June 1985

Revised April 1986

A NEW DISTRIBUTED ALGORITHM TO FIND BREADTH FIRST SEARCH TREES *

Baruch Awerbuch**
Robert G. Gallager**

ABSTRACT

A new distributed algorithm is presented for constructing breadth first search (BFS) trees. A BFS tree is a tree of shortest paths from a given root node to all other nodes of a network under the assumption of unit edge weights; such trees provide useful building blocks for a number of routing and control functions in communication networks. The order of communication complexity for the new algorithm is $O(V^{1.6} + E)$ where V is the number of nodes and E the number of edges. For dense networks, with $E \geq V^{1.6}$, this order of complexity is optimum.

*This research was conducted at the M.I.T. Laboratory for Information and Decision Systems with partial support provided by the National Science Foundation under Grant NSF-FCS-8310698, the Defense Advanced Research Projects Agency under Contract ONR/N00014-84-K-0357, and Army Research Office Contract DAAG29-84-K-0005. Also support was provided to B. Awerbuch by a Weizman Fellowship.

**B. Awerbuch is with the Dept. of Mathematics and the Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139.

**R. G. Gallager is with the Dept. of Electrical Engineering and Computer Science and the Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02139.
1. INTRODUCTION

1.1 The Model

We consider an asynchronous communication network, modelled by a simple undirected graph, \(G = (V, E) \). The nodes \(V \) model the communication processors of the network and the edges \(E \) model the bidirectional communication links. Each node receives and transmits messages on its adjacent edges and performs local computations. The sequence of messages sent in a given direction on an edge is received error free by the opposite node in first in first out (FIFO) order with finite but unpredictable delays. These messages are queued at the receiving node until the processor is ready to process them.

In a communication network, the amount of communication required to perform some function is often more significant than the amount of processing required, so the complexity of a distributed algorithm is appropriately measured in terms of the total number of bits communicated over all edges. Here, for simplicity, the communication complexity is defined as the number of elementary messages sent over all edges, where an elementary message contains at most some small fixed set of parameters, such as the size of a set of nodes or the length of a path. Thus the number of bits in an elementary message can grow at most logarithmically with the size of the network. The time complexity of an algorithm is the maximum possible number of time units from the initiation to completion of the algorithm.
assuming that the processing delay is negligible and that the
maximum delay on an edge is one time unit. The maximum delay on
an edge is the maximum interval, starting from some time when at
least one message is being transmitted on the edge, until a
message is received on that edge. We consider, however, only
algorithms that contain no knowledge of edge delays; i.e.
algorithms that are event driven with no time-outs.

1.2 Breadth First Search Trees

Given a graph \((V, E)\) and given a particular root node, \(r\), we
want to find a breadth first search (BFS) tree rooted at \(r\). That
is, the path from \(r\) to any other given node \(n\) in the tree must
contain the minimum number of edges over all paths from \(r\) to \(n\) in
the original graph. This problem is sometimes called the minimum
hop problem [1], [2]; distributed solutions of this problem form
building blocks for many basic network protocols such as routing
and failure recovery.

A distributed BFS algorithm is an algorithm for a
communication network to find a BFS tree. Initially, the
processor at each node is unaware of the network topology but is
aware of its adjacent edges, has a copy of the algorithm, and
knows whether or not it is the root. The root node starts the
algorithm, and the other nodes join in when they receive
messages. When the algorithm stops, a shortest path tree has
been identified in the sense that each node knows which adjacent
edges are in the tree and which one of those adjacent tree edges
(called the in-edge) is on the path to the root. Each node also
knows its level, i.e. the number of edges on the path to the root.
Note that from a communication standpoint, it is not necessary for a node to know the shortest path to the root, since it can send a message on its inedge, and the receiving node can forward it on its inedge, and so forth to the root. Similarly, the root need not know the entire tree, and can broadcast a message to all nodes by sending it on all adjacent edges. Each node can then forward the message on all tree edges other than the inedge. The nodes on the path to the root from a given node will be referred to as ancestors of the node, and the nodes for which a given node is an ancestor are the descendants of that node.

