
Reconfigurable Autopilot Design for a High Performance Aircraft

Using Model Predictive Control

by

Jose Pedro Ruiz

B.S. Aerospace Engineering with Information Technology
Massachusetts Institute of Technology, 2002

SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS

AT THE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

SEPTEMBER 2004

@ 2004 Jose Pedro Ruiz. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper
and electronic copies of this thesis document in whole or in part.

Signature of Author:
... Dep artment qAeron a~icsnd Astronautics

July 2, 2004
Certified by:

Piero Miotto
Charles Starkj Draper Laboratory, Inc.

Thesis Supervisor
Certified by:

John J. Deyst
Professor o Aeronautic and Astronautic, MIT

Thesis Advisor
Accepted by:

~y Jaime Peraire
Professor of Aeronautics and Astronautics

Chairman, Committee on Graduate Students
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

FEB1 0 2005 AROI

LBFZARIFS

[This Page Intentionally Left Blank]

2

Reconfigurable Autopilot Design for a High Performance Aircraft

Using Model Predictive Control

by

Jose Pedro Ruiz

Submitted to the Department of Aeronautics and Astronautics on July 2, 2004 in
partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

ABSTRACT

The losses of military and civilian aircraft due to control surface failures have prompted
research into controllers with a degree of reconfiguration. This thesis will describe a
design approach incorporating Model Predictive Control (MPC) with a self updating
model to achieve a level of reconfiguration in a generic high performance aircraft. MPC
has the advantage of explicitly taking a model of the failed system and incorporating it
into a receding horizon optimization problem. MPC also has the added benefits of
allowing constraints on the inputs, outputs, and states of the system as well as tuning
flexibility. This thesis describes the development of four types of MPC autopilots. A
description of the controller implementation and failure implementation is also included.
Each autopilot is subject to a surface failure during certain times in a sample maneuver
and the resulting controller adaptation is analyzed. All MPC controllers are found to
maintain good performance in the event of certain failures with an updated internal
model. It is when the internal model is not updated that full performance is not recovered
and in some cases, loss of the aircraft results.

Thesis Supervisor: Piero Miotto

Title: Senior Member of the Technical Staff, Charles Stark Draper Laboratory

Thesis Supervisor: John J. Deyst

Title: Professor of Aeronautics and Astronautics, MIT

3

[This Page Intentionally Left Blank]

4

ACKNOWLEDGEMENTS

I would like to thank everyone here in Boston who helped me along the way over the past
two years. I was very lucky to have a great supervisor and friends while here.
I would like to say thanks to my supervisor Piero Miotto. He was an excellent
supervisor who always made time to help me through any issues this thesis might have
caused. He taught me to think more critically and showed me that with a little cleverness
any problem can be solved. I can only hope my future bosses are as fit as him both in the
technical and managerial sense. Secondly I'd like to thank my thesis advisor John Deyst.
He was instrumental in helping me to finally finish this thesis. Also thanks to Fred
Boelitz and Leena Singh as part of the MPC group who helped motivate MPC research.
Speaking with them was always enlightening and helpful.
I would also like to thank my mom for encouraging me all those years and my brother for
always being there. They encouraged me even when I thought graduate school at MIT
seemed more like a dream than a reality.
Thanks also to my housemates Seth, Chris, and Semi. They made my stay in Somerville
and the experience of graduate school bearable. Those late night talks around the kitchen
table helped me keep my sanity throughout these past two years.
I also must thank my buddies at Draper, Jillian, Abran and Tiffany. From everything to
talks about the mysteries of MPC tuning to where our careers were going, they made
Draper a warmer place to be.

This thesis was prepared at The Charles Stark Draper Laboratory, Inc, under Internal
Company Sponsored Research with contract number IRD04-0-5043, Model Predictive
Control.

Publication of this thesis does not constitute approval by Draper or the sponsoring agency
of the findings or conclusions contained therein. It is published for the exchange and
stimulation of ideas.

Jose P. Nuiz July 2, 2004

5

[This Page Intentionally Left Blank]

6

Table of Contents

Int rroducti<> ... 19

1.1 Problem M otivation .. 20

1.2 O verview .. 2 1

1.3 Results Portability ... 21

1.4 T e or .. . 21

Chapter 2 23

MPC Perturbation Theory... 23

2.1 MPC Overview ... 23

2.1.1 Propagation Model .. nstai.. 25

2.1.2 Performance Index .. 27

2.1.3 Optimization and Constraints.. 27

2.2 Perturbation Control .. 28

2.2.1 Basis Functions.. 29

2.2.2 Nominal Trajectories .. 30

2.2.3 Perturbations .. 32

2.3 Unconstrained Solution.. 34

2.4 Constrained Solution... 36

2.5 MPC Example ... 37

Chapter 3 ... 45

Vehicle Truth Model.. 45

3.1 Vehicle Description ... 45

3.2 Model Framework.. 47

7

3.3 Six D egree of Freedom N on-linear Vehicle M odel.. 47

3.3.1 Subsystem D escription... 48

3.3.2 Coordinate Fram e and Output Description.. 50

3.4 M odifications.. 52

3.5 Autopilot M ode Definitions.. 53

Chapter 4 ... 55

M PC Controllers... 55

4.1 Controller Overview ... 55

4.2 Quadratic Problem Solver... 56

4.3 Internal M odel... 57

4.3.1 M odel M odifications.. 57

4.4 Basis Function Selection.. 58

4.5 Sim ulation Rates.. 61

4.6 A utopilot Design .. 62

4.6.1 Pitch H old.. 62

4.6.2 Bank H old.. 63

4.6.3 Altitude Capture... 67

Chapter 5... 75

Failure Scenarios Design Methods.....................................75

5.1 Redundant Control Authority ... 75

5.2 Failure Types .. 76

5.3 Failure Sim ulation and Update .. 78

Chapter 6... 80

8

Simulation Results ... 81

6.1 Pitch Hold Autopilot Mode Reconfiguration... 81

6.2 Bank Hold Autopilot Mode Reconfiguration .. 90

6.3 Altitude Capture Mode Failures.. 97

6.4 Altitude/Heading Mode Hold Failures.. 104

C h ap ter 7 ... 12 3

Conclusions and Recommendations ... 123

7 .1 C onclu sion s... 123

7.2 Recommendations for Further W ork .. 125

A ppendix A ... 127

A ppendix B ... 133

9

[This Page Intentionally Left Blank]

10

List of Figures
Figure 1: M PC Graphical Layout .. 24

Figure 2: M PC Receding Horizon Graphic ... 24

Figure 3: Nonlinear Propagator .. 26

Figure 4: Linearly Spaced Ramp Basis Functions... 30

Figure 5: Roll Control Loop ... 38

Figure 6: Basis Cost Comparison .. 39

Figure 7: Basis Percentage Error .. 40

Figure 8: 10 Linearly Spaced Step Basis Functions .. 40

Figure 9: Prediction Horizon Comparison... 41

Figure 10: Roll Control Final Implementation ... 42

Figure 11: Final Control Profile... 43

Figure 12: Truth M odel.. 48

Figure 13: Heading Description... 50

Figure 14: Theta Description ... 51

Figure 15: Phi Description... 51

Figure 16: Thrust Vectoring Control ... 53

Figure 17: Sample Flight Path ... 54

Figure 18: M PC Outer Loop ... 55

Figure 19: M PC Controller Structure ... 56

Figure 20: Laguerre Polynomials... 59

Figure 21: Exponential M aneuver Example .. 60

Figure 22: Laguerre/Linearly Spaced Step Error Comparison 61

Figure 23: Pitch Doublet.. 63

11

Figure 24: Pitch Doublet Input.. 63

Figure 25: Bank Hold.. 64

Figure 26: P Input... 65

Figure 27: Bank Hold Response.......................................65

Figure 28: Bank Hold Input 66

Figure 29: Ground Track 66

Figure 30: Altitude Capture ... 67

Figure 31: Q Input... 68

Figure 32: Altitude Step with Rate Constraint.. 68

Figure 33: Pitch Rate Command for Altitude Step with Rate Constraint..................... 69

Figure 34: Altitude Rate for Altitude Step with Rate Contraint 69

Figure 35: Altitude Capture ... 70

Figure 36: Heading Capture... 71

Figure 37: Phi.. 71

Figure 38: Q Input... 72

Figure 39: R Input... 72

Figure 40: TV Directional Command...................................73

Figure 41: TV Longitudinal Com m and... 73

Figure 42: Trajectory tudd........ 74

Figure 43: Control Surface Split... 75

Figure 44: Hard Over Dem onstration .. 76

Figure 45: Frozen Failure Dem onstration.. 77

Figure 46: Hard Under Dem onstration .. 78

12

Figure 47: Failure Implementation ... 79

Figure 48: Pitch Failure ... 82

Figure 49: Pitch Failure Zoom ... 82

Figure 50: Pitch Controller Reconfiguration ... 83

Figure 51: Pitch Controller Reconfiguration Zoom... 84

Figure 52: Flap Reconfiguration.. 85

Figure 53: Pitch Hard Under Reconfiguration... 86

Figure 54: Pitch Hard Under Reconfiguration Zoom.. 86

Figure 55: Pitch Hard Under Controller Reconfiguration ... 87

Figure 56: Pitch Hard Under Flap Reconfiguration... 87

Figure 57: Pitch Frozen Reconfiguration... 88

Figure 58: Pitch Frozen Reconfiguration Zoom... 88

Figure 59: Pitch Frozen Controller Reconfiguration .. 89

Figure 60: Pitch Frozen Flap Reconfiguration.. 89

Figure 61: Outboard Left Aileron Hardover Failure Reconfiguration.......................... 90

Figure 62: Hardover Outboard Left Aileron Failure Reconfiguration Zoom................ 91

Figure 63: Roll Rate Command for Hardover Outboard Left Aileron Controller

R econfiguration... 92

Figure 64: Hardover Outboard Left Aileron Failure Reconfiguration........................... 92

Figure 65: Inboard and Outboard Right Aileron Failure Reconfiguration 93

Figure 66: Horizontal Tail Reconfiguration ... 94

Figure 67: Outboard Left Aileron Hardunder Failure Reconfiguration........................ 95

13

Figure 68: Roll Rate Command for Hardunder Outboard Left Aileron Controller

R econfiguration.. . . 95

Figure 69: Hardunder Outboard Left Aileron Failure Reconfiguration......................... 96

Figure 70: Inboard and Outboard Right Aileron Failure Reconfiguration 96

Figure 71: Horizontal Tail Reconfiguration ... 97

Figure 72: Hardover Inboard Horizontal Tail Surface Failure Reconfiguration 98

Figure 73: Pitch Rate Command for Hardover Inboard Horizontal Tail Surface Controller

R econfiguration.. 99

Figure 74: Outboard Horizontal Tail Surface Reconfiguration 99

Figure 75: Hardover Inboard Horizontal Tail Surface Failure Reconfiguration with

R elaxed C ontraints..100

Figure 76: Hardover Inboard Horizontal Tail Surface Failure Reconfiguration with

R elaxed C ontraints Zoom ... 100

Figure 77: Pitch Rate Command for Hardover Inboard Horizontal Tail Surface Controller

R econfiguration ... 10 1

Figure 78: Outboard Horizontal Tail Surface Reconfiguration 102

Figure 79: Hardunder Inboard Horizontal Tail Surface Failure Reconfiguration 103

Figure 80: Pitch Rate Command for Hardunder Inboard Horizontal Tail Surface

C ontroller R econfiguration ... 103

Figure 81: Outboard Horizontal Tail Surface Reconfiguration 104

Figure 82: Hardover Rudder Failure Reconfiguration.. 105

Figure 83: Yaw Rate Command for Hardover Rudder Failure Controller Reconfiguration

... 10 6

14

Figure 84: Hardover Rudder Thrust Vane Reconfiguration ... 106

Figure 85: Altitude/Rudder Hardover Reconfiguration.. 107

Figure 86: Altitude Rudder Hardover Controller Reconfiguration................................. 107

Figure 87: Altitude/Rudder Hardover Thrust Vane Reconfiguration............................. 108

Figure 88: Frozen Rudder Failure Reconfiguration.. 109

Figure 89: Yaw Rate Command for Frozen Rudder Failure Controller Reconfiguration

... 1 10

Figure 90: Frozen Rudder Failure Thrust Vane Reconfiguration................................... 110

Figure 91: Altitude/Rudder Frozen Reconfiguration.. 111

Figure 92: Altitude/Rudder Frozen Controller Reconfiguration 111

Figure 93: Frozen Rudder Thrust Vane Reconfiguration ... 112

Figure 94: Hardover Inboard Horizontal Tail Surface Failure Reconfiguration 113

Figure 95: Pitch Rate Command for Hardover Inboard Horizontal Tail Surface Failure

C ontroller R econfiguration ... 113

Figure 96: Hardover Inboard Horizontal Tail Surface Failure Thrust Vector

R econfiguration ... 114

Figure 97: Hardover Inboard Horizontal Tail Surface Failure Rudder Reconfiguration 114

Figure 98: Hardover Inboard Horizontal Tail Surface Failure Reconfiguration 115

Figure 99: Yaw Rate Command for Hardover Inboard Horizontal Tail Surface Failure

C ontroller R econfiguration ... 116

Figure 100: Hardover Inboard Horizontal Tail Surface Failure Thrust Vector

R econfiguration ... 116

Figure 101: Hardounder Inboard Horizontal Tail Surface Failure Reconfiguration 117

15

Figure 102: Pitch Rate Command for Hardunder Inboard Horizontal Tail Surface Failure

C ontroller R econfiguration ... 118

Figure 103: Hardunder Inboard Horizontal Tail Surface Failure Thrust Vector

R econfiguration ... 118

Figure 104: Outboard Horizontal Tail Surface Reconfiguration 119

Figure 105: Hardover Inboard Horizontal Tail Surface Failure Reconfiguration 120

Figure 106: Yaw Rate Command for Hardunder Inboard Horizontal Tail Surface Failure

C ontroller R econfiguration ... 120

Figure 107: Hardunder Inboard Horizontal Tail Surface Failure Thrust Vector

R econfiguration ... 12 1

Figure 108: Rudder Reconfiguration.. 121

Figure 109: Aircraft Simulink Diagram for RTW .. 127

Figure 110: Filter with Explicit Integrators .. 130

Figure 111: Aircraft Airframe with Delays .. 131

Figure 112: S Functions with Explicit Integrator ... 132

16

List of Tables

Table 1: Physical Characteristics.. 45

Table 2: Flight Surface Characterizations.. 46

Table 3: Output Variables... 52

Table 4: Pitch Controller Specifications .. 62

Table 5: Bank Hold Controller Specifications... 64

Table 6: Altitude Capture Specifications.. 67

Table 7: Altitude and Heading Hold Specifications .. 70

17

[This Page Intentionally Left Blank]

18

Introduction

The design of autopilots for modern day aircraft often does not take into account failures

in any of the controlling surfaces. The controller is merely tested in a wide variety of

flight regimes and the resulting robustness is assumed to take into account a certain type

of failure. These existing controllers however often cannot compensate for failures

involving the flight surfaces. For instance on April 12, 1977, Flight 1080 an L-10 11

flying out of San Diego had its left horizontal stabilizer jam in a full trailing edge up

position just after take off. Fortunately the crew was able to learn to fly the aircraft using

throttles as a supplement and landed safely. It is very possible however that a less able

crew could have met with disastrous results. Flight accidents such as these have

motivated researchers for decades to try and develop a reconfigurable flight control

system.

