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Abstract

We want to build animated characters and robots capable of rich social interactions
with humans and each other, and who are able to learn by observing those around
them. An increasing amount of evidence suggests that, in human infants, the ability
to learn by watching others, and in particular, the ability to imitate, could be crucial
precursors to the development of appropriate social behavior, and ultimately the
ability to reason about the thoughts, intents, beliefs, and desires of others.

We have created a number of imitative characters and robots, the latest of which
is Max T. Mouse, an anthropomorphic animated mouse character who is able to ob-
serve the actions he sees his friend Morris Mouse performing, and compare them to
the actions he knows how to perform himself. This matching process allows Max to
accurately imitate Morris's gestures and actions, even when provided with limited
synthetic visual input. Furthermore, by using his own perception, motor, and action
systems as models for the behavioral and perceptual capabilities of others (a process
known as Simulation Theory in the cognitive literature), Max can begin to identify
simple goals and motivations for Morris's behavior, an important step towards devel-
oping characters with a full theory of mind. Finally, Max can learn about unfamiliar
objects in his environment, such as food and toys, by observing and correctly in-
terpreting Morris's interactions with these objects, demonstrating his ability to take
advantage of socially acquired information.

Thesis Supervisor: Bruce M. Blumberg
Title: Associate Professor of Media Arts and Sciences
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Chapter 1

Introduction

Humans, and many other animals, display a remarkably flexible and rich array of

social competencies, demonstrating the ability to interpret, predict and react appro-

priately to the behavior of others, and to engage others in a variety of complex social

interactions. Developing systems that have these same sorts of social abilities is a

critical step in designing robots, animated characters, and other computer agents,

who appear intelligent and capable in their interactions with humans and each other,

who are intuitive and engaging for humans to interact with, and who maximize their

ability to learn from the world around them. The aim of this thesis is to work to-

wards the ultimate goal of socially intelligent artificial systems, by creating animated

characters capable of interpreting and learning from the actions and intentions of

others.

1.1 Motivation

1.1.1 Socially Intelligent Characters and Robots

Some of the most exciting new applications being developed for synthetic creatures

require them to cooperate with humans and each other as socially capable partners.

For instance, animated characters and robots are being developed as individualized

tutors for children. Such a character should be encouraging and persuasive in ways



that are sensitive to the child, adjusting to their learning style and current mood, in

order to hold or reclaim attention. In general, characters and robots that interact with

people need to respond with social appropriateness, and they must be easy for the

average person to use and relate to. They must also be able to quickly learn new skills

and how to perform new tasks from human instruction and demonstration. Ideally,

programming such a character with new capabilities would be as easy as showing it

what to do. Finally, to cooperate with humans as capable partners artificial creatures

must be able to interpret our behaviors and emotions, so that they can provide us

with well-timed, relevant assistance.

1.1.2 Natural Systems

As character designers, it is possible to gain valuable insights into how social in-

telligence might operate and be acquired by looking to the fields of developmental

psychology and animal behavior. It appears that, among animals, learning from

the behavior of others (known as social learning) is by no means a single mono-

lithic process. Rather, species sample widely from a spectrum of overlapping social

competencies [122], ranging from using information about others to help focus their

attention, to emulating other's actions and goal states.

While very few species exhibit the most complex forms of imitation, and perhaps

no non-human animal possesses a full theory of mind [93], the abilities animals do

possess allow them to consistently exploit their social environment in ways that far

outstrip our current technologies. Furthermore, many of the simpler behavior-reading

abilities present in animals may represent prerequisites for the more complex mind-

reading abilities humans possess. An increasing amount of evidence suggests that, in

human infants, the ability to learn by watching others, and in particular, the ability to

imitate, could be crucial precursors to the development of appropriate social behavior,

and ultimately the ability to reason about the behaviors, emotions, beliefs, and intents

of others [86] [84] [87].



1.2 Approach

In previous work, we began to explore the role of imitation and social learning in

artificial intelligence, by implementing a facial imitation architecture for an interactive

humanoid robot [28]. In this thesis, I present a novel system that provides artificial

creatures with a cognitive architecture inspired by the literature on animal social

learning, including a robust mechanism for observing and imitating whole gestures

and movements. Critically, the characters presented in this thesis are able to use

their imitative abilities to bootstrap simple mechanisms for identifying each other's

low-level goals and motivations and learning from each other's actions, bringing us

several steps closer to the goal of creating socially intelligent artificial creatures.

1.3 Contributions

1.3.1 What This Thesis Does

This work concerns the creation of synthetic creatures capable of a number of in-

teresting and novel forms of social learning, inspired by the cognitive literature. In

particular, characters with the following capabilities were implemented for this thesis:

" Correctly imitating and identifying observed gestures and movements after a

single demonstration. Furthermore, the characters in this thesis observe each

other using synthetic vision, and imitate each other using purely visual data.

" Identifying higher-level goal-directed behaviors, such as reaching for an object.

" Identifying potential motivations and goals for another character's actions, such

as a desire to satisfy hunger, or to possess an object.

* Learning based on observing other character's behavior, such as learning about

a new food object by watching another character consume it.

The goal of this thesis was not only to create synthetic creatures capable of learning

by observing each other, but to test out theories from the cognitive literature while



doing so. To this end, this work hopes to make two additional contributions:

" Testing the prominent theory that imitative abilities help bootstrap social learn-

ing skills in humans, and the related idea that Simulation Theory (described in

section 2.2.2) can be used to understand other's actions, motivations and goals.

* Discovering underlying similarities or shared mechanisms among the large vari-

ety of social learning abilities hypothesized in the cognitive literature.

1.3.2 What This Thesis Doesn't Do

Social learning and intelligence in artificial systems represents a vast research area,

and this thesis is necessarily limited to a sub-section of the potential topics that fall

under this rubric. The following is a list of topics and approaches outside the scope

of this thesis (though a number of them have been anticipated as application areas

for this work):

" While the work in this thesis is inspired by theories in the cognitive and animal

behavior literatures, it is not meant to implement the details of any specific

model of how animals and humans learn from each other. Similarly, ideas from

the cognitive literature are implemented within this thesis at a purely repre-

sentational level--this thesis does not address the neural substrate underlying

these abilities in humans and animals.

e The system presented in this thesis was designed to be general enough for use

with both animated characters and robots. However, so far, it has only been

tested using animated characters, and this is the application area that will be

focused on in this work.

" Similarly, while I believe the approach described in this work may be gen-

eralizable to human-robot and human-character interactions, this thesis uses

character-character interactions as its starting point.

" The primary focus of this work is on imitation as a means of achieving other

social learning capabilities, rather than imitation as an end-goal in itself. As



a result, this thesis does not delve deeply into problem areas such as imitating

characters with different morphologies, or learning novel movement primitives

through imitation.

* This work assumes that characters have very similar morphology, abilities and

motivations.An expectation of sameness is actually a fundamental assumption

of Simulation Theory, one of the primary theories of human cognition motivating

this work (described in section 2.2.2).

1.4 Roadmap

To begin with, Appendix B of this thesis contains definitions of potentially am-

biguous terminology used throughout this work, and may be worth consulting before

venturing in too deeply. In the following chapter (chapter 2), I explore the cogni-

tive theories motivating my approach to artificial social learning in a bit more detail.

Chapter 3 places this research in the context of previous work in interactive char-

acter design and social robotics. Subsequently, in chapter 4 I introduce Max and

Morris Mouse, two anthropomorphic animated mouse characters who are able to in-

teract with each other, and observe each others' behavior. I then present a series

of progressively more sophisticated results, in which Max the Mouse is initially able

to imitate Morris, and is ultimately able to identify Morris's action-structure, in-

cluding simple motivations and goals, and learn from Morris's actions. Chapter 5

presents the details of the Synthetic Characters creature architecture used to create

Max and Morris, while chapter 6 explores the implementation of the social learning

mechanisms at the heart of this thesis.

Finally, in chapter 7 I discuss possible future work and extensions, and the

implications of my results for both artificially intelligent agents and natural systems.

It is worth noting that while the ultimate goal of this work is the development of

socially intelligent artificial creatures, the approach presented here has the potential

to contribute to a number of other research areas such as movement and gesture

recognition, and motor system design for animated characters.
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Chapter 2

Lessons from Social Learning in

Humans and Animals

The natural world is teeming with examples of social behavior, from fish forming

schools and birds forming flocks, to wolf pups tussling to determine dominance, to

domestic cats begging their owners for food. In all of these cases, animals are able

to interact and communicate appropriately with conspecifics in their environment (if

you accept, for the moment, that you're a conspecific to your cat), in order to satisfy

their individual motivations and goals (e.g. safety from predators, establishing place

in pack hierarchy, acquiring food).

Within the broad range of social behaviors animals display, we are particularly

interested in social learning, where "acquisition of behavior by one animal can be

influenced by social interaction with others of its species" (Heyes and Galef 1996

[62], p.8). The ethological literature is filled with examples of animals learning by

observing and interacting with others. Some classic instances include the spread of

milk-bottle opening behavior among great tits in Britain [49], macaques learning to

wash potatoes [64], and black rats learning how to pull the scales off of pine cones

[108]. Many other well-studied behavior patterns can also be considered forms of

social learning, such as juvenile song-birds learning species-specific song patterns by

listening to adults [106], and alarm-call learning by young ground squirrels [79] and

vervet monkeys [105].



There is a wide range of ways in which animals are able to learn from the presence

of others, which run the gamut from simply interacting with objects others have left

behind (as in the case of the black rats, who learn to shell pine cones by coming

across the partially shelled remains left by adult rats), to learning an emotional stance

towards an object by watching others interact with it [38] [40], to imitating either

the results or the end-goal of another's actions [114][83], to imitating the physical

behaviors performed by another [84] [119]. Of these, the behaviors that traditionally

fall under the auspices of social learning are those where one animal learns directly

from the observed behavior of another (e.g. a chimpanzee using a rake to bring

food closer, after seeing another chimpanzee perform the task), rather than those

where they are indirectly influenced by another's actions (e.g. the black rats). In the

following sections, I will explore this kind of social learning, as well as its relationship

to more general social intelligence, and the development of theory of mind.

2.1 Imitation and Social Learning in Animals

There is a rich research literature available investigating social learning in a variety

of animal species, particularly non-human primates. Much of this literature has been

devoted to partitioning socially mediated learning into various subtypes (for a review

see [122], [36], [35] and also [62]). The primary contribution of this research to the

design of socially adept artificial systems may lie not in the divisions between types

of social learning that have occupied much of the research agenda, but rather in

the spectrum of potential social learning situations and mechanisms these divisions

highlight. Here, I draw attention to some of the most commonly cited ways in which

one organism could potentially learn by observing another (the categories I use have

been roughly adapted from Whiten [122]).

Attention Shifting. The animal's attentional focus is affected by others actions.

This includes stimulus enhancement, where the observer becomes more likely to

attend to and interact with stimuli it has noticed a model attending to.



Significance Learning Using other's behavior and reactions as cues about the sig-

nificance of objects in the environment. This includes social referencing, where

the observer alters his reaction to a stimulus based on the observed behavior of

a model, and affordance learning, where the animal learns certain properties of

the environment, or of objects in the environment, through observation.

Impersonation Copying the form of another's action. This category encompasses

relatively simple behaviors such as response facilitation, where the observer

becomes more likely to perform an action already in its repertoire, as a result

of seeing a model perform that action, as well as behaviors such as mimicry,

emulation and true imitation. In mimicry, the observer replicates the physical

movements of the model, while in emulation it is the end-state generated by

the model's actions that is replicated. In true imitation the observer attempts

to replicate not only the model's actions, but also their perceived goals.

Learning About Others Information about conspecifics is gathered over the course

of interactions. This includes learning the positions of different group members

in a dominance hierarchy, and perspective-taking, where one animal takes ac-

tions that take another's visual point-of-view into account. It also includes

more advanced theory of mind, where one animal must model some aspect on

another's internal mental state.

In both comparative psychology and robotics, there has perhaps been too much

focus on 'true' imitation, to the exclusion of studying other potentially important and

useful social learning mechanisms (this problem is discussed by Byrne and Russon [35]

and in accompanying commentaries, including [45], [61],[80] and [99]). In particular,

Roitblat [99] notes that there is a danger of defining a phenomena out of existence,

by setting the standards at such a level that it cannot be said to occur. He goes

on to point out that mechanisms such as stimulus enhancement, goal emulation, and

response facilitation may be complex and sophisticated in their own right, and have

up until now been used almost exclusively as null hypotheses in the study of imitation

in animals.



In a related vein, Call and Carpenter [36] suggest approaching the problem of social

learning from a different angle-by looking at the sources of information exploited by

the observing animal, rather than focusing on defining the social learning mechanism

being used. They suggest that, in any sort of observational learning, three distinct

sources of information are available to be observed and copied: the model's goals, the

model's actions, and the results of those actions, and that each of these information

sources provides a different set of useful knowledge about the world. For instance,

focusing on the results of actions may help an animal learn about the physical world,

and lead to behaviors such as emulation, while focusing on the actions themselves may

help a creature understand other individuals, and lead to more traditional mimicry

behavior. Call and Carpenter believe that ultimately, attending to all three sources

of information is critical to human social development.

Similarly, it seems likely that, in order to develop socially intelligent robots and

animated characters, we will need to implement a variety of mechanisms for taking

advantage of the information provided by others, rather than focusing on one form of

imitation, or one source of information. As a result, the behavior of the characters in

this thesis does not fall precisely into categories such as imitation, stimulus enhance-

ment, or social referencing, but instead allows the characters to combine an amalgam

of biologically-inspired abilities in order to correctly reproduce observed behaviors,

and begin to identify intentions, motivations and goals. In turn, it is possible that

looking at how these sorts of abilities are implemented in an artificial system will

give us greater insight into the different cognitive mechanisms behind animal social

learning. In the next section, I look at how the perception and production of hier-

archical action structures can allow animals (and potentially, artificial creatures) to

take advantage of multiple levels of observational information.

2.1.1 Imitation and Hierarchical Action Structures

Hierarchical, motivationally-driven behavior selection mechanisms have frequently

been suggested in the animal behavior literature (see for instance [111] and [44] for

some classic examples). Timberlake [110] [109] has proposed a particularly detailed



Mode Module

Figure 2-1: An example motivational system for animal feeding (after Timberlake

1989 [110])

theory of hierarchical behavioral structures in animals, known as the behavior systems

approach. According to Timberlake, an animal's action hierarchy is composed of be-

havioral systems, each of which is associated with an innate motivation or drive, such

as feeding, self-defense, or socializing. Within a motivational system, each level of the

hierarchy contains increasingly specific, sequentially organized actions for satisfying

the associated drive (an example motivational system is shown in figure 2-1). This

type of action structure is intuitively appealing because it breaks behaviors down

into the same sorts of levels and sequences people tend to use when describing a task.

Research has shown that people naturally parse action streams into hierarchies of

intentional relations [91 [10].

Using the idea of hierarchically organized action systems, such as those proposed

by Timberlake, Bryne and Russon [35] have proposed another way in which to broaden

the definition of imitation. They suggest that much animal imitation occurs at the

"program" level, where an animal with a hierarchical action system learns a program

Movement PrimitiveSystem Subsystem



for organizing its actions by observing the hierarchical structure of another animal's

behavior. Subsequently, it is this hierarchical organization that is imitated, rather

than the surface form of the other animal's movements. Program level imitation is

contrasted with what they define as action level imitation, in which it is the specific

physical movements of the model that are replicated. Byrne and Russon suggest

that most task-oriented imitation is program-level imitation, whereas action-level

imitation is more rare, and may serve a primarily social purpose (this can be seen

as somewhat analogous to Call and Carpenter's discussion of imitation of actions,

results, and goals, discussed in the previous section). In addition to Byrne and

Russon's observational studies, some support for this theory comes from Whiten's

experimental demonstrations of imitation of sequential (and potentially hierarchical)

action structures in chimpanzees, and imitation of hierarchical behaviors by young

children [121].

Byrne and Russon's theory emphasizes the idea that imitation may operate at

a number of levels, and outlines a possible mechanism by which this could occur-

the perception and production of hierarchical action structures. They suggest that

imitation occurs at multiple stages of the action hierarchy: from imitating individual

movement primitives at the lowest level, to imitating the arrangement of behavioral

modes and modules (to borrow Timberlake's terminology), to adopting the high-level

goal or motivation at the top of the hierarchy.

Most previous work in robotic imitation has focused on teaching robots or ani-

mated characters individual actions meant to solve a particular task, taking advantage

of only the lowest level of imitation. Since our behavior architecture is based on a hi-

erarchical action system, we are in an excellent position to explore and take advantage

of imitative learning at other levels of the action hierarchy.

2.2 Learning About Others

Note: Portions of the following section are adapted or reprinted from [28].

Research in the field of human cognitive development suggests that the ability to learn



by watching others, and in particular, the ability to imitate, are not only important

components of learning new behaviors (or new contexts in which to perform existing

behaviors), but could be critical to the development of appropriate social behavior,

and ultimately, theory of mind (ToM). In particular, Meltzoff (see for example [86],

[83],[84], [85] and [95]) presents a variety of evidence for the presence of imitative

abilities in children from very early infancy, and proposes that this capacity could

be foundational to more sophisticated social learning, and to ToM. The crux of his

hypothesis is that infants' ability to translate the perception of another's action into

the production of their own action provides a basis for learning about self-other

similarities, and the connection between behaviors and the mental states producing

them. I will explore this idea more thoroughly in the following sections.

2.2.1 Understanding Other's Minds

For artificial creatures to possess human-like social intelligence, they must be able to

infer the mental states of others (e.g., their thoughts, intents, beliefs, desires, etc.)

from observable behavior (e.g., their gestures, facial expressions, speech, actions,

etc.). This competence is referred to as a theory of mind [93], folk psychology [57],

mindreading [123], or social commonsense [87].

In humans, this ability is accomplished in part by each participant treating the

other as a conspecific-viewing the other as being "like me". Perceiving similarities

between self and other is an important part of the ability to take the role or perspective

of another, allowing people to relate to, and empathize with, their social partners.