1.3 Comparison With Previous Work

The communication complexity of the new algorithm presented here is $O(V^{1.6} + E)$ when V is the number of nodes and E the number of edges. As shown shortly any distributed BFS algorithm requires at least E messages, so the above order of complexity is optimum for dense networks with $E \geq V^{1.6}$. In contrast, the distributed form of the Bellman-Ford algorithm (as used in the original Arpanet routing algorithm [3]) has communication complexity $O(VE)$. The distributed BFS algorithm by Frederickson [4] has communication complexity $O(V \sqrt{E})$; this is smaller than that of the new algorithm for $E \leq V^{1.2}$. Finally other new algorithms by the authors have communication complexities $O((E + V^{1.5}) \log V)$ and $O(E \cdot 2^{\sqrt{V} \log \log V})$ [5]. Those latter algorithms are conceptually more complex than the algorithm here and have an advantage only for networks with $E < V^{1.6}$ with impractically large values of V.
2. SIMPLE DISTRIBUTED BFS ALGORITHMS

Note that the shortest path problem with equal edge weights is trivially simple in a synchronous network where all edge delays are the same. The root simply sends a message over each of its edges telling the neighboring nodes that they are neighbors of the root. Each such neighbor sets its level to 1 and sets the edge on which the message was received as the inedge. Each of these nodes immediately sends out a message on all other edges telling the recipients that they are neighbors of a level 1 node. In general, when a node receives a message that it is the neighbor of a level 1 node, then the node (if not at level 1 or less itself) sets its level to i+1, sets its inedge to an edge over which the above message was received, and sends a message on the other edges that the recipient is the neighbor of a level i+1 node. Because of the uniform delay, each node hears its first message from a node at the next lower level and thus sets its level and inedge correctly. Each node also sends an acknowledgement on its inedge, informing its immediate ancestor in the tree that that edge is in the tree. It is easy to see that at most two messages are sent over each edge, one in each direction, yielding a communication complexity of $O(E)$ and a time complexity of $O(V)$ where $E=|E|$ and $V=|V|$.

Note that any distributed BFS algorithm requires at least one message to be sent on each edge. To see this, suppose that an algorithm failed to send a message over some given edge of some
network. Consider modifying the network to contain one or more
nodes at the middle of the given edge. These nodes would receive
no messages with the given algorithm and thus could not determine
their level. Similarly any algorithm requires at least as many
time units as the level of the highest level node, which could be
$V-1$ in the worst case. Thus any distributed BFS algorithm
requires at least a communication complexity of $O(E)$ and a time
complexity of $O(V)$.

For an asynchronous network with unknown edge delays, the
above algorithm doesn't work since a node might hear its first
message via a longer path than the shortest path. The classical
and most obvious solution to this problem is a distributed form
of the Bellman-Ford algorithm. This algorithm operates with the
same messages as the previous algorithm except that if a node,
after setting its level, receives a subsequent message from a
node on a shorter path, then that node changes its level and
in edge, and sends another message at its reduced level to all
other neighbors. This algorithm, generalized to arbitrary edge
lengths, was in essence used in the original Arpanet routing
algorithm [3]. From a practical point of view, the distributed
Bellman-Ford algorithm is simple and rarely requires more than a
few messages per edge. Since any distributed shortest path
algorithm requires at least one message per edge, the search for
better algorithms in the communication complexity sense is
primarily of theoretical interest.

Another obvious distributed BFS algorithm, and the basis for
our new algorithm, is what we call the basic coordinated BFS
algorithm. This algorithm works in successive iterations, with the beginning of each iteration synchronized by the root node. Initially, the root sends a message to each neighbor indicating the first iteration of the algorithm. Each recipient marks its level as 1, marks the edge on which the message was received as the inedge, and sends an acknowledgement back to the root on the inedge. When the root receives an acknowledgement from each neighbor, it starts iteration 2 by sending an iteration 2 message to each neighbor. Each neighbor then forwards the message to each of its neighbors other than the root.