In order to design a truly self reconfiguring controller many methods have been

developed. These range in form from simply designing highly tuned controllers offline

for specific failures to direct adaptive approaches involving neural networks. The first

batch of design methods are known as automated failure dependent gain schedule

techniques. These take both modern and classical controller design approaches such as

PID and LQR, and extend them for a set of specific predetermined failures. If that

particular failure occurs these controllers are brought online according to some failure

detection unit [2]. The second class, known as control reallocation, actually tries to solve

the torque allocation problem prompted by damaged surfaces by solving linear programs

in real time [7]. The final class however is the closest attempt to realizing a truly

reconfigurable control system. This is known as general constrained optimization and

includes methods such as implicit model following, indirect and direct adaptive control

and model predictive control [9].

19

This thesis will address the problem of developing a reconfigurable autopilot by applying

Model Predictive Control (MPC) with an updatable internal model. The MPC controller

will issue high level commands to an inner stabilizing loop containing a Control

Augmentation System or CAS. The MPC controller will also assume to have a

functioning failure detection and isolation (FDI) system onboard. The only duty of this

FDI system is to give the MPC controller information on the control surface position.

Using this information, the internal model will be updated and used to predict the

aircraft's behavior with the damaged surfaces. The inner loop CAS aboard the aircraft

however will not be updated to adapt to the surface failures. All reconfiguration will take

place through the newly tailored control strategy constructed by the outer loop MPC

controller. It is by using the predictions of the failure updated internal model that MPC

will be able to completely restructure its own control strategy in real time.

1.1 Problem Motivation

As was previously stated, most non-experimental aircraft are not outfitted with a

reconfigurable control system. In modern aircraft the burden of developing a new control

strategy falls directly on the pilot if such a failure occurs. Thus the MPC control system

would provide the added capability of automatically compensating for unforeseen

failures. Its uses are also obvious for the newer autonomous aerospace vehicles in which

there are no pilots to both recognize the failures and learn to fly the aircraft with the

remaining control effectors.

With the advent of modern computers and the rapid gains in processor speeds, the large

computational loads typically encountered by MPC controllers are becoming less of a

problem. It is only now that MPC is being considered for aerospace applications which

require higher controller bandwidths as opposed to the process industry in which it has

been used for the past twenty years. One key aspect of MPC is its use of an internal

model for control. It is with this model that it performs an optimization procedure to

solve for the best inputs according to a cost function and the aircraft's perceived ability.

Thus it is only MPC that has the ability to incorporate knowledge of the failure directly

into its own control strategy using the updated internal model.

20

1.2 Overview
The goal of this research is to show the advantages and disadvantages of several

reconfigurable autopilots designed with MPC. The results will show the benefit of

having MPC's internal model updated with the failure in question as opposed to without

it. It will also show MPC's ability to tailor a brand new control strategy with the failure

in question.

The aircraft models used in these comparisons are identical except for the

heading/altitude autopilot which incorporates a thrust vectoring system. Furthermore,

each model is a six Degree-of-Freedom (6DOF) representation of a generic high

performance aircraft. Each controller for the four individual autopilots developed guides

the aircraft along a predetermined trajectory and is subject to a failure in the principal

control surfaces.

1.3 Results Portability
This research uses a generic high performance aircraft and thus is considered to be

representative of a large array of military aircraft flying today. The augmented dynamics

due to the inner loop render most of these aircraft similar in flight characteristics due to

the standards published by the military [1]. Although some aircraft may be unstable in

open loop, the addition of the CAS establishes the aircraft to have similar flying

characteristics defined in terms of frequency or time response. For instance, on the pitch

axis the short period and phugoid damping are typically similar when the inner loop CAS

is considered [5]. This fact coupled with the standard practice of using traditional control

surfaces such as ailerons, rudders, and horizontal tails makes this aircraft model very

similar to many flying today. Thus the MPC algorithms resulting in this research should

be portable to most aircraft platforms.

1.4 Thesis Preview

This thesis is organized as described below following the introductory chapter:

Chapter 2 presents the mathematical theory behind the MPC controllers used in

the autopilots. A general discussion is followed by the mathematical background for the

21

particular type of MPC used in the research, perturbational MPC. It also provides an

example of the pertubational MPC method applied to a roll autopilot

Chapter 3 presents the details of the vehicle model used in this research. The

model platform, coordinate frames and modifications are also discussed. A brief

introduction to the autopilot mode definitions is also offered.

Chapter 4 presents the MPC controllers used throughout this research. It gives an

example of each completing a sample maneuver. It also describes the controller

implementation and MPC parameter selection.

Chapter 5 presents the failure scenario designs and methods. It describes both the

type of failures introduced and their actual implementation.

Chapter 6 presents the results from the comparison of the MPC with and without

an updated internal model reflecting failure for all the four autopilots introduced.

Chapter 7 summarizes the findings of this research and offers recommendations

for further research.

22

Chapter 2

MPC Perturbation Theory

2.1 MPC Overview

Model Predictive Control (MPC) is a general control scheme in which an explicit model

is incorporated into a dynamic control law. This method is computationally intensive and

therefore has until recently only been applied to low rate controller and low bandwidth

systems. In fact, since the 1980's MPC has been used in a wide variety of chemical and

process control applications [5] [8]. Fortunately, significant increases in computer

processor speeds have made MPC applicable to higher bandwidth systems such as flight

vehicles.

MPC is a general methodology referring to an optimal receding horizon control strategy.

There are various techniques, but in principle MPC is a multiple input multiple output

(MIMO) constraint handling controller. The MPC architecture is robust and can handle

non-minimum phase and unstable plants, as well as those with large time delays. This

robustness is a result of the seemingly brute force method of control on which it operates.

MPC essentially tailors a new control strategy at each sample time that is based on

predicted outputs created with the internal model. MPC is especially capable of

controller reconfiguration because of this inherent ability to re-compute its entire control

strategy at each sample time. This remarkable adaptive quality of MPC will be used in

this thesis to provide a degree of reconfiguration in a high performance aircraft.

A high level block diagram can be seen below to show the structure of MPC.

23

MPC Controller

Figure 1: MPC Graphical Layout

As can be seen, the reference trajectory r(t) in Figure 2 is compared with the predicted

output created by the internal reference model. The optimizer then solves for the control

sequence while satisfying constraints and weighting information. The first N inputs are

then applied and the entire process repeated with the propagation model initialized with

the current states. The entire strategy consequently becomes closed loop by initializing a

series of essentially open loop optimal control problems. It is by reiterating this process

at each sample time that the finite optimization is moved forward along in time (see

Figure 2). This creates the receding horizon principle that is essential in all MPC

schemes.

Predicted outputs

+

t +1 t+ +p l

Figure 2: MPC Receding Horizon Graphic

The internal model is used to predict the plant's output over a certain prediction horizon,

Hp. The control often has its own horizon in which free controls can be computed known

24

as the control horizon, Hu. If Hp > Hu then the last control input is typically kept

constant until the end of the prediction. This is typically done to reduce the amount of

control variables to be solved for. The predicted output is then compared with a

reference output and incorporated into a cost function. The function is subsequently

minimized solving for a complete set of optimal inputs. Thus at each time step the MPC

system is solving for a complete control sequence over the prediction horizon.

The MPC methodology can be broken down into 4 basic parts.

" Propagation Model

" Performance Index

" Optimization

" Constraints

The following sections will introduce these elements in further detail.

2.1.1 Propagation Model
MPC predicts outputs based on its internal propagation model. The propagation model

used in an MPC scheme can vary somewhat with the principal constraints being

computation time and fidelity. It is common to use a linear model of the plant's

dynamics. In most cases a state space model representation, as shown in Equation 1, is

used for the propagator.

y(k) = C(k)x(k) + D(k)u(k)
(1)

x(k +1) = A(k)x(k) + B(k)u(k)

The state space matrices A(k), B(k), C(k), and D(k) can change over the prediction

horizon if the horizon is long enough. This makes the propagation algorithm

cumbersome as the state space matrices must be continually updated along the prediction

horizon. In addition to this, the propagation sequence used in MPC must then be able to

update itself with the different state space models as it looks forward in time. These

models are of course only valid at the operating point they were linearized and thus

separate models must be used as the vehicle travels out of this point. Despite its

drawbacks, this method of propagation is prevalent due to its compact description. A

25

proper mathematical treatment of this method can be found in reference [5]. Other plant

descriptions can also be used such as step/impulse response models and polynomial

models though they have similar constraints due to linearization. However, yet another

MPC scheme employs the entire nonlinear model for propagation.

In this form the plant can be any function of the state x and the inputs u.

(2) y(k) = g(x(k),u(k))
x(k +1) = f(x(k),u(k))

The propagator only has to initialize and propagate the nonlinear function to make the

predicted outputs. This reduces the model into nothing more than an input output

relationship and is the method this thesis incorporates. The model must only be

initialized properly and then proceed with a discrete input to output relationship. This

can be seen in the figure below.

Xo initial State

U(k) Y(k)
Discrete

Noninear
Model

U(k+ Hp) Y(k+ Hp)

Figure 3: Nonlinear Propagator

Through this method, the model is valid at all operating points and would not have to be

linearized at each point. The propagation algorithm is also simpler because all that is

needed is proper initialization and input information. The algorithm itself does not have

to take into account the changing of state space matrices along the prediction horizon. It

must be stressed that in the limit all propagation schemes would approach the identical

optimal output for that particular input. The only difference is the difficulty of the

propagation system implementation.

26

2.1.2 Performance Index

In order to fold MPC into an optimal control technique, a performance index must be

used. Typically the performance index, or cost function, is written in terms of norms as

in Equation 3.

(3) ||x| = xTQx
Q

For a prediction horizon of Hp and control horizon of Hu the cost function J is as follows.

Hp-1 Hu- 2

(4) J(k)= lz(k +i)-r(k +i)|Q + lu(k+i)
Q R(i)

i=O i=0

Equation 4 shows the difference between the reference r and predicted output z to be

weighted with the matrix Q. The input u is further weighted through the matrix R in the

second term of the equation. The Q and R matrices are diagonal and are used to weight

inputs and outputs both against each other and against themselves over the prediction

horizon. It is also common for some methods to weight the control increment Au or u(k)-

u(k-1). This will drive the steady state error to zero by reducing the incremental control

size. Since the cost function is quadratic and convex, an unconstrained minimum can

always be found. Otherwise, standard QP algorithms are employed.

2.1.3 Optimization and Constraints

At the beginning of each MPC cycle the cost function is fully populated and ready to be

optimized. If there are no constraints a closed form solution can easily be found and

implemented. In general this form of quadratic optimization is represented as the

following.

(5) J =xTHx+fTX
2- - -

27

The closed form solution is found by setting the cost function's derivative equal to 0 and

solving for x.

(6) -

This closed form solution cannot be used however when linear constraints are applied to

the vector x. In this event a quadratic programming algorithm must be used to compute

the constrained optimal solution. Constraints are sent to the quadratic programming

algorithm in the following form.

(7) br Ax <bmax

It will be shown that constraints can be placed on inputs, outputs and states within the

plant. In the presence of linear constraints, a quadratic programming solver will find the

global optimum. In some cases the solution will be on the constraint's boundary.

2.2 Perturbation Control

In some applications the MPC algorithm directly solves for all inputs in the control

horizon. The number of variables to solve for N, then becomes related to the prediction

horizon Hp, the prediction rate At, and the number of inputs Ni.

H
(8) N, = N * P

At

One way to massively reduce the order of this problem however is through perturbational

control and basis functions. Basis functions are used to reduce the amount of variables

solved for at each time step by the MPC controller. It does this by using basis functions

to serve as the free variables in the optimization problem.

The number of variables to be solved for then becomes simply the number of inputs Ni

multiplied by the number of basis functions Nb.

28

(9) N, =N, *N,

2.2.1 Basis Functions

Basis functions are a collection of elementary functions used to build up the input vector.

The QP algorithm solves for the optimum linear combination of these primitive

functions. The input signal, v(t), can be represented by a linear combination of basis

functions, Si(t), in the following way.

B

(10) v(t)= S (t)a
i-O

Many types of basis functions can be used to create the input. In Section 4.4 1 give a

brief description of these functions. A special set of basis functions, often used in MPC

controllers, are orthogonal functions that satisfy the following condition.

(11) S,(k)Sj(k) =0 for i * j
k=

=1 for i =j

The orthogonality condition often allows the number of independent variables, required

to satisfactorily span the input space, to be reduced.

Other non orthogonal functions that are commonly used by MPC controllers are

temporally spaced steps, ramps or impulses. Even though they do not satisfy the

orthogonality condition, they have been proven highly effective in various applications

(process control) because of their simplicity and flexibility. They can easily be spaced

over the horizon to increase the degrees of freedom of the solution at the beginning of the

time horizon. For example, the following figure shows a family of linearly spaced ramps

that can be mathematically represented as:

29

N

v(t)= S, (t)a,
i=I

Si (t) = A """ tat sti,end
i,end ti,start

Si(t)=A t > ti,end

Si (t) =0 t < ti'start

Where A is the level of the step, 1 in the following figure, and ti,start and ti,end are the initial

and final times of the ramp.

0.8

0.6

0.4.

0.2-

0-
5

10

Basis Index 0 0 Time (Seconds)

Figure 4: Linearly Spaced Ramp Basis Functions

2.2.2 Nominal Trajectories

In perturbation control basis functions are used to perturb the nominal input in order to

record the response of the plant to small variations from the nominal trajectory. The

nominal input trajectory plays an important role in perturbation control because it is the

foundation from which all the perturbations are taken. There are two essential nominal

trajectories in a system, these are the nominal input (UN) and the nominal output (YN).

30

2

There is also the predicted output (Y), control history (_U), output perturbation (Qy) and

input perturbation (_u). For a SISO system, these can all be represented as follows:Lu(1) 1(12) U= u(2) "''

u(Hp)]

UN

UN N () Hpx

uN(CHp)_

[U(1)1

= OU (2) E- 9Hpxl

L Eu(Hp)_

y(1) yN (1) y()

(13) Y = E 9 H X H x (2) E - - E 9 Hpx

Sy(Hp) YN (LHP) Gy(Hp)_

The predicted output (Y) can be represented as the sum of the nominal output (YN) and

the output perturbation (0y).

(14) Y = YN+ Y

The control history (U) can similarly be represented

and the input perturbation (_u)

(15)

as the sum of the nominal input (UN)

U =UN U

There are many ways to define the nominal inputs. They can be selected from a

predefined set of valid maneuvers (variable bank rates, variable pitch rates, etc.). In this

research we are not going to focus on the creation and selection of nominal trajectories,

the nominal input is simply obtained by holding the last measurement of the input

variable over the entire prediction horizon Hp.

The nominal output is the response of the plant, over the prediction horizon, to the

nominal input. In the following equation the output expression for the plant is

represented as the function g.

31

(16)

yN(k) = g N(x(k),u(k),k)

YN(k + 1) = g(x(k+ 1),UN(k + 1),k + 1)

YN(k + 2) = g(x(k + 2),UN(k + 2),k + 2)

At each step also the states are updated according to Equation 2.

2.2.3 Perturbations

As previously stated, the individual basis functions serve as the perturbation set to be run

through the model. The perturbed trajectories at time k (Y (k).i = 1..B) are the result of

the application of the input perturbation basis function (Oy ,(k), i = 1..B) over the entire

prediction horizon (t(k) t t(k) + Hp). B is defined as the total number of basis

functions used in the set.

