based on linear manifolds of shape and/or texture variation have

been widely applied to the modelling, tracking, and recognition of objects [3, 13, 24,

29]. In these methods small amounts of pose change are typically modelled implicitly

as part of shape variation on the linear manifold. For representing objects with

large amounts of rotation, nonlinear models have been proposed, but are complex

to optimize [31]. An alternative approach to capturing pose variation is to use an

explicit multi-view representation which builds a PCA model at several viewpoints.

This approach has been used for pure intensity models [28] as well as shape and texture

models [9]. A model of inter-view variation can be recovered using the approach in

[9], and missing views could be reconstructed. However, in this approach pose change

is encoded as shape variation, in contrast to 3D approaches where pose is an external

parameter. Additionally, views were relatively sparse, and individual features were

not matched across views.

Shape models with 3D features have the advantage that viewpoint change can

be explicitly optimized while matching or rendering the model. Blanz and Vetter [4]

showed how a morpliable model could be created from 3D range scans of human heads.

This approach represented objects as simply textured 3D shapes, and relied on high-
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resolution range scanners to construct a model; non-lambertian and dynamic effects

are difficult to capture using this framework. With some manual intervention, 3D

models can be learned directly from monocular video [15, 30]; an automatic method

for computing a 3D morpliable model from video was shown in [5]. These methods

all used textured polygonal mesh models for representing and rendering shape.

Multi-view 2D [9] and textured polygonal 3D [4, 15, 30] appearance models can-

not model objets with complex surface reflectance and geometry. Image-based mod-

els have become popular in computer graphics recently and can capture these phe-

nomnenon; with aii image-based model, 3D object appearance is captured in a set

of sampled views or ray bundles. Light field [25] and lumigraph [19] rendering tech-

niques create new images by resampling the set of stored rays that represent an object.

Most recently the unstructured lumigraph [6] was proposed, and generalized the light

field/lumigraph representation to handle arbitrary camera placement and geometric

proxies.

Recently, Gross et. al. [20] have proposed eigen light fields, a PCA-based appear-

ance model built using light fields. They extend the approach of Turk and Pentland

[36] to light fields and define a robust pose-invariant face recognition algorithm us-

ing the resulting model. A method to morph two light fields was presented in [42];

this algorithm extended the classic Beier and Neely algorithm to work directly on

the sampled light field representation and to account for self-occlusion across views.

Features were manually defined, and only a morph between two light fields was shown

in their work.

In this thesis we develop the concept of a light field appearance manifold, in which 3

or more light fields are "vectorized" (in the sense of [3]) and placed in correspondence.

We construct a light field deformable model of facial appearance from real images,

and show how that model can be automatically matched to single static intensity

images with non-lambertian effects (e.g. glasses). Our model differs from the multi-

view appearance model of [9] in that we build a 4D representation of appearance with

light fields. With our method, model coefficients between views are explicitly linked

and we do not model any pose variation within the shape model at a single view. We
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are therefore able to model self-occlusion and complex lighting effects better than a

multi-view AAM. We support this claim with experiments in Chapter 7.

1.2 Outline

We first introduce the concepts of image warping and morphing in Chapter 2. In

Chapter 3 we present a brief overview of deformable models. In specific, we discuss

Multidimensional Morphable Models and Active Appearance Models. Light field

rendering is discussed in Chapter 4 and light field niorphing in Chapter 5. The main

contributions of this thesis are detailed in Chapter 6, where we discuss light field

appearance manifolds. Experiments and results are presented in Chapter 7. Finally,

in Chapter 8 we provide concluding remarks and discuss possible avenues of future

work.
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Chapter 2

Image Warping and Morphing

Object metamorphosis is an important topic of computer graphics [17]. It concen-

trates on how objects may evolve over time or smoothly change into one another.

Metamorphosis is a naturally occurring phenomenon and therefore its study is per-

tinent to both graphics and vision research. As described by Wolberg [40], object

metamorphosis between two or more objects is comprised of three steps: (1) feature

specification, (2) geometric alignment, and (3) color blending. Feature specification

is used to establish correspondence between the objects involved in the morph. The

resulting deformation field is used to geometrically align each object by means of a

warping operation. Color blending is then performed. This step usually consists of a

linear interpolation between the colors of the geometrically aligned objects.

There are many morphing techniques defined for 2D images [17]. All of these

methods follow the same general image interpolation and blending paradigin out-

lined above. This methodology is detailed in Sections 2.1, 2.2 and important issues

associated with image warping are discussed. Each image morphing algorithm is dif-

ferentiated by how it defines a deformation field and blends textures. Beier and Neely

were one of the first to describe such an algorithm [2]. They present a, simple, intuitive

method for defining an image defornation field via user defined shape features. The

study of their algorithm serves as a good introduction to image warping and morph-

ing. We discuss this algorithm in Section 2.3. The deformable models of [8] make

use of a piecewise image warping algorithm that establishes inage correspondence via
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Figure 2-1: Bilinear interpolation. The texture
texture of its four neighbors a, b, c, d.

the use of a triangular mesh. We conclude with

Section 2.4.

C

d

at point p is interpolated from the

the description of this algorithm in

2.1 Image Warping

Let d(x, y) be a 2D deformation of the image I such that the pixel (x, y) E I is at

location d(x, y) in the warped image. Namely,

I.(d(x, y)) = I, (2.1)

where I, is the warped image formed by deforming the image I along the deformation

field d(x, y). Let d,(x, y) be the 2D deformation field found by flipping d(x, y). Using

d,(x, y) we can re-write Equation (2.1) as

I. = I(dr(X, y)) (2.2)

Relationship (2.2) may be alternatively written as

I(dr(x, y)) = I o d(x, y). (2.3)

Equation (2.3) is a convenient notation that we will use to denote the warping opera-

tion. If d(x, y) E Z 2 then the computation of I, is implemented via a straightforward
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Figure 2-2: 180 x 180 color lamp images.

pixel copy operation. In general d(x, y) E R2 and the texture values of the input

image must be interpolated. In the first part of this section we discuss two popular

image interpolation methods. Given an interpolation technique, the warped image

is computed using one of two complementary algorithms. Reverse warping finds for

each pixel in the warped image the corresponding pixel in the input image. For-

ward warping does exactly the opposite. We conclude this section with a discussion

comparing these two algorithms.

Thus far we have discussed image warping in the context of a pre-defined defor-

mation field d(x, y). The definition of d(x, y) is at the center of all image morphing

algorithms. Methods for computing d(x, y) are discussed in Sections 2.3, 2.4.

2.1.1 Image Interpolation

Nearest Neighbor

Nearest neighbor interpolation is the simplest of interpolation algorithms. It inter-

polates the image by rounding d(x, y) to the nearest integer. Namely, with nearest

neighbor interpolation I., is computed as

1, = I o r(d(x, y)) (2.4)

where r : R 2 _, Z2 is a function that rounds each entry of d(x, y) to the nearest integer.

Nearest neighbor is computationally efficient, however, may result in image aliasing

effects around highly textured portions of the input image (e.g. near a sharp intensity
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Nearest-Neighbor Bilinear

Figure 2-3: First lamp of Figure 2-2 warped halfway towards the second lamp, ob-
tained using nearest neighbor, bilinear, cubic and spline interpolation respectively.
Nearest-neighbor and bilinear interpolation obtain comparable results to higher or-
der interpolation methods with much less computation.

gradient). Nonetheless, the simplicity of nearest neighbor has made it quite popular.

Another popular image interpolation technique is bilinear interpolation. This method

is slightly more complicated, however, generally leads to a large improvement in the

synthesized texture of the warped image. We discuss this method next.

Bilinear Interpolation

Bilinear interpolation is summarized by Figure 2-1. In the figure, the texture at point

p is computed by considering the texture of its four neighbors:

I(p) = w5(w1I(a) + w21(b)) + w6 (w3I(c) + w41(d)) (2.5)

where
W = (py - a,)/(by - ay)

W2= (by - py)/(by - ay)

W3 =(py - cy)/(dy - cy)

W4= (dy - py)/(dy - cy)

W5= (px - a.)/(c. - a.)

W6= (c, - px)/(Cx - a.)

Equation (2.5) computes I(p) by first performing a vertical interpolation on the four

neighbors of p followed by a horizontal interpolation. Bilinear interpolation achieves

better performance than nearest neighbor by smoothing over the region of interest,

thus avoiding aliasing effects. For greater amounts of smoothing one may use higher

32

Cubic Spline



Interpolation Technique Execution Time (is)
Nearest Neighbor 171

Bilinear 250
Cubic 591
Spline 2,864

Table 2.1: Interpolation execution times.

order interpolation techniques (e.g. cubic interpolation) or spline based methods.

These techniques tend to be more complicated and less computationally efficient and

in many cases they do not greatly improve performance. We compare some of these

algorithms along with nearest neighbor and bilinear interpolation in the following

subsection.

Example

Consider the 180 x 180 color lamp images of Figure 2-2. Figure 2-3 displays the

first lamp warped halfway toward the second lamp, obtained using nearest-neighbor,

bilinear, cubic and spline interpolation respectively. Each of these images were ob-

tained using MATLAB's interp2 routine. There is a noticeable difference between

nearest-neighbor and bilinear interpolation (e.g. the specular highlights of the lamp

appear more smooth and photo-realistic using bilinear interpolation). Notice, how-

ever, there is less of a difference between bilinear, cublic and spline interpolation. Of

these interpolation methods spline interpolation is the most expensive.

Table 2.1 gives the running time of each interpolation techniques executed on the

above lamp image. Bilinear interpolation is the optimal choice for this example since

it gives similar results to the higher order interpolation methods with much greater

efficiency. In general, the choice of interpolation method is application dependent,

however, as demonstrated by this example nearest-neighbor and bilinear interpolation

can give comparable results with much less computation.
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Forward Warped Region Growing

Figure 2-4: Forward vs. reverse warping: The holes in the forward warped image

result from the possibly many-to-one mappings in d(x, y). The holes can be removed

by growing regions and then using a median filter, however, at the cost of blurring

the image. Reverse warping gives the best results.

2.1.2 Reverse vs. Foward Warping

Forward and reverse warping are outlined by Algorithm 1. Forward warping traverses

the input image to compute I, whereas reverse warping traverses the warped image.

Note, that unlike reverse warping, forward warping does not guarantee that every

pixel in I,, is assigned a texture value. This results in black patches or holes in the

warped image. Consider the lamps of Figure 2-2. Correspondence was established

manually and a displacement field computed via the piecewise image warping algo-

rithm of Section 2.4. Figure 2-4 displays the first lamp warped half-way toward the

other lamp both using forward and reverse warping. Note the holes in the forward

warped image. These holes are usually not more than a few pixels wide and thus can

be removed by growing regions and then applying a median filter as was done in the

figure. The median filter successfully removes undesirable holes but it also blurs the

image.

The artifacts associated with forward warping may be avoided using reverse warp-

ing. Note reverse warping utilizes the deformation field, d,(x, y), given by Equation

(2.2), that specifies for each pixel of the warped image the corresponding pixel in

the input image. Comparing Equations (2.1) and (2.3) one finds that d,(x, y) has

the opposite function of d(x, y) and can therefore be computed by effectively flipping

d(x, y). Since d(x, y) does not specify a correspondence for each pixel in I, some

values of d,(x, y) would not be specified with this technique and these values would
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Algorithm 1 Forward vs. Reverse Warping

I is the input image and I, is the warped output image.

Forward warping:
for all (x, y) E I do

1.,(d(x, y)) = I (x, ,y)
end for

Reverse warping:
for all (x,y) E I, do

Jl,(x, y) = I (d,.(X, y))
end for

need to be approximated by interpolating the values of their neighbors. Alternatively,

as will be seen from Sections 2.3 and 2.4 d'(x, y) may be more accurately computed

directly from the input images in analogous fashion to d(x, y).

Unlike forward warping, reverse warping is able to compute the warped image

without the introduction of holes or blurring the image. It also is simpler as it does

not warrant the use of region growing and a median filter. For these reasons, reverse

warping is preferred over the use of forward warping whenever reverse warping is

applicable. Both reverse and forward warping are used to define the deformable

models of this thesis.

2.2 Image Morphing

Consider images 1 and I2 of two different objects that we wish to morphologically

combine. Note simply blending the texture of each image fades one image into the

other and does not produce a smooth transition between each object (see Figure 2-5).

A morph between these images is computed via a convex combination of both their

texture and shape. Each object is first aligned to an intermediate geometry using

image warping and the morphed image is formed by blending the textures of the

warped images. More formally, the morphed image, I, is computed as

Im = (1 - a)Il + (2.6)
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a=0.4 a= 0.6

Figure 2-5: Interpolating image textures results in a ghosting or fading effect and
does not produce a convincing metamorphosis.

where a is a scalar taking values 0 < a < 1 and IW, and Iw are images of the

geometrically aligned objects given by

IWj 1, o ad21(x, y) (27)

Iw2 =12 o (I - a)d12(X, Y)

In Equation (2.7) dij(x, y) is the deformation field from image Ii to image Ij. To

understand Equation (2.6) consider Im for different values of a. At a = 0, I" = I1,

the geometry of Iw2 is equal to that of the object in image I, and Im = I1. Similarly,

at a = 1, Im = 12. For a = 0.5 both I, and 12 are deformed half way toward one

another and blended equally. The resulting image is sometimes referred to as the

average object image.

Consider the lamp images of Section 2.1.2. A metamorphosis from the first to the

second lamp is displayed in Figure 2-6, where morphed images for different values of a

are displayed. Note how the average lamp shares characteristics from both lamp im-

ages. The morphed lamp images of Figure 2-6 look more or less like a particular lamp

depending on their a values. As will be seen in the following chapters, deformable

models generalize Equation (2.6) to morph between images of multiple objects. By

combining the appearance of a few example objects they are able to represent a wide

range of object appearance.

Thus far we have discussed the general concepts of image warping and morphing

but have yet to present a formal image morphing algorithm that supplies a method for

computing d(x, y). In the following section we describe the Beier and Neely feature-

based image morphing algorithm. We then discuss piecewise image warping in Section

2.4.
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a=0.4 a=0.6

Figure 2-6: Image metamorphosis. A smooth transition between the lamp images of

Section 2.1.2 is computed by linearly interpolated both shape and texture. Images

from steps along this transition, computed at increasing values of a are displayed.

2.3 Beier and Neely

The Beier and Neely feature-based image morphing algorithm [21 was the first image

morphing algorithm presented in the literature. Ever since its introduction image

morphing has grown to become a popular field of study in computer graphics and a

useful tool in both the vision and graphics communities. More sophisticated, prin-

cipled image morphing techniques have followed the Beier and Neely algorithm [17].

Nonetheless, due to its simplicity it serves as a good introduction to image morphing.

A more principled image morphing algorithm is discussed in the next section.

In the image morphing algorithm of Beier and Neely image correspondence is

established using directed line segments, specified in each image. Consider the single

line segment feature between two images, illustrated in Figure 2-7. In this figure the

line segment P'Q' is in the source image, and PQ is in the geometrically aligned or

warped image. The color at each pixel location in the warped image is attained by

projecting each 2D pixel location onto the line PQ. The resulting scaled distance

v along the line and perpendicular distance v (in pixels) from the line is used to

compute the corresponding pixel location in the source image. The color at a point

X in the warped image is therefore computed as the color at location X' in the source

image, where

__ (X-P).(Q-P)
IIQ-PII 2

V (X-P)-Perpendicular(Q- P) (2.8)
\\Q--P1l

P' +U(Q' - P') + " Perpe"ndic dar(Q'-P)X IIQ'-PflI

When more than one feature line is specified the point corresponding to X in the

source image is computed as a weighted sum between the points Xj defined by each
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Figure 2-7: A pair
images. [2]

of feature line segments in the source and warped (destination)

line segment. Each Xj{ is weighted using the weight,

(2.9)

where,

di =

vi, 0 < ui < 1

IX - Pi|, ni < 0

||X -Qill, i > 1

The constants a, p, and b in (2.9) describe the relative importance of line length

and distance, and weighting respectively. Moreover, if b is zero each line is weighted

equally independent of length and distance. As discussed in [2], typical values for

these constants are,

a > 0

(2.10)0.5 < b < 2

0 < p < I

The resulting Beier and Neely field warping function f(X), outlined in [17], is defined

as

(2.11)f(X) = X + Ei )

Comparing Equation (2.11) to Equation (2.3), one finds that f(X) defines the defor-

mation field d,(x, y).
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Beier and Neely Line Features

(a)

Warped Cat Images Average Image

(b)

>I0
ot = 0.6 a= 0.8 C= 1

(c)

Figure 2-8: Beier and Neely image morphing: (a) manually specified feature lines

used to place each object into correspondence, (b) warped source images and average
image, (c) metamorphosis between each cat face. Parameter values of a = 1.0, b = 2.0,
p = 0.1 were used.