In general, after the i-1th iteration is complete, the BFS tree has been formed out to level i-1. The root then broadcasts the message for iteration i out on this tree and each node at level less than i-1 will rebroadcast the message to its immediate descendants and so forth out to level i-1 (see figure 1). The nodes at level i-1 rebroadcast the message over all edges other than the inedge (or optionally over all edges not already known to be at lower level than i). Each node, if it first receives a message during iteration i, sets its level to i, sets its inedge to the edge on which the first such message is received, and sends an acknowledgement (ack) on this edge. In addition, for each subsequent message at iteration i or above that the node receives on an edge other than this inedge, the node returns a negative acknowledgement (nak) on that edge, thus informing the sender that the given edge is not in the shortest path tree. Each node at level i-1, after receiving an ack or nak to each iteration i message sent, sends an ack on its inedge, including
the number of acks that it received. Each node at lower level, after receiving an ack on each outgoing tree edge, sums the numbers accompanying these acks, thus calculating its number of level i descendants. Each non-root node sends an ack with this sum on its inedge. The root node terminates the algorithm if this sum (i.e. the total number of level i nodes) is zero, and otherwise starts iteration i+1.

To analyze the algorithm’s complexity, note that each broadcast message is accompanied by exactly one ack or nak in the opposite direction over the same edge. Each node sends at most one ack per iteration. Each node also sends at most one nak over each adjacent edge not in the BFS tree. Thus, letting L be the number of iterations, the total number of acks is at most 2E+LV, and the total number of all kinds of messages is at most 4E+2LV or O(V^2). We can identify the term 2LV as the cost of synchronizing the algorithm. The time required to synchronize the ith iteration is 2i, and thus the time complexity for synchronization (and thus for the entire algorithm) is O(L^2) = O(V^2). If one considers a simple line network with the root at one end, one sees clearly how inefficient this algorithm is.

3. INFORMAL DESCRIPTION OF THE NEW ALGORITHM

Subsequent work on distributed BFS algorithms has concentrated on reducing the cost of synchronization from that of the coordinated algorithm. One approach, taken by Gallager [1] and Frederickson [4], processes a group of levels at a time,
synchronizing back to the root only once for each group. In the
algorithm of [4], each group consists of V/\sqrt{E} levels. The
Bellman-Ford algorithm is used within a group and the basic
coordinated algorithm is used between groups. This leads to a
communication and time complexity of $O(V \sqrt{E})$. Another approach,
taken by Awerbuch [6], was based on constructing a subgraph on
which to perform the synchronization. This led to a
communication complexity of $O(V^2)$ and a time complexity of $O(V \log V)$.

The new algorithm to be described is similar to that of [1]
and [4] in that it is based on the basic coordinated algorithm,
synchronizing only between successive groups of nodes. The
difference is that here the number of levels processed in each
group is a function of the number of nodes in that group. We
shall see that the communication complexity of the resulting
algorithm is $O(V^{1.6} + E)$ and the time complexity is $O(V^{1.6})$.

The algorithm exercised by the root node depends on V, which

can be trivially calculated with $O(E)$ messages. For example, the
root node can flood a start message throughout the network, with
each node temporarily setting its inedge to the edge on which
this message is first heard. The number of nodes can then be
counted in the same way that the basic coordinated algorithm
counts the nodes on a level.

At this point, the root starts the algorithm proper. The
nominal number of levels to be processed in each iteration is
$\lfloor V^{0.2} \rfloor$, where $\lfloor x \rfloor$ means the integer part of x. The circumstances
under which the actual number of levels processed in an iteration
differs from this nominal value will be discussed later.
Initially the root uses the basic coordinated algorithm to
construct a BFS tree out to this desired number of levels. At
the end of this and each subsequent iteration, a BFS tree has
been constructed out to some given level l. The root then
broadcasts a "global" message out to all of the nodes at level l
instructing them collectively to extend the BFS tree over some
subsequent group of levels. The nodes at level l are called synch
nodes for this new iteration of the algorithm. Each synch node
is responsible for coordinating the search for nodes whose BFS
path to the root passes through that synch node (i.e., for finding
its own descendants in the expanded BFS tree). Essentially each
synch node applies the basic coordinated algorithm (regarding
itself as the root), exploring the number of levels in the new
group. Figure 2 illustrates this process, showing the beginning
of the iteration with a global broadcast from the root to all the
synch nodes, then showing the individual local cycles of each
synch node in exploring subsequent levels, and finally showing
the synch nodes propagating a global acknowledgement, as in the
basic coordinated algorithm, back to the root.