Y(k) = g(X(k),UN (k) + eU, (k),k) E 9HPx1

Y2 (k) = g(X (k), UN (k) + E) 2 (k), k) E 9IHPt1
(17)

YB(k) = g(X(k),UN (k) + U,B (k),.k) (91HPxl

In the calculation of the output vector Yi(k) the state vector is also updated in accordance

with Equation 2.

In the following equations, we are going to drop the time index k for the sake of brevity.

As the output from the perturbed input are gathered however, the original nominal output

must again be subtracted out to calculate the output perturbation. This creates B number

of output perturbations (AY .i = 1..B).

AY, =Y, -YN

AY2 = 2- N
(18) = ___

AB B N

32

These output differences are then collected and used to create the output perturbation

matrix S.

(19) S = [AY AY2 SAYB] 9 1 HpxB

In a similar fashion all the input perturbations (AU = U, -UN, i =1..B) are collected

and used to create the input perturbation matrix D.

D=[AU, AU2 SAUBIC9 HpxB

The output perturbation matrix S can then be used to form the generic perturbed output

(8.) in Equation 13 as a linear combination of the AYi vectors.

(20) E8 = Sae9IHpx

The predicted output trajectory in Equation 14 now takes the following form for a generic

output.

(21) Y=YN + SE 9t Hpx

In this formulation the independent variables that we are going to optimize are the scale

factors a.

The input perturbations (eu) in Equation 12 can now be expressed in terms of the basis

functions and scaling factors.

(22) 80 = Da

This leads to the following form of Equation 15.

(23) U=UN+ D

S 9 HpxI

X e 9 HpxI

Where U is the nominal input and D is the input perturbation matrix. At this point we

are making the fundamental linearity assumption between the input and output mapping.

33

Equation 24 is only valid for small perturbations from the nominal input. In fact, this is

where the linearization assumption comes into play. Under this assumption the same

scale factors applied to the output space can be applied to the input perturbations as well.

(24) Y =YN +SY - U = UN- +Da
linear - -

This linearization assumption works also for the optimal scale factors that are calculated

in the optimization performed in the output space. This fact is vital for MPC to be able to

solve for the optimal input by applying the optimal scale factors found for the output.

The optimization is done in the output space and the optimal scale factors applied to the

input space.

2.3 Unconstrained Solution

We will now present how perturbation control can be formulated with the performance

index described in Equation 4. The predicted output z of Equation 4 is replaced by the

output Y and the reference output r is replaced by YR-

Equation 4 in matrix notation takes the following form.

(25) J = (Y-YR) TQ(yYR)+U T RU

From Equations 21 and 23 we have:

Y =SYN+Sa

U=UN +Da

Replacing the above definitions into Equation 25 we have:

(26) J =(YN R + S) T Q(N -R +S)+(UN +D) R(UN +Da)

This is then further expanded into terms containing the scaling vector a and those

without.

34

J = (YN _ R)T Q(yN -YR) + (Sa) T Q(Sa) + (UN)T R(UN)+ (Da)T R(Da)
(27)

+ (YN R) Q(Sa) + (S) T Q(N R +(UN)T R(Da) + (Da)T R(UN)

It can be seen that terms not containing the scaling vector do not change the minimum of

J because they only add a constant amount to the total cost. It is because of this that these

terms can be neglected and the cost function further simplified.

(28) J = (Sa)T Q(Sa) + (Da)T R(Da) + 2(YN _ R)T Q(Sa) + 2(UN)T R(Da)

All that remains is to collapse the cost function into the standard form of a quadratic

programming problem.

TT
(29) J= x Hx+f x

This is done in the following equations by rearranging Equation 28.

J = aTS T QSa+aT D RDa + 2(YN YR)T QSa+2(UN) T RDa

(30)

J = Y T (S T QS + D RD)a+ 2((YN YR)T QS +UN T RD)a

The problem is now in the standard form for a QP solution by only adding a scaling

factor of 2 to the H matrix

H = 2(S T QS + D RD) e 91BxB

(31)

f =2((YN yR)T QS +UN T RD)T e 91Bx

The optimal a can now be easily solved for by setting the derivative of the cost function

to zero.

=- a T Ha+fT a
2-

(32) - I[H + HTa]+f =Ha+f =0
d a 2 - -f

al = -H- f

35

The optimal scaling vector a0pt can be applied to the output perturbation matrix and added

to the nominal output for the projected output.

(33) Y,,, =YN + Saopt

The key to this entire perturbation process is that at this point we assume a linear

relationship between the input and output of the plant and therefore the optimal scaling

factor applies also to the input. The optimal input takes the following form.

(34) U,, =U N +Da0, =U N -DH -1 f

Again this optimal input vector is computed for the entire control horizon. The designer

can choose whether to implement the first N inputs before having to repeat the process.

The designer then has the choice to set the MPC frequency and consequently the amount

of time the control is used. At the beginning of the next cycle this entire process is then

repeated.

2.4 Constrained Solution

The presence of constraints can make the unconstrained solution invalid. This is true

because the unconstrained solution is only valid as long as the constraints are not

violated. Once the constraints are violated it becomes a quadratic programming (QP)

problem and must be handed over to a dedicated QP solver. QP solvers operate in the

following framework.

(35) minJ= I xT H x+ f Tx
2 - -

subject tob_ Ax< b_

Since we are solving for the optimal a, but we want to set constraints on the input and/or

the output, these constraints must be written in terms of a. The H and f matrices of

36

Equation 31 are identical to the ones described in the previous section. In order to

construct the proper constraint matrices the following relationship must be upheld.

Ymin5 YN+ Sa< xn

(36) ---- ---
U., <UN +'Di Ua

It is now apparent that in order to place input and output constraints on a the nominal

must be subtracted from the actual minimum and maximum values. This is further

illustrated below.

Y',M -YNx- N(37) 1 N<S a< m N
Unf-UN D[- Um UN]

Thus the constraint matrices for input and output to be sent to the QP solver are as below.

(38) b. = [nun -YN b [Ymax -N A=
"" Us, -UN_ LUm -UN D_

After the optimal a is calculated, the result is multiplied by the perturbation matrix and

the nominal input added to create the optimal input.

(39) U),,, =U N Da,

2.5 MPC Example

In order to further clarify the MPC nonlinear perturbational control method, an example

is offered. In this example a complete six degree of freedom nonlinear discrete high

performance fighter aircraft model will serve as the plant. This simulation begins

trimmed at an altitude of 25,000 feet and a speed of Mach 0.8. The maneuver will be a

controlled bank from 0 to 10 degrees with a 5 second ramp. The aircraft already has a

stabilizing inner loop and receives roll rate commands from the MPC controller (P Cmd).

The Control Augmentation System (CAS) sends the control surface commands to the

aircraft. This can all be seen in Figure 5.

37

Inner Loop

Phi PC Pcd CAS Aircraft

stall

Figure 5: Roll Control Loop

The MPC controller will receive the bank profile Phi and the state at which to initialize

its propagator. It is important to understand that the aircraft with the inner loop is the

internal model of the MPC controller. The internal model is sampled at 50 Hertz. In

order to create the input, linearly spaced step functions are used. All that remains to be

chosen are: the number of step functions, the prediction horizon, and the state weightings

in the cost function.

The number of step functions can be chosen in a straight forward method. It must first be

realized that basis functions are mere approximations to a complete nominal control

profile. This nominal profile is the result of having each possible control free while

executing the optimization. For instance, with a prediction horizon of 4 seconds and

internal model sampled at 50 Hz, the total number of free controls is 200. Moreover, if

one iteration of the MPC algorithm is run, one complete control profile tailored for the

entire prediction horizon is produced. If all controls are left free, a specific optimal cost

can then be associated with this optimal control profile. This is the ideal optimal cost and

as basis function numbers are increased, the cost associated with them will approach this

ideal cost. This exercise was done with a linear spaced basis set. The cost was recorded

running the first iteration cycle of the MPC controller. The results can be seen in Figure

6.

38

-5.6-

-5.8-

-6

-6.2-

-6 .4 - - --- --

-6.6-

-6.8-

-7-

-7.2-

-7.4' < -
0 2 4 6 8 10 12 14 16 18 20

Number of Bases

Figure 6: Basis Cost Comparison

The bottom line in Figure 6 is the minimum optimal cost achieved when we allow the

input to change at every step. Figure 6 shows that as the number of basis functions is

increased, the cost approaches its minimum. Using this information a basis number can

be systematically chosen. To do this, a percentage error can be defined to show how

close the basis set is to the ideal in the following manner.

(40) %CostError = (JB - I) *100

JB is the cost associated with each specific basis number and J, is the ideal cost when

there are no basis functions used. The percentage cost error is plotted in Figure 7.

39

I I I I I I

25 -

20

a15

10-

0 2 4 6 8 10 12 14 16 18 20
Number of Bases

Figure 7: Basis Percentage Error

For this example a 2% error is chosen for the acceptable percent error which corresponds

to 10 basis functions. A plot of these functions can be seen in Figure 8.

0.81

0.6

0.4

0.2

10

8-

6

2 84

Basis index 0 0
Tim (Swcords)

Figure 8: 10 Linearly Spaced Step Basis Functions

The prediction horizon can be chosen in a similar systematic way. It must first be

realized that the minimum prediction horizon has to be large enough to include the full

dynamic response of the system to be controlled. For instance, if a second order damped

system was to be controlled, the prediction horizon should be long enough to include at

least the 5% settling time. If the MPC controller propagates for an amount shorter than

this, it might not have enough information about the dynamic behavior of the system.

40

30

The result will be a potentially unstable controller. Since MPC can be computationally

intensive, the goal is to reduce the prediction horizon to its minimum. The only

constraint therefore is this slowest system dynamic time. Making the prediction horizon

longer than that, will not increase performance but only penalize computational time. For

this example, the full MPC algorithm was run with 10 bases and prediction horizons from

2 to 6 seconds.

2 Seconds
105

9.5
3 Seconds

4 Seconds
Seconds

6 Seconds

95 10 10.5 11 115
Tim (Secord1s)

Figure 9: Prediction Horizon Comparison

It can be seen in Figure 9 that as the prediction horizon increases, the response stabilizes.

Based on this plot, a prediction horizon of 4 seconds can be selected.

The final parameters to be tuned are that of the Q and R matrices used for state and input

weighting. Because this is a single input and output system, there can be no use of the Q
and R matrices to weight against other inputs and outputs. In the case of a multiple input

and output system, Q and R can be used to penalize one output or input more than

another. The next degree of freedom is to weight the Q and R matrix diagonal within the

prediction horizon itself. This can be used to penalize output errors or inputs at earlier or

later times in the response. Again these weightings are relative to within the prediction

horizon so typical design involves holding one gain at unity and varying another. In this

example, a weighting of 1 across the prediction horizon was nominal.

41

Now that all the free parameters have been chosen, the only remaining element is to

incorporate the receding horizon principle into the simulation. The MPC cycle can be

run with 10 linearly space basis functions and a 5 second prediction horizon iterating at 5

Hz. Figure 10 shows the response of the system to a ramp roll input.

10

8

6-

2

0

-2
0 5 10 15 20 25

Time (Seconds)

Figure 10: Roll Control Final Implementation

The MPC anticipatory behavior can be noticed as the system starts responding to the

input ramp before encountering it. The controller starts reacting as soon as the

commanded maneuver enters into the prediction horizon. The initial oscillation in the

controller is due to the fact that we are minimizing the quadratic difference between the

reference and the response. From a mathematical point of view the solution with this

small oscillation is the one that uses the minimum cost. The input profile for the

maneuver can also be seen below in Figure 11.

42

CL)

0

0 5 10 15 20 25
Time (Seconds)

Figure 11: Final Control Profile

The MPC perturbational technique described in this chapter will now be used to develop

various autopilots for a generic high performance aircraft. The following chapter will

provide a detailed description of the vehicle and a few modifications introduced to

augment the redundancy of the system.

43

[This Page Intentionally Left Blank]

44

Chapter 3

Vehicle Truth Model

3.1 Vehicle Description

This thesis will employ a high performance aircraft as the plant to be controlled. This

craft consists of a generic aircraft twin rudder swept wing frame with twin turbofan

engines capable of 16,000 pounds of static thrust. Table 1 shows the aircraft's physical

specifications.

Table 1: Physical Characteristics

Physical Characteristic of High Performance Aircraft
Weight, lb 30,802
Reference wing area, ft 2 400
Reference m.a.c., ft 11.52
Reference Span, ft 37.42
Wing Aspect Ratio 3.5

The craft has a total of 10 aerodynamic surfaces for control, arranged as 5 pairs. There

are three main pairs of control surfaces that induce the largest moments in the three

principal axis. They are-

" Horizontal tails- Engaged in symmetric deflection for longitudinal maneuvers

" Rudder pair- Engaged symmetrically for both heading changes and roll

maneuvers.

" Ailerons- Used differentially to induce roll moments

The remaining two pairs are the wing leading and trailing edge control surfaces. These

are typically used for trim at various flight points and for other minor attitude corrections.

Table 2 shows the complete specifications of all aerodynamic surfaces.

45

Table 2: Flight Surface Characterizations

Surface Saturations Limit (deg) Rate Limit Bandwidth (Hz)

Elevator -24 to 10.5 -40 to 40 6.9
(Left & Right)

Rudder -30 to 30 -82 to 82 11.7
(Left & Right)

Ailerons -25 to 45 -100 to 100 13.8
(Left & Right)

Leading Edge -3 to 33 -3 to 33 3.9
(Left & Right)

Trailing Edge -8 to 45 -18 to 18 5.5
(Left & Right)

In addition to these aerodynamic control surfaces the aircraft is equipped with a thrust

vectoring system. External paddles are used to deflect exhaust and produce additional

aircraft moments. These paddles can be deflected either symmetrically or differentially

to produce moments in any direction. This thrust vectoring system will prove to be

extremely effective in controlling the aircraft in case of a failure.

The aircraft model is decomposed into its major subsystems: the aircraft's aerodynamics,

the propulsion systems, the six degree of freedom full nonlinear differential equations,

the atmospheric model, the inner loop CAS, and the air data subsystem. The model's

major assumptions are as follows:

" Aircraft body is rigid

- Earth is an inertial reference frame

m Aircraft mass is constant

" The aircraft is symmetric across the x-z plane.

46

3.2 Model Framework

Typically stand alone executables written in C, C++, and FORTRAN demonstrate high

computational speed and accuracy. Other simulations however employ more user

friendly environments such as Simulink by MathWorks, Inc, but sacrifice speed.

SIMULINK is a standard simulation environment which works in unison with

MathWork's Matlab. This is a powerful simulation tool with an intuitive graphic

interface, input/output support, and basic linear algebra functionality. Due to Simulink's

graphic interface, signals can be injected anywhere in the system and loops broken at any

spot. Unfortunately, this is all but absent in the faster stand alone executables.

Simulink allows functions written in C, C++, and other languages to be executed within

its environment. These are known as S-Functions or system functions. This hybrid

environment combines the rapid and intuitive capability of Simulink with the speed of

such languages as C, C++, Ada, and FORTRAN. For example, the aerodynamic, engine,

and rigid body equations of motion subsystems are all included as S Functions in the

aircraft model shown in Figure 12.

3.3 Six Degree of Freedom Non-linear Vehicle Model

This thesis will employ a full six degree of freedom high performance aircraft simulation

composed of many separate S-Functions written in the C language (C S-Functions). The

simulation is depicted in Figure 12.