This sort of perspective shift may help us to predict and explain other's emotions,

behaviors and other mental states, and to formulate appropriate responses based on

this understanding. For instance, it enables us to infer the intent or goal enacted by

another's behavior-an important skill for understanding other's actions.



2.2.2 Simulation Theory

Simulation Theory (ST) is one of the dominant hypotheses about the nature of the

cognitive mechanisms that underlie theory of mind [57] [43]. It can perhaps best be

summarized by the cliche "to know a man is to walk a mile in his shoes." Simulation

Theory posits that by simulating another person's actions and the stimuli they are

experiencing using our own behavioral and stimulus processing mechanisms, humans

can make predictions about the behaviors and mental states of others, based on the

mental states and behaviors that we would possess in their situation. In short, by

thinking "as if" we were the other person, we can use our own cognitive, behavioral,

and motivational systems to understand what is going on in the heads of others.

From a design perspective, Simulation Theory is appealing because it suggests

that instead of requiring a separate set of mechanisms for simulating other persons,

we can make predictions about others by using our own cognitive mechanisms to

recreate how we would think, feel, and act in their situation-thereby providing us

some insight into their emotions, beliefs, desires, intentions etc. We argue that an ST-

based mechanism could also be used by robots and animated characters to understand

humans and each other in a similar way. Importantly, it is a strategy that naturally

lends itself to representing the internal state of others and of the character itself in

comparable terms. This would facilitate an artificial creature's ability to compare

its own internal state to that of a person or character it is interacting with, in order

to infer their mental states or to learn from observing their behavior. Such theories

could provide a foothold for ultimately endowing machines with human-style social

skills, learning abilities, and social understanding.

2.2.3 Imitation and Simulation Theory

Meltzoff proposes that the way in which infants learn to simulate others is through

imitative interactions. For instance, Meltzoff [84] hypothesizes that the human in-

fant's ability to translate the perception of another's action into the production of

their own action provides a basis for learning about self-other similarities, and for



learning the connection between behaviors and the mental states producing them.

Simulation Theory rests on the assumption that the other is enough "like me"

that he can be simulated using one's own machinery. Thus, in order to successfully

imitate and be imitated, the infant must be able to recognize structural congruence

between himself and the adult model (i.e., notice when his body is "like" that of

the caregiver, or when the caregiver's body is "like" his own). The initial "like me"

experiences provided by imitative exchanges could lay the foundation for learning

about additional behavioral and mental similarities between self and other.

There are a number of ways in which imitation could help bootstrap a Simulation

Theory-type ToM [851. To begin with, imitating another's expression or movement is a

literal simulation of their behavior. By physically copying what the adult is doing, the

infant must, in a primitive sense, generate many of the same mental phenomena the

adult is experiencing, such as the motor plans for the movement. Meltzoff notes that

the extent to which a motor plan can be considered a low-level intention, imitation

provides the opportunity to begin learning connections between perceived behaviors

and the intentions that produce them. Additionally, facial imitation and other forms

of cross-modal imitation require the infant to compare the seen movements of the

adult to his own felt movements. This provides an opportunity to begin learning

the relationship between the visual perception of an action and the sensation of that

action.

Emotional empathy and social referencing are two of the earliest forms of social

understanding that facial imitation could facilitate. Experiments have shown that

producing a facial expression generally associated with a particular emotion is suffi-

cient for eliciting that emotion [107]. Hence, simply mimicking the facial expressions

of others could cause the infant to feel what the other is feeling.

2.2.4 Mirror Neurons

Interestingly, a relatively recently discovered class of neurons in monkeys, labeled

mirror neurons, has been proposed as a possible neurological mechanism underlying

both imitative abilities and Simulation Theory-type prediction of other's behaviors



and mental states [124] [53]. Within area F5 of the monkey's premotor cortex, these

neurons show similar activity both when a primate observes a goal-directed action

of another (such as grasping or manipulating an object), and when it carries out

that same goal-directed action [52] [98].This firing pattern has led researchers to

hypothesize that there exists a common coding between perceived and generated

actions [94]. These neurons may play an important role in the mechanisms used by

humans and other animals to relate their own actions to the actions of others. To date,

it is unknown if mirror neurons are innate in humans, learned through experience, or

both.

Mirror neurons are seen as part of a possible neural mechanism for Simulation

Theory. By activating the same neural areas while perceiving an action as while

carrying it out, it may not only be possible but also necessary to recreate additional

mental states frequently associated with that action. A mirror neuron-like structure

could be an important building block in a mechanism for making predictions about

someone else's intentions and beliefs by first locating the perceived action within the

observer's own action system, and then identifying one's own beliefs or intentions

typically possessed while carrying out that action, and attributing them to the other

person.

2.2.5 Understanding Observed Actions

People and other animals often interpret and react to the behavior of others in ways

that, at least implicitly, assume that others have intentionality and internal mental

state. At the most basic level, when one person watches another, they must divide the

continuous stream of motion they observe into individual units of action. Experiments

by Baldwin and Baird [10] [9] have shown that, given evidence that they are watching

an intentional entity, adults "appear to process continuous action streams in terms of

hierarchical relations that link smaller-level intentions (e.g. in a kitchen cleaning-up

scenario: intending to grasp a dish, turn on the water, pass the dish under the water)

with intentions at higher levels (intending to wash a dish or clean a kitchen)." (p.172,

[10]). In other words, adult humans are biased to interpret actions they observe as



part of an intentional or motivational action hierarchy, much like that described in

section 2.1.1.

Furthermore, "adults reliably identify certain actions at the more fine-grained

level as especially crucial or defining of intentions at the higher level; for instance,

the action of scrubbing a dish with a brush is more of a crux for completing the

intention to wash a dish than is the equally necessary but less central prior action

of turning on the water" (p.172, [10]).This idea, that certain movements can 'capture

the essence' of an action, is especially important to this work. It suggests that,

one way in which a more primitive imitation-based movement identification system

can be bootstrapped for more complex social skills, is through the identification of

"characteristic" movements, which, when observed, can serve as clues to what the

higher level behavior being performed is.

Interpreting observed actions as intentional is not limited to adults. Baird and

Baldwin have established that similar abilities exist in infants [9] [10], while Csibra

has demonstrated that infants are biased to interpret movements with certain formal

structures (e.g. self propelled, following indirect paths, obstacle avoidance) as being

goal-directed, even when watching abstract shapes rather than other people or animals

[39]. Finally, Meltzoff [83] has shown that by 18 months of age, infants imitate

the apparent goal or intention of an action, rather than the action itself (this is

demonstrated by their ability to produce the desired result of an action, in response

to seeing the action attempted unsuccessfully).

Baldwin and Baird propose that humans use both top-down inferential and bottom-

up perceptual mechanisms for dividing observed motion into separate acts. They

suggest that intentional behavior is marked by certain predictable features.

For example, to act intentionally on an inanimate object, we must locate

that object with our sensors (inanimates do not do this, as they usually

do not have sensors). We then typically launch our bodies in the direction

specified by our sensors, extend our arms, shape our hands to grasp the

relevant object, manipulate and ultimately release it (inanimates usually

do not do any of this either). All of this typically coincides with a char-



acteristic kind of ballistic trajectory that provides a temporal contour or

'envelope' demarcating one intentional act from the next...

This is all to say that on a purely structural level-the level of statistical

regularities-there is considerable information correlated with intentions

that is inherent in the flow of goal-directed action. (p. 17 4 [10]).

While there is compelling evidence that these sorts of demarkations and statistical

regularities do in fact occur around the boundaries of intentional acts, bottom-up

processing alone cannot account for the human ability to interpret observed behavior.

This is because "the surface flow of motion people produce in most, if not all, cases

is consistent with a multitude of different intentions" (p.1 75 [10]). In other words,

one can walk towards an object, or even pick it up, for any number of reasons. In

order to decide between competing candidate intentions, humans must turn to other

sources of knowledge, potentially including their own behavior systems.

Intentionality in Animals

Although there is more controversy surrounding the extent to which non-human ani-

mals understand intentionality, there is evidence that they can at least take advantage

of information about another animal's point-of-view. At the simplest level, many pri-

mate species demonstrate gaze-following behavior [112]. Chimpanzees in particular

are able to follow human gaze around obstacles and past distractors, adjusting their

position and checking back with the gazing model repeatedly to determine their ob-

ject of attention [115]. Similarly, when tested in a competitive setting, chimpanzees

have been shown to understand what other chimpanzees can and cannot see, and

make judgments about which food sources to pursue accordingly [58] [59] [113].

While it is not entirely clear whether these types of behaviors result from a primi-

tive theory of mind, Whiten [120] makes a compelling argument for where the transi-

tion between behavior-reading and mind-reading begins. Whiten posits that, at their

simplest, mental-states can be seen as intervening variables between observable be-

haviors. Figure 2-2 gives an example of the use of an internal variable. In a case such
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Figure 2-2: This is a hypothetical example, where primate Y watches primate X.

By positing an internal state of 'wanting' in primate X, Y can gain economy of
representation (from Whiten 1996 [120]).

as in figure 2-2, there are enough potential cause and effect behaviors, that positing

an internal variable can be very beneficial to the animal, allowing it to avoid having

to learn each of the different individual cause and effect links. An animal using such

an internal variable in its interpretation of another's action could be said to have

moved from behavior-reading to mind-reading. Whiten therefore suggests that mind-

reading becomes a useful strategy exactly at the point where behavior is so complex

and varied that it is difficult to interpret without positing any intervening invisible

states or variables.

2.2.6 From Social Animals to Social Characters

The cognitive literature provides compelling evidence for the presence and usefulness

of social learning in human and non-human animals. Furthermore, a number of

themes can be seen in the animal behavior and infant development studies described

here, which can be used to guide our design of socially capable artificial creatures.

Multiple Levels of Social Learning. Social learning and imitation may happen

at many levels of behavioral granularity.



Multiple Sources of Information. There are multiple sources of information con-

tained in an action, and each provides opportunities for different kinds of social

learning.

Motivationally-driven Action Hierarchies. One possible way in which to repre-

sent multiple sources of information and multiple levels of behavioral granularity

is by using a motivationally-driven hierarchical action structure.

Simulation Theory. Simulation Theory, where the creature uses itself to help in-

terpret another's behavior, may be an especially useful approach to developing

social abilities.

Perception-Production Coupling. A Simulation Theory-style social learning sys-

tem may have a perception-production coupling mechanism, such as mirror

neurons, behind it.

Bootstrapping from Imitation. Being able to identify and imitate another's be-

havior may be the first step towards more complex interpretation of that be-

havior.

With these points in mind, the goal of this thesis can now be further refined. The aim

of this work is not only to create synthetic characters capable of social learning, but

to do so using a cognitively inspired approach. In particular, we would like to explore

the mechanisms by which Simulation Theory can be used by one character to learn

from another's behavior. Our implementation of a simulation-theoretic social learning

system will take advantage of the hierarchical action system used by our creatures,

and attempt to exploit the multiple levels of social learning and multiple sources of

observational information available. Finally, we will use the ability to recognize and

reproduce observed movements as the starting point for developing more complex

social skills, such as identifying simple motivations and goals, and learning about

objects in the environment.



Chapter 3

Background and Related Work

Note: Portions of this chapter are reprinted or adapted from [28].

The fascinatingly rich array of animal social behavior has provided frequent inspira-

tion to the artificial intelligence community. Some of the first research into multi-agent

systems has occurred in the fields of swarm intelligence [24] and distributed robotic

systems [96], which draw inspiration from the complex societies of social insects. Sim-

ilarly, bird flocking behavior gave rise to Reynolds' now classic Boids [97], along with

related works such as Tu's modeling of schools of fish [117).

In their comprehensive review of socially interactive robots, Fong et al. [51] point

out that what is common to approaches such as those described thus far, is that the

individual participants are anonymous and interchangeable. The group behavior is

self-organizing, and does not require individuals to differentiate between each other,

learn from each other, or form individual relationships. Fong et al call this type of

agent or robot "group social" and distinguish them from "individual social" robots

which are defined as:

embodied agents that are part of a heterogeneous group: a society of

robots or humans. They are able to recognize each other and engage in

social interactions, they possess histories (perceive and interpret the world

in terms of their own experience), and they explicitly communicate with

and learn from each other. (p. 14 4 [51]).



This thesis is concerned with working towards exactly this sort of socially intelligent

artificial creature-characters able to learn about each other and their environment

through social interactions. In this section, I will highlight related work in devel-

oping socially interactive characters and robots, focusing especially on prior work in

imitative artificial creatures.

3.1 Social characters and robots

3.1.1 Interactive Animated Characters

Much of the previous work done by the Synthetic Characters Group has focused on

creating animated synthetic creatures who interact with humans and each other in

a compelling and believable manner. Some of the first work in ethologically inspired

interactive characters was pioneered by Blumberg [18]. The cognitive architecture

developed by Blumberg was used in the ALIVE installation [22], where human par-

ticipants saw themselves projected into a virtual world featuring an animated dog

named Silas. The ALIVE system was able to recover the locations of the partici-

pant's head, hands and feet, and could also do simple gesture recognition, allowing

Silas to respond to gestural commands for behaviors such as sit and shake. Silas

could also interact with the participant based on his own motivations, for instance

by bringing a ball to the person's hand if his desire to fetch was high. A major

contribution of this work was to introduce the idea of a hierarchical action system

composed of competing motivational subsystems as a behavior selection mechanism

for autonomous characters, an idea inspired by the ethological literature (as discussed

in section 2.1.1).

In more recent work, the group created the Alphawolf installation [116] (shown in

figure 3-1), a project focusing on the social dynamics of a semi-autonomous wolf pack.

In Alphawolf, human participants could assume the role of one of three wolf pups,

and could control the pup's actions by howling, growling, whimpering or barking

into a microphone. Based on their human-influenced interactions with each other,



Figure 3-1: two wolf pups in the Alphawolf installation interacting.

the pups would form a dominance hierarchy, and develop emotional memories of one

another, representing how dominant or submissive they felt towards the other pups.

This project was one of the first to explore enduring social memories in artificial

characters, and continued the Synthetic Characters tradition of exploring human

control of intelligent artificial creatures [68] [20].

Other Systems

Other researchers have also addressed the problem of creating believable and life-

like animated characters. These include Perlin and Goldberg's pioneering IMPROV

system [91], which allows synthetic actors to move naturally in response to relatively

high-level human direction. Badler and colleagues have done significant research

developing 3D characters capable of executing complex actions in response to natural

language instructions. To this end, they have developed the Parameterized Action

Representation (PAR), meant to be the conceptual bridge between natural-language

instructions and carrying out a particular action [8]. Besides the action itself, a

PAR consists of the agent meant to carry out the action, conditions under which the

action may be performed, expected results of the action, possible subactions, and

objects to perform the action on-it can thus be seen as somewhat analogous to the



action tuples used in our system and described in section 5.6. Badler's group has

also developed numerous other tools for expressive character animation, including

the EMOTE system, which allows the emotional appearance of a character's motion

and facial expressions to be easily modified [7].

While both Badler and Perlin's systems contain a strong set of tools for creating

expressive characters, the focus of both these works is primarily on life-like appearance

rather than life-like cognition, whereas this thesis is more concerned with the latter,

in the hope that it leads to the former.

3.1.2 Social Robots

Over the years, a number of robotic systems have been designed for the express

purpose of exploring human-robot social interactions, and perhaps the most well

known of these is Breazeal's Kismet [25] [27] (shown in figure 3-2). Built to model the

Figure 3-2: Kismet.

interactions between human infants and their caregivers, Kismet has an expressive

high degree of freedom face, with exaggerated, cartoon-like features, and no body.

Kismet's baby-like appearance, as well as its behavior, was specifically designed to

both encourage and take advantage of the kinds of social exchanges that human

infants and their caretakers typically participate in. In particular, Kismet engages

users in turn-taking games and conversations, has human-like emotional responses

to tone of voice, and can regulate interactions with humans by altering its level

of engagement-slowing down or withdrawing from the interaction if it became over-



stimulated, or seeking out human attention when left alone. At the heart of Breazeal's

Kismet research is the idea (discussed in section 2.2.3) that the caregiving behaviors

people offer infants act as a scaffolding for infant social learning. Robots that elicit

these same sorts of behaviors might similarly be able to use them to bootstrap better

understanding of the humans in their world.

In a similar vein, Scassellati's work with the robot Cog [102] looked at how different

theories of theory of mind presented in the cognitive literature could be implemented

in a humanoid robot. Much of Scasselatti's research focused on implementing the

low-level abilities suggested by the cognitive literature, such as face tracking and

recognition, as well as more advanced skills such as gaze-following and joint attention.

Roy's research has focused on creating interactive robots whose understanding of

the world around them helps ground their understanding of natural language. The

most sophisticated of these robots to date is Ripley [100] (pictured in figure 3-3), a

7 degree of freedom robot capable of a variety of complex linguistic interactions with

human users. In the context of developing sophisticated language abilities, a number

of mental models for representing the people and objects in its environment have been

developed for Ripley [101].

Figure 3-3: The robot Ripley (image taken from www.media.mit.edu/cogmac)



3.2 Imitative characters and robots

In recent years, a number of robotic and animated characters, with a variety of

imitative abilities, have been developed (for a partial review see [31] and [104]), some

of them using biologically inspired approaches [28] [30] [77] [46] [12]. Often, this work

has emphasized the creation of systems able to mimic the particular form of individual

actions, focusing on the physical performance of the robot or character, rather than

on gaining social or environmental knowledge. Some researchers have focused on

using imitation to allow robots to learn interpersonal communication protocols, either

from other robots or from human instructors [13] [11]. However, this work has taken

relatively little advantage of other types of social learning that are present in animals,

especially with regard to possible shared mechanisms between simpler social learning

behaviors and mind-reading abilities. Overall, the path towards creating socially

intelligent agents is still largely uncharted, especially within the framework of a larger

cognitive architecture.