There is a complication to the above rather simple
structure, due to the fact that there is no coordination between
the different synch nodes. Thus the local trees grown by some
synch nodes may progress quickly, while others progress slowly.
In this case, a node can be seized by a quickly growing local
tree, using a path longer than that through some other synch
node. A slower tree grown by some other synch node will then
eventually reach the given node and provide a shorter path to the root. An important property of the algorithm is that a node moves from one local tree to another only when its path length to the root is decreased. Thus a node can never join the same tree more than once, and the number of times a node can change local trees is upper bounded both by the depth of the local trees and by the number of synch nodes.

Figure 3 illustrates the process of synch nodes growing local trees and of a node first joining one local tree and then another. This figure indicates a new complication to be considered. It is possible for a quickly growing local tree from one synch node to have processed many more levels than some slower tree, and because of this, a node that moves from the quick tree to the slow tree may have many descendants in the fast tree, all of which will have to change trees. Thus many extra messages can be generated by a single change, and several complicating factors must be introduced into the algorithm to limit this message growth.

First, each node, on the cycle after joining a local tree, must send out messages on each adjacent edge. Thus if a node has very high degree and also changes trees often, these adjacent edge messages dominate the communication complexity for the entire algorithm. This problem is cured by freezing the growth of a local tree whenever it seizes a node of very high degree. In a manner to be described next, this causes some global synchronization between the local trees, and the frozen tree
remains frozen until it becomes clear that the node of high
degree is in fact on the correct local tree. The appropriate
threshold of node degree to cause this freezing turns out to be
\(V^{0.4} \).

Recall that the number of levels that each synch node
attempts to process is \([V^{0.2}] \). Each synch node, at its own
speed, uses the coordinated algorithm to construct its own local
BFS tree, omitting nodes that already have shorter or equally
short paths through other synch nodes. This construction ceases
when one of the three following conditions occurs: 1) the number
of levels processed reaches the attempted depth \([V^{0.2}] \); 2) the
tree is frozen at some smaller depth by seizing a node of degree
greater than \(V^{0.4} \); and 3) the tree finds no new nodes at some
level before reaching the attempted depth. We refer to the trees
and synch nodes for cases 1, 2, and 3 above as \textbf{active}, \textbf{frozen}, and
\textbf{inactive} respectively.

Each synch node, after completing its local tree as above,
sends a global \textit{ack} back on its inedge. If there are frozen
trees, however, a BFS tree is not fully constructed out to the
attempted depth of the new group. In this case, we regard the
just completed process of designating the synch nodes,
constructing the local trees as above, and reporting back to the
root as a sub-iteration. The root determines (from the
information reported back) the smallest level \(\ell' \) at which some
tree became frozen. We are assured that the shortest path tree
is completely known out to level \(\ell' \), and therefore the tree or
trees frozen at level \(\ell' \) can be unfrozen. The root then starts a
new sub-iteration, using the same synch nodes as before and restarting the growth of those trees that had been frozen at that level l'. A synch node that is frozen at some higher level than l' checks to see if it is still frozen (i.e., the high degree node might have been seized by another tree). If so, it immediately sends an ack back to its inedge, and if not, it continues growing its tree. Each synch node that is unfrozen in this new sub-iteration continues to grow its tree until again one of the three conditions above occurs.

After some number of sub-iterations, the root will find that there are no more frozen trees and that the global BFS tree has been extended by the attempted $|V_0^{0.2}|$ levels. At this point, the final complicating factor in the algorithm occurs. If the final BFS tree has a large number of levels with few nodes at each level, then the global synchronizing required between iterations will still dominate the communication complexity. On the other hand, in this situation, there will be relatively few synchronization nodes at each iteration, and therefore relatively few opportunities for nodes to change levels. In this case, it is advantageous to increase the number of levels in a group to $|V_0^{0.4}|$. We describe the conditions for this increase more precisely after describing more of the details of the algorithm.