47

Figure 12: Truth Model

As with most high performance aircraft, there is a closed loop with Control

Augmentation System (CAS). The CAS function is to augment the plant open loop

dynamics and achieve the desired flight characteristics. It is a classical flight control

system that heavily relies upon gain scheduling to obtain consistent performance

throughout the flight envelope. Due to the high level of decoupling between the

longitudinal and lateral dynamics, the CAS is separated into longitudinal and lateral

systems. The CAS takes pilot stick inputs and uses them to compute the proper surface

deflections.

At the beginning of each simulation an initialization function must be run in order to load

all constants and initial states for the appropriate C S-Functions. Furthermore, a flight

condition must be selected and pre-computed trim data loaded to start the simulation.

3.3.1 Subsystem Description

Certain boxes in the truth model shown in Figure 12 are C S-Functions while others are

simulink blocks combining other functions. The following is a description of each C S-

Function.

= Engine Dynamics: Implements a second order dynamic system when throttle

input changes with time. The input is throttle and the output a time lagged throttle

command.

48

" Engine Model: Calculates thrust and moment due to engines, in the body axes, as

functions of Mach number, altitude, angle of attack, throttle, and thrust vector

vane deflection.

" Aerodynamic Model: Calculates aerodynamic forces and moments as well as the

six aerodynamic coefficients. Its inputs are Mach number, altitude, angle of

attack, throttle, thrust vector vane deflection, all control surface positions,

geometric data of the plane, and center of gravity position. The aerodynamic

coefficients are then calculated by means of complex interpolation tables.

" Equation of Motion: Calculates all six degrees of freedom and derivatives by

solving the complete nonlinear equations of motion. The inputs are all forces and

moments and the aircraft mass properties.

m Output: In addition to complete position and rate, uses state variables to compute

other information such as flight path angle, gamma, and sideslip angle. Also uses

an atmospheric model to look up the speed of sound, air density, gravity, static

pressure and air temperature as a function of altitude.

Other blocks in this simulation are constructed of various simulink functions. The

following is a list of them and their specific functions.

" Lateral CAS: Calculates commands for the ailerons, leading and trailing edges,

and vertical tail based on lateral stick commands. It does this by using angular

rate and acceleration data from gyros and accelerometers.

" Longitudinal CAS: Calculates commands for the ailerons, leading and trailing

edges, and horizontal tail based on longitudinal stick commands. It does this by

using angular rate and acceleration data.

" Surface Models: Utilizes second and fourth order models to simulate

actuator/control surface dynamics. It also incorporates rate and deflection limit

saturations.

" Variable Distribution: Organizes inputs appropriately to be sent to the various

aerodynamic and engine models.

" Forces and Moments: Combines force and moments due to aerodynamics and the

engine to be sent to the rigid body dynamics.

49

These system blocks are combined to create the full non-linear closed loop simulation.

The simulation is run at 50 Hertz with a Runge Kutta integration scheme.

3.3.2 Coordinate Frame and Output Description

The aircraft motion is expressed by defining the following frames.

" The inertial frame (i): The inertial reference frame is Earth centered with due

north as the positive x axis and due east as the positive y axis and the z axis

pointing into the ground.

* The local horizontal frame (h): The local horizon frame is identical to the earth

inertial frame but is centered on the vehicle's center of mass.

e The body frame (b): The body frame is determined by attaching a frame to the

aircraft with the x axis pointing out the nose, y axis out the right wing, and z axis

positive down to the earth.

The major attitude tracking variables are then defined from the difference between the

body frame and the local horizontal frame. This can be seen in the following set of

figures.

The heading angle (W) is defined as the angle between the x body axis and the x local

horizontal axis when the body frame is rotated relative to the local horizontal frame about

the z axis, as shown in Figure 13.

xn

Xb

Yb

Figure 13: Heading Description

50

Figure 14 shows theta (0) to be defined as the angle between the x body axis and the x

local horizontal axis, when the body frame is rotated relative to the local horizontal frame

about the y axis. This angle is also referred to the Euler pitch angle. P is then the roll

rate about the x body axis and r the heading rate about the z body axis

Ii
Xh

z\ p

Figure 14: Theta Description

Phi (p) is defined as the angle between the y body axis and the y local horizontal axis,

when the body frame is rotated relative to the local horizontal frame about the x axis. It

is referred to as the Euler roll angle. The variable q is then the rotation rate about the y

body axis and v is the speed along this same axis. These are referred to as pitch rate and

lateral speed.

Zb
Zh

Figure 15: Phi Description

The Euler rotation sequence used in the simulation is a 321 or Xy, 0, and P sequence. The

aircraft motion is also described in terms of its flight path components. These

51

r Xb
U

components are defined relative to the flight path of the vehicle and can be derived from

the Euler angles and velocity components. The simulation outputs both of these variable

types. A table featuring a complete list of the simulation outputs can be seen below.

Table 3: Output Variables

U Velocity in x body axis ft/s
V Velocity in y body axis ft/s
W Velocity in z body axis ft/s
phi Euler roll angle rad
theta Euler pitch angle rad
psi Euler yaw angle rad
p Roll rate rad/s
q Pitch rate rad/s
r Yaw rate rad/s
Pos north Position North ft
Pos east Position East ft
altitude Altitude ft
Vt Total true airspeed ft/s
Mach Mach number
alp Angle of attack rad
beta Sideslip angle rad
qbar Dynamic pressure Slug/(ft*s 2)
ps Static pressure psf
mu Flight path angle rad
gamma Angle between mu and horizontal plane rad

3.4 Modifications

In order to have a redundant system capable of recovering from surface failures a few

modifications to the baseline aircraft have been made. The input to the CAS had to be

modified and a thrust vectoring system was added to the plant.

In order to design an autopilot for this CAS the existing stick inputs had to be replaced

with appropriate command signals for all three principal axes. The selected autopilot

commands were the roll, pitch and yaw rates. Error signals were calculated using the

feedback attitude rates as shown in Figure 16. Furthermore, the inner loop CAS was

52

augmented with a control law for the thrust vectoring system since one was not present in

the baseline plant. A simple proportional controller was designed around the thrust

vectoring system. The criteria for gain selection were based on the responses of the

system to failures of the longitudinal and lateral-directional control surfaces.

This set up is shown in Figure 16.

Figure 16: Thrust Vectoring Control

A gain multiplies the pitch rate error and is sent to both thrust vector vanes creating

symmetric movements in the x-y paddles to produce moments about the y axis. Another

gain then multiplies roll rate error and sends a differential signal to the two x-y paddles.

Finally a third gain multiplies the yaw rate error and creates a symmetric input to the x-z

paddles to produce moments about the z axis.

An additional modification was needed to achieve redundancy in the control surfaces.

The three main surface pairs were artificially split in order to simulate multiple surfaces.

Each of these surfaces was divided into two equal independent control effectors able to

receive separate command inputs. This is further described in Chapter 5.

3.5 Autopilot Mode Definitions

The MPC autopilot uses the inner loop command signal to achieve different types of

trajectory and attitude tracking. Depending on the mode of operation the high level

53

autopilot commands such as altitude to be gained, pitch angle to be held, are translated

into basic commands (pitch, roll, and yaw rates) for the inner loop CAS. It is then the

responsibility of the inner loop to respond and track the outer loop commands by issuing

the proper surface deflections. The inner loop CAS is typically a higher bandwidth

function then that of the autopilot and operates at a higher loop rate. In this thesis the

following autopilot modes will be implemented using MPC:

" Pitch Hold: Acquires and maintains aircraft pitch attitude

- Bank Hold: Maintains wings level flight or tracks a bank angle

" Altitude Capture: Tracks an altitude input profile

" Heading Hold: Acquires and maintains aircraft heading

These separate autopilot modes can be combined to perform an entire mission profile for

the aircraft to fly autonomously. For instance, an altitude profile with various heading or

bank commands can by flown by the aircraft selecting the appropriate autopilot modes.

For example, Figure 17 shows an altitude capture followed by heading hold and followed

by another altitude capture.

x10
2.525

2.52

2.515

2.51

2.505

2.5 -

2.495.-

5

4

x10
4 3

2
10000

8000

100 4000
north (ft) 0 20 0 2000

east (ft)

Figure 17: Sample Flight Path

54

Chapter 4

MPC Controllers

4.1 Controller Overview

Figure 18 shows the general structure of the flight control system used in this research.

The fighter truth model includes the aircraft dynamics and the inner loop CAS controller.

In this particular case the MPC autopilot combines the altitude capture and heading hold

mode of operation. The outputs of the MPC controller are the pitch and yaw rates. The

reference inputs are the heading and altitude profiles. Full state feedback is provided to

the MPC controller in order to initialize the rigid body states and the CAS states. The

nominal trajectory is generated by holding the current pitch and yaw rates constant.
MPC Constrained Simulation

oute ni Reference itil1 altitudefalu e

at2 i l Reference2idTm rc : ,amd

e as lre d
state -

Chper2 state eC controller rmie a cmd phl - shown

north - -- 1 nrt

east -

fD--1ailnd

fallindlex Ipsi -s

Fighter Truth Model

Scale

Figure 18: MPC Outer Loop

The MPC controller is implemented in two main C S functions. The first C S function is

essentially preprocessing for initialization. In this function, references, failure signals

and the initial state are received. The matrices H, f, A, bmain, and bmax (described in

Section 2.5) are assembled according to the MPC perturbation methodology described in

Chapter 2. This function can be seen in the actual controller implementation shown in

55

Figure 19 as the block MPC PREP. A description of how this S function was

implemented can be found in Appendix B.

B|Reshap

N

M

iA

bm bmin x- sa Maltpr

stt
MPGri

PREPU

-bbnom Selector1 qCmd

bmx 1 bmax Product1

Reference H Rsae -- H

The Reference2 F oehe wi t c

Rat failure D pa umi ngu u

aue totenoia iptanhn sett h prpit oto.Aselector isals

& unom - L - umax
Umax Time *

A R.hp 0

B ehp SQOPT

4 state

state MPC PREP

Figure 19: MPC Conrl Structure

The H and f matrices together with the constraints A, bmin, and bmax are theent to the

QP solver for optimization. The QP solver uses SQOPT (see next section), a commercial

quadratic programming software package. The optimum scaling vector (x output of the

SQOPT block) is multiplied by the D matrix in the matrix multiply block. The result is

added to the nominal input and then sent to the appropriate control. A selector is also

used to select the first input from the control sequence. The sampling rate of the MPC

controller is set in the MPC PREP S function and the SQOPT S function.

The setup described in Figure 19 is a general structure developed at Draper Laboratory

and used in a variety of applications. This Simulink implementation has been proven

particularly useful because of its flexibility and simplicity.

4.2 Quadratic Problem Solver

The QP solver used is called SQOPT and it is a product of the Systems Optimization

Laboratory of Stanford University. SQOPT is distributed by Stanford Business Software

Inc. It is a general large scale linear and quadratic program solver. More information can

be found at website http://www.sbsi-sol-optimize.com. The optimization software is

written in FORTRAN and was inserted into a S function for use with the MPC algorithm.

56

4.3 Internal Model

The internal model MPC is implemented in C. It was created by simplifying the original

truth model and using Real Time Workshop to automatically code a self contained C

function. Real Time Workshop is a product of MathWorks, that generates C code from

simulink files. The resulting code has an initialization function and a step function that

can be used to propagate the input over the time horizon.

The inputs into the model include the p, q, and r commands as well as the 16 failure

signal and control surface positions for each surface. The control surface positions are

needed to override the model control surface positions in case of surface failures (for a

detailed description of the mechanization of the MPC internal model update in case of a

failure see Section 5.3). The outputs are the twelve rigid body states and the angle of

attack. The MPC propagator uses the full nonlinear model of the plant to predict the

plant's behavior. A more detailed explanation of how this model was created can be

found in Appendix A.

4.3.1 Model Modifications

In order to autocode the simulink diagram, certain modifications had to be made. This

involved removing the integrators from all the continuous S functions. The integration is

then performed outside the S function using the Simulink discrete integrator block in the

resetable mode. In this way all the states of the model are collected by Real Time

Workshop in one C data structure that can be easily initialized at a given point before

starting the propagator.

Furthermore, the internal model had to have the ability to be updated to reflect the actual

failure occurrence in the plant. Only aerodynamic control surface failures were modeled.

No thrust vector control failures were considered. The internal model thus has separate

inputs for actual measured control surface positions. Surface deflections due to failures

are inserted into the model when a control surface failure is simulated. Otherwise the

model uses the plant's own control surface position predictions. A proper description of

the failure types and method of implementation can be seen in Chapter 5.

57

4.4 Basis Function Selection

Basis functions can be broadly divided into two categories for the purpose of this

research. The first consist of identical functions that are spaced in time relative to their

basis index. Examples of these are the linearly spaced step functions, linearly spaced tent

functions and linearly spaced ramp functions. The amount by which these functions are

displaced temporally can be altered as well. This is typically done to increase the fidelity

of control in a specific region in the control horizon. In any case, the control horizon is

spanned by tiling in time a simple function throughout the set.

The other family consists of orthogonal polynomial functions which span the entire

control horizon. For these basis sets, the individual functions are "smooth" and change

throughout the horizon. Typically there are no regions with constant values for extended

time periods. Their differences are not created by simple translation in time but through

the nature of their recurrence algorithm. Some examples of these are Laguerre,

Legendre, Chebyshev and Hermite polynomials. Thanks to the orthogonality of these

functions, it was found that fewer basis functions were needed to achieve performance

similar to that achieved using temporally spaced basis functions. In some cases only

fourth order Laguerre polynomials were needed instead of 10th order time spaced basis

functions. As described eariler, reducing the number of basis functions reduces the

search space of the QP algorithm.

The basis functions used in this research are exponentially weighted Laguerre

polynomials. Laguerre polynomials are solutions to the Laguerre differential equation.

e' d"
L, (x = ex (x'e-x) where n=0,1,2,3...

n! dx"

A plot of the first 6 Laguerre functions can be seen below.

58

L2(x)
3i

L2(x)

L5(x)

0 05 5 2 2541 35 L1(x)

Figure 20: Laguerre Polynomials

In order to make these functions orthogonal an exponential weighting term of e- must be

added. Laguerre polynomials L,(x), n=0,1,2,3..., only form a complete orthogonal set

over the internal O<x<oo with respect to the weighting function. This is represented

mathematically in the following.

Je-L,, (x)L, (x)dx = m n

Thus the orthogonal basis function itself can be represented as the following.

X

bi(x)=e 2 * L(x)

The algorithm incorporated in the autopilot MPC controllers satisfies the following

recurrence relationship.

(n +1)Lnl (x)= (2n+1 - x)L (x)- nL 1 (x)

After the Laguerre polynomial is calculated it is then multiplied by e-x/2 and used as the

basis set. Again, these polynomials are used throughout this research. Although the set is

not truly orthogonal over the 4 second prediction horizon they are used, the integrals of

non identical ones converge to near zero within this time frame. Typically only 4

weighted polynomial basis functions are needed to provide effective control signals.

A more quantitative rationale for choosing exponentially weighted Laguerre basis

functions over linearly spaced functions is now presented. Both exponentially weighted

Laguerre and linearly spaced basis functions were used to track an exponential roll

59

4 r

command. This is using the same roll control loop with inner lops CAS as described in

Section 2.5. The form of the tracking variable phi is:

#=0 fort<5

= (1-- e-')* 20 for t 5

A plot of this maneuver using both Laguerre and

functions can be seen in Figure 21 for further clarity.