3.2.1 Learning new actions

Many imitative systems have been designed with the aim of using imitation to con-

strain the problem of learning which actions to perform in what situations, a problem

generally termed state-action space discovery. Some of the earliest work in this area

is called learning by demonstration. In this approach, the robot (often a robotic ma-

nipulator) learns how to perform a new task by watching a human perform the same

task. This may or may not involve literal mimicking of the human's behavior. In the

case where it does not, called task-level imitation, the robot learns how to perform

the physical task of the demonstrator-such as stacking blocks [71] or peg insertion

[63]-without imitating the specific movements of the demonstrator. Instead, the

robot acquires a high-level task model, such as a hierarchy of goal states and the ac-

tions to achieve them, from observing the effects of human movements on objects in

the environment. Task-level imitation can be seen as somewhat analogous to the pro-

cesses of emulation or perhaps program-level imitation seen in animals (discussed in



chapter 2). The characters implemented in the context of this thesis are also capable

of picking out the goal-states of others, however this implementation uses Simulation

Theory, rather than simply observing and replicating changes to the environment (for

further discussion, see chapter 6).

In other work with highly articulated humanoid robots, learning by demonstration

has been explored as a way to achieve efficient learning of dexterous motor skills [5]

[103]. The state-action space for such robots is too prohibitively large to search for

a particular solution in reasonable time. To address this issue, the robot observes

the human's performance, using both object and human movement information to

estimate a control policy for the desired task. The human's demonstration helps to

guide the robot's search through the space, providing it with a good region to initiate

its own search. If given knowledge of the task goal (in the form of an evaluation

function), robots have learned to perform a variety of physical tasks-e.g., learning

the game of "ball in cup" , or a tennis forehand [89] [881, by utilizing both the demon-

strator's movement and that of the object. We are also interested in the problems

of action and state-action space discovery, and think imitation is a very worthwhile

approach to this task. However, the main focus of this work is on developing charac-

ters with a better understanding of others and of their environment, rather than on

the learning of novel actions (for previous work by the Synthetic Characters Group

on action and state-action space discovery see [21]).

Another way to accelerate learning is to encode the state-action space using a

more compact representation. This makes the overall state-action space smaller and

therefore faster to explore. Researchers have used biologically-inspired representations

of movement, such as movement primitives [17] [78], to encode movements in terms of

goal-directed behaviors rather than discrete joint angles. Primitives allow movement

trajectories to be encoded using fewer parameters and are combined to produce the

entire movement repertoire. The tradeoff of this compact representation is loss of

granularity and/or generality of the movement space. As a result, more recent work

has focused on using imitation as a way of acquiring new primitives (as new sequences

or combinations of existing primitives) that can be added to the repertoire [67] [50].



As will be discussed in section 5.7 and chapter 6, the system described in this thesis

also incorporates the idea of movement primitives and goal-directed behaviors, which

can be added to and adapted at run-time.

Recently, Lieberman [75] developed a system for teaching a humanoid robot dex-

terous motor skills through human demonstration, and for automatically parsing ob-

served motion streams into individual skills. Lieberman's system takes an intentional

approach to action parsing, analyzing motion and end-effector position with respect

to objects in the environment, in order to find the intentional boundaries of move-

ments. His system is also able to develop new motion spaces by correctly editing and

combining multiple differing examples of a task-oriented movement (e.g. picking up

a cup from a number of different angles) and interpolating between them (for more

information on motion spaces created by interpolating multiple animations, see the

discussion of blended animations in section 5.7.3).

3.2.2 Learning to imitate

In learning to imitate, the robot learns how to solve what is know as the corre-

spondence problem through experience (i.e., how to map the observed movement of

another onto the character's own movement repertoire). One strategy for solving the

correspondence problem is to represent the demonstrator's movement trajectory in

the coordinate frame of the imitator's own motor coordinates. This approach was

explored by Billard and Schaal [14] who recorded human arm movement data using

a Sarcos SenSuit and then projected that data into an intrinsic frame of reference for

a 41 degree-of-freedom humanoid simulation.

Another approach, the use of perceptual-motor primitives [118] [67], is inspired by

the discovery of mirror neurons in primates. These neurons are active both when a

goal-oriented action is observed and when the same action is performed (recall section

2.2.4). Mataric [77] implements this idea as an on-line encoding process, that maps

observed joint angles onto movement primitives to allow a simulated upper torso

humanoid to learn to imitate a sequence of arm trajectories.

Others have adapted the notion of mirror neurons to predictive forward models



[126]. For instance, Demiris and Hayes [46] present a technique that emphasizes the

bi-directional interaction between perception and action, where movement recogni-

tion is carried out by the movement generating mechanisms. To accomplish this, a

forward model for a behavior is built directly into the behavior module responsible

for producing that movement. In model-based imitation learning, the imitator's mo-

tor acts are represented in task space where they can be directly compared with the

observed trajectory. Using this approach, Atkeson and Schaal [4] show how a forward

model and a priori knowledge of the task goal can be used to acquire a task-level

policy from reinforcement learning in very few trials. They demonstrated an anthro-

pomorphic robot learning how to perform a pole-balancing task in a single trial and

a pendulum swing up task in three to four trials [4] [5].

As discussed in section 2.2.4, our implementation is also inspired by the possible

role that mirror neurons play in imitative behavior. In the approaches described

above, mirror neuron-inspired mechanisms are an on-line process for either mapping

perceived movements to another coordinate frame, or are a forward model that is

directly involved in generating the observed action. In contrast, our implementation

is consistent with that discussed in Oztop and Arbib [90] and Meltzoff and Decety

[85], where mirror neurons are believed to represent observed movement in terms of

the creature's own motor coordinates. This concept of explicit representation (i.e.

memory) is important in order to capture the goal-directed match-to-target search

that characterizes exploratory imitative behavior of infants [87]. It is also important

in order to account for the ability of young infants to imitate deferred actions after a

substantial time delay (on the order hours and even days) that Meltzoff has observed

[81] [82] .

Finally, the correspondence problem has also been addressed in the animation and

motion capture literature, where it is known as the problem of retargetting [55], or

taking motion capture or animation data from one character and using it to animate

another character of differing size. Some particularly interesting work in this area

has been done by Bindiganavale [16], whose CaPAR system parses motion capture

data into hierarchical goal-directed action units, which can then be played out on a



new character after only a single example. However, this work is approached from a

very different vantage point than our own, since its goal is primarily to allow more

flexible use of motion capture or animation material, rather than on giving synthetic

characters additional cognitive functionality. As a result, this approach does not take

advantage of already existing cognitive mechanisms within the characters, who are

viewed primarily as directed actors rather than independent agents.

3.2.3 Learning by imitation

Imitative behavior can either be learned or specified a priori. In learning by imitation,

the robot is given the ability to engage in imitative behavior. This serves as a mecha-

nism that bootstraps further learning and understanding from guided exploration by

following a model. Initial studies of this style of social learning in robotics focused on

allowing one robot to learn reactive control policies to navigate through mazes [60]

or an unknown landscape [41] by using simple perception (proximity and infrared

sensors) to follow another robot that was adept at maneuvering in the environment.

This approach has also been applied to allow a robot to learn inter-personal commu-

nication protocols between similar robots, between robots with similar morphology

but which differ in scale [12], and with a human instructor [11]..

Learning by imitation often advocates an "empathic" or direct experiential ap-

proach to social understanding whereby a robot uses its internal mechanisms to assim-

ilate or adopt the internal state of the other as its own [41] [70]. Given our discussion

in section 2.2.1, we also advocate a simulation theoretic approach to achieve social un-

derstanding of people by robots and animated characters. However, a pure empathic

understanding where the character simply "absorbs" the experience, and does not dis-

tinguish it as arising from self, or being communicated by others, is not sufficient for

human-style social intelligence. For many forms of social learning, the character must

be able to determine what is held in common and what is not-these include social

referencing, and cooperative and competitive activities, where separating your own

knowledge from the knowledge of the other is especially paramount. In our approach,

the character can use its own cognitive and affective mechanisms as a "simulator"



for inferring the other's internal states, which are represented as distinct from the

character's own states.

3.2.4 Towards Socially Intelligent Characters and Robots

Recently, a number of projects by the Robotic Life Group at the MIT Media Lab

have begun addressing the problem of creating socially intelligent robots, focusing es-

pecially on the development of robots who can cooperate with humans. In particular,

the group's expressive humanoid robot, Leonardo, can learn a number of collabora-

tive button-pressing tasks, using human guidance to quicken the learning process [291.

The robot forms and refines hypotheses about the goals of the task by listening and re-

sponding to verbal instruction, observing human gesture (e.g. pointing), and looking

at changes in the environment (e.g. which buttons have changed state) [76]. Subse-

quently, the robot can perform the task collaboratively with the human, completing

some of the task goals, while allowing the human to complete others. Throughout

the interaction, the robot uses communicative gestures to aid the learning and col-

laboration processes. Similarly, Leonardo can also be taught games to play with the

human instructor [32]. In the case of competitive games, this requires Leonardo to

know that the human's goal in the task is different than his own, necessitating an

explicit representation of self and other's goals.

In other work with the robot Leonardo, we created a cognitively-inspired facial

imitation architecture. Our implementation was heavily inspired by the imitative

interactions human infants and their caregivers frequently engage in [84], and by the

Active Intermodal Mapping (AIM) theory of facial imitation proposed by Meltzoff and

Moore [87]. AIM suggests that a combination of innate knowledge and specialized

learning mechanisms underlie infants ability to imitate. Specifically, AIM proposes

that infants have an innate ability to recognize other's facial organs, and that they

map their own movements, and the movements they observe, onto the same internal

representation (hence, intermodal mapping). In other words, AIM presents a model

for the implementation of Simulation Theory via perception-production coupling in

infant facial imitation (for more details on the AIM model, see for example Meltzoff
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Figure 3-4: An animated version of the Leonardo robot imitates a human model's
facial expressions.

and Moore 1997 [87]).

In this implementation, an animated version of Leonardo is able to learn the corre-

spondence between his own facial features and those of a human model by having the

human imitate him. Subsequently, he is able to imitate the human's facial expression

(shown in figure 3-4). This ability was then used to help bootstrap social referencing

capabilities in the robot, where the robot used the emotions typically associated with

its own facial expressions to judge the emotional stance of a human model towards

objects in the environment, and respond accordingly.

The implementation of facial expression mimicry in Leonardo was an important

first step towards creating a robot with Simulation Theory-style social learning abil-

ities. It demonstrated that social learning skills, such as social referencing, could

be bootstrapped from facial imitation abilities. However, in this implementation,

Leonardo's imitative abilities were limited to static facial expressions, and the Sim-

ulation Theory he employed occurred only at the level of his movement primitives.

This thesis takes many of the ideas introduced in that work further, creating a social

learning system that applies Sirmulation Theory at the level of goal-directed actions as

well as movements, allowing the characters presented here to imitate whole gestures

and movements, identify simple motivations and goals for other's actions and learn

about objects in the environment by watching others interact with them. In the next

chapter, I will use the test characters Max and Morris Mouse (who will be the focus

of the remainder of this thesis) to present the full spectrum of social learning abilities

implemented in this thesis.
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Chapter 4

Max and Morris

Max the Mouse and his friend Morris (pictured together in their virtual environment

in figure 4-1), are two anthropomorphic animated mouse characters, and the testbed

for the Simulation Theory-based social learning system presented in this thesis. Max

Figure 4-1: Max (right) and Morris (left) in the virtual desert

and Morris inhabit a rather minimalist graphical world, populated only by themselves,

and sometimes containing a small number of simple objects representing food and toys

(see figure 4-2) They star in a number of small interactive demonstrations, meant
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Figure 4-2: The objects that can be introduced into the world.
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Figure 4-3: Visualizer showing the current level of Max's hunger and play drives

to test and exhibit the imitative and social learning capabilities implemented in this

work. In this chapter, I will present an overview of these demonstrations, and describe

Max and Morris's behavior, in order to ground the discussion of architecture and

implementation in the remainder of the thesis. Videos of interactions similar to the

sample interactions described below will be available at

www.media.mit.edu/~daphna/thesisvideos.html

4.1 Sample Interaction :The Basics

Max and Morris start out facing each other in the middle of a barren desert (they

are the last of the little known sahara mouse species Unluckius rattus). A Drive

visualizer visible on screen shows that Max's levels of playfulness and hunger are

both high (pictured in figure 4-3), and the same is true for Morris. However, there

are no food or toy objects available in the environment (as of yet, there are no objects

in the environment at all), and Max and Morris begin to pace.

As shown in figure 4-2 there are a small number of objects which can be intro-



Figure 4-4: Buttons for introducing objects into the world

Figure 4-5: Max (left) and Morris (right) jumping for a piece of cheese

duced into the world, by choosing among corresponding labeled buttons (figure 4-4).

Pressing any of the buttons causes an object of that type to appear in the world, hov-

ering over the mice's heads, and a corresponding array of sliders, which manipulate

the object's location, to appear in the button panel. In this case, a piece of cheese is

introduced.

As soon as the piece of cheese is added to the world, both mice stop pacing and

navigate over to it. They then begin jumping for the cheese (seen in figure 4-5).

As the cheese is manipulated - lowered down, moved sideways - they adjust their

jumping direction and orientation, and begin reaching instead of jumping when the



cheese is closer to them. Eventually, the cheese is moved so that it is close enough for

Max to get it. Max eats the cheese, it disappears and Max's level of hunger in the

Drive visualizer drops. While Max was eating the cheese, Morris continued reaching

for it, but he stops reaching for it once it is gone.

Next, a ball is added to the world, and both mice begin to reach for it. However,

after a new piece of cheese is also introduced, Morris, whose level of hunger is still

high, switches to jumping for the cheese, while Max continues jumping for the ball.

Finally, after some time has elapsed, Max's level of hunger is high again, and he too

begins to reach for the cheese.

4.2 Sample Interaction: Imitation

As before, Max and Morris start out facing each other in an otherwise empty world.

This time, no objects are introduced, and instead Max is instructed to observe Morris.

Max orients towards Morris and, as he does so, a graphical window displaying the

world from Max's perspective shows a stick figure version of Morris coming into view

(figure 4-6). In the window that represents Max's viewpoint a number of Morris's

joints, such as his hands, nose and feet, are marked with colored spheres.

Figure 4-6: Morris, rendered from Max's point of view. Certain key effectors, such as
Morris's hands, nose and feet, are marked by colored sphere's

There is also a panel of buttons available, labeled with a variety of possible move-

ments such as wave, poundGround, coverEyes, jump and thumbsUp (figure 4-7). The

-ME



Figure 4-7: Buttons for requesting that Morris perform different movements

Figure 4-8: Buttons for requesting that Max observe, imitate or identify Morris's
action

version of Morris used in this interaction is somewhat different than the previous

Morris-he must perform any movement chosen from the button panel. As described

in appendix B, a movement is simply an individual motion primitive or gesture. In

this case, the button labeled jump is chosen, and as Morris jumps up into the air

Max adjusts his gaze so that Morris stays in view.

Once Morris has landed Max is asked to imitate the movement he last saw Morris

perform (see figure 4-8). Based on his observation of Morris, Max finds the movement

he knows how to perform that is closest to what he saw, and begins to jump into

the air. Next, Morris is told to cover his face. As Morris raises his arms to cover his

face, a number of the colored spheres marking his joints become obscured from Max's

perspective (see figure 4-9). Nevertheless, Max correctly reproduces the movement

when asked to imitate it (figure 4-10).

4.3 Sample Interaction: Action Identification

Once again, Max and Morris face off in the desert. As in the first scenario, they both

have high levels of playfulness and hunger. A ball is added to the world and Max

is instructed to observe Morris, who begins jumping for the ball. This time, Max is

asked to identify the action Morris is performing, which he does by also beginning to

jump for the ball.



Figure 4-9: Morris covering his eyes, as seen by Max. Notice that some of the spheres
marking his body parts are not visible (compare to figure 4-6)

While a movement is an individual motion primitive, an action is a movement

or series of movements placed in an environmental and motivational context. Move-

ments represent stand-alone physical motion, while actions are behaviors performed

in response to environmental triggers, motivational drives and desired goals states

(see appendix B for more details). Max identifies Morris's jumping action, by looking

for actions in his own behavior system that use the jumping movement. In this case,

he finds that jumping is used to get objects, and that toys such as balls satisfy his

play drive. By jumping for the ball, Max shows that he knows that Morris is trying

to get the ball, and that he is doing this in order to satisfy his play drive.

A second object is added to the environment, a piece of cheese. The cheese is

lowered down closer to Morris and Morris stops jumping for the ball and begins

reaching for the cheese. Max is again asked to identify Morris's action, and begins

reaching for the cheese (not the ball) as well. By doing so, Max indicates not only

that he knows Morris is reaching, but that he is trying to get the cheese because his

level of hunger is high.

Now, the cheese is brought even closer to Morris so that he is able to reach it

and eat it. When asked to identify Morris's action, Max mimics eating, correctly

identifying Morris's action even though the cheese, having been eaten by Morris, is

no longer there.



4.4 Sample Interaction: Learning About Objects I

In this interaction an object we haven't seen before is introduced, an ice cream cone.

Morris begins to reach for the ice cream cone, but Max, who doesn't 'know' that ice

cream is edible (or useful for anything at all), does not attend to the ice cream.

Once again, Max is asked to observe Morris, and identify his action. Max shrugs,

indicating that he doesn't know why Morris is reaching (since, to him, the ice cream

has no purpose). The ice cream is given to Morris, who eats it. Max is again asked

to identify Morris's action, and this time, he mimes eating. Now, when another ice

cream cone is added to the environment, Max immediately orients to it and begins

reaching for it. When he is given the ice cream he eats it, having learned that ice

cream is edible.

4.5 Sample Interaction: Learning About Objects II

While there is only one way for Max and Morris to eat food-by consuming it, there

are a number of ways in which they play with toys. When Max or Morris is given a

ball, they toss it up and down in the air. When one of them is given a baton, they

dance in a circle with it. Both these actions reduce their level of playfulness.