4. DETAILED DESCRIPTION AND COMPLEXITY ANALYSIS
The actual algorithm is contained in the appendix. In this section we give some of the implementation details and describe some of the properties of the algorithm pursuant to calculating its communication complexity. There are only four types of messages used in the algorithm proper (i.e. after the calculation of \(V \))—global broadcasts, global acks, local broadcasts, and local acks. The global broadcasts are used at the beginning of each sub-iteration and are propagated from the root out on the currently formed part of the BFS tree. These broadcast messages normally carry three parameters—the level of the synch nodes, and the initial and desired final levels for the sub-iteration. When a synch node has completed its task (by becoming frozen, inactive, or processing out to the desired level), it sends a global ack back on its inedge, and when a node at a lower level receives a global ack from each of its immediate descendants, it forwards the global ack on its inedge. Each global ack contains two parameters. The first is the minimum level at which freezing occurred, minimized over the synch nodes that are descendants of the node sending the global ack, and the second is the number of descendant synch nodes that are active or frozen.

When the root receives these global acks from each neighbor, the root knows whether freezing occurred and the minimum level of such freezing. If freezing occurred at some level \(\ell' \) lower than the desired level of the sub-iteration, then the root starts another sub-iteration with the same synch nodes and with a starting level equal to \(\ell'+1 \) (since the BFS tree is correctly
constructed out to the level \(l' \). If the sub-iteration has completed the BFS tree out to the desired level of \(\lfloor v^{0.2} \rfloor \) beyond the synch nodes, then the root node starts a special sub-iteration, using the same synch nodes and covering only a single level, one beyond the previous level. If the number of active synchs at the end of this special sub-iteration exceeds \(v^{0.2} \), then the iteration ends and a new iteration starts with the nodes at this newly calculated level as synch nodes. Otherwise, another sub-iteration starts, using the old synch nodes and using a desired level \(\lceil v^{0.4} \rceil \) beyond that of the synch nodes.

The reason for this rather peculiar sub-iteration with a single level is that no node can be seized from one local tree to another during this sub-iteration. Thus a local tree reported as active actually contains at least one node at the new level and a path back to the synch node. Thus it contains at least \(v^{0.2} \) nodes. If the number of active synch nodes exceeds \(\lfloor v^{0.2} \rfloor \), then at least \(v^{0.4} \) new nodes have been added to the shortest path tree in the entire iteration. Note that for the earlier sub-iterations, active synch nodes might lose most of the nodes in their local trees when other slower trees seize those nodes away.

When an iteration is extended to cover \(\lceil v^{0.4} \rceil \) nodes, then, if any synch nodes are active at the end of the iteration, the iteration must add at least \(v^{0.4} \) nodes to the BFS tree; if no synch nodes are active (or frozen) at the end of any sub-iteration, then, of course the algorithm is finished and the BFS tree is complete. Thus we have shown that at least \(v^{0.4} \) nodes are added to the shortest path tree in every iteration except
perhaps the final iteration. Thus the algorithm contains at most $v^{0.6} + 1$ iterations.

Observe that each node can receive at most one global broadcast message per sub-iteration. Thus we can bound the total number of global broadcast messages by bounding the number of sub-iterations. Suppose first that there are F sub-iterations caused by frozen trees. Each such sub-iteration unfreezes at least one node of degree greater than $v^{0.4}$, and nodes unfrozen in different sub-iterations belong to different levels of the final shortest path tree. Thus there are at least F levels in the final tree containing nodes of degree greater than $v^{0.4}$, and we select one such node in each of these levels. Since a neighbor of a node at level l must be at level l or an adjoining level, we see that a node can be a neighbor of at most 3 selected nodes. Thus $3v > Fv^{0.4}$, and thus

$$F < 3v^{0.6} \tag{1}$$

In addition to the sub-iterations caused by frozen trees, each iteration starts with a sub-iteration of $\lfloor v^{0.2} \rfloor$ desired levels, then performs the special sub-iteration with one level, and finally, perhaps, performs the final sub-iteration with a final desired level $\lfloor v^{0.4} \rfloor$ beyond the synch node. Thus there are at most three sub-iterations per iteration beyond those caused by freezing. There are at most $v^{0.6} + 1$ iterations, leading to at most $3(v^{0.6} + 1) + 3v^{0.6}$ sub-iterations altogether. There are no global broadcast messages on the initial iteration and at most v
for each subsequent sub-iteration. Thus the total number \(G \) of global broadcast messages satisfies

\[
G \leq 6V^{1.6} \tag{2}
\]