Metamorphosis between two images is defined using Beier and Neely by first spec-

ifying a set of directed feature lines between each image. To align each object to

the geometry of the morphed image, the vertices of these feature lines are linearly

interpolated:

Vi = (1 - a)v? + cxv'. (2.12)

In the above equation vi are the line feature vertices of the morphed image, vo and

Vi are the feature vertices specified in each source image and as in (2.6) a is a scalar

taking values 0 < a < 1. With the features vi, vo, and v1 each source image is

geometrically aligned to the geometry of the morphed image using the field warping

function (2.11). Color blending is then applied to the aligned images using Equation

(2.6).
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A morph between two cat faces, performed using Beier and Neely, is illustrated

by Figure 2-8. In the figure, (a) displays the feature lines specified for each cat face,

(b) displays the average cat face (a = 0.5) and the warped source images used to

compute it, and (c) shows the morphed images for various values of a. In Figure 2-8

values of a = 1, b = 0.5, and p = 0.5 were used. These values worked well for this

example, however, may vary depending on the situation. Note, whether the Beier

and Neely algorithm performs well depends on the values of these parameters and

on the choice of appropriate directed line features. We present a more automated,

principled image morphing algorithm next.

2.4 Piecewise Image Warping

In the Beier and Neely morphing algorithm d(x, y) was computed via the use of a

sparse set of directed line features (see Equation (2.11)). For a point in the morphed

image, its corresponding point in each source image was computed by weighting the

corresponding point found using each line feature. Although the Beier and Neely

algorithm does a good job of producing convincing object metamorphosis (see Figure

2-8) its performance is highly dependent on the right choice of line features and values

for a, b, and p. Observing Equation (2.11), one finds that with Beier and Neely

d(x, y) f(x, y), where f(x, y) is the field warping function. Since the introduction

of the Beier and Neely algorithm, nany more principled image morphing techniques

have been formulated [17]. These methods try to achieve better approximations to

d(x. y) that require less manual intervention.

In this section we introduce the piecewise image warping algorithm. With this

algorithm, a few exterior sample points of d(x, y) are manually specified and its inner

values are interpolated using a piecewise triangular mesh defined over the convex hull

of the sample points. This image warping algorithm is commonly used to construct

deformable models and we therefore conclude this chapter with a discussion of this

algorithm.

Consider the lamp images of Figure 2-2. To compute a metamorphosis between
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Lamp Shape Vectors
Average Lamp

with Mesh Overlaid

Figure 2-9: Piecewise image warping: (left) 2D feature points that place each lamp
into correspondence, (right) average image with mesh overlaid.

these two cat images using peicewise image warping, object feature point correspon-

dences are specified for each lamp image as is done in Figure 2-9. Let v and v' be the

feature point correspondences in each lamp source image respectively. Given a value

of a, the feature points of the morphed image are computed using Equation (2.12).

To compute the deformation field d,. (x, y) a triangular mesh is computed over the

convex hull of the feature points of the morphed image using Delauney triangulation

[]. Assuming a = 0.5, applying this method gives the triangular mesh displayed in

Figure 2-9. This mesh is directly applied to the feature points of each source im-

age, resulting in corresponding triangles between each source image and the imorphed

image.

Let X be a point in the morphed image located inside triangle T(A, B, C) with

vertices A, B, and C. Let T'(A', B', C') be the corresponding triangle in one of the

source images and X' the corresponding point inside T'. We can express X as a linear

combination of the vertices of T [101,

X =A+(B-A)+-y(C-A) (2.13)

X =aA+B+yC

where a =1 -- (0 + -y) such that a + (3+ y = 1. To find X' we apply the weights a,

/3, -y, found using Equation (2.13) to the vertices of T',

X' = aA' + B' + 'yC' (2.14)
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Algorithm 2 Piecewise Image Warping

Let I and I, be the input and warped images respectively, and M be the triangular

mesh defined over the convex hull of the feature points in I,,.

for all X E I do
for all T E M do

Compute a, i3, and -y using Equation (2.13).

if a > 0, l, -y < 1 then
Compute X' using Equation (2.14).

I,(X) = Interpolate(I, X').

end if
end for

end for

where

=3 (B - A) (C - A) (X - A),

a = -(+-Y)

Equations (2.13) and (2.14) collectively define the deformation field d,(x, y). Each

source image is warped to the geometry of the morphed image by considering each

point X inside the triangular mesh M defined over the feature points vi, and using

Equation (2.14) to find the corresponding points in each of the source images. This

algorithm is presented as Algorithm 2. Note, a point X is inside a triangle T if a > 0

and 0, < < 1. Algorithm 2 has a running time of O(nk), where n is the number of

image pixels and k is the number of triangles. Better performance can be achieved

by considering the points of each triangle instead of looping over the entire image.

Algorithm 2 presents the simpler version of the algorithm for clarity. The image warp

can be implemented in real-time by using the mipmap capabilities of OpenGL, the

texture of each triangle computed using texture mapping in hardware.

Figure 2-6 displays a metamorphosis between the lamp images of Figure 2-2 using

the piecewise image warping algorithm described above. As illustrated by the figure,

a smooth metamorphosis is generate via the specification of only a few point corre-

spondences. We will use this algorithm to build the deformable models of the next

and following chapters.

42



Chapter 3

Statistical Shape and Texture

Appearance Models

An object's appearance is governed by many physical factors, e.g. illumination, pose,

surface properties, and geometry (shape). The construction of a model that param-

eterizes all such properties of an object's appearance is clearly a challenging task.

Many appearance models present in contemporary vision literature try to learn these

properties from examples [36, 29, 28, 24, 8]. Eigenfaces [36] is probably the simplest

of all these approaches. With this algorithm, many images of an object class are

collected, possibly under different imaging conditions, and a linear generative model

is constructed using Principle Component Analysis (PCA) [22] (see Figure 3-1). This

simple, yet effective representation has proven to be useful for many recognition tasks.

As appearance becomes more varied, however, this model requires a lot of examples

to be able to faithfully represent the object's appearance. A natural progression from

this approach is to try and separate some of the different components that govern

object appearance to reduce model complexity.

Shape and texture appearance models achieve a more compact, efficient represen-

tation of object appearance by independently modelling object geometry and surface

properties/illumination. With these approaches each prototype image is vectorized

into shape and texture vectors and linear generative models are constructed indepen-

dently over each vector space. Shape vectors define the geometry of each prototype
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First Four Eigenfaces

Input Reconstructed

+ 2,181 + 400

Figure 3-1: Eigenfaces: PCA [22] is applied to the centered face images taken from
the IMM face database. The mean face and first four principle axes (eigen faces) are
displayed. A subject taken outside of the database is reconstructed using this model.
The reconstructed image exhibits error because of shape misalignment between the
prototype objects. Shape and texture appearance models separately model object
geometry and reflectance.

image and are commonly represented by either point features or optical flow vectors.

Texture vectors are "shape free" image representations and are computed by warping

each prototype image to a reference model shape. Thus, image intensity is consid-

ered under a common coordinate frame independent of object geometry (see Figure

3-3). An image is matched to such a model by optimizing over the shape and texture

parameters of the model, minimizing the mean squared error between the model and

input images. This is a non-linear optimization problem that has been approached

in various ways in the computer vision literature. The methods presented in this

chapter have their own algorithms for minimizing this objective function as will be

discussed shortly.

The Multidimensional Morphable Model (MMM) [24] and Active Appearance

Model (AAM) [8] are two of the most well known shape and texture appearance

models in the literature. Both of these approaches build linear generative models of

shape and texture to represent object appearance as described above. They differ

in how they represent object geometry and match the model. Figure 3-2 displays

two face images, each marked with point landmarks that outline the contours of each
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First Subject Second Subject Computed Flow Field

Figure 3-2: Shape feature points for two subjects, along with computed flow field.

face. Also displayed in this figure is the resulting flow field between each image com-

puted using the piecewise image warping algorithm of Section 2.4. The point shape

features and flow vectors are equivalent representations of object geometry from the

perspective of shape and texture appearance models: they both are able to define

a deformation from each prototype image to a reference model shape. This is the

component necessary to vectorize each prototype image into a shape and texture

vector.

AAMs define shape as the point landmarks whereas MMMs define shape as the

deformation field between each image and the reference image. Each representation

has its advantages and disadvantages - we will mention some of them here but will not

suggest which one is a better representation as this is beyond the scope of this thesis.

An advantage of using flow shape vectors, is that MMMs are able to automatically

acquire shape using optical flow techniques [26]. The disadvantage is that flow fields

tend to be noisy and often ambiguous in regions that are less textured. The landmark

points of AAMs are usually manually specified, however, they have the advantage that

the user is able to locally define which correspondences bear more importance and the

computed deformation fields are usually more structured and less noisy than optical

flow.

The MMM and AAM are also distinguished by the optimization methods used to

fit the model. MMMs use stochastic gradient decent to fit an image to the model.

Stochastic gradient descent is a principled matching algorithm that is able to opti-

mally fit the model, however, it is computationally expensive and slow. Alternatively,
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Reference Prototype Images

Texture Vectors

Figure 3-3: Image texture: each prototype is warped to the geometry of a model

reference. This results in a "shape free" representation of each prototype image, the

intensities of each object considered under a common coordinate frame.

AAMs attempt to efficiently match the model by learning a linear relationship of how

the objective function changes with respect to the parameters of the model. This

is done by perturbing the model in known directions and recording how the model

objective changes. In order to achieve efficiency AAMs assume that the learned re-

lationship is constant and independent of the value of the model parameters. This

assumption is not true in general [27] and may lead to non-optimal fits. Nevertheless,

this algorithm gives good results in practice and is much faster than the stochastic

gradient decent algorithm present in MMMs.

In this chapter we formally present the MMM and AAM algorithms and provide

examples. In Section 3.1 we will introduce notation that we will use to describe both

algorithms under a unifying context. The MMM algorithm is detailed in Section 3.2

and the AAM algorithm in Section 3.3. We show results for both algorithms using

the IMM face database [34], a collection of 37 face, 320 x 240, annotated color images

(see Figure 3-4). In Chapter 6 we extend both of these approaches to 4D and show

how objects with complex surface reflectance and geometry can be easily modelled

across pose with these methods using light fields.
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(a)

(b)

Figure 3-4: IMM face database [34]: (a) 37 320 x 240 color face images, (b) example
shape annotations.

3.1 Shape and Texture Appearance Models

Let I, i = I.., N be a set of N prototype images of an object class. We construct

a shape and texture appearance model from these images by separating each image

into shape and texture vectors and then modelling the variation of the prototype

images in each of these vector spaces using PCA. For each image we define a shape

vector xi that defines the geometry of each prototype and places each prototype into

correspondence with a reference object having shape xef. We compute the texture

of each example gi by warping each image to have the reference shape:

gi = Ii o W(xi, xief), j = 1, ..., N (3.1)

where W(x 1, x 2) is a function that given shapes x1 , x 2 returns the deformation field

d21 (x, y) that specifies for each pixel in image I2 (having shape x 2) the corresponding

pixel in image I,.
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Given xi, gi for each prototype we model the variation in each of these vector

spaces using PCA:

x - x+ P,b,
(3.2)

g = ±+ Pgbg

where P., Pg are matrices containing as their columns the d < N eigenvectors of the

shape and texture covariance matrices and represent the principle axis of variation

away from the respective means, x and g are shape and texture vectors of an input

image and b, and b. are the shape and texture parameters of the model.

Note the principle axes do not necessarily have a meaningful interpretation other

than that they are the axes directed along the highest variation in the data set. For

example, one might expect that if the data contained many smiling versus neutral

faces that one of the first principle axes may capture this variation. This may or

may not be the case, however, with this approach there is no guarantee of the axes

bearing such an interpretation. Similar methods have learned a mapping between

the PCA basis and class specific labels to enforce such a meaningful parameter space

[4]. Nevertheless, the goal of these models is to faithfully represent the appearance

manifold in each of the shape and texture vector spaces, which is accomplished using

PCA. Given an input image these models may be used to extract the object's shape

and texture by matching the image to a point on this bi-linear appearance manifold.

In turn this information may be used as low-level input to a high-level vision task

(e.g. recognition).

To make the model more flexible, we also parameterize Equation (3.2) to handle

arbitrary affine transformation and global illumination,

x St( + Psbs)
(3.3)

g Tu(g + Pgbg)

where St is a function that applies a rigid body transformation to the model shape

according to a pose parameter vector t and Tu is a function which scales and shifts the

model texture to an arbitrary contrast and brightness using an illumination parameter

vector u.
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Using Equation (3.3) the bi-linear shape and texture appearance manifold is de-

fined as,

I7,(bs, bg , t,. u) = t (by, u) o W (x,, x (bs, It)). (-4)

As seen above, a point p = (bT, b T, tT, uT)T on this bi-linear appearance manifold

maps to a model image I, of an object contained in the object class. Using Equation

(3.4) the model can represent a wide range of object appearance by interpolating the

shape and texture of the prototype images. A novel input image, Ie, is matched to

this manifold by minimizing the mean squared error between the model and input

images,

E(Is, bb, tu) =' t IU - Im(bs, bt, t, U)1 2 . (3.5)

It is often more convenient to work in the coordinate frame of the reference object,

so we re-write Equation (3.5) as

E(I, b,, bg, t, u) =I o W(x(b, It), xi.) - g(b, u)11 2. (3.6)

Equation (3.6) defines a non-linear objective function that is difficult to optimize

in general. In the following sections we will discuss techniques for optimizing this

objective and provide example matches to deformable models of the humman face. In

each section we will be using the face prototype images displayed in Figure 3-4 to

construct the model.

3.2 Multidimensional Morphable Models

Multidimensional Morphable Models [24] define shape vectors using optical flow. Al-

though the choice of a reference object is arbitrary, they compute the average object

from the prototype images and use this image for the reference. In some sense the

average object is the optimal choice, being that it is equidistant from all prototype

images in shape and texture. As discussed in Section 2.2 the average object is com-

puted as the object whose blending parameters cx are of equal weight (i.e. a = 1/N

for multiple objects). Since MMMs use optical flow based shape vectors the shape

of the average object cannot be directly computed, since the average object is not
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Average Face

"tell ~ '.A~ It 11

Example Shape Vectors

Figure 3-5:~ Average face computed using MMM (top).- Example model shape vectors

(bottom).

known a priori with optical flow. Instead they define an iterative algorithm, in which

an object is chosen as the reference, a set of shape and texture vectors are defined,

and then the average shape and texture is computed thus defining a new reference ob-

ject. This algorithm is then iterated until convergence. For convenience, we formally

present this algorithm as Algorithm 3. The average face along with some example

flow fields obtained using the prototype faces of Figure 3-4 is displayed in Figure 3-5.

Algorithm 3 provides for each image a shape amnd texture vector xi, gj, i= 1, ... , N.

For a MMM by definition we have,

g= I o xi. (3.7)

Comparing Equation (37) to Equation (3.1) one finds that for MMMs we have

W(xi,xref) = xj. (3.8)

Using Equation (3.7) we can express the shape and texture appearance manifold of
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Algorithm 3 Compute Average Image [24]

Let 1,..., hn be a set of prototype images.

Select an arbitrary image Ii as the reference image I,,f
repeat

for all I do
Compute correspondence fields xi between I,,f and I using optical flow.
Backwards warp Ii onto ',ef using xi.

end for
Compute the average over all xi and gi.
Forward warp gaverage using Xaverage to create 'average

Convergence test: is 'average - Iref < limit ?

Copy 'average to 'ref

until convergence

Equation (3.4) in terms of an MMM as follows

Im(bs, by, t, u) = t(bg, u) o int)v(x(b,, t)), (3.9)

where inv(x) is a function that flips the deformation field x to point in the opposite

direction. Since the mapping may not be one-to-one sonie of the values of i'Vw(x) may

need to be interpolated from neighboring values of the inverted deformation field.