25

20

linearly spaced steps with 6 basis

Rol Manuever

-- Laguer e
-- Linearly Spced Steps

10 20 30
Time (Seconds)

Figure 21: Exponential Maneuver Example

The 2 norm error, between the reference and the output, over the entire interval was

recorded using an increasing number of basis functions for both Laguerre and linearly

spaced steps. The results are shown in Figure 22.

60

40 50 60

Laguerre vs. Unearly Spaced Steps

- paLacueme
--o- Unteary Spaced Steps

18-

16-

14-

12-

10-

8-

6 _ -

4.
2 3 4 5 6 7 8 9 10 11 12

nmber of bases

Figure 22: Laguerre/Linearly Spaced Step Error Comparison

It can be seen that the weighted Laguerre polynomials provide a substantially lower 2

norm error initially. Furthermore, after only four bases the 2 norm error settles to about

5.8. Although linearly spaced steps eventually drop below this constant error, it does not

happen until after 10 bases are used. Actual implementation of 10 bases proved to be

impractical due to the large computational time using this many bases demands. For this

reason, four exponentially weighted Laguerre basis functions were chosen to serve as the

basis function set. A detailed discussion of further basis function comparisons can be

found in reference [4].

4.5 Simulation Rates

There are four simulation rates that must be assigned: overall simulation rate, inner loop

rate, outer loop rate, and prediction rate. The simulation rate is the core rate of the

simulation. This must be equal to or a multiple of the fastest rate in the simulation. A

simulation rate of 50 Hz was selected. The prediction frequency must also be 50 Hz

because it is modeling the CAS inner loop system which runs at this rate. The internal

model must be discretized at the rate at which the inner loop CAS is run. The outer loop

however can afford to be the slowest of all because its commands are being tracked with

the help of the stabilizing inner loop. In this research an outer loop rate of 5 Hz is used.

61

This is to say that the MPC controller only applies a different control input at every 0.2

seconds. The inner loop then keeps this constant control and simulates at its rate of 50

Hz. In most atmospheric vehicles, with a stabilizing inner loop, an autopilot rate of 5-20

Hz is sufficient.

4.6 Autopilot Design

In the following sections we present four autopilot modes used in this research: Pitch

Hold, Bank Hold, Altitude Capture, and Altitude and Heading Hold.

4.6.1 Pitch Hold

The first autopilot mode is the simple pitch hold. In this mode, the pitch angle can be

commanded to any position while maintaining steady flight. The control input to the

aircraft CAS is q or pitch rate and the variable tracked is pitch angle theta (0). The

specifications for this mode are summarized in Table 4.

Table 4: Pitch Controller Specifications

Tracking Variable MPC Output CAS Output Controller Rate

0 q Horizontal tail surface position 5 Hz

The weightings for this controller are similar to those found in the rest of the research.

All weightings will have the first portion of their time horizon more heavily weighted

then later portions in the diagonal Q matrix. This is due to the tendency of the controller

to anticipate any movement in the future directly as it comes into the prediction horizon

view. Laguerre polynomials are relatively complex and their intrinsic oscillations force

the controller to find scaling factors inheriting these oscillations. Fortunately, these

premature oscillations can be muted by simply weighting the first half of the prediction

horizon. In this pitch controller, as well as with all controllers, the first half of the

prediction horizon was weighted at a ratio of 200:1.

The following is a simple demonstration of the pitch autopilot. Figure 23 shows a pitch

doublet from 0' to +30' to -30' to 0 .

62

-2

-3

-4

The input profile q can

I

Pitch Track

Figure 23: Pitch Doublet

also be seen in Figure 24.

60r

so

40

30

20

10

-10

ime (Seconds)

Figure 24: Pitch Doublet Input

As mentioned, the first 4 Laguerre polynomials are used as basis functions. The time

horizon is four seconds and the controller rate is 5 Hz.

4.6.2 Bank Hold

The next autopilot mode is bank hold. This will allow the aircraft to be commanded to

any bank angle during flight. The input to the CAS now becomes p or roll rate and the

angle phi is tracked. Table 5 shows the specifications for this autopilot mode.

63

Table 5: Bank Hold Controller Specifications

Tracking Variable

9

MPC Output

p

CAS Output

Aileron position

Controller Rate

5 Hz

As with the pitch hold controller, the first half of the time horizon must be weighted to

prevent premature oscillations in the controller. The following is an example of this

autopilot mode. The roll maneuver is an aggressive doublet in phi between 50 and -30

degrees. This can be seen in Figure 25

RoN Maneuver

50-

40

30

200

~10-

0-

-20-

-30-

-40 I0 10 20 30 40 5060
Time (Seconds)

Figure 25: Bank Hold

Due to the aggressive nature of this maneuver, the MPC controller hits its constraints on

the maximum allowable roll rate. The controller was limited to sustain a maximum rate

of +/- 100 deg/sec. In Figure 26, we can see how the lower constraint becomes active

around 23 seconds as the controller tries to transition from the 80 deg/sec ramp to a -30

deg bank angle.

64

P Input

Time (Seconds)

Figure 26: P Input

The same maneuver with input constraints tightened to +/-25 degrees can be seen in

Figures 27 and 28. The constraint proves to be too tight to accurately track the abrupt

change from 50 to -30 degrees. This example shows how the optimal solution of the

MPC controller is bounded by the pre-selected constraints.

Roll Maneuver

10 20 30
Time (Seconds)

Figure 27: Bank Hold Response

65

50

40

30

20

40 50 60

B

P Input

10 15 20 25 3
Time (Seconds)

Figure 28: Bank Hold Input

This aggressive banking causes the aircraft to veer in two directions. This can be seen in

the ground track of the craft in Figure 29. As expected, the craft first flies abruptly to the

right and then tracks left.

x 10, Ground Track

5-

4-

3-
z

2-

1

-2000 0 2000 4000 6000 8000
East

10 00 12000

Figure 29: Ground Track

66

6,

4.6.3 Altitude Capture

The altitude capture mode autopilot is perhaps the most practical of all. As the title

suggests, this autopilot will fly the aircraft to any given altitude and hold it at that

altitude. The MPC controller sends the pitch rate q as the command signal to the inner

loop CAS. Table 6 summarizes the specifications for this autopilot mode.

Table 6: Altitude Capture Specifications

Tracking Variable

h (altitude)

MPC Output CAS Output Controller Rate

q Horizontal tail surface position 5 Hz

The same weighting applies for this controller, with the usual 4 second horizon and 5 Hz

controller rate. The following is a demonstration of the autopilot's ability. Figure 30

shows an aggressive altitude maneuver doublet beginning at 25,000 feet. There is a steep

1000 foot climb at a rate of 100 ft/sec as the maximal height is approached. The

accompanying control profile in q can also be seen in Figure 31.

X2.5 Altitude Maneuver
2.56

2.54 -.

2.52

.~2.5

0 10 20 30 40 50 60
Time (Seconds)

Figure 30: Altitude Capture

67

I

0 Inpt

10 -

0-

-10-

-20-

-30 W-- lJ
0 10 20 30 40 50 60

Time (Seconds)

Figure 31: Q Input

In addition to input and output constraints, states within the model can be constrained as

well. For example, in the altitude capture controller the altitude rate was constrained to 80

ft/sec. The response of the system to a step input from 25,000 to 25,500 feet is shown in

Figure 32. Figure 33 shows the input to the CAS, pitch rate, while Figure 34 shows the

altitude rate state, limited to 80 ft/sec.

Altitude Step

0 5 10 15
Time (Seconds)

20 25 30

Figure 32: Altitude Step with Rate Constraint

68

2.56 r

2.55

2.54

2.53

k 2.52

2.51 F

2.5

Q Input
25

5 -

E 0

-5-

-10

-15-

0 5 10 15 20 25 30
Time (Seconds)

Figure 33: Pitch Rate Command for Altitude Step with Rate Constraint

cc

Altitude Rate

10 Is
Time (Seconds)

25 30

Figure 34: Altitude Rate for Altitude Step with Rate Contraint

4.6.4 Altitude and Heading Hold

The final autopilot mode is an altitude capture and heading hold autopilot. The autopilot

has two variables to be tracked, altitude and heading, and the inner loop CAS is now

actively controlling the thrust vectoring system. The inputs are pitch rate q, yaw rate r,

69

thrust vane angle in the x-z plane, and thrust vane angle in the x-y plane. Table 7

summarizes the specifications for this autopilot mode.

Table 7: Altitude and Heading Hold Specifications

Tracking Variable MPC Output CAS Output Controller Rate

h (altitude) q Horizontal tail surface position 5 Hz

r Rudder Position 5 Hz

TVC x-z vane angle

TVC x-y vane angle

In addition, the MPC outputs are bounded as well as the roll angle (p). It will be shown

that the aircraft must implement a coordinated turn to maintain psi without sideslip and

maintain altitude. This means that the aircraft will bank as it makes its heading changes

while maintaining altitude. An example of this autopilot response can be seen below. It

shows the aircraft make two climbs of 400 feet each with a heading change of 15 degrees

between them. Figure 35 shows the altitude profile with reference trajectory.

X 10, Alitude Capture
2.59 r

2.51

10 20 30
Time (Seconds)

40 50 60

Figure 35: Altitude Capture

70

Figures 36 and 37 show how the aircraft makes a coordinated turn beginning at 10

seconds into the flight. These turns are often made quite slowly to keep the aircraft

stable, hence the low yaw rate.

a.

16

14

12

10

8

6

4

2

0

Psi Capture

-2 L- L-0 10 20 30 40 50 60
Time (Seconds)

Figure 36: Heading Capture

Phi

Time (Seconds)

Figure 37: Phi

71

50

40

30

20

10
.2
0~

0-

-10-

-201-
0 60

The following are the inputs into the CAS and thrust vectoring systems. The two CAS

inputs are shown below in Figures 38 and 39. The q input rides both active constraints of

+/- 20 degrees.

0 Inp~it

1

20 30
Time (Seconds)

Figure 38: Q Input

R Irput

30
Time (Seconds)

Figure 39: R Input

72

The following are the inputs commanded by the CAS to the thrust vectoring system

during the maneuver.

TV Directional Input

Time (Seconds)

Figure 40: TV Directional Command

TV Longitudinal Input

30
Time (Seconds)

Figure 41: TV Longitudinal Command

73

Z

E

60

15

E,

60

Finally the entire trajectory the aircraft traces out can be seen in Figure 42.

Traectory

x 0 -

2.59

2.58

2.57

2.56.

2.55-

2.54

2.53

2.52

2.51,-

2.5

2.49
5

4

3

x 10, 2 10000..
1 4000 0000800

20000

North 0 -2000
East

Figure 42: Trajectory

Again, for this autopilot mode 4 Laguerre basis functions were used with a 4 second

prediction horizon and 5 Hz controller rate.

74

Chapter 5

Failure Scenario Design Methods

5.1 Redundant Control Authority

In order for the autopilot to reconfigure its control scheme in the event of a failure, there

must be some degree of redundant control authority. For instance, if while engaged in a

steady climb the entire horizontal tail fails in one direction, there is no other control

effector to be used to recover from this type of failure. For this reason each of the rudder,

aileron and horizontal tail surface pairs were mathematically divided into two. This was

accomplished in simulink by splitting the actuator signal and then recombining it again

before sending it to the aerodynamic and engine models.

failure

Figure 43: Control Surface Split

In Figure 43, the signal hflapin is split into two different signals, hflapl and hflap2. For

all intentional purposes, these two signals become two separate control surfaces that can

be failed independently. The figure shows also that they are recombined and multiplied

75

by a gain of 0.5 before being sent to the aerodynamic model. In addition to the added

control surfaces, the thrust vectoring system is also engaged. The deflection of the thrust

creates a large moment. It will be shown that this large moment is very effective in

reducing the transient seen once a failure has occurred.

5.2 Failure Types

This research explores a special type of failure in the aircraft. This is when the control

surfaces fail to track positions commanded by the CAS. We are going to assume that

these failures occur within a symmetric bound. For instance, if the vehicle is in a pitch

hold maneuver then ,for example, both horizontal tail surfaces must fail in the same way

in order to create an almost symmetric failure in the longitudinal plane. Alternatively

both outboard horizontal tail surfaces might fail in the same way. Completely

asymmetric failures can cause a lateral motion that is uncontrollable by the lateral-

directional channel.

There are three types of failures explored in this research. The first is the hard over

failure in which one pair of surfaces proceeds to its maximal positive limit. The moment

this is triggered is determined by the operator and has a time constant of 0.25 seconds.

An example of this can be seen below in Figure 44.

Hard Over
12-

10

8-

2 1 2L 10
F 4 rde (Seconds)

Figure 44: Hard Over Demonstration

76

In this figure a sine wave with amplitude 1 and frequency of I rad/sec is the commanded

control surface position. At 5 seconds a hard over failure occurs driving the position to

its maximal limit of 10.5 degrees as in the case of the horizontal tail surfaces. This limit

is approached with a time constant of 0.1 seconds.

The second type of failure is the frozen or stuck surface, seen below in Figure 45. As

would be expected the surface simply stays locked in its position at the point of failure.

Figure 46 is a demonstration of the final failure type, the hard under failure. In this

scenario, the surface proceeds to its maximal negative deflection of -24 degrees with a

time constant of 0.1 seconds.

Frozen

0.8-

0.6-

0.4-

0.2 -

0
0.

1 2 3 4 5 6 7 8 9 10
Time (Seconds)

Figure 45: Frozen Failure Demonstration

77

Hard Under

-10

-20

-25 I II
0 1 2 3 4 5 6 7 8 9 10

Time (Seconds)

Figure 46: Hard Under Demonstration

5.3 Failure Simulation and Update

The key enabling technology that allows these autopilots to reconfigure their control

strategy is their ability to update the internal model in real time. In the case of control

surface failures, this means that the model must have an input for the actual surface

position when a failure occurs. The scope of this research does not involve the actual

failure detection and isolation (FDI) method. This type of FDI system is already assumed

to be installed, and knowledge of the failure is assumed to be given to the controller.

In order to trigger a failure in the truth model a failure signal engages one of the three

failure types in a symmetric set of surfaces. This can be seen below for one surface in

Figure 47.

78

Figure 47: Failure Implementation

In this implementation the signal 2 failure triggers the system to stop using the original

commands sent by the CAS signal 1. The type of failure initiated by the system is

dependent on the failindex signal. In this implementation a failindex of 1 is hard over,

2 is frozen, and 3 is hard under.

The method for internal plant update consists of a switch in the actuator models of the

plant. Knowledge of a failure in the MPC controller serves only to ignore the actuator

models in favor of the actual actuator feedback positions from the truth model. Thus,

during a failure the model begins making predictions with valid information about the

disabled control surface positions.

79

[This Page Intentionally Left Blank]

80

Chapter 6

Simulation Results
In this chapter, we are going to show how the four MPC autopilot modes respond to

simulated control surface failures occurring at various times over various prescribed

maneuvers. In order to stress the response of the system, failures were chosen to occur

during a transient, just before or after a change of reference. The aircraft was then

allowed to fly the rest of the trajectory with the failed surface. For each controller three

failure cases were considered: hard over, frozen and hard under. These were then plotted

against the nominal non-failed response. In addition, the MPC controller was tested with

its internal model not updated during a failure.

6.1 Pitch Hold Autopilot Mode Reconfiguration

In order to test the pitch hold autopilot mode, a maneuver from the nominal pitch angle of

2.11 degrees up to 30 degrees and back was selected. A failure in the two inboard

horizontal tail surfaces was then injected after 14 seconds. The controller update is at 5

Hz, with a 4 second prediction horizon and 4 Laguerre bases.