Next consider the local broadcasts and acks. We first show that a node can join at most \(\lfloor V^{0.2} \rfloor \) local trees. If a node first joins a local tree when the desired final level is \(\lfloor V^{0.2} \rfloor \) beyond the synch level, this result follows since each change of local tree is accompanied by a decrease in level. If a node first joins a local tree when the desired final level is \(\lfloor V^{0.4} \rfloor \) beyond the synch level, this result follows since the number of active synch nodes is at most \(\lfloor V^{0.2} \rfloor \).

Consider now what the algorithm does when a node changes levels. During each cycle of the algorithm for growing a local tree, a node can be in one of two phases. In the first phase, it has not yet received a local broadcast message, and in the second phase, it has passed on the local broadcast and is waiting for acknowledgements from each active edge. The variable count is used in the algorithm to keep track of how many acknowledgements are awaited, and a value of zero for count indicates the first phase. When a local broadcast message arrives at a node from a different tree, the cycle number is compared with the node's current level, and if smaller, the node changes trees. At this point, if the count variable is positive, the node returns an acknowledgement on the old inedge with unused state, indicating to the old parent node that the node has moved to another tree.
Alternatively, if the count is zero, the node sends nothing over the old inedge until the next local broadcast message is received, at which time it returns an ack with unused state. Thus, precisely one ack is sent for each local broadcast, even when nodes change trees.

In counting the number of local broadcast messages for the algorithm, we consider two types of terms separately, first the initial local broadcasts sent by a node after changing level, and second all the other local broadcasts. For the first type, we note that as a result of the freezing, each node of degree more than \(v^{0.4} \) sends at most one such message on each outgoing edge, and each node of smaller degree sends at most \(v^{0.2} \) messages on each of its at most \(v^{0.4} \) outgoing edges. Thus the total number of local broadcast messages of this first type, \(L_1 \), is at most

\[
L_1 \leq 2E + v^{1.6} \tag{3}
\]

In counting the second type of local broadcast messages, we look at the number of such messages that can be received by each node. Such messages are only sent on edges for which the previous local broadcast was acknowledged with an active or frozen state, so they can only be received on the inedge of a node (or what was the inedge when the previous ack was sent). While the node belongs to one tree, successive messages on the inedge contain successively higher cycle numbers except in the special case where a new sub-iteration is started because of freezing. In that special case, synch nodes frozen at higher
than the minimum level repeat the previous cycle number to test if the local tree is still frozen. Since the nodes that receive these special local broadcast messages do not receive global broadcast messages for the given sub-iteration, we can regard these special local broadcast messages as included in our previous bound on global broadcasts. Ignoring these special messages, a node can receive at most \([V^{0.4}] - 1\) local broadcast messages of this type for each local tree that it joins. Since there are at most \(V^{0.2}\) such trees, the total number of local broadcast messages of second type is

\[L_2 \leq V^{1.6}\] (4)

Combining (2), (3), (4) and recalling that there is one ack message for each broadcast message, the total number of messages \(C\) for the algorithm is

\[C \leq 16V^{1.6} + 4E\] (5)

Thus \(C = O(E + V^{1.6})\) as claimed.

To bound the time \(T\) required by the algorithm, note first that \(T \leq C\) since the algorithm is event driven and at least one message must be sent each time unit. Note also that the term \(4E\) in (5) came from the initial local broadcasts from frozen nodes and their acknowledgements. Since a node is assumed to send its local broadcasts in parallel, and the acknowledgement for each is returned with no waiting, we see that the term \(E\) can be replaced with \(V\) for the time bound, and \(T = O(V^{1.6})\).
REFERENCES

APPENDIX: THE ALGORITHM

Local Variables at nodes

All variables are integer values except where noted otherwise. The initial values of all of the variables are arbitrary, except for the variable level, whose initial value is \(\infty \).