Here, another new object is introduced, a cube-shaped tossing toy. As with the

ice cream, Morris knows how to use this toy, but Max does not know its purpose.

Morris is given the cube, and begins tossing it, while Max is again told to observe

and identify his actions. Subsequently, when Max's level of playfulness is high, he

reaches for the cube, and when he is given the cube he begins tossing it. Here, Max

has learned not only that he can play with the cube, but how to play with it.



4.6 Looking Ahead

In this chapter, I introduced Max and Morris Mouse, and described some typical

interactions and behavior patterns for them. In the next chapter, I will describe the

overall cognitive architecture underlying their behavior, while in chapter 6 I'll go into

the details of their implementation.
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Figure 4-10: First row. Morris (blue) demonstrates an action (covering his eyes) while
Max (brown) watches. Second row: Morris through Maxs eyes. The colored spheres
represent key effectors. Third row. Max reproduces Morriss action, by performing
the movements in his own repertoire that are closest to what he observed.
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Chapter 5

Cognitive Architecture

Max and Morris Mouse are the latest in long line of interactive animated characters

developed by the Synthetic Characters Group at the MIT Media Lab [68] [20] [116]

[21] [66]. They were built using the Synthetic Characters C5m toolkit, a specialized

set of libraries for building autonomous, adaptive characters and robots. The toolkit

contains a complete cognitive architecture (or "virtual brain") for synthetic characters

(diagrammed in figure 5-1), including perception, action, belief, motor and navigation

systems, as well as a high performance graphics layer for doing Java-based OpenGL

3D Graphics. All of the work described in this thesis was implemented under the

C5m system.

Several thorough introductions to the Synthetic Characters toolkit have already

been written [21] [34] [65], so I will only present a relatively brief introduction here,

focusing particularly on functionality added especially for this work, and on the im-

plementation details of the characters and architectures specific to this thesis.

5.1 System Overview

Figure 5-2 presents a high-level overview of the C5m system. The central component

is the World, which represents the "ground-truth" of the environment the characters

exist and operate in. The World keeps track of all the creatures and other physical

objects in the synthetic environment, and coordinates all communication and data



The World

Figure 5-1: This is the overall cognitive architecture used for characters such as Max
and Morris. The systems are processed serially, in roughly top-to-bottom (or light-to-
dark) order, relative to this figure. Imitation, and other social skills, make particular
use of the perception, action and motor systems. (Adapted from Burke 2001 [34])

transfer between creatures, objects, and input devices. Input devices are anything

that provides sensory information, including standard interfaces such as keyboards,

mice and joysticks, as well as optional microphones, cameras and other physical sen-

sors (e.g. pressure sensors for a robot). Creatures and other objects are also input

devices, since they provide sensory information to each other. The World and all

its objects are optionally hooked up to a graphical front-end, however objects in the

synthetic world are not required to have a graphical representation.

5.2 Input to the System

The World collects messages called data records from input devices, and distributes

them to creatures. Data records are used extensively throughout the system, and

represent sensory information that the creatures may perceive and act upon. For

example, a data record might contain symbolic visual information, such as a creature's



Figure 5-2: An overview of the Synthetic Character's System (After Isla 2001 [65])

current position and "shape", which each creature posts every timestep. Alternatively,

it could contain user-input information that the creatures then "perceive" (e.g. button

presses, auditory input). Data records are also produced internally by sensors in

the creature's sensory system (described in section 5.3), allowing passively collected

sensory information handed in by the World (e.g. symbolic vision) and actively

collected sensory information sensed by the creature (e.g. synthetic vision, described

in section 5.3.1) to be processed by the same perceptual mechanisms down the line.

5.3 Sensory System

A creature's sensory system is composed of sensors, which are responsible for gath-

ering and filtering a particular type of sensory data. The simplest of these are input

sensors, each of which is paired with an input device. Every timestep, the World

collects data records from each input device, and makes them available to any input

sensor registered to receive data records from that device. The input sensor then

filters these records to enforce sensory honesty. Specifically, the input sensor filters

out sensory information that should not be perceivable by the creature, for example

visual events that occur behind the creature. Sensors may also perform additional

processing on the data, such as low-pass filtering of position information, or even

performing sophisticated pattern recognition algorithms on video input.



Another kind of sensory information worth mentioning is proprioceptive input.

Proprioceptive sensors assimilate information about the creature's current state, which

has been posted to working memory (a sort of internal blackboard), by the creature's

other systems. Of particular importance to the work in this thesis is proprioceptive

body pose information-the creature's sense of where in space its body parts are

currently located.

5.3.1 Synthetic Vision

For this thesis, another kind of sensor, the synthetic vision sensor, was implemented

(the implementation is almost identical to that used by Isla, and described in [65]).

Learning by observation is an inherently visual process, and using synthetic vision,

where the character "sees" the world graphically rendered from its own perspective,

forces us to grapple with the problems of gesture and movement recognition in a more

honest and biologically plausible manner than in a system that uses only symbolic

visual information.

The Synthetic Characters group has used synthetic vision in a number of previous

projects [19] [66]. For my thesis, I used a simple form of color-coded synthetic vision,

shown in figure 5-3. This type of Synthetic Vision has been used previously, for

example in [117]. Each timestep, the synthetic vision sensor takes as input a graphical

rendering of the world from the position and orientation of the creature's eye. This

rendering is typically a color-coded view of the world, in which each object is assigned

a unique color, which can be used as an identifying tag. By scanning the visual image

for pixels of a particular color, the creature can "see" an object. However, just as

with real vision, objects that are obstructed or out of view cannot be seen.

Besides determining whether an object is obstructed or visible, the other impor-

tant function of the synthetic vision sensor is to determine object location. A simple

approximate location can be extracted visually by examining the screen-space coor-

dinates of an object's centroid in the point-of-view rendering. The (x, y) screen-space

coordinates can then be combined with information from the rendering" s depth-buffer,

in order to determine the location of the object in the coordinate frame of the crea-



Figure 5-3: This figure shows Morris in 3 poses. The top row is Morris as we see
him, while the bottom row is Morris as seen through Max's synthetic vision. The
colored spheres on Morris's body are key body parts whose location is tracked by the
synthetic vision system.
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Figure 5-4: A simple example percept tree.

ture's eye (i.e. the object's location from the creature's perspective). See appendix

A for the mathematical formulas involved. The specific use of synthetic vision in this

thesis is discussed in section 6.1.

5.4 Perception System

Once the sensory system has finished filtering the incoming data records it passes

them into the perception system, where they are processed by the percept tree. The

percept tree is a hierarchical mechanism used to extract state and feature information

from sensory input. Each node in the tree is called a percept, with more specific

percepts closer to the leaves. Percepts are atomic perception units, with arbitrarily

complex logic, whose job is to recognize and extract features from raw sensory data.

The simplest of these are symbolic percepts, which simply match symbolic input about

different objects in the world. For example, a symbolic shape percept might simply

recognize anything with a "shape", while its children might recognize the presence

of specific shapes, such as a ball, a piece of cheese, or a mouse. Percepts can also

perform more complex recognition tasks, such as pose and utterance classification

(described in [21]). The root of the tree is the most general percept, which we call

True. An example percept tree is shown in figure 5-4.

As a data record is pushed through the percept tree, each percept is given the



opportunity to examine the record's contents. The percept then does four things:

" Returns a float between 0 and 1 indicating whether it "matched" the data in the

data record-that is, whether the data record contained the feature information

the percept was looking for. For symbolic percepts this match value is generally

either 0 or 1 (e.g. the data record is either "ball shaped" or it isn't), but other

percepts, such as classifier percepts or vision based percepts, might return a

number in between, depending on how close the input is to their model.

" Returns a "confidence" between 0 and 1, representing how accurate it feels its

"match" evaluation is. Symbolic percepts almost always have a confidence of

1, since there is no uncertainty in the data they receive. However, percepts

using potentially noisy data (e.g. auditory and visual input) might return other

confidence values.

" Optionally stores results computed from the incoming data. For instance, a

location percept, which receives input in the coordinate frame of the character's

eye might choose to store it in other coordinate frames as well, such as relative

to the center of the character's body, or in world coordinates.

" Decides whether to pass the data record along to its children for them to eval-

uate. In general, percepts pass data on to their children when they themselves

have matched that data, and don't pass it on when they haven't. If an incoming

data record has no "shape", then it certainly won't have a "ball shape" or a

"cheese shape".

All the data from a particular percept's evaluation of a data record-match, con-

fidence and any additional results it wants to store, are collected in a time-stamped

percept evaluation, and all the percept evaluations of a particular input data record

together form a belief about that data record, and are passed into the character's

belief system, to be integrated with previous perceptual input, in a process described

in section 5.5.



5.5 Belief System

A character's belief system stores its perceptual history, organized into beliefs about

different objects in the world. A belief represents a character's knowledge about the

feature history of a particular object-where it's been, what it looks like, what it's

said, and so on. Beliefs come into the belief system from the perception system and

are first merged with each other, and then with other already existing beliefs.

For example, the same object in the world, let's say another character, might

have a number of data records associated with it. It might put out its own data

record containing symbolic information about its shape and location. Meanwhile,

the synthetic vision sensor might generate a visual data record about the location

of certain color-coded body parts on this character's body. These data records go

through the percept tree separately, and initially result in two different beliefs. How-

ever, since they originate from the same object in the world, the data in these two

data records must be combined, and any conflicts in the data between the two (for

instance differing position information) resolved.

Beliefs are combined with each other using merge metrics which are used to com-

pare all the incoming beliefs to each other. Merge metrics simply evaluate whether

they believe two beliefs originated from the same object or not. While merge metrics

can use any mechanism to compare beliefs, the most common methods used are look-

ing at position ("are these beliefs coming from the same place in the world?") and

shape ("do these two beliefs come from objects with the same shape?"). When two

beliefs are merged the more reliable of any conflicting data is retained (i.e. the data

with the higher confidence values).

Once the incoming beliefs have been merged with each other, they are added to

the already existing beliefs in the system. While the incoming beliefs represent what

we call a percept tree snapshot-the percept evaluations of an object for a particular

timestep-the beliefs already in the system represent the character's knowledge of an

object over a period of time. Beliefs contain percept histories, which store the match,

confidence and associated data returned by each percept, with respect to that object,



per timestep, over a predetermined history length. While it is up to the percept

history as to how to store this data, the simplest mechanism is to just store all the

time-stamped percept evaluations. New beliefs are merged into old using the same

merge metrics used to combine new beliefs with each other.

5.5.1 Belief Selectors

When other systems, such as the action system, want access to information stored

in the belief system they are able to use a system of belief selectors. Belief selectors

search the belief system for beliefs about objects that fit particular criteria-generally

beliefs that match a specified combination of percepts or percept data, for a particular

point in time. For instance, a belief selector might be used to find a belief about an

object that matched cheese shape 2 seconds ago. A belief selector could also be used

to find all the beliefs about objects that matched the food percept, and then to select

the one among those that's currently closest to character's hands.

5.5.2 Derived Percepts

One particularly important kind of percept not described earlier is called a derived

percept, and operates on a character's already existing beliefs. Derived percepts are

able to evaluate objects based on the primitive features other percepts have extracted,

and can therefore make more complex assessments of objects, rather than just per-

forming simple feature extraction. For instance, a derived food percept could look at

the "shape" stored in the shape percept history of an object and see that it is "cheese

shape", and then look at the color stored in the color percept history and see that

it is "yellow", and match this object as a food object, based on previous knowledge

that yellow cheese-shaped objects are food.



Figure 5-5: An example action system. Purple rectangles represent tuples. Red circles
are trigger contexts, yellow triangles are objects, and blue rectangles are actions (do-
until contexts not shown). There are three motivational subsystems in this example
action system.

5.6 Action System

A character's action system is responsible for behavior arbitration - choosing what

behavior the character engages in and when it does so. Individual behaviors are

represented in our system as action tuples [21] and are organized into a hierarchical

structure composed of motivational subsystems (which are described below). An

example action system is shown in figure 5-5. Each action tuple contains one or more

actions to perform, trigger contexts in which to perform the action, an optional object

to perform the action on, and do-until contexts indicating when the action has been

completed.

The action is a piece of code primarily responsible for sending high-level requests

for movements or movement sequences to the motor system. The requests can range

from something relatively simple such as to "look at" an object, to more complex

actions like "reach for the cheese". Actions in tuples towards the top of the hierarchy

are more general (e.g. "satisfy hunger"), and become more specific farther down, with

leaves in the action tree corresponding to individual requests to the motor system

(e.g. "perform the eating movement"). Actions have associated values, which can

be inherent (i.e. pre-programmed) or learned, and represent the utility of performing

that action to the creature (for further discussion of action values see [21]).

Trigger contexts are responsible for deciding when the actions should be activated.



In general, there are a variety of internal (e.g., motivations) and external (e.g. percep-

tions) states that might trigger a particular action. For instance, both the presence

of food and the level of a character's hunger might be triggers for an "eat" action

(specific action triggers used in this thesis are discussed in more detail in section 6.2).

Similarly, a tuple's do-until contexts decide when the action has completed.

Many behaviors, such as eating and reaching, must be carried out in reference to

a particular object in the world. In our system, this object is known as the object

of attention, and is chosen by a belief selector installed in the action tuple. In this

thesis, all action tuples not at the top-level of the action hierarchy defer their choice

of object to the tuple at the top of their motivational subsystem. Action tuples at the

top of motivational hierarchies choose objects of attention most likely to satisfy the

particular drive they serve (e.g. a satisfy hunger tuple might choose a nearby food

object), and write these choices into working memory for the tuples below them to

use.

Action tuples are grouped into action groups that are responsible for deciding at

each moment which tuple will be executed. Each action group can have a unique

action selection scheme, and there can be only one tuple per action group active

at a time. All the action groups in this thesis use a probabilistic action selection

mechanism, that chooses among all the tuples they contain based on their respective

trigger and action values. As mentioned earlier, the characters in this thesis use

an action system that is hierarchically organized and motivationally driven. This

hierarchical organization means that each level of the action system has its own

action group, containing increasingly specific, mutually exclusive, action tuples. At

the top-level are tuples whose purpose is simply to satisfy a particular motivation or

drive, such as a play or hunger drive. Since these tuples are in the same action group,

only one of them may be active at a time, which keeps the character from dithering

between competing drives.

Below each of these motivational tuples, are tuples representing increasingly spe-

cific mechanisms for satisfying drives. For instance, below the satisfy hunger action

tuple (whose sub-hierarchy is shown in figure 5-6), are tuples such as get food, and eat



Figure 5-6: A simplified diagram of Max's hunger motivational subsystem (the top-
level of his play motivational subsystem is shown as well)

food, and below get food are in turn reach for food and jump for food. Again, at each

of these levels of the hierarchy, only one action tuple at a time may be active. For ex-

ample, satisfy hunger, get food and reach for food could all be simultaneously active,

but reach for food and jump for food cannot be active at the same time (which makes

intuitive sense, since they would require the character to perform conflicting motions

simultaneously). I will talk a bit more about drives and motivations in the following

section. Finally, one important point about the hierarchical action structure used by

the characters in this thesis is its striking similarity to the motivationally-driven hi-

erarchical behavior systems hypothesized by ethologists and cognitive scientists such

as Whiten [121], Bryne and Russon [351, and Timberlake [110] [109] (described in

section 2.1.1).

5.6.1 Motivations, Drives and Autonomic Variables

Burke [33] provides an excellent description of the use of autonomic variables within

the Synthetic Characters system:



Our atomic component of internal representation is the Autonomic

Variable. Autonomic Variables each produce a continuous scalar-valued

quantity. Most Autonomic Variables have drift points values that they

drift toward in the absence of any other input. Some of the creature's

Autonomic Variables represent Drives, like the hunger drive depicted in

the figure below. In addition to its drift point, each Drive also has a set

point, the value at which the drive is considered satisfied. The strength of

the drive is proportional to the magnitude of the difference between the

set point and the output value. Associated with each Drive is a scalar

drive multiplier that allows the creature to compare the importance of

various drives. Over the course of a creatures existence, these multipliers

might change, so that the creature can favor different drives at different

times. This mechanism can be used to create periodic changes in the

creatures drives (for example, to produce a circadian rhythm) and induce

drive-based developmental growth over a creatures lifespan.

0.0 (set point) 0.8 (drift point)

hunger
04 1.0

Figure 5-7: An autonomic variable, the atomic component of internal representation
(from Burke 2001 [33])

In this thesis, drive values are used as input to both action triggers and action

values, so that, for instance, the satisfy hunger tuple is triggered by a large rise in the

hunger drive, while the value of performing the satisfy hunger tuple is proportional to

the strength of the drive. For more information on autonomic variables and drives,

please see the rest of Burke's discussion in [33].



5.7 Motor System

Note: The motor system described in this section is based on the system originally developed by

Downie [47], and retains many of its predecessor's representations and mechanisms

For most character architectures, a creature consists broadly of two components-

a behavior system and a motor system. Where the behavior system is responsible for

working out what the creature ought to be doing, the motor system is responsible for

carrying out the behavior systems requests. The primary task of the motor system

for a conventional 3D virtual character is therefore to generate a coordinated series of

animations that take the character from where his body is now to where the behavior

system would like it to be. To do this, our motor system must possess a number of

basic competencies: given a set of source animations created by animators, the motor

system must be able to play out animations onto character bodies on command e.g.

a walk cycle; it must be able to layer animations e.g. a hand wave atop a walk cycle;

and it must be able to blend animations-e.g. blending turn left with walk forward

to produce an intermediately turning walk cycle.

However, these competencies alone aren't sufficient for accomplishing more so-

phisticated motor learning tasks such as imitation. For this, our motor system must

have additional capabilities, such as modeling body configurations, reflecting on its

own contents, coordinating animations with respect to goals (e.g. get my hand close

to the food; walk over to the toy and reach for it), and generating novel animations.