Pitch Test Case I

In this failure scenario, the two inboard horizontal tail surfaces proceed hard over to 10.5

degrees at 14 seconds. In Figure 48 a small transient can be seen when the failure occurs

and the MPC controller, along with its adapted model, proceed to track the rest of the

reference profile.

81

Pitch Failure
35

30
Time (Seconds)

Figure 48: Pitch Failure

However, it can be seen that when the MPC model is not updated there is a larger

transient and substantial steady state error. This is due to the fact that the model is now

incorrect and the MPC internal propagator does not follow the real behavior of the failed

aircraft. A close up view of this discrepancy can be seen in Figure 49.

31

29

28

27

26

25

24

23

22

Pitch Failure

- nominal
failed with model update
failed w/o model update

10 12 14 16
Time (Seconds)

18

Figure 49: Pitch Failure Zoom

82

-.. -...- ..-

This shows the ability of the controller to reconfigure its own control law as a result of an

updated internal model. The MPC controller responds to the failure by commanding

aggressive inputs to correct the large error induced by the failed control surfaces. This

change in control strategy can be seen against the nominal one with no failures in Figure

50. Also shown is the control strategy when the internal model is not updated. Figure 51

shows a close up view of the input at the time of the failure.

a Input

40

~30

10 20 30 40 50
Time (Seconds)

Figure 50: Pitch Controller Reconfiguration

83

a nA

40

i30-

20-

10

0-

10 12 14 16 18 20 22 24 26
Time (Seconds)

Figure 51: Pitch Controller Reconfiguration Zoom

It is important to point out that the failure reconfiguration is confined to the MPC

autopilot controller only. The inner loop CAS remains unchanged in the case of a

failure; it simply continues to track the commanded attitude rates. This is in fact where

the MPC reconfigurable control strategy differs from others, where in a moment

allocation scheme is used. In moment allocation strategies, a constrained linear

programming problem is set up to solve for new control surface positions which will

induce the desired moments. Thus the solution is the appropriate surface positions that

maintain the proper moment. In the MPC reconfigurable control case, the moment

allocation problem is always solved by the internal CAS system. In fact, MPC is aware

of the CAS capabilities because of its own internal model. The MPC controller inputs

have been optimized to take into consideration the new CAS tracking abilities.

Figure 52 show the response of the remaining control srufaces to the failure. After

responding to the new commands issued by the MPC, the CAS reaches a new steady state

value to trim the aircraft.

84

Control Surface Reconfiguration
5 1

-- nominal
-- inboard failed

inboard failed w/o model update

I I~ I I

10 20 30
Time (Seconds)

40 50 60

Figure 52: Control Surface Reconfiguration

Pitch Test Case 2

The following scenario has the same pitch profile as before with a failure at 14 seconds,

but now a hard under excursion of the inboard horizontal tail surfaces to -10 degrees is

injected. The resulting trajectory can be seen in Figures 53 and 54.

85

p
0

-5

5-10

-15 F

-20L
0

Pitch Failuire

-- nominal
- failed with model update

failed w/o model update
30-

25-

20-

15

10

5

0 1
0 10 20 30 40 50 60

Time (Seconds)

Figure 53: Pitch Hard Under Reconfiguration

Pitch Failure

nominal
failed with model update

34- failed w/o model update

33-

32

31 -

~30-

29

28

27-

12 14 16 18 20 22 24 26
Time (Seconds)

Figure 54: Pitch Hard Under Reconfiguration Zoom

Again, we can see the typical steady state error encountered by the non updated model.

The resulting control profile can also be seen in Figure 55 and the reconfigured horizontal

tail surfaces positions in Figure 56.

86

a input

30
Time (Seconds)

Figure 55: Pitch Hard Under Controller Reconfiguration

Control Surface Reconfiguration

- nominal
- Inboard failed

inboard failed w/o model update

7 - .'!..

50
Time (Seconds)

60

Figure 56: Pitch Hard Under Control Surface Reconfiguration

87

60

I
r~.

B 8

e6

2

10

Pitch Test Case 3

In the final pitch failure test, the two inboard horizontal tail surfaces were frozen at 14

seconds into the flight. Figures 57 and 58 show how the MPC controller closely tracks

the pitch reference signal.

20

Pitch Failure

30
Time (Seconds)

60

Figure 57: Pitch Frozen Reconfiguration

Pitch Failure

- nominal
failed with model update
failed w/o model update

13 14 15 16 17 18
Time (Seconds)

19 20 21 22 23

Figure 58: Pitch Frozen Reconfiguration Zoom

88

31.5 F

31 F

30.5 F

30

129.5

$E29

28.5 V

28

27.5 [

27

Both updated and unupdated MPC controllers adapt well to the failure with slight

transients of no more than 1 degree. The ease to which the MPC controllers adapted can

also be seen in the control profiles in Figure 59 and 60. In this example there is only a

very slight discrepancy between the nominal and reconfigured control profiles.

Q input
251

I!
(~.

30
Time (Seconds)

Figure 59: Pitch Frozen Controller Reconfiguration

S

I

Control Surface Reconfiguration

Time (Seconds)
s0

Figure 60: Pitch Frozen Horizontal Tail Reconfiguration

89

6.2 Bank Hold Autopilot Mode Reconfiguration

The bank hold autopilot mode was tested by failing half of an aileron at 10.4 seconds into

the maneuver. The trajectory is a bank singlet from 0 degrees to 20 degrees and back.

The MPC controller update rate had to be increased in order to maintain control of the

vehicle throughout the failure. The moment of inertia about the roll axis of the aircraft is

the smallest of all and hard deflections of even half of the aileron cause such a fast

response that a controller running at 5 Hz just cannot compensate for it. For this case the

controller update was increased to 25 Hz with the same 4 second prediction horizon and 4

Laguerre bases.

Roll Test Case 1

The first failure example has the outboard left aileron failing to 5 degrees at 10.4 seconds.

Otboard Left Aileron Failure

30
Time (Seconds)

60

Figure 61: Outboard Left Aileron Hardover Failure Reconfiguration

The failure causes only a very slight transient for the MPC controller with model update

and a 2 degree bias for the non updated controller as shown in Figure 61. This can be

seen in a close up view in Figure 62.

90

Outboard Left Aileron Failure

-- nomninal
23 - failed

failed w/o model update

2 2 -..

21

920

19-

18

8 10 12 14 16 18
Time (Seconds)

Figure 62: Hardover Outboard Left Aileron Failure Reconfiguration Zoom

These slight transients can be deceiving as to the amount of controller reconfiguration put

forth to maintain this profile. The MPC control profile of commanded roll rate p, shows

inputs almost up to the 80 deg/sec constraint. Moreover, the controller does not find a

steady value to maintain wings level as it comes out of the maneuver. Thus the controller

must command a constant roll rate input to counteract the moment generated by the failed

surface. It must also be noted that the controller signal is only the amount of roll rate it

must command for the existing CAS to maintain its trajectory with the failure. The actual

roll rate of the vehicle goes to 0 to maintain constant bank angle. This large departure

from the original control scheme can be seen clearly in Figure 63. The healthy inboard

left aileron position and both right aileron positions can also be seen in Figures 64 and

65.

91

-10

-20

1-30

(9-40

-50

-60

-70

P input

30
Time (Seconds)

60

Figure 63: Roll Rate Command for Hardover Outboard Left Aileron Controller Reconfiguration

Outboard Left Aileron Faikre Reconfiguration
0.4-

-- nominal
inboard failed

0.2 inboard failed w/o model update

0 - --- - - -

-0.2-

8 -0.4

- -0.6

- 1.8 - -. --.- -..-..- -

-1.2
0 10 20 30 40 50 60

Time (Seconds)

Figure 64: Hardover Outboard Left Aileron Failure Reconfiguration

92

Both Right Ailerons Reconfiguration
1.21

0.8 -

0.6 - nominal
-- ofailed

failed w/o model update
0.4-

~0.2-
Co

-0.2-

-0.4 I0 10 20 30 40 50 60
Time (Seconds)

Figure 65: Inboard and Outboard Right Aileron Failure Reconfiguration

Due to the nature of the inner loop CAS, the left and right aileron sets can only deflect

differentially. This means that the moment about the roll axis cannot be brought to zero

using only the aileron system because all remaining ailerons can only proceed to either +

or - a certain value. This explains why all remaining ailerons proceeded to either 0.8 or -

0.8 degrees in this failure case. In order to compensate for this the MPC engine uses

differential deflections of the horizontal tail surfaces as well. This creates the moment

necessary to counter that caused by the 5 degree aileron deflection on the left side. The

deflections of the horizontal tail surface can be seen in Figure 66. Only the deflections

for a failure with internal model update are given for clarity.

93

Left and Right Horizortal Tail Surface Reconfiguration

0.8-

0.6 -

Left and RIght Horizontal Tail Surface Nominel

0 0.4-

0-
Lef -Horiortal Tell Surface iater Fallure

-0.2, 1 L0 10 20 30 40 50 60
Time (Seconds)

Figure 66: Horizontal Tail Reconfiguration

Roll Test Case 2

The next failure experiment was to fail the left outboard aileron to -5 degrees at the same

time as in case 1 (10.4 seconds). The results are similar to the hard over experiment

except for a slight oscillation of the MPC controller with the updated model, as shown in

Figure 67.

94

10

Outboard Left Aileron Fallure

30
Time (Seconds)

Figure 67: Outboard Left Aileron Hardunder Failure Reconfiguration

There also is a p input control profile similar to the hard over case (see Figure 68). The

oscillations can be seen in the controller roll rate input. Also note the drifting control as

the aircraft tries to maintain wings level.

P Input
80

- nominal
- failed with model update

70- failed w/o model update

60-

50-

40 - --.-.- -.

30 -

20 -

10 - - --- - -.

0 - --- -

-10-

-20
0 10 20 30 40 50 60

Time (Seconds)

Figure 68: Roll Rate Command for Hardunder Outboard Left Aileron Controller Reconfiguration

95

The healthy inboard left and both right aileron deflections can be seen in Figures 69 and

70.

Outboard Left Aileron Failure Reconfiguration

- nominal
- inboard failed

inboard failed w/o model update

is

20 30
Time (Seconds)

40

Figure 69: Hardunder Outboard Left Aileron Failure Reconfiguration

Both Right Ailerons Reconfiguration

- - noninal
failed
failed w/o model update

I I I I I

10 20 30
Time (Seconds)

40 50 60

Figure 70: Inboard and Outboard Right Aileron Failure Reconfiguration

96

1.4

Z)

V)
IV5

0 10

0.4

-0.2-

0

-0.4 -

-0.6 L
-0.8k

lb

-1

-1.2|-

-1.4(

1

-0.2

- -.. .. .

Again, in order to compensate for the added moment of the hardunder aileron failure the

horizontal tail surfaces are used as well. The deflections of the horizontal tail surface can

be seen in Figure 71. Only the deflections for a failure with internal model update are

given for clarity.

Left and Ri t Hoizortal Tail Surface Reconfiguration
1.6-

1.4-

Left Horizontal Tal Surface aler Failure

p1.2-/

Lal and R Horizonta Tall Surface Norninal

0.8-

0-

10 20 30 40 so 60
Time (Seconds)

Figure 71: Horizontal Tail Reconfiguration

Roll Test Case 3

The frozen case scenario proved to be less enlightening. For brevity those results are not

presented. The results are similar to the ones of the pitch frozen case, showing only

slight differences between the nominal and failed cases.

6.3 Altitude Capture Mode Failures

The following are a series of failures in the two inboard split horizontal tail surfaces

while the altitude capture autopilot mode is engaged. The maneuver is a simple 200 foot

climb and then decent to the original altitude of 25,000 feet. The failure occurs at 10

seconds or just as the 200 foot plateau is reached. The change in altitude is mainly

governed by the aircraft pitch angle and its dynamics are slow enough to allow for a 5 Hz

97

MPC controller rate update. Again, the same 4 second prediction horizon and 4 Laguerre

bases are used

Altitude Test Case 1.

The first test is for the two inboard horizontal surfaces to go hard over to +10.5 degrees.

In this test the capability of the MPC controller to constrain its output is shown. Figure

72 shows a plot of the altitude profile with a pitch rate constraint of +/- 15 degrees/sec.

2 10, Inboard Horizontal Surface Failure
2.525 - nominal

failed
failed w/o model update

2.52-

2.515-

2.51 -

!k 2.505-

2.5

2.495-

2.49 -J
0 10 20 30 40 50 60

Time (Seconds)

Figure 72: Hardover Inboard Horizontal Tail Surface Failure Reconfiguration

Since the input constraint is so small, a large transient is induced as the aircraft hits its

pitch rate limit of 15 deg/sec and tries to maintain its trajectory. Again, the MPC

controller, without model correction, has a large bias as it computes its trajectory with

faulty information. The control profile can be seen in Figure 73. As mentioned, the

MPC controller hits the constraint of 15 deg/sec as it tries to regain altitude. The

resulting horizontal tail surface deflections can be seen in Figure 74.

98

a inlpt

0 10 20 30 40 50 60
Time (Seconds)

Figure 73: Pitch Rate Command for Hardover Inboard Horizontal Tail Surface Controller

Reconfiguration

Outboard Horizontal Tail Reconfigtration

am

S

U
I.-
-i
S

I

8

30
Time (Seconds)

60

Figure 74: Outboard Horizontal Tail Surface Reconfiguration

The same hard over experiment was also run with the pitch rate constraint expanded to

+/- 40 deg/sec. The results can be seen in Figures 75 and 76.

99

Inboard Horizontal Surface Failure

-- nominal
- failed

failed w/o model update

10 20 30
Time (Seconds)

40 50

Figure 75: Hardover Inboard Horizontal Tail Surface

Contraints

2.522

Inboard Horizontal Surfacex 104

L

Failure Reconfiguration with Relaxed

Failure

nominal
failed
failed w/o model update

2.521 -

2.52-

2.519 -

2.518 -

2.517 -

2.516-

8 10 12 14
Time (Seconds)

Figure 76: Hardover Inboard Horizontal Tail Surface Failure Reconfiguration with Relaxed

Contraints Zoom

100

x 102.525 r

2.52

2.515

i
2.51

2.505

2.5

2.4951
0 60

16 18

.. . i

........-

-

1

The transient is reduced dramatically as the constraints are relaxed. There is a transient

of only 10 feet for the MPC controller with the updated model. The control profile in

Figure 77 shows how the added spike of commanded pitch rate, at 10 seconds, serves to

bring the aircraft quickly back on its target altitude.

50

I

0 Input

30
Time (Seconds)

Figure 77: Pitch Rate Command for Hardover Inboard Horizontal Tail

Reconfiguration

Surface Controller

The higher controller spike at the point of failure allowed for the CAS to command a

more aggressive horizontal tail surface movement so as to recover from the sudden hard

over failure. This can be seen in Figure 78, with a deflection of almost -16 degrees

shortly after the point of failure. This is compared to -10 degrees with the stronger input

constraints.