- **cycle** = current level of the exploration in the local algorithm.
- **count** = counter of unacknowledged LOCAL_BROADCAST messages.
- **desired_level** = the last level to be processed in the iteration
- **initial_level** = the first level to be processed in the sub-iteration.
- **level** = current estimate of the node's level in shortest path tree.
- **status** = estimate of whether node has frozen descendents, active descendents, or only inactive descendents; only meaningful for nodes in local trees. Possible values are \{Active, Frozen, Inactive\}.
- **state(e)** = estimate of whether there are frozen descendents, active descendents, or only inactive descendents on the further side of tree edge \(e \). If \(e \) is not a tree edge, \(\text{state}(e)=\text{unused} \). It is kept for each incident edge \(e \). Possible values are \{Frozen, Active, Inward, Inactive, Unused\}.
- **synch_level** = the level of synch nodes.
- **synchs_number** = estimate of the number of active synchs which are descendents of that node; is meaningful only for nodes in the global tree.

Messages sent during the algorithm

- **GLOBAL_BROADCAST(\(s,i,d \))** = message by which the root triggers execution of the next sub-iteration. The message carries the following parameters: synch_level, initial_level, desired_level.
- **GLOBAL_ACK(\(c,m \))** = message by which a node reports on its inedge about the termination of the sub-iteration. The message carries the following parameters: cycle, synchs_number.
- **LOCAL_BROADCAST(\(c \))** = message by which a synch node triggers the local exploration process. The parameter \(c \) is the cycle number.
- **LOCAL_ACK(\(c,s \))** = message by which a node reports about the termination of the local exploration process. The parameters of the message are \(c \) (the cycle number) and \(s \). The latter determines the state of the edge.

Procedures used in the algorithm:

- **XMIT LOCAL_BROADCAST** = generates LOCAL_BROADCAST messages.
- **XMIT GLOBAL_BROADCAST** = generates GLOBAL_BROADCAST messages.
- **SYNCH_CONTROL** = procedure executed by the synch nodes after termination of each cycle.
- **ROOT_CONTROL** = procedure executed by the root node after termination of each sub-iteration.

Initialization of the algorithm (by the root node)
begin
 if the set of incident edges is empty then STOP /* the algorithm is complete */
 else
 begin
 cycle := 1;
 level := 0;
 synch_level := 0;
 desired_level := V_0.4;
 initial_level := 1;
 for all edges e, state(e) := active;
 Call Procedure XMIT_LOCAL_BROADCAST;
 end /* of the initialization */
end

The node algorithm

Procedure XMIT_LOCAL_BROADCAST
begin
 count := 0;
 status := inactive;
 for each edge e such that state(e) = active or frozen
 begin
 count := count + 1;
 send LOCAL_BROADCAST(cycle) on edge e;
 end
 if count = 0 then
 begin
 status := inactive;
 send LOCAL_ACK(cycle, inactive) on inedge;
 end
end /* of the procedure */

Response to receipt of LOCAL_BROADCAST(p) on edge e:
begin
 if p < level then /* node joins new tree at lower level */
 begin
 if count > 0 and level ≠∞ then send ACK(cycle, unused) on inedge;
 /* terminating branch of old tree if ack awaited */
 level := p;
 cycle := p;
 inedge := e;
 state(e) := inward;
 synch_level := 0; /* initial value, to ensure that level > synch_level */
 for all edges e' ≠ e, state(e') := active;
 if node_degree > V_0.4 then status := Frozen
 else status := active;
 send LOCAL_ACK(cycle, status) on inedge;
 end
 else /* p ≥ level */
 begin
 if e = inedge then
 if p > level then /* broadcast must be propagated outward */
 begin
 ...
cycle := p;
Call Procedure XMIT_LOCAL_BROADCAST;
end
else send LOCAL_ACK(cycle,status) on inedge;

/* in this case p = level; this means that this is the check for frozen nodes and the
current node is in the last layer */
else /* e in edge */
begin
 send LOCAL_ACK(p,unused) on edge e;
 state(e) := unused;
end
/* this occurs for p >= level, e in edge and negatively acknowledges a broadcast when old
tree is retained */
end /* of the response */