Alternatively, once the reference image 'ref of Algorithm 3 is computed we can

comlpute optical flow between each prototype image and 'ref to result in shape vec-

tors x inv(xi). This method would avoid the need to interpolate the inverted

flow fields, however, the resulting PCA space computed over these vectors would be

inefficient, since each x" is in a different coordinate frame: xi specifies for each point

in the reference image the corresponding point in I. The flow vectors of each xi

are therefore aligned to the geometry of the reference image. In contrast, each x' is

aligned to the geometry of the different prototypes. Although, it is possible to form

a PCA space over x', their misalignment would lead to in-accuracy and inflation of

the computed PCA space which is undesirable. Instead we choose to maintain the

PCA space over the original xi and forward warp the model texture vector to form

the model image:

Ir(b, bsb trpf)u to deot t (bw, u) of x(bpt, t). (3.10)

where the subscript f is used to denote the forward warping operation. The use of
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Input Synthesized Input Synthesized

Figure 3-6: Multidimensional morphable model (MMM) built from 35 faces of the
IMM face database, optimized over two novel input images. The MMM is able to
faithfully model the appearance of novel subjects.

forward warping will slightly blur the synthesized model image, however, we believe

that this is a fair tradeoff for efficiency in the model.

To match a novel input image to a MMM we adopt the optical flow based matching

algorithm introduced by Beymer et. al [3]. This algorithm is sub-optimal to the

stochastic gradient descent algorithm of [24], however, it is efficient, as optical flow is

relatively cheap to compute, and performs fairly well. With this method we directly

minimize the objective function (3.6) by computing optical flow between the input

image I, and Iref to yield shape x, and texture g, given by

g= Is 0 x'. (3.11)

We can then match I, onto the appearance manifold by solving the following linear

relationships using linear-least squares

= 
(3.12)

g5 = g + P~b9

Solving Equation (3.12) for b, and bg gives

b, = P+ (x' - k)b. Px (3.13)
bg = P+ (g -

Note in the above solution we do not solve directly for the parameters t, u since this

linear-least squares solution automatically accounts for such variation: the optical

flow field x, takes into account any affine transform and any global lighting variation

is solved for directly and is represented in b9 . In contrast to the stochastic gradi-

ent descent solution of [24] the above method assumes that any differences in affine
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(a) (b)

Figure 3-7: Average face computed using AAM displayed (a) by itself and (b) with
the reference shape and mesh overlaid.

alignment or global lighting are relatively small, namely they are those captured by

the PCA model.

Figure 3-6 illustrates matches to images taken out of the database displayed in

Figure 3-4 using the above matching algorithm. For each input image, the location

of the face is manually specified. The online optical flow computation is sensitive

to scene clutter; as such a segmentation mask for each input is also provided. As

illustrated by the figure, the MMM is able to faithfully model the appearance of

novel subjects, although there is some jitter in the matches as a result of noise in the

optical flow fields. In the next section we will discuss the AAM; we will show how a

shape and texture model can be generated with manually specified point features. We

then show how to optimize Equation (3.6) using a direct search algorithm, in which

a constant relationship between the change in this error objective and the model

parameters is learned and used to match the model in real-time.

3.3 Active Appearance Models

An AAM [8] defines shape as a set of 2D point features that are manually specified

along the contours of an object. For each prototype a shape vector, x', is defined by

placing the n, x, y coordinates of each point into a vector,

-K = T.2 .  (3.14)
(X 1z , X2, -- , n, Y1, Y2, .. , n) - 3

Figure 3-4(b) displays example shape feature point vectors for the prototype faces of

the IMM face database. A plot of all shape vectors super-imposed onto one another
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is displayed in Figure 3-8. As seen from the figure there is a large variation in

the shape vectors across example faces. It is important to note, however, that the

shape variation displayed in this figure is mainly due to global in-plane pose change

as oppose to the non-rigid shape changes that we are interested in modelling (e.g.

the differently shaped mouths, noses, and heads). We therefore wish to normalize

each shape such that they are all defined under the same global pose or coordinate

frame. To do this we employ Procrustes Analysis [18]. This algorithm is described

as Algorithm 4. The normalized shapes found using Procustes Analysis are displayed

in Figure 3-8. As illustrated by the figure the aligned shapes are mostly in the same

global orientation and scale and centered with respect to one another. The variation

in the aligned shapes is mainly due to the interesting non-rigid shape changes. Note

this shape normalization step is not necessary, however, allows us to build a more

efficient, compact shape model.

From the aligned shapes we compute the reference shape, xref as follows,

Xref = MOgg, (3.15)

where xi is used to denote normalized shapes and Ma is an affine transform matrix

that scales and shifts i into image coordinates.

Given shapes x', i = 1,., N and reference shape xef we compute the texture, g

of each prototype using the piecewise image warping algorithm of Section 2.4,

g$ = I- o W(x, xre), i = 1,...,N (3.16)

where W(x', xref) is defined using Equations (2.13) and (2.14). Figure 3-7 displays

the average face computed using the prototypes of Figure 3-4. In this figure xref is

displayed superimposed on the average face along with the triangular mesh used to

perform the piecewise warping. This mesh was computed using Deluanay triangula-

tion. Similar to shape we wish to normalize the texture of each prototype to be under

the same global illumination, thus allowing a more efficient representation of texture

variation. To do this we employ the texture normalization algorithm described as

Algorithm 5. This algorithm normalizes each texture vector such that their mean

vector has zero mean and unit norm.
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Algorithm 4 Procrustes Analysis [10]

Let xi = (xi, xIY), i = L..., n be a set of 2D input shapes.

Center each shape to the origin (0., 0).
Pick a reference shape: xre = xj J {1. I}.
repeat

for 1 =_ I,-.., n do
Align shape to reference: xi = aligr(xi, Xref).

end for
Compute average over all xi to give Xaverage.

Align average to reference: Xaverage= align(xaerage, Xref).

Normalize average shape: Xavcerage = Xaverage/ |Xaverage I.
Set xprcvref = Xref.

Set xjef = Xaverage.

until ||Xaverage - Xprevref 1| < threshold
for i = 1.n do

Project xi onto the tangent space of the reference shape: xi xi/(xi xef).

end for

function Xa= align(xI, x 2 )

Compute a = (Xt . x 2 )/|xI112
_

Compute 5 =xf -x 2.
Compute SY IIx" - xjI 2 .

Compute b (S' - SY)/ x 1 12.

Define R = b
b a )

Align shape: Xa= Rx 2.

With the normalized shape and texture vectors xi, g, i 1, ... N, the model

is defined using Equation (3.2). As there may exist a correlation between texture

and shape, active appearance models define a more compact model of al)pearance

by applying PCA on the concatenated shape and texture parameter vectors of each

prototype image:

b = Wsb, = Pcc= PCS C, (3.17)
bg Pe-9

where W, is a matrix that coniensurates the variation in shape and texture when

performing the combined texture-shape PCA. In our experiments we use W, = rI

where r = o /o and a and 72 rel)resent the total variance of the normalized

shape and texture vectors.
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Figure 3-8: Procrustes analysis aligns the input shapes into a common coordinate
frame such that each shape is centered and under the same orientation and scale. The
computed reference shape is displayed in red, overlaid a top of the aligned shapes.

[34]

This results in a combined texture-shape PCA space,

x = x+ Q'c
(3.18)

g = h+ Qrc

where,

Q= PSWj1P c

Q g PgPcg

(3.19)

As in Equation (3.3), Equation (3.18) is parameterized to handle arbitrary affine

transformation and global illumination,

x =St(2 + Qc) (3.20)

g = T.(9 + Qgc)

In this equation, t and u for an AAM are defined as,

s cos

S s

U (

(0)-1

in(O)

tx

ty
(3.21)

Uo - 1

1
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Algorithm 5 Texture Normalization [10]

Let gj, i = 1, .n be a set of input textures.

Pick a reference texture: gre gj iE {1= .
repeat

Normalize the reference texture to have zero mean and unit variance.
for i = 1 ... , T do

Compute a =- g, grcf.

Compute 3 = gi.
Normalize texture: gi = (gi -

end for
Compute average over all normalized textures to form gaverage.

Set gprevref = gref.
Set gref = gaverage.

until ||gjre7'ref - grcj I < threshold

where s is a scalar that scales the shape vector, 0 is ai angle that defines the in-plane

orientation of the shape and t, ty define a horizontal and vertical shift of the shape

respectively. Each of these parameters align the model shape to the global pose of

the input image. In the above equation uo and ai scale and shift the texture values

to match the global illumination of the input. Note that both t and u exhibit a -1 in

their first coordinate. This is (lone so that the identity transform of each parameter

vector is given by p, u = 0.

The shape and texture appearance manifold of an AAM is given by Equation (3.4)

parameterized over the combined texture-shape PCA space,

Im(C, t, u) g(c, u) 0 W(Xref, x(c, t)). (3.22)

To match a novel input image I to this manifold AAMs employ a direct search

algorithm we describe next.

Let I, be the input image with hypothesized shape and texture given by x(c, t)

and g(c, u), where the parameters c, t, u can be initialized to any point in the convex

hull of the examples. Note, here t is chosen such that the model template defined by

x(c, t) and g(c, u) lies mostly over the input object in the image I. In the case of

faces, this initial alignment can be provided by a face detector for example. The error

between the current model fit and the input image is given by an altered version of
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Variables Perturbations
x, y ±5% and ±10% of the height and width of the reference shape

0 ±5, ±15 degrees
scale ±5%, ±15%
Cl-k ±0.25, ±0.5 standard deviations

Table 3.1: Perturbation scheme used to compute AAM Jacobian. [34]

Equation (3.6), re-defined to function over the combined texture-shape PCA space:

E(p) = ||I, o W(x(c, t), xref) - g(c, u) 1 , (3.23)

where p = (cT, tT, uT)T is a point on the texture-shape appearance manifold. We

can re-express Equation (3.23) as follows,

E(p) = r(p) - r(p) (3.24)

where the residual vector r(p) is given by

r(p) = I, o W(x(c, t), xef) - g(c, u).

We wish to find a 6p that minimizes the objective of Equation (3.24). We do so by

taking a first order Taylor expansion of the residual function r(p + 6p) [10]:

(3.25)r(p + 6p) = r(p) + dr(p) 6
dp

Setting the above expression equal 0 and solving for 6p one finds,

6p = -Rr(p) (3.26)

where
(dr(p)> +

R=(dp

To imiplement the direct search we learn the Jacobian matrix J -dp by start-
dp

ing from each prototype image, perturbing the model in known directions and then

averaging over the Jacobian matrices found for each prototype. One may think of

the direct search as a pattern matching algorithm. Each column of R dp is adr(p)

difference image that records how a given parameter of p changes with respect to
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Figure 3-9: First four columns of AAM Jacobian.

r(p). The dot product of Equation (3.26) compares r(p) to the columns of R and

the parameters of similar columns in R are given more emphasis in 6p. The Jaco-

bian matrix for the faces of Figure 3-4 was computed using the perturbation scheme

outlined by Table 3.1. The first few columns of this matrix are displayed in Figure

3-9. As illustrated by the Figure, the columns of the Jacobian matrix are difference

images that record how the residual function changes with respect to the model pa-

rameters. Note a key assumption of the above algorithm is that J is constant and

independent of the values of p. This assumption is false in general [27] and may lead

to non-optimal matches, however, as will be seen shortly this algorithm is efficient

and gives good results in practice.

The complete direct search algorithm is presented as Algorithm 6. This algorithm

utilizes relationship (3.26) to perform a gradient decent to minimize the objective

(3.23). It can be implemented in real-time, using graphics hardware to realize the

piecewise image warps [34]. Note Algorithm 6 does not solve for global lighting u

and instead normalizes the model and image texture vectors to have unit variance

and zero mean. After the model is fit, we compare the converged model texture with

the image texture and approximate u as the transform which scales and shifts the

model texture to have the same maximum and minimum values as the input texture.

Alternatively, linear-least squares can be used to solve for u, however, we found the

above method to work best in our experiments.

We implemented Algorithm 6 in MATLAB and example matches for novel images

outside of the model, built using the face database of Figure 3-4 are displayed in

Figure 3-10. In the figure, intermediate iterations are displayed. In each match, the

search was initialized from the average face. As illustrated by the figure, the model is
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Initialization 4 Iterations 8 iterations 12 iterations Converged

Initialization 4 Iterations 8 Iterations 20 Iterations Converged

Figure 3-10: Active appearance model (AAM) built from 35 faces of the IMM face

database, optimized over two novel face images. Intermediate iterations are displayed

for each optimization. The AAM is able to fit the image from rough starting points

and converges to a good fit in a few iterations.

able to fit the image from rough starting points and converges to a good fit in a few

iterations. In our un-optimized code, convergence is usually declared in under one

second.

In both the example fits of this and the previous section the model was built using

frontal faces. Extending these models to handle 3D pose variation in 2D is difficult,

since out-of-plane pose change in 2-dimensions results in non-linear differences in

appearance that is poorly modelled using PCA. Deformable models in 4 dimensions

are able to easily model objects with complex geometry and surface reflectance across

3D pose. In order to understand these models, we need to first introduce the concept

of image based rendering, in specific light field rendering. We discuss light fields in

the next chapter. In following chapters we show how one can construct a deformable

model over light fields of objects and demonstrate the advantages of such models over

existing 2D and 3D shape and texture appearance models.
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Algorithm 6 Direct Search [10]

Let I. be the input image we wish to match.

Set p = po
Evaluate 6g = Residual(I8 , p)
repeat

Compute error EO = 16gl2

Evaluate 6p = -Rig
Update parameters, p P + 6p
Evaluate 6g = Residual(L,, p1)
Compute error at new p value: E =lg
if E - Eol > 0 then

Set i = 0, k = 1.5
while IE - Eo I > 0, i < n do

Set P= p + kop
Set i =i + 1
Evaluate 6g = Residual(I, p1)
Compute error E = Ig
if k > 1 then

Set k = 0.5
else

Set k = k/2
end if

end while
end if
if E - Eo < 0 then

Set p = p,
end if

until E - Eol > 0

function 6g = Residual(I,, p)
x,= St (x + Pb,)

g, =WhI11ten(I, 0 W(x., Xref))
g,= Whiten(g + Pgb9)

g gin - gs

function g.V =W hiten(g)

,, = g - mean(g)
g = g/va r(g.)
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Chapter 4

Image-Based Rendering: The Light

Field

A large part of computer graphics research focuses on the real-time synthesis of photo-

realistic images. Scientists in computer graphics study the physics of nature and

the image formation process to design models that can recreate the images we see

everyday. Naturally this is an extremely challenging task and has been an on-going

topic of study for many years. Data-driven approaches in computer graphics have

recently become popular, where images of a scene are collected and used to synthesize

the scene from novel vantage points. Methods in this sub-topic of computer graphics

anl vision, known as image-based rendering (IBR), synthesize photo-realistic images

of a scene in real-time without the use of complex physical models. Instead, image-

based rendering algorithms use clever image sampling algorithms and data structures

to perform real-time scene manipulation and re-rendering.

Many image-based rendering algorithms are based off a concept called the plenop-

tic function, introduced by Adelson and Bergen [1]. The plenoptic function models

the complete flow of light in space and is parameterized by viewing location, direc-

tion, wavelength, and time. We discuss this function in more detail in the following

section. If you consider the viewing sphere modelled by this function (see Figure

4-2(b)), and carve out samples on the surface of this sphere, each sample forms an

image of the scene. Image-based rendering algorithms implement the plenoptic func-
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tion by interpolating its samples to synthesize the scene radiance from any viewing

direction and location.

Each image-based rendering algorithm is differentiated by the data structures and

information used to render the scene. At one end of the spectrum of IBR techniques

are the visual hull [39] and view-dependent texture mapping [12] algorithms. These

algorithms use few images in arbitrary positions, with knowledge of scene geometry

to render novel views of the scene. At the other extreme of the spectrum is light field

rendering. This algorithm relies on highly structured and redundant imagery to render

the scene without the use of any scene geometry. Other IBR algorithms lie somewhere

in-between these two extremes in the amount of imagery versus detailed geometry

they use to render the scene. Recently, the unstructured lumigraph algorithm [6] was

proposed that generalizes many existing IBR methods. This algorithm is used to

render the light field deformable model of Chapter 7 and is detailed in Section 4.3.

Although light fields are data intensive they exhibit many attractive properties in

the context of deformable models. As discussed above, many of the IBR algorithms

render the scene with few images but with detailed geometry of the scene. In practice,

the acquisition of detailed, accurate depth proxies is often a difficult and tedious task.

Also, because these methods rely on fewer images and scene geometry they cannot

as easily model complex lighting, structures and surfaces as the light field rendering

algorithm, a purely image-based approach. Provided a set of densely sampled images

of a set of objects, one is able to construct a deformable model that easily models

complex objects across many different poses. We discuss this algorithm in Chap-

ter 6 and support this claim with experiments in Chapter 7, where we construct a

deformable model of the human head using light fields.