Additionally, the choice of motor representation becomes critically important if we

are interested in the kind of perception-production coupling suggested by Meltzoff's

research, research on mirror neurons and Simulation Theory. For this, we need a

movement representation that can be used not only to easily generate actions, but to

help recognize them. Therefore, because of the importance of motor representation

to the goals of this thesis, I will explore the motor system in a bit more detail than I

have spent on the systems described so far.



Figure 5-8: A simple posegraph. Green lines are allowable transitions between poses.
The Blue square is the pose representing the characters current body configuration.

5.7.1 The Posegraph

Our creatures use multi-resolution, directed, weighted graphs, known as posegraphs

as their motor representation (An example posegraph is shown in figure 5-8. For a

discussion of graph-based motor systems see [47], and also [3] and [73]).

To create a characters posegraph, source animation material is broken up into

Poses corresponding to key-frames from the animation, and into collections of con-

nected poses known as movements, which generally correspond to individual source

animations or motor actions, and are discussed in more detail in section 5.7.3. These

representations can be annotated and associated with pre-computed information. An-

imations can be generated or reformed in real-time by interpolating down a path of

connected pose nodes, with edges between nodes representing allowable transitions

between poses (or at a lower level of resolution, between movements). This creates

both flexibility in the resolution of the motor pieces to be interacted with, and a

reduction in the size of the atomic units the motor system operates on. The graph

represents the possible motion space of a character, and any motor action the char-

acter executes can be represented as a path through the posegraph.

5.7.2 Moving around the graph

The motor system takes the body from an arbitrary pose in the graph to a particular

desired pose by searching for the shortest path along the edges of the graph. We use



a popular graph search algorithm known as the A* search algorithm [72].The use of

the A* algorithm will generate search results on demand - rather than a statically

computed 'all pairs shortest path' algorithm. This allows us to change the distances

of edges and change content and topology at run-time without an expensive recom-

putation.

The motor system travels along the paths found by the A* search algorithm, and

generates animations by interpolating between the joint angles contained in the poses.

If two adjacent nodes originated from the same source animation we already know

the time difference between the nodes, because the information is stored in the pose.

Failing that, we can estimate the time it might take to interpolate between two frames

based on the current joint positions and velocities of the two nodes this calculation

is similar to those we perform to find the distance between two poses.

5.7.3 Multi-resolution graphs

As mentioned previously, we can build and store lower resolution views of the motor

graph-views of the graph whose nodes are made up of more than one pose. These

lower-resolution versions of the graph have a number of possible organizations, all of

which may be used within a given motor system. Of particular interest, are versions of

the graph where pose nodes are grouped into movements, each of which corresponds

to an animation (either a source animation or a procedurally generated one).

Movements generally correspond to things we might intuitively think of as com-

plete actions (e.g, sitting, jumping, waving), and therefore often match up closely with

requests from the behavior system. While the pose representation provides us with

greater motor knowledge and flexibility, the movement representation is often a more

natural unit to work with. Our motor system takes advantage of both representations

by being able to transition freely between the two views of the graph.

Movements provide the motor system with a shorthand for commonly executed

motor actions, allowing comparisons to be made, and information stored, for entire

paths through the posegraph. This shorthand speeds up the path discovery process;

movements may be used as destination nodes, in which case we need only find the



Figure 5-9: An example graph of movement nodes. Large rectangles represent move-
ments, small squares represent poses. Stacks represent blended movements and poses

movement node itself, and then interpolate through the poses it contains, rather

than searching each time for the shortest path from pose to pose. In general, lower

resolution graph views have far fewer nodes and edges, and can be searched quickly

to find areas of the high-resolution graph that may contain the pose that best solves

a particular problem. Finally, movements may themselves be grouped, allowing for

increasingly coarse views of the graph to be created.

Another multi-resolution aspect of the graph is seen in a representation called the

blended pose. A blended pose is a pose containing sub-poses that it blends together

at run-time, in order to derive its joint angle, velocity, timing and other data. We

can use this ability to blend between different gaits of walking, different degrees of

turning, or for looking in different directions, and to create a continuous output space

of poses.

5.7.4 Motor Programs

There is an important void in the framework described so far- we have no formal way

of specifying a complex, coordinated, task (e.g. sit down; turn-left, move forward,

move for-ward, stop), or to recognize that a particular task or gesture has been



achieved. In the simplest case, where the complex act corresponds to a previously

created movement, these things are free. To animate the complex act, the motor

system should simply interpolate through the poses in the corresponding movement;

the act is finished when the last pose in the movement has been played out.

We use motor programs, simple pieces of computation created by the motor sys-

tem, to specify and complete motor tasks. The simplest example program might

simply be:

GetPath from currentNode to sit;

Wait until currentNode == sit;

Which would tell the motor system to find a path from the node representing the

characters current body configuration to the movement node labeled sit, and then to

wait for that path to be interpolated and played out on the characters body, before

making another motor request. Alternatively:

GetPathTo sit start;

Wait until currentNode == sit start;

GetPathTo sit middle;

Wait until currentNode sit middle

would similarly generate a sit animation. Here, the labels sit start and sit middle

refer to labeled pose nodes from the original sit animation, rather than movement

nodes. Note that while the motor program itself waits for the path it is requesting to

complete, the motor system may ask to stop it at any point during its execution, and

start another program from the point it leaves off (motor programs in turn can voice

opinions as to whether or not they are able to stop). Motor programs responsible

for playing out particular motor actions can also let the behavior and motor systems

know when the actions have started or completed:

GetPathTo sit start;



Wait until currentNode == sit start;

Post sit begun

Additionally, the computations done by a motor program are not limited to finding

paths to predetermined nodes, but can be as far-ranging as searching for the pose that

best matches an example body configuration, finding the path that brings a body part

closest to a variable location (e.g. get your hands as close as possible to the cheese),

and conditionally choosing different destination nodes depending on behavior system

(or other) input.

Finally, labels within motor programs can also refer to other motor programs in

which case the program:

execute sit;

wait until sit finished;

execute follow your nose

would set a course for whatever node the program sit decides to go to, and wait

until the sit program ends, cycles or otherwise allows itself to be interrupted, before

starting the follow your nose program, which could itself have many sub-programs.

Therefore we build in the ability to have a stack of programs and sub-programs

active at any one time. Since these programs can generate destination nodes, and

even the contents of destination nodes dynamically, they allow us to generate paths

and movements that go beyond recreations of source animation material.

5.8 Summary

This chapter introduced the cognitive architecture used by characters such as Max

and Morris. The systems described here allow an animated character (or a robot) to

perceive and act upon the world around it, in a natural and life-like way. Further-

more, these systems were designed with the sensory, behavioral, and motor abilities of



humans and animals in mind. In particular, our characters use a hierarchical action

system much like that described in section 2.1.1, and our motor representation can be

used to implement mirror neuron-like perception-production coupling (we will return

to this idea at several points in this thesis). Next, we will explore the specifics behind

Max and Morris's behavior.



Chapter 6

Implementation and Results

Now that I have introduced Max and Morris, as well as described their underlying

cognitive architecture, it's time to look at the specifics of how the Simulation Theory-

style social learning system behind their behavior is implemented.

6.1 Imitation and Movement Recognition

6.1.1 Overview

As described in chapter 4, Max the Mouse is able to observe and imitate his friend

Morris's movements, by comparing them to the movements he knows how to perform

himself. Max watches Morris through a color-coded synthetic vision system, which

uses a graphical camera mounted in Max's head to render the world from Max's

perspective (described in section 5.3.1). The color-coding allows Max to visually

locate and recognize a number of key body parts (also referred to here as effectors)

on Morris's body, such as his hands, nose and feet. Currently, Max is hard-wired

to know the correspondence between his own effectors and Morris's (e.g. that his

right hand is like Morris's right hand), but previous projects have featured characters

using learned correspondences [28], and a similar extension is planned for this research

(discussed in section 7.2.1). Similarly, Max starts out knowing which body parts in

the image are which (e.g. that yellow is the color-code for the nose, and blue is for the



left hand), which is somewhat analogous to the idea that animals and infants have

innate templates for recognizing certain facial features [87].

When Max is asked to watch Morris, he roughly parses Morris's visible behavior

into individual movements and gestures. Max locates points in time when Morris was

momentarily still, or where he passed through a transitionary pose, such as standing,

both of which could signal the beginning or end of an action. Max then tries to

identify the observed movement, by comparing it to all the movement representations

contained within his own movement graph. To do this, Max compares the trajectories

of Morris's effectors to the trajectories his own limbs would take while performing a

given movement. This process allows Max to come up with the closest matching

motion in his repertoire, using as few as seven visible effectors (as of writing, I have

not tested the system using fewer than seven). By performing his best matching

movement or gesture, Max can imitate Morris. In the following sections, I describe

this process in more detail.

6.1.2 Parsing Observed Motion into Gestures

When Max uses his synthetic vision system to watch Morris, he sees an essentially

continuous stream of input, broken only into individual frames of graphics. Max

thus faces a classic motion capture problem: how to parse data from an ongoing

series of actions into individual movements and gestures, and how to recognize these

movements and gestures (the problem of recognizing and labeling object motion is

introduced by Badler in [6]). One common approach to segmenting motion data is

looking for large changes in the acceleration and velocity of key joints-which might

represent a body part changing directions or coming to a stop [50] [15]. Often, the

2nd derivative of the motion data is used to detect these points. This information is

then combined with a probabilistic model to try and identify whether these points

could be the beginnings or endings of movements.

In this case, I took a somewhat different approach to segmenting motion data.

Many different movements start and end in the same transitionary poses, such as

standing or sitting, so that these poses can potentially be used as segment markers.



Figure 6-1: An example graph of movement nodes. Large rectangles represent move-
ments, small squares represent poses. Stacks represent blended movements and poses
(this figure is the same as figure 5-9)

In fact the idea that certain poses or animations represent "hubs" in a character's

movement repertoire has previously been used in assembling motor graphs for an-

imated characters, and even for parsing human motion capture data [56]. As the

example movement graph in figure 6-1 shows, our characters' movement repertoires

generally follow just this sort of hub and spoke model. Here, I have taken advantage

of the fact that almost all of Max and Morris's movement primitives-that is, all the

animator-provided source animations that have been assembled into their pose and

movement graphs (as described in section 5.7)- pass through a standing position.

Rather than finding the 2nd derivative of the motion data for each effector, I use

the simpler approach of using places where Morris passes through a hub (in this case

standing), as potential indicators of the beginnings and endings of movements.

Looking for Movement Hubs-An Example

Let's say that Max watches Morris first jump up in the air, and then cover his face

with his hands. How does he take this continuous image sequence and correctly

divide it into two gestures (rather than one or four or ten)? As described in section



Node

Figure 6-2: Morris viewed from Max's perspective. The colored sphere marking his
root node is circled in yellow.

5.3.1, when Max watches Morris, his synthetic vision sensor extracts the world-space

position of each of Morris's visible body parts (the use of body part positions and

the choice of which parts to use is discussed in the following section). The most

important of these positions is Morris's root node (see figure 6-2), which Max uses

as a reference point for Morris's movements-converting the world-space position of

Morris's other body parts to root node relative positions (e.g. where Morris's hands,

elbows and feet are relative to the center of his body, rather than to the center of

the world). In order to do this, Max must figure out which way Morris is facing.

For this, he uses another visible body part-Morris's nose, as a forward reference.

Max assumes that Morris's nose is always in front of the center of Morris's body, and

uses the vector between the two points as Morris's forward vector. These pieces of

information-the world-space position of Morris's root node and the direction he is

facing- are sufficient for a standard coordinate frame transformation.

Max also has another important source of information-himself. By looking at

his own stand movement, Max can find where his body parts are positioned relative

to his root node while he is standing, forming an example standing pose. Max can

then compare this example pose with each incoming frame of motion data, to see how

close Morris's current position is to standing. The distance metric used to do this

comparison is extremely simple:



dist(A, B) = Z= 1d(AiBi) (6.1)
N

Where N is the number of of visible body parts, A is Max's sample standing pose,

B is the observed pose, and Ai and Bi are the x, y, z coordinates of body part i within

those poses. The distance between Ai and Bi is given by d, defined as:

d(a, b) = ,(ai - bi) 2 + (a2 - b2 )2 + (a3 - b3 )2  (6.2)

where a and b are 3-dimensional vectors. In other words, the distance between stand-

ing and an incoming pose is the average distance between the body parts in both

poses. For each pose, only the currently visible body parts are used in the compari-

son (i.e. if the hands are currently obscured, they are left out of the distance metric),

which is why an average is used.

Going back to our example, this means that as Morris begins to jump, the distance

between his current position and standing increases. At a certain point, an empirically

determined threshold is reached, indicating that he is no longer standing (see figure 6-

3). Conversely, as Morris falls back to the ground, and starts returning to a standing

position, the distance between his current pose and standing drops, until it is once

again below threshold. As Morris raises his arms to cover his eyes, the distance of

his current pose from standing begins to increase again, and the threshold distance

is crossed once more.

In other words, simply by keeping track of when the threshold between standing

and not-standing is crossed, and whether it was crossed on a rising or falling edge,

Max can find the beginnings and endings of Morris's movements. Added accuracy can

be obtained by low-pass filtering the distance values, but as we will see in the next

section, only a roughly accurate parsing of the motion data into individual movement

segments is necessary in order for Max to correctly identify the movements he sees

Morris performing. A nice aspect of this approach is that Max can use his body-

knowledge-the knowledge that his movements tend to start and end in hubs, and
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Figure 6-3: This figure shows 4 frames of Morris moving into a jump. In frame 1
Morris starts in a standing position. by frame 3 his body position has changed enough
to cross the threshold between standing and moving.



the knowledge of what his own hubs (standing) look like-to simplify the motion

parsing problem.

Other Approaches to Movement Parsing

While the "hub-and-spoke" approach to movement parsing presented here turned

out to be sufficient for our purposes, we have also implemented some supplementary

movement parsing mechanisms. These additional mechanisms can provide help at

points of ambiguity, where it is unclear if a transition has occurred or not, and could

potentially be used to parse more challenging data sources, such as human motion

capture data.

The first such mechanism is a system that models the demonstrator's movements

over time, and identifies points of return (i.e. particular positions or poses within the

motion that the demonstrator keeps returning to). These locations often represent

significant breaking points in the motion, particularly in cyclical movements such as

reaching, walking, jumping etc.

Additionally, we have implemented a mechanism that keeps track of when key

effectors (e.g. the hands and feet), come close to, or draw away from, objects in the

environment, which again, might indicate the beginning or ending of a movement (for

further discussion of the limits and extensibility of our movement parsing approach,

see section 7.2.2).

Using Visible Body Part Locations

Frequently in movement recognition research, input data is received in the form of

joint angles gathered from motion capture suits. I chose to use the positions of key

body parts rather than joint angles as my input for reasons of biological plausibility.

First, while joint angle data is easily available from motion capture suits (and cur-

rently, is often the only way to gather human data) and potentially from synthetic

environments, it is much more difficult to calculate from visual information alone.

It seems unlikely that humans and other animals are making extensive joint angle

inferences during their observations of others, and similarly, calculating joint angle



positions from synthetic visual data is much more difficult than simply finding body

part positions. Furthermore, research has shown that people who are watching others

move spend most of their time attending to the locations of certain key body parts,

like hands and elbows [50]. I attempted to choose equivalently salient body parts-

the hands, elbows, knees, feet, torso (root node), and nose. Additionally, effector

positions turn out to be a very flexible form of input. The system has been success-

fully run using only the hands, feet, torso, nose and neck, and, as described below,

compensates well for partial or obscured data.

6.1.3 Matching Observed Gestures to Movements in the Graph

Once Max has seen Morris perform a complete action, he is faced with another classic

problem: movement recognition. Max must classify the movement he has seen as one

of a set of movements (in this case the set comprised of the movements he is able to

perform himself). There have been many computational approaches to the problem

of gesture and movement recognition from visual data (see for example [125], [16],

[23] and reviews in [54] and [127]), most of which use a set of probabilistic models

to classify gestures, and rely on a large pre-existing example set. Here, rather than

providing Max with a large set of example movements, we note that he already has a

built-in example set-his own movement repertoire, represented by his posegraph.

As Max watches Morris demonstrate a gesture, he represents each frame of ob-

served motion by noting the world-space positions of Morris's body parts relative to

the center of Morris's body. He then searches his posegraph for the poses (frames)

closest to the beginning of the observed action (e.g. poses with similar hand, nose,

and foot positions to those he's seen). Max uses these best-matching poses as start-

ing places for searching his posegraph, exploring outward along the edges from these

nodes, and discarding paths whose distance from the demonstrated gesture has be-

come too high. Max can then look at the path generated through his graph and

see whether it corresponds closely to any of his existing movements, or whether it

represents a novel gesture. In the next section, I will describe movement matching in

a bit more detail.



Matching Observed Movements-An Example

Let's go back to the example of Max watching Morris jump in the air and then cover

his face with his hands. How does Max identify these gestures with his own cover

face and jump movements?

To briefly review from section 5.7, Max's motor representation consists of a multi-

resolution graph. At the lowest resolution, nodes in the graph represent individual

frames of animation, while at a higher level, nodes represent motion primitives (com-

plete animations) called movements, which are collections of connected poses, forming

a path through the graph. Edges in the graph represent allowable transitions between

nodes, and animations are formed by interpolating along paths in the posegraph.

When Max sees Morris jump, he represents jumping as a sort of path as well-as a

sequential series of poses containing the root-relative positions of Morris's body parts.

So, in order to represent Morris's jump in his own motion space, Max needs to find

the path through his posegraph that is 'closest' to the path he observed. Max chooses

a frame from the middle of the observed jump as a starting point for identifying what

he's seen. The middle of a movement tends to be more representative (i.e. less generic

or similar to other movements) than the beginning or the end. He then searches all

the poses in his graph for those most similar to this representative frame, using the

distance metric defined in equation 6.1.2. Max next searches outward from each of

these best-matching poses, trying to assemble the overall best-matching path, and

pruning his search as he goes along.