101

4

2

Outboard Horizontal Tail Reconfiguration

-

0

-2 --
nominal

_- inboard failed
-4 - Inboard failed w/o model update

-6

-10 -
-12

160 10 240O 50 60
Time (Seconds)

Figure 78: Outboard Horizontal Tail Surface Reconfiguration

Altitude Test Case 2

The previous test showed how the controller can hit its constraints and still recover the

nominal trajectory after an initial transient. This test will show how the controller can

recover the nominal trajectory with the control surface positions hitting their saturation

levels as well. This is done by simulating a -10 degree hard under failure scenario in the

two inboard horizontal tail surfaces at the same 10 second mark. These results can be

seen in Figure 79. There is a huge transient caused not only by the controller saturation

as in the last experiment but by the control surface saturation itself. The horizontal tail

surfaces have a saturation level of 10.5 degrees and are shown to ride it while bringing

the aircraft back to nominal. The controller and surface profiles can be seen in Figures

80 and 81 respectively.

102

Inboard Horizontal Surface Failurex i c
2.56 r -

2.51

2.5

2.49
0 10 20 30

Time (Seconds)
40 50 60

Figure 79: Hardunder Inboard Horizontal Tail Surface Failure Reconfiguration

0 input
20,1

li.

0 10 20 30 40 50 60
Time (Seconds)

Figure 80: Pitch Rate Command for Hardunder Inboard Horizontal Tail Surface Controller

Reconfiguration

103

nom-inal
- failed

failed w/o model update
2.55-

2.54

2.53 P

i
2.52| I --

Outboard Horizontal Tail Reconfiguration

8-

'5 - -nomninal

- oard failed
inboard failed w/o model update

-2 1 I..

0 10 20 30 40 50 60
Time (Seconds)

Figure 81: Outboard Horizontal Tail Surface Reconfiguration

Similar to the two previous autopilot modes, there was minimal controller reconfiguration

in the frozen control surface scenario.

6.4 Altitude/Heading Mode Hold Failures

The altitude/heading hold autopilot mode has two new features. First it is a multiple

input and multiple output controller, so both heading and altitude profiles can be tracked

simultaneously. In addition, it has an additional redundant control feature which is the

thrust vectoring system. It is this thrust vectoring system that will allow for more

dramatic failure exercises. The maneuver is a climb by 400 feet in altitude and then a 15

degree heading change followed by a 400 foot descent to the original altitude. The

controller update is 5 Hz with a prediction horizon of 4 seconds and 4 Laguerre bases are

used.

Altitude/Heading Test Case 1

In the first failure exercise both rudders are failed hard over to +10 degrees at 5 seconds

into the maneuver. This is well before any heading changes so the aircraft will be forced

104

to both track the heading profile, using only its thrust vectoring system, and counter the

large amount of torque created by the hard over twin rudders. The resulting heading

profile can be seen in Figure 82. It shows that in fact, with hard over full rudders, the

vehicle can maintain control of its heading.

Hardover Rudder Failure Reconfiguration
16- -

14-

12- nominal
-- failed

failed wo model update
10 - -- -

8-

0

0 10 20 30 40 50 60
Time (Seconds)

Figure 82: Hardover Rudder Failure Reconfiguration

The change in the MPC control output can be seen in Figure 83. The yaw rate input r

lurches up as the failure is encountered and controls the aircraft through the entire

maneuver. In Figure 84 below, the actual thrust vane deflections can be seen. It should

also be mentioned that after the heading change the TVC vanes are kept to a constant

deflection of -20 degrees. The TVC is counteracting the yawing moment generated by

the failed rudders.

105

R inpt

2 -

0 -j

-2

4
0 10 20 30 40 50 60

Time (Seconds)

Figure 83: Yaw Rate Command for Hardover Rudder Failure Controller Reconfiguration

2

TV Directional Reconfiguration

40 ' 1
0 10 20 30 40

Time (Seconds)
50 60

Figure 84: Hardover Rudder Thrust Vane Reconfiguration

Meanwhile in the longitudinal channel, the altitude track is near nominal despite the

rudder failures. This can be seen below in Figure 85. Although nominal performance is

106

recovered, there is only a slight difference between the MPC longitudinal commands with

and without the failure (See Figures 86 and 87).

Hardover Rudder Failure Reconfiguration

nominal
failed
failed w/o model update

10 20 30
Time (Seconds)

40 50 60

Figure 85: Altitude/Rudder Hardover Reconfiguration

Q Input

30
Time (Seconds)

Figure 86: Altitude Rudder Hardover Controller Reconfiguration

107

x 10,
2.545 r

2.54

2.535

2.53

2.525

2.52

2.515

2.51

i

2.505-

2.5

2.495
0

-

TV Longitudinal Reconfiguration

10

8
5-

0

15 -5-

2 -1o

-15-

-20-

-25 I
0 10 20 30 40 50 60

Time (Seconds)

Figure 87: Altitude/Rudder Hardover Thrust Vane Reconfiguration

Altitude/Heading Test Case 2

The second failure experiment involves freezing the rudder position after 5 seconds into

the flight. Since a maneuver has not been encountered, the rudder position stays at 0 for

the duration of the flight. It can be seen in Figure 88 that the nominal is nearly

completely recovered in the event of this failure.

108

Frozen Rudder Failure Reconfiguration
16

14-

12

- nominal

10 -ailed w/o model update

4-

2-

0

0 10 20 30 40 50 s0
lime (Seonds)

Figure 88: Frozen Rudder Failure Reconfiguration

There is only a slight undershoot when the MPC model is not updated. The MPC

controller is still able to control the aircraft's heading with a faulty model of the frozen

rudders. The effects of the controller reconfiguration can be seen in Figures 89 and 90.

The resulting scheme may be counter intuitive because the nominal response goes

slightly higher than the failed response. This is because the TVC can create very high

moments but is operating at the slow rate of 5 Hz. This slow control rate is augmented

by MPC by using the rudders, which operate at 50Hz. The rudders are used as fine

tuning to counteract the large moments created by the TVC and keep following the

tracking variable psi.

109

R inpA

-2

-3 -

-4
0 10 20 50 60

Tine (Seconds)

Figure 89: Yaw Rate Command for Frozen Rudder Failure Controller Reconfiguration

TV Directional Reconfiguration

0 10 20 30
Time (Seconds)

40 50 60

Figure 90: Frozen Rudder Failure Thrust Vane Reconfiguration

On the longitudinal channel, there is only a very slight amount of reconfiguration. The

symmetry of the rudders and lack of deflection have virtually no effect on the

longitudinal control sequences. This can be seen in altitude response in Figure 91 and

control schemes in 92 and 93.

110

b

30
Time (Seconds)

Figure 91: Altitude/Rudder Frozen

Q inpt

20-

15-

10

5-

-5-

-10-

-15-

-20-

-25 -
0

Reconfiguration

Time (Seconds)

Figure 92: Altitude/Rudder Frozen Controller Reconfiguration

111

8

60

TV Longitudinal Reconfiguration

-0 -

b1

30 40 50 60
Time (Seconds)

Figure 93: Frozen Rudder Thrust Vane Reconfiguration

Altitude/Heading Test Case 3

The final set of simulations is unique in the sense that it causes a loss of the aircraft when

the MPC internal model is not updated. It is the same maneuver as before but with a

failure in the two inboard horizontal tail surfaces at 10 seconds into the flight. In this first

simulation the two inboard surfaces deflect to a +10.5 degrees hard over after 10 seconds.

The response in the longitudinal channel can be seen below in Figure 94.

With MPC operating with an updated model, the response has only an overshoot but soon

regains the reference trajectory. If the MPC internal model is not updated then the

controller fails to control the aircraft as seen in Figure 95. The altitude plummets

abruptly at around 27 seconds into the flight. This happens soon after the controller

breaks out of its 30 deg/sec input constraints and begins to assign unreachable control

commands which the CAS cannot possibly track. Figure 96 shows this dramatic failure

by showing turning angles well over 90 degrees.

112

Hardover Inboard Horizontal Tail Surface Failure Reconfiguration

norninal
--- failed

... ..--- failed w/o model update

10 20 30
Time (Seconds)

40 50 60

Figure 94: Hardover Inboard Horizontal Tail Surface Failure Reconfiguration

Q inpit

noninal
- failed with model update

failed w/o model update

-. - -.. ...

10 20 30
Time (Seconds)

40 50 60

Figure 95: Pitch Rate Command for Hardover Inboard Horizontal Tail Surface Failure Controller

Reconfiguration

113

x 10
2.56 r

2.54

2.52

2.5

2.48-

2.46-

2.44-

2.42-

2.4-

2.38-

0

500

400

300

200

100

0

-100
0

2Z.

TV Longitudnal Reconfiguration
5W

50

0

-50

-100

-150

-200

-250

-300

-3500 10 20 30
Time (Seconds)

40 50 60

Figure 96: Hardover Inboard Horizontal Tail Surface Failure Thrust Vector Reconfiguration

Figure 97 below shows the new reconfigured control surface positions for the maneuver

as well. The MPC controller without an updated model shows erratic behavior

25-

20

15-

10-

5

0-

-5-

-10-

-15-

-20
0

Rudder Reconfiguration

- nominal
- failed
- failed w/o model update

10 20 30
Time (Seconds)

40 50 60

Figure 97: Hardover Inboard Horizontal Tail Surface Failure Rudder Reconfiguration

114

-- nominal
failed with model update
failed w/o model update

D

2

-

The MPC controller without the updated model starts losing control of the heading angle

after about 20 seconds as shown in Figure 98. The heading plummets at 25 seconds into

the flight as the controller hits the constraints and then breaks out of them. This sends the

aircraft into a spin as the thrust vectoring tries to compensate. Eventually the simulation

breaks down with erratic thrust vane angles and r input commands (See Figures 99 and

100).

Hardover Inboard Horizontal Tail Surface Failure Reconfiguration
20-

0 - - nominal
-- failed

- failed w/o model update

4)

-20-

-40-

-60-

-80 -

-100

-1201-

10 20 30
Time (Seconds)

40 50 60

Figure 98: Hardover Inboard Horizontal Tail Surface Failure Reconfiguration

115

R iripA
1200Rinu

- nominal
failed with model update
failed w/o model update

1000

800-

600-

400

200-

0 10 20 30 40 50 60
Time (Seconds)

Figure 99: Yaw Rate Command for Hardover Inboard Horizontal Tail Surface Failure Controller

Reconfiguration

TV Directional Reconfiguration
1000

noninal
- failed with model update

failed w/o model update
0

-1000-

-2000--

b -3000-

g -4000-

-5000-

-6000 -
0 10 20 30 40 50 60

Time (Seconds)

Figure 100: Hardover Inboard Horizontal Tail Surface Failure Thrust Vector Reconfiguration

Altitude/Heading Test Case 4

The hard under scenario shows similar results. The two inboard horizontal tails surfaces

deflect to -10 degrees at 10 seconds into the flight. Again, with an updated model of the

116

failed plant, nominal performance is recovered. Although the craft is not lost, the

simulation shows that there is great difficulty if the model is not updated. The simulation

does not go numerically unstable but still produces unsatisfactory results. For instance,

the simulation has the thrust vectoring vanes maintaining a sustained oscillation of

upwards of 40 degrees just to maintain stable flight. These high amplitude, high

frequency oscillations are occurring on both the longitudinal and directional channels of

the thrust vanes. Clearly this is a case where, although the simulation results do not show

a loss of the aircraft, there is a serious problem. In Figure 101 the MPC controller with

the updated model can be shown to adapt quickly to the failure. The controller without

an updated model again has tremendous difficulties. Figures 102-104 show the control

schemes for this maneuver. Again, with the MPC controller without an updated model

the high frequency and large amplitude oscillations can be seen throughout.

2 1Hardunder Inboard Horizorital Tail Surface Failure Reconfiguration

2.46-nomdnal

-- failed
failed w/o model update

2.442.42 II

0 10 20 30 40 50 60
Time (Seconds)

Figure 101: Hardounder Inboard Horizontal Tail Surface Failure Reconfiguration

117

10

0

-10

Q input

U 10 20 30 40 50 60
Time (Seconds)

Figure 102: Pitch Rate Command for Hardunder Inboard Horizontal Tail Surface Failure

Controller Reconfiguration

TV Longitudinal Reconfiguration
40

- - nominal
- failed with model update

failed w/o model update
30-

20-

10 - -

0 -

S-10

-20

-30
0 10 20 30 40 50 60

Time (Seconds)

Figure 103: Hardunder Inboard Horizontal Tail Surface Failure Thrust Vector Reconfiguration

118

Outboard Horizortall Tall Surface Reconfiguration

-- nominal
- failed

failed w/o model update

- - - !' i
IiN j:0

di~r1.

10 20 30
Time (Seconds)

40 50 60

Figure 104: Outboard Horizontal Tail Surface Reconfiguration

The heading channel experiences similar problems of erratic oscillations in the controller.

The heading angle varies by 10 degrees as the rudder and directional thrust vanes vary

wildly. The heading response can be seen in Figure 105 with the control schemes in

Figures 106-108.

119

12

10

S

C

i
I-

I
S
I
~0

8

Hardunder Inboard Horizontal Tail Suface Faikre Reconfiguration
25

0.

30
Time (Seconds)

Figure 105: Hardover Inboard Horizontal Tail Surface Failure Reconfiguration

15
R inpt

30
Time (Seconds)

Figure 106: Yaw Rate Command for Hardunder Inboard Horizontal Tail Surface Failure Controller

Reconfiguration

120

60

60

TV Directional Reconfiguration
100

2

4)

80

60

40

20

0

-20

-40

-60 F

-80L
0 10 20 30

Time (Seconds)

Figure 107: Hardunder Inboard Horizontal Tail Surface Failure Thrust Vector Reconfiguration

Rudder Reconfiguration

nominal
- failed

failed w/o model update

20
Time (Seconds)

40 50

Figure 108: Rudder Reconfiguration

121

- - nominal
-- failed with model update

failed w/o model update

40 50 60

8

6

4

2

0

-2

S

D
4)

-4

-6

-8

10 60

[This Page Intentionally Left Blank]

122

Chapter 7

Conclusions and Recommendations

7.1 Conclusions

This thesis provides an approach to the design of a reconfigurable autopilot by updating

the internal model of an MPC controller. It is shown that in the face of substantial

control surface failures MPC has the ability to reconfigure its control law and maintain

acceptable performance by using an internal model of the failed plant. In the case when

the internal model is not updated with the plant failure, the MPC autopilot has difficulty

tracking the reference signal. In most cases a larger transient is seen with a steady state

error throughout the rest of the maneuver. In the case of the altitude/heading autopilot

however, the use of an un-updated model, while experiencing a partial horizontal tail

failure, resulted in the loss of the aircraft.

A principal advantage of the MPC controller presented in this work is the fact that it uses

a nonlinear model of the plant to predict the outputs over the time horizon. In case of a

known failure the MPC internal model can be updated during flight. This is opposed to

state space methods where the entire linear model would have to be re-calculated in case

of a failure at each point in the flight envelope. The nonlinear model can also be reused

in all autopilot modes. Finally, the MPC controller can impose constraints on the inputs

to the CAS and the vehicle states as a failure occurs. For example, constraints can be

used to limit the performance of the vehicle in case of a failure in order to safeguard

against unforeseen dangers.

In order to make MPC a real time process it was developed as an outer loop and a

perturbational method was used. By placing MPC around a stabilizing inner loop, the

MPC controller rate could be lowered to as much as 5 Hz while maintaining acceptable

performance. The dynamic of the plant required a time horizon of four seconds. The rate

123

of the propagator in the MPC controller was 50 Hz because the inner loop CAS was

included in the model. The total number of independent variables in this case was 200

(4*50) times the number of inputs. In order to reduce the size of the QP problem basis

functions were introduced as perturbations to the nominal input. This reduced the

number of independent variables to only 4 when orthogonal Laguerre polynomials were

used as the basis set. The Laguerre polynomials only required slight tuning of the

weighting matrices Q and R to account for the oscillatory transient response of the

system.