We begin this chapter with a brief discussion of the plenoptic function in Section

4.1. We then introduce light fields and discuss light field rending in Section 4.2.

Finally, the unstructured lumigraph is presented in Section 4.3.
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(a) (b)

Figure 4-1: Different parameterizations of the plenoptic function: (a) 7D and (b) 5D.

[1]

4.1 The Plenoptic Function

The plenoptic function p(x, y1 z, 0, , A, t), introduced by Adelson and Bergen [1],

models the complete flow of light in space. It is parameterized by viewing location

(x, y, z) and direction (0, 0) along with wavelength A and time t (see Figure 4-1). A

more common parametrization of the plenoptic function is in 5D, where time is held

constant and light is assumed to be monochromatic. This treatment of the plenoptic

function is used in the development of light fields discussed below.

The 5D plenoptic function p(x, y, z, 0, 0) is displayed in Figure 4-2. As illustrated

by the figure, the plenoptic function models the world by an infinite set of viewing

spheres centered about the different locations in space. Consider a single viewing

sphere centered at location 0 = (xo, yo, zo). Next consider tracing out a rectangular

area on the surface of the sphere by considering p( for different values of (0, 0) (see

Figure 4-2). It is clear that this structure forms an image with optical center 0 and

field of view 0o 0 < 01 and #o < # < #1. Images are used to form samples of

the plenoptic function. These samples are then interpolated to synthesize views of

the scene from different viewing locations and directions. The interpolation method

and data structures used to represent the samples of the plenoptic function define the

many different image-based rendering algorithms.
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Figure 4-2: The 5D plenoptic function. The plenoptic function models the world
by an infinite set of viewing spheres centered about different locations in space (a).
Considering a single viewing sphere(b). We can treat the different regions of this
sphere as images with optical center 0. We synthesize the plenoptic function for
different values along this sphere by interpolating these image samples. [17]

Light fields [25, 19] implement a 4D parametrization of the plenoptic function,

in which light is assumed independent of viewing location along the light ray. They

realize the plenoptic function by treating its samples as sets of ray bundles indexed

by pairs of viewing planes and render novel views in real-time by interpolating the

sample rays that intersect these planes. A distinguishing characteristic of light fields

is that they synthesize novel views of a scene without the use of any scene geometry.

A purely image-based approach, light fields can also easily model complex lighting,

surfaces, and fine structure. We discuss this algorithm next and demonstrate with

examples.

4.2 Light Field Rendering

The light field or lumigraph is an image based rendering algorithm simultaneously

introduced by Levoy and Hanrahan [25] and Gortler et. al [19]. Light fields define a 4D

parametrization of the plenoptic function. Consider sampling the plenoptic function

from a set of viewpoints looking at a particular scene. Furthermore, assume that

these viewpoints lie on some surface M and the objects of the scene are encompassed
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Figure 4-3: 4D parameterization of plenoptic function L(u, v, s, t). [17]

by a spherical surface S. A ray of light leaving the scene intersects the surface S at

point q(s, t) and arrives at the surface M at viewpoint o(u, v). The resulting scenario

is illustrated by Figure 4-3. Note that any light leaving the scene must intersect

surface S. Also, each light ray may only intersect S at a single point. Thus all light

rays leaving the scene and arriving at viewpoints M are completely characterized by

their unique points of intersection with the surfaces S and M.

This 4D parametrization of the plenoptic function, L(u, v, s, t) is known as a light

field [25] or lumigraph [19] and provides a complete characterization of the flow of light

emanating from the convex hull of a scene. The light field is realized by constraining S

to a planar approximation of the sphere, and M to a plane or set of planes surrounding

the scene. This leads to the description of a light field as a set of light slabs [25], each

light slab consisting of corresponding planar surfaces on S and M.

A light slab is depicted in Figure 4-4(a). In [19], Gortler et. al. describe how

to construct a light slab by taking various views of a scene. The light rays from

these views that intersect the light slab are kept, and the uv- and st-planes are then

discretized via a binning process. By extending a light ray from each discrete location

on the uv-plane to that of the st-plane, one finds that the light slab may be described

as consisting of a camera and focal plane, the no-plane consisting of a set of camera

centers that each share a common st focal plane. Conversely, using this description

the light slab may be thought of as providing the scene radiance for each location

on the st-plane as seen by each camera on the uv-plane. This formulation of a light

slab, illustrated in Figure 4-4(b), was exploited in [25], in which Levoy and Hanrahan

composed light fields by either capturing or synthesizing views of the scene at discrete
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Figure 4-4: (a) Light slab. (b) uv-camera plane and st-focal plane. [25]

points on the uv-plane, each viewpoint sharing a common focal plane st obtained via

a skewed perspective projection [25].

A novel view of the scene is computed using light field rendering by taking a slice

from one or more of its light slabs as depicted in Figure 4-5. More formally, the color

value at each pixel is computed by passing a ray through the center of the virtual

camera and the pixel of interest, and forming its intersection with each of the planes

uv and st of a light slab. The color of the resulting ray is obtained by interpolating the

colors of the rays passing through the discrete values of uv and st near the intersection

points. A more efficient method for performing this computation may be obtained

via texture mapping [25]. Note by definition light slabs are unique and thus a light

ray can only intersect a single light slab. If a light ray does not intersect any light

slab, then the color value for that pixel is left blank.

As other image-based rendering algorithms, light field rendering proves advan-

tageous in situations where the scene contains complex structures and/or lighting

conditions that are hard to model using traditional 3D rendering techniques. It is

different from other image-based rending methods, however, in that it does not re-

quire any stereo information [25]. This also comes at a cost, in that light fields usually

require many source views to perform well, and if they are to be acquired in real time,

using the techniques outlined in [19] and [25] requires the cameras to be constrained

to lie on a plane, or set of planes.

A more generalized framework for performing light field rendering was recently

outlined by Buehler et. al. [6], known as the unstructured lumigraph. The proposed
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Figure 4-5: Light field rendering. [25]

image-based rendering algorithm functions as view dependent texture mapping in one

extreme and as light field rendering in the other. Using a rough geometric proxy of

the scene and a set of cameras viewing it from arbitrary locations and orientations,

the unstructured lumigraph algorithm computes a virtual view by computing for each

of its rays the closest set of camera rays that intersect the same point on the geometric

proxy. The color at each pixel of the virtual view is then computed as the weighted

sum of the k closest camera rays. This algorithm is discussed in greater detail in the

following section.

4.3 The Unstructured Lumigraph

The unstructured lumigraph, introduced by Buelher et. al. [6], generalizes many cur-

rent image-based rendering algorithms. This algorithm functions on a set of cameras

viewing the scene and a geometric proxy that approximates the scene geometry (see

Figure 4-6). In one extreme this algorithm is provided a few images of the scene

with a detailed geometric proxy and functions as a view dependent texture mapping

algorithm (Figure 4-6(a)). In the other extreme the geometric proxy is a plane and

many views of the scene are provided situated to all lie in a plane parallel to the

geometric proxy (Figure 4-6(b)). In this configuration the algorithm is a light field

renderer.

Let C, i 1, ... , N be a set of cameras viewing the scene and P the geometric
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Figure 4-6: The unstructured lumigraph: (a) virtual view D is synthesized using a

geometric proxy P and sample views C, (b) unstructured lumigraph configured for
light field rendering. [6]

proxy (e.g. a triangular mesh of the objects of the scene). This construction is

illustrated by Figure 4-6. Consider a virtual view D of the scene. To synthesize the

texture of ray, r, contained in D we interpolate the texture of the nearby cameras

C%. This is done by intersecting the ray with the proxy P and then projecting the

intersection point Q onto each sample camera, giving texture values,

ti =Ii(M Q), 1, ...,.N (4.1)

where Mi is the projection matrix of each camera Ci and I, are the sample images of

the scene. In Equation (4.1) the texture values ti are obtained by interpolating the

images I of each camera at the projected points.

The unstructured lumigraph algorithm synthesizes the texture of a virtual ray by

weighting the texture values of the k closest cameras, where proximity is defined by

the angle between the ray r and the rays ri of each sample camera (Figure 4-6(a)).

To compute ID(r) the texture of the k closest cameras are interpolated using weights

Wi= 1i (4.2)
Wli

where

I - (aj/O2), if r is inside the field-of-view

0, otherwise
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Algorithm 7 Unstructured Lumigraph Rendering [6]

Let IV be the view we wish to render, with projection matrix M, rotation matrix
R, translation t,, and intrinsic matrix K,. Also, let N be the number of source
views, each view with project matrix Mi, focal point O and sample image Ii; k
the number of source views used to render I and P the scene geometric proxy.

Compute 0 = -RvIt.
for all (x, y) E T, do

Project p = (x, y, i)T onto the focal plane z = zo:
Compute Q = BackProject(p, M0 , P).
Compute V = 0, - Q.
for i1 = .M do

Compute P O, - Q
Compute 0= arccos(V - P).
Compute q MiQ.
if q is inside the field of view of view i then

Compute texture value ti = Ii(q).
else

ti= NULL
end if
Sort Oi and ti such that Oi is in increasing order and remove NULL texture
values.
Compute threshold angle: Ot = naxi O4, i 1.k + 1.
for i =,. k do

wi = Oi/ot
end for

end for
Compute total weight wt = Wj

Compute texture value in novel view: I(x, y)

end for

and

Ot = maxi 64, i = 1, ... , k + I

In Equation (4.2) the weights wi are set to zero if the projection of Q onto camera

Ci is outside of the camera's field of view (i.e. the coordinates of the projected point

fall outside of the image corresponding to that camera). The angle Ot is a threshold

angle that is typically defined as the largest angle of the k + 1 closest cameras.

The complete unstructured lumigraph algorithm, that renders the texture of a

novel view D from a set of sample views C, and geometric proxy P is presented as
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Algorithm 7. Note the weight computation at each pixel of D searches through all N

cameras and then computes the threshold angle by iterating through the k + 1 closest

cameras taking O(N + k) operations, making the total running time of this algorithm

O(M(N + k)), where M is the number of pixels in the virtual view D. Buelher et. al

[6] achieve real-time rendering by computing the weight values at only a few points

in the virtual image D and then triangulating all other values.

We implemented a version of Algorithm 7 in MATLAB that performs light field

rendering. In our implementation P is a plane specified by a depth value zo. This

algorithm is presented as Algorithm 8. Select views of two example light fields are

displayed in Figure 4-7 one of an office scene, the other of a group of stuffed animals,

captured using a 8 x 8 camera array [41] (Figure 4-3). Each of these scenes exhibit

complex structures (e.g. the fur of the stuffed animals), surfaces and lighting (e.g.

the illumination of the water containers). These scenes are rendered from novel views

in Figure 4-8 and with different values of z. Note, in our implementation z governs

which objects are in focus. The value of this parameter depends on where the objects

lie in the scene. In Figure 4-8, z was set using trial and error.

As illustrated by Figure 4-8 light fields are able to represent objects with complex

geometry and surface properties across varying 3D pose. In the next chapter we

discuss the light field morphing algorithm of Zhang et. al [42]. We extend this

algorithm to combine multiple light fields to form a light field deformable in Chapter

6.
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Algorithm 8 Light Field Rendering [6]
Let I be the view we wish to render, with projection matrix M,, rotation matrix
RV, translation tv, and intrinsic matrix K,. Also, let N be the number of source
views, each view with project matrix Mi, focal point O and sample image Ii; k
the number of source views used to render I and zo the depth of the focal plane.

Compute O =- -R;'t,.
for all (x,y) E I. do

Project p = (x, y I)T onto the focal plane z= zo:
Compute Q = BackProject(p, Mv, 0, zo).
Compute V = Ov - Q.
for i = 1, ..., M do

Compute P = O - Q
Compute 0, = arccos(V - P).
Compute q = MiQ.
if q is inside the field of view of view i then

Compute texture value ti = Ii(q).
else

ti = NULL
end if
Sort 9, and ti such that 9, is in increasing order and remove NULL texture
values.
Compute threshold angle: Ot = maxi 9,, i = 1. k + 1.
for i =1, ... , k do

Wi O/lO
end for

end for
Compute total weight wt = W

Compute texture value in novel view: IV(x, y) =
"IVt

end for

function Q = BackProject(p, MV, O, zo)
V = MV-p.
P=V - OV.
t= zo-Ov(3)

P(3)
Q=Pt+0O.
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Animal Light Field

Office I 4 ght Field

Figure 4-7: Select views of animal and office light fields.



Novel Animal Views (zo = 9)

Novel Office Views (zo= 40)

zo= 40 zo= 30

Office Scene at Different Depths

PAgure 4-8: Novel views of the animal and office light fields (top). Light fields are able
to represent objects with complex geometry and surface properties across varying 3D
pose. Unstructured lumigraph rendering for different values of zo (bottom). Moving
the focal plane closer brings the computer into focus whereas moving it farther focuses
the clock.
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Chapter 5

Light Field Morphing

Object metamorphosis was discussed in the context of images in Chapter 2. In this

Chapter we extend these concepts to light fields of objects: we discuss the light field

morphing algorithm introduced by Zhang et. al. [42] and show how this algorithm

can be extended to function on light fields of multiple objects.

Compelling object metamorphosis can be synthesized using images of objects, as

illustrated in Chapter 4. It is difficult, however, to apply these methods to objects

that exhibit complex geometry or 3D pose variation. Consider the example objects

of Figures 5-1 and 5-2. In Figure 5-1(a) two inages of an object under different pose

is exhibited. The goal is to synthesize the object under novel poses by interpolating

each source image using image morphing. The half-view obtained by morphing each

source image with equal weight is displayed in Figure 5-1(b). Note the black regions

apparent in the morphed image.

The task of generating novel views of an image using image morphing, known

as view morphing, was first discussed by Seitz and Dyer [33]. In their paper, they

describe the black patches in Figure 5-1(b) as holes in the image caused when a part

of the object is visible in the morphed image but not in one or both of the source

images. A similar phenomena, that they refer to as folds in the image, occurs when

a part of the object disappears in the morphed image but is present in one or both

of the source images. Holes and folds in the morphed image are both caused by

visibility change: when parts of the object appear or disappear as a result of object
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(a) (b)

Figure 5-1: Holes and folds: (a) input views, (b) intermediate morphed view. The
warped and morphed images are displayed. Note the ear of the side view. The ear
folds in the warped side pose and results in a hole in the warped front pose. The hole
is prominent in the morphed view.

pose change.

Visibility change may also occur as a result of object shape change. Figure 5-

2 shows two images of a cow with different articulation taken from [421: its legs are

under a different configuration in each source image. Note performing metamorphosis

between these two images, the cows geometry or shape changes in such a way that

parts of its legs appear and disappear as we transform its articulation from the first to

the second image. The middle image of Figure 5-2 illustrates such a scenario, where

the part of the cow's leg that appears in the morphed image but not in the first source

image is highlighted in green. This would result in a hole in the morphed image.

The holes and folds caused by visibility change can be avoided using 3D morphing

algorithms [4], however, these methods incorporate a 3D mesh making it difficult to

handle objects with complex geometry and surface properties (e.g. a furry animal).

Performing object metamorphosis between objects with complex geometry, surface

properties, and varying pose is possible in 4D using light fields, that model an object's

appearance without the use of scene geometry. A light field morph is computed by

forming ray correspondence between the morphed light field and each source light field.

Holes and folds caused by visibility change are filled using the redundant imagery of

the source light fields using a process called visibility processing.

In [42], Zhang et. al. present a feature-based light field morphing algorithm that
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Figure 5-2: Hole caused by object shape change: the cow's legs are under a different

configuration in each source view. The potential hole is highlighted in green; this

part of the cow's leg appears in the morphed image but not in the first source image.

Figure taken from [42].

performs visibility processing to fill arbitrarily large holes present in a morphed view

of the light field due to visibility change. This algorithm is detailed in Section 5.1.

This algorithm is easily extendible to function on light fields of multiple objects; the

extended algorithm is detailed in Section 5.2. When the objects viewed by each source

light field are aligned with respect to one another, visibility processing is no longer

warranted. The resulting morphing algorithm is also discussed. An interactive light

field warping and morphing system was implemented using C++. This system is

outlined in Section 5.3 and light field morphing examples obtained using this system

are provided in Section 5.4.

5.1 Light Field Morphing Algorithm

Given two light fields LO and L 1, we wish to compute a morphed light field La, where

0 < (- < 1, that smoothly transforms LO into L 1 , each La representing a plausible

object 0 , that preserves the essential features of 00 and 01.