The following set of figures walks through a very simple example of the matching

process. In this first figure, the bright green circle in the observed movement is the

first pose to be matched, and the bright green circles in the posegraph are the two

best matches:



Posegraph

Observed Movement

Figure 6-4: The movement matching process-step 1

Now the next frame in the observed movement is compared to the children of the

initial matches (the children are shown in blue): This gives us four potential paths

Posegraph

Observed Movement

Figure 6-5: the movement matching process-step 2

(since there are four potential next poses). Only the best-matching of these paths

will be kept, where the distance between the observed movement 0 and a given path

P is defined as:

pathDistance = dist(Oi, P )
i=1

(6.3)

Where N is the length of the path currently being considered (in this case, two poses

long).



Let's say that, in this example, we keep only the two best paths each time:

Figure 6-6:

1A N' Posegraph

Observed Movement

The movement matching process-step 3

Next, we work in the other direction, looking at the parents of each potential path

(shown in red):

Posegraph

Observed Movement

Figure 6-7: The movement matching process-step 4

rM



Again, we keep only the two best-matching paths:

Posegmph

Obswved Movement

Figure 6-8: The movement matching process-step 5

The process is repeated for the remaining poses in the observed movement:

Obwwd Movement

Figure 6-9: The movement matching process-step 6



Posegraph

Observed Movement

Figure 6-10: The movement matching process-step 7

Posegraph

Observed Movement

Figure 6-11: The movement matching process-step 8

Posegraph

Observed Movement

Figure 6-12: The movement matching process-step 9



Finally, we choose the best-matching of the two remaining paths:

Posegraph

Observed Movement

Figure 6-13: The movement matching process-step 10

Max then takes this best-matching path and checks to see which movements the

poses in the path are part of. If the majority are from a particular movement (in this

case, jumping), Max assumes that this is the movement he saw Morris performing.

Distinguishing Similar Movements

Often, characters must differentiate between two very similar looking movements (or

combinations of movements). Max and Morris have a number of distinct gestures

that use the same body parts and produce similar motion trajectories, such as wav-

ing vs. knocking vs giving a thumbs up, reaching high up vs jumping, jumping to

reach something vs jumping for joy, and quite a few others. While we have not set

out to explicitly test the limits of our system's ability to distinguish between sim-

ilar movement primitives, the experience in implementing this thesis has been that

movements that are similar, but visibly different to human observers, produce enough

subtle variation in the body position, trajectory, or speed of a movement to be suc-

cessfully distinguished by our system (whether this would remain true with noisier

vision data is harder to say-see section 7.2.2 for a discussion).



Characters With Differing Posegraphs

Until now, we have also only been discussing characters who share the same move-

ment space (i.e. they have identical posegraphs). What happens to the movement

recognition process if Max and Morris don't have the same movement primitives?

We created versions of Max and Morris with somewhat different posegraphs, where

a subset of each character's movements were similar, but not identical, to a corre-

sponding set of the other character's movements. Again, while we did not explicitly

test the limits of the system, our observation is that, in these situations, Max picked

what appeared to be the closest approximation of the gestures he saw Morris per-

forming.

For example, Max had a movement in his motor system that involved covering his

face with his hands. Meanwhile Morris had a similar movement, where he covered

his face and shook his head, rocking back and forth. Morris's movement took longer

than Max's to perform, and involved the motion of a number of additional body

parts. Nevertheless, Max identified his own, non-identical, cover face movement as

the closest match in his system.

There is a relatively graceful degradation to the matching process between non-

identical graphs. As the movement primitives the two characters possess become

more disparate, the closest match becomes coarser (e.g. when Max has no cover face

equivalent at all, the best match to seeing Morris cover his face is to reach up with his

arms near his head). Ultimately, the character might decide that what he is seeing

doesn't match any of his existing movements at all, and is instead a completely novel

movement (see section 6.1.3).

Blended Movements

Another way in which differences in movement repertoire are dealt with in this imple-

mentation is through the use of blended movements (described in section 5.7.3). For

example, Max's reach movement is a blended movement, composed of nine separate

reaching animations, which, when blended together, allow him to reach all around his



body. By comparing Morris's movements to each of the sub-movements in reach, Max

can see if the movement he observed is contained within the space the sub-movements

define, even if it doesn't correspond directly to any of them.

Identifying Novel Movements

In the case where Max and Morris have posegraphs containing different movements,

Morris could perform a movement that doesn't closely match any of the movements

in Max's repertoire. Max decides that a movement he has observed is novel when

the best-matching path through his graph doesn't closely correspond to any of his

existing movements (i.e. the poses in the path are contained within many different

movements, or aren't traversed in the order any existing movements traverse them).

The use of novel movements is discussed briefly in the next section, and in more detail

in section 7.2.6.

Advantages of Graph-based matching

One important benefit of using the posegraph to classify observed motion is that it

simplifies the problem of dealing with partially observed (or poorly parsed) input. If

Max watches Morris jump, but doesnt see the first part of the motion, he will still

be able to classify the movement as jumping because the majority of the matching

path in his posegraph will be contained within his own jump movement. Conversely,

if Max has observed a bit of what Morris was doing before and after jumping, as well

as the jump itself, he can use the fact that the entire jump movement was contained

within the matching path in his graph to infer that this is the important portion of

the observed motion. In general, this graph-based matching process allows observed

behaviors to be classified amongst a characters own actions in real-time without

needing any previous examples.

Additionally, while this functionality has not yet been taken advantage of, a graph-

based matching system makes it easy for a character to learn completely novel move-

ment primitives through observation. If the matching path in the graph does not

correspond to any existing movements it can be grouped into a new movement, since



Figure 6-14: Morris covering his eyes, as seen by Max. Notice that some of the spheres
marking his body parts are not visible. This is a repeat of figure 4-9.

a movement is just a path through the posegraph.

Finally, another important note is that the combination of using effector locations

as input, and using a graph-based matching process, appears to compensate well for

the natural obstructions of visibility and changes in viewpoint that occur when one

creature is observing another. For example, Max is able to correctly identify and

imitate Morris's cover face movement, even though his nose and hands are not visible

at several points during the movement (see figure 4-9).

6.1.4 Imitation

Once Max has seen Morris jump in the air, and identified this movement as jumping,

Max's action system can request a jump movement from his motor system, allowing

him to imitate Morris. One important aspect of this implementation of imitation is

that it uses a Simulation Theory-style approach in order to give one character knowl-

edge of what the other has done. In particular, not only is Max's own motor represen-

tation used to classify Morris's movements, this classification is done explicitly-that

is, Max doesn't just play out the animation generated by the matching path in his

posegraph, he performs the movement this path most likely represents. This means

that when Max sees Morris jump, he can not only imitate that jump, but identify it

with his own jumping, and begin to look at what jumping is often used for. Coupling

the perception (classification) and production of movements allows Max to begin ex-



Figure 6-15: An example action system. Purple rectangles represent tuples. Red
circles are trigger contexts, yellow triangles are objects, and blue rectangles are actions
(do-until contexts not shown). This figure is a repeat of figure 5-5.

amining the motivations and goals for these movements, an idea I will explore in the

next few sections.

6.2 Identifying Actions, Motivations and Goals

We just saw that, by matching observed gestures and movements to his own, Max is

able to imitate Morris. Max can also use this same ability to try and identify which

actions he believes Morris is currently performing.

As described in section 5.6, Max and Morris both choose their actions using mo-

tivationally driven, hierarchically organized action systems, composed of individual

action units known as action tuples (detailed in [21]). Each action tuple contains

one or more actions to perform, trigger contexts in which to perform the action, an

optional object to perform the action on, and do-until contexts indicating when the

action has been completed. Within each level of the action hierarchy, tuples com-

pete probabilistically for expression, based on their action and trigger values. Action

tuples towards the top of the hierarchy are more general (e.g. satisfy hunger), and

become more specific farther down, with leaves in the action tree corresponding to

individual requests to the motor system (e.g. perform the eating movement).

Max keeps a record of movement-action correspondences, that is, which action he

is generally trying to carry out when he performs a particular movement (e.g. the



reaching gesture is most often performed during the getting action). When he sees

Morris perform a given movement, he identifies the action tuples it is most likely to be

a part of. He then evaluates a subset of the trigger contexts, known as can-I triggers,

to determine which of these actions was possible under the current circumstances. In

this way, Max uses his own action selection and movement generation mechanisms

to identify the action that Morris is currently performing. The following sections

describe this process in greater depth.

6.2.1 Action Identification: Example 1

Let's say that Max sees Morris eating a piece of cheese. How does Max identify that

action as eating, and how does he know that it is part of the hunger motivational

subsystem (shown in figure 6-16)?

Figure 6-16: A simplified diagram of Max's hunger motivational subsystem (the top-
level of his play motivational subsystem is shown as well). This figure is the same as
figure 6-16 seen earlier.

When Max sees Morris eat, the first thing he does is identify the movement he



sees Morris performing (as described in section 6.1.3). In this case that movement

is eating. Next, Max searches his map of movement-action correspondences to find

out which of the action tuples in his action hierarchy have requested this movement

in the past. Recall that a movement is an individual motion primitive, such as

reaching, jumping or eating, while an action is a behavior that occurs in a motivational

and environmental context, and requests that the motor system carry out particular

movements. In this case, Max finds that he has only performed the eating movement

during his eat action (figure 6-17).

Figure 6-17: Identifying where the eat movement is used

Max then traces back up his action hierarchy from the eating action tuple. In the

simple example shown in figure 6-18, the eating tuple is a direct child of the satisfy

hunger tuple, which represents the top level of the hunger motivational subsystem.

By tracing back up his action hierarchy, Max has discovered that he only performs

the eating movement when his eat action tuple is active, and he only uses his eat

action tuple when he's trying to satisfy his hunger. Therefore, Max now knows that

it's likely that Morris was eating, and that he was eating because he was hungry. Now,

Max must verify that it was possible for Morris to be eating, given the environmental
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Figure 6-18: the path through Max's action system to his eating action

circumstances. To do this, Max once again uses a simulation theoretic approach-he

checks whether it would have been possible for him to eat if he were in Morris's place.

Max evaluates the can-I triggers at each level of his action hierarchy, on the way

to the eat action tuple. In this case, there are only two levels, with one can-I trigger

each (figure 6-19). At the top-level, the can-I trigger food object present simply checks

whether there are any food objects in the environment. This kind of trigger is known

as an object selection trigger, since it checks whether any appropriate objects are

available, and then selects one of them as the object of attention for all the actions

below it in the hierarchy. The simplest object selection trigger simply searches the

belief system for beliefs about objects that have certain perceptual features. To review

from section 5.5, the belief system stores a character's representation of perceptual

input in the form of beliefs, which generally correspond to individual objects in the

world, and contain percept histories of what the object's features have been over a

short time period (e.g. the object's shape, color, location etc.). In this case, Max has

a derived percept that recognizes food items, and so the food object present trigger

looks for beliefs about objects that the food percept has fired on (i.e. objects that have
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Figure 6-19: Evaluating the can-I triggers along the path to Max's eating action

been marked as food). For more information on the belief and perception systems

please see chapter 5.

One subtle but important point here is that Max must check whether there was

any food at the time he saw Morris eating, not whether there is any food available

currently, which is what he would check if he himself were hungry. Luckily, since the

belief system stores percept histories for each belief, Max's food object present trigger

can simply search for food objects at the time Morris began eating, rather than at the

current time. In this case, the food object present trigger finds that a piece of cheese

was available, and sets the belief about this piece of cheese as the object of attention.

Now there is only one more can-I trigger to check. Max's eat action tuple can

only be activated if he is currently holding a piece of food (see figure 6-19). Max's

holding food trigger is a proximity trigger, which checks if two objects are within a

certain distance of each other. Normally, the holding food trigger checks whether the

object of attention is in the same place as one of Max's hands. However, because he

is currently simulating Morris's situation, in this case the holding food trigger must

instead check if the object of attention was in the same place as one of Morris's
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hands. Since Morris's hands are both visible body parts, their positions when he

started eating are stored in Max's belief about Morris. In other words, Max can

simply evaluate his holding food trigger using his belief about Morris instead of his

belief about himself (representations of self and other are described in more detail in

section 6.2.4). Here, he finds that Morris was in fact holding a piece of cheese at the

beginning of the eating movement. The holding food trigger returns true, and Max

concludes that Morris was indeed eating because he was hungry, and demonstrates

this by miming eating.

In general, evaluating Max's can-I triggers from Morris's perspective is almost

identical to evaluating them from Max's perspective, with just two important changes:

o Evaluation occurs for the timestep in which the observed action began, not for

the current timestep

o Max's belief about Morris is used everywhere he would normally use his belief

about himself

In the following section, I will go through an example where Max uses this technique

to identify a more ambiguous action.

6.2.2 Action Identification: Example 2

Let's say that Max sees Morris reaching for a piece of cheese instead of eating one.

Once again, how does he identify what Morris is doing?

As before, Max first identifies the movement he saw Morris performing, in this case

reaching. When Max looks in his action-movement correspondence map, he finds that

the reaching movement is used by his reach action-tuple. By tracing up his action

hierarchy from the reach tuple, Max finds that reach is part of the get tuple, which is

used by a number of motivational subsystems. In the example shown in figure 6-20,

get is used by both the hunger and play motivational subsystems.

Since Max uses the reach action tuple in a number of contexts, he must decide

which one of these contexts best matches Morris's current situation, in order to decide

what Morris is reaching for, and why he is reaching for it.
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Figure 6-20: The paths through Max's action hierarchy to the reach action. Notice
that it can be activated in both the hunger and play motivational subsystems

Max's movement-action correspondence map includes not only bottom-level action

tuples such as eat and reach, but also top-level ones such as satisfy hunger and play.

That is, when Max reaches while his satisfy hunger tuple is active, he remembers

that he performed the reaching movement during the reach, get, and satisfy hunger

tuples (see figure 6-21). In fact, the movement-action correspondence map is simply a

list of the actions that have been active when a particular movement was performed,

and the number of times that action was active for that movement. Therefore, Max

knows which motivation he is most often trying to satisfy while reaching-whichever

top-level tuple has the highest count for the reach action.

Let's say that in this case, Max has performed the reach action in order to play

more often than he has used it to satisfy hunger. He will start out by guessing that

Morris was reaching in order to play, since this is usually why he himself reaches, and

will then evaluate his can-I triggers along the path from play to reach to see if he's

correct (figure 6-22).

The first can-I trigger in the play motivational subsystem toy object present is
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Figure 6-21: When Max reaches for a piece of cheese in order to satisfy his hunger, the
satisfy hunger, get and reach action tuples are marked as having been active during
the reaching movement in Max's movement-action correspondence map

essentially identical to the food object present trigger discussed in the previous section,

except that it checks for objects labeled as toys rather than those labeled as food.

If there weren't any toys available, Max's evaluation of this path through the action

hierarchy will stop right here--he'll know that Morris couldn't have been reaching for

something to play with, because there were no toys to reach for.

Let's say that, when Max saw Morris reach, there was a ball available, as well

as a piece of cheese, but that the ball was high up in the air. In that case, the toy

object present trigger will return true, and Max will continue evaluating this path

through his action hierarchy. The next can-I trigger is a proximity trigger for the get

action, which checks whether the object of attention-in this case the ball-is close

enough to 'get' (but not so close that the character is already holding it). If the ball is

close enough to Morris that he could have gotten it by reaching or jumping (without

needing to walk anywhere), then this trigger will also return true.

Now, there is only one can-I trigger remaining-the object reachable trigger for

the reach tuple. Since the ball is high in the air, where Morris would have needed to

105



k

Figure 6-22: Max evaluates the can-I triggers along the path from the play tuple to
the reach tuple

jump in order to get it, the trigger will return false. This means that Morris is not

reaching in order to play, and so Max goes back to evaluate the other option, which

was reaching in order to eat (shown in figure 6-23).

Here, all the can-I triggers come out true-there is a food object (cheese) present,

it was 'gettable', and it was within reach. Max concludes that even though he reaches

for toys more frequently than for food, under the circumstances, Morris was most

likely reaching for the cheese.

If the ball and the cheese had been close together, where they were both reachable,

Max would have mistakenly guessed that Morris was reaching for the ball rather than

for the cheese. However, this is a 'natural' mistake-one person observing another

reach towards a number of objects would have difficulty deciding which one was the

desired object without additional information.

106



Figure 6-23: Max evaluates the can-I triggers along the path from the statisfy hunger
tuple to the reach tuple

Distinguishing Actions that Share Movements

In many cases, different actions (i.e. actions that have different trigger or do-until

contexts, or operate on different objects) utilize the same movement. In the previous

example, reachng for the cheese and reaching for the ball could be considered different

actions, because they are directed at different objects. Max can't tell which of these

Morris is performing just by identifying the reach movement-he needs to evaluate

the tuple and find Morris's object of attention to discover whether he's reaching for

the cheese or the ball. Our flexible belief selector mechanism (described in section

5.5.1 allows the same action tuple to operate on multiple objects, so that the reach

for cheese and reach for ball actions can be represented by the same tuple. However,

if desired, they could also be represented as different tuples.

For example, a character might use the same movement for yo-yoing and for

dribbling a ball. In this case, the character might have a yo-yo the yo-yo action and

a dribble the ball action, which happen to perform the same movement on different

objects. This might be particularly desirable if the two actions also have different
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do-until contexts (e.g. yo-yo until you can 'sleep' the yo-yo vs dribble until done

playing). Just as in the case of actions that share a tuple, the system can correctly

distinguish between actions that share a movement and are represented in separate

tuples. If one of our characters saw the other perform a yo-yo/dribble movement,

he would identify all of his tuples that use that movement, and evaluate the can-I

triggers in their hierarchies. Since these two behaviors are performed in different

contexts, (one requiring the other character to be holding a yo-yo, the other a ball)

the character could correctly identify which one it had observed.

6.2.3 Step-By-Step Summary of Action Identification

Action identification is an integral, and potentially confusing, part of this thesis.

Here, I will provide a step-by-step summary of how Max is able to identify Morris's

actions.