Several autopilot modes and failures were tested in this work. The pitch hold autopilot

mode was found to recover suitable performance after a very short duration. The

controller proceeded with an aggressive input spike to regain its nominal as fast as

possible. In the case of an un-updated model, there was a steady state bias and tracking

of the reference was therefore lost.

The bank hold autopilot mode proved to be extremely time sensitive and so the controller

rate had to be increased relative to the other autopilot modes. The failure updated MPC

controller proved to be able to bring the aircraft back to wings level. The MPC controller

without an updated model had a larger transient and reached a steady state bias, unable to

reach wings level.

The altitude capture autopilot mode with failure updated MPC controller was found to

regain the altitude reference with a transient proportional to the amount of constraints put

on the input or pitch rate. The un-updated model had a large steady state bias but proved

to be stable.

The heading/altitude hold mode showcased the failure updated MPC controller's ability

to reconfigure itself on both the longitudinal and directional channels. Furthermore, the

entire rudder was failed and the thrust vectoring was shown to fully compensate for it.

As for the MPC controller without failure update, the discrepancy between the true failed

model proved to be too great resulting in the loss of the aircraft.

MPC shows many advantages over other approaches to reconfigurable control. The

automated gain schedule is the most straightforward of all methods and though may

124

obviously work for failures foreseen, is cumbersome and time consuming. The amount

of time creating the controllers is extended greatly as each is tuned for its particular

failure. MPC's advantage to this is that only one controller is designed and the algorithm

itself solves for the new strategy as the failure is encountered.

Another class of reconfigurable control systems reacts to a failure reallocating the

commanded moments to the remaining un-failed surfaces. In our scheme, the moment

allocation problem is kept confined to the CAS which assigns control surface positions as

prescribed by its inputs from MPC. MPC is explicitly aware of how the inner loop CAS

will respond because it uses a model of the entire inner loop when it predicts ahead. The

CAS itself however is not updated as a result of the reconfiguration. The other more

exotic techniques are lumped as general constrained optimizations and are all striving for

most of what MPC can actually do. MPC can explicitly take a failed model of the plant

and use it to find the optimal control strategy as defined by its cost function for a given

failure. This is opposed to implicit model following where certain key measurements that

are deemed fundamental to aircraft performance are monitored and used to develop a new

control strategy.

There is great promise in MPC as faster computers make highly computational control

algorithms easier to implement. The design of next generation controllers for aerospace

vehicles will then shift to creating higher fidelity models to place inside the MPC engine.

This will drastically reduce the amount of time spent designing a control system and

reconfiguration capabilities would be possible as long as the model was able to

incorporate failure information.

7.2 Recommendations for Further Work

MPC has the capability to create a reconfigurable controller by means of an updatable

model. The process of updating the internal model has many applicable consequences

and lends itself to many other types of reconfiguration. A degree of payload

reconfiguration can be added when the internal model is simply updated with the new

payload capacity for a mission. The amount of time tuning a new controller just for this

slight augmentation would be enormous.

125

Furthermore MPC can be used to provide a degree of mission reconfiguration. This is

because the MPC algorithm is virtually identical for all autopilots. In the event of a

failure and a re-planning of the entire mission, the controller can be updated relatively

easily. This is because all that needs to be updated are the inputs and outputs that MPC is

tracking and creating.

Perhaps the most pressing issue to be investigated relative to this research is the addition

of engine throttle as a control input to MPC in the event of failure. The engines are an

often overlooked redundant control effecter for the aircraft. They are capable of

controlling the aircraft in all three principal axes. The addition of this input would reduce

the need for redundant surface controls. Furthermore the algorithm could be placed on

existing aircraft without the costly addition of redundant control surfaces or thrust

vectoring.

126

Appendix A

Internal Model Generation

The internal model used by the MPC controller in this thesis was created by using Real

Time Workshop (RTW) from MathWorks Inc. This enabled the entire simulink diagram,

complete with S functions, to be converted into stand alone C code. This C code can then

be fully integrated into the larger MPC controller algorithm making it entirely in C. The

simulink diagram must explicitly have inputs and outputs labeled for the internal class

structure assigned by RTW. A simulink snapshot of the aircraft model explicitly in this

state before it is auto coded can seen in Figure 109.

qCmd

pCmd

rCmd

plar

phil

suffpall

CD-po

U

qCmd

pCmd

phi

rCmd theta

psi

plar p

q

rOS 0

surpos

2

3

a
phi

theta

a
psi

p

*CD

pos e

Bit

Alp

Figure 109: Aircraft Simulink Diagram for RTW

127

RTW will then generate the necessary C files complete with headers and an internal class

structure. The key components created are an initialization function and a step function.

The initialization function must be run before executing the step function and loads all

gain, trim and other data. The step function is created to be run at the rate at which the

entire model is discretized. The propagator works by simply calling this step function for

the appropriate amount of points in the prediction horizon. The actual propagator

function can be seen below.

void propagator calc(propagator *me)

int i, j;

me->out.numPoints = me->in.numPoints;

for(j=0; j<me->out.numPoints; j++)

if (j == 0) {

Aircraft proprjinitialize(1);

/* assign initial states */

for (i=0; i<1 1; i++)
Aircraft-propr DWork.EnginputDSTATE[i] = me->state.Enginput.value[i];

for (i=O; i<6; i++)
Aircraft proprDWork.FMstatesDSTATE[i] = me->state.Fmstates.value[i];

for (i=0; i<2; i++)
Aircraft-proprDWork.EngdynstatesDSTATE[i]=me>state.Engdynstates.value[i]

for (i=0; i<37; i++)
Aircraft-proprDWork.AeroinputDSTATE[i] = me->state.Aeroinput.value[i];

Aircraft-propr DWork.DerivativeDSTATE = me->state.Derivative.value[0];

for (i=0; i<12; i++)
Aircraft-propr DWork.xStateDSTATE[i] = me->state.xStates.value[i];

Aircraft _proprDWork.LongCaslDSTATE = me->state.LongCas1.value[O];
Aircraft-proprDWork.CASintDSTATE = me->state.CASint.value[0];

Aircraft proprDWork.LatCasl1DSTATE = me->state.LatCas1.value[0];
Aircraft proprDWork.LatCas2aDSTATE = me->state.LatCas2a.value[0];
Aircraft proprDWork.LatCas2bDSTATE = me->state.LatCas2b.value[0];
Aircraft propr DWork.LatCas3aDSTATE = me->state.LatCas3a.value[0];
Aircraft proprDWork.LatCas3bDSTATE = me->state.LatCas3b.value[O];
Aircraft proprDWork.DirCasl1DSTATE = me->state.DirCas1.value[0];
Aircraft proprDWork.DirCas2DSTATE = me->state.DirCas2.value[0];
AircraftproprDWork.DirCas3_DSTATE = me->state.DirCas3.value[0];
Aircraft proprDWork.DirCas4aDSTATE = me->state.DirCas4a.value[0];
Aircraft proprDWork.DirCas4bDSTATE = me->state.DirCas4b.value[0];
Aircraft proprDWork.DirCas5_DSTATE = me->state.DirCas5.value[0];

128

Aircraft-proprUplal me->in.plal.valueU];
AircraftproprUplar me->in.plar.valueU];
Aircraft-proprU.qCmd = me->in.qCmd.valuej];
Aircraft-proprU.pCmd = me->in.pCmd.valueU];
Aircraft-proprU.Surffail[O] = me->in.surffaill.valuej];
Aircraft-proprU.Surffail[1] = me->in.surffail2.value[j];
Aircraft-proprU.Surffail[2] = me->in.surffail3.vaueU];
AircraftproprU.Surffail[3] = me->in.surffail4.vaue[j];
Aircraft-proprU.Surffail[4] = me->in.surffail5.valuej];
AircraftproprU.Surffail[5] = me->in.surffail6.value[j];
Aircraft-proprU.Surffail[6] = me->in.surffai17.valueU];
Aircraft proprU.Surffail[7] = me->in.surffail8.valueUj];
Aircraft-proprU.Surffail[8] = me->in.surffail9.value[j];
Aircraft-proprU.Surffail[9] = me->in.surffail1O.valueU];
Aircraft proprU.Surffail[1 0] = me->in.surffaill 1.valuej];
Aircraft-propr-U.Surffail[1 1] = me->in.surffail1 2.value[j];
Aircraft-proprU.Surffail[12] = me->in.surffail13.valueU];
Aircraft _proprU.Surffail[13] = me->in.surffail14.value[j];
AircraftproprU.surfpos[O] = me->in.surfpos1.value[j];
Aircraft proprU.surfpos[1] = me->in.surfpos2.vauej];
Aircraft propr U.surfpos[2] = me->in.surfpos3.value[j];
Aircraftpropr_U.surfpos[3] = me->in.surfpos4.value[j];
Aircraft proprU.surfpos[4] = me->in.surfpos5.valueU];
Aircraft proprU.surfpos[5] = me->in.surfpos6.vaue[j];
Aircraft proprU.surfpos[6] = me->in.surfpos7.value[j];
Aircraft propr U.surfpos[7] = me->in.surfpos8.vaue[j];
Aircraft proprU.surfpos[8] = me->in.surfpos9.value[j];
Aircraft proprU.surfpos[9] = me->in.surfpos10.valuej];
Aircraft proprU.surfpos[1 0] = me->in.surfposl 1.valuej];
Aircraft proprU.surfpos[1 1] = me->in.surfposl 2.valueU];
Aircraft proprU.surfpos[12] = me->in.surfpos13.valuej];
AircraftproprU.surfpos[13] = me->in.surfpos14.value];

Aircraft-propr-step(;

me->out.u.valuej] = Aircraft propr_Y u;
me->out.v.value[j] = Aircraftpropr_Y.v;
me->out.w.valuej] = AircraftproprY.w;
me->out.pitch.value[j] = Aircraft proprY.pitch;
me->out.phi.valueU] = Aircraft-propr Y.phi;
me->out.psi.value[j] = Aircraft proprY.psi;
me->out.pitchrate.value[j] = Aircraft-propr_ Y.pitchrate;
me->out.p.value[j] = Aircraftpropr Y.p;
me->out.r.vaueUj] = Aircraft-proprY.r;
me->out.pos_n.value[j] = Aircraft-proprY.pos-n;
me->out.pos_e.value[j] = Aircraft-proprY.pos-e;
me->out.alt.vaue[j] = Aircraft proprY.alt;
me->out.alp.valueU] = Aircraft proprY.alp;

}

The simulink model itself was very complicated consisting of multiple inner loops,

second and first order transfer functions, and C S-Functions. The transfer functions and

delays created additional states that had to be initialized before the propagator could

simulate ahead. These all had to be dealt with separately to satisfy both MPC's need to

have the propagator resetable and for RTW to have the model discrete.

In order for the transfer functions in the CAS to be made fully resetable they had to be

put into state space form. After this they could be implemented in simulink to bring the

129

integrators outside. Once this was done, the integrator simply had to be reassigned a new

initial value each time using feedback state information from the truth model. An

example of this involving a 44 Hz filter in the Lateral CAS system is given.

The transfer function for this filter is the following.

(1/44)2 s2 +2*0.07 /44s +l
(1/44) 2 s2 + 2*0.7 /44s +1

This transfer function was then put into state space format with the following matrices.

- 61.6 - 60.5]

(42) B=[8
0

C= [-6.93 0]
D=1

This leads to a single input, single output, two state system that can be put into simulink

in the following way (see Figure 110).

Figure 110: Filter with Explicit Integrators

130

The integrators labeled LatCas3a and LatCas3b can now be reset each time the

propagation sequence starts. This leads to feedback from all 13 integrator states that are

in the entire CAS systems.

Furthermore, certain delays had to be added to prevent algebraic loops from forming in

the resulting code. Figure 111 shows the aircraft airframe simulation which further

clarifies this technique.

Figure 111: Aircraft Airframe with Delays

The vectors Enginput, Aeroinput and FMStates are all delayed in order to prevent these

algebraic loops from forming. As a result all must be initialized by feedback from the

truth model as well leading to 55 additional states.

Finally, S-functions which solve differential equations must be put into an alternate

format in order for the integration to become resetable. This can be seen in the 6DOF

equations of motion simulation below (see Figure 112).

131

Figure 112: S-Functions with Explicit Integrator

The integration step is removed to the outside resulting in feedback to the original

equations. This process leads to 14 integrator states that must be fedback to the

propagator. The total feedback to initialize the propagator comes to 82 states. There is

also however additional feedback from the control surface positions which is used to

update the internal model.

One additional step taken in order to generate the C code was to add corresponding .tlc

files for each S-Function. These files make autocoding S-Functions possible by

incorporating the C function calls found in them into the resulting code.

132

Appendix B

MPCPREP S Function

The MPCPREP S function assembles the A, B, D, S, H, f matrices and the nominal

input and output vectors. This was done using a linear algebra utility package developed

in house. The utility sets up a matrix object and allows the user to easily transpose,

multiply, scale and add matrices as well as a host of other things. This was used

extensively as the proper matrices were stacked up and then integrated into the final H, f

and A, B matrices. This can be seen in the following code which assembles the H and f

matrices for a single input/output situation without input weighting.

void mpcsetHF(mpc *me)

/* H = S'*Q*S */
Matrix matrixMultiplication(&me->Q, &me->tmp.QS, &me->S);
Matrix-transpose(&me->S, &me->tmp.STransp);
MatrixmatrixMultiplication(&me->tmp.S_ Transp, &me->H, &me->tmp.QS);

/* F = -ETA'*Q*S */
Matrixjtranspose(&me->referenceOutput, &me->tmp.ETATransp);
Matrix-matrixMultiplication(&me->tmp.ETA Transp, &me->F, &me->tmp.QS);
Matrix-negative(&me->F);

The insert function from this package was also used as vectors from the propagation

sequence had to be assembled to form the matrices D and S. Furthermore, the identity

and scaling functions were used to create the Q and R weighting matrices.

133

[This Page Intentionally Left Blank]

134

Bibliography

[1] "Application of Multivariable Control Theory to Aircraft Control Laws," Wright

Laboratory, WL-TR-96-3099, May 1996.

[2] Cotting, C., and Burken, J., "Reconfigurable Control Design for the Full X-33 Flight

Envelope," NASA-TM-2001-210396. August 2001.

[3] Kassapakis E.G., and Warwick K., "Predictive Algorithm for Autopilot Design,"

Berkshire, UK, 1994.

[4] Lapp, Tiffany. "Guidance and Control using Model Predictive Control for Low

Altitude Real Time Terrain Following Flight," MIT Master's Thesis, 2004, pp.5 6 .

[5] Maciejowski, J.M., Predictive Control with Constraints, Pearson Education Limited,

Essex, England, 2002.

[6] Military Standard, "Flying Qualities of Piloted Vehicles," MIL-STD-1797, 31 March

1987.

[7] Shertzer, R., Zimpfer, D., Brown, P., "Control Allocation for the Next Generation of

Entry Vehicles." AIAA Paper 2002-4849, Aug. 2002.

[8] Van Den Boom, J., Backx, C., Model Predictive Control, Delft, The Netherlands,

Nov. 2001.

[9] Ward, D, Monaco, J., "Development and Flight Testing of a Parameter Identification

Algrithm for Reconfigurable Control, " Journal of Guidance, Control and Dynamics, Vol.

21, No. 6, 1998, pp. 94 8 -9 5 6 .

135

136 m