Zhang et. al. address the problem of light field morphing by breaking it down into

two sub-problems: feature specification and visibility processing. The primary focus

of the paper is to deal with arbitrarily large holes generated from visibility change,

using the redundant information of the light field. Namely, a part of the object or

scene not visible in one view of the source light field, may be visible in another view.
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Through feature specification, the user is able to define a rough polygonal model of

the object being viewed. In turn, this model is used to partition the light field into

ray bundles, each ray bundle consisting of a set of rays that intersect a polygon of the

model. When performing the morph, visibility processing is applied to fill the holes

of L, using the defined ray bundles.

In their paper, Zhang et. al. outline three basic feature types used to perform

feature-based light field morphing. The most important of these is the feature poly-

gon, used for visibility processing. The feature polygon is a 3D planar polygon that ap-

proximates a surface patch of a 3D object and by definition contains no self-occlusion.

It consists of {E 1 ,.. E k} control primitives, each control primitive being a 3D fea-

ture line segment, n of which are the edges of the polygon and k supplementary 3D

line segments used for additional control within the polygon are also defined. By defi-

nition, each view of the light field is calibrated and thus the endpoints of each feature

line are obtained by applying stereo. Background edges are 2D line segments used

to control parts of the object where visibility change does not occur. They are also

useful for regions of the object that are hard to approximate using feature polygons,

such as the object's silhouette. Background edges are defined in a few key frames and

then linearly interpolated into other views.

Once specified, the feature polygons are used to define a global visibility map.

The global visibility map of a light field L having {P 1 , ... , Pm} feature polygons is a

mapping V : L -* N from the ray space L to the set of integers N such that,

V(uvst) if the ray L(u, v, s, t) belongs to P (5.1)
-1, otherwise

The global visibility map specifies the views of the light field for which a polygon

Pi is visible. It also partitions the light field into ray bundles, R(P). Namely,

using the global visibility map, each ray of the light field is associated a label i

corresponding to a feature polygon P. The rays not associated to a feature polygon

are referred to as background rays, which are controlled using background edges. Note

that rays may only be associated to a single polygon, since z-buffering is performed

in the computation of the visibility map, which means that rays are not associated
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to occluded feature polygons.

The feature elements and global visibility map are used to geometrically align

each light field LO and L 1 , prior to color blending, to result in La, such that L, does

not contain any holes. As outlined in [42], a light field LO is warped to L' via the

following steps: (a) calculate the feature polygons and background edges of L', (b)

build the global visibility map of L', (c) compute the ray bundles of the warped light

field L'O, and (d) treat background rays.

In the first step, the feature polygons and background edges of L' are obtained

by linearly interpolating the endpoints of each 2D and 3D line segment vo and vi

defined for LO and L 1 respectively, using (2.12). The global visibility map (5.1) is

then computed using the interpolated features. The ray bundles associated with each

feature polygon are then warped view-by-view using a technique defined as ray space

warping in [42].

Given the ray L'(u, v, s, t) in the warped light field, ray space warping defines the

corresponding set of rays {Lo(u', v', s', t')} in the source light field. These rays may

be used to define the color of the warped light field ray. More formally, ray space

warping is defined as follows:

Let L be a light field containing rn feature polygons. Consider an n-sided feature

polygon P taken from this set, having feature lines {El, ... En+k } in the source light

field, and {E", ... , E'n+k} in the warped light field, computed using (2.12). For each

ray in the ray bundle R(P'), the color of that ray is found as.

L'(ut v, s, t) = L(a', t', s', t'), (5.2)

where (u',v ') are free variables in the uv-plane,

(s', t') = f s, t, E' ,,,T ..., En ,,k E(ll .. E' / , (5.3)

f() is the Beier and Neely field warping function (2.11), and E,, is the projection

of feature line E onto view (U', v').

Thus, using (5.2) ray space warping defines a set of possible rays {L(s', ', t')}

from which the color of L'(u, v, s, t) may be assigned. In the case where (u', 'v') equals
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(u, v), ray space warping is equivalent to 2D image warping in each view of the light

field.

Ray space warping is applied to each ray of every ray bundle view-by-view. Con-

sider the view (u, v), and the ray bundle associated with polygon Pi' in the warped

light field L'. The color of each ray L' (u, v, s, t) contained by ray bundle R(Pj') is

found by first computing (s', t') using (5.3), with (u' v') equal (i, v). The global visi-

bility map of Lo is then checked to see whether P is visible at ray Lo(u, v, s' t'). If so,

the color of ray L' (u, v, s, t) in the warped light field is assigned to that of Lo(u, v, 8', t')

in the source light field. If not, it assigned to the ray Lo(u', v', s', t') taken from the

set of rays {Lo(u', v', s', t')} found using ray space warping (5.2), such that the ray

Lo(u', v', s', t') is the "closest ray" to Lo(u, v, s' t') where P is visible. The "closest

ray" is defined as the (u', v') that minimizes the distance jj(u', v') - (u, v)fj. Note that

this ray is guaranteed to exist since the feature polygon was originally specified by

the user as visible in a given view of the source light field Lo.

In the last step of light field warping the background rays of L' are treated with 2D

image warping using the projected feature lines and interpolated background edges

in each view. To complete the morph, L, is computed by linearly interpolated the

colors of the geometrically aligned light fields L' and L' view-by-view using (2.6).

5.1.1 Warping Aligned Objects

When the objects imaged by each source light field are aligned to the same 3D pose

and articulation, visibility change does not occur. Consider the dinosaur images of

Figure 5-3. Clearly the dinosaurs displayed in the figure have a different geometry

and texture. They both have the same pose and articulation, however, and morphing

between them will not cause any visibility change. For aligned objects light field

morphing reduces to 2D image morphing in each view of the source light fields. More

formally, in (5.2) (u', v') may always be assigned to (u, v) and ray space warping is

equivalent to 2D image warping. Note, this simplified algorithm, although restrictive,

decreases computational cost and is still applicable to the construction of deformuable

models where input objects can be aligned a priori. This increases the efficiency of
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Figure 5-3: Aligned dinosaur images: each dinosaur is under the same pose and
articulation. Morphing between them will not generate any visibility change.

the deformable model and is what we employ in the construction of the human head

model of Chapter 7.

5.2 Metamorphosis Between Multiple Objects

The light field morphing algorithm of Section 5.1 is easily extendible to function on

light fields of multiple objects. For multiple objects, the geometry of the morphed

light field is computed by linearly interpolating the 3D point features of each source

light field and its texture is computed by blending the texture of the warped light

fields. Note, that the ray-space warping algorithm of [42] remains un-altered for

multiple objects: the geometry and texture of the morphed object in the case of

multiple objects is defined by more than two light fields. The warping algorithm used

to align each source light field to the target geometry, however, is the same as that

described by Zhang et. al. in [42].

Let Li, i =1, ..., N be a set of object light fields, each with 3D feature points ov.

The geometry of the morphed light field is defined by,

-0 wov<, (5.4)

where E wj = 1 , and ' are the vertices of the jth 3D feature line defined with

respect to the ith light field. Each source light field, Li, is aligned to the geometry of

the morphed light field using the ray-space warping algorithm of Section 5.1:

iL' = Li o f ('VJ, , (5.5)
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where f(vi, v-) is the ray-space warping function (5.3). Finally, the morphed light

field is computed by blending the texture of the warped light fields L' using the

interpolation weights wi:

L = wiL'. (5.6)

Relationship (5.4) defines a weighted warp in which the objects of each light field

are geometrically aligned to favor the characteristics of the objects having larger

weights. The weights are normalized to have sum equal to one such that Ej is a

valid interpolation between the corresponding set of feature lines Ej. An alternative

interpretation of (5.4) is that the light fields Lj form a basis for the space of light

fields that image a particular object class. The projection of a light field from this

space onto the basis set Lj is found as the weights wj. The object viewed in the

projected light field may be approximated via the morphing operation defined by

the interpolated features (5.4). In Chapter 6 we utilize light field morphing between

multiple objects to define a light field deformable model that models the appearance of

an object class, exhibiting complex geometry and surface properties, across multiple

poses.

5.3 System Overview

A light field morphing system was developed in C++ using QT [35] and MKL [21].

The system was designed to interactively view and morph light fields. The user is able

to read a light field that is stored as an array of images. The calibration parameters of

each view of the light field is also read from a file. The system is illustrated in Figure

5-4. The system implements the light field morphing algorithm on aligned objects

discussed in Section 5.1.1. To compute the morphed light field, the user specifies a

set of 3D line features that are projected into each view of the source light fields and

Beier and Neely image morphing is applied.

A user may view a light field using a viewer window, displayed in Figure 5-4(a).

Using this widget the user is able to traverse the various views of the light field. To

morph a set of light fields the user begins by specifying features in a correspondence
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builder window, shown in Figure 5-4(b), which allows the user to specify a set of 3D

feature lines between two light fields. This widget consists of four sub-windows, each

top and bottom pair used to display different views of the same light field. The user

proceeds to specify features by first clicking the endpoints of the 3D feature line in one

view of the light field. The epipolar line for each endpoint is displayed sequentially

in the neighboring view to guide the user in specifying the corresponding endpoints

as illustrated in Figure 5-4(c). Once completed, stereo is performed to compute the

3D endpoints of the directed feature line, which is then projected into each view for

display by the user. The user then repeats this procedure for the corresponding 3D

feature line in the other light field. The ability to mark features as not visible in a

particular view is also provided.

After feature specification, the user is able morph the set of light fields in a

niorphing window, Figure 5-4(d). From this window the user loads a light field pair

and a set of features saved from the correspondence builder, specifies the morphing

parameters, and performs the light field morph. The interpolated and original 3D

features are also interactively displayed atop of the morphed and source light fields

respectively if so desired by the user.

The last component of the light field morphing system is a blending window,

Figure 5-4(e), used to morph between a set of light fields. To do so, the user loads a

set of n light fields and n sets of features, one for each light field, and specifies a set

of weights as in (5.4). The morph is then performed and displayed to the user. As in

the morphing window, the interpolated features may be overlaid if so desired.

5.4 Examples

An array [41], displayed in Figure 5-5, was used to capture a set of aligned face light

fields. This was done by placing each subject in front of the light field at fixed location

and position. Although the process was not exact, for example there are differences

in scaling and translation, and slight differences in rotation between each subject, the

main concern is that each subject is aligned such that similar parts of their face are
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(a)

(d)

(b)

:j

(c)(e)

Figure 5-4: Light field morphing system: (a) light field viewer window, (b) correspon-

dence builder window, (c) feature specification guided using epipolar line (in yellow),
(d) morphing window with interpolated features overlaid, and (e) blending window

with interpolated features overlaid.
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Figure 5-5: Light field camera array [41].

visible in corresponding views, i.e. there is no visibility change between them. The

differences in scaling, rotation and translation are accounted for by the geometric

alignment step of the morphing operation.

Select views taken from 8 x 8 light fields of two subjects are displayed in Figure

5-6. The morphed light field computed using a = 1.0, b = 2.0, p = 0.1, and t = 0.5 is

displayed for these views in Figure 5-7. The interpolated features overlaid onto the

morphed light field are also displayed in the figure. Although various values of a, b,

and p are applicable, these values gave the most aesthetically pleasing results. The

features for each light field were specified using the center views of the 3 x 3 light field

displayed in the figure. Unfortunately, due to camera calibration error the features

do not project well into the outer views of the 3 x 3 light field, thus the faces are in-

correctly aligned resulting in a poor morph about these views. Nonetheless, focusing

on the inner views of Figure 5-7, where correct camera calibration is provided, one

finds that the morph performed quite well.

The morphed light field gives the effect of having different views of the same

person, this person preserving the important characteristics of each subject. More

specifically, the 3D line features defined a consistent deformation field across views

resulting in a convincing 3D morph. A morph across time between the two subjects of

Figure 5-6 is displayed in Figure 5-8 using a 2 x 2 light field of each subject. A smooth
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First Light Field Second Light Field

Figure 5-6: 3 x 3 light fields of two subjects.

transition between each person is defined that is uniform across different views of the

light field. Independent morphs between the two subjects of Figure 5-6, and three

other subjects displayed in Figure 5-9 are displayed in Figure 5-10. As seen from the

figure, each morph conveys a realistic 3D morph.

A morph between multiple light fields is provided in Figure 5-11, where the average

face is computed between subsets of the subjects from Figure 5-9. The average

face between the first three subjects shares each of their characteristics, which are

strikingly present in the morphed light field. As the number of subjects used to

compute the average face is increased these characteristics become less dominant and

the average face more neutral. One is also able to vary the weights to generate a

person that has a stronger resemblance to the subject associated with the largest

weight, as is done in Figure 5-12. In Chapter 6 we apply light field morphing between

multiple objects to define a light field deformable model, that models the appearance

of complex objects under varying 3D pose. We demonstrate such a model in Chapter

7, where we construct a 4D deformable model of the human head.
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Morphed Light Field Interpolated Line Features

Figure 5-7: Morph between the two subjects of Figure 13 with and without inter-
polated feature lines overlaid. Parameters used are a = 1.0, b = 2.0, p = 0.1, and
t = 0.5.
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0t=O.2

t = 0.4

t = 0.8

t=0.6

t =1

Figure 5-8: A morph between subjects 1 and 2 across time,
p = 0.1.

with a = 1.0, b = 2.0,
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First Subject

Third Subject

Second Subject

Fourth Subject

Fifth Subject

(a)

First Subject Second Subject Third Subject Fourth Subject Fifth Subject

(b)

Figure 5-9: 2 x 2 light fields of five different subjects (a) and the projected feature
lines seen from a single view (b). 91
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Morph Between Subjects 1 and 3

Morph Between Subjects 2 and 4

Morph Bewteen Subjects 3 and 4

Morph Between Subjects 1 and 5

Morph Between Subjects 2 and 5

Morph Between Subjects 4 and 5

Figure 5-10: Various light field morphs between the subjects of Figure 5-9, with
a = 1.0, b = 2 .0, p = 0.1.
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n=3 n=4

i

n = 5

Figure 5-11: Average face (w = 1/n) between subjects one through three (n = 3),
subjects one through four (n = 4), and all five subjects (n = 5). Morphing parameters
are a = 1.0, b = 2.0, p = 0.1. As the number of light fields used to compute the average
face increase, the dominant features contributed by each subject fade and the average
face becomes more neutral.
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First Subject

Third Subject

Second Subject

Fourth Subject

Fifth Su bject
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Figure 5-12: Weighted morph between all five subjects. In each morph, one subject
is assigned a weight 0.6 and the others 0.1. In each experiment, the largest weight
was assigned to the first subject, the second subject, the third subject, the fourth

subject, and the fifth subject. The resulting morphs strongly resemble the subject

assigned the largest weight. Morphing parameters are a = 1.0, b = 2.0, p = 0.1.
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Chapter 6

4D Shape and Texture Appearance

Manifolds

Two-dimensional deformable models represent the appearance of an object class using

a bilinear appearance manifold defined over object shape and texture; each point on

this manifold maps to an image belonging to the object class. Extending these models

to capture 3D pose variation introduces non-linearities in the appearance manifold.

As illustrated by Figure 1-2, pose variation is correlated with non-linear differences

in appearance - different parts of the object are visible depending on its pose. As a

result, the manifold is no longer convex and thus linear combinations of points on the

manifold may lead to invalid images. Clearly the linear models of Chapter 3 cannot

model full 3D pose variation.

Many extensions to 2D deformable models have been introduced that handle 3D

pose variation. Romdhani et. al. [31] use kernel-PCA to model the non-linear shape

manifold. With this method, a kernel is applied to the points of the manifold to

project them into a high dimensional space where the manifold varies linearly. A

generative model of object shape is conputed by applying PCA on the high dimen-

sional, linear manifold. Although effective, this method is complex to optimize.

An alternative approach is to model the manifold using a piecewise linear model, as

was done by Taylor et. al. [9]. With their approach local-linear models of appearance

are manually fit to the different portions of the manifold. A linear regression is then
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applied to link model parameters across views. When fitting this model, the input

image is fit to each local-linear model and the best model fit is retained. The model

parameters of the selected model can then be mapped to other local-linear models to

synthesize the object under a different pose.

The piecewise linear model of [9] is able to faithfully represent object appear-

ance across 3D pose in 2D. Since these models blend several poses at a given local

linear model, however, they have difficulty representing objects that exhibit a non-

Lambertian surface reflectance or have a high degree of self-occlusion between poses

(e.g. the cow example of Chapter 5). Many local-linear nodels must be defined to be

able to faithfully model the appearance of such object classes, rendering the piecewise

linear model in-efficient.