Movement recognition. The very first thing Max must do is identify the movement

he saw Morris performing, classifying it as one of his own movements.

Finding actions that use the matching movement. Once Max has identified the

movement he saw Morris perform, he checks his movement-action map for all

the leaf nodes in his action system that use that movement.

Paths through the action hierarchy. Next, Max finds all the paths through his

action hierarchy which lead to these leaf action tuples. In other words, he

identifies all the higher-level actions that invoke the potentially matching lower-

level ones. He also identifies all the motivations that might lead to these actions,

since they're at the top of any path through the action hierarchy.

Evaluating the paths. Max needs to determine which of these actions (if any) it

would be possible for Morris to be performing. He does this by evaluating the

can-I triggers of the tuples all the way down the paths to the matching leaf

actions.
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Taking Morris's perspective In order to correctly evaluate the can-I triggers,

Max must evaluate them from Morris's perspective. Normally, these triggers

operate on Max's belief about himself-where his body parts are, where objects

are relative to him-here, he must use his belief about Morris instead.

Identifying the correct path. Max eliminates any paths that aren't possible, and

any leaf action-tuples that have no possible paths leading to them. When he is

left with one path to one possible lowest-level action, Max concludes that this

is the behavior Morris was performing.

6.2.4 Representing Self and Other

As alluded to in the previous sections, a critical part of identifying another's actions

is being able to use their point of view instead of one's own-and being able to easily

distinguish between the two. One of the most important beliefs in Max's belief system

is his belief about himself. Max's self-belief contains all his proprioceptive knowledge

(i.e. where he and his body parts are in space). All of the triggers and do-untils in

Max's system which rely on self-knowledge (e.g. triggers that rely on proximity to an

object, do-untils that succeed when holding an object) operate on Max's self-belief.

Similarly, Max has a belief about Morris which contains information about where

Morris currently is, where his body parts are, which way he is facing etc. Importantly,

Max filters his sensory information about himself and his sensory information about

Morris through the same percepts. This means that the information in the two beliefs

is stored in the same kinds of percept histories, and in the same format. Having the

two beliefs in the same format allows Max to easily evaluate all the triggers and do-

untils in his system that rely on self-knowledge from Morris's perspective, simply by

having them operate on his belief about Morris instead.

Max's action system has a belief selector for his self-belief and another for his

reference character belief-the character he is acting in reference to, or interacting

with (like the object of attention this belief is optional, so that not all actions need to

be in reference to another character). The reference character belief is used whenever
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Max needs to interact with or attend to Morris. Max can take Morris's perspective

by swapping the beliefs returned by the selectors, before evaluating actions. This

allows Max to evaluate actions "as if" he were Morris, while the independent beliefs

and belief selectors guarantee that his knowledge of Morris and of himself remain

separate.

6.2.5 Motivations and Goals

In the previous sections we focused on can-I triggers for action tuples-triggers that

represent whether a particular action is possible under the current circumstances.

Another subset of trigger contexts, known as should-I triggers, can be viewed as

simple motivations-for example, a should-I trigger for Max's eating action is hunger.

Similarly, some do-until contexts, known as success contexts, can represent low-level

goals-Max's success context for reaching for an object is holding the object in his

hands. By searching his own action system for the action that Morris is most likely

to be performing, Max can identify likely should-I triggers and success do-untils for

Morris's current actions. For example, if Max sees Morris eat, he can match this

with his own eating action, which is triggered by hunger, and know that Morris is

probably hungry. Similarly, Max can see Morris reaching for, or jumping to get, an

object, and know that Morris's goal is to hold the object in his hands, since that is

the success context for Max's own get action. Notice that in this second case, Max

does not need to discern the purpose of jumping and reaching separately, since these

are both subactions of get in his own hierarchy.

We are currently developing mechanisms that allow Max to use the trigger and

do-until information from his best matching action in order to interact with Morris

in a more socially intelligent way-for instance, Max might see Morris reaching and

help him get the object he is reaching for, bringing him closer to more advanced social

behavior such working on cooperative tasks (this future work is discussed further in

section 7.2.4).

110



6.2.6 Learning About Objects

One important way in which Max can already learn by observing Morris is through

a process similar to that of social referencing, described in section 2.1. By watching

Morris interact with unknown objects, Max can learn some of the affordances of these

objects. Let's say Max starts out knowing that cheese is edible, but not knowing

anything about ice cream. Meanwhile, Morris knows that ice cream is an edible (and

tasty) treat. If Max watches Morris reach for the ice cream and is asked to identify

what Morris is doing he will shrug, indicating that he doesn't know why Morris is

reaching. This is because none of the possible paths to the reach tuple in Max's

action system seem valid (see figure 6-20)-there are no toy or food objects that Max

knows about within Morris's reach, and Max doesn't know what the object within

reach is for.

If however, Max sees Morris eat the ice cream cone, the story is different. When

Max sees Morris eat the ice cream cone, he tries to identify the action as usual-first

he identifies the movement he saw Morris perform as eating, next he identifies the

bottom-level action tuples eating is a part of, finds the eat tuple, and traces back up

the hierarchy from the eat tuple to the satisfy hunger tuple. Finally, he evaluates the

can-I triggers along the path between satisfy hunger and eat, and finds that they are

not satisfied-there is no food object to eat.

At this point, Max notices something important-the eat action tuple (and in turn

the eating movement) is only ever used to satisfy one drive, because it is only part

of one motivational subsystem (Max can determine this by looking at the number

of top-level tuples he has traced back to). Since eating to satisfy hunger is the only

purpose Max knows of for the eating movement, he checks to see if Morris could have

been eating an unknown object. To do this, he re-evaluates his can-I triggers with

a slight modification. He replaces the first can-I trigger-food object present with

another trigger, one that selects the object Morris is most likely to be interacting

with. The simplest version of such a trigger just picks the object that was closest to

Morris, though versions that take gaze direction into account have also been used.
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Once this object has been selected, Max checks to see whether the remaining can-

I triggers have become true. In this example, Max would choose the ice cream as

Morris's likely object of attention, and would find that Morris was in fact holding the

ice cream, making it possible for him to be eating it. Max would conclude that Morris

was eating the ice cream, and would add the ice cream shape to his food percept's list

of edible shapes. From this point on, Max would recognize ice cream as a potential

food source.

Max can learn about unknown toys in a similar manner. Here, there is a bit of a

twist, because toys can be played with in two different ways-by dancing or throwing

(the play motivational subsystem of the action hierarchy is shown in figure 6-24).

This means that when Max sees Morris dancing with a new toy he must learn both

Figure 6-24: The play motivational subsystem of the action hierarchy. Notice that
the dance and throw tuples have more than one can-I trigger-a proximity trigger
(holding object) which checks whether the object of attention is in Max's hands, and
an object selection trigger (Danceable object and Throwable object), which checks
whether the object of attention is of the appropriate type for that tuple to act on.

that it is a toy and that it is 'danceable'. Max does this by checking all the object

selection triggers in the matching path through the action hierarchy. Each object
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selection trigger checks for objects marked by a particular percept, and Max adds the

unfamiliar object's shape to each of these percepts. So, in the case of seeing Morris

dance with a hoop, Max would add the hoop shape to both the toy object and dance

object percepts, which are connected to the toy object present and danceable object

present triggers respectively.

6.3 Results

In this section, I would like to provide a brief summary of Max's social learning

capabilities, and present some additional figures demonstrating these abilities.

What Max Can Do

" Max is able to observe Morris using synthetic vision, and parse the continuous

stream of motion he observes Morris performing into individual movements.

" Max can use his own movement representation to identify the observed move-

ment. In other words, he classifies the observed movement as one of his own-a

form of perception-production coupling.

* Similarly, Max can use his own action system to identify the action he thinks

Morris has just performed. This identification occurs across the full range of

granularity in Max's action hierarchy.

" Identifying the action he believes Morris performed allows Max to also identify

the motivations and goals of that action, represented as should-I triggers and

success do-untils.

" Max can learn about the affordances of objects such as food and toys by watch-

ing Morris interact with these objects.
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What Max Can't Currently Do

" Max does not learn the correspondence between his body and Morris's-this

knowledge is built into the system.

* As mentioned in the introduction, Max cannot currently identify the movements

of characters with a different morphology than himself, and thus cannot identify

their actions and motivations.

" While Max is capable of using an approach similar to the one described in this

thesis to identify emotions, this extension is not yet fully implemented.

" Currently, while Max can identify Morris's goals, he does not act on this knowl-

edge.

" At the moment, Max simply ignores movements and actions he does not recog-

nize. Once again, functionality for learning these actions rather than ignoring

them already exists in the system, but it is not currently being utilized.

The following chapter presents future work meant to address a number of these issues,

as well as further discussing the results and implications of this thesis.
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Figure 6-25: Top row: Morris demonstrates jumping. Bottom row: Max imitates
jumping.

Figure 6-26: Top row: Morris demonstrates pounding the ground. Bottom row: Max
imitates pounding the gruond.
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Figure 6-27: Top row: Morris demonstrates giving a thumbs up. Bottom row: Max
imitates giving a thumbs up.

Figure 6-28: Left: Morris reaches for the piece of cheese. Right: Max identifies
Morris's action as reaching for the cheese.

Figure 6-29: Left:
action as eating.

Morris eats the piece of cheese. Right: Max identifies Morris's
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Chapter 7

Discussion and Future Work

At this point, we have seen that Max the Mouse (and by extension, other animated

characters and robots developed using the Synthetic Characters architecture), is ca-

pable of imitating other characters, identifying simple motivations and goals for their

behavior, and learning from their actions. Furthermore, the implementation of these

abilities relies strongly on mechanisms and approaches suggested by the cognitive

literature, such as motivationally-driven, hierarchical action structures, perception-

production coupling, and Simulation Theory. In the following sections, I will evaluate

and discuss these results, exploring their implications for cognitive research, and for

future work in socially intelligent artificial creatures.

7.1 Stumbling Blocks, Successes and Surprises

In the course of developing the characters and interaction scenarios presented in this

thesis, a number of interesting phenomena have come to light. First, and most impor-

tantly, a cognitively-inspired, and in particular, simulation-theory inspired, approach

to social learning in synthetic characters has proven to be extremely effective, and

there is high hope for its extensibility to characters with further social learning skills

and greater social intelligence. Second, using a hierarchical action system contributes

much of the ease and much of the challenge in implementing imitative behavior.

Third, many of the seemingly separate social learning phenomena described in the
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cognitive literature may be relatively easily achieved once a number of core mecha-

nisms (e.g. hierarchical action system, movement recognition, Simulation Theory) are

in place. Finally, the problem of movement recognition is a significant challenge in

interpreting observable behavior, but can be noticeably simplified by using the right

motor representation and body-knowledge. The next few sections will address each

of these issues.

7.1.1 Simulation Theory as the Road to Social Characters

Simulation Theory is in many ways the unifying factor among the various social

learning tasks and mechanisms tackled in this thesis. I chose to consistently use

a simulation-theoretic approach while addressing a wide variety of social learning

problems, in part because of the strong supporting evidence from cognitive and neu-

roscientific research (discussed in section 2.2.1), but also in order to see just how far

an artificial creature could get using itself as a model for other's behavior. As it turns

out, the answer is pretty far, and certainly this thesis has not hit the limit. From

recognizing observed movements, to finding another character's object of attention,

to identifying another's motivations and goals, Simulation Theory has proven to be

an effective approach to a range of social learning problems, and perhaps more im-

portantly, as discussed in the following sections, it is often an approach that simplifies

the problem at hand.

Movement Recognition and Motor Representation

Motion parsing and movement recognition from visual data are extremely challenging

problems, and currently represent very active research areas. In particular, on-line

movement classification systems typically require a large set of training data, and

rely on statistical models to extract motion features from the data that correlate with

particular gestures (but see [16]). However, by using their own movement repertoires

as the example set, our characters are able to perform on-line movement classification

without any training period, and using only a limited set of body part coordinates
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(rather than joint angles or statistical models) as input, which to my knowledge has

not been done before (the current limitations of this approach, as well as possible

extensions, are discussed in sections 7.2.1 and 7.2.2).

Advantages of Self-Knowledge: Using Perception-Production Coupling

In the case of movement recognition, and also in general, Simulation Theory allows

for an elegant conservation of representation. The body knowledge that the character

needs in order to identify a movement (where different body parts go, and how they

move) is knowledge it already possesses in order to execute that movement. At the

heart of perception-production coupling is the powerful idea that knowledge necessary

to executing your own actions can be reapplied to interpreting the actions of others,

removing the need for separate 'other modeling' machinery.

For instance, other systems that parse motion capture data into higher level action

sequences, such as Bindiganavale's work [16], often require that spatial and movement

constraints (e.g. 'my feet can't go through the floor when I walk') be explicitly

represented in the constructed action before it is reproduced by another character.

When one of our characters imitates another walking, he knows that his feet can't

go through the floor, because that is already a necessary piece of information for

executing his own walking behavior. In general, the character will automatically apply

any constraints on his own behavior to interpreting behaviors it observes. (However,

unlike Bindiganavale's system, this system does not currently address characters of

different morphology-this is discussed in section 7.2.1).

The Role of Motivationally-Driven Hierarchical Action Structures

in more cognitively complex tasks, the advantage provided by perception-production

coupling can be even more striking, particularly when applied within a hierarchical

action structure. For instance, when a character such as Max maps one of his ac-

tion tuples onto the observed behavior of another, he is not only provided with the

information contained within that tuple-the action to be performed, the immediate

goals of that action, and the environmental context that triggered it-but with all
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the information contained within the hierarchy that tuple belongs to.

When Max see Morris reaching for the cheese, and identifies this with his own

reaching tuple, he knows not only that Morris is reaching for the cheese, but that he

wants to get the cheese-if the cheese were higher up Morris might jump instead of

reach, but both have 'getting' as their goal. Looking still higher up the hierarchy tells

Max that Morris wants to get the cheese because he is hungry, and that he might

want other food items as well.

Motivationally-driven hierarchical action structures provide an ideal cognitive sub-

strate for Simulation Theory, because they so neatly package together the key char-

acteristics of an action-the movements involved, the motivations for the action, and

the actions goals (a slight variation on Call and Carpenter's three sources of informa-

tion, described in section 2.1). Further, hierarchical structures facilitate not only the

recognition of immediate goals and motivations, but also recognition of the hierarchy

of goal-directed behavior that characterizes intentional action (see section 2.2.5). In

other words, using a hierarchical action structure produces a hierarchical intention

structure, and allows such a structure to be recognized in others (see section 2.2.5).

Building Blocks of Social Learning

At the beginning of chapter 2, I introduced the different categories of social learning

described in the cognitive and ethological literature. I also discussed a number of

theories that suggested that these apparently different types of social learning might

result from responding to different aspects of the stimuli or represent different uses

of the same underlying mechanisms and structures.

The work in this thesis seems to strengthen the case for shared social learning

mechanisms. At least in the artificial system presented here, it appears that, given a

number of key mechanisms-namely movement recognition, a motivationally-driven

hierarchical action structure and the ability to simulate another's point-of-view on

that structure, a large number of seemingly disparate social learning abilities can be

demonstrated. To give a few traditional examples:

Stimulus Enhancement While this was not a skill we focused on particularly, Stim-
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ulus Enhancement is easily accomplished in this architecture. In the system

presented here, the other character's object-of-attention is always identified. By

subsequently adopting this object as its own object of attention, our character

would demonstrate stimulus enhancement.

Mimicry and Movement or Action Level Imitation Many different terms have

been used for the simple reproduction of the movements produced by another.

Whatever you want to call it, it has been achieved (and described in detail) in

this thesis.

'True' Imitation Whenever Max demonstrates what he believes Morris to be doing,

he copies not only the form of the movements, but the object they are aimed

at, and what he believes to be their goal.

Emulation Again, while it was not explicitly addressed in this thesis, the characters

presented here are capable of emulating the results (or goals) of an action. They

would do this by focusing only on the matching do-until context of that action,

rather than on the action as a whole.

Identifying Goals and Motivations Perhaps most importantly, hierarchical ac-

tion systems help a character to identify another's motivations and goals at

multiple levels of granularity.

The ability of this system to potentially reproduce all of these forms of social learning

seems to change the critical question from "which kind of social learning is occurring?"

to "which kind of social learning is most appropriate here?". This is not a trivial

question. What the previous list shows us is that attending to different aspects of the

identified action, different levels of the hierarchy, leads to different responses. How

to tell whether the movement, or the object, or the result of the action is the critical

part, whether the immediate goal or its parent is most relevant, are important and

unresolved questions.

Unfortunately, success in an artificial system cannot definitively prove anything

about natural systems-it can only suggest. Nevertheless, the success of this ap-
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proach, coupled with previous ethological research pointing to the existence of hier-

archical action systems in animals, lends support to the idea that differences in social

learning abilities may represent differences in which levels of the hierarchy different

animals imitate (in the broadest sense of the word), and which sources of information

they attend to.

7.1.2 Limits of Simulation Theory

The Importance of Representational Choice

While there are many obvious benefits provided by perception-production coupling,

to some extent, it is also a double-edged sword, since it makes the choice of how to rep-

resent the character"s self-knowledge doubly important. For example, how movement

is represented and produced by the character's motor system can profoundly influence

how easy it is to use that same representation to recognize another's movements.

Let's say that instead of a motor system made up of example animations (or

movement primitives) we had a motor system that generated animations procedurally,

through a combination of inverse kinematics and physics simulation. It's not entirely

clear how such a representation could even be used to recognize purely visual input.

At the very least, we'd need knowledge of the other character's joint structure, and

of the physical forces impinging upon them.

Substituting Knowledge of Another for Knowledge of Oneself

Similarly, in this thesis, it was fairly challenging to design action tuples in such a

way that they could easily be evaluated from multiple perspectives. There are many

subtleties to taking someone else's point of view-it is not enough to simply pretend

for a moment that the other creature is in your body and leave it at that. In order

for one creature to really simulate another, they must imagine themselves in the

other creature's location, looking where they are looking, and perceiving what they

perceive. More than that, they must remember to think about objects in the world as

they relate to the other not as they relate to themselves. Finally, even their memory
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must be from the other creature's perspective and not their own-what the other was

doing previously, the object they were near 2 seconds ago.