Response to receipt of LOCAL_ACK(p,s) on edge e
begin
 if p = cycle then
 /* outdated acks satisfy p > cycle; they are ignored */
 begin
 if s = frozen then status := frozen;
 else if s = active and status = frozen then status := active;
 state(e) := s;
 count := count - 1;
 if count = 0 then
 if level > synch_level then /* the node is not a synch */
 send LOCAL_ACK(cycle, status) on inedge;
 else Call Procedure SYNCH_CONTROL
 end
end /* of the response */

Procedure SYNCH_CONTROL
begin
 if level = 0 and status = frozen then status := active;
 /* the root ignores freezing on its local iteration */
 if status = active and cycle < desired_level then
 begin
 cycle := cycle + 1;
 Call Procedure XMIT_LOCAL_BROADCAST
 end
else /* local exploration process has been freeze or terminated */
begin
 if status = inactive then synchs_number := 0;
 else synchs_number := 1;
 if level > 0 then
 send GLOBAL_ACK(cycle,synchs_number) on inedge
 else if level = 0 then
 /* it is the end of the local cycle at the the root */
 Call Procedure ROOT_CONTROL;
end
end /* of the procedure */
Procedure XMIT_GLOBAL_BROADCAST
begin
 count := 0;
synchs_number := 0; /* lower bound */
cycle := ∞; /* upper bound */
 for each edge e such that state(e) = active or frozen
 begin
 count := count + 1;
 send GLOBAL_BROADCAST(synch_level, initial_level, desired_level) on e;
 end
end /* of the procedure */

Response to receipt of GLOBAL_BROADCAST(s,i,d) on edge e :
begin
 if there exists no incident edge e with state(e) = active or frozen then
 send GLOBAL_ACK(cycle,0) on inedge;
 else
 begin
 synch_level := s;
 initial_level := i;
 desired_level := d;
 if level < synch_level then Call Procedure XMIT_GLOBAL_BROADCAST
 else /* level = synch_level */
 begin
 if initial_level = cycle + 1 then cycle := cycle + 1;
 /* otherwise test for still frozen local tree */
 Call Procedure XMIT_LOCAL_BROADCAST;
 /* this invokes execution of the local exploration process */
 end
 end
end /* of the response */

Response to receipt of GLOBAL_ACK(c,m) on edge e :
begin
 synchs_number := synchs_number + m;
 if m > 0 then
 begin
 cycle := min{cycle,c};
 state(e) := active;
 end
 else state(e) := inactive;
 count := count - 1;
 if count = 0 then
 if level > 0 then send GLOBAL_ACK(cycle,synch_number) on inedge
 else Call Procedure ROOT_CONTROL;
end /* of the response */

Procedure ROOT_CONTROL
begin
 if synchs_number = 0 then STOP; /* algorithm is complete; BFS tree is given by
 inedges pointing in and inactive edges pointing out */
 else
begin
/* next sub-iteration */
 initial_level := cycle + 1; /* starting at the height of lowest tree */
 if cycle = desired_level then /* otherwise freezing exists and synch_level and */
 desired_level := synch_level + 1; /* desired_level need not be changed */
 if synchs_number < $V^{0.2}$ and desired_level - synch_level < $V^{0.4}$ then
 desired_level := synch_level + $V^{0.4}$;
 /* few synchs, make group long */
 else if desired_level = synch_level + $V^{0.2}$ then
 desired_level := desired_level + 1;
 /* the estimate of active synchs may be too high; test actual number of */
 /* active synch nodes by processing just one layer */
 else begin /* new iteration */
 synch_level := cycle;
 desired_level := synch_level + $V^{0.2}$;
 end
 end
 end
/* of the Procedure */
Call Procedure XMIT_GLOBAL_BROADCAST
FIGURE 1A BROADCAST TO FIND A NEW LEVEL

FIGURE 1B TESTING NODES AT NEW LEVEL

FIGURE 1C ACKNOWLEDGEMENTS

FIGURE 1D COORDINATION BEFORE NEXT LAYER
FIGURE 2A: GLOBAL BROADCAST

FIGURE 2B: LOCAL BROADCAST

FIGURE 2C: LOCAL ACKNOWLEDGEMENT
Figure 3A: Example of Fast Tree Taking Extra Nodes

Figure 3B: Local Broadcast in Slow Tree Recapturing Node

Figure 3C: Local Acknowledgement in Slow Tree