In this chapter we discuss how to build an appearance model that represents

object appearance in four-dimensions using light fields. With our model, each point

on the bilinear shape and texture appearance manifold maps to a light field of an

object (Figure 1-3). Pose is kept as an external parameter to the model and the

resulting appearance manifold is well approximated using a linear model. Light fields

are purely image-based and do not use any scene geometry to model the appearance

of an object. Unlike the view-based 2D models of [9] and the 3D models of [4], our

model easily represents object classes with complex surfaces and geometry.

In the following sections we define the concepts of shape and texture in the context

of light fields and show how to build a generative model of appearance over these

vector spaces. Light field shape can be defined using either 3D or 2D point features.

Alternatively, light field shape can be defined using a 4D deformation field that places

each ray of the light field in correspondence with the model reference light field, that is

automatically computed using optical flow techniques [26]. The texture of each light

field is computed by warping each prototype light field to the niodel reference shape.

PCA is then applied to each vector space to build a generative model of appearance.

To match the model, we extend the direct search algorithm of [8] to function over

the space of light fields. We also develop an algorithm analogous to Beymer et. al

[3] when building the model using optical flow based shape features. Using either
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algorithm, we show how to match a light field or 2D image of an object to a point

on the manifold. When matching to an image, we automatically estimate its pose by

searching over the views of the model light field. In turn, the model fit can be used

to synthesize the object under unseen views.

In Section 6.1 we provide formal definitions of light field shape and texture in the

context of both geometric and optical flow based shape features. We then describe

the light field appearance manifold in Section 6.2. We discuss model matching using

optical flow in Section 6.3 and present a direct search matching algorithm in Section

6.4. Finally, in Section 6.5 we outline an automatic pose estimation algorithm, used

by the matching algorithms of Section 6.3 and Section 6.4 to match the manifold to

images having unknown pose.

6.1 Light Field Shape and Texture

In this section we provide a formal description of the shape and texture of a set of light

field prototypes that define the appearance manifold of an object class. Let L(u, v, s, t)

be a light field consisting of a set of sample views of the scene, parameterized by view

indices (?i v) and scene radiance indices (s, t), and let L 1 , L,, be a set of prototype

light fields with shape X',..., X,.

In general, for any image-based rendering technique, X is a set of 3D feature

points which outline the shape of the imaged object. With a light field, no 3D shape

information is needed to render a novel view of the object. It is therefore sufficient to

represent the shape of each light field as the set of 2D feature points, which are the

projections of the 3D features into each view. More formally, we define the shape, X,

of a light field L as

X = {''o) (a, a) - L} (6.1)

where x(,) is the shape in a view (u, v) of L. If the camera array is strongly calibrated

its sufficient to find correspondences in two views and re-project to the remaining

views. With only weak calibration and the assumption of a densely sampled array,

feature points may be specified in select views of the light field and tracked into all
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other views. Note the shape representation (6.1) assumes that objects are aligned to

have the same approximate 3D pose as discussed in Chapter 5. Since the prototype

objects can easily be aligned to the same pose during light field acquisition, this

assumption is reasonable.

Once shape is defined for each prototype light field, to increase model efficiency

Procrustes analysis [18] is performed to place the shape of each object into a common

coordinate frame. Effectively, Procrustes analysis applies a rigid body transformation

to the shape of each light field such that each object is aligned to the same exact 3D

pose. The normalized shapes Xi are obtained by applying Algorithm 4 of Chapter 3

to the input shapes. Note this algorithm is unchanged for light field shape defined

using Equation 6.1. From the set of normalized shapes X, of each prototype, the

reference shape Xef is computed as

X,5f = Ma (6.2)

where X is the mean aligned shape and Ma is a matrix which scales and translates

the mean shape such that it is expressed in pixel coordinates (i.e. with respect to the

height and width of the discrete view of the light field). The matrix M, constrains

the shape in each view of the reference light field to be within the height and width

of the view.

As in [3], the texture of a prototype light field is its "shape free" equivalent. It is

found by warping each light field to the reference shape Xrf. As will be shown in the

next section, this allows for the definition of a texture vector space that is decoupled

from shape variation. Specifically, the texture of a light field L is defined as

G'(v, v, s, t) = L(D(u, v, s, t)) = L o D(u, v, s, t) (6.3)

where D is the mapping,

D : R4 -+R4 (6.4)

that specifies for each ray in L,,f a corresponding ray in the prototype light field L

and is computed using the shape of L and Xej. Note Equation (6.3) implements the

light field warping operation discussed in Chapter 5. As in the 2D deformable models
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of Chapter 3, the texture of each prototype, G , is normalized to be under the same

global illumination using Algorithm 5. This results in normalized light field texture

vectors Gi.

6.1.1 Automatic Shape Acquisition: Optical Flow

Equation (6.3) suggests an alternative, equivalent definition of light field shape given

by,

Xi = Di(u, vS t), (6.5)

where Di is defined by the mapping (6.4) and specifies for each ray in the reference

light field Lef a corresponding ray in the prototype light field L.

Similar to [24], the shape defined by Equation (6.5) can be automatically acquired

using optical flow. As with the shape point features of Equation (6.1), shape defined

using optical flow also assumes that objects are aligned to have the same approximate

3D pose. This is a reasonable assumption since the prototype light fields can easily

be aligned during the acquisition process.

The shape Xi of each prototype light field, defined using Equation (6.5), is comn-

puted by applying optical flow between the views of each prototype light field and

that of the reference light field. As in the MMMs of Chapter 3 the reference object is

chosen to be the average object, since by definition its difference in shape and texture

is minimal between each of the light field prototypes and therefore it is the preferred

reference light field. Using optical flow, the average light field is computed via the

bootstrapping algorithm outlined in [37], presented as Algorithm 3 in Chapter 3. This

algorithm placed in the context of light fields is presented below as Algorithm 9. For

efficiency we applied the algorithm independently to each view of the prototype set.

Using definition (6.5), light field texture is computed as,

Gi(u, v, s, t) = L o Xi((u, v, s, t). (6.6)

We will use the above definitions of light field shape and texture to define the light

field appearance manifold of the following section.
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Algorithm 9 Compute Average Light Field

Let L 1, ... , L, be a set of prototype light fields.

Select an arbitrary light field Li as the reference light field Lej

repeat
for all Li do

Compute correspondence fields Xi between Lef and Li using optical flow.

Backwards warp each view of Li onto Lef using Xi.

end for
Compute the average over all Xi and Gi.

Forward warp each view of Taverage using Xaverage to create Laverage.

Convergence test: is Laverage - Lef < limilt ?

Copy Laverage to Lref

until convergence

6.2 Light Field Appearance Manifolds

As illustrated in the previous section, once a reference is defined, each prototype light

field may be described in terms of its shape and texture. The linear combination of

texture and shape form an appearance manifold: given a set of light fields of the same

object class, the linear combination of their texture warped by a linear combination

of their shape describes a new object whose shape and texture are spanned by that

of the prototype light fields. Compact and efficient linear models of shape and tex-

ture variation may be obtained using PCA, as shown in [8], [24]. Given the set of

prototype light fields L 1 ,..., L, each having shape Xi and texture G, PCA is applied

independently to the shape and texture vectors to give

X =X + Psbs 67(6.7)

G =0 + Pgbg

Using Equation (6.7), the shape and texture of each model light field is described

by its corresponding shape and texture parameters b, and bg. As there may exist a

correlation between texture and shape, a more compact model of shape and texture

variation is obtained by performing PCA on the concatenated shape and texture

parameter vectors of each prototype light field. This results in a combined texture-
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shape PCA space:

X =X+Q~c 
(6.8)

G = + Qc

where as in [8],

(6.9)

Q = PYP Cg

and W, is a matrix which comensurates the variation in shape and texture when

performing the combined texture-shape PCA. In our experiments we use W, = rI

where r = u2 /( 2 Here o and o represent the total variance of the normalized

shape and texture vectors.

Equation (6.8) maps each model light field to a vector c in the combined texture-

shape PCA space. To generalize the model to allow for arbitrary 3D pose and global

illumination, Equation (6.8) may be re-defined as follows,

X, = St (X + QC) (6.10)

Gm T(O + Qgc)

where St is a function that applies a rigid body transformation to the model shape

according to a pose parameter vector t, T. is a function which scales and shifts the

model texture using an illumination parameter vector u, and the parameter vectors

t and u are as defined in Chapter 3. Note, the reference light field has parameters

c = 0, t = a and u = 0, where a is a pose vector that is equivalent to the matrix M,,

in Equation (6.2).

The light field appearance manifold is defined as,

LTmodel GM, o Dn (6.11)

where Lmodel is a model light field that maps to a point on the appearance manifold

and D,, is a 4D deformation field which maps each ray in the model light field to a

ray in the reference light field. Using feature-point based shape D,, is computed using

the shape of the model light field, X,, and the reference light field, Xef. When X,,

is defined using optical flow based shape we set D, = X.,,, and we re-define Equation

(6.11) as

L.nodet =GI, 0 Xn (6.12)
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where f denotes the forward warping operation.

The light field appearance manifold (6.11) is defined over the combined shape and

texture PCA space of Equation (6.8). This results in a more compact representation

of the manifold as any correlation between shape and texture is captured in the

combined space. Note, however, that this manifold can also be defined over the

independent shape and texture PCA spaces defined by Equation (6.7).

In the remaining sections we describe two model matching algorithms. We begin

by describing an optical flow based model matching algorithm similar to Beymer et.

al. [3] that optimizes the model over independent shape and texture spaces. We then

present a direct search algorithm in Section 6.4 that optimizes the model over the

combined shape-texture space and in Section 6.5 show how the light field appearance

manifold can be automatically optimized over images with unknown pose using either

matching algorithm.

6.3 Optical Flow Based Model Matching

In this section we present an optical flow based model matching algorithm that is

similar to the algorithm of Beymer et. al [3]. With our algorithm, we match a light

field or 2D image of an object by first computing the objects shape using optical flow

and then match the model by solving the linear system (6.7) of the previous section.

We present this algorithm in the context of matching a light field in Section 6.3.1 and

then define it for matching an image in Section 6.3.2.

We found our flow-based matching algorithm to be robust and reasonably fast

to demonstrate light-field manifold reconstruction. In the next section we present a

direct search matching algorithm, similar to [8], that optimizes a model defined using

feature-based shape vectors of Equation (6.1) and display results using both matching

algorithms in Chapter 7.
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6.3.1 Matching to a Light Field

Let Xi and Gi define the shape and the texture of a light field deformable model,

specified by prototypes Li, for i 1.,. We match a light field to a point on the

manifold by minimizing the non-linear objective function:

E(b, bg) = ILnovel - L-miodell 2. (6.13)

This objective function synthesizes the model light field, Lmodel, defined by parameters

b, and bg using Equation 6.11 and then compares it to the input light field Ljovel.

We minimize the above error function by computing optical flow between each view

of Love, and L.,,,& to give shape Xnovei. We then match LOer to a point on the

bilinear shape and texture appearance manifold defined by Equation (6.12) by solving

the linear system,

XnOvel = X + Pab,
X fl O ~ l + P b .,(6 .1 4 )

Gnove = 0 + Pgbg

The above system is solved using linear least squares. We display example light field

matches using the above algorithm in the next chapter.

6.3.2 Matching to an Image

A 2D image is matched to a point on the light field manifold by minimizing the

non-linear objective function:

E(bs, bg, c) - - F (Linodel, E)2, (6.15)

where Lmnodel is as specified in Equation 6.11 and F is a function that renders pose E

of the model light field [25, 6].

The objective function in Equation 6.15 compares the novel 2D image to the

corresponding view in Lmjodel in a common coordinate frame. Given the weight vectors

b, and bg, a model light field is synthesized and the estimated pose E is used to render

the view corresponding to that of the novel 2D image.

We match a novel image to a point on the light field appearance manifold defined

by Equation 6.12, by first estimating the object's pose using the algorithm outlined
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in Section 6.5 and then solving a bilinear system in shape and texture constructed

using optical flow. More specifically, given a novel 2D image and an estimate of its

pose, c, optical flow is computed between the novel image and the average light field

rendered at pose resulting in xovel, the shape of the novel image. Its texture gnove

is found by warping the novel image into the coordinate system of the reference via

the deformation field defined by xnovel. Using the computed shape and texture we

then find b, and bg by solving

xrtovei = F(X, l) + F(P8 , )bs (6.16)

gnovez = F(G, ) + F(Pq, )bg

where F is the light field rendering function [25, 6] applied to the mean light field

shape and texture vectors, and to the individual columns of Pg and P, to render

them at pose E. Similar to Equation (6.14), we solve the above system using linear

least squares.

6.4 Model Matching via Direct Search

In this section, we show how to generalize the matching technique of [8] to light fields.

We first illustrate how to match a light field and then discuss the more interesting

task of fitting a model light field to a single 2D image.

6.4.1 Matching to a Light Field

A novel light field, L 8, is matched to a point E on the texture-shape appearance

manifold by minimizing the following non-linear objective function:

E(p) = JGm - Gs 12 (6.17)

where pT = (cT tTUT ) are the parameters of the model, G,, is the model texture

and G, is the nornialized texture of L. assuming it has shape X,,. G. is computed

by warping L, from X,, to the reference shape Xef. The model shape and texture

are computed at p using Equation (6.10).
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The direct search gradient descent algorithm of [8] is easily extendible to a light

field deformable model. In [8] a linear relationship for the change in image intensity

with respect to the change in model parameters was derived via a first order Taylor

expansion of the residual function r(p) = Gm - G, = 6g. In particular, given a point

p on the manifold, the parameter gradient that minimizes the objective function

(6.17) was computed as, 6p = -Rg, where the matrix R is the pseudo-inverse of

the Jacobian, J = ,derived from the Taylor expansion of the residual function.ap,

In a 2D deformable model the columns of the Jacobian are intensity gradient

images which model how image intensity changes with respect to each model pa-

rameter. Analogously, the Jacobian of a light field deformable model represents the

change in light field intensity with respect to the change in model parameters, each

of its colunms representing light field intensity gradients that describe the intensity

change across all the views of a light field. Consequently, the algorithm for minimizing

Equation (6.17) follows directly from [8]. As in a 2D AAM, the Jacobian is learned

via numerical differentiation.

6.4.2 Matching to an Image

A more interesting extension of the AAM framework arises when performing direct

search to match a light field deformable model to a single 2D image; with a light field

the Jacobian matrix is rendered based on pose. A novel image I is matched to a

point on the light field appearance manifold by minimizing the objective,

E(p, e) = IF(Gm, C) - Y,|2 (6.18)

where c is the camera pose of I, F is a function that renders the pose c of the model

texture [25, 6] and g, is the texture of 1, assuming it has shape xm. g is computed

by warping I, from .m to the reference shape xreJ. Both 2D shapes are obtained by

rendering Xm, and X,,f into view c using,

x = Fx(X, c) (6.19)

where F, is a variant of the light field rendering function F: it renders shape in view

6 via a linear interpolation of the 2D shape features defined in each view of X.
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Overall, the objective function in Equation (6.18) compares the novel 2D image

to the corresponding view in Lmod i. Minimizing this objective function fits a model

light field, Lmodel, that best approximates I in view E. An efficient way to optimize

Equation (6.18) is by defining a two step iteration process, in which the pose c is

optimized independently of the model parameters p. We estimate E using the pose

estimation algorithm of Section 6.5. The pose parameter t can be used to further

refine this pose estimate during matching.

Once E is approximated, direct search may be employed to match I to a point

on the texture-shape appearance manifold. As previously discussed, each column of

the Jacobian, J of a light field deformable model is a light field intensity gradient.

To approximate the intensity gradient in view E of the target image I, light field

rendering is applied to each column of J. This yields a "rendered" Jacobian matrix,

J., specified as,

J = F(J, ) i = 1, ... , m (6.20)

where J' represents column i of the matrix J and rn is the number of columns in J.

Note similar to the model and image textures of Equation (6.17) the columns of JE

have shape xrf defined above.

Using J,, we optimize Equation (6.18) using a modified version of the direct search

algorithm of Cootes et. al. [8]. The modified algorithm is presented as Algorithm 10.

Comparing this algorithm with Algorithm 6 of Chapter 3, an important difference

is in the application of the pose parameter vector t. Contrary to what is suggested

by Equation (6.10), the global affine warp St is applied to the rendered model image

and not to the model light field (step 3 of the Residual function in Algorithm 10).