In other words, it is very easy for pre- and post-conditions, motivations and goals,

to implicitly assume the point-of-view of the simulator, and therefore for a Simulation

Theoretic approach to fail. Just because using the same representation for perception

and production can be easier doesn't always mean it has to be. Critical to the suc-

cess of a simulation-theoretic approach is the ease with which a character's

knowledge of another can be substituted for his knowledge of himself.

What Simulation Theory Can't Do, and the Need for a Complete Cognitive

Architecture

Simulation Theory's greatest benefit-economy of representation-is also its greatest

weakness. A purely simulation-theoretic approach would mean that a character can

only understand what it already knows how to do itself. For instance, our character's

motor systems now represent not only the space of movements they are capable of

producing, but the space of movements they are capable of understanding. Sim-

ilarly, the actions our characters can recognize are limited to the ones they already

know how to perform, and the goals they can recognize are limited to the ones they

can try and achieve (but see sections 7.2.6, 7.2.7 and 7.2.8 for ideas on how our

simulation-theoretic approach can be used to learn new movements and bootstrap

the understanding of new actions and goals). In part, this is a limit of our current

system - if our characters had mechanisms for generating new goals perhaps they

could use these structures to generate potential goals for the other character.

However, this solution makes an important point-in many ways, Simulation The-

ory takes the hard problem of theory of mind, and pushes it out into the rest of the

cognitive architecture. The character's ability to understand complex behav-

ior rests on its ability to generate complex behavior. For humans and other

animals this is in general a good deal, since they must be able to generate these same

behaviors in order to survive. Similarly, since the Synthetic Characters system con-

tains a complete cognitive architecture, it was relatively easy to take advantage of the
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already existing cognitive structures to create social learning behaviors. However, it

brings up the question of whether robotic and animated systems designed expressly

for the purpose of interpreting and reacting to human behavior, and thus lacking a

general cognitive framework, could be as successful.

Perhaps the most profound limitation of a Simulation Theoretic approach (at least

in a motivationally driven system) is the inability to understand unknown motiva-

tions. As discussed in section 2.2.1, Simulation Theory rests on the assumption that

the other is "like me", and therefore does things for the same reasons I do. While

novel goals frequently generate novel results, and novel movements and actions are

visually different from known ones, novel motivations are potentially invisible. Thus,

even if a creature has cognitive mechanisms for generating new motivations within

itself (for instance, I currently have a motivational drive to finish this thesis, which

presumably I was not born with), it is not clear that these could be used to un-

derstand an unknown motivation behind another's actions, since it would be hard

to even recognize the motivation as novel, or determine which actions were being

used to satisfy it (but see my discussion in appendix B regarding the fuzziness of the

distinction between motivations and goals).

Of course, it isn't clear that even humans (let alone animated characters) are very

good at understanding others who are radically different from themselves. To the

extent that we are capable of understanding motivations that differ significantly from

our own, other powerful mechanisms, such as language, may come in to play.

7.2 Future Work

While the characters described in this thesis are capable of a number of complex social

learning tasks, in many ways they have just begun to scratch the surface of socially

intelligent behavior. In the following sections, I discuss the limitations of this work,

and illuminate some of the ways in which the work presented in this thesis could be

extended and used to bootstrap additional social learning skills.
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7.2.1 Solving the Correspondence Problem

Currently, the characters in this thesis have a completely hard-wired knowledge of

the correspondence between their own body parts and those of others. Additionally,

the two characters presented in this work have identical morphology, an assumption

that makes movement recognition easier, since it allows observed movements to be

fairly directly compared to those in the character's motor system, without having to

compensate for different proportions. Perhaps more importantly, the characters in

this thesis have easily observable and identifiable body parts (e.g. hands, feet, knees

etc. that can be tracked).

The problem of learning the correspondence between bodies with differing mor-

phologies is an important one to address if we want to develop characters (and robots)

capable of observing, imitating and identifying human action. In order to imitate a

human, characters (and robots) must be able to map the actions they see the person

performing onto their own actions, even though the person is shaped differently from

themselves. I'll address the problems this presents our system in order of complexity.

Ideally, in order to recognize human movements, the character would be able to

observe the person visually, and extract key body part locations from the image (this

is of course currently an ambitious visual processing goal for real-time interaction).

If the character and the model are similarly proportioned (e.g. the demonstrator is

much smaller or larger, but has proportionally similar arms and legs), then the root-

relative positions of their body parts could be scaled and mapped onto the character's

morphology, to create movements that are comparable to those in the character's

repertoire.

If the demonstrator has different proportions from the character we will need to

use an approach that incorporates new information, present, but not used, in this

thesis, in order to learn the mapping from their body to the character's. In this case,

the character could potentially map actions it observes onto its own motion space by

looking not only at the root-relative positions of body parts, but at their positions

relative to each other (and perhaps to objects in the environment). For instance, if
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Morris had a much longer neck than Max, Max could note that when Morris covers

his eyes his hands are next to each other on his face, rather than simply noting how

far his hands have moved from the center of his body (which on short-necked Max,

might translate to way over his head). Similarly, the distance metric for comparing

observed movements to movements in the character's system would have to take

distances between body parts, and not just between body parts and the root node,

into account.

Another approach, one that can be used with visual data or data from motion

capture suits (which is, at present, a more realistic source for human data), is to learn

a model of the correspondence between the demonstrator's and character's bodies

using an interactive training period (this is the approach we used in [28], and used by

Lieberman in [75]). Here, the character performs a series of movements and assumes

that the person (or other character) is imitating them. They can then use one of a

number of standard machine learning techniques (for example neural networks [28]

or RBFs [75]) to develop a model of the correspondence between the observed input

(e.g. body part positions or joint angles) and the movement they just performed. This

approach has the advantage of working with many different forms of data input, and

of mimicking the turn-taking imitation games engaged in by infants and caregivers.

It also allows the character to learn correspondences to demonstrators with very

dissimilar morphologies (e.g. dolphin vs human), though it relies on the demonstrator

to come up with a good imitation of the character's action. Importantly, once a model

is developed, it can be used to represent subsequent observed movements by mapping

them onto the creature's own body. This means that the search for the best-matching

movement, including the distance metric, would not need to be altered.

7.2.2 Other Problems in Imitating Humans

Ultimately, we would like to create synthetic characters who are able to imitate and

understand human action. However, there are a number of additional challenges that

using human motion capture data would present. In general, motion capture data,

particularly data gathered through visual analysis (as opposed to via a motion capture
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suit) is significantly noisier than data gathered through synthetic vision. It remains

to be seen whether the movement parsing and recognition techniques presented here

would hold up to greater signal noise-though the system's ability to compensate for

obstructed data points leads us to be optimistic on this front.

Another problem presented by motion capture data is the possibility of differing

frame rates between the character's motion and the observed human motion. This can

be compensated for using techniques such as interpolation and dynamic time warping,

but again, we will need to see how accurate our movement recognition continues to

be under these conditions.

Motion Parsing

The "hub-and-spoke" model of movement parsing presented in this thesis is a rel-

atively elegant solution to breaking a stream of animated motion into individual

movements. Since a similar approach has been used on human motion capture data

[56], we hope that this method can be generalized, in order to allow our characters

to parse data from human motion as well. The primary challenge there would be in

identifying and recognizing the hubs in the first place, which remains an uncharted

research area (previous work has used user-identified hubs).

In the case of human motion capture data, the supplementary motion parsing tech-

niques mentioned in section 6.1.2 may become more important. For example, using

similar approaches (e.g. looking at end-effector position, and changes in movement

quality) Lieberman [75] has successfully implemented a system for parsing human

movement from a motion capture suit.

7.2.3 Understanding Emotions

Another way in which the system presented in this thesis is currently being extended,

is through the creation of characters who can recognize and respond to each other's

emotions. This thesis has primarily focused on goal-directed actions-actions which

try to to satisfy a particular motivation or carry out an intention, generally towards
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an object in the world. However, humans often perform actions that are instead

emotionally communicative-conveying a particular affective state. People smile,

shrug, give a thumbs up, cross their arms and frown, wring their hands and so on.

Correctly interpreting these sorts of affective gestures is a critical part of human

social interaction [69]-emotion recognition is even considered a significant predictor

of social competence in children [741.
The characters Max and Morris already have a large repertoire of emotionally

significant actions, and a number of autonomic variables devoted to their current

emotional state. By applying the action identification techniques described in this

thesis to emotionally driven portions of their action systems, Max and Morris could

use simulation theory to identify each other's emotions.

For instance, if Max brought Morris a piece of cheese, Morris could respond with

a positive gesture, such as giving a thumbs up, or a negative gesture, such as covering

his face in frustration, or crossing his arms and tapping his foot. Max could search

his own action tree for the emotions that would cause him to display these behaviors,

and know whether Morris was pleased or displeased with his offer. Further, by using

Simulation Theory, he could quickly identify the affective content of many different

gestures, rather than having to learn for example, that both a 'thumbs up' and a 'joy

dance' are positive gestures. A Simulation Theory-style understanding of emotional

displays would be an important part of developing cooperative behavior between

characters. For related work on agents who interpret and display emotion see for

example Breazeal's work with Kismet [26], Picard's Affective Computing research

[92], and Cassell's Gesture and Narrative Language research [37].

7.2.4 Cooperative Behavior

One critical aspect of human social behavior is our ability to cooperate and work

on joint tasks. The American Heritage Dictionary defines cooperating as "to work

together towards a common end or purpose" [2]. Thus, in order for one character to

engage in cooperative behavior with another it must be able to recognize and adopt

the other's goal.
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The first step of cooperative behavior, recognizing the other's goal, has already

been accomplished (at least at a low level) in this thesis. Max is able to identify the

goals of Morris's actions by looking at the goals of his own actions. We are currently

implementing the second step-acting on this goal in order to help accomplish it.

Here we are faced with a potentially tricky situation, which I will use an example

to illustrate. Let's say that Morris's goal (that is the success do-until for his action)

is to get himself the cheese. In order to help Morris, Max must now act in a way that

is both different from how he would get the cheese for himself, and how he would get

the cheese if he were Morris. In both those cases, Max would simply go get the cheese

for himself, which would not help Morris at all.

Simulation Theory has helped Max identify Morris's goal which is "get myself the

cheese", but in order to act correctly Max must now alter that goal slightly before

acting on it himself-it must become "get Morris the cheese". Now, Max will be

ready to identify (or construct) an action that satisfies this goal.

Finally, there are multiple levels of goals in the action hierarchy, and it will be an

interesting question to explore which ones to help satisfy when. For instance, instead

of trying to get Morris the out-of-reach cheese, Max could recognize Morris's hunger,

and get him some ice cream instead.

7.2.5 Predicting Future Actions

Another piece of functionality that already exists in the system, but has not yet been

put to use, is the ability to predict other character's future actions. The simplest way

to do this would be for a character to evaluate their action hierarchy using conditions

that assume the success of the identified action. For example, when Max see Morris

reaching for the cheese, he knows that the success context of reaching for the cheese

is holding the cheese. Max could now check which of his own action tuples has a can-

I trigger satisfied by holding the cheese, and would discover that the eating action

does. He could then predict that, once Morris gets the cheese, he's likely to eat it.

This approach could potentially be made even more accurate by having the character

keep track of which actions tend to follow which (an action-action map similar to
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the movement-action map already in use), and using this information to help with

ambiguous predictions.

7.2.6 Learning New Movements

For simplicity's sake, in this thesis, Max simply ignored any observed movements

he didn't recognize. However, characters using the architecture presented in this

thesis have been developed who create new movements from unrecognized observed

gestures, and add them to their movement repertoire. One ongoing issue in this

area is deciding whether a movement is new or simply a relatively poor match to

an existing movement. We have previously addressed the problem of modeling novel

movements and distinguishing them from known movements, and plan to apply the

approach described in Blumberg 2002 [21] here.

7.2.7 Learning New Actions

The trickiest part of learning new movements isn't learning how to perform them, it's

learning when to use them. As discussed earlier (see section 3.2.1), imitation has often

been seen as a potential way to quickly teach characters or robots what movements

(or combinations of movements) to perform in which situations. Currently, Max can

learn new objects to apply existing actions to, by watching Morris interact with these

objects. We would like him to be able to learn new actions to perform by observing

Morris as well.

If a movement, or series of movements is executed in response to an unfamiliar

environmental context, and generates an unfamiliar result, it may represent a new

action. If the result is a desirable one-perhaps one that already matches the goal

state of one of the observing character's existing actions-it may be worth while to

construct a new action tuple based on this observation. So for instance, let's say that

Max saw Morris use a tool, such as a rake, to bring food closer to himself. Using the

raking movement in the context of out-of-reach food may not be familiar to Max, but

the result-holding and eating the food-is. He could then construct an action tuple
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that requests a raking movement, and is triggered by the presence of a rake and of

out-of-reach food, and has holding the food as its do-until context.

There are of course some subtleties of implementation here, that need to be ex-

plored. Identifying the results and triggering contexts of an action, as distinct from

other aspects of the changing environment, is a challenge. Simulation Theory may

potentially help here as well, allowing the character to focus on the kinds of environ-

mental events and changes it normally finds most salient.

7.2.8 Learning New Goals

Perhaps the most critical step in intelligent social behavior (and in intelligent behavior

in general) is the ability to adopt new goals and sub-goals. Our characters could

potentially learn new goals to pursue by watching others act. If another creature

repeatedly uses actions to achieve the same novel result, this result may represent a

new goal.

As mentioned in the previous section, it can be difficult to pick out the result of

an action from other changes in the environment. This problem is compounded in

the case of new goals, since actions are not always successful, and the result of an

action may not necessarily be the desired one.

Our characters can mitigate these problems by applying their other social skills

to the task of understanding novel goals. In particular, this is a situation where

affective feedback and social referencing may be particularly critical. A result is

unlikely to be the desired one if the other character appears unhappy with it, but if

the demonstrator is happy with the result, they were probably intending to achieve

it. Similarly, when the imitating character tries to adopt the new goal it can look to

the model for approval, to see if it has the right idea.
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The Future-Towards Characters who want to Learn, and Demonstrators

who want to Teach

In general, one of the fundamental features of human social interaction and social

learning is that it is almost never one way-instead, human social interaction is

characterized by turn-taking, feedback and reciprocity. A character who must learn

by observing an oblivious demonstrator is relatively limited in what it can discover.

On the other hand, characters who are aided by the presence of a knowledgeable

demonstrator will have many additional opportunities to learn available to them (see

Breazeal et. al.'s work on interactive tutelage for humanoid robots [29]). Our ultimate

goal for the future then, may be to develop synthetic characters and robots who are

capable of taking full advantage of what others (particularly humans) want to teach

them. A Simulation Theory-based social learning system, that allows such characters

to correctly interpret and respond to the behaviors of those they interact with, will be

an important first step towards this type of socially intelligent, and socially responsive,

artificial creature.
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Appendix A

Synthetic Vision

Note: This appendix is adapted from Isla 2001 [65].

Synthetic Vision renders the world from the character's point of view. The location of

a visible object can be extracted visually by examining the screen-space coordinates

of the centroid of the object in the point-of-view rendering. This 2-vector combined

with depth information from the rendering's depth buffer yield the NDC-coordinates

of the object (see [48 for a discussion of NDC-space and camera projections). These

coordinates can be converted into the local space of the camera (and of the observing

creature's eye) through the inverse-NDC transformation.

Assuming that the x and y NDC-coordinates range from -1 to 1, and the z NDC-

coordinate ranges from 0 (at the eye-position) to 1 (infinitely far), and assuming that

the camera projection properties are given by a frustum defined by fnear, fjar, fleft,

fright, ftor and fbottom, the NDC-to-Local transformation is given by the following

equations:

(-fnear * ffar)

(fcar - fnear) * z fc + ffar

Xiocal = Ziocal * (fright * Xndc - fleft* Xndc - fright - fleft) (A.2)
2

fnear

Ylocal 2 focal * (ftop * Yndc - fbottom * Yndc - ftor - fbottom (A.3)
2fnear
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Appendix B

Terminology

Throughout this work I have used a number of potentially ambiguous terms. While

there are any number of official (and differing) definitions for these words, I would

like to briefly describe how they have been used in this thesis. Words that are listed

together have been used relatively interchangeably.

Movement, Motion, Gesture A movement, motion or gesture refers to a motor

pattern played out on a creature's body-the series of muscle (or motor, or

animated muscle) movements carried out by that creature, without reference

to their context. Examples of movements from this thesis include: jumping,

reaching and covering the eyes.

Action An action is a movement, or series of movements, placed in an environmental

and motivational context. That is, an action occurs in response to certain (in-

ternal or external) circumstances, and generally has a desired result associated

with it. Examples of actions include: jumping for the cheese, reaching for the

ball, covering eyes in frustration.

Intention, Goal An intention or goal is a desired result the character plans to try

and achieve, often associated with the actions the character plans to use to

achieve it (which can then be described as goal-directed). Examples of goals

are: getting the baton, eating the cheese and getting close enough to the ball to

reach it
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Motivation, Drive Motivations and drives are the 'why' behind intentions and

goals. They are the reason for wanting the baton or eating the cheese. Ex-

amples of motivations and drives are: Satisfying hunger, desire to play and

desire to socialize.

To clarify further, let's take the simple example of Max reaching for the cheese. In

this situation, Max's movement is reaching, his action is reaching for the cheese,

his goal is to get the cheese, and his motivation is that he's hungry.

The distinction between motivations and goals to some extent melts away as we

go farther up the action hierarchy. As actions become coarser in granularity, the

difference between an intention and a drive appears to merge-at the top level one

could argue that satisfying hunger is both a goal and a motivation. While this is an

interesting point, teasing out the differences between goals and motivations is beyond

the scope of this thesis, so I will simply note the potential vagueness of the current

definitions, and leave it at that.
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