This is because rotating, scaling, and/or translating the images of Lrnogde according

to St may violate the light field construction when matching to an image. To see

this, consider manipulating a single-slab light field. Applying St to this light field

effectively rotates or displaces the focal plane (st-plane) of the light slab (note, scaling

the images correlates to widening the gap between the camera and focal planes of the

light slab). Clearly, moving the focal plane of the light field will alter where the scene

rays will intersect it. If the imaged object is planar then the scene rays will follow

106



horizontal vertical
scale rotation displacement displacement

Figure 6-1: Select views of the four columns of the model Jacobian that correspond
to scale, rotation, and horizontal and vertical translation of the light field focal plane.

Such displacements, although correct for a light field input, are not appropriate when

matching an image. Note the large displacements in the extreme views of the light
field intensity gradients corresponding to scale and rotation.

the motion of the focal plane. For non-planar objects this is not necessarily the case,

however.

By applying the affine warp on the rendered model image the model light field

remains in the coordinate frame of the reference light field, while still affording the

model affine flexibility in the coordinate frame of the input image. Another benefit

of the above matching algorithm is that it avoids the need to optimize over z, the

depth of the focal plane of the unstructured lumigraph, during matching. The scaling

performed by St when applied to the model light field effectively changes this value

and thus z would need to be optimized over as well when performing the match. By

keeping the model light field in the coordinate frame of the reference light field, this

need is eliminated and we let z = zo, the depth of the average light field.

Note, when fitting the model to an object light field, we can safely apply St to

the images of the model light field as is done in the optimization algorithm of Section

6.4.1. This is because the set of allowable affine transformations is constrained by

the 3D pose of the input light field. Matching an image is more ambiguous, and can

result in transformations St that when applied to the images of the light field violate

its construction.
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Algorithm 10 Direct Search Algorithm for Matching an Image

Let I, be an input image with estimated pose e, Xm,, m the model shape and

texture vectors of the light field appearance manifold, and J the model Jacobian.

Compute JE using Equation (6.20).
Set p = po
Evaluate 6g = Residual(I5 , p, c)
repeat

Compute error Eo = 16g 2

Evaluate 6p = -Rag
Update parameters, pi = p + 6p
Evaluate 6g = Residual(I, pi, c)
Compute error at new p value: E =6gl2

if E - Eol > 0 then
Set i = 0, k = 1.5
while E - Fol > 0, i < n do

Set pi = p + k6p
Set i =i + 1
Evaluate 6g = Residual(I,pt,c)

Compute error E Ig
if k > 1 then

Set k = 0.5
else

Set k = k/2
end if

end while
end if
if jE - Eol < 0 then

Set p = pi
end if

until IE - Eol > 0

function 6g = Rcsidual(I,, p, e)

Xref = F(Xef, c)
X.3 Fx(Xm(bs, to)E)
x.5= St(x')
g, = Whiten(I, o W(x , Xref))

gM= Whiten(F(Gm.(bg),e))
6g gi - g8

function g, = Whiten(g)

,, = g - mcan(g)
g, = gw/var(gw)
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6.4.3 Jacobian Computation for Matching an Image

As discussed in the previous section, when matching to an image the pose parameter

vector t affects the 2D pose of the rendered model image not the model light field.

Naturally, this alters the Jacobian used to fit the model to images. Figure 6-1 displays

the four columns of a Jacobian, computed for the face data of the next chapter, that

correspond to the scaling, rotation, and horizontal and vertical translation parameters

represented by t. As discussed in Section 6.4 and displayed in the figure, each column

of the Jacobian is a light field representing the change in scene intensity with respect

to a given model parameter.

The pose columns of the Jacobian of Figure 6-1 are computed by globally applying

S, to the images of the model light field. Each column illustrates a global rotation,

scaling or shifting about the object's center. Note the large displacements in the

corner images of the columns corresponding to rotation and scaling. Although, this

Jacobian is correct in the context of the light field matching algorithm of Section

6.4.1, it does not apply when fitting the model to images: the affine warping defined

by the pose parameter t is applied locally, centered about the pose of the input image

in Algorithm 10.

We desire the rendered Jacobian J, to encode an affine warping local to the pose

of the input image. To accomplish this we rotate, scale, and translate each view

of the model light field independently in the computation of the model Jacobian.

This results in the model Jacobian displayed in Figure 6-2, also computed using the

face model data of Chapter 7. Note that the columns of this Jacobian display an

affine warping local to each image of the model light field. Figure 6-3 displays the

corresponding four columns of the Jacobian matrix J, rendered at an arbitrary pose

of the model light field. As desired, the difference images of the rendered Jacobian

specify an affine transform that is centered about the input pose e.
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Figure 6-2: Model Jacobian used for optimizing the model over a 2D image. Select

views of its four columns corresponding to scale, rotation, and horizontal and vertical

translation are displayed.

6.5 Automatic Pose Estimation Algorithm

In this section we present an automatic pose estimation algorithm that estimates the

pose of an input image by performing stochastic gradient decent over the views of the

model light field. This algorithm is used by the optical flow based and feature-based

matching algorithms presented above.

Our pose estimation algorithm is summarized as Algorithm 11. Provided an input

image I, we obtain an initial estimate of the object's pose, EO, by performing cross-

correlation between the image and each view of the average light field. We then

match the image to this view and each of its eight-connected neighbors. We move to

the neighbor with smallest fit error and iterate until the central view has the smallest

fitting error of its neighbors. To avoid local minima we randomly perturb the fit upon

convergence. Final convergence is declared when the algorithm converges to the same

discrete pose twice.

Note, when matching to discrete views of the model light field, light field rendering

is not required. Instead, the model shape and texture vectors, as well as the Jacobian

of Section 6.4, are directly sampled at the current discrete pose. Since the pose

estimation algorithm matches to potentially many views of the light field, this leads

to a great increase in efficiency.

Once convergence is declared at a discrete pose of the model light field, we estimate

the object's pose, E, by fitting a quadratic to the fit error of the eight-connected
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Figure 6-3: Model Jacobian rendered at an arbitrary pose. The rendered Jacobian
portrays the desired affine transform centered about the rendered pose.

neighborhood centered about the computed discrete pose. The pose, 6, is set to the

minimum of the fit quadratic. Note higher-order polynomials could have been used to

interpolate the pose. We use a quadratic for simplicity and justify it using empirical

evidence in the following chapter.
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Algorithm 11 Pose Estimation Algorithm

I, is an input image for which we wish to estimate its pose. C(e) is a lookup table

that stores for each discrete pose the number of times the algorithm converged to

that pose. Fit( is a function that fits I to the manifold LI7 0odel at pose E and

returns the fitting error.

Initialize C = 0

Compute initial pose estimate 60:

for all ci e Lref do
Compute normalized cross-correlation E (e) = N(Lef (ei) I,)

end for
Set EO = argmin E(ce)

Perform stochastic gradient descent starting from 60:

Set e = co
repeat

repeat
Fit model at pose co e: E(co) = Fit(LnoeT, I, e)

for i1. 8 do
Set ci = CO + neighbor(i)
Fit model at neighbor i: E(ej) = Fit(Lode, Is, ei)

end for
Set e = argmin E(ec)

until e = eo
Update lookup table: C(co) = C(Eo) + 1

Randomly perturb pose from e to give e = ep.

until C(co) = 2

Interpolate pose about co:

Fit quadratic to error of 8-connected neighborhood: Q = FitQuadratic(E)

Compute final pose estimate e = ComputeMin(Q)
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Chapter 7

Experiments and Results

In the previous chapter we presented a defornable model defined over a 4D ap-

pearance manifold using light fields. We placed this model in the context of both

feature-point and optical flow based shape vectors and explained how to match such

models to a light field or 2D image of an object with unknown pose. Unlike the

2D deformable models of Chapter 3, light field deformable models can easily handle

object pose variation. In contrast to existing 3D and view-based approaches, they

can also model objects exhibiting a complex surface reflectance and/or geometry.

In this chapter we support these claims with experiments. We begin by outlining

our experimental setup in Section 7.1. In this section we discuss the capture apparatus

we used to collect our data, along with the specifics of our data set and the parameters

of our models. In Section 7.2 we compare our approach to the view-based AAM [9]

and demonstrate how our model is able to capture the view-dependent texturing of

a subject's glasses. We then demonstrate fitting both a feature-based and optical

flow based head model to light fields and 2D images of subjects outside of the model

database in Sections 7.3 and 7.4. In these sections we show how we can match

our model to 2D images of an object with unknown pose and extract a full 4D

representation of the object containing unseen views of the object. We also justify

the use of a quadratic fit in our pose estimation algorithm using empirical evidence.

Finally, in Section 7.5 we outline our implementation and provide timing results for

our algorithms.
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7.1 Experimental Setup

We built a light field deformable model of the human head by capturing light fields

of 50 subjects using a real-time light field camera array [41]. We collected 48 views (6

x 8) of each individual and manually segmented the head from each light field. Our

head database consists of 37 males and 13 females of various races (see Figure 7-1). Of

these people, 7 are bearded and 17 are wearing glasses. To minimize the effects of color

calibration error we built our models in grayscale. An example light field is displayed

in Figure 7-2. The images in each view of the prototype light fields have resolution

320 x 240. Within each image, the head spans a region of approximately 80 x 120

pixels. The field of view captured by the camera array is approximately 25 degrees

horizontally and 20 degrees vertically. To perform feature tracking, as described in

Chapter 6, we used a multi-resolution Lukas-Kanade optical flow algorithm [26], with

4 pyramid levels and Laplacian smoothing 1. We also use this algorithm to construct

the shape vectors of the optical flow based model.

When matching our model to an image we assume that object location is approxi-

mately known. In the case of a head model, such information can be readily obtained

from a face detector [23]. In our experiments we manually specify the object location

in each input image. When fitting the model with optical flow we found the above

flow algorithm to be sensitive to scene clutter. Thus in this situation we also provide

an image mask that segments the region of interest. We discuss this assumption in the

following chapter. Note, no such mask is provided when optimizing the feature-based

model of Chapter 6 as the direct search algorithm does not share the same sensitivity

to scene clutter.

To perform light field rendering we use the unstructured lumigraph algorithm

described in [6]. As mentioned in Chapter 4 this algorithm has two parameters: k for

the number of source views used to render a scene and zo the approximate depth of

the focal plane of the light field. In our experiments we used a value of k = 3 when

optimizing the feature based model and k= 1 for the optical flow based model. As

1We acknowledge Tony Ezzat for the Lukas-Kanade optical flow implementation.
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Variables Perturbations
X., y ±5% and ±10% of the height and width of the reference shape

0 ±2.5, ±5 degrees
scale ±2.5%, ±5%
Cl-k ±0.25, ±0.5 standard deviations

Table 7.1: Perturbation scheme used in both the view-based and light field AAMs.

discussed in Chapter 6 the model light fields are kept in the coordinate frame of the

reference light field upon matching, thus we need only note the approximate depth of

the reference light field to optimize the model. In our experiments we found values

of 11 < zo < 12 to work well for the approximate depth of the reference light field

of both the optical flow and feature based models. Note that k = 1 views are used

when rendering the model light field of the optical flow based model. This is because

the reference light field of this model is slightly misaligned as a result of applying

Algorithm 9 on each view separately, which we have done for efficiency. We have

found using this value to work well in our experiments, however, this situation can be

remedied by applying Algorithm 9 globally as suggested by the algorithm description.

For comparison, we built a view-based AAM using the views of the light field

camera array [9]. In both the definition of the view-based and light field deformable

models the parameter perturbations displayed in Table 7.1 were used to numerically

compute the Jacobian matrix. To avoid over-fitting to noise, texture-shape PCA

vectors having low variance were discarded from each model, the remaining PCA

vectors modelling 90% of the total model variance.

We implemented the view-based AAM and light field deformable model in MAT-

LAB. We outline our implementation and provide timing results in Section 7.5.

7.2 Comparison to a View-Based AAM

To compare our method to a view-based AAM we built a single-view 2D AAM and

compared it against a feature-based light field deformable model. Each model was

constructed using all fifty subjects, and was matched to various views of two people,

the pose of the person in each view unknown. The resulting fits are displayed in

115



Figure 7-1: Fifty subjects used to train and test our light field deformable models.

Figures 7-8 and 7-9. In Figure 7-8 the person is wearing glasses which self-occlude

the subject in extreme views of the camera array. These self-occlusions are difficult to

model using a view-based AAM, where inter-pose variation is modelled as shape. Also

note that the view-dependent texturing effects in the persons glasses are preserved by

the light field deformable model, but are lost by the view-based AAM even though

the person remains in the model.

In Figure 7-8 the performance between the view-based AAM and light field de-

formable model is gaged by how well they model the subject's eyes when glasses are

present. In the case of a view-based AAM, close inspection of the eyes shows that

the view-dependent specularities of the glasses are lost by the model and that the

presence of glasses also introduces error in the fit as the eyes are awkwardly warped.

Note this is not the case when fitting the subject without glasses. To emphasize this

difference we performed the same experiment in color, since in grayscale light patches

about the eye are sometimes confused for specularity in the glasses. The results of

this experiment are shown in Figure 7-3, where we show the matches of each subject

from the side pose of the first row of Figure 7-8. The fit of each color model is similar

to that of the grayscale models of Figure 7-8, however, the specularity preserved by
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Figure 7-2: Example 6 x 8 light field captured using the light field camera array [41].

the light field deformable model and the errors introduced by the view-based AAM

are more apparent.

The difference in performance between each model is explained by how they model

pose variation. The view-based AAM blends the texture and shape of multiple poses

at a given local-linear model. Thus, one would expect that inter-pose self-occlusion

and view-dependent texture would not be properly modelled using this technique,

unless many such local linear models are introduced rendering the model inefficient.

The light field deformable model represents appearance in 4D, thus the shape and

texture of each pose are kept separate and pose is an external parameter of the model.

As a result the light field deformable model can easily handle the view-dependent

texture and self-occlusions introduced by the glasses whereas the view-based AAM

cannot.
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Figure 7-3: Comparison of Figures 7-8 and 7-9 using color models. [7]

7.3 Matching to a Light Field

In this section we demonstrate the ability of a light field deformable model constructed

using either optical flow or feature-based shape vectors to be optimized over light fields

of objects. We show results that optimize these models over images of objects in the

following section.

7.3.1 Optical Flow Based Model

We built an optical flow based light field deformable model using 48 of the 50 subjects

of Figure 7-1. Figure 7-4 displays select views of the light fields and resulting model

fits of the two subjects kept out of the model. In the figure the model fit is super-

imposed onto ground truth. The figure illustrates the model's capability to generate

convincing light fields of a novel input object. These fits, however, exhibit some

error due to the ambiguity in the computed optical flow fields and the use of forward

warping. Such errors are absent from the synthesized light field of the next sub-

section.
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Figure 7-4: Optical flow based light field deformable model optimized over light fields

of two subjects outside of the model database.

7.3.2 Feature-point Based Model

We built a feature-based light field deformable model using the same 48 of 50 subjects

from the previous sub-section. Figure 7-5 displays select views of the synthesized light

fields super-imposed onto ground truth using this model. Similar to the optical flow

based model, this figure demonstrates that the feature-based model is able to generate

convincing light fields of objects outside of the model database. Note that the fits

of the feature-based model are more smooth and contain less error. The optical flow

based technique relies on the online computation of optical flow for matching and

uses forward warping for synthesis. The feature-based approach uses direct search to

optimize the model that does not depend on online computed shape features to fit the

model. Thus, although the fits of each figure are similar, those of the feature-based

model appear more smooth. We further discuss these differences in more detail in

the following chapter.

7.4 Matching to an Image

In this section we present light fields synthesized from 2D images of objects with

unknown pose. We begin by providing empirical evidence for the use of a quadratic
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Figure 7-5: Feature-point based light field deformable model optimized over light
fields of two subjects outside of the model database.

fit in the automatic pose estimation algorithm of Chapter 6. We then show light fields

synthesized using both the optical flow based and feature-based light field deformable

models optimized over 2D images of objects with unknown pose.

7.4.1 Automatic Pose Estimation

The automatic pose estimation algorithm of the previous chapter used a quadratic fit

about a 3 x 3 neighborhood of the model light field to estimate object pose, where

the center of this neighborhood corresponds to the discrete view of the model light

field whose pose is closest to that of the input image. Let the RMS error of the model

fit at estimated pose E be given by the function E(6, 8), where 9 is the object's

true pose. In this section we demonstrate that E(9, E) is well approximated by a

quadratic.

To accomplish this, we traversed the inner views of the model light field and

computed E(9, E) about a 5 x 5 neighborhood using the central view as input such

that 9 = 0., where 6, is the pose of the central view. The average value of E(9, 6)

computed over 16 inner views of the model light field is displayed in Figure 7-6

from three different viewing points. The function is displayed in Figure 7-7 with a

quadratic fit superimposed onto it. The fit quadratic is also displayed separately. As
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Figure 7-6: Average value of E(e, 5) computed about a 5 x 5 neighborhood of the

model light field displayed from three different viewpoints.

demonstrated by these figures E(E, 0-) is indeed well approximated by a quadratic

fit. Note this experiment assumed that E(e, 0) is independent of the value of .

We believe this is a fair assumption, however, since the local, relative pose variation

with respect to a central view should not strongly depend on the absolute pose of the

central view.

Overall we found the use of a quadratic fit to work well in our experiments.

Occasionally the fit would be well outside the 3 x 3 neighborhood of the converged

view. In this case we performed a weighted average to estimate the object's pose.

This event was rare, however, and in most cases a quadratic fit was used.

7.4.2 Optical Flow Based Model

We built an optical flow based light field deformable model using 46 of the 50 subjects

of Figure 7-1 and fit the model to 2D images of 4 subjects kept out of the model, at

various unknown poses. The resulting model fits and select views of the synthesized

light fields superiniposed on ground truth, along with the ground truth light field of

each subject are provided in Figure 7-10. In the figure, the model is fit to each subject

at two different poses for comparison, one of the poses frontal. Note our model was

able to infer a full 4D light field from a single image with unknown object pose, the

pose automatically estimated using our model. Comparing the synthesized light fields

across poses of the same subject, one finds that although the model is optimized at

different views the resulting light fields are quite similar. We demonstrate optimizing

the feature-based light field deformable model over 2D images next.
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Figure 7-7: Quadratic fit of E(e, 0) of Figure 7-6: (a) the quadratic superimposed
onto E(8, e), (b) the fit quadratic displayed on its own.

7.4.3 Feature-point Based Model

We built a feature-based light field deformable model using the 46 subjects of the

previous sub-section. Figure 7-11 demiorstrates fitting this model to 2D images of

the 4 subjects kept out of the model, at various unknown poses. In Figure 7-11 the

model is fit to two different poses for comparison, one frontal; select views of the

synthesized light fields superimposed over ground truth are also displayed along with

the ground truth light field of each subject. Similar to the optical flow based model,

the feature-based model is able to generate convincing object light fields from single

2D images of novel objects captured under unknown pose.

Comparing Figures 7-10 and 7-11 one finds that each model performs quite sim-

ilarly: the synthesized light fields resulting from each model are approximately the

same. Such performance is expected since each model is trained on the same training

set and, as seen from Chapter 6, each model is designed with the same framework us-

ing PCA. Close inspection of each figure shows that there are some minor differences

between the fit of each algorithm, due to the different optimization techniques em-

ployed by each model as well as the use of different shape features. For example, the

optical flow based model has difficulty about the edges of the face due to ambiguity

in the optical flow, however, as illustrated by the figures these errors are minor. We
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Average Execution Time (sec)
Light Field Fit 26
Discrete Pose Fit 1
Arbitrary Pose Fit 19
Fit to Unknown Pose 120

Table 7.2: Execution times of the routines used to optimize the optical flow based
light field deformable model. All times are rounded tip to the nearest second.

further discuss this issue in the following chapter.

Figures 7-10 and 7-11 seem to suggest that our model does not represent glasses

too well (see the second subject). We believe, however, that this is a different issue

than that discussed in Section 7.2 where we compared our mlodel against a view-

based AAM. In Section 7.2 the subject was in the model and thus the glasses and

view-dependent specularities were recovered. In these fits the subject is outside of the

model and thus it is more difficult to optimize over subjects wearing glasses, especially

because the models contain both subjects with and without glasses and the glasses

worn across subjects have different surface reflectance properties and unconstrained

shape (see Figure 7-1). To properly handle the variation in appearance due to the

presence/absence of glasses, ideally we would extend our approach to have the ability

to separately cluster the examples with and without glasses and then match to each

cluster separately. The investigation of such non-linear models is an interesting area

of future work that is discussed in the next chapter.

7.5 Algorithm Implementation and Performance

We have implemented both the optical flow based and feature-based models in MAT-

LAB. The implementation of each model is organized into routines that build the

model, to a light field, fit the model to a discrete pose of the model light field, to an

arbitrary pose within the model light field and a pose estimation module that utilizes

the image matching routines to optimize the model over an image of an object with

unknown pose. We report execution times for the above components of each model.

Tables 7.2 and 7.3 display execution times for the optical flow based and feature-
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Routine Average Execution Time Average Number of

(sec) Iterations

Light Field Fit 45 6
Discrete Pose Fit 4 5

Arbitrary Pose Fit 11 6

Rendering Jacobian 7 NA

Fit to Unknown Pose 225 NA

Table 7.3: Execution times and iteration counts for the routines used to optimize

the feature-based light field deformable model. All times and iteration counts are

rounded up to the nearest second or count.

based light field deformable models respectively, run on a Pentium 4, 2.0 GHz pro-

cessor with 768 MB of memory. The training times for these models are omitted

as they are on the order of a few hours and can be performed offline. The average

execution times reported in these tables were computed over the model fits displayed

in the figures of this chapter. In these tables the execution time of each component

is reported. We discuss each of these components below.

Of all the routines, those that involve rendering take the longest. Another bottle-

neck is the piecewise image warping. In our implementation, both the rendering and

warping engines were implemented using C/C++ for reasonable performance, how-

ever, they were done without the use of optimized graphics hardware. With the use of

graphics hardware both of these operations can be performed in real-time [34, 25, 6].

Observing the average number of iterations required to match the feature-based

model to a light field or 2D image, one finds that these numbers are similar to pre-

viously reported iteration counts for algorithms that employ direct search [8, 34].

The direct search algorithm used by the feature-based model is known to exhibit

real-time performance [34]. The main difference between their implementation and

ours is that we use a rendering engine to synthesize the model at arbitrary poses.

As discussed above, this niodule can be made real-time using graphics hardware. We

therefore expect that light deformnable models, if efficiently realized, can be optimized

in real-time.
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Figure 7-8: Comparison of a light field deformable model to a view-based AAM. The
left column shows the input, the right column the best fit with a 2D AAM, and the
middle column the light field fit. When glasses are present the 2D method fails and
the light field appearance model succeeds.
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Figure 7-9: Comparison of a light field deformable model to a view-based AAM.
The left column shows the input, the right column the best fit with a 2D AAM,
and the middle column the light field fit. The 2D and light field appearance models
both exhibit qualitatively good fits when the surface is approximately smooth and
lambertian.
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Figure 7-10: Optical flow based light field deformable model optimized over images of
objects with unknown pose. The model was optimized over 4 subjects removed from
the model database. Our method is able to synthesize convincing light fields from a
single input image. Optimizing the model over different poses of the same subjects
gives light fields that are strikingly similar.
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Figure 7-11: Feature-point based light field deformable model optimized over images
of objects with unknown pose. The model was optimized over 4 subjects removed
from the model database. The feature-based method obtains higher fitting accuracy
compared to the optical flow based method.
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Chapter 8

Discussion and Future Work

This chapter provides an overview of the work performed and discusses possible appli-

cations and extensions of the ideas presented in this thesis. The contributions of this

thesis are sunmarized in Section 8.1. Applications of light field deformable models

include 3D aniniation and pose-invariant face recognition. These and other applica-

tions of our work are presented in Section 8.2. Finally, in Section 8.3 we outline how

our method can be improved and extended, and discuss interesting avenues for future

work.

8.1 Contributions

In this thesis we have presented the concept of a liqht field deformable model. Light

fields offer a 4D representation of appearance that model the scene with densely

sampled imagery and, unlike other inage-based rendering approaches, they model

the scene without the use of any scene geometry. We have shown that light field de-

formable models can easily model object classes exhibiting complex surface reflectance

and geometry. Also, our method is able to easily optimize over the pose of the imaged

input object, as pose is kept as an external parameter to the model.

To realize our model we introduced the notion of a light field appearance manifold

defined over 4D shape and texture vectors of prototype object light fields. We then

demonstrated how to match light fields or 2D images of novel objects with unknown
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pose to this manifold. The light field appearance manifold was defined using both

manually specified point features and automatically computed optical flow shape

vectors. A different optimization algorithm was proposed for each model, however,

both methods used the same pose estimation framework.

We adopted a method similar to [3] to optimize the optical flow based model,

where online optical flow shape vectors are computed to fit the model. To fit the

feature based model we extended the direct search algorithm of [8] to function over

the domain of light fields. With our method the Jacobian has light field intensity

gradients as its columns and to match the model to an image, the Jacobian is rendered

at the pose of the input view.

In our experiments we demonstrated the construction of a light field deformable

model using both optical flow and feature point based shape vectors and fit each model

to light fields and 2D images of novel objects with unknown pose. We compared our

method to the view-based AAM [9], a 2D approach that models pose variation by

defining local-linear models in the different regions of pose space, such that in each

local-linear model the resulting appearance model is well approximated as linear.

When an object class exhibits complex surface reflectance with view-dependent tex-

turing effects and/or complex geometry these models tend to break down as many

local-linear models become warranted rendering such models in-efficient.

In contrast, we demonstrated that light field deformable models can easily handle

such phenomena. We showed this by matching to a subject with glasses. With our

model the glasses were recovered and the view-dependent texturing effects preserved,

whereas the view-based AAM had difficulties. In particular the view-based AAM was

unable to represent the view-dependent specularities in the glasses, and the inter-pose

self occlusion caused by the presence of glasses introduced errors in the fits resulting

from the view-based AAM. The main reason for the difference in performance between

the two approaches is that the view-based AAM blends images from many poses at a

single local linear model, whereas the light field appearance model does not. Instead

with our approach object appearance is represented using 4D and thus it can easily

model the complex surface reflectance and geometry introduced by the presence of
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glasses.

Light field deformable models have many advantages over existing 2D and 3D

shape and texture appearance models. Two dimensional AAMs [8] and MMMs [24]

cannot model large changes in pose variation, as this results in non-linear differences

in appearance. Extensions to these models such as the view-based AAM [9] are able

to model pose but as discussed above have difficulty modelling object classes that

do not exhibit smooth, Lambertian surfaces. Pose variation is easily handled with

3D deformable models [4] where pose is kept as all external parameter of the model.

Such methods, however, use simply textured 3D meshes and rely on high accuracy

range scans. Our model represents object appearance in 4D with light fields, a purely

image based approach, that does not require knowledge of any scene geometry. As

such, light field deformable models can easily represent object classes with comlplex

surface reflectance and geometry, unlike existing 2D and 3D approaches.

In this thesis we have presented most of the ground work for defining 4D de-

formable models using light fields. We believe there are still many important and

interesting extensions to our work, such as BRDF modelling to handle arbitrary light-

ing and the use of alternative IBR techniques that require less imagery. We discuss

these and other possible improvenents/extensions to light field deformable models in

Section 8.3.

8.2 Applications

Light field deformable models have numerous applications in computer vision and

graphics. We list and briefly discuss some of these applications below.

In computer graphics, light field deformlable models are useful for the 3D animation

of virtual characters or avatars [141. With a light field deformable model, a 4D

representation of appearance can be constructed for a particular object class (e.g.

faces) and the coefficients of the model labelled with class specific information as

was done in [4]. Provided anl image of an object, a light field of the object could

be recovered along with class specific model parameters. All animator could then
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adjust these parameters, that for the case of people, could make the subject look

more young/old, male/female, etc. The animator could also display and animate the

object from previously unseen views. Note the difference between using our model

and the model in [4] is that the object classes can exhibit miore complex surface

reflectance and geometry giving the animator more freedom in the choice of object

class to represent.

Other applications of light field deforniable models include object segmentation

and non-rigid body tracking. Two dimensional deformable models have proven to be

useful in these tasks [34, 32]. Using a 4D deformable model, the input object can

take any pose, thus providing a more flexible solution to these problems.

Light field deformable models also have application in pose-invariant object recog-

nition. In [20], Gross et. al. showed how Eigen light fields can be used to achieve

accurate pose-invariant face recognition. In their paper, they specify feature points

on the training and input images to normalize their data to a common coordinate

frame. They then performed PCA on the normalized light field data to construct and

optimize their model. Light field deformable models model both light field shape and

texture variation and thus using our approach the input image need not be normal-

ized, since the shape of the input object is recovered using our model. We believe

extending their work to use a light field deformable model will make the recognition

processes more automated.

8.3 Future Work

This thesis presents most of the ground work for light field deformable models, how-

ever, we believe that there are many ways in which our model can be improved and

extended to increase its performance and utility. We begin this section by discussing

some of these improvements and extensions. We then discuss other interesting av-

enues of future work related to shape and texture appearance models that we hope

to address in the near future.

There are a number of improvements that could be made to our existing algorithm.
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One improvement is to use stochastic gradient descent [24] or direct search in place

of the online optical flow computation to optimize the optical flow based light field

deforniable model. This would avoid errors introduced by the input optical flow field.

These techniques are also less sensitive to scene clutter. Naturally, another source

of error is in the flow fields used to represent the shape of the prototype light fields.

In [24], Jones and Poggio present an algorithm that normalizes the shape vectors

to correct for error in the optical flow. This algorithm could also be applied to our

model.

Another improvement is in the pose estimation algorithm. To estimate the pose

of the input object we fit a quadratic to the model error values centered about the

converged discrete pose of the model light field. Although this worked well in our

experiments, a more general technique would be to incorporate pose estimation as

part of the direct search, where we would learn image intensity gradients parameter-

ized over object pose. We believe that this would give more accurate sub-view pose

estimates and would result in improved light field synthesis.

In [27], Matthews and Baker present a provably optimal direct search technique for

optinizing a 2D AAM. The direct search algorithm of Cootes and Taylor assumes that

the model Jacobian is constant with respect to the value of the model parameters. In

their work, Matthews and Baker demonstrate that this assumption is false in general

and present an efficient direct search algorithm based on inverse compositional image

alignment that is provably optimal. To optimize the model, they first separate the

model objective into two parts, one that is independent of appearance variation and

the other independent of shape variation and they optimize each part separately. To

optimize over shape they update the model warp field as oppose to shape parameters

by composing warp fields; they show that using this method the computed shape

Jacobian is always evaluated at zero using this method and thus can be safely assumed

constant and pre-comlputed. Given the shape parameters the second part of the

objective, involving texture variation, is optimized using linear least squares.

This new direct search technique has several advantages over previous methods.

In addition to being provably optimal, it achieves greater efficiency by separately
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optimizing over shape and texture. Matthews and Baker also show that by separately

optimizing shape, the corresponding model Jacobian can be analytically computed

to give much better results. Extending light field deforinable models to use this new

direct search algorithm is an interesting avenue for future work as it can increase

model fitting accuracy and efficiency.

The head database used in our experiments suitably demonstrated the capabil-

ities of a light field deformable model. It would be interesting, however, to collect

multi-light slab light field databases of objects that exhibit more complicated surface

reflectance and/or geometry, captured over a larger pose variation. Such databases

would further emphasize the strengths of a light field deformable model and may lead

to interesting applications in computer graphics.

A drawback of such databases, and light field deformable models in general, is

the amount of imagery necessary to represent objects across large pose variation. An

interesting area of future research is the investigation of alternative IBR methods for

the construction of deformable models. With these methods, a rough geometric proxy

can be used to decrease the number of images necessary to model the scene. Such

approaches may not exhibit the full capabilities of a light field deformable model in

the extent to which they can represent non-Lambertian objects and complex geom-

etry, however, the practical advantages of these models may tradeoff the decrease in

representation power.

Another exciting extension of our work would be the incorporation of BRDF mod-

els for representing objects imaged under varying illumination. In [16], Georghiades

et. al. prove that the space of images of an object under all possible illuminations

is defined by a convex cone. Depending on the complexity of the object's BRDF the

appearance of an object under all illuminations can be represented quite compactly

by picking images that lie on the boundary of this cone. It would be interesting to see

how this approach generalizes to light fields of objects and what implications this may

have for defining light field deformable models that represent objects under varying

illumination.

In the more direct future we are investigating deformable models built to handle
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o1bject dynamics and topological deformations. In doing so, we are studying the use

of non-linear manifold learning methods that can segregate the appearance manifold

into its meaningful components and restrict model search to the valid portions of

the manifold. We hope that this work in coordination with our work on light field

deformable models will enrich the utility of shape and texture appearance models.
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